1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/Hashing.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/SetVector.h" 53 #include "llvm/ADT/SmallPtrSet.h" 54 #include "llvm/ADT/SmallSet.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/Statistic.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/Analysis/AliasAnalysis.h" 59 #include "llvm/Analysis/AssumptionCache.h" 60 #include "llvm/Analysis/BasicAliasAnalysis.h" 61 #include "llvm/Analysis/BlockFrequencyInfo.h" 62 #include "llvm/Analysis/CodeMetrics.h" 63 #include "llvm/Analysis/DemandedBits.h" 64 #include "llvm/Analysis/GlobalsModRef.h" 65 #include "llvm/Analysis/LoopAccessAnalysis.h" 66 #include "llvm/Analysis/LoopInfo.h" 67 #include "llvm/Analysis/LoopIterator.h" 68 #include "llvm/Analysis/LoopPass.h" 69 #include "llvm/Analysis/ScalarEvolution.h" 70 #include "llvm/Analysis/ScalarEvolutionExpander.h" 71 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 72 #include "llvm/Analysis/TargetTransformInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/Analysis/VectorUtils.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfo.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/DiagnosticInfo.h" 80 #include "llvm/IR/Dominators.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/IRBuilder.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/LLVMContext.h" 86 #include "llvm/IR/Module.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/IR/ValueHandle.h" 91 #include "llvm/IR/Verifier.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/BranchProbability.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Transforms/Scalar.h" 98 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include "llvm/Transforms/Utils/LoopUtils.h" 101 #include "llvm/Transforms/Utils/LoopVersioning.h" 102 #include "llvm/Transforms/Vectorize.h" 103 #include <algorithm> 104 #include <functional> 105 #include <map> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace llvm::PatternMatch; 110 111 #define LV_NAME "loop-vectorize" 112 #define DEBUG_TYPE LV_NAME 113 114 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 115 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 116 117 static cl::opt<bool> 118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 119 cl::desc("Enable if-conversion during vectorization.")); 120 121 /// We don't vectorize loops with a known constant trip count below this number. 122 static cl::opt<unsigned> TinyTripCountVectorThreshold( 123 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 124 cl::desc("Don't vectorize loops with a constant " 125 "trip count that is smaller than this " 126 "value.")); 127 128 static cl::opt<bool> MaximizeBandwidth( 129 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 130 cl::desc("Maximize bandwidth when selecting vectorization factor which " 131 "will be determined by the smallest type in loop.")); 132 133 static cl::opt<bool> EnableInterleavedMemAccesses( 134 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 135 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 136 137 /// Maximum factor for an interleaved memory access. 138 static cl::opt<unsigned> MaxInterleaveGroupFactor( 139 "max-interleave-group-factor", cl::Hidden, 140 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 141 cl::init(8)); 142 143 /// We don't interleave loops with a known constant trip count below this 144 /// number. 145 static const unsigned TinyTripCountInterleaveThreshold = 128; 146 147 static cl::opt<unsigned> ForceTargetNumScalarRegs( 148 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 149 cl::desc("A flag that overrides the target's number of scalar registers.")); 150 151 static cl::opt<unsigned> ForceTargetNumVectorRegs( 152 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 153 cl::desc("A flag that overrides the target's number of vector registers.")); 154 155 /// Maximum vectorization interleave count. 156 static const unsigned MaxInterleaveFactor = 16; 157 158 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 159 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 160 cl::desc("A flag that overrides the target's max interleave factor for " 161 "scalar loops.")); 162 163 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 164 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 165 cl::desc("A flag that overrides the target's max interleave factor for " 166 "vectorized loops.")); 167 168 static cl::opt<unsigned> ForceTargetInstructionCost( 169 "force-target-instruction-cost", cl::init(0), cl::Hidden, 170 cl::desc("A flag that overrides the target's expected cost for " 171 "an instruction to a single constant value. Mostly " 172 "useful for getting consistent testing.")); 173 174 static cl::opt<unsigned> SmallLoopCost( 175 "small-loop-cost", cl::init(20), cl::Hidden, 176 cl::desc( 177 "The cost of a loop that is considered 'small' by the interleaver.")); 178 179 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 180 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 181 cl::desc("Enable the use of the block frequency analysis to access PGO " 182 "heuristics minimizing code growth in cold regions and being more " 183 "aggressive in hot regions.")); 184 185 // Runtime interleave loops for load/store throughput. 186 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 187 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 188 cl::desc( 189 "Enable runtime interleaving until load/store ports are saturated")); 190 191 /// The number of stores in a loop that are allowed to need predication. 192 static cl::opt<unsigned> NumberOfStoresToPredicate( 193 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 194 cl::desc("Max number of stores to be predicated behind an if.")); 195 196 static cl::opt<bool> EnableIndVarRegisterHeur( 197 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 198 cl::desc("Count the induction variable only once when interleaving")); 199 200 static cl::opt<bool> EnableCondStoresVectorization( 201 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 202 cl::desc("Enable if predication of stores during vectorization.")); 203 204 static cl::opt<unsigned> MaxNestedScalarReductionIC( 205 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 206 cl::desc("The maximum interleave count to use when interleaving a scalar " 207 "reduction in a nested loop.")); 208 209 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 210 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 211 cl::desc("The maximum allowed number of runtime memory checks with a " 212 "vectorize(enable) pragma.")); 213 214 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 215 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 216 cl::desc("The maximum number of SCEV checks allowed.")); 217 218 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 219 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 220 cl::desc("The maximum number of SCEV checks allowed with a " 221 "vectorize(enable) pragma")); 222 223 namespace { 224 225 // Forward declarations. 226 class LoopVectorizeHints; 227 class LoopVectorizationLegality; 228 class LoopVectorizationCostModel; 229 class LoopVectorizationRequirements; 230 231 /// \brief This modifies LoopAccessReport to initialize message with 232 /// loop-vectorizer-specific part. 233 class VectorizationReport : public LoopAccessReport { 234 public: 235 VectorizationReport(Instruction *I = nullptr) 236 : LoopAccessReport("loop not vectorized: ", I) {} 237 238 /// \brief This allows promotion of the loop-access analysis report into the 239 /// loop-vectorizer report. It modifies the message to add the 240 /// loop-vectorizer-specific part of the message. 241 explicit VectorizationReport(const LoopAccessReport &R) 242 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 243 R.getInstr()) {} 244 }; 245 246 /// A helper function for converting Scalar types to vector types. 247 /// If the incoming type is void, we return void. If the VF is 1, we return 248 /// the scalar type. 249 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 250 if (Scalar->isVoidTy() || VF == 1) 251 return Scalar; 252 return VectorType::get(Scalar, VF); 253 } 254 255 /// A helper function that returns GEP instruction and knows to skip a 256 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 257 /// pointee types of the 'bitcast' have the same size. 258 /// For example: 259 /// bitcast double** %var to i64* - can be skipped 260 /// bitcast double** %var to i8* - can not 261 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 262 263 if (isa<GetElementPtrInst>(Ptr)) 264 return cast<GetElementPtrInst>(Ptr); 265 266 if (isa<BitCastInst>(Ptr) && 267 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 268 Type *BitcastTy = Ptr->getType(); 269 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 270 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 271 return nullptr; 272 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 273 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 274 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 275 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 276 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 277 } 278 return nullptr; 279 } 280 281 /// InnerLoopVectorizer vectorizes loops which contain only one basic 282 /// block to a specified vectorization factor (VF). 283 /// This class performs the widening of scalars into vectors, or multiple 284 /// scalars. This class also implements the following features: 285 /// * It inserts an epilogue loop for handling loops that don't have iteration 286 /// counts that are known to be a multiple of the vectorization factor. 287 /// * It handles the code generation for reduction variables. 288 /// * Scalarization (implementation using scalars) of un-vectorizable 289 /// instructions. 290 /// InnerLoopVectorizer does not perform any vectorization-legality 291 /// checks, and relies on the caller to check for the different legality 292 /// aspects. The InnerLoopVectorizer relies on the 293 /// LoopVectorizationLegality class to provide information about the induction 294 /// and reduction variables that were found to a given vectorization factor. 295 class InnerLoopVectorizer { 296 public: 297 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 298 LoopInfo *LI, DominatorTree *DT, 299 const TargetLibraryInfo *TLI, 300 const TargetTransformInfo *TTI, AssumptionCache *AC, 301 unsigned VecWidth, unsigned UnrollFactor) 302 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 303 AC(AC), VF(VecWidth), UF(UnrollFactor), 304 Builder(PSE.getSE()->getContext()), Induction(nullptr), 305 OldInduction(nullptr), WidenMap(UnrollFactor), TripCount(nullptr), 306 VectorTripCount(nullptr), Legal(nullptr), AddedSafetyChecks(false) {} 307 308 // Perform the actual loop widening (vectorization). 309 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 310 // can be validly truncated to. The cost model has assumed this truncation 311 // will happen when vectorizing. 312 void vectorize(LoopVectorizationLegality *L, 313 const MapVector<Instruction *, uint64_t> &MinimumBitWidths) { 314 MinBWs = &MinimumBitWidths; 315 Legal = L; 316 // Create a new empty loop. Unlink the old loop and connect the new one. 317 createEmptyLoop(); 318 // Widen each instruction in the old loop to a new one in the new loop. 319 // Use the Legality module to find the induction and reduction variables. 320 vectorizeLoop(); 321 } 322 323 // Return true if any runtime check is added. 324 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 325 326 virtual ~InnerLoopVectorizer() {} 327 328 protected: 329 /// A small list of PHINodes. 330 typedef SmallVector<PHINode *, 4> PhiVector; 331 /// When we unroll loops we have multiple vector values for each scalar. 332 /// This data structure holds the unrolled and vectorized values that 333 /// originated from one scalar instruction. 334 typedef SmallVector<Value *, 2> VectorParts; 335 336 // When we if-convert we need to create edge masks. We have to cache values 337 // so that we don't end up with exponential recursion/IR. 338 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 339 EdgeMaskCache; 340 341 /// Create an empty loop, based on the loop ranges of the old loop. 342 void createEmptyLoop(); 343 344 /// Set up the values of the IVs correctly when exiting the vector loop. 345 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 346 Value *CountRoundDown, Value *EndValue, 347 BasicBlock *MiddleBlock); 348 349 /// Create a new induction variable inside L. 350 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 351 Value *Step, Instruction *DL); 352 /// Copy and widen the instructions from the old loop. 353 virtual void vectorizeLoop(); 354 355 /// Fix a first-order recurrence. This is the second phase of vectorizing 356 /// this phi node. 357 void fixFirstOrderRecurrence(PHINode *Phi); 358 359 /// \brief The Loop exit block may have single value PHI nodes where the 360 /// incoming value is 'Undef'. While vectorizing we only handled real values 361 /// that were defined inside the loop. Here we fix the 'undef case'. 362 /// See PR14725. 363 void fixLCSSAPHIs(); 364 365 /// Shrinks vector element sizes based on information in "MinBWs". 366 void truncateToMinimalBitwidths(); 367 368 /// A helper function that computes the predicate of the block BB, assuming 369 /// that the header block of the loop is set to True. It returns the *entry* 370 /// mask for the block BB. 371 VectorParts createBlockInMask(BasicBlock *BB); 372 /// A helper function that computes the predicate of the edge between SRC 373 /// and DST. 374 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 375 376 /// A helper function to vectorize a single BB within the innermost loop. 377 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 378 379 /// Vectorize a single PHINode in a block. This method handles the induction 380 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 381 /// arbitrary length vectors. 382 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, unsigned UF, 383 unsigned VF, PhiVector *PV); 384 385 /// Insert the new loop to the loop hierarchy and pass manager 386 /// and update the analysis passes. 387 void updateAnalysis(); 388 389 /// This instruction is un-vectorizable. Implement it as a sequence 390 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 391 /// scalarized instruction behind an if block predicated on the control 392 /// dependence of the instruction. 393 virtual void scalarizeInstruction(Instruction *Instr, 394 bool IfPredicateStore = false); 395 396 /// Vectorize Load and Store instructions, 397 virtual void vectorizeMemoryInstruction(Instruction *Instr); 398 399 /// Create a broadcast instruction. This method generates a broadcast 400 /// instruction (shuffle) for loop invariant values and for the induction 401 /// value. If this is the induction variable then we extend it to N, N+1, ... 402 /// this is needed because each iteration in the loop corresponds to a SIMD 403 /// element. 404 virtual Value *getBroadcastInstrs(Value *V); 405 406 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 407 /// to each vector element of Val. The sequence starts at StartIndex. 408 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 409 410 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 411 /// to each vector element of Val. The sequence starts at StartIndex. 412 /// Step is a SCEV. In order to get StepValue it takes the existing value 413 /// from SCEV or creates a new using SCEVExpander. 414 virtual Value *getStepVector(Value *Val, int StartIdx, const SCEV *Step); 415 416 /// Create a vector induction variable based on an existing scalar one. 417 /// Currently only works for integer induction variables with a constant 418 /// step. 419 /// If TruncType is provided, instead of widening the original IV, we 420 /// widen a version of the IV truncated to TruncType. 421 void widenInductionVariable(const InductionDescriptor &II, VectorParts &Entry, 422 IntegerType *TruncType = nullptr); 423 424 /// When we go over instructions in the basic block we rely on previous 425 /// values within the current basic block or on loop invariant values. 426 /// When we widen (vectorize) values we place them in the map. If the values 427 /// are not within the map, they have to be loop invariant, so we simply 428 /// broadcast them into a vector. 429 VectorParts &getVectorValue(Value *V); 430 431 /// Try to vectorize the interleaved access group that \p Instr belongs to. 432 void vectorizeInterleaveGroup(Instruction *Instr); 433 434 /// Generate a shuffle sequence that will reverse the vector Vec. 435 virtual Value *reverseVector(Value *Vec); 436 437 /// Returns (and creates if needed) the original loop trip count. 438 Value *getOrCreateTripCount(Loop *NewLoop); 439 440 /// Returns (and creates if needed) the trip count of the widened loop. 441 Value *getOrCreateVectorTripCount(Loop *NewLoop); 442 443 /// Emit a bypass check to see if the trip count would overflow, or we 444 /// wouldn't have enough iterations to execute one vector loop. 445 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 446 /// Emit a bypass check to see if the vector trip count is nonzero. 447 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 448 /// Emit a bypass check to see if all of the SCEV assumptions we've 449 /// had to make are correct. 450 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 451 /// Emit bypass checks to check any memory assumptions we may have made. 452 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 453 454 /// Add additional metadata to \p To that was not present on \p Orig. 455 /// 456 /// Currently this is used to add the noalias annotations based on the 457 /// inserted memchecks. Use this for instructions that are *cloned* into the 458 /// vector loop. 459 void addNewMetadata(Instruction *To, const Instruction *Orig); 460 461 /// Add metadata from one instruction to another. 462 /// 463 /// This includes both the original MDs from \p From and additional ones (\see 464 /// addNewMetadata). Use this for *newly created* instructions in the vector 465 /// loop. 466 void addMetadata(Instruction *To, const Instruction *From); 467 468 /// \brief Similar to the previous function but it adds the metadata to a 469 /// vector of instructions. 470 void addMetadata(SmallVectorImpl<Value *> &To, const Instruction *From); 471 472 /// This is a helper class that holds the vectorizer state. It maps scalar 473 /// instructions to vector instructions. When the code is 'unrolled' then 474 /// then a single scalar value is mapped to multiple vector parts. The parts 475 /// are stored in the VectorPart type. 476 struct ValueMap { 477 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 478 /// are mapped. 479 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 480 481 /// \return True if 'Key' is saved in the Value Map. 482 bool has(Value *Key) const { return MapStorage.count(Key); } 483 484 /// Initializes a new entry in the map. Sets all of the vector parts to the 485 /// save value in 'Val'. 486 /// \return A reference to a vector with splat values. 487 VectorParts &splat(Value *Key, Value *Val) { 488 VectorParts &Entry = MapStorage[Key]; 489 Entry.assign(UF, Val); 490 return Entry; 491 } 492 493 ///\return A reference to the value that is stored at 'Key'. 494 VectorParts &get(Value *Key) { 495 VectorParts &Entry = MapStorage[Key]; 496 if (Entry.empty()) 497 Entry.resize(UF); 498 assert(Entry.size() == UF); 499 return Entry; 500 } 501 502 private: 503 /// The unroll factor. Each entry in the map stores this number of vector 504 /// elements. 505 unsigned UF; 506 507 /// Map storage. We use std::map and not DenseMap because insertions to a 508 /// dense map invalidates its iterators. 509 std::map<Value *, VectorParts> MapStorage; 510 }; 511 512 /// The original loop. 513 Loop *OrigLoop; 514 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 515 /// dynamic knowledge to simplify SCEV expressions and converts them to a 516 /// more usable form. 517 PredicatedScalarEvolution &PSE; 518 /// Loop Info. 519 LoopInfo *LI; 520 /// Dominator Tree. 521 DominatorTree *DT; 522 /// Alias Analysis. 523 AliasAnalysis *AA; 524 /// Target Library Info. 525 const TargetLibraryInfo *TLI; 526 /// Target Transform Info. 527 const TargetTransformInfo *TTI; 528 /// Assumption Cache. 529 AssumptionCache *AC; 530 531 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 532 /// used. 533 /// 534 /// This is currently only used to add no-alias metadata based on the 535 /// memchecks. The actually versioning is performed manually. 536 std::unique_ptr<LoopVersioning> LVer; 537 538 /// The vectorization SIMD factor to use. Each vector will have this many 539 /// vector elements. 540 unsigned VF; 541 542 protected: 543 /// The vectorization unroll factor to use. Each scalar is vectorized to this 544 /// many different vector instructions. 545 unsigned UF; 546 547 /// The builder that we use 548 IRBuilder<> Builder; 549 550 // --- Vectorization state --- 551 552 /// The vector-loop preheader. 553 BasicBlock *LoopVectorPreHeader; 554 /// The scalar-loop preheader. 555 BasicBlock *LoopScalarPreHeader; 556 /// Middle Block between the vector and the scalar. 557 BasicBlock *LoopMiddleBlock; 558 /// The ExitBlock of the scalar loop. 559 BasicBlock *LoopExitBlock; 560 /// The vector loop body. 561 BasicBlock *LoopVectorBody; 562 /// The scalar loop body. 563 BasicBlock *LoopScalarBody; 564 /// A list of all bypass blocks. The first block is the entry of the loop. 565 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 566 567 /// The new Induction variable which was added to the new block. 568 PHINode *Induction; 569 /// The induction variable of the old basic block. 570 PHINode *OldInduction; 571 /// Maps scalars to widened vectors. 572 ValueMap WidenMap; 573 /// Store instructions that should be predicated, as a pair 574 /// <StoreInst, Predicate> 575 SmallVector<std::pair<StoreInst *, Value *>, 4> PredicatedStores; 576 EdgeMaskCache MaskCache; 577 /// Trip count of the original loop. 578 Value *TripCount; 579 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 580 Value *VectorTripCount; 581 582 /// Map of scalar integer values to the smallest bitwidth they can be legally 583 /// represented as. The vector equivalents of these values should be truncated 584 /// to this type. 585 const MapVector<Instruction *, uint64_t> *MinBWs; 586 LoopVectorizationLegality *Legal; 587 588 // Record whether runtime checks are added. 589 bool AddedSafetyChecks; 590 }; 591 592 class InnerLoopUnroller : public InnerLoopVectorizer { 593 public: 594 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 595 LoopInfo *LI, DominatorTree *DT, 596 const TargetLibraryInfo *TLI, 597 const TargetTransformInfo *TTI, AssumptionCache *AC, 598 unsigned UnrollFactor) 599 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, 1, 600 UnrollFactor) {} 601 602 private: 603 void scalarizeInstruction(Instruction *Instr, 604 bool IfPredicateStore = false) override; 605 void vectorizeMemoryInstruction(Instruction *Instr) override; 606 Value *getBroadcastInstrs(Value *V) override; 607 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 608 Value *getStepVector(Value *Val, int StartIdx, const SCEV *StepSCEV) override; 609 Value *reverseVector(Value *Vec) override; 610 }; 611 612 /// \brief Look for a meaningful debug location on the instruction or it's 613 /// operands. 614 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 615 if (!I) 616 return I; 617 618 DebugLoc Empty; 619 if (I->getDebugLoc() != Empty) 620 return I; 621 622 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 623 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 624 if (OpInst->getDebugLoc() != Empty) 625 return OpInst; 626 } 627 628 return I; 629 } 630 631 /// \brief Set the debug location in the builder using the debug location in the 632 /// instruction. 633 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 634 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 635 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 636 else 637 B.SetCurrentDebugLocation(DebugLoc()); 638 } 639 640 #ifndef NDEBUG 641 /// \return string containing a file name and a line # for the given loop. 642 static std::string getDebugLocString(const Loop *L) { 643 std::string Result; 644 if (L) { 645 raw_string_ostream OS(Result); 646 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 647 LoopDbgLoc.print(OS); 648 else 649 // Just print the module name. 650 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 651 OS.flush(); 652 } 653 return Result; 654 } 655 #endif 656 657 /// \brief Propagate known metadata from one instruction to another. 658 static void propagateMetadata(Instruction *To, const Instruction *From) { 659 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 660 From->getAllMetadataOtherThanDebugLoc(Metadata); 661 662 for (auto M : Metadata) { 663 unsigned Kind = M.first; 664 665 // These are safe to transfer (this is safe for TBAA, even when we 666 // if-convert, because should that metadata have had a control dependency 667 // on the condition, and thus actually aliased with some other 668 // non-speculated memory access when the condition was false, this would be 669 // caught by the runtime overlap checks). 670 if (Kind != LLVMContext::MD_tbaa && Kind != LLVMContext::MD_alias_scope && 671 Kind != LLVMContext::MD_noalias && Kind != LLVMContext::MD_fpmath && 672 Kind != LLVMContext::MD_nontemporal) 673 continue; 674 675 To->setMetadata(Kind, M.second); 676 } 677 } 678 679 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 680 const Instruction *Orig) { 681 // If the loop was versioned with memchecks, add the corresponding no-alias 682 // metadata. 683 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 684 LVer->annotateInstWithNoAlias(To, Orig); 685 } 686 687 void InnerLoopVectorizer::addMetadata(Instruction *To, 688 const Instruction *From) { 689 propagateMetadata(To, From); 690 addNewMetadata(To, From); 691 } 692 693 void InnerLoopVectorizer::addMetadata(SmallVectorImpl<Value *> &To, 694 const Instruction *From) { 695 for (Value *V : To) 696 if (Instruction *I = dyn_cast<Instruction>(V)) 697 addMetadata(I, From); 698 } 699 700 /// \brief The group of interleaved loads/stores sharing the same stride and 701 /// close to each other. 702 /// 703 /// Each member in this group has an index starting from 0, and the largest 704 /// index should be less than interleaved factor, which is equal to the absolute 705 /// value of the access's stride. 706 /// 707 /// E.g. An interleaved load group of factor 4: 708 /// for (unsigned i = 0; i < 1024; i+=4) { 709 /// a = A[i]; // Member of index 0 710 /// b = A[i+1]; // Member of index 1 711 /// d = A[i+3]; // Member of index 3 712 /// ... 713 /// } 714 /// 715 /// An interleaved store group of factor 4: 716 /// for (unsigned i = 0; i < 1024; i+=4) { 717 /// ... 718 /// A[i] = a; // Member of index 0 719 /// A[i+1] = b; // Member of index 1 720 /// A[i+2] = c; // Member of index 2 721 /// A[i+3] = d; // Member of index 3 722 /// } 723 /// 724 /// Note: the interleaved load group could have gaps (missing members), but 725 /// the interleaved store group doesn't allow gaps. 726 class InterleaveGroup { 727 public: 728 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 729 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 730 assert(Align && "The alignment should be non-zero"); 731 732 Factor = std::abs(Stride); 733 assert(Factor > 1 && "Invalid interleave factor"); 734 735 Reverse = Stride < 0; 736 Members[0] = Instr; 737 } 738 739 bool isReverse() const { return Reverse; } 740 unsigned getFactor() const { return Factor; } 741 unsigned getAlignment() const { return Align; } 742 unsigned getNumMembers() const { return Members.size(); } 743 744 /// \brief Try to insert a new member \p Instr with index \p Index and 745 /// alignment \p NewAlign. The index is related to the leader and it could be 746 /// negative if it is the new leader. 747 /// 748 /// \returns false if the instruction doesn't belong to the group. 749 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 750 assert(NewAlign && "The new member's alignment should be non-zero"); 751 752 int Key = Index + SmallestKey; 753 754 // Skip if there is already a member with the same index. 755 if (Members.count(Key)) 756 return false; 757 758 if (Key > LargestKey) { 759 // The largest index is always less than the interleave factor. 760 if (Index >= static_cast<int>(Factor)) 761 return false; 762 763 LargestKey = Key; 764 } else if (Key < SmallestKey) { 765 // The largest index is always less than the interleave factor. 766 if (LargestKey - Key >= static_cast<int>(Factor)) 767 return false; 768 769 SmallestKey = Key; 770 } 771 772 // It's always safe to select the minimum alignment. 773 Align = std::min(Align, NewAlign); 774 Members[Key] = Instr; 775 return true; 776 } 777 778 /// \brief Get the member with the given index \p Index 779 /// 780 /// \returns nullptr if contains no such member. 781 Instruction *getMember(unsigned Index) const { 782 int Key = SmallestKey + Index; 783 if (!Members.count(Key)) 784 return nullptr; 785 786 return Members.find(Key)->second; 787 } 788 789 /// \brief Get the index for the given member. Unlike the key in the member 790 /// map, the index starts from 0. 791 unsigned getIndex(Instruction *Instr) const { 792 for (auto I : Members) 793 if (I.second == Instr) 794 return I.first - SmallestKey; 795 796 llvm_unreachable("InterleaveGroup contains no such member"); 797 } 798 799 Instruction *getInsertPos() const { return InsertPos; } 800 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 801 802 private: 803 unsigned Factor; // Interleave Factor. 804 bool Reverse; 805 unsigned Align; 806 DenseMap<int, Instruction *> Members; 807 int SmallestKey; 808 int LargestKey; 809 810 // To avoid breaking dependences, vectorized instructions of an interleave 811 // group should be inserted at either the first load or the last store in 812 // program order. 813 // 814 // E.g. %even = load i32 // Insert Position 815 // %add = add i32 %even // Use of %even 816 // %odd = load i32 817 // 818 // store i32 %even 819 // %odd = add i32 // Def of %odd 820 // store i32 %odd // Insert Position 821 Instruction *InsertPos; 822 }; 823 824 /// \brief Drive the analysis of interleaved memory accesses in the loop. 825 /// 826 /// Use this class to analyze interleaved accesses only when we can vectorize 827 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 828 /// on interleaved accesses is unsafe. 829 /// 830 /// The analysis collects interleave groups and records the relationships 831 /// between the member and the group in a map. 832 class InterleavedAccessInfo { 833 public: 834 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 835 DominatorTree *DT, LoopInfo *LI) 836 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 837 RequiresScalarEpilogue(false) {} 838 839 ~InterleavedAccessInfo() { 840 SmallSet<InterleaveGroup *, 4> DelSet; 841 // Avoid releasing a pointer twice. 842 for (auto &I : InterleaveGroupMap) 843 DelSet.insert(I.second); 844 for (auto *Ptr : DelSet) 845 delete Ptr; 846 } 847 848 /// \brief Analyze the interleaved accesses and collect them in interleave 849 /// groups. Substitute symbolic strides using \p Strides. 850 void analyzeInterleaving(const ValueToValueMap &Strides); 851 852 /// \brief Check if \p Instr belongs to any interleave group. 853 bool isInterleaved(Instruction *Instr) const { 854 return InterleaveGroupMap.count(Instr); 855 } 856 857 /// \brief Return the maximum interleave factor of all interleaved groups. 858 unsigned getMaxInterleaveFactor() const { 859 unsigned MaxFactor = 1; 860 for (auto &Entry : InterleaveGroupMap) 861 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 862 return MaxFactor; 863 } 864 865 /// \brief Get the interleave group that \p Instr belongs to. 866 /// 867 /// \returns nullptr if doesn't have such group. 868 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 869 if (InterleaveGroupMap.count(Instr)) 870 return InterleaveGroupMap.find(Instr)->second; 871 return nullptr; 872 } 873 874 /// \brief Returns true if an interleaved group that may access memory 875 /// out-of-bounds requires a scalar epilogue iteration for correctness. 876 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 877 878 /// \brief Initialize the LoopAccessInfo used for dependence checking. 879 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 880 881 private: 882 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 883 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 884 /// The interleaved access analysis can also add new predicates (for example 885 /// by versioning strides of pointers). 886 PredicatedScalarEvolution &PSE; 887 Loop *TheLoop; 888 DominatorTree *DT; 889 LoopInfo *LI; 890 const LoopAccessInfo *LAI; 891 892 /// True if the loop may contain non-reversed interleaved groups with 893 /// out-of-bounds accesses. We ensure we don't speculatively access memory 894 /// out-of-bounds by executing at least one scalar epilogue iteration. 895 bool RequiresScalarEpilogue; 896 897 /// Holds the relationships between the members and the interleave group. 898 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 899 900 /// Holds dependences among the memory accesses in the loop. It maps a source 901 /// access to a set of dependent sink accesses. 902 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 903 904 /// \brief The descriptor for a strided memory access. 905 struct StrideDescriptor { 906 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 907 unsigned Align) 908 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 909 910 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 911 912 int Stride; // The access's stride. It is negative for a reverse access. 913 const SCEV *Scev; // The scalar expression of this access 914 unsigned Size; // The size of the memory object. 915 unsigned Align; // The alignment of this access. 916 }; 917 918 /// \brief A type for holding instructions and their stride descriptors. 919 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 920 921 /// \brief Create a new interleave group with the given instruction \p Instr, 922 /// stride \p Stride and alignment \p Align. 923 /// 924 /// \returns the newly created interleave group. 925 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 926 unsigned Align) { 927 assert(!InterleaveGroupMap.count(Instr) && 928 "Already in an interleaved access group"); 929 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 930 return InterleaveGroupMap[Instr]; 931 } 932 933 /// \brief Release the group and remove all the relationships. 934 void releaseGroup(InterleaveGroup *Group) { 935 for (unsigned i = 0; i < Group->getFactor(); i++) 936 if (Instruction *Member = Group->getMember(i)) 937 InterleaveGroupMap.erase(Member); 938 939 delete Group; 940 } 941 942 /// \brief Collect all the accesses with a constant stride in program order. 943 void collectConstStridedAccesses( 944 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 945 const ValueToValueMap &Strides); 946 947 /// \brief Returns true if \p Stride is allowed in an interleaved group. 948 static bool isStrided(int Stride) { 949 unsigned Factor = std::abs(Stride); 950 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 951 } 952 953 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 954 bool areDependencesValid() const { 955 return LAI && LAI->getDepChecker().getDependences(); 956 } 957 958 /// \brief Returns true if memory accesses \p B and \p A can be reordered, if 959 /// necessary, when constructing interleaved groups. 960 /// 961 /// \p B must precede \p A in program order. We return false if reordering is 962 /// not necessary or is prevented because \p B and \p A may be dependent. 963 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *B, 964 StrideEntry *A) const { 965 966 // Code motion for interleaved accesses can potentially hoist strided loads 967 // and sink strided stores. The code below checks the legality of the 968 // following two conditions: 969 // 970 // 1. Potentially moving a strided load (A) before any store (B) that 971 // precedes A, or 972 // 973 // 2. Potentially moving a strided store (B) after any load or store (A) 974 // that B precedes. 975 // 976 // It's legal to reorder B and A if we know there isn't a dependence from B 977 // to A. Note that this determination is conservative since some 978 // dependences could potentially be reordered safely. 979 980 // B is potentially the source of a dependence. 981 auto *Src = B->first; 982 auto SrcDes = B->second; 983 984 // A is potentially the sink of a dependence. 985 auto *Sink = A->first; 986 auto SinkDes = A->second; 987 988 // Code motion for interleaved accesses can't violate WAR dependences. 989 // Thus, reordering is legal if the source isn't a write. 990 if (!Src->mayWriteToMemory()) 991 return true; 992 993 // At least one of the accesses must be strided. 994 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 995 return true; 996 997 // If dependence information is not available from LoopAccessInfo, 998 // conservatively assume the instructions can't be reordered. 999 if (!areDependencesValid()) 1000 return false; 1001 1002 // If we know there is a dependence from source to sink, assume the 1003 // instructions can't be reordered. Otherwise, reordering is legal. 1004 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1005 } 1006 1007 /// \brief Collect the dependences from LoopAccessInfo. 1008 /// 1009 /// We process the dependences once during the interleaved access analysis to 1010 /// enable constant-time dependence queries. 1011 void collectDependences() { 1012 if (!areDependencesValid()) 1013 return; 1014 auto *Deps = LAI->getDepChecker().getDependences(); 1015 for (auto Dep : *Deps) 1016 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1017 } 1018 }; 1019 1020 /// Utility class for getting and setting loop vectorizer hints in the form 1021 /// of loop metadata. 1022 /// This class keeps a number of loop annotations locally (as member variables) 1023 /// and can, upon request, write them back as metadata on the loop. It will 1024 /// initially scan the loop for existing metadata, and will update the local 1025 /// values based on information in the loop. 1026 /// We cannot write all values to metadata, as the mere presence of some info, 1027 /// for example 'force', means a decision has been made. So, we need to be 1028 /// careful NOT to add them if the user hasn't specifically asked so. 1029 class LoopVectorizeHints { 1030 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 1031 1032 /// Hint - associates name and validation with the hint value. 1033 struct Hint { 1034 const char *Name; 1035 unsigned Value; // This may have to change for non-numeric values. 1036 HintKind Kind; 1037 1038 Hint(const char *Name, unsigned Value, HintKind Kind) 1039 : Name(Name), Value(Value), Kind(Kind) {} 1040 1041 bool validate(unsigned Val) { 1042 switch (Kind) { 1043 case HK_WIDTH: 1044 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1045 case HK_UNROLL: 1046 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1047 case HK_FORCE: 1048 return (Val <= 1); 1049 } 1050 return false; 1051 } 1052 }; 1053 1054 /// Vectorization width. 1055 Hint Width; 1056 /// Vectorization interleave factor. 1057 Hint Interleave; 1058 /// Vectorization forced 1059 Hint Force; 1060 1061 /// Return the loop metadata prefix. 1062 static StringRef Prefix() { return "llvm.loop."; } 1063 1064 /// True if there is any unsafe math in the loop. 1065 bool PotentiallyUnsafe; 1066 1067 public: 1068 enum ForceKind { 1069 FK_Undefined = -1, ///< Not selected. 1070 FK_Disabled = 0, ///< Forcing disabled. 1071 FK_Enabled = 1, ///< Forcing enabled. 1072 }; 1073 1074 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1075 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1076 HK_WIDTH), 1077 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1078 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1079 PotentiallyUnsafe(false), TheLoop(L) { 1080 // Populate values with existing loop metadata. 1081 getHintsFromMetadata(); 1082 1083 // force-vector-interleave overrides DisableInterleaving. 1084 if (VectorizerParams::isInterleaveForced()) 1085 Interleave.Value = VectorizerParams::VectorizationInterleave; 1086 1087 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1088 << "LV: Interleaving disabled by the pass manager\n"); 1089 } 1090 1091 /// Mark the loop L as already vectorized by setting the width to 1. 1092 void setAlreadyVectorized() { 1093 Width.Value = Interleave.Value = 1; 1094 Hint Hints[] = {Width, Interleave}; 1095 writeHintsToMetadata(Hints); 1096 } 1097 1098 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1099 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1100 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1101 emitOptimizationRemarkAnalysis(F->getContext(), 1102 vectorizeAnalysisPassName(), *F, 1103 L->getStartLoc(), emitRemark()); 1104 return false; 1105 } 1106 1107 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1108 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1109 emitOptimizationRemarkAnalysis(F->getContext(), 1110 vectorizeAnalysisPassName(), *F, 1111 L->getStartLoc(), emitRemark()); 1112 return false; 1113 } 1114 1115 if (getWidth() == 1 && getInterleave() == 1) { 1116 // FIXME: Add a separate metadata to indicate when the loop has already 1117 // been vectorized instead of setting width and count to 1. 1118 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1119 // FIXME: Add interleave.disable metadata. This will allow 1120 // vectorize.disable to be used without disabling the pass and errors 1121 // to differentiate between disabled vectorization and a width of 1. 1122 emitOptimizationRemarkAnalysis( 1123 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), 1124 "loop not vectorized: vectorization and interleaving are explicitly " 1125 "disabled, or vectorize width and interleave count are both set to " 1126 "1"); 1127 return false; 1128 } 1129 1130 return true; 1131 } 1132 1133 /// Dumps all the hint information. 1134 std::string emitRemark() const { 1135 VectorizationReport R; 1136 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1137 R << "vectorization is explicitly disabled"; 1138 else { 1139 R << "use -Rpass-analysis=loop-vectorize for more info"; 1140 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1141 R << " (Force=true"; 1142 if (Width.Value != 0) 1143 R << ", Vector Width=" << Width.Value; 1144 if (Interleave.Value != 0) 1145 R << ", Interleave Count=" << Interleave.Value; 1146 R << ")"; 1147 } 1148 } 1149 1150 return R.str(); 1151 } 1152 1153 unsigned getWidth() const { return Width.Value; } 1154 unsigned getInterleave() const { return Interleave.Value; } 1155 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1156 1157 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1158 /// pass name to force the frontend to print the diagnostic. 1159 const char *vectorizeAnalysisPassName() const { 1160 if (getWidth() == 1) 1161 return LV_NAME; 1162 if (getForce() == LoopVectorizeHints::FK_Disabled) 1163 return LV_NAME; 1164 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1165 return LV_NAME; 1166 return DiagnosticInfoOptimizationRemarkAnalysis::AlwaysPrint; 1167 } 1168 1169 bool allowReordering() const { 1170 // When enabling loop hints are provided we allow the vectorizer to change 1171 // the order of operations that is given by the scalar loop. This is not 1172 // enabled by default because can be unsafe or inefficient. For example, 1173 // reordering floating-point operations will change the way round-off 1174 // error accumulates in the loop. 1175 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1176 } 1177 1178 bool isPotentiallyUnsafe() const { 1179 // Avoid FP vectorization if the target is unsure about proper support. 1180 // This may be related to the SIMD unit in the target not handling 1181 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1182 // Otherwise, a sequence of vectorized loops, even without reduction, 1183 // could lead to different end results on the destination vectors. 1184 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1185 } 1186 1187 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1188 1189 private: 1190 /// Find hints specified in the loop metadata and update local values. 1191 void getHintsFromMetadata() { 1192 MDNode *LoopID = TheLoop->getLoopID(); 1193 if (!LoopID) 1194 return; 1195 1196 // First operand should refer to the loop id itself. 1197 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1198 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1199 1200 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1201 const MDString *S = nullptr; 1202 SmallVector<Metadata *, 4> Args; 1203 1204 // The expected hint is either a MDString or a MDNode with the first 1205 // operand a MDString. 1206 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1207 if (!MD || MD->getNumOperands() == 0) 1208 continue; 1209 S = dyn_cast<MDString>(MD->getOperand(0)); 1210 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1211 Args.push_back(MD->getOperand(i)); 1212 } else { 1213 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1214 assert(Args.size() == 0 && "too many arguments for MDString"); 1215 } 1216 1217 if (!S) 1218 continue; 1219 1220 // Check if the hint starts with the loop metadata prefix. 1221 StringRef Name = S->getString(); 1222 if (Args.size() == 1) 1223 setHint(Name, Args[0]); 1224 } 1225 } 1226 1227 /// Checks string hint with one operand and set value if valid. 1228 void setHint(StringRef Name, Metadata *Arg) { 1229 if (!Name.startswith(Prefix())) 1230 return; 1231 Name = Name.substr(Prefix().size(), StringRef::npos); 1232 1233 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1234 if (!C) 1235 return; 1236 unsigned Val = C->getZExtValue(); 1237 1238 Hint *Hints[] = {&Width, &Interleave, &Force}; 1239 for (auto H : Hints) { 1240 if (Name == H->Name) { 1241 if (H->validate(Val)) 1242 H->Value = Val; 1243 else 1244 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1245 break; 1246 } 1247 } 1248 } 1249 1250 /// Create a new hint from name / value pair. 1251 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1252 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1253 Metadata *MDs[] = {MDString::get(Context, Name), 1254 ConstantAsMetadata::get( 1255 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1256 return MDNode::get(Context, MDs); 1257 } 1258 1259 /// Matches metadata with hint name. 1260 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1261 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1262 if (!Name) 1263 return false; 1264 1265 for (auto H : HintTypes) 1266 if (Name->getString().endswith(H.Name)) 1267 return true; 1268 return false; 1269 } 1270 1271 /// Sets current hints into loop metadata, keeping other values intact. 1272 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1273 if (HintTypes.size() == 0) 1274 return; 1275 1276 // Reserve the first element to LoopID (see below). 1277 SmallVector<Metadata *, 4> MDs(1); 1278 // If the loop already has metadata, then ignore the existing operands. 1279 MDNode *LoopID = TheLoop->getLoopID(); 1280 if (LoopID) { 1281 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1282 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1283 // If node in update list, ignore old value. 1284 if (!matchesHintMetadataName(Node, HintTypes)) 1285 MDs.push_back(Node); 1286 } 1287 } 1288 1289 // Now, add the missing hints. 1290 for (auto H : HintTypes) 1291 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1292 1293 // Replace current metadata node with new one. 1294 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1295 MDNode *NewLoopID = MDNode::get(Context, MDs); 1296 // Set operand 0 to refer to the loop id itself. 1297 NewLoopID->replaceOperandWith(0, NewLoopID); 1298 1299 TheLoop->setLoopID(NewLoopID); 1300 } 1301 1302 /// The loop these hints belong to. 1303 const Loop *TheLoop; 1304 }; 1305 1306 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, 1307 const LoopVectorizeHints &Hints, 1308 const LoopAccessReport &Message) { 1309 const char *Name = Hints.vectorizeAnalysisPassName(); 1310 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); 1311 } 1312 1313 static void emitMissedWarning(Function *F, Loop *L, 1314 const LoopVectorizeHints &LH) { 1315 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1316 LH.emitRemark()); 1317 1318 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1319 if (LH.getWidth() != 1) 1320 emitLoopVectorizeWarning( 1321 F->getContext(), *F, L->getStartLoc(), 1322 "failed explicitly specified loop vectorization"); 1323 else if (LH.getInterleave() != 1) 1324 emitLoopInterleaveWarning( 1325 F->getContext(), *F, L->getStartLoc(), 1326 "failed explicitly specified loop interleaving"); 1327 } 1328 } 1329 1330 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1331 /// to what vectorization factor. 1332 /// This class does not look at the profitability of vectorization, only the 1333 /// legality. This class has two main kinds of checks: 1334 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1335 /// will change the order of memory accesses in a way that will change the 1336 /// correctness of the program. 1337 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1338 /// checks for a number of different conditions, such as the availability of a 1339 /// single induction variable, that all types are supported and vectorize-able, 1340 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1341 /// This class is also used by InnerLoopVectorizer for identifying 1342 /// induction variable and the different reduction variables. 1343 class LoopVectorizationLegality { 1344 public: 1345 LoopVectorizationLegality(Loop *L, PredicatedScalarEvolution &PSE, 1346 DominatorTree *DT, TargetLibraryInfo *TLI, 1347 AliasAnalysis *AA, Function *F, 1348 const TargetTransformInfo *TTI, 1349 LoopAccessAnalysis *LAA, LoopInfo *LI, 1350 LoopVectorizationRequirements *R, 1351 LoopVectorizeHints *H) 1352 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F), 1353 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), 1354 InterleaveInfo(PSE, L, DT, LI), Induction(nullptr), 1355 WidestIndTy(nullptr), HasFunNoNaNAttr(false), Requirements(R), 1356 Hints(H) {} 1357 1358 /// ReductionList contains the reduction descriptors for all 1359 /// of the reductions that were found in the loop. 1360 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1361 1362 /// InductionList saves induction variables and maps them to the 1363 /// induction descriptor. 1364 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1365 1366 /// RecurrenceSet contains the phi nodes that are recurrences other than 1367 /// inductions and reductions. 1368 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1369 1370 /// Returns true if it is legal to vectorize this loop. 1371 /// This does not mean that it is profitable to vectorize this 1372 /// loop, only that it is legal to do so. 1373 bool canVectorize(); 1374 1375 /// Returns the Induction variable. 1376 PHINode *getInduction() { return Induction; } 1377 1378 /// Returns the reduction variables found in the loop. 1379 ReductionList *getReductionVars() { return &Reductions; } 1380 1381 /// Returns the induction variables found in the loop. 1382 InductionList *getInductionVars() { return &Inductions; } 1383 1384 /// Return the first-order recurrences found in the loop. 1385 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1386 1387 /// Returns the widest induction type. 1388 Type *getWidestInductionType() { return WidestIndTy; } 1389 1390 /// Returns True if V is an induction variable in this loop. 1391 bool isInductionVariable(const Value *V); 1392 1393 /// Returns True if PN is a reduction variable in this loop. 1394 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1395 1396 /// Returns True if Phi is a first-order recurrence in this loop. 1397 bool isFirstOrderRecurrence(const PHINode *Phi); 1398 1399 /// Return true if the block BB needs to be predicated in order for the loop 1400 /// to be vectorized. 1401 bool blockNeedsPredication(BasicBlock *BB); 1402 1403 /// Check if this pointer is consecutive when vectorizing. This happens 1404 /// when the last index of the GEP is the induction variable, or that the 1405 /// pointer itself is an induction variable. 1406 /// This check allows us to vectorize A[idx] into a wide load/store. 1407 /// Returns: 1408 /// 0 - Stride is unknown or non-consecutive. 1409 /// 1 - Address is consecutive. 1410 /// -1 - Address is consecutive, and decreasing. 1411 int isConsecutivePtr(Value *Ptr); 1412 1413 /// Returns true if the value V is uniform within the loop. 1414 bool isUniform(Value *V); 1415 1416 /// Returns true if this instruction will remain scalar after vectorization. 1417 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } 1418 1419 /// Returns the information that we collected about runtime memory check. 1420 const RuntimePointerChecking *getRuntimePointerChecking() const { 1421 return LAI->getRuntimePointerChecking(); 1422 } 1423 1424 const LoopAccessInfo *getLAI() const { return LAI; } 1425 1426 /// \brief Check if \p Instr belongs to any interleaved access group. 1427 bool isAccessInterleaved(Instruction *Instr) { 1428 return InterleaveInfo.isInterleaved(Instr); 1429 } 1430 1431 /// \brief Return the maximum interleave factor of all interleaved groups. 1432 unsigned getMaxInterleaveFactor() const { 1433 return InterleaveInfo.getMaxInterleaveFactor(); 1434 } 1435 1436 /// \brief Get the interleaved access group that \p Instr belongs to. 1437 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1438 return InterleaveInfo.getInterleaveGroup(Instr); 1439 } 1440 1441 /// \brief Returns true if an interleaved group requires a scalar iteration 1442 /// to handle accesses with gaps. 1443 bool requiresScalarEpilogue() const { 1444 return InterleaveInfo.requiresScalarEpilogue(); 1445 } 1446 1447 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1448 1449 bool hasStride(Value *V) { return LAI->hasStride(V); } 1450 1451 /// Returns true if the target machine supports masked store operation 1452 /// for the given \p DataType and kind of access to \p Ptr. 1453 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1454 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1455 } 1456 /// Returns true if the target machine supports masked load operation 1457 /// for the given \p DataType and kind of access to \p Ptr. 1458 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1459 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1460 } 1461 /// Returns true if the target machine supports masked scatter operation 1462 /// for the given \p DataType. 1463 bool isLegalMaskedScatter(Type *DataType) { 1464 return TTI->isLegalMaskedScatter(DataType); 1465 } 1466 /// Returns true if the target machine supports masked gather operation 1467 /// for the given \p DataType. 1468 bool isLegalMaskedGather(Type *DataType) { 1469 return TTI->isLegalMaskedGather(DataType); 1470 } 1471 1472 /// Returns true if vector representation of the instruction \p I 1473 /// requires mask. 1474 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1475 unsigned getNumStores() const { return LAI->getNumStores(); } 1476 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1477 unsigned getNumPredStores() const { return NumPredStores; } 1478 1479 private: 1480 /// Check if a single basic block loop is vectorizable. 1481 /// At this point we know that this is a loop with a constant trip count 1482 /// and we only need to check individual instructions. 1483 bool canVectorizeInstrs(); 1484 1485 /// When we vectorize loops we may change the order in which 1486 /// we read and write from memory. This method checks if it is 1487 /// legal to vectorize the code, considering only memory constrains. 1488 /// Returns true if the loop is vectorizable 1489 bool canVectorizeMemory(); 1490 1491 /// Return true if we can vectorize this loop using the IF-conversion 1492 /// transformation. 1493 bool canVectorizeWithIfConvert(); 1494 1495 /// Collect the variables that need to stay uniform after vectorization. 1496 void collectLoopUniforms(); 1497 1498 /// Return true if all of the instructions in the block can be speculatively 1499 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1500 /// and we know that we can read from them without segfault. 1501 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1502 1503 /// Updates the vectorization state by adding \p Phi to the inductions list. 1504 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1505 /// better choice for the main induction than the existing one. 1506 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1507 SmallPtrSetImpl<Value *> &AllowedExit); 1508 1509 /// Report an analysis message to assist the user in diagnosing loops that are 1510 /// not vectorized. These are handled as LoopAccessReport rather than 1511 /// VectorizationReport because the << operator of VectorizationReport returns 1512 /// LoopAccessReport. 1513 void emitAnalysis(const LoopAccessReport &Message) const { 1514 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1515 } 1516 1517 /// \brief If an access has a symbolic strides, this maps the pointer value to 1518 /// the stride symbol. 1519 const ValueToValueMap *getSymbolicStrides() { 1520 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1521 // it's collected. This happens from canVectorizeWithIfConvert, when the 1522 // pointer is checked to reference consecutive elements suitable for a 1523 // masked access. 1524 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1525 } 1526 1527 unsigned NumPredStores; 1528 1529 /// The loop that we evaluate. 1530 Loop *TheLoop; 1531 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1532 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1533 /// of existing SCEV assumptions. The analysis will also add a minimal set 1534 /// of new predicates if this is required to enable vectorization and 1535 /// unrolling. 1536 PredicatedScalarEvolution &PSE; 1537 /// Target Library Info. 1538 TargetLibraryInfo *TLI; 1539 /// Parent function 1540 Function *TheFunction; 1541 /// Target Transform Info 1542 const TargetTransformInfo *TTI; 1543 /// Dominator Tree. 1544 DominatorTree *DT; 1545 // LoopAccess analysis. 1546 LoopAccessAnalysis *LAA; 1547 // And the loop-accesses info corresponding to this loop. This pointer is 1548 // null until canVectorizeMemory sets it up. 1549 const LoopAccessInfo *LAI; 1550 1551 /// The interleave access information contains groups of interleaved accesses 1552 /// with the same stride and close to each other. 1553 InterleavedAccessInfo InterleaveInfo; 1554 1555 // --- vectorization state --- // 1556 1557 /// Holds the integer induction variable. This is the counter of the 1558 /// loop. 1559 PHINode *Induction; 1560 /// Holds the reduction variables. 1561 ReductionList Reductions; 1562 /// Holds all of the induction variables that we found in the loop. 1563 /// Notice that inductions don't need to start at zero and that induction 1564 /// variables can be pointers. 1565 InductionList Inductions; 1566 /// Holds the phi nodes that are first-order recurrences. 1567 RecurrenceSet FirstOrderRecurrences; 1568 /// Holds the widest induction type encountered. 1569 Type *WidestIndTy; 1570 1571 /// Allowed outside users. This holds the induction and reduction 1572 /// vars which can be accessed from outside the loop. 1573 SmallPtrSet<Value *, 4> AllowedExit; 1574 /// This set holds the variables which are known to be uniform after 1575 /// vectorization. 1576 SmallPtrSet<Instruction *, 4> Uniforms; 1577 1578 /// Can we assume the absence of NaNs. 1579 bool HasFunNoNaNAttr; 1580 1581 /// Vectorization requirements that will go through late-evaluation. 1582 LoopVectorizationRequirements *Requirements; 1583 1584 /// Used to emit an analysis of any legality issues. 1585 LoopVectorizeHints *Hints; 1586 1587 /// While vectorizing these instructions we have to generate a 1588 /// call to the appropriate masked intrinsic 1589 SmallPtrSet<const Instruction *, 8> MaskedOp; 1590 }; 1591 1592 /// LoopVectorizationCostModel - estimates the expected speedups due to 1593 /// vectorization. 1594 /// In many cases vectorization is not profitable. This can happen because of 1595 /// a number of reasons. In this class we mainly attempt to predict the 1596 /// expected speedup/slowdowns due to the supported instruction set. We use the 1597 /// TargetTransformInfo to query the different backends for the cost of 1598 /// different operations. 1599 class LoopVectorizationCostModel { 1600 public: 1601 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1602 LoopInfo *LI, LoopVectorizationLegality *Legal, 1603 const TargetTransformInfo &TTI, 1604 const TargetLibraryInfo *TLI, DemandedBits *DB, 1605 AssumptionCache *AC, const Function *F, 1606 const LoopVectorizeHints *Hints) 1607 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1608 AC(AC), TheFunction(F), Hints(Hints) {} 1609 1610 /// Information about vectorization costs 1611 struct VectorizationFactor { 1612 unsigned Width; // Vector width with best cost 1613 unsigned Cost; // Cost of the loop with that width 1614 }; 1615 /// \return The most profitable vectorization factor and the cost of that VF. 1616 /// This method checks every power of two up to VF. If UserVF is not ZERO 1617 /// then this vectorization factor will be selected if vectorization is 1618 /// possible. 1619 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1620 1621 /// \return The size (in bits) of the smallest and widest types in the code 1622 /// that needs to be vectorized. We ignore values that remain scalar such as 1623 /// 64 bit loop indices. 1624 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1625 1626 /// \return The desired interleave count. 1627 /// If interleave count has been specified by metadata it will be returned. 1628 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1629 /// are the selected vectorization factor and the cost of the selected VF. 1630 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1631 unsigned LoopCost); 1632 1633 /// \return The most profitable unroll factor. 1634 /// This method finds the best unroll-factor based on register pressure and 1635 /// other parameters. VF and LoopCost are the selected vectorization factor 1636 /// and the cost of the selected VF. 1637 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1638 unsigned LoopCost); 1639 1640 /// \brief A struct that represents some properties of the register usage 1641 /// of a loop. 1642 struct RegisterUsage { 1643 /// Holds the number of loop invariant values that are used in the loop. 1644 unsigned LoopInvariantRegs; 1645 /// Holds the maximum number of concurrent live intervals in the loop. 1646 unsigned MaxLocalUsers; 1647 /// Holds the number of instructions in the loop. 1648 unsigned NumInstructions; 1649 }; 1650 1651 /// \return Returns information about the register usages of the loop for the 1652 /// given vectorization factors. 1653 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1654 1655 /// Collect values we want to ignore in the cost model. 1656 void collectValuesToIgnore(); 1657 1658 private: 1659 /// The vectorization cost is a combination of the cost itself and a boolean 1660 /// indicating whether any of the contributing operations will actually 1661 /// operate on 1662 /// vector values after type legalization in the backend. If this latter value 1663 /// is 1664 /// false, then all operations will be scalarized (i.e. no vectorization has 1665 /// actually taken place). 1666 typedef std::pair<unsigned, bool> VectorizationCostTy; 1667 1668 /// Returns the expected execution cost. The unit of the cost does 1669 /// not matter because we use the 'cost' units to compare different 1670 /// vector widths. The cost that is returned is *not* normalized by 1671 /// the factor width. 1672 VectorizationCostTy expectedCost(unsigned VF); 1673 1674 /// Returns the execution time cost of an instruction for a given vector 1675 /// width. Vector width of one means scalar. 1676 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1677 1678 /// The cost-computation logic from getInstructionCost which provides 1679 /// the vector type as an output parameter. 1680 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1681 1682 /// Returns whether the instruction is a load or store and will be a emitted 1683 /// as a vector operation. 1684 bool isConsecutiveLoadOrStore(Instruction *I); 1685 1686 /// Report an analysis message to assist the user in diagnosing loops that are 1687 /// not vectorized. These are handled as LoopAccessReport rather than 1688 /// VectorizationReport because the << operator of VectorizationReport returns 1689 /// LoopAccessReport. 1690 void emitAnalysis(const LoopAccessReport &Message) const { 1691 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1692 } 1693 1694 public: 1695 /// Map of scalar integer values to the smallest bitwidth they can be legally 1696 /// represented as. The vector equivalents of these values should be truncated 1697 /// to this type. 1698 MapVector<Instruction *, uint64_t> MinBWs; 1699 1700 /// The loop that we evaluate. 1701 Loop *TheLoop; 1702 /// Predicated scalar evolution analysis. 1703 PredicatedScalarEvolution &PSE; 1704 /// Loop Info analysis. 1705 LoopInfo *LI; 1706 /// Vectorization legality. 1707 LoopVectorizationLegality *Legal; 1708 /// Vector target information. 1709 const TargetTransformInfo &TTI; 1710 /// Target Library Info. 1711 const TargetLibraryInfo *TLI; 1712 /// Demanded bits analysis. 1713 DemandedBits *DB; 1714 /// Assumption cache. 1715 AssumptionCache *AC; 1716 const Function *TheFunction; 1717 /// Loop Vectorize Hint. 1718 const LoopVectorizeHints *Hints; 1719 /// Values to ignore in the cost model. 1720 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1721 /// Values to ignore in the cost model when VF > 1. 1722 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1723 }; 1724 1725 /// \brief This holds vectorization requirements that must be verified late in 1726 /// the process. The requirements are set by legalize and costmodel. Once 1727 /// vectorization has been determined to be possible and profitable the 1728 /// requirements can be verified by looking for metadata or compiler options. 1729 /// For example, some loops require FP commutativity which is only allowed if 1730 /// vectorization is explicitly specified or if the fast-math compiler option 1731 /// has been provided. 1732 /// Late evaluation of these requirements allows helpful diagnostics to be 1733 /// composed that tells the user what need to be done to vectorize the loop. For 1734 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1735 /// evaluation should be used only when diagnostics can generated that can be 1736 /// followed by a non-expert user. 1737 class LoopVectorizationRequirements { 1738 public: 1739 LoopVectorizationRequirements() 1740 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} 1741 1742 void addUnsafeAlgebraInst(Instruction *I) { 1743 // First unsafe algebra instruction. 1744 if (!UnsafeAlgebraInst) 1745 UnsafeAlgebraInst = I; 1746 } 1747 1748 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1749 1750 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1751 const char *Name = Hints.vectorizeAnalysisPassName(); 1752 bool Failed = false; 1753 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1754 emitOptimizationRemarkAnalysisFPCommute( 1755 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), 1756 VectorizationReport() << "cannot prove it is safe to reorder " 1757 "floating-point operations"); 1758 Failed = true; 1759 } 1760 1761 // Test if runtime memcheck thresholds are exceeded. 1762 bool PragmaThresholdReached = 1763 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1764 bool ThresholdReached = 1765 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1766 if ((ThresholdReached && !Hints.allowReordering()) || 1767 PragmaThresholdReached) { 1768 emitOptimizationRemarkAnalysisAliasing( 1769 F->getContext(), Name, *F, L->getStartLoc(), 1770 VectorizationReport() 1771 << "cannot prove it is safe to reorder memory operations"); 1772 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1773 Failed = true; 1774 } 1775 1776 return Failed; 1777 } 1778 1779 private: 1780 unsigned NumRuntimePointerChecks; 1781 Instruction *UnsafeAlgebraInst; 1782 }; 1783 1784 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1785 if (L.empty()) 1786 return V.push_back(&L); 1787 1788 for (Loop *InnerL : L) 1789 addInnerLoop(*InnerL, V); 1790 } 1791 1792 /// The LoopVectorize Pass. 1793 struct LoopVectorize : public FunctionPass { 1794 /// Pass identification, replacement for typeid 1795 static char ID; 1796 1797 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1798 : FunctionPass(ID), DisableUnrolling(NoUnrolling), 1799 AlwaysVectorize(AlwaysVectorize) { 1800 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1801 } 1802 1803 ScalarEvolution *SE; 1804 LoopInfo *LI; 1805 TargetTransformInfo *TTI; 1806 DominatorTree *DT; 1807 BlockFrequencyInfo *BFI; 1808 TargetLibraryInfo *TLI; 1809 DemandedBits *DB; 1810 AliasAnalysis *AA; 1811 AssumptionCache *AC; 1812 LoopAccessAnalysis *LAA; 1813 bool DisableUnrolling; 1814 bool AlwaysVectorize; 1815 1816 BlockFrequency ColdEntryFreq; 1817 1818 bool runOnFunction(Function &F) override { 1819 if (skipFunction(F)) 1820 return false; 1821 1822 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1823 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1824 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1825 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1826 BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1827 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1828 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1829 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1830 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1831 LAA = &getAnalysis<LoopAccessAnalysis>(); 1832 DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1833 1834 // Compute some weights outside of the loop over the loops. Compute this 1835 // using a BranchProbability to re-use its scaling math. 1836 const BranchProbability ColdProb(1, 5); // 20% 1837 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1838 1839 // Don't attempt if 1840 // 1. the target claims to have no vector registers, and 1841 // 2. interleaving won't help ILP. 1842 // 1843 // The second condition is necessary because, even if the target has no 1844 // vector registers, loop vectorization may still enable scalar 1845 // interleaving. 1846 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 1847 return false; 1848 1849 // Build up a worklist of inner-loops to vectorize. This is necessary as 1850 // the act of vectorizing or partially unrolling a loop creates new loops 1851 // and can invalidate iterators across the loops. 1852 SmallVector<Loop *, 8> Worklist; 1853 1854 for (Loop *L : *LI) 1855 addInnerLoop(*L, Worklist); 1856 1857 LoopsAnalyzed += Worklist.size(); 1858 1859 // Now walk the identified inner loops. 1860 bool Changed = false; 1861 while (!Worklist.empty()) 1862 Changed |= processLoop(Worklist.pop_back_val()); 1863 1864 // Process each loop nest in the function. 1865 return Changed; 1866 } 1867 1868 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1869 SmallVector<Metadata *, 4> MDs; 1870 // Reserve first location for self reference to the LoopID metadata node. 1871 MDs.push_back(nullptr); 1872 bool IsUnrollMetadata = false; 1873 MDNode *LoopID = L->getLoopID(); 1874 if (LoopID) { 1875 // First find existing loop unrolling disable metadata. 1876 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1877 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1878 if (MD) { 1879 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1880 IsUnrollMetadata = 1881 S && S->getString().startswith("llvm.loop.unroll.disable"); 1882 } 1883 MDs.push_back(LoopID->getOperand(i)); 1884 } 1885 } 1886 1887 if (!IsUnrollMetadata) { 1888 // Add runtime unroll disable metadata. 1889 LLVMContext &Context = L->getHeader()->getContext(); 1890 SmallVector<Metadata *, 1> DisableOperands; 1891 DisableOperands.push_back( 1892 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1893 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1894 MDs.push_back(DisableNode); 1895 MDNode *NewLoopID = MDNode::get(Context, MDs); 1896 // Set operand 0 to refer to the loop id itself. 1897 NewLoopID->replaceOperandWith(0, NewLoopID); 1898 L->setLoopID(NewLoopID); 1899 } 1900 } 1901 1902 bool processLoop(Loop *L) { 1903 assert(L->empty() && "Only process inner loops."); 1904 1905 #ifndef NDEBUG 1906 const std::string DebugLocStr = getDebugLocString(L); 1907 #endif /* NDEBUG */ 1908 1909 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1910 << L->getHeader()->getParent()->getName() << "\" from " 1911 << DebugLocStr << "\n"); 1912 1913 LoopVectorizeHints Hints(L, DisableUnrolling); 1914 1915 DEBUG(dbgs() << "LV: Loop hints:" 1916 << " force=" 1917 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1918 ? "disabled" 1919 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1920 ? "enabled" 1921 : "?")) 1922 << " width=" << Hints.getWidth() 1923 << " unroll=" << Hints.getInterleave() << "\n"); 1924 1925 // Function containing loop 1926 Function *F = L->getHeader()->getParent(); 1927 1928 // Looking at the diagnostic output is the only way to determine if a loop 1929 // was vectorized (other than looking at the IR or machine code), so it 1930 // is important to generate an optimization remark for each loop. Most of 1931 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1932 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1933 // less verbose reporting vectorized loops and unvectorized loops that may 1934 // benefit from vectorization, respectively. 1935 1936 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 1937 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 1938 return false; 1939 } 1940 1941 // Check the loop for a trip count threshold: 1942 // do not vectorize loops with a tiny trip count. 1943 const unsigned TC = SE->getSmallConstantTripCount(L); 1944 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1945 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1946 << "This loop is not worth vectorizing."); 1947 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1948 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1949 else { 1950 DEBUG(dbgs() << "\n"); 1951 emitAnalysisDiag(F, L, Hints, VectorizationReport() 1952 << "vectorization is not beneficial " 1953 "and is not explicitly forced"); 1954 return false; 1955 } 1956 } 1957 1958 PredicatedScalarEvolution PSE(*SE, *L); 1959 1960 // Check if it is legal to vectorize the loop. 1961 LoopVectorizationRequirements Requirements; 1962 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, LAA, LI, 1963 &Requirements, &Hints); 1964 if (!LVL.canVectorize()) { 1965 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1966 emitMissedWarning(F, L, Hints); 1967 return false; 1968 } 1969 1970 // Use the cost model. 1971 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, F, 1972 &Hints); 1973 CM.collectValuesToIgnore(); 1974 1975 // Check the function attributes to find out if this function should be 1976 // optimized for size. 1977 bool OptForSize = 1978 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 1979 1980 // Compute the weighted frequency of this loop being executed and see if it 1981 // is less than 20% of the function entry baseline frequency. Note that we 1982 // always have a canonical loop here because we think we *can* vectorize. 1983 // FIXME: This is hidden behind a flag due to pervasive problems with 1984 // exactly what block frequency models. 1985 if (LoopVectorizeWithBlockFrequency) { 1986 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1987 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1988 LoopEntryFreq < ColdEntryFreq) 1989 OptForSize = true; 1990 } 1991 1992 // Check the function attributes to see if implicit floats are allowed. 1993 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1994 // an integer loop and the vector instructions selected are purely integer 1995 // vector instructions? 1996 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1997 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1998 "attribute is used.\n"); 1999 emitAnalysisDiag( 2000 F, L, Hints, 2001 VectorizationReport() 2002 << "loop not vectorized due to NoImplicitFloat attribute"); 2003 emitMissedWarning(F, L, Hints); 2004 return false; 2005 } 2006 2007 // Check if the target supports potentially unsafe FP vectorization. 2008 // FIXME: Add a check for the type of safety issue (denormal, signaling) 2009 // for the target we're vectorizing for, to make sure none of the 2010 // additional fp-math flags can help. 2011 if (Hints.isPotentiallyUnsafe() && 2012 TTI->isFPVectorizationPotentiallyUnsafe()) { 2013 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 2014 emitAnalysisDiag(F, L, Hints, 2015 VectorizationReport() 2016 << "loop not vectorized due to unsafe FP support."); 2017 emitMissedWarning(F, L, Hints); 2018 return false; 2019 } 2020 2021 // Select the optimal vectorization factor. 2022 const LoopVectorizationCostModel::VectorizationFactor VF = 2023 CM.selectVectorizationFactor(OptForSize); 2024 2025 // Select the interleave count. 2026 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 2027 2028 // Get user interleave count. 2029 unsigned UserIC = Hints.getInterleave(); 2030 2031 // Identify the diagnostic messages that should be produced. 2032 std::string VecDiagMsg, IntDiagMsg; 2033 bool VectorizeLoop = true, InterleaveLoop = true; 2034 2035 if (Requirements.doesNotMeet(F, L, Hints)) { 2036 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 2037 "requirements.\n"); 2038 emitMissedWarning(F, L, Hints); 2039 return false; 2040 } 2041 2042 if (VF.Width == 1) { 2043 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 2044 VecDiagMsg = 2045 "the cost-model indicates that vectorization is not beneficial"; 2046 VectorizeLoop = false; 2047 } 2048 2049 if (IC == 1 && UserIC <= 1) { 2050 // Tell the user interleaving is not beneficial. 2051 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 2052 IntDiagMsg = 2053 "the cost-model indicates that interleaving is not beneficial"; 2054 InterleaveLoop = false; 2055 if (UserIC == 1) 2056 IntDiagMsg += 2057 " and is explicitly disabled or interleave count is set to 1"; 2058 } else if (IC > 1 && UserIC == 1) { 2059 // Tell the user interleaving is beneficial, but it explicitly disabled. 2060 DEBUG(dbgs() 2061 << "LV: Interleaving is beneficial but is explicitly disabled."); 2062 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 2063 "but is explicitly disabled or interleave count is set to 1"; 2064 InterleaveLoop = false; 2065 } 2066 2067 // Override IC if user provided an interleave count. 2068 IC = UserIC > 0 ? UserIC : IC; 2069 2070 // Emit diagnostic messages, if any. 2071 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 2072 if (!VectorizeLoop && !InterleaveLoop) { 2073 // Do not vectorize or interleaving the loop. 2074 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 2075 L->getStartLoc(), VecDiagMsg); 2076 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 2077 L->getStartLoc(), IntDiagMsg); 2078 return false; 2079 } else if (!VectorizeLoop && InterleaveLoop) { 2080 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 2081 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 2082 L->getStartLoc(), VecDiagMsg); 2083 } else if (VectorizeLoop && !InterleaveLoop) { 2084 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 2085 << DebugLocStr << '\n'); 2086 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 2087 L->getStartLoc(), IntDiagMsg); 2088 } else if (VectorizeLoop && InterleaveLoop) { 2089 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 2090 << DebugLocStr << '\n'); 2091 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 2092 } 2093 2094 if (!VectorizeLoop) { 2095 assert(IC > 1 && "interleave count should not be 1 or 0"); 2096 // If we decided that it is not legal to vectorize the loop, then 2097 // interleave it. 2098 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, IC); 2099 Unroller.vectorize(&LVL, CM.MinBWs); 2100 2101 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2102 Twine("interleaved loop (interleaved count: ") + 2103 Twine(IC) + ")"); 2104 } else { 2105 // If we decided that it is *legal* to vectorize the loop, then do it. 2106 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, VF.Width, IC); 2107 LB.vectorize(&LVL, CM.MinBWs); 2108 ++LoopsVectorized; 2109 2110 // Add metadata to disable runtime unrolling a scalar loop when there are 2111 // no runtime checks about strides and memory. A scalar loop that is 2112 // rarely used is not worth unrolling. 2113 if (!LB.areSafetyChecksAdded()) 2114 AddRuntimeUnrollDisableMetaData(L); 2115 2116 // Report the vectorization decision. 2117 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2118 Twine("vectorized loop (vectorization width: ") + 2119 Twine(VF.Width) + ", interleaved count: " + 2120 Twine(IC) + ")"); 2121 } 2122 2123 // Mark the loop as already vectorized to avoid vectorizing again. 2124 Hints.setAlreadyVectorized(); 2125 2126 DEBUG(verifyFunction(*L->getHeader()->getParent())); 2127 return true; 2128 } 2129 2130 void getAnalysisUsage(AnalysisUsage &AU) const override { 2131 AU.addRequired<AssumptionCacheTracker>(); 2132 AU.addRequiredID(LoopSimplifyID); 2133 AU.addRequiredID(LCSSAID); 2134 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2135 AU.addRequired<DominatorTreeWrapperPass>(); 2136 AU.addRequired<LoopInfoWrapperPass>(); 2137 AU.addRequired<ScalarEvolutionWrapperPass>(); 2138 AU.addRequired<TargetTransformInfoWrapperPass>(); 2139 AU.addRequired<AAResultsWrapperPass>(); 2140 AU.addRequired<LoopAccessAnalysis>(); 2141 AU.addRequired<DemandedBitsWrapperPass>(); 2142 AU.addPreserved<LoopInfoWrapperPass>(); 2143 AU.addPreserved<DominatorTreeWrapperPass>(); 2144 AU.addPreserved<BasicAAWrapperPass>(); 2145 AU.addPreserved<GlobalsAAWrapperPass>(); 2146 } 2147 }; 2148 2149 } // end anonymous namespace 2150 2151 //===----------------------------------------------------------------------===// 2152 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2153 // LoopVectorizationCostModel. 2154 //===----------------------------------------------------------------------===// 2155 2156 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2157 // We need to place the broadcast of invariant variables outside the loop. 2158 Instruction *Instr = dyn_cast<Instruction>(V); 2159 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2160 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2161 2162 // Place the code for broadcasting invariant variables in the new preheader. 2163 IRBuilder<>::InsertPointGuard Guard(Builder); 2164 if (Invariant) 2165 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2166 2167 // Broadcast the scalar into all locations in the vector. 2168 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2169 2170 return Shuf; 2171 } 2172 2173 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 2174 const SCEV *StepSCEV) { 2175 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2176 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2177 Value *StepValue = Exp.expandCodeFor(StepSCEV, StepSCEV->getType(), 2178 &*Builder.GetInsertPoint()); 2179 return getStepVector(Val, StartIdx, StepValue); 2180 } 2181 2182 void InnerLoopVectorizer::widenInductionVariable(const InductionDescriptor &II, 2183 VectorParts &Entry, 2184 IntegerType *TruncType) { 2185 Value *Start = II.getStartValue(); 2186 ConstantInt *Step = II.getConstIntStepValue(); 2187 assert(Step && "Can not widen an IV with a non-constant step"); 2188 2189 // Construct the initial value of the vector IV in the vector loop preheader 2190 auto CurrIP = Builder.saveIP(); 2191 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2192 if (TruncType) { 2193 Step = ConstantInt::getSigned(TruncType, Step->getSExtValue()); 2194 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2195 } 2196 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2197 Value *SteppedStart = getStepVector(SplatStart, 0, Step); 2198 Builder.restoreIP(CurrIP); 2199 2200 Value *SplatVF = 2201 ConstantVector::getSplat(VF, ConstantInt::getSigned(Start->getType(), 2202 VF * Step->getSExtValue())); 2203 // We may need to add the step a number of times, depending on the unroll 2204 // factor. The last of those goes into the PHI. 2205 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2206 &*LoopVectorBody->getFirstInsertionPt()); 2207 Value *LastInduction = VecInd; 2208 for (unsigned Part = 0; Part < UF; ++Part) { 2209 Entry[Part] = LastInduction; 2210 LastInduction = Builder.CreateAdd(LastInduction, SplatVF, "step.add"); 2211 } 2212 2213 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2214 VecInd->addIncoming(LastInduction, LoopVectorBody); 2215 } 2216 2217 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 2218 Value *Step) { 2219 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2220 assert(Val->getType()->getScalarType()->isIntegerTy() && 2221 "Elem must be an integer"); 2222 assert(Step->getType() == Val->getType()->getScalarType() && 2223 "Step has wrong type"); 2224 // Create the types. 2225 Type *ITy = Val->getType()->getScalarType(); 2226 VectorType *Ty = cast<VectorType>(Val->getType()); 2227 int VLen = Ty->getNumElements(); 2228 SmallVector<Constant *, 8> Indices; 2229 2230 // Create a vector of consecutive numbers from zero to VF. 2231 for (int i = 0; i < VLen; ++i) 2232 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 2233 2234 // Add the consecutive indices to the vector value. 2235 Constant *Cv = ConstantVector::get(Indices); 2236 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2237 Step = Builder.CreateVectorSplat(VLen, Step); 2238 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2239 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2240 // which can be found from the original scalar operations. 2241 Step = Builder.CreateMul(Cv, Step); 2242 return Builder.CreateAdd(Val, Step, "induction"); 2243 } 2244 2245 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2246 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 2247 auto *SE = PSE.getSE(); 2248 // Make sure that the pointer does not point to structs. 2249 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 2250 return 0; 2251 2252 // If this value is a pointer induction variable, we know it is consecutive. 2253 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 2254 if (Phi && Inductions.count(Phi)) { 2255 InductionDescriptor II = Inductions[Phi]; 2256 return II.getConsecutiveDirection(); 2257 } 2258 2259 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2260 if (!Gep) 2261 return 0; 2262 2263 unsigned NumOperands = Gep->getNumOperands(); 2264 Value *GpPtr = Gep->getPointerOperand(); 2265 // If this GEP value is a consecutive pointer induction variable and all of 2266 // the indices are constant, then we know it is consecutive. 2267 Phi = dyn_cast<PHINode>(GpPtr); 2268 if (Phi && Inductions.count(Phi)) { 2269 2270 // Make sure that the pointer does not point to structs. 2271 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 2272 if (GepPtrType->getElementType()->isAggregateType()) 2273 return 0; 2274 2275 // Make sure that all of the index operands are loop invariant. 2276 for (unsigned i = 1; i < NumOperands; ++i) 2277 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2278 return 0; 2279 2280 InductionDescriptor II = Inductions[Phi]; 2281 return II.getConsecutiveDirection(); 2282 } 2283 2284 unsigned InductionOperand = getGEPInductionOperand(Gep); 2285 2286 // Check that all of the gep indices are uniform except for our induction 2287 // operand. 2288 for (unsigned i = 0; i != NumOperands; ++i) 2289 if (i != InductionOperand && 2290 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2291 return 0; 2292 2293 // We can emit wide load/stores only if the last non-zero index is the 2294 // induction variable. 2295 const SCEV *Last = nullptr; 2296 if (!getSymbolicStrides() || !getSymbolicStrides()->count(Gep)) 2297 Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); 2298 else { 2299 // Because of the multiplication by a stride we can have a s/zext cast. 2300 // We are going to replace this stride by 1 so the cast is safe to ignore. 2301 // 2302 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2303 // %0 = trunc i64 %indvars.iv to i32 2304 // %mul = mul i32 %0, %Stride1 2305 // %idxprom = zext i32 %mul to i64 << Safe cast. 2306 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2307 // 2308 Last = replaceSymbolicStrideSCEV(PSE, *getSymbolicStrides(), 2309 Gep->getOperand(InductionOperand), Gep); 2310 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2311 Last = 2312 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2313 ? C->getOperand() 2314 : Last; 2315 } 2316 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2317 const SCEV *Step = AR->getStepRecurrence(*SE); 2318 2319 // The memory is consecutive because the last index is consecutive 2320 // and all other indices are loop invariant. 2321 if (Step->isOne()) 2322 return 1; 2323 if (Step->isAllOnesValue()) 2324 return -1; 2325 } 2326 2327 return 0; 2328 } 2329 2330 bool LoopVectorizationLegality::isUniform(Value *V) { 2331 return LAI->isUniform(V); 2332 } 2333 2334 InnerLoopVectorizer::VectorParts & 2335 InnerLoopVectorizer::getVectorValue(Value *V) { 2336 assert(V != Induction && "The new induction variable should not be used."); 2337 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2338 2339 // If we have a stride that is replaced by one, do it here. 2340 if (Legal->hasStride(V)) 2341 V = ConstantInt::get(V->getType(), 1); 2342 2343 // If we have this scalar in the map, return it. 2344 if (WidenMap.has(V)) 2345 return WidenMap.get(V); 2346 2347 // If this scalar is unknown, assume that it is a constant or that it is 2348 // loop invariant. Broadcast V and save the value for future uses. 2349 Value *B = getBroadcastInstrs(V); 2350 return WidenMap.splat(V, B); 2351 } 2352 2353 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2354 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2355 SmallVector<Constant *, 8> ShuffleMask; 2356 for (unsigned i = 0; i < VF; ++i) 2357 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2358 2359 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2360 ConstantVector::get(ShuffleMask), 2361 "reverse"); 2362 } 2363 2364 // Get a mask to interleave \p NumVec vectors into a wide vector. 2365 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2366 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2367 // <0, 4, 1, 5, 2, 6, 3, 7> 2368 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2369 unsigned NumVec) { 2370 SmallVector<Constant *, 16> Mask; 2371 for (unsigned i = 0; i < VF; i++) 2372 for (unsigned j = 0; j < NumVec; j++) 2373 Mask.push_back(Builder.getInt32(j * VF + i)); 2374 2375 return ConstantVector::get(Mask); 2376 } 2377 2378 // Get the strided mask starting from index \p Start. 2379 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2380 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2381 unsigned Stride, unsigned VF) { 2382 SmallVector<Constant *, 16> Mask; 2383 for (unsigned i = 0; i < VF; i++) 2384 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2385 2386 return ConstantVector::get(Mask); 2387 } 2388 2389 // Get a mask of two parts: The first part consists of sequential integers 2390 // starting from 0, The second part consists of UNDEFs. 2391 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2392 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2393 unsigned NumUndef) { 2394 SmallVector<Constant *, 16> Mask; 2395 for (unsigned i = 0; i < NumInt; i++) 2396 Mask.push_back(Builder.getInt32(i)); 2397 2398 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2399 for (unsigned i = 0; i < NumUndef; i++) 2400 Mask.push_back(Undef); 2401 2402 return ConstantVector::get(Mask); 2403 } 2404 2405 // Concatenate two vectors with the same element type. The 2nd vector should 2406 // not have more elements than the 1st vector. If the 2nd vector has less 2407 // elements, extend it with UNDEFs. 2408 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2409 Value *V2) { 2410 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2411 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2412 assert(VecTy1 && VecTy2 && 2413 VecTy1->getScalarType() == VecTy2->getScalarType() && 2414 "Expect two vectors with the same element type"); 2415 2416 unsigned NumElts1 = VecTy1->getNumElements(); 2417 unsigned NumElts2 = VecTy2->getNumElements(); 2418 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2419 2420 if (NumElts1 > NumElts2) { 2421 // Extend with UNDEFs. 2422 Constant *ExtMask = 2423 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2424 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2425 } 2426 2427 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2428 return Builder.CreateShuffleVector(V1, V2, Mask); 2429 } 2430 2431 // Concatenate vectors in the given list. All vectors have the same type. 2432 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2433 ArrayRef<Value *> InputList) { 2434 unsigned NumVec = InputList.size(); 2435 assert(NumVec > 1 && "Should be at least two vectors"); 2436 2437 SmallVector<Value *, 8> ResList; 2438 ResList.append(InputList.begin(), InputList.end()); 2439 do { 2440 SmallVector<Value *, 8> TmpList; 2441 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2442 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2443 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2444 "Only the last vector may have a different type"); 2445 2446 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2447 } 2448 2449 // Push the last vector if the total number of vectors is odd. 2450 if (NumVec % 2 != 0) 2451 TmpList.push_back(ResList[NumVec - 1]); 2452 2453 ResList = TmpList; 2454 NumVec = ResList.size(); 2455 } while (NumVec > 1); 2456 2457 return ResList[0]; 2458 } 2459 2460 // Try to vectorize the interleave group that \p Instr belongs to. 2461 // 2462 // E.g. Translate following interleaved load group (factor = 3): 2463 // for (i = 0; i < N; i+=3) { 2464 // R = Pic[i]; // Member of index 0 2465 // G = Pic[i+1]; // Member of index 1 2466 // B = Pic[i+2]; // Member of index 2 2467 // ... // do something to R, G, B 2468 // } 2469 // To: 2470 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2471 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2472 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2473 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2474 // 2475 // Or translate following interleaved store group (factor = 3): 2476 // for (i = 0; i < N; i+=3) { 2477 // ... do something to R, G, B 2478 // Pic[i] = R; // Member of index 0 2479 // Pic[i+1] = G; // Member of index 1 2480 // Pic[i+2] = B; // Member of index 2 2481 // } 2482 // To: 2483 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2484 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2485 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2486 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2487 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2488 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2489 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2490 assert(Group && "Fail to get an interleaved access group."); 2491 2492 // Skip if current instruction is not the insert position. 2493 if (Instr != Group->getInsertPos()) 2494 return; 2495 2496 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2497 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2498 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2499 2500 // Prepare for the vector type of the interleaved load/store. 2501 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2502 unsigned InterleaveFactor = Group->getFactor(); 2503 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2504 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2505 2506 // Prepare for the new pointers. 2507 setDebugLocFromInst(Builder, Ptr); 2508 VectorParts &PtrParts = getVectorValue(Ptr); 2509 SmallVector<Value *, 2> NewPtrs; 2510 unsigned Index = Group->getIndex(Instr); 2511 for (unsigned Part = 0; Part < UF; Part++) { 2512 // Extract the pointer for current instruction from the pointer vector. A 2513 // reverse access uses the pointer in the last lane. 2514 Value *NewPtr = Builder.CreateExtractElement( 2515 PtrParts[Part], 2516 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2517 2518 // Notice current instruction could be any index. Need to adjust the address 2519 // to the member of index 0. 2520 // 2521 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2522 // b = A[i]; // Member of index 0 2523 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2524 // 2525 // E.g. A[i+1] = a; // Member of index 1 2526 // A[i] = b; // Member of index 0 2527 // A[i+2] = c; // Member of index 2 (Current instruction) 2528 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2529 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2530 2531 // Cast to the vector pointer type. 2532 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2533 } 2534 2535 setDebugLocFromInst(Builder, Instr); 2536 Value *UndefVec = UndefValue::get(VecTy); 2537 2538 // Vectorize the interleaved load group. 2539 if (LI) { 2540 for (unsigned Part = 0; Part < UF; Part++) { 2541 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2542 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2543 2544 for (unsigned i = 0; i < InterleaveFactor; i++) { 2545 Instruction *Member = Group->getMember(i); 2546 2547 // Skip the gaps in the group. 2548 if (!Member) 2549 continue; 2550 2551 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2552 Value *StridedVec = Builder.CreateShuffleVector( 2553 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2554 2555 // If this member has different type, cast the result type. 2556 if (Member->getType() != ScalarTy) { 2557 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2558 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2559 } 2560 2561 VectorParts &Entry = WidenMap.get(Member); 2562 Entry[Part] = 2563 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2564 } 2565 2566 addMetadata(NewLoadInstr, Instr); 2567 } 2568 return; 2569 } 2570 2571 // The sub vector type for current instruction. 2572 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2573 2574 // Vectorize the interleaved store group. 2575 for (unsigned Part = 0; Part < UF; Part++) { 2576 // Collect the stored vector from each member. 2577 SmallVector<Value *, 4> StoredVecs; 2578 for (unsigned i = 0; i < InterleaveFactor; i++) { 2579 // Interleaved store group doesn't allow a gap, so each index has a member 2580 Instruction *Member = Group->getMember(i); 2581 assert(Member && "Fail to get a member from an interleaved store group"); 2582 2583 Value *StoredVec = 2584 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2585 if (Group->isReverse()) 2586 StoredVec = reverseVector(StoredVec); 2587 2588 // If this member has different type, cast it to an unified type. 2589 if (StoredVec->getType() != SubVT) 2590 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2591 2592 StoredVecs.push_back(StoredVec); 2593 } 2594 2595 // Concatenate all vectors into a wide vector. 2596 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2597 2598 // Interleave the elements in the wide vector. 2599 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2600 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2601 "interleaved.vec"); 2602 2603 Instruction *NewStoreInstr = 2604 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2605 addMetadata(NewStoreInstr, Instr); 2606 } 2607 } 2608 2609 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2610 // Attempt to issue a wide load. 2611 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2612 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2613 2614 assert((LI || SI) && "Invalid Load/Store instruction"); 2615 2616 // Try to vectorize the interleave group if this access is interleaved. 2617 if (Legal->isAccessInterleaved(Instr)) 2618 return vectorizeInterleaveGroup(Instr); 2619 2620 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2621 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2622 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2623 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2624 // An alignment of 0 means target abi alignment. We need to use the scalar's 2625 // target abi alignment in such a case. 2626 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2627 if (!Alignment) 2628 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2629 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2630 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2631 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2632 2633 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2634 !Legal->isMaskRequired(SI)) 2635 return scalarizeInstruction(Instr, true); 2636 2637 if (ScalarAllocatedSize != VectorElementSize) 2638 return scalarizeInstruction(Instr); 2639 2640 // If the pointer is loop invariant scalarize the load. 2641 if (LI && Legal->isUniform(Ptr)) 2642 return scalarizeInstruction(Instr); 2643 2644 // If the pointer is non-consecutive and gather/scatter is not supported 2645 // scalarize the instruction. 2646 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2647 bool Reverse = ConsecutiveStride < 0; 2648 bool CreateGatherScatter = 2649 !ConsecutiveStride && ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) || 2650 (SI && Legal->isLegalMaskedScatter(ScalarDataTy))); 2651 2652 if (!ConsecutiveStride && !CreateGatherScatter) 2653 return scalarizeInstruction(Instr); 2654 2655 Constant *Zero = Builder.getInt32(0); 2656 VectorParts &Entry = WidenMap.get(Instr); 2657 VectorParts VectorGep; 2658 2659 // Handle consecutive loads/stores. 2660 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2661 if (ConsecutiveStride) { 2662 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2663 setDebugLocFromInst(Builder, Gep); 2664 Value *PtrOperand = Gep->getPointerOperand(); 2665 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2666 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2667 2668 // Create the new GEP with the new induction variable. 2669 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2670 Gep2->setOperand(0, FirstBasePtr); 2671 Gep2->setName("gep.indvar.base"); 2672 Ptr = Builder.Insert(Gep2); 2673 } else if (Gep) { 2674 setDebugLocFromInst(Builder, Gep); 2675 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), 2676 OrigLoop) && 2677 "Base ptr must be invariant"); 2678 // The last index does not have to be the induction. It can be 2679 // consecutive and be a function of the index. For example A[I+1]; 2680 unsigned NumOperands = Gep->getNumOperands(); 2681 unsigned InductionOperand = getGEPInductionOperand(Gep); 2682 // Create the new GEP with the new induction variable. 2683 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2684 2685 for (unsigned i = 0; i < NumOperands; ++i) { 2686 Value *GepOperand = Gep->getOperand(i); 2687 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2688 2689 // Update last index or loop invariant instruction anchored in loop. 2690 if (i == InductionOperand || 2691 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2692 assert((i == InductionOperand || 2693 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), 2694 OrigLoop)) && 2695 "Must be last index or loop invariant"); 2696 2697 VectorParts &GEPParts = getVectorValue(GepOperand); 2698 Value *Index = GEPParts[0]; 2699 Index = Builder.CreateExtractElement(Index, Zero); 2700 Gep2->setOperand(i, Index); 2701 Gep2->setName("gep.indvar.idx"); 2702 } 2703 } 2704 Ptr = Builder.Insert(Gep2); 2705 } else { // No GEP 2706 // Use the induction element ptr. 2707 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2708 setDebugLocFromInst(Builder, Ptr); 2709 VectorParts &PtrVal = getVectorValue(Ptr); 2710 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2711 } 2712 } else { 2713 // At this point we should vector version of GEP for Gather or Scatter 2714 assert(CreateGatherScatter && "The instruction should be scalarized"); 2715 if (Gep) { 2716 SmallVector<VectorParts, 4> OpsV; 2717 // Vectorizing GEP, across UF parts, we want to keep each loop-invariant 2718 // base or index of GEP scalar 2719 for (Value *Op : Gep->operands()) { 2720 if (PSE.getSE()->isLoopInvariant(PSE.getSCEV(Op), OrigLoop)) 2721 OpsV.push_back(VectorParts(UF, Op)); 2722 else 2723 OpsV.push_back(getVectorValue(Op)); 2724 } 2725 2726 for (unsigned Part = 0; Part < UF; ++Part) { 2727 SmallVector<Value *, 4> Ops; 2728 Value *GEPBasePtr = OpsV[0][Part]; 2729 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2730 Ops.push_back(OpsV[i][Part]); 2731 Value *NewGep = 2732 Builder.CreateGEP(nullptr, GEPBasePtr, Ops, "VectorGep"); 2733 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2734 NewGep = 2735 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2736 VectorGep.push_back(NewGep); 2737 } 2738 } else 2739 VectorGep = getVectorValue(Ptr); 2740 } 2741 2742 VectorParts Mask = createBlockInMask(Instr->getParent()); 2743 // Handle Stores: 2744 if (SI) { 2745 assert(!Legal->isUniform(SI->getPointerOperand()) && 2746 "We do not allow storing to uniform addresses"); 2747 setDebugLocFromInst(Builder, SI); 2748 // We don't want to update the value in the map as it might be used in 2749 // another expression. So don't use a reference type for "StoredVal". 2750 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2751 2752 for (unsigned Part = 0; Part < UF; ++Part) { 2753 Instruction *NewSI = nullptr; 2754 if (CreateGatherScatter) { 2755 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2756 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2757 Alignment, MaskPart); 2758 } else { 2759 // Calculate the pointer for the specific unroll-part. 2760 Value *PartPtr = 2761 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2762 2763 if (Reverse) { 2764 // If we store to reverse consecutive memory locations, then we need 2765 // to reverse the order of elements in the stored value. 2766 StoredVal[Part] = reverseVector(StoredVal[Part]); 2767 // If the address is consecutive but reversed, then the 2768 // wide store needs to start at the last vector element. 2769 PartPtr = 2770 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2771 PartPtr = 2772 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2773 Mask[Part] = reverseVector(Mask[Part]); 2774 } 2775 2776 Value *VecPtr = 2777 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2778 2779 if (Legal->isMaskRequired(SI)) 2780 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2781 Mask[Part]); 2782 else 2783 NewSI = 2784 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2785 } 2786 addMetadata(NewSI, SI); 2787 } 2788 return; 2789 } 2790 2791 // Handle loads. 2792 assert(LI && "Must have a load instruction"); 2793 setDebugLocFromInst(Builder, LI); 2794 for (unsigned Part = 0; Part < UF; ++Part) { 2795 Instruction *NewLI; 2796 if (CreateGatherScatter) { 2797 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2798 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 2799 0, "wide.masked.gather"); 2800 Entry[Part] = NewLI; 2801 } else { 2802 // Calculate the pointer for the specific unroll-part. 2803 Value *PartPtr = 2804 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2805 2806 if (Reverse) { 2807 // If the address is consecutive but reversed, then the 2808 // wide load needs to start at the last vector element. 2809 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2810 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2811 Mask[Part] = reverseVector(Mask[Part]); 2812 } 2813 2814 Value *VecPtr = 2815 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2816 if (Legal->isMaskRequired(LI)) 2817 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2818 UndefValue::get(DataTy), 2819 "wide.masked.load"); 2820 else 2821 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2822 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2823 } 2824 addMetadata(NewLI, LI); 2825 } 2826 } 2827 2828 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2829 bool IfPredicateStore) { 2830 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2831 // Holds vector parameters or scalars, in case of uniform vals. 2832 SmallVector<VectorParts, 4> Params; 2833 2834 setDebugLocFromInst(Builder, Instr); 2835 2836 // Find all of the vectorized parameters. 2837 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2838 Value *SrcOp = Instr->getOperand(op); 2839 2840 // If we are accessing the old induction variable, use the new one. 2841 if (SrcOp == OldInduction) { 2842 Params.push_back(getVectorValue(SrcOp)); 2843 continue; 2844 } 2845 2846 // Try using previously calculated values. 2847 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2848 2849 // If the src is an instruction that appeared earlier in the basic block, 2850 // then it should already be vectorized. 2851 if (SrcInst && OrigLoop->contains(SrcInst)) { 2852 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2853 // The parameter is a vector value from earlier. 2854 Params.push_back(WidenMap.get(SrcInst)); 2855 } else { 2856 // The parameter is a scalar from outside the loop. Maybe even a constant. 2857 VectorParts Scalars; 2858 Scalars.append(UF, SrcOp); 2859 Params.push_back(Scalars); 2860 } 2861 } 2862 2863 assert(Params.size() == Instr->getNumOperands() && 2864 "Invalid number of operands"); 2865 2866 // Does this instruction return a value ? 2867 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2868 2869 Value *UndefVec = 2870 IsVoidRetTy ? nullptr 2871 : UndefValue::get(VectorType::get(Instr->getType(), VF)); 2872 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2873 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2874 2875 VectorParts Cond; 2876 if (IfPredicateStore) { 2877 assert(Instr->getParent()->getSinglePredecessor() && 2878 "Only support single predecessor blocks"); 2879 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2880 Instr->getParent()); 2881 } 2882 2883 // For each vector unroll 'part': 2884 for (unsigned Part = 0; Part < UF; ++Part) { 2885 // For each scalar that we create: 2886 for (unsigned Width = 0; Width < VF; ++Width) { 2887 2888 // Start if-block. 2889 Value *Cmp = nullptr; 2890 if (IfPredicateStore) { 2891 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2892 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2893 ConstantInt::get(Cmp->getType(), 1)); 2894 } 2895 2896 Instruction *Cloned = Instr->clone(); 2897 if (!IsVoidRetTy) 2898 Cloned->setName(Instr->getName() + ".cloned"); 2899 // Replace the operands of the cloned instructions with extracted scalars. 2900 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2901 Value *Op = Params[op][Part]; 2902 // Param is a vector. Need to extract the right lane. 2903 if (Op->getType()->isVectorTy()) 2904 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2905 Cloned->setOperand(op, Op); 2906 } 2907 addNewMetadata(Cloned, Instr); 2908 2909 // Place the cloned scalar in the new loop. 2910 Builder.Insert(Cloned); 2911 2912 // If we just cloned a new assumption, add it the assumption cache. 2913 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2914 if (II->getIntrinsicID() == Intrinsic::assume) 2915 AC->registerAssumption(II); 2916 2917 // If the original scalar returns a value we need to place it in a vector 2918 // so that future users will be able to use it. 2919 if (!IsVoidRetTy) 2920 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2921 Builder.getInt32(Width)); 2922 // End if-block. 2923 if (IfPredicateStore) 2924 PredicatedStores.push_back( 2925 std::make_pair(cast<StoreInst>(Cloned), Cmp)); 2926 } 2927 } 2928 } 2929 2930 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2931 Value *End, Value *Step, 2932 Instruction *DL) { 2933 BasicBlock *Header = L->getHeader(); 2934 BasicBlock *Latch = L->getLoopLatch(); 2935 // As we're just creating this loop, it's possible no latch exists 2936 // yet. If so, use the header as this will be a single block loop. 2937 if (!Latch) 2938 Latch = Header; 2939 2940 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2941 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2942 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2943 2944 Builder.SetInsertPoint(Latch->getTerminator()); 2945 2946 // Create i+1 and fill the PHINode. 2947 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2948 Induction->addIncoming(Start, L->getLoopPreheader()); 2949 Induction->addIncoming(Next, Latch); 2950 // Create the compare. 2951 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2952 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2953 2954 // Now we have two terminators. Remove the old one from the block. 2955 Latch->getTerminator()->eraseFromParent(); 2956 2957 return Induction; 2958 } 2959 2960 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2961 if (TripCount) 2962 return TripCount; 2963 2964 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2965 // Find the loop boundaries. 2966 ScalarEvolution *SE = PSE.getSE(); 2967 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2968 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2969 "Invalid loop count"); 2970 2971 Type *IdxTy = Legal->getWidestInductionType(); 2972 2973 // The exit count might have the type of i64 while the phi is i32. This can 2974 // happen if we have an induction variable that is sign extended before the 2975 // compare. The only way that we get a backedge taken count is that the 2976 // induction variable was signed and as such will not overflow. In such a case 2977 // truncation is legal. 2978 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2979 IdxTy->getPrimitiveSizeInBits()) 2980 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2981 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2982 2983 // Get the total trip count from the count by adding 1. 2984 const SCEV *ExitCount = SE->getAddExpr( 2985 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2986 2987 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2988 2989 // Expand the trip count and place the new instructions in the preheader. 2990 // Notice that the pre-header does not change, only the loop body. 2991 SCEVExpander Exp(*SE, DL, "induction"); 2992 2993 // Count holds the overall loop count (N). 2994 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2995 L->getLoopPreheader()->getTerminator()); 2996 2997 if (TripCount->getType()->isPointerTy()) 2998 TripCount = 2999 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3000 L->getLoopPreheader()->getTerminator()); 3001 3002 return TripCount; 3003 } 3004 3005 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3006 if (VectorTripCount) 3007 return VectorTripCount; 3008 3009 Value *TC = getOrCreateTripCount(L); 3010 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3011 3012 // Now we need to generate the expression for the part of the loop that the 3013 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3014 // iterations are not required for correctness, or N - Step, otherwise. Step 3015 // is equal to the vectorization factor (number of SIMD elements) times the 3016 // unroll factor (number of SIMD instructions). 3017 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3018 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3019 3020 // If there is a non-reversed interleaved group that may speculatively access 3021 // memory out-of-bounds, we need to ensure that there will be at least one 3022 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3023 // the trip count, we set the remainder to be equal to the step. If the step 3024 // does not evenly divide the trip count, no adjustment is necessary since 3025 // there will already be scalar iterations. Note that the minimum iterations 3026 // check ensures that N >= Step. 3027 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3028 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3029 R = Builder.CreateSelect(IsZero, Step, R); 3030 } 3031 3032 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3033 3034 return VectorTripCount; 3035 } 3036 3037 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3038 BasicBlock *Bypass) { 3039 Value *Count = getOrCreateTripCount(L); 3040 BasicBlock *BB = L->getLoopPreheader(); 3041 IRBuilder<> Builder(BB->getTerminator()); 3042 3043 // Generate code to check that the loop's trip count that we computed by 3044 // adding one to the backedge-taken count will not overflow. 3045 Value *CheckMinIters = Builder.CreateICmpULT( 3046 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3047 3048 BasicBlock *NewBB = 3049 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 3050 // Update dominator tree immediately if the generated block is a 3051 // LoopBypassBlock because SCEV expansions to generate loop bypass 3052 // checks may query it before the current function is finished. 3053 DT->addNewBlock(NewBB, BB); 3054 if (L->getParentLoop()) 3055 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3056 ReplaceInstWithInst(BB->getTerminator(), 3057 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3058 LoopBypassBlocks.push_back(BB); 3059 } 3060 3061 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 3062 BasicBlock *Bypass) { 3063 Value *TC = getOrCreateVectorTripCount(L); 3064 BasicBlock *BB = L->getLoopPreheader(); 3065 IRBuilder<> Builder(BB->getTerminator()); 3066 3067 // Now, compare the new count to zero. If it is zero skip the vector loop and 3068 // jump to the scalar loop. 3069 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 3070 "cmp.zero"); 3071 3072 // Generate code to check that the loop's trip count that we computed by 3073 // adding one to the backedge-taken count will not overflow. 3074 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3075 // Update dominator tree immediately if the generated block is a 3076 // LoopBypassBlock because SCEV expansions to generate loop bypass 3077 // checks may query it before the current function is finished. 3078 DT->addNewBlock(NewBB, BB); 3079 if (L->getParentLoop()) 3080 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3081 ReplaceInstWithInst(BB->getTerminator(), 3082 BranchInst::Create(Bypass, NewBB, Cmp)); 3083 LoopBypassBlocks.push_back(BB); 3084 } 3085 3086 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3087 BasicBlock *BB = L->getLoopPreheader(); 3088 3089 // Generate the code to check that the SCEV assumptions that we made. 3090 // We want the new basic block to start at the first instruction in a 3091 // sequence of instructions that form a check. 3092 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3093 "scev.check"); 3094 Value *SCEVCheck = 3095 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3096 3097 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3098 if (C->isZero()) 3099 return; 3100 3101 // Create a new block containing the stride check. 3102 BB->setName("vector.scevcheck"); 3103 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3104 // Update dominator tree immediately if the generated block is a 3105 // LoopBypassBlock because SCEV expansions to generate loop bypass 3106 // checks may query it before the current function is finished. 3107 DT->addNewBlock(NewBB, BB); 3108 if (L->getParentLoop()) 3109 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3110 ReplaceInstWithInst(BB->getTerminator(), 3111 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3112 LoopBypassBlocks.push_back(BB); 3113 AddedSafetyChecks = true; 3114 } 3115 3116 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3117 BasicBlock *BB = L->getLoopPreheader(); 3118 3119 // Generate the code that checks in runtime if arrays overlap. We put the 3120 // checks into a separate block to make the more common case of few elements 3121 // faster. 3122 Instruction *FirstCheckInst; 3123 Instruction *MemRuntimeCheck; 3124 std::tie(FirstCheckInst, MemRuntimeCheck) = 3125 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3126 if (!MemRuntimeCheck) 3127 return; 3128 3129 // Create a new block containing the memory check. 3130 BB->setName("vector.memcheck"); 3131 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3132 // Update dominator tree immediately if the generated block is a 3133 // LoopBypassBlock because SCEV expansions to generate loop bypass 3134 // checks may query it before the current function is finished. 3135 DT->addNewBlock(NewBB, BB); 3136 if (L->getParentLoop()) 3137 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3138 ReplaceInstWithInst(BB->getTerminator(), 3139 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3140 LoopBypassBlocks.push_back(BB); 3141 AddedSafetyChecks = true; 3142 3143 // We currently don't use LoopVersioning for the actual loop cloning but we 3144 // still use it to add the noalias metadata. 3145 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3146 PSE.getSE()); 3147 LVer->prepareNoAliasMetadata(); 3148 } 3149 3150 void InnerLoopVectorizer::createEmptyLoop() { 3151 /* 3152 In this function we generate a new loop. The new loop will contain 3153 the vectorized instructions while the old loop will continue to run the 3154 scalar remainder. 3155 3156 [ ] <-- loop iteration number check. 3157 / | 3158 / v 3159 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3160 | / | 3161 | / v 3162 || [ ] <-- vector pre header. 3163 |/ | 3164 | v 3165 | [ ] \ 3166 | [ ]_| <-- vector loop. 3167 | | 3168 | v 3169 | -[ ] <--- middle-block. 3170 | / | 3171 | / v 3172 -|- >[ ] <--- new preheader. 3173 | | 3174 | v 3175 | [ ] \ 3176 | [ ]_| <-- old scalar loop to handle remainder. 3177 \ | 3178 \ v 3179 >[ ] <-- exit block. 3180 ... 3181 */ 3182 3183 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3184 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3185 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3186 assert(VectorPH && "Invalid loop structure"); 3187 assert(ExitBlock && "Must have an exit block"); 3188 3189 // Some loops have a single integer induction variable, while other loops 3190 // don't. One example is c++ iterators that often have multiple pointer 3191 // induction variables. In the code below we also support a case where we 3192 // don't have a single induction variable. 3193 // 3194 // We try to obtain an induction variable from the original loop as hard 3195 // as possible. However if we don't find one that: 3196 // - is an integer 3197 // - counts from zero, stepping by one 3198 // - is the size of the widest induction variable type 3199 // then we create a new one. 3200 OldInduction = Legal->getInduction(); 3201 Type *IdxTy = Legal->getWidestInductionType(); 3202 3203 // Split the single block loop into the two loop structure described above. 3204 BasicBlock *VecBody = 3205 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3206 BasicBlock *MiddleBlock = 3207 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3208 BasicBlock *ScalarPH = 3209 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3210 3211 // Create and register the new vector loop. 3212 Loop *Lp = new Loop(); 3213 Loop *ParentLoop = OrigLoop->getParentLoop(); 3214 3215 // Insert the new loop into the loop nest and register the new basic blocks 3216 // before calling any utilities such as SCEV that require valid LoopInfo. 3217 if (ParentLoop) { 3218 ParentLoop->addChildLoop(Lp); 3219 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3220 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3221 } else { 3222 LI->addTopLevelLoop(Lp); 3223 } 3224 Lp->addBasicBlockToLoop(VecBody, *LI); 3225 3226 // Find the loop boundaries. 3227 Value *Count = getOrCreateTripCount(Lp); 3228 3229 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3230 3231 // We need to test whether the backedge-taken count is uint##_max. Adding one 3232 // to it will cause overflow and an incorrect loop trip count in the vector 3233 // body. In case of overflow we want to directly jump to the scalar remainder 3234 // loop. 3235 emitMinimumIterationCountCheck(Lp, ScalarPH); 3236 // Now, compare the new count to zero. If it is zero skip the vector loop and 3237 // jump to the scalar loop. 3238 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3239 // Generate the code to check any assumptions that we've made for SCEV 3240 // expressions. 3241 emitSCEVChecks(Lp, ScalarPH); 3242 3243 // Generate the code that checks in runtime if arrays overlap. We put the 3244 // checks into a separate block to make the more common case of few elements 3245 // faster. 3246 emitMemRuntimeChecks(Lp, ScalarPH); 3247 3248 // Generate the induction variable. 3249 // The loop step is equal to the vectorization factor (num of SIMD elements) 3250 // times the unroll factor (num of SIMD instructions). 3251 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3252 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3253 Induction = 3254 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3255 getDebugLocFromInstOrOperands(OldInduction)); 3256 3257 // We are going to resume the execution of the scalar loop. 3258 // Go over all of the induction variables that we found and fix the 3259 // PHIs that are left in the scalar version of the loop. 3260 // The starting values of PHI nodes depend on the counter of the last 3261 // iteration in the vectorized loop. 3262 // If we come from a bypass edge then we need to start from the original 3263 // start value. 3264 3265 // This variable saves the new starting index for the scalar loop. It is used 3266 // to test if there are any tail iterations left once the vector loop has 3267 // completed. 3268 LoopVectorizationLegality::InductionList::iterator I, E; 3269 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3270 for (I = List->begin(), E = List->end(); I != E; ++I) { 3271 PHINode *OrigPhi = I->first; 3272 InductionDescriptor II = I->second; 3273 3274 // Create phi nodes to merge from the backedge-taken check block. 3275 PHINode *BCResumeVal = PHINode::Create( 3276 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3277 Value *EndValue; 3278 if (OrigPhi == OldInduction) { 3279 // We know what the end value is. 3280 EndValue = CountRoundDown; 3281 } else { 3282 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3283 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, 3284 II.getStep()->getType(), "cast.crd"); 3285 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3286 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3287 EndValue->setName("ind.end"); 3288 } 3289 3290 // The new PHI merges the original incoming value, in case of a bypass, 3291 // or the value at the end of the vectorized loop. 3292 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3293 3294 // Fix up external users of the induction variable. 3295 fixupIVUsers(OrigPhi, II, CountRoundDown, EndValue, MiddleBlock); 3296 3297 // Fix the scalar body counter (PHI node). 3298 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3299 3300 // The old induction's phi node in the scalar body needs the truncated 3301 // value. 3302 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3303 BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]); 3304 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3305 } 3306 3307 // Add a check in the middle block to see if we have completed 3308 // all of the iterations in the first vector loop. 3309 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3310 Value *CmpN = 3311 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3312 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3313 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3314 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3315 3316 // Get ready to start creating new instructions into the vectorized body. 3317 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3318 3319 // Save the state. 3320 LoopVectorPreHeader = Lp->getLoopPreheader(); 3321 LoopScalarPreHeader = ScalarPH; 3322 LoopMiddleBlock = MiddleBlock; 3323 LoopExitBlock = ExitBlock; 3324 LoopVectorBody = VecBody; 3325 LoopScalarBody = OldBasicBlock; 3326 3327 // Keep all loop hints from the original loop on the vector loop (we'll 3328 // replace the vectorizer-specific hints below). 3329 if (MDNode *LID = OrigLoop->getLoopID()) 3330 Lp->setLoopID(LID); 3331 3332 LoopVectorizeHints Hints(Lp, true); 3333 Hints.setAlreadyVectorized(); 3334 } 3335 3336 // Fix up external users of the induction variable. At this point, we are 3337 // in LCSSA form, with all external PHIs that use the IV having one input value, 3338 // coming from the remainder loop. We need those PHIs to also have a correct 3339 // value for the IV when arriving directly from the middle block. 3340 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3341 const InductionDescriptor &II, 3342 Value *CountRoundDown, Value *EndValue, 3343 BasicBlock *MiddleBlock) { 3344 // There are two kinds of external IV usages - those that use the value 3345 // computed in the last iteration (the PHI) and those that use the penultimate 3346 // value (the value that feeds into the phi from the loop latch). 3347 // We allow both, but they, obviously, have different values. 3348 3349 // We only expect at most one of each kind of user. This is because LCSSA will 3350 // canonicalize the users to a single PHI node per exit block, and we 3351 // currently only vectorize loops with a single exit. 3352 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3353 3354 // An external user of the last iteration's value should see the value that 3355 // the remainder loop uses to initialize its own IV. 3356 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3357 for (User *U : PostInc->users()) { 3358 Instruction *UI = cast<Instruction>(U); 3359 if (!OrigLoop->contains(UI)) { 3360 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3361 // One corner case we have to handle is two IVs "chasing" each-other, 3362 // that is %IV2 = phi [...], [ %IV1, %latch ] 3363 // In this case, if IV1 has an external use, we need to avoid adding both 3364 // "last value of IV1" and "penultimate value of IV2". Since we don't know 3365 // which IV will be handled first, check we haven't handled this user yet. 3366 PHINode *User = cast<PHINode>(UI); 3367 if (User->getBasicBlockIndex(MiddleBlock) == -1) 3368 User->addIncoming(EndValue, MiddleBlock); 3369 break; 3370 } 3371 } 3372 3373 // An external user of the penultimate value need to see EndValue - Step. 3374 // The simplest way to get this is to recompute it from the constituent SCEVs, 3375 // that is Start + (Step * (CRD - 1)). 3376 for (User *U : OrigPhi->users()) { 3377 Instruction *UI = cast<Instruction>(U); 3378 if (!OrigLoop->contains(UI)) { 3379 const DataLayout &DL = 3380 OrigLoop->getHeader()->getModule()->getDataLayout(); 3381 3382 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3383 PHINode *User = cast<PHINode>(UI); 3384 // As above, check we haven't already handled this user. 3385 if (User->getBasicBlockIndex(MiddleBlock) != -1) 3386 break; 3387 3388 IRBuilder<> B(MiddleBlock->getTerminator()); 3389 Value *CountMinusOne = B.CreateSub( 3390 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3391 Value *CMO = B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType(), 3392 "cast.cmo"); 3393 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3394 Escape->setName("ind.escape"); 3395 User->addIncoming(Escape, MiddleBlock); 3396 break; 3397 } 3398 } 3399 } 3400 3401 namespace { 3402 struct CSEDenseMapInfo { 3403 static bool canHandle(Instruction *I) { 3404 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3405 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3406 } 3407 static inline Instruction *getEmptyKey() { 3408 return DenseMapInfo<Instruction *>::getEmptyKey(); 3409 } 3410 static inline Instruction *getTombstoneKey() { 3411 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3412 } 3413 static unsigned getHashValue(Instruction *I) { 3414 assert(canHandle(I) && "Unknown instruction!"); 3415 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3416 I->value_op_end())); 3417 } 3418 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3419 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3420 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3421 return LHS == RHS; 3422 return LHS->isIdenticalTo(RHS); 3423 } 3424 }; 3425 } 3426 3427 ///\brief Perform cse of induction variable instructions. 3428 static void cse(BasicBlock *BB) { 3429 // Perform simple cse. 3430 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3431 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3432 Instruction *In = &*I++; 3433 3434 if (!CSEDenseMapInfo::canHandle(In)) 3435 continue; 3436 3437 // Check if we can replace this instruction with any of the 3438 // visited instructions. 3439 if (Instruction *V = CSEMap.lookup(In)) { 3440 In->replaceAllUsesWith(V); 3441 In->eraseFromParent(); 3442 continue; 3443 } 3444 3445 CSEMap[In] = In; 3446 } 3447 } 3448 3449 /// \brief Adds a 'fast' flag to floating point operations. 3450 static Value *addFastMathFlag(Value *V) { 3451 if (isa<FPMathOperator>(V)) { 3452 FastMathFlags Flags; 3453 Flags.setUnsafeAlgebra(); 3454 cast<Instruction>(V)->setFastMathFlags(Flags); 3455 } 3456 return V; 3457 } 3458 3459 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 3460 /// the result needs to be inserted and/or extracted from vectors. 3461 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3462 const TargetTransformInfo &TTI) { 3463 if (Ty->isVoidTy()) 3464 return 0; 3465 3466 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3467 unsigned Cost = 0; 3468 3469 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 3470 if (Insert) 3471 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 3472 if (Extract) 3473 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 3474 } 3475 3476 return Cost; 3477 } 3478 3479 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3480 // Return the cost of the instruction, including scalarization overhead if it's 3481 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3482 // i.e. either vector version isn't available, or is too expensive. 3483 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3484 const TargetTransformInfo &TTI, 3485 const TargetLibraryInfo *TLI, 3486 bool &NeedToScalarize) { 3487 Function *F = CI->getCalledFunction(); 3488 StringRef FnName = CI->getCalledFunction()->getName(); 3489 Type *ScalarRetTy = CI->getType(); 3490 SmallVector<Type *, 4> Tys, ScalarTys; 3491 for (auto &ArgOp : CI->arg_operands()) 3492 ScalarTys.push_back(ArgOp->getType()); 3493 3494 // Estimate cost of scalarized vector call. The source operands are assumed 3495 // to be vectors, so we need to extract individual elements from there, 3496 // execute VF scalar calls, and then gather the result into the vector return 3497 // value. 3498 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3499 if (VF == 1) 3500 return ScalarCallCost; 3501 3502 // Compute corresponding vector type for return value and arguments. 3503 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3504 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 3505 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 3506 3507 // Compute costs of unpacking argument values for the scalar calls and 3508 // packing the return values to a vector. 3509 unsigned ScalarizationCost = 3510 getScalarizationOverhead(RetTy, true, false, TTI); 3511 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 3512 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 3513 3514 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3515 3516 // If we can't emit a vector call for this function, then the currently found 3517 // cost is the cost we need to return. 3518 NeedToScalarize = true; 3519 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3520 return Cost; 3521 3522 // If the corresponding vector cost is cheaper, return its cost. 3523 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3524 if (VectorCallCost < Cost) { 3525 NeedToScalarize = false; 3526 return VectorCallCost; 3527 } 3528 return Cost; 3529 } 3530 3531 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3532 // factor VF. Return the cost of the instruction, including scalarization 3533 // overhead if it's needed. 3534 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3535 const TargetTransformInfo &TTI, 3536 const TargetLibraryInfo *TLI) { 3537 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3538 assert(ID && "Expected intrinsic call!"); 3539 3540 Type *RetTy = ToVectorTy(CI->getType(), VF); 3541 SmallVector<Type *, 4> Tys; 3542 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3543 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3544 3545 FastMathFlags FMF; 3546 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3547 FMF = FPMO->getFastMathFlags(); 3548 3549 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3550 } 3551 3552 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3553 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3554 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3555 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3556 } 3557 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3558 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3559 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3560 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3561 } 3562 3563 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3564 // For every instruction `I` in MinBWs, truncate the operands, create a 3565 // truncated version of `I` and reextend its result. InstCombine runs 3566 // later and will remove any ext/trunc pairs. 3567 // 3568 SmallPtrSet<Value *, 4> Erased; 3569 for (const auto &KV : *MinBWs) { 3570 VectorParts &Parts = WidenMap.get(KV.first); 3571 for (Value *&I : Parts) { 3572 if (Erased.count(I) || I->use_empty()) 3573 continue; 3574 Type *OriginalTy = I->getType(); 3575 Type *ScalarTruncatedTy = 3576 IntegerType::get(OriginalTy->getContext(), KV.second); 3577 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3578 OriginalTy->getVectorNumElements()); 3579 if (TruncatedTy == OriginalTy) 3580 continue; 3581 3582 if (!isa<Instruction>(I)) 3583 continue; 3584 3585 IRBuilder<> B(cast<Instruction>(I)); 3586 auto ShrinkOperand = [&](Value *V) -> Value * { 3587 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3588 if (ZI->getSrcTy() == TruncatedTy) 3589 return ZI->getOperand(0); 3590 return B.CreateZExtOrTrunc(V, TruncatedTy); 3591 }; 3592 3593 // The actual instruction modification depends on the instruction type, 3594 // unfortunately. 3595 Value *NewI = nullptr; 3596 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3597 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3598 ShrinkOperand(BO->getOperand(1))); 3599 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3600 } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) { 3601 NewI = 3602 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3603 ShrinkOperand(CI->getOperand(1))); 3604 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 3605 NewI = B.CreateSelect(SI->getCondition(), 3606 ShrinkOperand(SI->getTrueValue()), 3607 ShrinkOperand(SI->getFalseValue())); 3608 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 3609 switch (CI->getOpcode()) { 3610 default: 3611 llvm_unreachable("Unhandled cast!"); 3612 case Instruction::Trunc: 3613 NewI = ShrinkOperand(CI->getOperand(0)); 3614 break; 3615 case Instruction::SExt: 3616 NewI = B.CreateSExtOrTrunc( 3617 CI->getOperand(0), 3618 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3619 break; 3620 case Instruction::ZExt: 3621 NewI = B.CreateZExtOrTrunc( 3622 CI->getOperand(0), 3623 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3624 break; 3625 } 3626 } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { 3627 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3628 auto *O0 = B.CreateZExtOrTrunc( 3629 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3630 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3631 auto *O1 = B.CreateZExtOrTrunc( 3632 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3633 3634 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3635 } else if (isa<LoadInst>(I)) { 3636 // Don't do anything with the operands, just extend the result. 3637 continue; 3638 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3639 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3640 auto *O0 = B.CreateZExtOrTrunc( 3641 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3642 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3643 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3644 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3645 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3646 auto *O0 = B.CreateZExtOrTrunc( 3647 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3648 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3649 } else { 3650 llvm_unreachable("Unhandled instruction type!"); 3651 } 3652 3653 // Lastly, extend the result. 3654 NewI->takeName(cast<Instruction>(I)); 3655 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3656 I->replaceAllUsesWith(Res); 3657 cast<Instruction>(I)->eraseFromParent(); 3658 Erased.insert(I); 3659 I = Res; 3660 } 3661 } 3662 3663 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3664 for (const auto &KV : *MinBWs) { 3665 VectorParts &Parts = WidenMap.get(KV.first); 3666 for (Value *&I : Parts) { 3667 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3668 if (Inst && Inst->use_empty()) { 3669 Value *NewI = Inst->getOperand(0); 3670 Inst->eraseFromParent(); 3671 I = NewI; 3672 } 3673 } 3674 } 3675 } 3676 3677 void InnerLoopVectorizer::vectorizeLoop() { 3678 //===------------------------------------------------===// 3679 // 3680 // Notice: any optimization or new instruction that go 3681 // into the code below should be also be implemented in 3682 // the cost-model. 3683 // 3684 //===------------------------------------------------===// 3685 Constant *Zero = Builder.getInt32(0); 3686 3687 // In order to support recurrences we need to be able to vectorize Phi nodes. 3688 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3689 // we create a new vector PHI node with no incoming edges. We use this value 3690 // when we vectorize all of the instructions that use the PHI. Next, after 3691 // all of the instructions in the block are complete we add the new incoming 3692 // edges to the PHI. At this point all of the instructions in the basic block 3693 // are vectorized, so we can use them to construct the PHI. 3694 PhiVector PHIsToFix; 3695 3696 // Scan the loop in a topological order to ensure that defs are vectorized 3697 // before users. 3698 LoopBlocksDFS DFS(OrigLoop); 3699 DFS.perform(LI); 3700 3701 // Vectorize all of the blocks in the original loop. 3702 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), be = DFS.endRPO(); 3703 bb != be; ++bb) 3704 vectorizeBlockInLoop(*bb, &PHIsToFix); 3705 3706 // Insert truncates and extends for any truncated instructions as hints to 3707 // InstCombine. 3708 if (VF > 1) 3709 truncateToMinimalBitwidths(); 3710 3711 // At this point every instruction in the original loop is widened to a 3712 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3713 // nodes are currently empty because we did not want to introduce cycles. 3714 // This is the second stage of vectorizing recurrences. 3715 for (PHINode *Phi : PHIsToFix) { 3716 assert(Phi && "Unable to recover vectorized PHI"); 3717 3718 // Handle first-order recurrences that need to be fixed. 3719 if (Legal->isFirstOrderRecurrence(Phi)) { 3720 fixFirstOrderRecurrence(Phi); 3721 continue; 3722 } 3723 3724 // If the phi node is not a first-order recurrence, it must be a reduction. 3725 // Get it's reduction variable descriptor. 3726 assert(Legal->isReductionVariable(Phi) && 3727 "Unable to find the reduction variable"); 3728 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3729 3730 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3731 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3732 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3733 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3734 RdxDesc.getMinMaxRecurrenceKind(); 3735 setDebugLocFromInst(Builder, ReductionStartValue); 3736 3737 // We need to generate a reduction vector from the incoming scalar. 3738 // To do so, we need to generate the 'identity' vector and override 3739 // one of the elements with the incoming scalar reduction. We need 3740 // to do it in the vector-loop preheader. 3741 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3742 3743 // This is the vector-clone of the value that leaves the loop. 3744 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3745 Type *VecTy = VectorExit[0]->getType(); 3746 3747 // Find the reduction identity variable. Zero for addition, or, xor, 3748 // one for multiplication, -1 for And. 3749 Value *Identity; 3750 Value *VectorStart; 3751 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3752 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3753 // MinMax reduction have the start value as their identify. 3754 if (VF == 1) { 3755 VectorStart = Identity = ReductionStartValue; 3756 } else { 3757 VectorStart = Identity = 3758 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3759 } 3760 } else { 3761 // Handle other reduction kinds: 3762 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3763 RK, VecTy->getScalarType()); 3764 if (VF == 1) { 3765 Identity = Iden; 3766 // This vector is the Identity vector where the first element is the 3767 // incoming scalar reduction. 3768 VectorStart = ReductionStartValue; 3769 } else { 3770 Identity = ConstantVector::getSplat(VF, Iden); 3771 3772 // This vector is the Identity vector where the first element is the 3773 // incoming scalar reduction. 3774 VectorStart = 3775 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3776 } 3777 } 3778 3779 // Fix the vector-loop phi. 3780 3781 // Reductions do not have to start at zero. They can start with 3782 // any loop invariant values. 3783 VectorParts &VecRdxPhi = WidenMap.get(Phi); 3784 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3785 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3786 VectorParts &Val = getVectorValue(LoopVal); 3787 for (unsigned part = 0; part < UF; ++part) { 3788 // Make sure to add the reduction stat value only to the 3789 // first unroll part. 3790 Value *StartVal = (part == 0) ? VectorStart : Identity; 3791 cast<PHINode>(VecRdxPhi[part]) 3792 ->addIncoming(StartVal, LoopVectorPreHeader); 3793 cast<PHINode>(VecRdxPhi[part]) 3794 ->addIncoming(Val[part], LoopVectorBody); 3795 } 3796 3797 // Before each round, move the insertion point right between 3798 // the PHIs and the values we are going to write. 3799 // This allows us to write both PHINodes and the extractelement 3800 // instructions. 3801 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3802 3803 VectorParts RdxParts = getVectorValue(LoopExitInst); 3804 setDebugLocFromInst(Builder, LoopExitInst); 3805 3806 // If the vector reduction can be performed in a smaller type, we truncate 3807 // then extend the loop exit value to enable InstCombine to evaluate the 3808 // entire expression in the smaller type. 3809 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3810 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3811 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 3812 for (unsigned part = 0; part < UF; ++part) { 3813 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3814 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3815 : Builder.CreateZExt(Trunc, VecTy); 3816 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3817 UI != RdxParts[part]->user_end();) 3818 if (*UI != Trunc) { 3819 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3820 RdxParts[part] = Extnd; 3821 } else { 3822 ++UI; 3823 } 3824 } 3825 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3826 for (unsigned part = 0; part < UF; ++part) 3827 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3828 } 3829 3830 // Reduce all of the unrolled parts into a single vector. 3831 Value *ReducedPartRdx = RdxParts[0]; 3832 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3833 setDebugLocFromInst(Builder, ReducedPartRdx); 3834 for (unsigned part = 1; part < UF; ++part) { 3835 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3836 // Floating point operations had to be 'fast' to enable the reduction. 3837 ReducedPartRdx = addFastMathFlag( 3838 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3839 ReducedPartRdx, "bin.rdx")); 3840 else 3841 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3842 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3843 } 3844 3845 if (VF > 1) { 3846 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3847 // and vector ops, reducing the set of values being computed by half each 3848 // round. 3849 assert(isPowerOf2_32(VF) && 3850 "Reduction emission only supported for pow2 vectors!"); 3851 Value *TmpVec = ReducedPartRdx; 3852 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 3853 for (unsigned i = VF; i != 1; i >>= 1) { 3854 // Move the upper half of the vector to the lower half. 3855 for (unsigned j = 0; j != i / 2; ++j) 3856 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 3857 3858 // Fill the rest of the mask with undef. 3859 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 3860 UndefValue::get(Builder.getInt32Ty())); 3861 3862 Value *Shuf = Builder.CreateShuffleVector( 3863 TmpVec, UndefValue::get(TmpVec->getType()), 3864 ConstantVector::get(ShuffleMask), "rdx.shuf"); 3865 3866 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3867 // Floating point operations had to be 'fast' to enable the reduction. 3868 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3869 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3870 else 3871 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3872 TmpVec, Shuf); 3873 } 3874 3875 // The result is in the first element of the vector. 3876 ReducedPartRdx = 3877 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3878 3879 // If the reduction can be performed in a smaller type, we need to extend 3880 // the reduction to the wider type before we branch to the original loop. 3881 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3882 ReducedPartRdx = 3883 RdxDesc.isSigned() 3884 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3885 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3886 } 3887 3888 // Create a phi node that merges control-flow from the backedge-taken check 3889 // block and the middle block. 3890 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3891 LoopScalarPreHeader->getTerminator()); 3892 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3893 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3894 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3895 3896 // Now, we need to fix the users of the reduction variable 3897 // inside and outside of the scalar remainder loop. 3898 // We know that the loop is in LCSSA form. We need to update the 3899 // PHI nodes in the exit blocks. 3900 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3901 LEE = LoopExitBlock->end(); 3902 LEI != LEE; ++LEI) { 3903 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3904 if (!LCSSAPhi) 3905 break; 3906 3907 // All PHINodes need to have a single entry edge, or two if 3908 // we already fixed them. 3909 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3910 3911 // We found our reduction value exit-PHI. Update it with the 3912 // incoming bypass edge. 3913 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3914 // Add an edge coming from the bypass. 3915 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3916 break; 3917 } 3918 } // end of the LCSSA phi scan. 3919 3920 // Fix the scalar loop reduction variable with the incoming reduction sum 3921 // from the vector body and from the backedge value. 3922 int IncomingEdgeBlockIdx = 3923 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3924 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3925 // Pick the other block. 3926 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3927 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3928 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3929 } // end of for each Phi in PHIsToFix. 3930 3931 fixLCSSAPHIs(); 3932 3933 // Make sure DomTree is updated. 3934 updateAnalysis(); 3935 3936 // Predicate any stores. 3937 for (auto KV : PredicatedStores) { 3938 BasicBlock::iterator I(KV.first); 3939 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); 3940 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 3941 /*BranchWeights=*/nullptr, DT, LI); 3942 I->moveBefore(T); 3943 I->getParent()->setName("pred.store.if"); 3944 BB->setName("pred.store.continue"); 3945 } 3946 DEBUG(DT->verifyDomTree()); 3947 // Remove redundant induction instructions. 3948 cse(LoopVectorBody); 3949 } 3950 3951 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3952 3953 // This is the second phase of vectorizing first-order recurrences. An 3954 // overview of the transformation is described below. Suppose we have the 3955 // following loop. 3956 // 3957 // for (int i = 0; i < n; ++i) 3958 // b[i] = a[i] - a[i - 1]; 3959 // 3960 // There is a first-order recurrence on "a". For this loop, the shorthand 3961 // scalar IR looks like: 3962 // 3963 // scalar.ph: 3964 // s_init = a[-1] 3965 // br scalar.body 3966 // 3967 // scalar.body: 3968 // i = phi [0, scalar.ph], [i+1, scalar.body] 3969 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3970 // s2 = a[i] 3971 // b[i] = s2 - s1 3972 // br cond, scalar.body, ... 3973 // 3974 // In this example, s1 is a recurrence because it's value depends on the 3975 // previous iteration. In the first phase of vectorization, we created a 3976 // temporary value for s1. We now complete the vectorization and produce the 3977 // shorthand vector IR shown below (for VF = 4, UF = 1). 3978 // 3979 // vector.ph: 3980 // v_init = vector(..., ..., ..., a[-1]) 3981 // br vector.body 3982 // 3983 // vector.body 3984 // i = phi [0, vector.ph], [i+4, vector.body] 3985 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3986 // v2 = a[i, i+1, i+2, i+3]; 3987 // v3 = vector(v1(3), v2(0, 1, 2)) 3988 // b[i, i+1, i+2, i+3] = v2 - v3 3989 // br cond, vector.body, middle.block 3990 // 3991 // middle.block: 3992 // x = v2(3) 3993 // br scalar.ph 3994 // 3995 // scalar.ph: 3996 // s_init = phi [x, middle.block], [a[-1], otherwise] 3997 // br scalar.body 3998 // 3999 // After execution completes the vector loop, we extract the next value of 4000 // the recurrence (x) to use as the initial value in the scalar loop. 4001 4002 // Get the original loop preheader and single loop latch. 4003 auto *Preheader = OrigLoop->getLoopPreheader(); 4004 auto *Latch = OrigLoop->getLoopLatch(); 4005 4006 // Get the initial and previous values of the scalar recurrence. 4007 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4008 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4009 4010 // Create a vector from the initial value. 4011 auto *VectorInit = ScalarInit; 4012 if (VF > 1) { 4013 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4014 VectorInit = Builder.CreateInsertElement( 4015 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4016 Builder.getInt32(VF - 1), "vector.recur.init"); 4017 } 4018 4019 // We constructed a temporary phi node in the first phase of vectorization. 4020 // This phi node will eventually be deleted. 4021 auto &PhiParts = getVectorValue(Phi); 4022 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 4023 4024 // Create a phi node for the new recurrence. The current value will either be 4025 // the initial value inserted into a vector or loop-varying vector value. 4026 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4027 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4028 4029 // Get the vectorized previous value. We ensured the previous values was an 4030 // instruction when detecting the recurrence. 4031 auto &PreviousParts = getVectorValue(Previous); 4032 4033 // Set the insertion point to be after this instruction. We ensured the 4034 // previous value dominated all uses of the phi when detecting the 4035 // recurrence. 4036 Builder.SetInsertPoint( 4037 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 4038 4039 // We will construct a vector for the recurrence by combining the values for 4040 // the current and previous iterations. This is the required shuffle mask. 4041 SmallVector<Constant *, 8> ShuffleMask(VF); 4042 ShuffleMask[0] = Builder.getInt32(VF - 1); 4043 for (unsigned I = 1; I < VF; ++I) 4044 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4045 4046 // The vector from which to take the initial value for the current iteration 4047 // (actual or unrolled). Initially, this is the vector phi node. 4048 Value *Incoming = VecPhi; 4049 4050 // Shuffle the current and previous vector and update the vector parts. 4051 for (unsigned Part = 0; Part < UF; ++Part) { 4052 auto *Shuffle = 4053 VF > 1 4054 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 4055 ConstantVector::get(ShuffleMask)) 4056 : Incoming; 4057 PhiParts[Part]->replaceAllUsesWith(Shuffle); 4058 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 4059 PhiParts[Part] = Shuffle; 4060 Incoming = PreviousParts[Part]; 4061 } 4062 4063 // Fix the latch value of the new recurrence in the vector loop. 4064 VecPhi->addIncoming(Incoming, 4065 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4066 4067 // Extract the last vector element in the middle block. This will be the 4068 // initial value for the recurrence when jumping to the scalar loop. 4069 auto *Extract = Incoming; 4070 if (VF > 1) { 4071 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4072 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 4073 "vector.recur.extract"); 4074 } 4075 4076 // Fix the initial value of the original recurrence in the scalar loop. 4077 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4078 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4079 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4080 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 4081 Start->addIncoming(Incoming, BB); 4082 } 4083 4084 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4085 Phi->setName("scalar.recur"); 4086 4087 // Finally, fix users of the recurrence outside the loop. The users will need 4088 // either the last value of the scalar recurrence or the last value of the 4089 // vector recurrence we extracted in the middle block. Since the loop is in 4090 // LCSSA form, we just need to find the phi node for the original scalar 4091 // recurrence in the exit block, and then add an edge for the middle block. 4092 for (auto &I : *LoopExitBlock) { 4093 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4094 if (!LCSSAPhi) 4095 break; 4096 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4097 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 4098 break; 4099 } 4100 } 4101 } 4102 4103 void InnerLoopVectorizer::fixLCSSAPHIs() { 4104 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4105 LEE = LoopExitBlock->end(); 4106 LEI != LEE; ++LEI) { 4107 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4108 if (!LCSSAPhi) 4109 break; 4110 if (LCSSAPhi->getNumIncomingValues() == 1) 4111 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 4112 LoopMiddleBlock); 4113 } 4114 } 4115 4116 InnerLoopVectorizer::VectorParts 4117 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4118 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 4119 "Invalid edge"); 4120 4121 // Look for cached value. 4122 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4123 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 4124 if (ECEntryIt != MaskCache.end()) 4125 return ECEntryIt->second; 4126 4127 VectorParts SrcMask = createBlockInMask(Src); 4128 4129 // The terminator has to be a branch inst! 4130 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4131 assert(BI && "Unexpected terminator found"); 4132 4133 if (BI->isConditional()) { 4134 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 4135 4136 if (BI->getSuccessor(0) != Dst) 4137 for (unsigned part = 0; part < UF; ++part) 4138 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 4139 4140 for (unsigned part = 0; part < UF; ++part) 4141 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4142 4143 MaskCache[Edge] = EdgeMask; 4144 return EdgeMask; 4145 } 4146 4147 MaskCache[Edge] = SrcMask; 4148 return SrcMask; 4149 } 4150 4151 InnerLoopVectorizer::VectorParts 4152 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4153 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4154 4155 // Loop incoming mask is all-one. 4156 if (OrigLoop->getHeader() == BB) { 4157 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4158 return getVectorValue(C); 4159 } 4160 4161 // This is the block mask. We OR all incoming edges, and with zero. 4162 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4163 VectorParts BlockMask = getVectorValue(Zero); 4164 4165 // For each pred: 4166 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4167 VectorParts EM = createEdgeMask(*it, BB); 4168 for (unsigned part = 0; part < UF; ++part) 4169 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4170 } 4171 4172 return BlockMask; 4173 } 4174 4175 void InnerLoopVectorizer::widenPHIInstruction( 4176 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, 4177 unsigned VF, PhiVector *PV) { 4178 PHINode *P = cast<PHINode>(PN); 4179 // Handle recurrences. 4180 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4181 for (unsigned part = 0; part < UF; ++part) { 4182 // This is phase one of vectorizing PHIs. 4183 Type *VecTy = 4184 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4185 Entry[part] = PHINode::Create( 4186 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4187 } 4188 PV->push_back(P); 4189 return; 4190 } 4191 4192 setDebugLocFromInst(Builder, P); 4193 // Check for PHI nodes that are lowered to vector selects. 4194 if (P->getParent() != OrigLoop->getHeader()) { 4195 // We know that all PHIs in non-header blocks are converted into 4196 // selects, so we don't have to worry about the insertion order and we 4197 // can just use the builder. 4198 // At this point we generate the predication tree. There may be 4199 // duplications since this is a simple recursive scan, but future 4200 // optimizations will clean it up. 4201 4202 unsigned NumIncoming = P->getNumIncomingValues(); 4203 4204 // Generate a sequence of selects of the form: 4205 // SELECT(Mask3, In3, 4206 // SELECT(Mask2, In2, 4207 // ( ...))) 4208 for (unsigned In = 0; In < NumIncoming; In++) { 4209 VectorParts Cond = 4210 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4211 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4212 4213 for (unsigned part = 0; part < UF; ++part) { 4214 // We might have single edge PHIs (blocks) - use an identity 4215 // 'select' for the first PHI operand. 4216 if (In == 0) 4217 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4218 else 4219 // Select between the current value and the previous incoming edge 4220 // based on the incoming mask. 4221 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4222 "predphi"); 4223 } 4224 } 4225 return; 4226 } 4227 4228 // This PHINode must be an induction variable. 4229 // Make sure that we know about it. 4230 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4231 4232 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4233 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4234 4235 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4236 // which can be found from the original scalar operations. 4237 switch (II.getKind()) { 4238 case InductionDescriptor::IK_NoInduction: 4239 llvm_unreachable("Unknown induction"); 4240 case InductionDescriptor::IK_IntInduction: { 4241 assert(P->getType() == II.getStartValue()->getType() && "Types must match"); 4242 if (VF == 1 || P->getType() != Induction->getType() || 4243 !II.getConstIntStepValue()) { 4244 Value *V = Induction; 4245 // Handle other induction variables that are now based on the 4246 // canonical one. 4247 if (P != OldInduction) { 4248 V = Builder.CreateSExtOrTrunc(Induction, P->getType()); 4249 V = II.transform(Builder, V, PSE.getSE(), DL); 4250 V->setName("offset.idx"); 4251 } 4252 Value *Broadcasted = getBroadcastInstrs(V); 4253 // After broadcasting the induction variable we need to make the vector 4254 // consecutive by adding 0, 1, 2, etc. 4255 for (unsigned part = 0; part < UF; ++part) 4256 Entry[part] = getStepVector(Broadcasted, VF * part, II.getStep()); 4257 } else { 4258 // Instead of re-creating the vector IV by splatting the scalar IV 4259 // in each iteration, we can make a new independent vector IV. 4260 widenInductionVariable(II, Entry); 4261 } 4262 return; 4263 } 4264 case InductionDescriptor::IK_PtrInduction: 4265 // Handle the pointer induction variable case. 4266 assert(P->getType()->isPointerTy() && "Unexpected type."); 4267 // This is the normalized GEP that starts counting at zero. 4268 Value *PtrInd = Induction; 4269 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4270 // This is the vector of results. Notice that we don't generate 4271 // vector geps because scalar geps result in better code. 4272 for (unsigned part = 0; part < UF; ++part) { 4273 if (VF == 1) { 4274 int EltIndex = part; 4275 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4276 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4277 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4278 SclrGep->setName("next.gep"); 4279 Entry[part] = SclrGep; 4280 continue; 4281 } 4282 4283 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 4284 for (unsigned int i = 0; i < VF; ++i) { 4285 int EltIndex = i + part * VF; 4286 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4287 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4288 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4289 SclrGep->setName("next.gep"); 4290 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 4291 Builder.getInt32(i), "insert.gep"); 4292 } 4293 Entry[part] = VecVal; 4294 } 4295 return; 4296 } 4297 } 4298 4299 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4300 // For each instruction in the old loop. 4301 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4302 VectorParts &Entry = WidenMap.get(&*it); 4303 4304 switch (it->getOpcode()) { 4305 case Instruction::Br: 4306 // Nothing to do for PHIs and BR, since we already took care of the 4307 // loop control flow instructions. 4308 continue; 4309 case Instruction::PHI: { 4310 // Vectorize PHINodes. 4311 widenPHIInstruction(&*it, Entry, UF, VF, PV); 4312 continue; 4313 } // End of PHI. 4314 4315 case Instruction::Add: 4316 case Instruction::FAdd: 4317 case Instruction::Sub: 4318 case Instruction::FSub: 4319 case Instruction::Mul: 4320 case Instruction::FMul: 4321 case Instruction::UDiv: 4322 case Instruction::SDiv: 4323 case Instruction::FDiv: 4324 case Instruction::URem: 4325 case Instruction::SRem: 4326 case Instruction::FRem: 4327 case Instruction::Shl: 4328 case Instruction::LShr: 4329 case Instruction::AShr: 4330 case Instruction::And: 4331 case Instruction::Or: 4332 case Instruction::Xor: { 4333 // Just widen binops. 4334 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 4335 setDebugLocFromInst(Builder, BinOp); 4336 VectorParts &A = getVectorValue(it->getOperand(0)); 4337 VectorParts &B = getVectorValue(it->getOperand(1)); 4338 4339 // Use this vector value for all users of the original instruction. 4340 for (unsigned Part = 0; Part < UF; ++Part) { 4341 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4342 4343 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4344 VecOp->copyIRFlags(BinOp); 4345 4346 Entry[Part] = V; 4347 } 4348 4349 addMetadata(Entry, &*it); 4350 break; 4351 } 4352 case Instruction::Select: { 4353 // Widen selects. 4354 // If the selector is loop invariant we can create a select 4355 // instruction with a scalar condition. Otherwise, use vector-select. 4356 auto *SE = PSE.getSE(); 4357 bool InvariantCond = 4358 SE->isLoopInvariant(PSE.getSCEV(it->getOperand(0)), OrigLoop); 4359 setDebugLocFromInst(Builder, &*it); 4360 4361 // The condition can be loop invariant but still defined inside the 4362 // loop. This means that we can't just use the original 'cond' value. 4363 // We have to take the 'vectorized' value and pick the first lane. 4364 // Instcombine will make this a no-op. 4365 VectorParts &Cond = getVectorValue(it->getOperand(0)); 4366 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 4367 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 4368 4369 Value *ScalarCond = 4370 (VF == 1) 4371 ? Cond[0] 4372 : Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 4373 4374 for (unsigned Part = 0; Part < UF; ++Part) { 4375 Entry[Part] = Builder.CreateSelect( 4376 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4377 } 4378 4379 addMetadata(Entry, &*it); 4380 break; 4381 } 4382 4383 case Instruction::ICmp: 4384 case Instruction::FCmp: { 4385 // Widen compares. Generate vector compares. 4386 bool FCmp = (it->getOpcode() == Instruction::FCmp); 4387 CmpInst *Cmp = dyn_cast<CmpInst>(it); 4388 setDebugLocFromInst(Builder, &*it); 4389 VectorParts &A = getVectorValue(it->getOperand(0)); 4390 VectorParts &B = getVectorValue(it->getOperand(1)); 4391 for (unsigned Part = 0; Part < UF; ++Part) { 4392 Value *C = nullptr; 4393 if (FCmp) { 4394 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4395 cast<FCmpInst>(C)->copyFastMathFlags(&*it); 4396 } else { 4397 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4398 } 4399 Entry[Part] = C; 4400 } 4401 4402 addMetadata(Entry, &*it); 4403 break; 4404 } 4405 4406 case Instruction::Store: 4407 case Instruction::Load: 4408 vectorizeMemoryInstruction(&*it); 4409 break; 4410 case Instruction::ZExt: 4411 case Instruction::SExt: 4412 case Instruction::FPToUI: 4413 case Instruction::FPToSI: 4414 case Instruction::FPExt: 4415 case Instruction::PtrToInt: 4416 case Instruction::IntToPtr: 4417 case Instruction::SIToFP: 4418 case Instruction::UIToFP: 4419 case Instruction::Trunc: 4420 case Instruction::FPTrunc: 4421 case Instruction::BitCast: { 4422 CastInst *CI = dyn_cast<CastInst>(it); 4423 setDebugLocFromInst(Builder, &*it); 4424 /// Optimize the special case where the source is a constant integer 4425 /// induction variable. Notice that we can only optimize the 'trunc' case 4426 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 4427 /// c. other casts depend on pointer size. 4428 4429 if (CI->getOperand(0) == OldInduction && 4430 it->getOpcode() == Instruction::Trunc) { 4431 InductionDescriptor II = 4432 Legal->getInductionVars()->lookup(OldInduction); 4433 if (auto StepValue = II.getConstIntStepValue()) { 4434 IntegerType *TruncType = cast<IntegerType>(CI->getType()); 4435 if (VF == 1) { 4436 StepValue = 4437 ConstantInt::getSigned(TruncType, StepValue->getSExtValue()); 4438 Value *ScalarCast = 4439 Builder.CreateCast(CI->getOpcode(), Induction, CI->getType()); 4440 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 4441 for (unsigned Part = 0; Part < UF; ++Part) 4442 Entry[Part] = getStepVector(Broadcasted, VF * Part, StepValue); 4443 } else { 4444 // Truncating a vector induction variable on each iteration 4445 // may be expensive. Instead, truncate the initial value, and create 4446 // a new, truncated, vector IV based on that. 4447 widenInductionVariable(II, Entry, TruncType); 4448 } 4449 addMetadata(Entry, &*it); 4450 break; 4451 } 4452 } 4453 /// Vectorize casts. 4454 Type *DestTy = 4455 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4456 4457 VectorParts &A = getVectorValue(it->getOperand(0)); 4458 for (unsigned Part = 0; Part < UF; ++Part) 4459 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4460 addMetadata(Entry, &*it); 4461 break; 4462 } 4463 4464 case Instruction::Call: { 4465 // Ignore dbg intrinsics. 4466 if (isa<DbgInfoIntrinsic>(it)) 4467 break; 4468 setDebugLocFromInst(Builder, &*it); 4469 4470 Module *M = BB->getParent()->getParent(); 4471 CallInst *CI = cast<CallInst>(it); 4472 4473 StringRef FnName = CI->getCalledFunction()->getName(); 4474 Function *F = CI->getCalledFunction(); 4475 Type *RetTy = ToVectorTy(CI->getType(), VF); 4476 SmallVector<Type *, 4> Tys; 4477 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 4478 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 4479 4480 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4481 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4482 ID == Intrinsic::lifetime_start)) { 4483 scalarizeInstruction(&*it); 4484 break; 4485 } 4486 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4487 // version of the instruction. 4488 // Is it beneficial to perform intrinsic call compared to lib call? 4489 bool NeedToScalarize; 4490 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4491 bool UseVectorIntrinsic = 4492 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4493 if (!UseVectorIntrinsic && NeedToScalarize) { 4494 scalarizeInstruction(&*it); 4495 break; 4496 } 4497 4498 for (unsigned Part = 0; Part < UF; ++Part) { 4499 SmallVector<Value *, 4> Args; 4500 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4501 Value *Arg = CI->getArgOperand(i); 4502 // Some intrinsics have a scalar argument - don't replace it with a 4503 // vector. 4504 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4505 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4506 Arg = VectorArg[Part]; 4507 } 4508 Args.push_back(Arg); 4509 } 4510 4511 Function *VectorF; 4512 if (UseVectorIntrinsic) { 4513 // Use vector version of the intrinsic. 4514 Type *TysForDecl[] = {CI->getType()}; 4515 if (VF > 1) 4516 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4517 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4518 } else { 4519 // Use vector version of the library call. 4520 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4521 assert(!VFnName.empty() && "Vector function name is empty."); 4522 VectorF = M->getFunction(VFnName); 4523 if (!VectorF) { 4524 // Generate a declaration 4525 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4526 VectorF = 4527 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4528 VectorF->copyAttributesFrom(F); 4529 } 4530 } 4531 assert(VectorF && "Can't create vector function."); 4532 4533 SmallVector<OperandBundleDef, 1> OpBundles; 4534 CI->getOperandBundlesAsDefs(OpBundles); 4535 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4536 4537 if (isa<FPMathOperator>(V)) 4538 V->copyFastMathFlags(CI); 4539 4540 Entry[Part] = V; 4541 } 4542 4543 addMetadata(Entry, &*it); 4544 break; 4545 } 4546 4547 default: 4548 // All other instructions are unsupported. Scalarize them. 4549 scalarizeInstruction(&*it); 4550 break; 4551 } // end of switch. 4552 } // end of for_each instr. 4553 } 4554 4555 void InnerLoopVectorizer::updateAnalysis() { 4556 // Forget the original basic block. 4557 PSE.getSE()->forgetLoop(OrigLoop); 4558 4559 // Update the dominator tree information. 4560 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4561 "Entry does not dominate exit."); 4562 4563 // We don't predicate stores by this point, so the vector body should be a 4564 // single loop. 4565 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 4566 4567 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 4568 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4569 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4570 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4571 4572 DEBUG(DT->verifyDomTree()); 4573 } 4574 4575 /// \brief Check whether it is safe to if-convert this phi node. 4576 /// 4577 /// Phi nodes with constant expressions that can trap are not safe to if 4578 /// convert. 4579 static bool canIfConvertPHINodes(BasicBlock *BB) { 4580 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4581 PHINode *Phi = dyn_cast<PHINode>(I); 4582 if (!Phi) 4583 return true; 4584 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 4585 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 4586 if (C->canTrap()) 4587 return false; 4588 } 4589 return true; 4590 } 4591 4592 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4593 if (!EnableIfConversion) { 4594 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4595 return false; 4596 } 4597 4598 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4599 4600 // A list of pointers that we can safely read and write to. 4601 SmallPtrSet<Value *, 8> SafePointes; 4602 4603 // Collect safe addresses. 4604 for (Loop::block_iterator BI = TheLoop->block_begin(), 4605 BE = TheLoop->block_end(); 4606 BI != BE; ++BI) { 4607 BasicBlock *BB = *BI; 4608 4609 if (blockNeedsPredication(BB)) 4610 continue; 4611 4612 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4613 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4614 SafePointes.insert(LI->getPointerOperand()); 4615 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 4616 SafePointes.insert(SI->getPointerOperand()); 4617 } 4618 } 4619 4620 // Collect the blocks that need predication. 4621 BasicBlock *Header = TheLoop->getHeader(); 4622 for (Loop::block_iterator BI = TheLoop->block_begin(), 4623 BE = TheLoop->block_end(); 4624 BI != BE; ++BI) { 4625 BasicBlock *BB = *BI; 4626 4627 // We don't support switch statements inside loops. 4628 if (!isa<BranchInst>(BB->getTerminator())) { 4629 emitAnalysis(VectorizationReport(BB->getTerminator()) 4630 << "loop contains a switch statement"); 4631 return false; 4632 } 4633 4634 // We must be able to predicate all blocks that need to be predicated. 4635 if (blockNeedsPredication(BB)) { 4636 if (!blockCanBePredicated(BB, SafePointes)) { 4637 emitAnalysis(VectorizationReport(BB->getTerminator()) 4638 << "control flow cannot be substituted for a select"); 4639 return false; 4640 } 4641 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4642 emitAnalysis(VectorizationReport(BB->getTerminator()) 4643 << "control flow cannot be substituted for a select"); 4644 return false; 4645 } 4646 } 4647 4648 // We can if-convert this loop. 4649 return true; 4650 } 4651 4652 bool LoopVectorizationLegality::canVectorize() { 4653 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4654 // be canonicalized. 4655 if (!TheLoop->getLoopPreheader()) { 4656 emitAnalysis(VectorizationReport() 4657 << "loop control flow is not understood by vectorizer"); 4658 return false; 4659 } 4660 4661 // We can only vectorize innermost loops. 4662 if (!TheLoop->empty()) { 4663 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4664 return false; 4665 } 4666 4667 // We must have a single backedge. 4668 if (TheLoop->getNumBackEdges() != 1) { 4669 emitAnalysis(VectorizationReport() 4670 << "loop control flow is not understood by vectorizer"); 4671 return false; 4672 } 4673 4674 // We must have a single exiting block. 4675 if (!TheLoop->getExitingBlock()) { 4676 emitAnalysis(VectorizationReport() 4677 << "loop control flow is not understood by vectorizer"); 4678 return false; 4679 } 4680 4681 // We only handle bottom-tested loops, i.e. loop in which the condition is 4682 // checked at the end of each iteration. With that we can assume that all 4683 // instructions in the loop are executed the same number of times. 4684 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4685 emitAnalysis(VectorizationReport() 4686 << "loop control flow is not understood by vectorizer"); 4687 return false; 4688 } 4689 4690 // We need to have a loop header. 4691 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4692 << '\n'); 4693 4694 // Check if we can if-convert non-single-bb loops. 4695 unsigned NumBlocks = TheLoop->getNumBlocks(); 4696 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4697 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4698 return false; 4699 } 4700 4701 // ScalarEvolution needs to be able to find the exit count. 4702 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 4703 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4704 emitAnalysis(VectorizationReport() 4705 << "could not determine number of loop iterations"); 4706 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4707 return false; 4708 } 4709 4710 // Check if we can vectorize the instructions and CFG in this loop. 4711 if (!canVectorizeInstrs()) { 4712 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4713 return false; 4714 } 4715 4716 // Go over each instruction and look at memory deps. 4717 if (!canVectorizeMemory()) { 4718 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4719 return false; 4720 } 4721 4722 // Collect all of the variables that remain uniform after vectorization. 4723 collectLoopUniforms(); 4724 4725 DEBUG(dbgs() << "LV: We can vectorize this loop" 4726 << (LAI->getRuntimePointerChecking()->Need 4727 ? " (with a runtime bound check)" 4728 : "") 4729 << "!\n"); 4730 4731 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4732 4733 // If an override option has been passed in for interleaved accesses, use it. 4734 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4735 UseInterleaved = EnableInterleavedMemAccesses; 4736 4737 // Analyze interleaved memory accesses. 4738 if (UseInterleaved) 4739 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 4740 4741 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4742 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4743 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4744 4745 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4746 emitAnalysis(VectorizationReport() 4747 << "Too many SCEV assumptions need to be made and checked " 4748 << "at runtime"); 4749 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4750 return false; 4751 } 4752 4753 // Okay! We can vectorize. At this point we don't have any other mem analysis 4754 // which may limit our maximum vectorization factor, so just return true with 4755 // no restrictions. 4756 return true; 4757 } 4758 4759 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4760 if (Ty->isPointerTy()) 4761 return DL.getIntPtrType(Ty); 4762 4763 // It is possible that char's or short's overflow when we ask for the loop's 4764 // trip count, work around this by changing the type size. 4765 if (Ty->getScalarSizeInBits() < 32) 4766 return Type::getInt32Ty(Ty->getContext()); 4767 4768 return Ty; 4769 } 4770 4771 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4772 Ty0 = convertPointerToIntegerType(DL, Ty0); 4773 Ty1 = convertPointerToIntegerType(DL, Ty1); 4774 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4775 return Ty0; 4776 return Ty1; 4777 } 4778 4779 /// \brief Check that the instruction has outside loop users and is not an 4780 /// identified reduction variable. 4781 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4782 SmallPtrSetImpl<Value *> &AllowedExit) { 4783 // Reduction and Induction instructions are allowed to have exit users. All 4784 // other instructions must not have external users. 4785 if (!AllowedExit.count(Inst)) 4786 // Check that all of the users of the loop are inside the BB. 4787 for (User *U : Inst->users()) { 4788 Instruction *UI = cast<Instruction>(U); 4789 // This user may be a reduction exit value. 4790 if (!TheLoop->contains(UI)) { 4791 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4792 return true; 4793 } 4794 } 4795 return false; 4796 } 4797 4798 void LoopVectorizationLegality::addInductionPhi( 4799 PHINode *Phi, const InductionDescriptor &ID, 4800 SmallPtrSetImpl<Value *> &AllowedExit) { 4801 Inductions[Phi] = ID; 4802 Type *PhiTy = Phi->getType(); 4803 const DataLayout &DL = Phi->getModule()->getDataLayout(); 4804 4805 // Get the widest type. 4806 if (!WidestIndTy) 4807 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4808 else 4809 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4810 4811 // Int inductions are special because we only allow one IV. 4812 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 4813 ID.getConstIntStepValue() && 4814 ID.getConstIntStepValue()->isOne() && 4815 isa<Constant>(ID.getStartValue()) && 4816 cast<Constant>(ID.getStartValue())->isNullValue()) { 4817 4818 // Use the phi node with the widest type as induction. Use the last 4819 // one if there are multiple (no good reason for doing this other 4820 // than it is expedient). We've checked that it begins at zero and 4821 // steps by one, so this is a canonical induction variable. 4822 if (!Induction || PhiTy == WidestIndTy) 4823 Induction = Phi; 4824 } 4825 4826 // Both the PHI node itself, and the "post-increment" value feeding 4827 // back into the PHI node may have external users. 4828 AllowedExit.insert(Phi); 4829 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 4830 4831 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4832 return; 4833 } 4834 4835 bool LoopVectorizationLegality::canVectorizeInstrs() { 4836 BasicBlock *Header = TheLoop->getHeader(); 4837 4838 // Look for the attribute signaling the absence of NaNs. 4839 Function &F = *Header->getParent(); 4840 HasFunNoNaNAttr = 4841 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 4842 4843 // For each block in the loop. 4844 for (Loop::block_iterator bb = TheLoop->block_begin(), 4845 be = TheLoop->block_end(); 4846 bb != be; ++bb) { 4847 4848 // Scan the instructions in the block and look for hazards. 4849 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4850 ++it) { 4851 4852 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 4853 Type *PhiTy = Phi->getType(); 4854 // Check that this PHI type is allowed. 4855 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 4856 !PhiTy->isPointerTy()) { 4857 emitAnalysis(VectorizationReport(&*it) 4858 << "loop control flow is not understood by vectorizer"); 4859 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 4860 return false; 4861 } 4862 4863 // If this PHINode is not in the header block, then we know that we 4864 // can convert it to select during if-conversion. No need to check if 4865 // the PHIs in this block are induction or reduction variables. 4866 if (*bb != Header) { 4867 // Check that this instruction has no outside users or is an 4868 // identified reduction value with an outside user. 4869 if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) 4870 continue; 4871 emitAnalysis(VectorizationReport(&*it) 4872 << "value could not be identified as " 4873 "an induction or reduction variable"); 4874 return false; 4875 } 4876 4877 // We only allow if-converted PHIs with exactly two incoming values. 4878 if (Phi->getNumIncomingValues() != 2) { 4879 emitAnalysis(VectorizationReport(&*it) 4880 << "control flow not understood by vectorizer"); 4881 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4882 return false; 4883 } 4884 4885 RecurrenceDescriptor RedDes; 4886 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 4887 if (RedDes.hasUnsafeAlgebra()) 4888 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 4889 AllowedExit.insert(RedDes.getLoopExitInstr()); 4890 Reductions[Phi] = RedDes; 4891 continue; 4892 } 4893 4894 InductionDescriptor ID; 4895 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID)) { 4896 addInductionPhi(Phi, ID, AllowedExit); 4897 continue; 4898 } 4899 4900 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 4901 FirstOrderRecurrences.insert(Phi); 4902 continue; 4903 } 4904 4905 // As a last resort, coerce the PHI to a AddRec expression 4906 // and re-try classifying it a an induction PHI. 4907 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID, true)) { 4908 addInductionPhi(Phi, ID, AllowedExit); 4909 continue; 4910 } 4911 4912 emitAnalysis(VectorizationReport(&*it) 4913 << "value that could not be identified as " 4914 "reduction is used outside the loop"); 4915 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 4916 return false; 4917 } // end of PHI handling 4918 4919 // We handle calls that: 4920 // * Are debug info intrinsics. 4921 // * Have a mapping to an IR intrinsic. 4922 // * Have a vector version available. 4923 CallInst *CI = dyn_cast<CallInst>(it); 4924 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 4925 !isa<DbgInfoIntrinsic>(CI) && 4926 !(CI->getCalledFunction() && TLI && 4927 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4928 emitAnalysis(VectorizationReport(&*it) 4929 << "call instruction cannot be vectorized"); 4930 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4931 return false; 4932 } 4933 4934 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4935 // second argument is the same (i.e. loop invariant) 4936 if (CI && hasVectorInstrinsicScalarOpd( 4937 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 4938 auto *SE = PSE.getSE(); 4939 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 4940 emitAnalysis(VectorizationReport(&*it) 4941 << "intrinsic instruction cannot be vectorized"); 4942 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4943 return false; 4944 } 4945 } 4946 4947 // Check that the instruction return type is vectorizable. 4948 // Also, we can't vectorize extractelement instructions. 4949 if ((!VectorType::isValidElementType(it->getType()) && 4950 !it->getType()->isVoidTy()) || 4951 isa<ExtractElementInst>(it)) { 4952 emitAnalysis(VectorizationReport(&*it) 4953 << "instruction return type cannot be vectorized"); 4954 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4955 return false; 4956 } 4957 4958 // Check that the stored type is vectorizable. 4959 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4960 Type *T = ST->getValueOperand()->getType(); 4961 if (!VectorType::isValidElementType(T)) { 4962 emitAnalysis(VectorizationReport(ST) 4963 << "store instruction cannot be vectorized"); 4964 return false; 4965 } 4966 4967 // FP instructions can allow unsafe algebra, thus vectorizable by 4968 // non-IEEE-754 compliant SIMD units. 4969 // This applies to floating-point math operations and calls, not memory 4970 // operations, shuffles, or casts, as they don't change precision or 4971 // semantics. 4972 } else if (it->getType()->isFloatingPointTy() && 4973 (CI || it->isBinaryOp()) && !it->hasUnsafeAlgebra()) { 4974 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 4975 Hints->setPotentiallyUnsafe(); 4976 } 4977 4978 // Reduction instructions are allowed to have exit users. 4979 // All other instructions must not have external users. 4980 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4981 emitAnalysis(VectorizationReport(&*it) 4982 << "value cannot be used outside the loop"); 4983 return false; 4984 } 4985 4986 } // next instr. 4987 } 4988 4989 if (!Induction) { 4990 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4991 if (Inductions.empty()) { 4992 emitAnalysis(VectorizationReport() 4993 << "loop induction variable could not be identified"); 4994 return false; 4995 } 4996 } 4997 4998 // Now we know the widest induction type, check if our found induction 4999 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5000 // will create another. 5001 if (Induction && WidestIndTy != Induction->getType()) 5002 Induction = nullptr; 5003 5004 return true; 5005 } 5006 5007 void LoopVectorizationLegality::collectLoopUniforms() { 5008 // We now know that the loop is vectorizable! 5009 // Collect variables that will remain uniform after vectorization. 5010 std::vector<Value *> Worklist; 5011 BasicBlock *Latch = TheLoop->getLoopLatch(); 5012 5013 // Start with the conditional branch and walk up the block. 5014 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 5015 5016 // Also add all consecutive pointer values; these values will be uniform 5017 // after vectorization (and subsequent cleanup) and, until revectorization is 5018 // supported, all dependencies must also be uniform. 5019 for (Loop::block_iterator B = TheLoop->block_begin(), 5020 BE = TheLoop->block_end(); 5021 B != BE; ++B) 5022 for (Instruction &I : **B) 5023 if (I.getType()->isPointerTy() && isConsecutivePtr(&I)) 5024 Worklist.insert(Worklist.end(), I.op_begin(), I.op_end()); 5025 5026 while (!Worklist.empty()) { 5027 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 5028 Worklist.pop_back(); 5029 5030 // Look at instructions inside this loop. 5031 // Stop when reaching PHI nodes. 5032 // TODO: we need to follow values all over the loop, not only in this block. 5033 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 5034 continue; 5035 5036 // This is a known uniform. 5037 Uniforms.insert(I); 5038 5039 // Insert all operands. 5040 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 5041 } 5042 } 5043 5044 bool LoopVectorizationLegality::canVectorizeMemory() { 5045 LAI = &LAA->getInfo(TheLoop); 5046 InterleaveInfo.setLAI(LAI); 5047 auto &OptionalReport = LAI->getReport(); 5048 if (OptionalReport) 5049 emitAnalysis(VectorizationReport(*OptionalReport)); 5050 if (!LAI->canVectorizeMemory()) 5051 return false; 5052 5053 if (LAI->hasStoreToLoopInvariantAddress()) { 5054 emitAnalysis( 5055 VectorizationReport() 5056 << "write to a loop invariant address could not be vectorized"); 5057 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5058 return false; 5059 } 5060 5061 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5062 PSE.addPredicate(LAI->PSE.getUnionPredicate()); 5063 5064 return true; 5065 } 5066 5067 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5068 Value *In0 = const_cast<Value *>(V); 5069 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5070 if (!PN) 5071 return false; 5072 5073 return Inductions.count(PN); 5074 } 5075 5076 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5077 return FirstOrderRecurrences.count(Phi); 5078 } 5079 5080 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5081 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5082 } 5083 5084 bool LoopVectorizationLegality::blockCanBePredicated( 5085 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5086 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5087 5088 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5089 // Check that we don't have a constant expression that can trap as operand. 5090 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 5091 OI != OE; ++OI) { 5092 if (Constant *C = dyn_cast<Constant>(*OI)) 5093 if (C->canTrap()) 5094 return false; 5095 } 5096 // We might be able to hoist the load. 5097 if (it->mayReadFromMemory()) { 5098 LoadInst *LI = dyn_cast<LoadInst>(it); 5099 if (!LI) 5100 return false; 5101 if (!SafePtrs.count(LI->getPointerOperand())) { 5102 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5103 isLegalMaskedGather(LI->getType())) { 5104 MaskedOp.insert(LI); 5105 continue; 5106 } 5107 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5108 if (IsAnnotatedParallel) 5109 continue; 5110 return false; 5111 } 5112 } 5113 5114 // We don't predicate stores at the moment. 5115 if (it->mayWriteToMemory()) { 5116 StoreInst *SI = dyn_cast<StoreInst>(it); 5117 // We only support predication of stores in basic blocks with one 5118 // predecessor. 5119 if (!SI) 5120 return false; 5121 5122 // Build a masked store if it is legal for the target. 5123 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5124 SI->getPointerOperand()) || 5125 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5126 MaskedOp.insert(SI); 5127 continue; 5128 } 5129 5130 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5131 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5132 5133 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5134 !isSinglePredecessor) 5135 return false; 5136 } 5137 if (it->mayThrow()) 5138 return false; 5139 5140 // The instructions below can trap. 5141 switch (it->getOpcode()) { 5142 default: 5143 continue; 5144 case Instruction::UDiv: 5145 case Instruction::SDiv: 5146 case Instruction::URem: 5147 case Instruction::SRem: 5148 return false; 5149 } 5150 } 5151 5152 return true; 5153 } 5154 5155 void InterleavedAccessInfo::collectConstStridedAccesses( 5156 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 5157 const ValueToValueMap &Strides) { 5158 // Holds load/store instructions in program order. 5159 SmallVector<Instruction *, 16> AccessList; 5160 5161 // Since it's desired that the load/store instructions be maintained in 5162 // "program order" for the interleaved access analysis, we have to visit the 5163 // blocks in the loop in reverse postorder (i.e., in a topological order). 5164 // Such an ordering will ensure that any load/store that may be executed 5165 // before a second load/store will precede the second load/store in the 5166 // AccessList. 5167 LoopBlocksDFS DFS(TheLoop); 5168 DFS.perform(LI); 5169 for (LoopBlocksDFS::RPOIterator I = DFS.beginRPO(), E = DFS.endRPO(); I != E; 5170 ++I) { 5171 BasicBlock *BB = *I; 5172 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5173 5174 for (auto &I : *BB) { 5175 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 5176 continue; 5177 // FIXME: Currently we can't handle mixed accesses and predicated accesses 5178 if (IsPred) 5179 return; 5180 5181 AccessList.push_back(&I); 5182 } 5183 } 5184 5185 if (AccessList.empty()) 5186 return; 5187 5188 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5189 for (auto I : AccessList) { 5190 LoadInst *LI = dyn_cast<LoadInst>(I); 5191 StoreInst *SI = dyn_cast<StoreInst>(I); 5192 5193 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 5194 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides); 5195 5196 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5197 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5198 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5199 5200 // An alignment of 0 means target ABI alignment. 5201 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 5202 if (!Align) 5203 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5204 5205 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 5206 } 5207 } 5208 5209 // Analyze interleaved accesses and collect them into interleaved load and 5210 // store groups. 5211 // 5212 // When generating code for an interleaved load group, we effectively hoist all 5213 // loads in the group to the location of the first load in program order. When 5214 // generating code for an interleaved store group, we sink all stores to the 5215 // location of the last store. This code motion can change the order of load 5216 // and store instructions and may break dependences. 5217 // 5218 // The code generation strategy mentioned above ensures that we won't violate 5219 // any write-after-read (WAR) dependences. 5220 // 5221 // E.g., for the WAR dependence: a = A[i]; // (1) 5222 // A[i] = b; // (2) 5223 // 5224 // The store group of (2) is always inserted at or below (2), and the load 5225 // group of (1) is always inserted at or above (1). Thus, the instructions will 5226 // never be reordered. All other dependences are checked to ensure the 5227 // correctness of the instruction reordering. 5228 // 5229 // The algorithm visits all memory accesses in the loop in bottom-up program 5230 // order. Program order is established by traversing the blocks in the loop in 5231 // reverse postorder when collecting the accesses. 5232 // 5233 // We visit the memory accesses in bottom-up order because it can simplify the 5234 // construction of store groups in the presence of write-after-write (WAW) 5235 // dependences. 5236 // 5237 // E.g., for the WAW dependence: A[i] = a; // (1) 5238 // A[i] = b; // (2) 5239 // A[i + 1] = c; // (3) 5240 // 5241 // We will first create a store group with (3) and (2). (1) can't be added to 5242 // this group because it and (2) are dependent. However, (1) can be grouped 5243 // with other accesses that may precede it in program order. Note that a 5244 // bottom-up order does not imply that WAW dependences should not be checked. 5245 void InterleavedAccessInfo::analyzeInterleaving( 5246 const ValueToValueMap &Strides) { 5247 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5248 5249 // Holds all the stride accesses. 5250 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 5251 collectConstStridedAccesses(StrideAccesses, Strides); 5252 5253 if (StrideAccesses.empty()) 5254 return; 5255 5256 // Collect the dependences in the loop. 5257 collectDependences(); 5258 5259 // Holds all interleaved store groups temporarily. 5260 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5261 // Holds all interleaved load groups temporarily. 5262 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5263 5264 // Search the load-load/write-write pair B-A in bottom-up order and try to 5265 // insert B into the interleave group of A according to 3 rules: 5266 // 1. A and B have the same stride. 5267 // 2. A and B have the same memory object size. 5268 // 3. B belongs to the group according to the distance. 5269 for (auto AI = StrideAccesses.rbegin(), E = StrideAccesses.rend(); AI != E; 5270 ++AI) { 5271 Instruction *A = AI->first; 5272 StrideDescriptor DesA = AI->second; 5273 5274 // Initialize a group for A if it has an allowable stride. Even if we don't 5275 // create a group for A, we continue with the bottom-up algorithm to ensure 5276 // we don't break any of A's dependences. 5277 InterleaveGroup *Group = nullptr; 5278 if (isStrided(DesA.Stride)) { 5279 Group = getInterleaveGroup(A); 5280 if (!Group) { 5281 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 5282 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 5283 } 5284 if (A->mayWriteToMemory()) 5285 StoreGroups.insert(Group); 5286 else 5287 LoadGroups.insert(Group); 5288 } 5289 5290 for (auto BI = std::next(AI); BI != E; ++BI) { 5291 Instruction *B = BI->first; 5292 StrideDescriptor DesB = BI->second; 5293 5294 // Our code motion strategy implies that we can't have dependences 5295 // between accesses in an interleaved group and other accesses located 5296 // between the first and last member of the group. Note that this also 5297 // means that a group can't have more than one member at a given offset. 5298 // The accesses in a group can have dependences with other accesses, but 5299 // we must ensure we don't extend the boundaries of the group such that 5300 // we encompass those dependent accesses. 5301 // 5302 // For example, assume we have the sequence of accesses shown below in a 5303 // stride-2 loop: 5304 // 5305 // (1, 2) is a group | A[i] = a; // (1) 5306 // | A[i-1] = b; // (2) | 5307 // A[i-3] = c; // (3) 5308 // A[i] = d; // (4) | (2, 4) is not a group 5309 // 5310 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5311 // but not with (4). If we did, the dependent access (3) would be within 5312 // the boundaries of the (2, 4) group. 5313 if (!canReorderMemAccessesForInterleavedGroups(&*BI, &*AI)) { 5314 5315 // If a dependence exists and B is already in a group, we know that B 5316 // must be a store since B precedes A and WAR dependences are allowed. 5317 // Thus, B would be sunk below A. We release B's group to prevent this 5318 // illegal code motion. B will then be free to form another group with 5319 // instructions that precede it. 5320 if (isInterleaved(B)) { 5321 InterleaveGroup *StoreGroup = getInterleaveGroup(B); 5322 StoreGroups.remove(StoreGroup); 5323 releaseGroup(StoreGroup); 5324 } 5325 5326 // If a dependence exists and B is not already in a group (or it was 5327 // and we just released it), A might be hoisted above B (if A is a 5328 // load) or another store might be sunk below B (if A is a store). In 5329 // either case, we can't add additional instructions to A's group. A 5330 // will only form a group with instructions that it precedes. 5331 break; 5332 } 5333 5334 // At this point, we've checked for illegal code motion. If either A or B 5335 // isn't strided, there's nothing left to do. 5336 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5337 continue; 5338 5339 // Ignore if B is already in a group or B is a different memory operation. 5340 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5341 continue; 5342 5343 // Check the rule 1 and 2. 5344 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 5345 continue; 5346 5347 // Calculate the distance and prepare for the rule 3. 5348 const SCEVConstant *DistToA = dyn_cast<SCEVConstant>( 5349 PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev)); 5350 if (!DistToA) 5351 continue; 5352 5353 int DistanceToA = DistToA->getAPInt().getSExtValue(); 5354 5355 // Skip if the distance is not multiple of size as they are not in the 5356 // same group. 5357 if (DistanceToA % static_cast<int>(DesA.Size)) 5358 continue; 5359 5360 // The index of B is the index of A plus the related index to A. 5361 int IndexB = 5362 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 5363 5364 // Try to insert B into the group. 5365 if (Group->insertMember(B, IndexB, DesB.Align)) { 5366 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 5367 << " into the interleave group with" << *A << '\n'); 5368 InterleaveGroupMap[B] = Group; 5369 5370 // Set the first load in program order as the insert position. 5371 if (B->mayReadFromMemory()) 5372 Group->setInsertPos(B); 5373 } 5374 } // Iteration on instruction B 5375 } // Iteration on instruction A 5376 5377 // Remove interleaved store groups with gaps. 5378 for (InterleaveGroup *Group : StoreGroups) 5379 if (Group->getNumMembers() != Group->getFactor()) 5380 releaseGroup(Group); 5381 5382 // If there is a non-reversed interleaved load group with gaps, we will need 5383 // to execute at least one scalar epilogue iteration. This will ensure that 5384 // we don't speculatively access memory out-of-bounds. Note that we only need 5385 // to look for a member at index factor - 1, since every group must have a 5386 // member at index zero. 5387 for (InterleaveGroup *Group : LoadGroups) 5388 if (!Group->getMember(Group->getFactor() - 1)) { 5389 if (Group->isReverse()) { 5390 releaseGroup(Group); 5391 } else { 5392 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 5393 RequiresScalarEpilogue = true; 5394 } 5395 } 5396 } 5397 5398 LoopVectorizationCostModel::VectorizationFactor 5399 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5400 // Width 1 means no vectorize 5401 VectorizationFactor Factor = {1U, 0U}; 5402 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 5403 emitAnalysis( 5404 VectorizationReport() 5405 << "runtime pointer checks needed. Enable vectorization of this " 5406 "loop with '#pragma clang loop vectorize(enable)' when " 5407 "compiling with -Os/-Oz"); 5408 DEBUG(dbgs() 5409 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 5410 return Factor; 5411 } 5412 5413 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 5414 emitAnalysis( 5415 VectorizationReport() 5416 << "store that is conditionally executed prevents vectorization"); 5417 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5418 return Factor; 5419 } 5420 5421 // Find the trip count. 5422 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5423 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5424 5425 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5426 unsigned SmallestType, WidestType; 5427 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5428 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5429 unsigned MaxSafeDepDist = -1U; 5430 5431 // Get the maximum safe dependence distance in bits computed by LAA. If the 5432 // loop contains any interleaved accesses, we divide the dependence distance 5433 // by the maximum interleave factor of all interleaved groups. Note that 5434 // although the division ensures correctness, this is a fairly conservative 5435 // computation because the maximum distance computed by LAA may not involve 5436 // any of the interleaved accesses. 5437 if (Legal->getMaxSafeDepDistBytes() != -1U) 5438 MaxSafeDepDist = 5439 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 5440 5441 WidestRegister = 5442 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 5443 unsigned MaxVectorSize = WidestRegister / WidestType; 5444 5445 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 5446 << WidestType << " bits.\n"); 5447 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 5448 << " bits.\n"); 5449 5450 if (MaxVectorSize == 0) { 5451 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5452 MaxVectorSize = 1; 5453 } 5454 5455 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5456 " into one vector!"); 5457 5458 unsigned VF = MaxVectorSize; 5459 if (MaximizeBandwidth && !OptForSize) { 5460 // Collect all viable vectorization factors. 5461 SmallVector<unsigned, 8> VFs; 5462 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5463 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 5464 VFs.push_back(VS); 5465 5466 // For each VF calculate its register usage. 5467 auto RUs = calculateRegisterUsage(VFs); 5468 5469 // Select the largest VF which doesn't require more registers than existing 5470 // ones. 5471 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5472 for (int i = RUs.size() - 1; i >= 0; --i) { 5473 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5474 VF = VFs[i]; 5475 break; 5476 } 5477 } 5478 } 5479 5480 // If we optimize the program for size, avoid creating the tail loop. 5481 if (OptForSize) { 5482 // If we are unable to calculate the trip count then don't try to vectorize. 5483 if (TC < 2) { 5484 emitAnalysis( 5485 VectorizationReport() 5486 << "unable to calculate the loop count due to complex control flow"); 5487 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5488 return Factor; 5489 } 5490 5491 // Find the maximum SIMD width that can fit within the trip count. 5492 VF = TC % MaxVectorSize; 5493 5494 if (VF == 0) 5495 VF = MaxVectorSize; 5496 else { 5497 // If the trip count that we found modulo the vectorization factor is not 5498 // zero then we require a tail. 5499 emitAnalysis(VectorizationReport() 5500 << "cannot optimize for size and vectorize at the " 5501 "same time. Enable vectorization of this loop " 5502 "with '#pragma clang loop vectorize(enable)' " 5503 "when compiling with -Os/-Oz"); 5504 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5505 return Factor; 5506 } 5507 } 5508 5509 int UserVF = Hints->getWidth(); 5510 if (UserVF != 0) { 5511 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5512 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5513 5514 Factor.Width = UserVF; 5515 return Factor; 5516 } 5517 5518 float Cost = expectedCost(1).first; 5519 #ifndef NDEBUG 5520 const float ScalarCost = Cost; 5521 #endif /* NDEBUG */ 5522 unsigned Width = 1; 5523 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5524 5525 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5526 // Ignore scalar width, because the user explicitly wants vectorization. 5527 if (ForceVectorization && VF > 1) { 5528 Width = 2; 5529 Cost = expectedCost(Width).first / (float)Width; 5530 } 5531 5532 for (unsigned i = 2; i <= VF; i *= 2) { 5533 // Notice that the vector loop needs to be executed less times, so 5534 // we need to divide the cost of the vector loops by the width of 5535 // the vector elements. 5536 VectorizationCostTy C = expectedCost(i); 5537 float VectorCost = C.first / (float)i; 5538 DEBUG(dbgs() << "LV: Vector loop of width " << i 5539 << " costs: " << (int)VectorCost << ".\n"); 5540 if (!C.second && !ForceVectorization) { 5541 DEBUG( 5542 dbgs() << "LV: Not considering vector loop of width " << i 5543 << " because it will not generate any vector instructions.\n"); 5544 continue; 5545 } 5546 if (VectorCost < Cost) { 5547 Cost = VectorCost; 5548 Width = i; 5549 } 5550 } 5551 5552 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5553 << "LV: Vectorization seems to be not beneficial, " 5554 << "but was forced by a user.\n"); 5555 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5556 Factor.Width = Width; 5557 Factor.Cost = Width * Cost; 5558 return Factor; 5559 } 5560 5561 std::pair<unsigned, unsigned> 5562 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5563 unsigned MinWidth = -1U; 5564 unsigned MaxWidth = 8; 5565 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5566 5567 // For each block. 5568 for (Loop::block_iterator bb = TheLoop->block_begin(), 5569 be = TheLoop->block_end(); 5570 bb != be; ++bb) { 5571 BasicBlock *BB = *bb; 5572 5573 // For each instruction in the loop. 5574 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5575 Type *T = it->getType(); 5576 5577 // Skip ignored values. 5578 if (ValuesToIgnore.count(&*it)) 5579 continue; 5580 5581 // Only examine Loads, Stores and PHINodes. 5582 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5583 continue; 5584 5585 // Examine PHI nodes that are reduction variables. Update the type to 5586 // account for the recurrence type. 5587 if (PHINode *PN = dyn_cast<PHINode>(it)) { 5588 if (!Legal->isReductionVariable(PN)) 5589 continue; 5590 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5591 T = RdxDesc.getRecurrenceType(); 5592 } 5593 5594 // Examine the stored values. 5595 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5596 T = ST->getValueOperand()->getType(); 5597 5598 // Ignore loaded pointer types and stored pointer types that are not 5599 // consecutive. However, we do want to take consecutive stores/loads of 5600 // pointer vectors into account. 5601 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it)) 5602 continue; 5603 5604 MinWidth = std::min(MinWidth, 5605 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5606 MaxWidth = std::max(MaxWidth, 5607 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5608 } 5609 } 5610 5611 return {MinWidth, MaxWidth}; 5612 } 5613 5614 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5615 unsigned VF, 5616 unsigned LoopCost) { 5617 5618 // -- The interleave heuristics -- 5619 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5620 // There are many micro-architectural considerations that we can't predict 5621 // at this level. For example, frontend pressure (on decode or fetch) due to 5622 // code size, or the number and capabilities of the execution ports. 5623 // 5624 // We use the following heuristics to select the interleave count: 5625 // 1. If the code has reductions, then we interleave to break the cross 5626 // iteration dependency. 5627 // 2. If the loop is really small, then we interleave to reduce the loop 5628 // overhead. 5629 // 3. We don't interleave if we think that we will spill registers to memory 5630 // due to the increased register pressure. 5631 5632 // When we optimize for size, we don't interleave. 5633 if (OptForSize) 5634 return 1; 5635 5636 // We used the distance for the interleave count. 5637 if (Legal->getMaxSafeDepDistBytes() != -1U) 5638 return 1; 5639 5640 // Do not interleave loops with a relatively small trip count. 5641 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5642 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5643 return 1; 5644 5645 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5646 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5647 << " registers\n"); 5648 5649 if (VF == 1) { 5650 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5651 TargetNumRegisters = ForceTargetNumScalarRegs; 5652 } else { 5653 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5654 TargetNumRegisters = ForceTargetNumVectorRegs; 5655 } 5656 5657 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5658 // We divide by these constants so assume that we have at least one 5659 // instruction that uses at least one register. 5660 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5661 R.NumInstructions = std::max(R.NumInstructions, 1U); 5662 5663 // We calculate the interleave count using the following formula. 5664 // Subtract the number of loop invariants from the number of available 5665 // registers. These registers are used by all of the interleaved instances. 5666 // Next, divide the remaining registers by the number of registers that is 5667 // required by the loop, in order to estimate how many parallel instances 5668 // fit without causing spills. All of this is rounded down if necessary to be 5669 // a power of two. We want power of two interleave count to simplify any 5670 // addressing operations or alignment considerations. 5671 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5672 R.MaxLocalUsers); 5673 5674 // Don't count the induction variable as interleaved. 5675 if (EnableIndVarRegisterHeur) 5676 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5677 std::max(1U, (R.MaxLocalUsers - 1))); 5678 5679 // Clamp the interleave ranges to reasonable counts. 5680 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5681 5682 // Check if the user has overridden the max. 5683 if (VF == 1) { 5684 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5685 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5686 } else { 5687 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5688 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5689 } 5690 5691 // If we did not calculate the cost for VF (because the user selected the VF) 5692 // then we calculate the cost of VF here. 5693 if (LoopCost == 0) 5694 LoopCost = expectedCost(VF).first; 5695 5696 // Clamp the calculated IC to be between the 1 and the max interleave count 5697 // that the target allows. 5698 if (IC > MaxInterleaveCount) 5699 IC = MaxInterleaveCount; 5700 else if (IC < 1) 5701 IC = 1; 5702 5703 // Interleave if we vectorized this loop and there is a reduction that could 5704 // benefit from interleaving. 5705 if (VF > 1 && Legal->getReductionVars()->size()) { 5706 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5707 return IC; 5708 } 5709 5710 // Note that if we've already vectorized the loop we will have done the 5711 // runtime check and so interleaving won't require further checks. 5712 bool InterleavingRequiresRuntimePointerCheck = 5713 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5714 5715 // We want to interleave small loops in order to reduce the loop overhead and 5716 // potentially expose ILP opportunities. 5717 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5718 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5719 // We assume that the cost overhead is 1 and we use the cost model 5720 // to estimate the cost of the loop and interleave until the cost of the 5721 // loop overhead is about 5% of the cost of the loop. 5722 unsigned SmallIC = 5723 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5724 5725 // Interleave until store/load ports (estimated by max interleave count) are 5726 // saturated. 5727 unsigned NumStores = Legal->getNumStores(); 5728 unsigned NumLoads = Legal->getNumLoads(); 5729 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5730 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5731 5732 // If we have a scalar reduction (vector reductions are already dealt with 5733 // by this point), we can increase the critical path length if the loop 5734 // we're interleaving is inside another loop. Limit, by default to 2, so the 5735 // critical path only gets increased by one reduction operation. 5736 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 5737 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5738 SmallIC = std::min(SmallIC, F); 5739 StoresIC = std::min(StoresIC, F); 5740 LoadsIC = std::min(LoadsIC, F); 5741 } 5742 5743 if (EnableLoadStoreRuntimeInterleave && 5744 std::max(StoresIC, LoadsIC) > SmallIC) { 5745 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5746 return std::max(StoresIC, LoadsIC); 5747 } 5748 5749 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5750 return SmallIC; 5751 } 5752 5753 // Interleave if this is a large loop (small loops are already dealt with by 5754 // this point) that could benefit from interleaving. 5755 bool HasReductions = (Legal->getReductionVars()->size() > 0); 5756 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5757 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5758 return IC; 5759 } 5760 5761 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5762 return 1; 5763 } 5764 5765 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5766 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5767 // This function calculates the register usage by measuring the highest number 5768 // of values that are alive at a single location. Obviously, this is a very 5769 // rough estimation. We scan the loop in a topological order in order and 5770 // assign a number to each instruction. We use RPO to ensure that defs are 5771 // met before their users. We assume that each instruction that has in-loop 5772 // users starts an interval. We record every time that an in-loop value is 5773 // used, so we have a list of the first and last occurrences of each 5774 // instruction. Next, we transpose this data structure into a multi map that 5775 // holds the list of intervals that *end* at a specific location. This multi 5776 // map allows us to perform a linear search. We scan the instructions linearly 5777 // and record each time that a new interval starts, by placing it in a set. 5778 // If we find this value in the multi-map then we remove it from the set. 5779 // The max register usage is the maximum size of the set. 5780 // We also search for instructions that are defined outside the loop, but are 5781 // used inside the loop. We need this number separately from the max-interval 5782 // usage number because when we unroll, loop-invariant values do not take 5783 // more register. 5784 LoopBlocksDFS DFS(TheLoop); 5785 DFS.perform(LI); 5786 5787 RegisterUsage RU; 5788 RU.NumInstructions = 0; 5789 5790 // Each 'key' in the map opens a new interval. The values 5791 // of the map are the index of the 'last seen' usage of the 5792 // instruction that is the key. 5793 typedef DenseMap<Instruction *, unsigned> IntervalMap; 5794 // Maps instruction to its index. 5795 DenseMap<unsigned, Instruction *> IdxToInstr; 5796 // Marks the end of each interval. 5797 IntervalMap EndPoint; 5798 // Saves the list of instruction indices that are used in the loop. 5799 SmallSet<Instruction *, 8> Ends; 5800 // Saves the list of values that are used in the loop but are 5801 // defined outside the loop, such as arguments and constants. 5802 SmallPtrSet<Value *, 8> LoopInvariants; 5803 5804 unsigned Index = 0; 5805 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), be = DFS.endRPO(); 5806 bb != be; ++bb) { 5807 RU.NumInstructions += (*bb)->size(); 5808 for (Instruction &I : **bb) { 5809 IdxToInstr[Index++] = &I; 5810 5811 // Save the end location of each USE. 5812 for (unsigned i = 0; i < I.getNumOperands(); ++i) { 5813 Value *U = I.getOperand(i); 5814 Instruction *Instr = dyn_cast<Instruction>(U); 5815 5816 // Ignore non-instruction values such as arguments, constants, etc. 5817 if (!Instr) 5818 continue; 5819 5820 // If this instruction is outside the loop then record it and continue. 5821 if (!TheLoop->contains(Instr)) { 5822 LoopInvariants.insert(Instr); 5823 continue; 5824 } 5825 5826 // Overwrite previous end points. 5827 EndPoint[Instr] = Index; 5828 Ends.insert(Instr); 5829 } 5830 } 5831 } 5832 5833 // Saves the list of intervals that end with the index in 'key'. 5834 typedef SmallVector<Instruction *, 2> InstrList; 5835 DenseMap<unsigned, InstrList> TransposeEnds; 5836 5837 // Transpose the EndPoints to a list of values that end at each index. 5838 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); it != e; 5839 ++it) 5840 TransposeEnds[it->second].push_back(it->first); 5841 5842 SmallSet<Instruction *, 8> OpenIntervals; 5843 5844 // Get the size of the widest register. 5845 unsigned MaxSafeDepDist = -1U; 5846 if (Legal->getMaxSafeDepDistBytes() != -1U) 5847 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5848 unsigned WidestRegister = 5849 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5850 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5851 5852 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5853 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5854 5855 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5856 5857 // A lambda that gets the register usage for the given type and VF. 5858 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5859 if (Ty->isTokenTy()) 5860 return 0U; 5861 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5862 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5863 }; 5864 5865 for (unsigned int i = 0; i < Index; ++i) { 5866 Instruction *I = IdxToInstr[i]; 5867 // Ignore instructions that are never used within the loop. 5868 if (!Ends.count(I)) 5869 continue; 5870 5871 // Remove all of the instructions that end at this location. 5872 InstrList &List = TransposeEnds[i]; 5873 for (unsigned int j = 0, e = List.size(); j < e; ++j) 5874 OpenIntervals.erase(List[j]); 5875 5876 // Skip ignored values. 5877 if (ValuesToIgnore.count(I)) 5878 continue; 5879 5880 // For each VF find the maximum usage of registers. 5881 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5882 if (VFs[j] == 1) { 5883 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5884 continue; 5885 } 5886 5887 // Count the number of live intervals. 5888 unsigned RegUsage = 0; 5889 for (auto Inst : OpenIntervals) { 5890 // Skip ignored values for VF > 1. 5891 if (VecValuesToIgnore.count(Inst)) 5892 continue; 5893 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5894 } 5895 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5896 } 5897 5898 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5899 << OpenIntervals.size() << '\n'); 5900 5901 // Add the current instruction to the list of open intervals. 5902 OpenIntervals.insert(I); 5903 } 5904 5905 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5906 unsigned Invariant = 0; 5907 if (VFs[i] == 1) 5908 Invariant = LoopInvariants.size(); 5909 else { 5910 for (auto Inst : LoopInvariants) 5911 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5912 } 5913 5914 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5915 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5916 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5917 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 5918 5919 RU.LoopInvariantRegs = Invariant; 5920 RU.MaxLocalUsers = MaxUsages[i]; 5921 RUs[i] = RU; 5922 } 5923 5924 return RUs; 5925 } 5926 5927 LoopVectorizationCostModel::VectorizationCostTy 5928 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5929 VectorizationCostTy Cost; 5930 5931 // For each block. 5932 for (Loop::block_iterator bb = TheLoop->block_begin(), 5933 be = TheLoop->block_end(); 5934 bb != be; ++bb) { 5935 VectorizationCostTy BlockCost; 5936 BasicBlock *BB = *bb; 5937 5938 // For each instruction in the old loop. 5939 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5940 // Skip dbg intrinsics. 5941 if (isa<DbgInfoIntrinsic>(it)) 5942 continue; 5943 5944 // Skip ignored values. 5945 if (ValuesToIgnore.count(&*it)) 5946 continue; 5947 5948 VectorizationCostTy C = getInstructionCost(&*it, VF); 5949 5950 // Check if we should override the cost. 5951 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5952 C.first = ForceTargetInstructionCost; 5953 5954 BlockCost.first += C.first; 5955 BlockCost.second |= C.second; 5956 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 5957 << VF << " For instruction: " << *it << '\n'); 5958 } 5959 5960 // We assume that if-converted blocks have a 50% chance of being executed. 5961 // When the code is scalar then some of the blocks are avoided due to CF. 5962 // When the code is vectorized we execute all code paths. 5963 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5964 BlockCost.first /= 2; 5965 5966 Cost.first += BlockCost.first; 5967 Cost.second |= BlockCost.second; 5968 } 5969 5970 return Cost; 5971 } 5972 5973 /// \brief Check if the load/store instruction \p I may be translated into 5974 /// gather/scatter during vectorization. 5975 /// 5976 /// Pointer \p Ptr specifies address in memory for the given scalar memory 5977 /// instruction. We need it to retrieve data type. 5978 /// Using gather/scatter is possible when it is supported by target. 5979 static bool isGatherOrScatterLegal(Instruction *I, Value *Ptr, 5980 LoopVectorizationLegality *Legal) { 5981 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 5982 return (isa<LoadInst>(I) && Legal->isLegalMaskedGather(DataTy)) || 5983 (isa<StoreInst>(I) && Legal->isLegalMaskedScatter(DataTy)); 5984 } 5985 5986 /// \brief Check whether the address computation for a non-consecutive memory 5987 /// access looks like an unlikely candidate for being merged into the indexing 5988 /// mode. 5989 /// 5990 /// We look for a GEP which has one index that is an induction variable and all 5991 /// other indices are loop invariant. If the stride of this access is also 5992 /// within a small bound we decide that this address computation can likely be 5993 /// merged into the addressing mode. 5994 /// In all other cases, we identify the address computation as complex. 5995 static bool isLikelyComplexAddressComputation(Value *Ptr, 5996 LoopVectorizationLegality *Legal, 5997 ScalarEvolution *SE, 5998 const Loop *TheLoop) { 5999 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6000 if (!Gep) 6001 return true; 6002 6003 // We are looking for a gep with all loop invariant indices except for one 6004 // which should be an induction variable. 6005 unsigned NumOperands = Gep->getNumOperands(); 6006 for (unsigned i = 1; i < NumOperands; ++i) { 6007 Value *Opd = Gep->getOperand(i); 6008 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6009 !Legal->isInductionVariable(Opd)) 6010 return true; 6011 } 6012 6013 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 6014 // can likely be merged into the address computation. 6015 unsigned MaxMergeDistance = 64; 6016 6017 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 6018 if (!AddRec) 6019 return true; 6020 6021 // Check the step is constant. 6022 const SCEV *Step = AddRec->getStepRecurrence(*SE); 6023 // Calculate the pointer stride and check if it is consecutive. 6024 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 6025 if (!C) 6026 return true; 6027 6028 const APInt &APStepVal = C->getAPInt(); 6029 6030 // Huge step value - give up. 6031 if (APStepVal.getBitWidth() > 64) 6032 return true; 6033 6034 int64_t StepVal = APStepVal.getSExtValue(); 6035 6036 return StepVal > MaxMergeDistance; 6037 } 6038 6039 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6040 return Legal->hasStride(I->getOperand(0)) || 6041 Legal->hasStride(I->getOperand(1)); 6042 } 6043 6044 LoopVectorizationCostModel::VectorizationCostTy 6045 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6046 // If we know that this instruction will remain uniform, check the cost of 6047 // the scalar version. 6048 if (Legal->isUniformAfterVectorization(I)) 6049 VF = 1; 6050 6051 Type *VectorTy; 6052 unsigned C = getInstructionCost(I, VF, VectorTy); 6053 6054 bool TypeNotScalarized = 6055 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 6056 return VectorizationCostTy(C, TypeNotScalarized); 6057 } 6058 6059 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6060 unsigned VF, 6061 Type *&VectorTy) { 6062 Type *RetTy = I->getType(); 6063 if (VF > 1 && MinBWs.count(I)) 6064 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6065 VectorTy = ToVectorTy(RetTy, VF); 6066 auto SE = PSE.getSE(); 6067 6068 // TODO: We need to estimate the cost of intrinsic calls. 6069 switch (I->getOpcode()) { 6070 case Instruction::GetElementPtr: 6071 // We mark this instruction as zero-cost because the cost of GEPs in 6072 // vectorized code depends on whether the corresponding memory instruction 6073 // is scalarized or not. Therefore, we handle GEPs with the memory 6074 // instruction cost. 6075 return 0; 6076 case Instruction::Br: { 6077 return TTI.getCFInstrCost(I->getOpcode()); 6078 } 6079 case Instruction::PHI: { 6080 auto *Phi = cast<PHINode>(I); 6081 6082 // First-order recurrences are replaced by vector shuffles inside the loop. 6083 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6084 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6085 VectorTy, VF - 1, VectorTy); 6086 6087 // TODO: IF-converted IFs become selects. 6088 return 0; 6089 } 6090 case Instruction::Add: 6091 case Instruction::FAdd: 6092 case Instruction::Sub: 6093 case Instruction::FSub: 6094 case Instruction::Mul: 6095 case Instruction::FMul: 6096 case Instruction::UDiv: 6097 case Instruction::SDiv: 6098 case Instruction::FDiv: 6099 case Instruction::URem: 6100 case Instruction::SRem: 6101 case Instruction::FRem: 6102 case Instruction::Shl: 6103 case Instruction::LShr: 6104 case Instruction::AShr: 6105 case Instruction::And: 6106 case Instruction::Or: 6107 case Instruction::Xor: { 6108 // Since we will replace the stride by 1 the multiplication should go away. 6109 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6110 return 0; 6111 // Certain instructions can be cheaper to vectorize if they have a constant 6112 // second vector operand. One example of this are shifts on x86. 6113 TargetTransformInfo::OperandValueKind Op1VK = 6114 TargetTransformInfo::OK_AnyValue; 6115 TargetTransformInfo::OperandValueKind Op2VK = 6116 TargetTransformInfo::OK_AnyValue; 6117 TargetTransformInfo::OperandValueProperties Op1VP = 6118 TargetTransformInfo::OP_None; 6119 TargetTransformInfo::OperandValueProperties Op2VP = 6120 TargetTransformInfo::OP_None; 6121 Value *Op2 = I->getOperand(1); 6122 6123 // Check for a splat of a constant or for a non uniform vector of constants. 6124 if (isa<ConstantInt>(Op2)) { 6125 ConstantInt *CInt = cast<ConstantInt>(Op2); 6126 if (CInt && CInt->getValue().isPowerOf2()) 6127 Op2VP = TargetTransformInfo::OP_PowerOf2; 6128 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6129 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6130 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6131 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6132 if (SplatValue) { 6133 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6134 if (CInt && CInt->getValue().isPowerOf2()) 6135 Op2VP = TargetTransformInfo::OP_PowerOf2; 6136 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6137 } 6138 } 6139 6140 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 6141 Op1VP, Op2VP); 6142 } 6143 case Instruction::Select: { 6144 SelectInst *SI = cast<SelectInst>(I); 6145 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6146 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6147 Type *CondTy = SI->getCondition()->getType(); 6148 if (!ScalarCond) 6149 CondTy = VectorType::get(CondTy, VF); 6150 6151 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 6152 } 6153 case Instruction::ICmp: 6154 case Instruction::FCmp: { 6155 Type *ValTy = I->getOperand(0)->getType(); 6156 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6157 auto It = MinBWs.find(Op0AsInstruction); 6158 if (VF > 1 && It != MinBWs.end()) 6159 ValTy = IntegerType::get(ValTy->getContext(), It->second); 6160 VectorTy = ToVectorTy(ValTy, VF); 6161 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 6162 } 6163 case Instruction::Store: 6164 case Instruction::Load: { 6165 StoreInst *SI = dyn_cast<StoreInst>(I); 6166 LoadInst *LI = dyn_cast<LoadInst>(I); 6167 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); 6168 VectorTy = ToVectorTy(ValTy, VF); 6169 6170 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 6171 unsigned AS = 6172 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); 6173 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 6174 // We add the cost of address computation here instead of with the gep 6175 // instruction because only here we know whether the operation is 6176 // scalarized. 6177 if (VF == 1) 6178 return TTI.getAddressComputationCost(VectorTy) + 6179 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6180 6181 if (LI && Legal->isUniform(Ptr)) { 6182 // Scalar load + broadcast 6183 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 6184 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6185 Alignment, AS); 6186 return Cost + 6187 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); 6188 } 6189 6190 // For an interleaved access, calculate the total cost of the whole 6191 // interleave group. 6192 if (Legal->isAccessInterleaved(I)) { 6193 auto Group = Legal->getInterleavedAccessGroup(I); 6194 assert(Group && "Fail to get an interleaved access group."); 6195 6196 // Only calculate the cost once at the insert position. 6197 if (Group->getInsertPos() != I) 6198 return 0; 6199 6200 unsigned InterleaveFactor = Group->getFactor(); 6201 Type *WideVecTy = 6202 VectorType::get(VectorTy->getVectorElementType(), 6203 VectorTy->getVectorNumElements() * InterleaveFactor); 6204 6205 // Holds the indices of existing members in an interleaved load group. 6206 // An interleaved store group doesn't need this as it doesn't allow gaps. 6207 SmallVector<unsigned, 4> Indices; 6208 if (LI) { 6209 for (unsigned i = 0; i < InterleaveFactor; i++) 6210 if (Group->getMember(i)) 6211 Indices.push_back(i); 6212 } 6213 6214 // Calculate the cost of the whole interleaved group. 6215 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6216 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 6217 Group->getAlignment(), AS); 6218 6219 if (Group->isReverse()) 6220 Cost += 6221 Group->getNumMembers() * 6222 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6223 6224 // FIXME: The interleaved load group with a huge gap could be even more 6225 // expensive than scalar operations. Then we could ignore such group and 6226 // use scalar operations instead. 6227 return Cost; 6228 } 6229 6230 // Scalarized loads/stores. 6231 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6232 bool UseGatherOrScatter = 6233 (ConsecutiveStride == 0) && isGatherOrScatterLegal(I, Ptr, Legal); 6234 6235 bool Reverse = ConsecutiveStride < 0; 6236 const DataLayout &DL = I->getModule()->getDataLayout(); 6237 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 6238 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 6239 if ((!ConsecutiveStride && !UseGatherOrScatter) || 6240 ScalarAllocatedSize != VectorElementSize) { 6241 bool IsComplexComputation = 6242 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 6243 unsigned Cost = 0; 6244 // The cost of extracting from the value vector and pointer vector. 6245 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6246 for (unsigned i = 0; i < VF; ++i) { 6247 // The cost of extracting the pointer operand. 6248 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 6249 // In case of STORE, the cost of ExtractElement from the vector. 6250 // In case of LOAD, the cost of InsertElement into the returned 6251 // vector. 6252 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement 6253 : Instruction::InsertElement, 6254 VectorTy, i); 6255 } 6256 6257 // The cost of the scalar loads/stores. 6258 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6259 Cost += VF * 6260 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6261 Alignment, AS); 6262 return Cost; 6263 } 6264 6265 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6266 if (UseGatherOrScatter) { 6267 assert(ConsecutiveStride == 0 && 6268 "Gather/Scatter are not used for consecutive stride"); 6269 return Cost + 6270 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6271 Legal->isMaskRequired(I), Alignment); 6272 } 6273 // Wide load/stores. 6274 if (Legal->isMaskRequired(I)) 6275 Cost += 6276 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6277 else 6278 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6279 6280 if (Reverse) 6281 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6282 return Cost; 6283 } 6284 case Instruction::ZExt: 6285 case Instruction::SExt: 6286 case Instruction::FPToUI: 6287 case Instruction::FPToSI: 6288 case Instruction::FPExt: 6289 case Instruction::PtrToInt: 6290 case Instruction::IntToPtr: 6291 case Instruction::SIToFP: 6292 case Instruction::UIToFP: 6293 case Instruction::Trunc: 6294 case Instruction::FPTrunc: 6295 case Instruction::BitCast: { 6296 // We optimize the truncation of induction variable. 6297 // The cost of these is the same as the scalar operation. 6298 if (I->getOpcode() == Instruction::Trunc && 6299 Legal->isInductionVariable(I->getOperand(0))) 6300 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6301 I->getOperand(0)->getType()); 6302 6303 Type *SrcScalarTy = I->getOperand(0)->getType(); 6304 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 6305 if (VF > 1 && MinBWs.count(I)) { 6306 // This cast is going to be shrunk. This may remove the cast or it might 6307 // turn it into slightly different cast. For example, if MinBW == 16, 6308 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6309 // 6310 // Calculate the modified src and dest types. 6311 Type *MinVecTy = VectorTy; 6312 if (I->getOpcode() == Instruction::Trunc) { 6313 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6314 VectorTy = 6315 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6316 } else if (I->getOpcode() == Instruction::ZExt || 6317 I->getOpcode() == Instruction::SExt) { 6318 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6319 VectorTy = 6320 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6321 } 6322 } 6323 6324 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6325 } 6326 case Instruction::Call: { 6327 bool NeedToScalarize; 6328 CallInst *CI = cast<CallInst>(I); 6329 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6330 if (getVectorIntrinsicIDForCall(CI, TLI)) 6331 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6332 return CallCost; 6333 } 6334 default: { 6335 // We are scalarizing the instruction. Return the cost of the scalar 6336 // instruction, plus the cost of insert and extract into vector 6337 // elements, times the vector width. 6338 unsigned Cost = 0; 6339 6340 if (!RetTy->isVoidTy() && VF != 1) { 6341 unsigned InsCost = 6342 TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy); 6343 unsigned ExtCost = 6344 TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy); 6345 6346 // The cost of inserting the results plus extracting each one of the 6347 // operands. 6348 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6349 } 6350 6351 // The cost of executing VF copies of the scalar instruction. This opcode 6352 // is unknown. Assume that it is the same as 'mul'. 6353 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6354 return Cost; 6355 } 6356 } // end of switch. 6357 } 6358 6359 char LoopVectorize::ID = 0; 6360 static const char lv_name[] = "Loop Vectorization"; 6361 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6362 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6363 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6364 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6365 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6366 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6367 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6368 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6369 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6370 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) 6371 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6372 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6373 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 6374 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6375 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6376 6377 namespace llvm { 6378 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6379 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6380 } 6381 } 6382 6383 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6384 // Check for a store. 6385 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 6386 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6387 6388 // Check for a load. 6389 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 6390 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6391 6392 return false; 6393 } 6394 6395 void LoopVectorizationCostModel::collectValuesToIgnore() { 6396 // Ignore ephemeral values. 6397 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6398 6399 // Ignore type-promoting instructions we identified during reduction 6400 // detection. 6401 for (auto &Reduction : *Legal->getReductionVars()) { 6402 RecurrenceDescriptor &RedDes = Reduction.second; 6403 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6404 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6405 } 6406 6407 // Ignore induction phis that are only used in either GetElementPtr or ICmp 6408 // instruction to exit loop. Induction variables usually have large types and 6409 // can have big impact when estimating register usage. 6410 // This is for when VF > 1. 6411 for (auto &Induction : *Legal->getInductionVars()) { 6412 auto *PN = Induction.first; 6413 auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch()); 6414 6415 // Check that the PHI is only used by the induction increment (UpdateV) or 6416 // by GEPs. Then check that UpdateV is only used by a compare instruction or 6417 // the loop header PHI. 6418 // FIXME: Need precise def-use analysis to determine if this instruction 6419 // variable will be vectorized. 6420 if (std::all_of(PN->user_begin(), PN->user_end(), 6421 [&](const User *U) -> bool { 6422 return U == UpdateV || isa<GetElementPtrInst>(U); 6423 }) && 6424 std::all_of(UpdateV->user_begin(), UpdateV->user_end(), 6425 [&](const User *U) -> bool { 6426 return U == PN || isa<ICmpInst>(U); 6427 })) { 6428 VecValuesToIgnore.insert(PN); 6429 VecValuesToIgnore.insert(UpdateV); 6430 } 6431 } 6432 6433 // Ignore instructions that will not be vectorized. 6434 // This is for when VF > 1. 6435 for (auto bb = TheLoop->block_begin(), be = TheLoop->block_end(); bb != be; 6436 ++bb) { 6437 for (auto &Inst : **bb) { 6438 switch (Inst.getOpcode()) 6439 case Instruction::GetElementPtr: { 6440 // Ignore GEP if its last operand is an induction variable so that it is 6441 // a consecutive load/store and won't be vectorized as scatter/gather 6442 // pattern. 6443 6444 GetElementPtrInst *Gep = cast<GetElementPtrInst>(&Inst); 6445 unsigned NumOperands = Gep->getNumOperands(); 6446 unsigned InductionOperand = getGEPInductionOperand(Gep); 6447 bool GepToIgnore = true; 6448 6449 // Check that all of the gep indices are uniform except for the 6450 // induction operand. 6451 for (unsigned i = 0; i != NumOperands; ++i) { 6452 if (i != InductionOperand && 6453 !PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), 6454 TheLoop)) { 6455 GepToIgnore = false; 6456 break; 6457 } 6458 } 6459 6460 if (GepToIgnore) 6461 VecValuesToIgnore.insert(&Inst); 6462 break; 6463 } 6464 } 6465 } 6466 } 6467 6468 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6469 bool IfPredicateStore) { 6470 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6471 // Holds vector parameters or scalars, in case of uniform vals. 6472 SmallVector<VectorParts, 4> Params; 6473 6474 setDebugLocFromInst(Builder, Instr); 6475 6476 // Find all of the vectorized parameters. 6477 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6478 Value *SrcOp = Instr->getOperand(op); 6479 6480 // If we are accessing the old induction variable, use the new one. 6481 if (SrcOp == OldInduction) { 6482 Params.push_back(getVectorValue(SrcOp)); 6483 continue; 6484 } 6485 6486 // Try using previously calculated values. 6487 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6488 6489 // If the src is an instruction that appeared earlier in the basic block 6490 // then it should already be vectorized. 6491 if (SrcInst && OrigLoop->contains(SrcInst)) { 6492 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6493 // The parameter is a vector value from earlier. 6494 Params.push_back(WidenMap.get(SrcInst)); 6495 } else { 6496 // The parameter is a scalar from outside the loop. Maybe even a constant. 6497 VectorParts Scalars; 6498 Scalars.append(UF, SrcOp); 6499 Params.push_back(Scalars); 6500 } 6501 } 6502 6503 assert(Params.size() == Instr->getNumOperands() && 6504 "Invalid number of operands"); 6505 6506 // Does this instruction return a value ? 6507 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6508 6509 Value *UndefVec = IsVoidRetTy ? nullptr : UndefValue::get(Instr->getType()); 6510 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6511 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6512 6513 VectorParts Cond; 6514 if (IfPredicateStore) { 6515 assert(Instr->getParent()->getSinglePredecessor() && 6516 "Only support single predecessor blocks"); 6517 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6518 Instr->getParent()); 6519 } 6520 6521 // For each vector unroll 'part': 6522 for (unsigned Part = 0; Part < UF; ++Part) { 6523 // For each scalar that we create: 6524 6525 // Start an "if (pred) a[i] = ..." block. 6526 Value *Cmp = nullptr; 6527 if (IfPredicateStore) { 6528 if (Cond[Part]->getType()->isVectorTy()) 6529 Cond[Part] = 6530 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6531 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6532 ConstantInt::get(Cond[Part]->getType(), 1)); 6533 } 6534 6535 Instruction *Cloned = Instr->clone(); 6536 if (!IsVoidRetTy) 6537 Cloned->setName(Instr->getName() + ".cloned"); 6538 // Replace the operands of the cloned instructions with extracted scalars. 6539 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6540 Value *Op = Params[op][Part]; 6541 Cloned->setOperand(op, Op); 6542 } 6543 6544 // Place the cloned scalar in the new loop. 6545 Builder.Insert(Cloned); 6546 6547 // If we just cloned a new assumption, add it the assumption cache. 6548 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 6549 if (II->getIntrinsicID() == Intrinsic::assume) 6550 AC->registerAssumption(II); 6551 6552 // If the original scalar returns a value we need to place it in a vector 6553 // so that future users will be able to use it. 6554 if (!IsVoidRetTy) 6555 VecResults[Part] = Cloned; 6556 6557 // End if-block. 6558 if (IfPredicateStore) 6559 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), Cmp)); 6560 } 6561 } 6562 6563 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6564 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6565 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6566 6567 return scalarizeInstruction(Instr, IfPredicateStore); 6568 } 6569 6570 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6571 6572 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6573 6574 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, 6575 const SCEV *StepSCEV) { 6576 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 6577 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 6578 Value *StepValue = Exp.expandCodeFor(StepSCEV, StepSCEV->getType(), 6579 &*Builder.GetInsertPoint()); 6580 return getStepVector(Val, StartIdx, StepValue); 6581 } 6582 6583 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 6584 // When unrolling and the VF is 1, we only need to add a simple scalar. 6585 Type *ITy = Val->getType(); 6586 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6587 Constant *C = ConstantInt::get(ITy, StartIdx); 6588 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6589 } 6590