1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "VPlan.h" 51 #include "llvm/ADT/DenseMap.h" 52 #include "llvm/ADT/Hashing.h" 53 #include "llvm/ADT/MapVector.h" 54 #include "llvm/ADT/Optional.h" 55 #include "llvm/ADT/SCCIterator.h" 56 #include "llvm/ADT/SetVector.h" 57 #include "llvm/ADT/SmallPtrSet.h" 58 #include "llvm/ADT/SmallSet.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/StringExtras.h" 62 #include "llvm/Analysis/CodeMetrics.h" 63 #include "llvm/Analysis/GlobalsModRef.h" 64 #include "llvm/Analysis/LoopInfo.h" 65 #include "llvm/Analysis/LoopIterator.h" 66 #include "llvm/Analysis/LoopPass.h" 67 #include "llvm/Analysis/ScalarEvolutionExpander.h" 68 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 69 #include "llvm/Analysis/ValueTracking.h" 70 #include "llvm/Analysis/VectorUtils.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DerivedTypes.h" 75 #include "llvm/IR/DiagnosticInfo.h" 76 #include "llvm/IR/Dominators.h" 77 #include "llvm/IR/Function.h" 78 #include "llvm/IR/IRBuilder.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/IntrinsicInst.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/IR/ValueHandle.h" 88 #include "llvm/IR/Verifier.h" 89 #include "llvm/Pass.h" 90 #include "llvm/Support/BranchProbability.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/raw_ostream.h" 94 #include "llvm/Transforms/Scalar.h" 95 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 96 #include "llvm/Transforms/Utils/Local.h" 97 #include "llvm/Transforms/Utils/LoopSimplify.h" 98 #include "llvm/Transforms/Utils/LoopUtils.h" 99 #include "llvm/Transforms/Utils/LoopVersioning.h" 100 #include "llvm/Transforms/Vectorize.h" 101 #include <algorithm> 102 #include <functional> 103 #include <map> 104 #include <tuple> 105 106 using namespace llvm; 107 using namespace llvm::PatternMatch; 108 109 #define LV_NAME "loop-vectorize" 110 #define DEBUG_TYPE LV_NAME 111 112 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 113 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 114 115 static cl::opt<bool> 116 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 117 cl::desc("Enable if-conversion during vectorization.")); 118 119 /// Loops with a known constant trip count below this number are vectorized only 120 /// if no scalar iteration overheads are incurred. 121 static cl::opt<unsigned> TinyTripCountVectorThreshold( 122 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 123 cl::desc("Loops with a constant trip count that is smaller than this " 124 "value are vectorized only if no scalar iteration overheads " 125 "are incurred.")); 126 127 static cl::opt<bool> MaximizeBandwidth( 128 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 129 cl::desc("Maximize bandwidth when selecting vectorization factor which " 130 "will be determined by the smallest type in loop.")); 131 132 static cl::opt<bool> EnableInterleavedMemAccesses( 133 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 134 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 135 136 /// Maximum factor for an interleaved memory access. 137 static cl::opt<unsigned> MaxInterleaveGroupFactor( 138 "max-interleave-group-factor", cl::Hidden, 139 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 140 cl::init(8)); 141 142 /// We don't interleave loops with a known constant trip count below this 143 /// number. 144 static const unsigned TinyTripCountInterleaveThreshold = 128; 145 146 static cl::opt<unsigned> ForceTargetNumScalarRegs( 147 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 148 cl::desc("A flag that overrides the target's number of scalar registers.")); 149 150 static cl::opt<unsigned> ForceTargetNumVectorRegs( 151 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 152 cl::desc("A flag that overrides the target's number of vector registers.")); 153 154 /// Maximum vectorization interleave count. 155 static const unsigned MaxInterleaveFactor = 16; 156 157 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 158 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 159 cl::desc("A flag that overrides the target's max interleave factor for " 160 "scalar loops.")); 161 162 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 163 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 164 cl::desc("A flag that overrides the target's max interleave factor for " 165 "vectorized loops.")); 166 167 static cl::opt<unsigned> ForceTargetInstructionCost( 168 "force-target-instruction-cost", cl::init(0), cl::Hidden, 169 cl::desc("A flag that overrides the target's expected cost for " 170 "an instruction to a single constant value. Mostly " 171 "useful for getting consistent testing.")); 172 173 static cl::opt<unsigned> SmallLoopCost( 174 "small-loop-cost", cl::init(20), cl::Hidden, 175 cl::desc( 176 "The cost of a loop that is considered 'small' by the interleaver.")); 177 178 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 179 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 180 cl::desc("Enable the use of the block frequency analysis to access PGO " 181 "heuristics minimizing code growth in cold regions and being more " 182 "aggressive in hot regions.")); 183 184 // Runtime interleave loops for load/store throughput. 185 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 186 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 187 cl::desc( 188 "Enable runtime interleaving until load/store ports are saturated")); 189 190 /// The number of stores in a loop that are allowed to need predication. 191 static cl::opt<unsigned> NumberOfStoresToPredicate( 192 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 193 cl::desc("Max number of stores to be predicated behind an if.")); 194 195 static cl::opt<bool> EnableIndVarRegisterHeur( 196 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 197 cl::desc("Count the induction variable only once when interleaving")); 198 199 static cl::opt<bool> EnableCondStoresVectorization( 200 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 201 cl::desc("Enable if predication of stores during vectorization.")); 202 203 static cl::opt<unsigned> MaxNestedScalarReductionIC( 204 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 205 cl::desc("The maximum interleave count to use when interleaving a scalar " 206 "reduction in a nested loop.")); 207 208 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 209 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 210 cl::desc("The maximum allowed number of runtime memory checks with a " 211 "vectorize(enable) pragma.")); 212 213 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 214 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 215 cl::desc("The maximum number of SCEV checks allowed.")); 216 217 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 218 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 219 cl::desc("The maximum number of SCEV checks allowed with a " 220 "vectorize(enable) pragma")); 221 222 /// Create an analysis remark that explains why vectorization failed 223 /// 224 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 225 /// RemarkName is the identifier for the remark. If \p I is passed it is an 226 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 227 /// the location of the remark. \return the remark object that can be 228 /// streamed to. 229 static OptimizationRemarkAnalysis 230 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 231 Instruction *I = nullptr) { 232 Value *CodeRegion = TheLoop->getHeader(); 233 DebugLoc DL = TheLoop->getStartLoc(); 234 235 if (I) { 236 CodeRegion = I->getParent(); 237 // If there is no debug location attached to the instruction, revert back to 238 // using the loop's. 239 if (I->getDebugLoc()) 240 DL = I->getDebugLoc(); 241 } 242 243 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 244 R << "loop not vectorized: "; 245 return R; 246 } 247 248 namespace { 249 250 // Forward declarations. 251 class LoopVectorizeHints; 252 class LoopVectorizationLegality; 253 class LoopVectorizationCostModel; 254 class LoopVectorizationRequirements; 255 class VPInterleaveRecipe; 256 class VPReplicateRecipe; 257 class VPWidenIntOrFpInductionRecipe; 258 class VPWidenRecipe; 259 260 /// Returns true if the given loop body has a cycle, excluding the loop 261 /// itself. 262 static bool hasCyclesInLoopBody(const Loop &L) { 263 if (!L.empty()) 264 return true; 265 266 for (const auto &SCC : 267 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 268 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 269 if (SCC.size() > 1) { 270 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 271 DEBUG(L.dump()); 272 return true; 273 } 274 } 275 return false; 276 } 277 278 /// A helper function for converting Scalar types to vector types. 279 /// If the incoming type is void, we return void. If the VF is 1, we return 280 /// the scalar type. 281 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 282 if (Scalar->isVoidTy() || VF == 1) 283 return Scalar; 284 return VectorType::get(Scalar, VF); 285 } 286 287 // FIXME: The following helper functions have multiple implementations 288 // in the project. They can be effectively organized in a common Load/Store 289 // utilities unit. 290 291 /// A helper function that returns the pointer operand of a load or store 292 /// instruction. 293 static Value *getPointerOperand(Value *I) { 294 if (auto *LI = dyn_cast<LoadInst>(I)) 295 return LI->getPointerOperand(); 296 if (auto *SI = dyn_cast<StoreInst>(I)) 297 return SI->getPointerOperand(); 298 return nullptr; 299 } 300 301 /// A helper function that returns the type of loaded or stored value. 302 static Type *getMemInstValueType(Value *I) { 303 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 304 "Expected Load or Store instruction"); 305 if (auto *LI = dyn_cast<LoadInst>(I)) 306 return LI->getType(); 307 return cast<StoreInst>(I)->getValueOperand()->getType(); 308 } 309 310 /// A helper function that returns the alignment of load or store instruction. 311 static unsigned getMemInstAlignment(Value *I) { 312 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 313 "Expected Load or Store instruction"); 314 if (auto *LI = dyn_cast<LoadInst>(I)) 315 return LI->getAlignment(); 316 return cast<StoreInst>(I)->getAlignment(); 317 } 318 319 /// A helper function that returns the address space of the pointer operand of 320 /// load or store instruction. 321 static unsigned getMemInstAddressSpace(Value *I) { 322 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 323 "Expected Load or Store instruction"); 324 if (auto *LI = dyn_cast<LoadInst>(I)) 325 return LI->getPointerAddressSpace(); 326 return cast<StoreInst>(I)->getPointerAddressSpace(); 327 } 328 329 /// A helper function that returns true if the given type is irregular. The 330 /// type is irregular if its allocated size doesn't equal the store size of an 331 /// element of the corresponding vector type at the given vectorization factor. 332 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 333 334 // Determine if an array of VF elements of type Ty is "bitcast compatible" 335 // with a <VF x Ty> vector. 336 if (VF > 1) { 337 auto *VectorTy = VectorType::get(Ty, VF); 338 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 339 } 340 341 // If the vectorization factor is one, we just check if an array of type Ty 342 // requires padding between elements. 343 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 344 } 345 346 /// A helper function that returns the reciprocal of the block probability of 347 /// predicated blocks. If we return X, we are assuming the predicated block 348 /// will execute once for for every X iterations of the loop header. 349 /// 350 /// TODO: We should use actual block probability here, if available. Currently, 351 /// we always assume predicated blocks have a 50% chance of executing. 352 static unsigned getReciprocalPredBlockProb() { return 2; } 353 354 /// A helper function that adds a 'fast' flag to floating-point operations. 355 static Value *addFastMathFlag(Value *V) { 356 if (isa<FPMathOperator>(V)) { 357 FastMathFlags Flags; 358 Flags.setUnsafeAlgebra(); 359 cast<Instruction>(V)->setFastMathFlags(Flags); 360 } 361 return V; 362 } 363 364 /// A helper function that returns an integer or floating-point constant with 365 /// value C. 366 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 367 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 368 : ConstantFP::get(Ty, C); 369 } 370 371 } // end anonymous namespace 372 373 namespace llvm { 374 /// InnerLoopVectorizer vectorizes loops which contain only one basic 375 /// block to a specified vectorization factor (VF). 376 /// This class performs the widening of scalars into vectors, or multiple 377 /// scalars. This class also implements the following features: 378 /// * It inserts an epilogue loop for handling loops that don't have iteration 379 /// counts that are known to be a multiple of the vectorization factor. 380 /// * It handles the code generation for reduction variables. 381 /// * Scalarization (implementation using scalars) of un-vectorizable 382 /// instructions. 383 /// InnerLoopVectorizer does not perform any vectorization-legality 384 /// checks, and relies on the caller to check for the different legality 385 /// aspects. The InnerLoopVectorizer relies on the 386 /// LoopVectorizationLegality class to provide information about the induction 387 /// and reduction variables that were found to a given vectorization factor. 388 class InnerLoopVectorizer { 389 public: 390 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 391 LoopInfo *LI, DominatorTree *DT, 392 const TargetLibraryInfo *TLI, 393 const TargetTransformInfo *TTI, AssumptionCache *AC, 394 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 395 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 396 LoopVectorizationCostModel *CM) 397 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 398 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 399 Builder(PSE.getSE()->getContext()), Induction(nullptr), 400 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 401 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 402 AddedSafetyChecks(false) {} 403 404 /// Create a new empty loop. Unlink the old loop and connect the new one. 405 /// Return the pre-header block of the new loop. 406 BasicBlock *createVectorizedLoopSkeleton(); 407 408 /// Widen a single instruction within the innermost loop. 409 void widenInstruction(Instruction &I); 410 411 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 412 void fixVectorizedLoop(); 413 414 // Return true if any runtime check is added. 415 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 416 417 virtual ~InnerLoopVectorizer() {} 418 419 /// A type for vectorized values in the new loop. Each value from the 420 /// original loop, when vectorized, is represented by UF vector values in the 421 /// new unrolled loop, where UF is the unroll factor. 422 typedef SmallVector<Value *, 2> VectorParts; 423 424 /// A helper function that computes the predicate of the block BB, assuming 425 /// that the header block of the loop is set to True. It returns the *entry* 426 /// mask for the block BB. 427 VectorParts createBlockInMask(BasicBlock *BB); 428 429 /// Vectorize a single PHINode in a block. This method handles the induction 430 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 431 /// arbitrary length vectors. 432 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 433 434 /// A helper function to scalarize a single Instruction in the innermost loop. 435 /// Generates a sequence of scalar instances for each lane between \p MinLane 436 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 437 /// inclusive.. 438 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 439 bool IfPredicateInstr); 440 441 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 442 /// is provided, the integer induction variable will first be truncated to 443 /// the corresponding type. 444 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 445 446 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 447 /// vector or scalar value on-demand if one is not yet available. When 448 /// vectorizing a loop, we visit the definition of an instruction before its 449 /// uses. When visiting the definition, we either vectorize or scalarize the 450 /// instruction, creating an entry for it in the corresponding map. (In some 451 /// cases, such as induction variables, we will create both vector and scalar 452 /// entries.) Then, as we encounter uses of the definition, we derive values 453 /// for each scalar or vector use unless such a value is already available. 454 /// For example, if we scalarize a definition and one of its uses is vector, 455 /// we build the required vector on-demand with an insertelement sequence 456 /// when visiting the use. Otherwise, if the use is scalar, we can use the 457 /// existing scalar definition. 458 /// 459 /// Return a value in the new loop corresponding to \p V from the original 460 /// loop at unroll index \p Part. If the value has already been vectorized, 461 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 462 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 463 /// a new vector value on-demand by inserting the scalar values into a vector 464 /// with an insertelement sequence. If the value has been neither vectorized 465 /// nor scalarized, it must be loop invariant, so we simply broadcast the 466 /// value into a vector. 467 Value *getOrCreateVectorValue(Value *V, unsigned Part); 468 469 /// Return a value in the new loop corresponding to \p V from the original 470 /// loop at unroll and vector indices \p Instance. If the value has been 471 /// vectorized but not scalarized, the necessary extractelement instruction 472 /// will be generated. 473 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 474 475 /// Construct the vector value of a scalarized value \p V one lane at a time. 476 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 477 478 /// Try to vectorize the interleaved access group that \p Instr belongs to. 479 void vectorizeInterleaveGroup(Instruction *Instr); 480 481 protected: 482 /// A small list of PHINodes. 483 typedef SmallVector<PHINode *, 4> PhiVector; 484 485 /// A type for scalarized values in the new loop. Each value from the 486 /// original loop, when scalarized, is represented by UF x VF scalar values 487 /// in the new unrolled loop, where UF is the unroll factor and VF is the 488 /// vectorization factor. 489 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 490 491 // When we if-convert we need to create edge masks. We have to cache values 492 // so that we don't end up with exponential recursion/IR. 493 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 494 EdgeMaskCacheTy; 495 typedef DenseMap<BasicBlock *, VectorParts> BlockMaskCacheTy; 496 497 /// Set up the values of the IVs correctly when exiting the vector loop. 498 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 499 Value *CountRoundDown, Value *EndValue, 500 BasicBlock *MiddleBlock); 501 502 /// Create a new induction variable inside L. 503 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 504 Value *Step, Instruction *DL); 505 506 /// Handle all cross-iteration phis in the header. 507 void fixCrossIterationPHIs(); 508 509 /// Fix a first-order recurrence. This is the second phase of vectorizing 510 /// this phi node. 511 void fixFirstOrderRecurrence(PHINode *Phi); 512 513 /// Fix a reduction cross-iteration phi. This is the second phase of 514 /// vectorizing this phi node. 515 void fixReduction(PHINode *Phi); 516 517 /// \brief The Loop exit block may have single value PHI nodes with some 518 /// incoming value. While vectorizing we only handled real values 519 /// that were defined inside the loop and we should have one value for 520 /// each predecessor of its parent basic block. See PR14725. 521 void fixLCSSAPHIs(); 522 523 /// Iteratively sink the scalarized operands of a predicated instruction into 524 /// the block that was created for it. 525 void sinkScalarOperands(Instruction *PredInst); 526 527 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 528 /// represented as. 529 void truncateToMinimalBitwidths(); 530 531 /// A helper function that computes the predicate of the edge between SRC 532 /// and DST. 533 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 534 535 /// Insert the new loop to the loop hierarchy and pass manager 536 /// and update the analysis passes. 537 void updateAnalysis(); 538 539 /// Vectorize Load and Store instructions, 540 virtual void vectorizeMemoryInstruction(Instruction *Instr); 541 542 /// Create a broadcast instruction. This method generates a broadcast 543 /// instruction (shuffle) for loop invariant values and for the induction 544 /// value. If this is the induction variable then we extend it to N, N+1, ... 545 /// this is needed because each iteration in the loop corresponds to a SIMD 546 /// element. 547 virtual Value *getBroadcastInstrs(Value *V); 548 549 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 550 /// to each vector element of Val. The sequence starts at StartIndex. 551 /// \p Opcode is relevant for FP induction variable. 552 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 553 Instruction::BinaryOps Opcode = 554 Instruction::BinaryOpsEnd); 555 556 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 557 /// variable on which to base the steps, \p Step is the size of the step, and 558 /// \p EntryVal is the value from the original loop that maps to the steps. 559 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 560 /// can be a truncate instruction). 561 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 562 const InductionDescriptor &ID); 563 564 /// Create a vector induction phi node based on an existing scalar one. \p 565 /// EntryVal is the value from the original loop that maps to the vector phi 566 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 567 /// truncate instruction, instead of widening the original IV, we widen a 568 /// version of the IV truncated to \p EntryVal's type. 569 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 570 Value *Step, Instruction *EntryVal); 571 572 /// Returns true if an instruction \p I should be scalarized instead of 573 /// vectorized for the chosen vectorization factor. 574 bool shouldScalarizeInstruction(Instruction *I) const; 575 576 /// Returns true if we should generate a scalar version of \p IV. 577 bool needsScalarInduction(Instruction *IV) const; 578 579 /// Generate a shuffle sequence that will reverse the vector Vec. 580 virtual Value *reverseVector(Value *Vec); 581 582 /// Returns (and creates if needed) the original loop trip count. 583 Value *getOrCreateTripCount(Loop *NewLoop); 584 585 /// Returns (and creates if needed) the trip count of the widened loop. 586 Value *getOrCreateVectorTripCount(Loop *NewLoop); 587 588 /// Emit a bypass check to see if the vector trip count is zero, including if 589 /// it overflows. 590 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 591 /// Emit a bypass check to see if all of the SCEV assumptions we've 592 /// had to make are correct. 593 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 594 /// Emit bypass checks to check any memory assumptions we may have made. 595 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 596 597 /// Add additional metadata to \p To that was not present on \p Orig. 598 /// 599 /// Currently this is used to add the noalias annotations based on the 600 /// inserted memchecks. Use this for instructions that are *cloned* into the 601 /// vector loop. 602 void addNewMetadata(Instruction *To, const Instruction *Orig); 603 604 /// Add metadata from one instruction to another. 605 /// 606 /// This includes both the original MDs from \p From and additional ones (\see 607 /// addNewMetadata). Use this for *newly created* instructions in the vector 608 /// loop. 609 void addMetadata(Instruction *To, Instruction *From); 610 611 /// \brief Similar to the previous function but it adds the metadata to a 612 /// vector of instructions. 613 void addMetadata(ArrayRef<Value *> To, Instruction *From); 614 615 /// \brief Set the debug location in the builder using the debug location in 616 /// the instruction. 617 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 618 619 /// The original loop. 620 Loop *OrigLoop; 621 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 622 /// dynamic knowledge to simplify SCEV expressions and converts them to a 623 /// more usable form. 624 PredicatedScalarEvolution &PSE; 625 /// Loop Info. 626 LoopInfo *LI; 627 /// Dominator Tree. 628 DominatorTree *DT; 629 /// Alias Analysis. 630 AliasAnalysis *AA; 631 /// Target Library Info. 632 const TargetLibraryInfo *TLI; 633 /// Target Transform Info. 634 const TargetTransformInfo *TTI; 635 /// Assumption Cache. 636 AssumptionCache *AC; 637 /// Interface to emit optimization remarks. 638 OptimizationRemarkEmitter *ORE; 639 640 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 641 /// used. 642 /// 643 /// This is currently only used to add no-alias metadata based on the 644 /// memchecks. The actually versioning is performed manually. 645 std::unique_ptr<LoopVersioning> LVer; 646 647 /// The vectorization SIMD factor to use. Each vector will have this many 648 /// vector elements. 649 unsigned VF; 650 651 /// The vectorization unroll factor to use. Each scalar is vectorized to this 652 /// many different vector instructions. 653 unsigned UF; 654 655 /// The builder that we use 656 IRBuilder<> Builder; 657 658 // --- Vectorization state --- 659 660 /// The vector-loop preheader. 661 BasicBlock *LoopVectorPreHeader; 662 /// The scalar-loop preheader. 663 BasicBlock *LoopScalarPreHeader; 664 /// Middle Block between the vector and the scalar. 665 BasicBlock *LoopMiddleBlock; 666 /// The ExitBlock of the scalar loop. 667 BasicBlock *LoopExitBlock; 668 /// The vector loop body. 669 BasicBlock *LoopVectorBody; 670 /// The scalar loop body. 671 BasicBlock *LoopScalarBody; 672 /// A list of all bypass blocks. The first block is the entry of the loop. 673 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 674 675 /// The new Induction variable which was added to the new block. 676 PHINode *Induction; 677 /// The induction variable of the old basic block. 678 PHINode *OldInduction; 679 680 /// Maps values from the original loop to their corresponding values in the 681 /// vectorized loop. A key value can map to either vector values, scalar 682 /// values or both kinds of values, depending on whether the key was 683 /// vectorized and scalarized. 684 VectorizerValueMap VectorLoopValueMap; 685 686 /// Store instructions that were predicated. 687 SmallVector<Instruction *, 4> PredicatedInstructions; 688 EdgeMaskCacheTy EdgeMaskCache; 689 BlockMaskCacheTy BlockMaskCache; 690 /// Trip count of the original loop. 691 Value *TripCount; 692 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 693 Value *VectorTripCount; 694 695 /// The legality analysis. 696 LoopVectorizationLegality *Legal; 697 698 /// The profitablity analysis. 699 LoopVectorizationCostModel *Cost; 700 701 // Record whether runtime checks are added. 702 bool AddedSafetyChecks; 703 704 // Holds the end values for each induction variable. We save the end values 705 // so we can later fix-up the external users of the induction variables. 706 DenseMap<PHINode *, Value *> IVEndValues; 707 708 friend class LoopVectorizationPlanner; 709 }; 710 711 class InnerLoopUnroller : public InnerLoopVectorizer { 712 public: 713 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 714 LoopInfo *LI, DominatorTree *DT, 715 const TargetLibraryInfo *TLI, 716 const TargetTransformInfo *TTI, AssumptionCache *AC, 717 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 718 LoopVectorizationLegality *LVL, 719 LoopVectorizationCostModel *CM) 720 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 721 UnrollFactor, LVL, CM) {} 722 723 private: 724 Value *getBroadcastInstrs(Value *V) override; 725 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 726 Instruction::BinaryOps Opcode = 727 Instruction::BinaryOpsEnd) override; 728 Value *reverseVector(Value *Vec) override; 729 }; 730 731 /// \brief Look for a meaningful debug location on the instruction or it's 732 /// operands. 733 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 734 if (!I) 735 return I; 736 737 DebugLoc Empty; 738 if (I->getDebugLoc() != Empty) 739 return I; 740 741 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 742 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 743 if (OpInst->getDebugLoc() != Empty) 744 return OpInst; 745 } 746 747 return I; 748 } 749 750 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 751 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 752 const DILocation *DIL = Inst->getDebugLoc(); 753 if (DIL && Inst->getFunction()->isDebugInfoForProfiling()) 754 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 755 else 756 B.SetCurrentDebugLocation(DIL); 757 } else 758 B.SetCurrentDebugLocation(DebugLoc()); 759 } 760 761 #ifndef NDEBUG 762 /// \return string containing a file name and a line # for the given loop. 763 static std::string getDebugLocString(const Loop *L) { 764 std::string Result; 765 if (L) { 766 raw_string_ostream OS(Result); 767 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 768 LoopDbgLoc.print(OS); 769 else 770 // Just print the module name. 771 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 772 OS.flush(); 773 } 774 return Result; 775 } 776 #endif 777 778 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 779 const Instruction *Orig) { 780 // If the loop was versioned with memchecks, add the corresponding no-alias 781 // metadata. 782 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 783 LVer->annotateInstWithNoAlias(To, Orig); 784 } 785 786 void InnerLoopVectorizer::addMetadata(Instruction *To, 787 Instruction *From) { 788 propagateMetadata(To, From); 789 addNewMetadata(To, From); 790 } 791 792 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 793 Instruction *From) { 794 for (Value *V : To) { 795 if (Instruction *I = dyn_cast<Instruction>(V)) 796 addMetadata(I, From); 797 } 798 } 799 800 } // namespace llvm 801 802 namespace { 803 804 /// \brief The group of interleaved loads/stores sharing the same stride and 805 /// close to each other. 806 /// 807 /// Each member in this group has an index starting from 0, and the largest 808 /// index should be less than interleaved factor, which is equal to the absolute 809 /// value of the access's stride. 810 /// 811 /// E.g. An interleaved load group of factor 4: 812 /// for (unsigned i = 0; i < 1024; i+=4) { 813 /// a = A[i]; // Member of index 0 814 /// b = A[i+1]; // Member of index 1 815 /// d = A[i+3]; // Member of index 3 816 /// ... 817 /// } 818 /// 819 /// An interleaved store group of factor 4: 820 /// for (unsigned i = 0; i < 1024; i+=4) { 821 /// ... 822 /// A[i] = a; // Member of index 0 823 /// A[i+1] = b; // Member of index 1 824 /// A[i+2] = c; // Member of index 2 825 /// A[i+3] = d; // Member of index 3 826 /// } 827 /// 828 /// Note: the interleaved load group could have gaps (missing members), but 829 /// the interleaved store group doesn't allow gaps. 830 class InterleaveGroup { 831 public: 832 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 833 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 834 assert(Align && "The alignment should be non-zero"); 835 836 Factor = std::abs(Stride); 837 assert(Factor > 1 && "Invalid interleave factor"); 838 839 Reverse = Stride < 0; 840 Members[0] = Instr; 841 } 842 843 bool isReverse() const { return Reverse; } 844 unsigned getFactor() const { return Factor; } 845 unsigned getAlignment() const { return Align; } 846 unsigned getNumMembers() const { return Members.size(); } 847 848 /// \brief Try to insert a new member \p Instr with index \p Index and 849 /// alignment \p NewAlign. The index is related to the leader and it could be 850 /// negative if it is the new leader. 851 /// 852 /// \returns false if the instruction doesn't belong to the group. 853 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 854 assert(NewAlign && "The new member's alignment should be non-zero"); 855 856 int Key = Index + SmallestKey; 857 858 // Skip if there is already a member with the same index. 859 if (Members.count(Key)) 860 return false; 861 862 if (Key > LargestKey) { 863 // The largest index is always less than the interleave factor. 864 if (Index >= static_cast<int>(Factor)) 865 return false; 866 867 LargestKey = Key; 868 } else if (Key < SmallestKey) { 869 // The largest index is always less than the interleave factor. 870 if (LargestKey - Key >= static_cast<int>(Factor)) 871 return false; 872 873 SmallestKey = Key; 874 } 875 876 // It's always safe to select the minimum alignment. 877 Align = std::min(Align, NewAlign); 878 Members[Key] = Instr; 879 return true; 880 } 881 882 /// \brief Get the member with the given index \p Index 883 /// 884 /// \returns nullptr if contains no such member. 885 Instruction *getMember(unsigned Index) const { 886 int Key = SmallestKey + Index; 887 if (!Members.count(Key)) 888 return nullptr; 889 890 return Members.find(Key)->second; 891 } 892 893 /// \brief Get the index for the given member. Unlike the key in the member 894 /// map, the index starts from 0. 895 unsigned getIndex(Instruction *Instr) const { 896 for (auto I : Members) 897 if (I.second == Instr) 898 return I.first - SmallestKey; 899 900 llvm_unreachable("InterleaveGroup contains no such member"); 901 } 902 903 Instruction *getInsertPos() const { return InsertPos; } 904 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 905 906 private: 907 unsigned Factor; // Interleave Factor. 908 bool Reverse; 909 unsigned Align; 910 DenseMap<int, Instruction *> Members; 911 int SmallestKey; 912 int LargestKey; 913 914 // To avoid breaking dependences, vectorized instructions of an interleave 915 // group should be inserted at either the first load or the last store in 916 // program order. 917 // 918 // E.g. %even = load i32 // Insert Position 919 // %add = add i32 %even // Use of %even 920 // %odd = load i32 921 // 922 // store i32 %even 923 // %odd = add i32 // Def of %odd 924 // store i32 %odd // Insert Position 925 Instruction *InsertPos; 926 }; 927 928 /// \brief Drive the analysis of interleaved memory accesses in the loop. 929 /// 930 /// Use this class to analyze interleaved accesses only when we can vectorize 931 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 932 /// on interleaved accesses is unsafe. 933 /// 934 /// The analysis collects interleave groups and records the relationships 935 /// between the member and the group in a map. 936 class InterleavedAccessInfo { 937 public: 938 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 939 DominatorTree *DT, LoopInfo *LI) 940 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 941 RequiresScalarEpilogue(false) {} 942 943 ~InterleavedAccessInfo() { 944 SmallSet<InterleaveGroup *, 4> DelSet; 945 // Avoid releasing a pointer twice. 946 for (auto &I : InterleaveGroupMap) 947 DelSet.insert(I.second); 948 for (auto *Ptr : DelSet) 949 delete Ptr; 950 } 951 952 /// \brief Analyze the interleaved accesses and collect them in interleave 953 /// groups. Substitute symbolic strides using \p Strides. 954 void analyzeInterleaving(const ValueToValueMap &Strides); 955 956 /// \brief Check if \p Instr belongs to any interleave group. 957 bool isInterleaved(Instruction *Instr) const { 958 return InterleaveGroupMap.count(Instr); 959 } 960 961 /// \brief Return the maximum interleave factor of all interleaved groups. 962 unsigned getMaxInterleaveFactor() const { 963 unsigned MaxFactor = 1; 964 for (auto &Entry : InterleaveGroupMap) 965 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 966 return MaxFactor; 967 } 968 969 /// \brief Get the interleave group that \p Instr belongs to. 970 /// 971 /// \returns nullptr if doesn't have such group. 972 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 973 if (InterleaveGroupMap.count(Instr)) 974 return InterleaveGroupMap.find(Instr)->second; 975 return nullptr; 976 } 977 978 /// \brief Returns true if an interleaved group that may access memory 979 /// out-of-bounds requires a scalar epilogue iteration for correctness. 980 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 981 982 /// \brief Initialize the LoopAccessInfo used for dependence checking. 983 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 984 985 private: 986 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 987 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 988 /// The interleaved access analysis can also add new predicates (for example 989 /// by versioning strides of pointers). 990 PredicatedScalarEvolution &PSE; 991 Loop *TheLoop; 992 DominatorTree *DT; 993 LoopInfo *LI; 994 const LoopAccessInfo *LAI; 995 996 /// True if the loop may contain non-reversed interleaved groups with 997 /// out-of-bounds accesses. We ensure we don't speculatively access memory 998 /// out-of-bounds by executing at least one scalar epilogue iteration. 999 bool RequiresScalarEpilogue; 1000 1001 /// Holds the relationships between the members and the interleave group. 1002 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1003 1004 /// Holds dependences among the memory accesses in the loop. It maps a source 1005 /// access to a set of dependent sink accesses. 1006 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1007 1008 /// \brief The descriptor for a strided memory access. 1009 struct StrideDescriptor { 1010 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1011 unsigned Align) 1012 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1013 1014 StrideDescriptor() = default; 1015 1016 // The access's stride. It is negative for a reverse access. 1017 int64_t Stride = 0; 1018 const SCEV *Scev = nullptr; // The scalar expression of this access 1019 uint64_t Size = 0; // The size of the memory object. 1020 unsigned Align = 0; // The alignment of this access. 1021 }; 1022 1023 /// \brief A type for holding instructions and their stride descriptors. 1024 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1025 1026 /// \brief Create a new interleave group with the given instruction \p Instr, 1027 /// stride \p Stride and alignment \p Align. 1028 /// 1029 /// \returns the newly created interleave group. 1030 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1031 unsigned Align) { 1032 assert(!InterleaveGroupMap.count(Instr) && 1033 "Already in an interleaved access group"); 1034 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1035 return InterleaveGroupMap[Instr]; 1036 } 1037 1038 /// \brief Release the group and remove all the relationships. 1039 void releaseGroup(InterleaveGroup *Group) { 1040 for (unsigned i = 0; i < Group->getFactor(); i++) 1041 if (Instruction *Member = Group->getMember(i)) 1042 InterleaveGroupMap.erase(Member); 1043 1044 delete Group; 1045 } 1046 1047 /// \brief Collect all the accesses with a constant stride in program order. 1048 void collectConstStrideAccesses( 1049 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1050 const ValueToValueMap &Strides); 1051 1052 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1053 static bool isStrided(int Stride) { 1054 unsigned Factor = std::abs(Stride); 1055 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1056 } 1057 1058 /// \brief Returns true if \p BB is a predicated block. 1059 bool isPredicated(BasicBlock *BB) const { 1060 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1061 } 1062 1063 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1064 bool areDependencesValid() const { 1065 return LAI && LAI->getDepChecker().getDependences(); 1066 } 1067 1068 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1069 /// necessary, when constructing interleaved groups. 1070 /// 1071 /// \p A must precede \p B in program order. We return false if reordering is 1072 /// not necessary or is prevented because \p A and \p B may be dependent. 1073 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1074 StrideEntry *B) const { 1075 1076 // Code motion for interleaved accesses can potentially hoist strided loads 1077 // and sink strided stores. The code below checks the legality of the 1078 // following two conditions: 1079 // 1080 // 1. Potentially moving a strided load (B) before any store (A) that 1081 // precedes B, or 1082 // 1083 // 2. Potentially moving a strided store (A) after any load or store (B) 1084 // that A precedes. 1085 // 1086 // It's legal to reorder A and B if we know there isn't a dependence from A 1087 // to B. Note that this determination is conservative since some 1088 // dependences could potentially be reordered safely. 1089 1090 // A is potentially the source of a dependence. 1091 auto *Src = A->first; 1092 auto SrcDes = A->second; 1093 1094 // B is potentially the sink of a dependence. 1095 auto *Sink = B->first; 1096 auto SinkDes = B->second; 1097 1098 // Code motion for interleaved accesses can't violate WAR dependences. 1099 // Thus, reordering is legal if the source isn't a write. 1100 if (!Src->mayWriteToMemory()) 1101 return true; 1102 1103 // At least one of the accesses must be strided. 1104 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1105 return true; 1106 1107 // If dependence information is not available from LoopAccessInfo, 1108 // conservatively assume the instructions can't be reordered. 1109 if (!areDependencesValid()) 1110 return false; 1111 1112 // If we know there is a dependence from source to sink, assume the 1113 // instructions can't be reordered. Otherwise, reordering is legal. 1114 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1115 } 1116 1117 /// \brief Collect the dependences from LoopAccessInfo. 1118 /// 1119 /// We process the dependences once during the interleaved access analysis to 1120 /// enable constant-time dependence queries. 1121 void collectDependences() { 1122 if (!areDependencesValid()) 1123 return; 1124 auto *Deps = LAI->getDepChecker().getDependences(); 1125 for (auto Dep : *Deps) 1126 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1127 } 1128 }; 1129 1130 /// Utility class for getting and setting loop vectorizer hints in the form 1131 /// of loop metadata. 1132 /// This class keeps a number of loop annotations locally (as member variables) 1133 /// and can, upon request, write them back as metadata on the loop. It will 1134 /// initially scan the loop for existing metadata, and will update the local 1135 /// values based on information in the loop. 1136 /// We cannot write all values to metadata, as the mere presence of some info, 1137 /// for example 'force', means a decision has been made. So, we need to be 1138 /// careful NOT to add them if the user hasn't specifically asked so. 1139 class LoopVectorizeHints { 1140 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED }; 1141 1142 /// Hint - associates name and validation with the hint value. 1143 struct Hint { 1144 const char *Name; 1145 unsigned Value; // This may have to change for non-numeric values. 1146 HintKind Kind; 1147 1148 Hint(const char *Name, unsigned Value, HintKind Kind) 1149 : Name(Name), Value(Value), Kind(Kind) {} 1150 1151 bool validate(unsigned Val) { 1152 switch (Kind) { 1153 case HK_WIDTH: 1154 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1155 case HK_UNROLL: 1156 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1157 case HK_FORCE: 1158 return (Val <= 1); 1159 case HK_ISVECTORIZED: 1160 return (Val==0 || Val==1); 1161 } 1162 return false; 1163 } 1164 }; 1165 1166 /// Vectorization width. 1167 Hint Width; 1168 /// Vectorization interleave factor. 1169 Hint Interleave; 1170 /// Vectorization forced 1171 Hint Force; 1172 1173 /// Already Vectorized 1174 Hint IsVectorized; 1175 /// Return the loop metadata prefix. 1176 static StringRef Prefix() { return "llvm.loop."; } 1177 1178 /// True if there is any unsafe math in the loop. 1179 bool PotentiallyUnsafe; 1180 1181 public: 1182 enum ForceKind { 1183 FK_Undefined = -1, ///< Not selected. 1184 FK_Disabled = 0, ///< Forcing disabled. 1185 FK_Enabled = 1, ///< Forcing enabled. 1186 }; 1187 1188 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1189 OptimizationRemarkEmitter &ORE) 1190 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1191 HK_WIDTH), 1192 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1193 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1194 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 1195 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1196 // Populate values with existing loop metadata. 1197 getHintsFromMetadata(); 1198 1199 // force-vector-interleave overrides DisableInterleaving. 1200 if (VectorizerParams::isInterleaveForced()) 1201 Interleave.Value = VectorizerParams::VectorizationInterleave; 1202 1203 if (IsVectorized.Value != 1) 1204 // If the vectorization width and interleaving count are both 1 then 1205 // consider the loop to have been already vectorized because there's 1206 // nothing more that we can do. 1207 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 1208 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1209 << "LV: Interleaving disabled by the pass manager\n"); 1210 } 1211 1212 /// Mark the loop L as already vectorized by setting the width to 1. 1213 void setAlreadyVectorized() { 1214 IsVectorized.Value = 1; 1215 Hint Hints[] = {IsVectorized}; 1216 writeHintsToMetadata(Hints); 1217 } 1218 1219 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1220 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1221 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1222 emitRemarkWithHints(); 1223 return false; 1224 } 1225 1226 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1227 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1228 emitRemarkWithHints(); 1229 return false; 1230 } 1231 1232 if (getIsVectorized() == 1) { 1233 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1234 // FIXME: Add interleave.disable metadata. This will allow 1235 // vectorize.disable to be used without disabling the pass and errors 1236 // to differentiate between disabled vectorization and a width of 1. 1237 ORE.emit(OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1238 "AllDisabled", L->getStartLoc(), 1239 L->getHeader()) 1240 << "loop not vectorized: vectorization and interleaving are " 1241 "explicitly disabled, or the loop has already been " 1242 "vectorized"); 1243 return false; 1244 } 1245 1246 return true; 1247 } 1248 1249 /// Dumps all the hint information. 1250 void emitRemarkWithHints() const { 1251 using namespace ore; 1252 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1253 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1254 TheLoop->getStartLoc(), 1255 TheLoop->getHeader()) 1256 << "loop not vectorized: vectorization is explicitly disabled"); 1257 else { 1258 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1259 TheLoop->getStartLoc(), TheLoop->getHeader()); 1260 R << "loop not vectorized"; 1261 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1262 R << " (Force=" << NV("Force", true); 1263 if (Width.Value != 0) 1264 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1265 if (Interleave.Value != 0) 1266 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1267 R << ")"; 1268 } 1269 ORE.emit(R); 1270 } 1271 } 1272 1273 unsigned getWidth() const { return Width.Value; } 1274 unsigned getInterleave() const { return Interleave.Value; } 1275 unsigned getIsVectorized() const { return IsVectorized.Value; } 1276 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1277 1278 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1279 /// pass name to force the frontend to print the diagnostic. 1280 const char *vectorizeAnalysisPassName() const { 1281 if (getWidth() == 1) 1282 return LV_NAME; 1283 if (getForce() == LoopVectorizeHints::FK_Disabled) 1284 return LV_NAME; 1285 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1286 return LV_NAME; 1287 return OptimizationRemarkAnalysis::AlwaysPrint; 1288 } 1289 1290 bool allowReordering() const { 1291 // When enabling loop hints are provided we allow the vectorizer to change 1292 // the order of operations that is given by the scalar loop. This is not 1293 // enabled by default because can be unsafe or inefficient. For example, 1294 // reordering floating-point operations will change the way round-off 1295 // error accumulates in the loop. 1296 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1297 } 1298 1299 bool isPotentiallyUnsafe() const { 1300 // Avoid FP vectorization if the target is unsure about proper support. 1301 // This may be related to the SIMD unit in the target not handling 1302 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1303 // Otherwise, a sequence of vectorized loops, even without reduction, 1304 // could lead to different end results on the destination vectors. 1305 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1306 } 1307 1308 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1309 1310 private: 1311 /// Find hints specified in the loop metadata and update local values. 1312 void getHintsFromMetadata() { 1313 MDNode *LoopID = TheLoop->getLoopID(); 1314 if (!LoopID) 1315 return; 1316 1317 // First operand should refer to the loop id itself. 1318 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1319 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1320 1321 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1322 const MDString *S = nullptr; 1323 SmallVector<Metadata *, 4> Args; 1324 1325 // The expected hint is either a MDString or a MDNode with the first 1326 // operand a MDString. 1327 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1328 if (!MD || MD->getNumOperands() == 0) 1329 continue; 1330 S = dyn_cast<MDString>(MD->getOperand(0)); 1331 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1332 Args.push_back(MD->getOperand(i)); 1333 } else { 1334 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1335 assert(Args.size() == 0 && "too many arguments for MDString"); 1336 } 1337 1338 if (!S) 1339 continue; 1340 1341 // Check if the hint starts with the loop metadata prefix. 1342 StringRef Name = S->getString(); 1343 if (Args.size() == 1) 1344 setHint(Name, Args[0]); 1345 } 1346 } 1347 1348 /// Checks string hint with one operand and set value if valid. 1349 void setHint(StringRef Name, Metadata *Arg) { 1350 if (!Name.startswith(Prefix())) 1351 return; 1352 Name = Name.substr(Prefix().size(), StringRef::npos); 1353 1354 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1355 if (!C) 1356 return; 1357 unsigned Val = C->getZExtValue(); 1358 1359 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 1360 for (auto H : Hints) { 1361 if (Name == H->Name) { 1362 if (H->validate(Val)) 1363 H->Value = Val; 1364 else 1365 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1366 break; 1367 } 1368 } 1369 } 1370 1371 /// Create a new hint from name / value pair. 1372 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1373 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1374 Metadata *MDs[] = {MDString::get(Context, Name), 1375 ConstantAsMetadata::get( 1376 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1377 return MDNode::get(Context, MDs); 1378 } 1379 1380 /// Matches metadata with hint name. 1381 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1382 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1383 if (!Name) 1384 return false; 1385 1386 for (auto H : HintTypes) 1387 if (Name->getString().endswith(H.Name)) 1388 return true; 1389 return false; 1390 } 1391 1392 /// Sets current hints into loop metadata, keeping other values intact. 1393 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1394 if (HintTypes.size() == 0) 1395 return; 1396 1397 // Reserve the first element to LoopID (see below). 1398 SmallVector<Metadata *, 4> MDs(1); 1399 // If the loop already has metadata, then ignore the existing operands. 1400 MDNode *LoopID = TheLoop->getLoopID(); 1401 if (LoopID) { 1402 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1403 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1404 // If node in update list, ignore old value. 1405 if (!matchesHintMetadataName(Node, HintTypes)) 1406 MDs.push_back(Node); 1407 } 1408 } 1409 1410 // Now, add the missing hints. 1411 for (auto H : HintTypes) 1412 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1413 1414 // Replace current metadata node with new one. 1415 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1416 MDNode *NewLoopID = MDNode::get(Context, MDs); 1417 // Set operand 0 to refer to the loop id itself. 1418 NewLoopID->replaceOperandWith(0, NewLoopID); 1419 1420 TheLoop->setLoopID(NewLoopID); 1421 } 1422 1423 /// The loop these hints belong to. 1424 const Loop *TheLoop; 1425 1426 /// Interface to emit optimization remarks. 1427 OptimizationRemarkEmitter &ORE; 1428 }; 1429 1430 static void emitMissedWarning(Function *F, Loop *L, 1431 const LoopVectorizeHints &LH, 1432 OptimizationRemarkEmitter *ORE) { 1433 LH.emitRemarkWithHints(); 1434 1435 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1436 if (LH.getWidth() != 1) 1437 ORE->emit(DiagnosticInfoOptimizationFailure( 1438 DEBUG_TYPE, "FailedRequestedVectorization", 1439 L->getStartLoc(), L->getHeader()) 1440 << "loop not vectorized: " 1441 << "failed explicitly specified loop vectorization"); 1442 else if (LH.getInterleave() != 1) 1443 ORE->emit(DiagnosticInfoOptimizationFailure( 1444 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1445 L->getHeader()) 1446 << "loop not interleaved: " 1447 << "failed explicitly specified loop interleaving"); 1448 } 1449 } 1450 1451 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1452 /// to what vectorization factor. 1453 /// This class does not look at the profitability of vectorization, only the 1454 /// legality. This class has two main kinds of checks: 1455 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1456 /// will change the order of memory accesses in a way that will change the 1457 /// correctness of the program. 1458 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1459 /// checks for a number of different conditions, such as the availability of a 1460 /// single induction variable, that all types are supported and vectorize-able, 1461 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1462 /// This class is also used by InnerLoopVectorizer for identifying 1463 /// induction variable and the different reduction variables. 1464 class LoopVectorizationLegality { 1465 public: 1466 LoopVectorizationLegality( 1467 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1468 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1469 const TargetTransformInfo *TTI, 1470 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1471 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1472 LoopVectorizeHints *H) 1473 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1474 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1475 PrimaryInduction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1476 Requirements(R), Hints(H) {} 1477 1478 /// ReductionList contains the reduction descriptors for all 1479 /// of the reductions that were found in the loop. 1480 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1481 1482 /// InductionList saves induction variables and maps them to the 1483 /// induction descriptor. 1484 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1485 1486 /// RecurrenceSet contains the phi nodes that are recurrences other than 1487 /// inductions and reductions. 1488 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1489 1490 /// Returns true if it is legal to vectorize this loop. 1491 /// This does not mean that it is profitable to vectorize this 1492 /// loop, only that it is legal to do so. 1493 bool canVectorize(); 1494 1495 /// Returns the primary induction variable. 1496 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1497 1498 /// Returns the reduction variables found in the loop. 1499 ReductionList *getReductionVars() { return &Reductions; } 1500 1501 /// Returns the induction variables found in the loop. 1502 InductionList *getInductionVars() { return &Inductions; } 1503 1504 /// Return the first-order recurrences found in the loop. 1505 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1506 1507 /// Return the set of instructions to sink to handle first-order recurrences. 1508 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1509 1510 /// Returns the widest induction type. 1511 Type *getWidestInductionType() { return WidestIndTy; } 1512 1513 /// Returns True if V is an induction variable in this loop. 1514 bool isInductionVariable(const Value *V); 1515 1516 /// Returns True if PN is a reduction variable in this loop. 1517 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1518 1519 /// Returns True if Phi is a first-order recurrence in this loop. 1520 bool isFirstOrderRecurrence(const PHINode *Phi); 1521 1522 /// Return true if the block BB needs to be predicated in order for the loop 1523 /// to be vectorized. 1524 bool blockNeedsPredication(BasicBlock *BB); 1525 1526 /// Check if this pointer is consecutive when vectorizing. This happens 1527 /// when the last index of the GEP is the induction variable, or that the 1528 /// pointer itself is an induction variable. 1529 /// This check allows us to vectorize A[idx] into a wide load/store. 1530 /// Returns: 1531 /// 0 - Stride is unknown or non-consecutive. 1532 /// 1 - Address is consecutive. 1533 /// -1 - Address is consecutive, and decreasing. 1534 int isConsecutivePtr(Value *Ptr); 1535 1536 /// Returns true if the value V is uniform within the loop. 1537 bool isUniform(Value *V); 1538 1539 /// Returns the information that we collected about runtime memory check. 1540 const RuntimePointerChecking *getRuntimePointerChecking() const { 1541 return LAI->getRuntimePointerChecking(); 1542 } 1543 1544 const LoopAccessInfo *getLAI() const { return LAI; } 1545 1546 /// \brief Check if \p Instr belongs to any interleaved access group. 1547 bool isAccessInterleaved(Instruction *Instr) { 1548 return InterleaveInfo.isInterleaved(Instr); 1549 } 1550 1551 /// \brief Return the maximum interleave factor of all interleaved groups. 1552 unsigned getMaxInterleaveFactor() const { 1553 return InterleaveInfo.getMaxInterleaveFactor(); 1554 } 1555 1556 /// \brief Get the interleaved access group that \p Instr belongs to. 1557 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1558 return InterleaveInfo.getInterleaveGroup(Instr); 1559 } 1560 1561 /// \brief Returns true if an interleaved group requires a scalar iteration 1562 /// to handle accesses with gaps. 1563 bool requiresScalarEpilogue() const { 1564 return InterleaveInfo.requiresScalarEpilogue(); 1565 } 1566 1567 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1568 1569 bool hasStride(Value *V) { return LAI->hasStride(V); } 1570 1571 /// Returns true if the target machine supports masked store operation 1572 /// for the given \p DataType and kind of access to \p Ptr. 1573 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1574 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1575 } 1576 /// Returns true if the target machine supports masked load operation 1577 /// for the given \p DataType and kind of access to \p Ptr. 1578 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1579 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1580 } 1581 /// Returns true if the target machine supports masked scatter operation 1582 /// for the given \p DataType. 1583 bool isLegalMaskedScatter(Type *DataType) { 1584 return TTI->isLegalMaskedScatter(DataType); 1585 } 1586 /// Returns true if the target machine supports masked gather operation 1587 /// for the given \p DataType. 1588 bool isLegalMaskedGather(Type *DataType) { 1589 return TTI->isLegalMaskedGather(DataType); 1590 } 1591 /// Returns true if the target machine can represent \p V as a masked gather 1592 /// or scatter operation. 1593 bool isLegalGatherOrScatter(Value *V) { 1594 auto *LI = dyn_cast<LoadInst>(V); 1595 auto *SI = dyn_cast<StoreInst>(V); 1596 if (!LI && !SI) 1597 return false; 1598 auto *Ptr = getPointerOperand(V); 1599 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1600 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1601 } 1602 1603 /// Returns true if vector representation of the instruction \p I 1604 /// requires mask. 1605 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1606 unsigned getNumStores() const { return LAI->getNumStores(); } 1607 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1608 unsigned getNumPredStores() const { return NumPredStores; } 1609 1610 /// Returns true if \p I is an instruction that will be scalarized with 1611 /// predication. Such instructions include conditional stores and 1612 /// instructions that may divide by zero. 1613 bool isScalarWithPredication(Instruction *I); 1614 1615 /// Returns true if \p I is a memory instruction with consecutive memory 1616 /// access that can be widened. 1617 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1618 1619 // Returns true if the NoNaN attribute is set on the function. 1620 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1621 1622 private: 1623 /// Check if a single basic block loop is vectorizable. 1624 /// At this point we know that this is a loop with a constant trip count 1625 /// and we only need to check individual instructions. 1626 bool canVectorizeInstrs(); 1627 1628 /// When we vectorize loops we may change the order in which 1629 /// we read and write from memory. This method checks if it is 1630 /// legal to vectorize the code, considering only memory constrains. 1631 /// Returns true if the loop is vectorizable 1632 bool canVectorizeMemory(); 1633 1634 /// Return true if we can vectorize this loop using the IF-conversion 1635 /// transformation. 1636 bool canVectorizeWithIfConvert(); 1637 1638 /// Return true if all of the instructions in the block can be speculatively 1639 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1640 /// and we know that we can read from them without segfault. 1641 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1642 1643 /// Updates the vectorization state by adding \p Phi to the inductions list. 1644 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1645 /// better choice for the main induction than the existing one. 1646 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1647 SmallPtrSetImpl<Value *> &AllowedExit); 1648 1649 /// Create an analysis remark that explains why vectorization failed 1650 /// 1651 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1652 /// an instruction that prevents vectorization. Otherwise the loop is used 1653 /// for the location of the remark. \return the remark object that can be 1654 /// streamed to. 1655 OptimizationRemarkAnalysis 1656 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1657 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1658 RemarkName, TheLoop, I); 1659 } 1660 1661 /// \brief If an access has a symbolic strides, this maps the pointer value to 1662 /// the stride symbol. 1663 const ValueToValueMap *getSymbolicStrides() { 1664 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1665 // it's collected. This happens from canVectorizeWithIfConvert, when the 1666 // pointer is checked to reference consecutive elements suitable for a 1667 // masked access. 1668 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1669 } 1670 1671 unsigned NumPredStores; 1672 1673 /// The loop that we evaluate. 1674 Loop *TheLoop; 1675 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1676 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1677 /// of existing SCEV assumptions. The analysis will also add a minimal set 1678 /// of new predicates if this is required to enable vectorization and 1679 /// unrolling. 1680 PredicatedScalarEvolution &PSE; 1681 /// Target Library Info. 1682 TargetLibraryInfo *TLI; 1683 /// Target Transform Info 1684 const TargetTransformInfo *TTI; 1685 /// Dominator Tree. 1686 DominatorTree *DT; 1687 // LoopAccess analysis. 1688 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1689 // And the loop-accesses info corresponding to this loop. This pointer is 1690 // null until canVectorizeMemory sets it up. 1691 const LoopAccessInfo *LAI; 1692 /// Interface to emit optimization remarks. 1693 OptimizationRemarkEmitter *ORE; 1694 1695 /// The interleave access information contains groups of interleaved accesses 1696 /// with the same stride and close to each other. 1697 InterleavedAccessInfo InterleaveInfo; 1698 1699 // --- vectorization state --- // 1700 1701 /// Holds the primary induction variable. This is the counter of the 1702 /// loop. 1703 PHINode *PrimaryInduction; 1704 /// Holds the reduction variables. 1705 ReductionList Reductions; 1706 /// Holds all of the induction variables that we found in the loop. 1707 /// Notice that inductions don't need to start at zero and that induction 1708 /// variables can be pointers. 1709 InductionList Inductions; 1710 /// Holds the phi nodes that are first-order recurrences. 1711 RecurrenceSet FirstOrderRecurrences; 1712 /// Holds instructions that need to sink past other instructions to handle 1713 /// first-order recurrences. 1714 DenseMap<Instruction *, Instruction *> SinkAfter; 1715 /// Holds the widest induction type encountered. 1716 Type *WidestIndTy; 1717 1718 /// Allowed outside users. This holds the induction and reduction 1719 /// vars which can be accessed from outside the loop. 1720 SmallPtrSet<Value *, 4> AllowedExit; 1721 1722 /// Can we assume the absence of NaNs. 1723 bool HasFunNoNaNAttr; 1724 1725 /// Vectorization requirements that will go through late-evaluation. 1726 LoopVectorizationRequirements *Requirements; 1727 1728 /// Used to emit an analysis of any legality issues. 1729 LoopVectorizeHints *Hints; 1730 1731 /// While vectorizing these instructions we have to generate a 1732 /// call to the appropriate masked intrinsic 1733 SmallPtrSet<const Instruction *, 8> MaskedOp; 1734 }; 1735 1736 /// LoopVectorizationCostModel - estimates the expected speedups due to 1737 /// vectorization. 1738 /// In many cases vectorization is not profitable. This can happen because of 1739 /// a number of reasons. In this class we mainly attempt to predict the 1740 /// expected speedup/slowdowns due to the supported instruction set. We use the 1741 /// TargetTransformInfo to query the different backends for the cost of 1742 /// different operations. 1743 class LoopVectorizationCostModel { 1744 public: 1745 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1746 LoopInfo *LI, LoopVectorizationLegality *Legal, 1747 const TargetTransformInfo &TTI, 1748 const TargetLibraryInfo *TLI, DemandedBits *DB, 1749 AssumptionCache *AC, 1750 OptimizationRemarkEmitter *ORE, const Function *F, 1751 const LoopVectorizeHints *Hints) 1752 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1753 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1754 1755 /// \return An upper bound for the vectorization factor, or None if 1756 /// vectorization should be avoided up front. 1757 Optional<unsigned> computeMaxVF(bool OptForSize); 1758 1759 /// Information about vectorization costs 1760 struct VectorizationFactor { 1761 unsigned Width; // Vector width with best cost 1762 unsigned Cost; // Cost of the loop with that width 1763 }; 1764 /// \return The most profitable vectorization factor and the cost of that VF. 1765 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1766 /// then this vectorization factor will be selected if vectorization is 1767 /// possible. 1768 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1769 1770 /// Setup cost-based decisions for user vectorization factor. 1771 void selectUserVectorizationFactor(unsigned UserVF) { 1772 collectUniformsAndScalars(UserVF); 1773 collectInstsToScalarize(UserVF); 1774 } 1775 1776 /// \return The size (in bits) of the smallest and widest types in the code 1777 /// that needs to be vectorized. We ignore values that remain scalar such as 1778 /// 64 bit loop indices. 1779 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1780 1781 /// \return The desired interleave count. 1782 /// If interleave count has been specified by metadata it will be returned. 1783 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1784 /// are the selected vectorization factor and the cost of the selected VF. 1785 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1786 unsigned LoopCost); 1787 1788 /// Memory access instruction may be vectorized in more than one way. 1789 /// Form of instruction after vectorization depends on cost. 1790 /// This function takes cost-based decisions for Load/Store instructions 1791 /// and collects them in a map. This decisions map is used for building 1792 /// the lists of loop-uniform and loop-scalar instructions. 1793 /// The calculated cost is saved with widening decision in order to 1794 /// avoid redundant calculations. 1795 void setCostBasedWideningDecision(unsigned VF); 1796 1797 /// \brief A struct that represents some properties of the register usage 1798 /// of a loop. 1799 struct RegisterUsage { 1800 /// Holds the number of loop invariant values that are used in the loop. 1801 unsigned LoopInvariantRegs; 1802 /// Holds the maximum number of concurrent live intervals in the loop. 1803 unsigned MaxLocalUsers; 1804 /// Holds the number of instructions in the loop. 1805 unsigned NumInstructions; 1806 }; 1807 1808 /// \return Returns information about the register usages of the loop for the 1809 /// given vectorization factors. 1810 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1811 1812 /// Collect values we want to ignore in the cost model. 1813 void collectValuesToIgnore(); 1814 1815 /// \returns The smallest bitwidth each instruction can be represented with. 1816 /// The vector equivalents of these instructions should be truncated to this 1817 /// type. 1818 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1819 return MinBWs; 1820 } 1821 1822 /// \returns True if it is more profitable to scalarize instruction \p I for 1823 /// vectorization factor \p VF. 1824 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1825 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1826 auto Scalars = InstsToScalarize.find(VF); 1827 assert(Scalars != InstsToScalarize.end() && 1828 "VF not yet analyzed for scalarization profitability"); 1829 return Scalars->second.count(I); 1830 } 1831 1832 /// Returns true if \p I is known to be uniform after vectorization. 1833 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1834 if (VF == 1) 1835 return true; 1836 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1837 auto UniformsPerVF = Uniforms.find(VF); 1838 return UniformsPerVF->second.count(I); 1839 } 1840 1841 /// Returns true if \p I is known to be scalar after vectorization. 1842 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1843 if (VF == 1) 1844 return true; 1845 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1846 auto ScalarsPerVF = Scalars.find(VF); 1847 return ScalarsPerVF->second.count(I); 1848 } 1849 1850 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1851 /// for vectorization factor \p VF. 1852 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1853 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1854 !isScalarAfterVectorization(I, VF); 1855 } 1856 1857 /// Decision that was taken during cost calculation for memory instruction. 1858 enum InstWidening { 1859 CM_Unknown, 1860 CM_Widen, 1861 CM_Interleave, 1862 CM_GatherScatter, 1863 CM_Scalarize 1864 }; 1865 1866 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1867 /// instruction \p I and vector width \p VF. 1868 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1869 unsigned Cost) { 1870 assert(VF >= 2 && "Expected VF >=2"); 1871 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1872 } 1873 1874 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1875 /// interleaving group \p Grp and vector width \p VF. 1876 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1877 InstWidening W, unsigned Cost) { 1878 assert(VF >= 2 && "Expected VF >=2"); 1879 /// Broadcast this decicion to all instructions inside the group. 1880 /// But the cost will be assigned to one instruction only. 1881 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1882 if (auto *I = Grp->getMember(i)) { 1883 if (Grp->getInsertPos() == I) 1884 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1885 else 1886 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1887 } 1888 } 1889 } 1890 1891 /// Return the cost model decision for the given instruction \p I and vector 1892 /// width \p VF. Return CM_Unknown if this instruction did not pass 1893 /// through the cost modeling. 1894 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1895 assert(VF >= 2 && "Expected VF >=2"); 1896 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1897 auto Itr = WideningDecisions.find(InstOnVF); 1898 if (Itr == WideningDecisions.end()) 1899 return CM_Unknown; 1900 return Itr->second.first; 1901 } 1902 1903 /// Return the vectorization cost for the given instruction \p I and vector 1904 /// width \p VF. 1905 unsigned getWideningCost(Instruction *I, unsigned VF) { 1906 assert(VF >= 2 && "Expected VF >=2"); 1907 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1908 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1909 return WideningDecisions[InstOnVF].second; 1910 } 1911 1912 /// Return True if instruction \p I is an optimizable truncate whose operand 1913 /// is an induction variable. Such a truncate will be removed by adding a new 1914 /// induction variable with the destination type. 1915 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1916 1917 // If the instruction is not a truncate, return false. 1918 auto *Trunc = dyn_cast<TruncInst>(I); 1919 if (!Trunc) 1920 return false; 1921 1922 // Get the source and destination types of the truncate. 1923 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1924 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1925 1926 // If the truncate is free for the given types, return false. Replacing a 1927 // free truncate with an induction variable would add an induction variable 1928 // update instruction to each iteration of the loop. We exclude from this 1929 // check the primary induction variable since it will need an update 1930 // instruction regardless. 1931 Value *Op = Trunc->getOperand(0); 1932 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1933 return false; 1934 1935 // If the truncated value is not an induction variable, return false. 1936 return Legal->isInductionVariable(Op); 1937 } 1938 1939 /// Collects the instructions to scalarize for each predicated instruction in 1940 /// the loop. 1941 void collectInstsToScalarize(unsigned VF); 1942 1943 /// Collect Uniform and Scalar values for the given \p VF. 1944 /// The sets depend on CM decision for Load/Store instructions 1945 /// that may be vectorized as interleave, gather-scatter or scalarized. 1946 void collectUniformsAndScalars(unsigned VF) { 1947 // Do the analysis once. 1948 if (VF == 1 || Uniforms.count(VF)) 1949 return; 1950 setCostBasedWideningDecision(VF); 1951 collectLoopUniforms(VF); 1952 collectLoopScalars(VF); 1953 } 1954 1955 private: 1956 /// \return An upper bound for the vectorization factor, larger than zero. 1957 /// One is returned if vectorization should best be avoided due to cost. 1958 unsigned computeFeasibleMaxVF(bool OptForSize); 1959 1960 /// The vectorization cost is a combination of the cost itself and a boolean 1961 /// indicating whether any of the contributing operations will actually 1962 /// operate on 1963 /// vector values after type legalization in the backend. If this latter value 1964 /// is 1965 /// false, then all operations will be scalarized (i.e. no vectorization has 1966 /// actually taken place). 1967 typedef std::pair<unsigned, bool> VectorizationCostTy; 1968 1969 /// Returns the expected execution cost. The unit of the cost does 1970 /// not matter because we use the 'cost' units to compare different 1971 /// vector widths. The cost that is returned is *not* normalized by 1972 /// the factor width. 1973 VectorizationCostTy expectedCost(unsigned VF); 1974 1975 /// Returns the execution time cost of an instruction for a given vector 1976 /// width. Vector width of one means scalar. 1977 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1978 1979 /// The cost-computation logic from getInstructionCost which provides 1980 /// the vector type as an output parameter. 1981 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1982 1983 /// Calculate vectorization cost of memory instruction \p I. 1984 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1985 1986 /// The cost computation for scalarized memory instruction. 1987 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1988 1989 /// The cost computation for interleaving group of memory instructions. 1990 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1991 1992 /// The cost computation for Gather/Scatter instruction. 1993 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1994 1995 /// The cost computation for widening instruction \p I with consecutive 1996 /// memory access. 1997 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1998 1999 /// The cost calculation for Load instruction \p I with uniform pointer - 2000 /// scalar load + broadcast. 2001 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2002 2003 /// Returns whether the instruction is a load or store and will be a emitted 2004 /// as a vector operation. 2005 bool isConsecutiveLoadOrStore(Instruction *I); 2006 2007 /// Create an analysis remark that explains why vectorization failed 2008 /// 2009 /// \p RemarkName is the identifier for the remark. \return the remark object 2010 /// that can be streamed to. 2011 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2012 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2013 RemarkName, TheLoop); 2014 } 2015 2016 /// Map of scalar integer values to the smallest bitwidth they can be legally 2017 /// represented as. The vector equivalents of these values should be truncated 2018 /// to this type. 2019 MapVector<Instruction *, uint64_t> MinBWs; 2020 2021 /// A type representing the costs for instructions if they were to be 2022 /// scalarized rather than vectorized. The entries are Instruction-Cost 2023 /// pairs. 2024 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 2025 2026 /// A set containing all BasicBlocks that are known to present after 2027 /// vectorization as a predicated block. 2028 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2029 2030 /// A map holding scalar costs for different vectorization factors. The 2031 /// presence of a cost for an instruction in the mapping indicates that the 2032 /// instruction will be scalarized when vectorizing with the associated 2033 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2034 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2035 2036 /// Holds the instructions known to be uniform after vectorization. 2037 /// The data is collected per VF. 2038 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2039 2040 /// Holds the instructions known to be scalar after vectorization. 2041 /// The data is collected per VF. 2042 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2043 2044 /// Holds the instructions (address computations) that are forced to be 2045 /// scalarized. 2046 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2047 2048 /// Returns the expected difference in cost from scalarizing the expression 2049 /// feeding a predicated instruction \p PredInst. The instructions to 2050 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2051 /// non-negative return value implies the expression will be scalarized. 2052 /// Currently, only single-use chains are considered for scalarization. 2053 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2054 unsigned VF); 2055 2056 /// Collect the instructions that are uniform after vectorization. An 2057 /// instruction is uniform if we represent it with a single scalar value in 2058 /// the vectorized loop corresponding to each vector iteration. Examples of 2059 /// uniform instructions include pointer operands of consecutive or 2060 /// interleaved memory accesses. Note that although uniformity implies an 2061 /// instruction will be scalar, the reverse is not true. In general, a 2062 /// scalarized instruction will be represented by VF scalar values in the 2063 /// vectorized loop, each corresponding to an iteration of the original 2064 /// scalar loop. 2065 void collectLoopUniforms(unsigned VF); 2066 2067 /// Collect the instructions that are scalar after vectorization. An 2068 /// instruction is scalar if it is known to be uniform or will be scalarized 2069 /// during vectorization. Non-uniform scalarized instructions will be 2070 /// represented by VF values in the vectorized loop, each corresponding to an 2071 /// iteration of the original scalar loop. 2072 void collectLoopScalars(unsigned VF); 2073 2074 /// Keeps cost model vectorization decision and cost for instructions. 2075 /// Right now it is used for memory instructions only. 2076 typedef DenseMap<std::pair<Instruction *, unsigned>, 2077 std::pair<InstWidening, unsigned>> 2078 DecisionList; 2079 2080 DecisionList WideningDecisions; 2081 2082 public: 2083 /// The loop that we evaluate. 2084 Loop *TheLoop; 2085 /// Predicated scalar evolution analysis. 2086 PredicatedScalarEvolution &PSE; 2087 /// Loop Info analysis. 2088 LoopInfo *LI; 2089 /// Vectorization legality. 2090 LoopVectorizationLegality *Legal; 2091 /// Vector target information. 2092 const TargetTransformInfo &TTI; 2093 /// Target Library Info. 2094 const TargetLibraryInfo *TLI; 2095 /// Demanded bits analysis. 2096 DemandedBits *DB; 2097 /// Assumption cache. 2098 AssumptionCache *AC; 2099 /// Interface to emit optimization remarks. 2100 OptimizationRemarkEmitter *ORE; 2101 2102 const Function *TheFunction; 2103 /// Loop Vectorize Hint. 2104 const LoopVectorizeHints *Hints; 2105 /// Values to ignore in the cost model. 2106 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2107 /// Values to ignore in the cost model when VF > 1. 2108 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2109 }; 2110 2111 } // end anonymous namespace 2112 2113 namespace llvm { 2114 /// InnerLoopVectorizer vectorizes loops which contain only one basic 2115 /// LoopVectorizationPlanner - drives the vectorization process after having 2116 /// passed Legality checks. 2117 /// The planner builds and optimizes the Vectorization Plans which record the 2118 /// decisions how to vectorize the given loop. In particular, represent the 2119 /// control-flow of the vectorized version, the replication of instructions that 2120 /// are to be scalarized, and interleave access groups. 2121 class LoopVectorizationPlanner { 2122 /// The loop that we evaluate. 2123 Loop *OrigLoop; 2124 2125 /// Loop Info analysis. 2126 LoopInfo *LI; 2127 2128 /// Target Library Info. 2129 const TargetLibraryInfo *TLI; 2130 2131 /// Target Transform Info. 2132 const TargetTransformInfo *TTI; 2133 2134 /// The legality analysis. 2135 LoopVectorizationLegality *Legal; 2136 2137 /// The profitablity analysis. 2138 LoopVectorizationCostModel &CM; 2139 2140 SmallVector<VPlan *, 4> VPlans; 2141 2142 unsigned BestVF; 2143 unsigned BestUF; 2144 2145 public: 2146 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, 2147 const TargetTransformInfo *TTI, 2148 LoopVectorizationLegality *Legal, 2149 LoopVectorizationCostModel &CM) 2150 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), 2151 BestVF(0), BestUF(0) {} 2152 2153 ~LoopVectorizationPlanner() { 2154 while (!VPlans.empty()) { 2155 VPlan *Plan = VPlans.back(); 2156 VPlans.pop_back(); 2157 delete Plan; 2158 } 2159 } 2160 2161 /// Plan how to best vectorize, return the best VF and its cost. 2162 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2163 unsigned UserVF); 2164 2165 /// Finalize the best decision and dispose of all other VPlans. 2166 void setBestPlan(unsigned VF, unsigned UF); 2167 2168 /// Generate the IR code for the body of the vectorized loop according to the 2169 /// best selected VPlan. 2170 void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT); 2171 2172 void printPlans(raw_ostream &O) { 2173 for (VPlan *Plan : VPlans) 2174 O << *Plan; 2175 } 2176 2177 protected: 2178 /// Collect the instructions from the original loop that would be trivially 2179 /// dead in the vectorized loop if generated. 2180 void collectTriviallyDeadInstructions( 2181 SmallPtrSetImpl<Instruction *> &DeadInstructions); 2182 2183 /// A range of powers-of-2 vectorization factors with fixed start and 2184 /// adjustable end. The range includes start and excludes end, e.g.,: 2185 /// [1, 9) = {1, 2, 4, 8} 2186 struct VFRange { 2187 const unsigned Start; // A power of 2. 2188 unsigned End; // Need not be a power of 2. If End <= Start range is empty. 2189 }; 2190 2191 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 2192 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 2193 /// returned value holds for the entire \p Range. 2194 bool getDecisionAndClampRange(const std::function<bool(unsigned)> &Predicate, 2195 VFRange &Range); 2196 2197 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 2198 /// according to the information gathered by Legal when it checked if it is 2199 /// legal to vectorize the loop. 2200 void buildVPlans(unsigned MinVF, unsigned MaxVF); 2201 2202 private: 2203 /// Check if \I belongs to an Interleave Group within the given VF \p Range, 2204 /// \return true in the first returned value if so and false otherwise. 2205 /// Build a new VPInterleaveGroup Recipe if \I is the primary member of an IG 2206 /// for \p Range.Start, and provide it as the second returned value. 2207 /// Note that if \I is an adjunct member of an IG for \p Range.Start, the 2208 /// \return value is <true, nullptr>, as it is handled by another recipe. 2209 /// \p Range.End may be decreased to ensure same decision from \p Range.Start 2210 /// to \p Range.End. 2211 VPInterleaveRecipe *tryToInterleaveMemory(Instruction *I, VFRange &Range); 2212 2213 /// Check if an induction recipe should be constructed for \I within the given 2214 /// VF \p Range. If so build and return it. If not, return null. \p Range.End 2215 /// may be decreased to ensure same decision from \p Range.Start to 2216 /// \p Range.End. 2217 VPWidenIntOrFpInductionRecipe *tryToOptimizeInduction(Instruction *I, 2218 VFRange &Range); 2219 2220 /// Check if \I can be widened within the given VF \p Range. If \I can be 2221 /// widened for Range.Start, extend \p LastWidenRecipe to include \p I if 2222 /// possible or else build a new VPWidenRecipe for it, and return the 2223 /// VPWidenRecipe that includes \p I. If \p I cannot be widened for 2224 /// Range.Start \return null. Range.End may be decreased to ensure same 2225 /// decision from \p Range.Start to \p Range.End. 2226 VPWidenRecipe *tryToWiden(Instruction *I, VPWidenRecipe *LastWidenRecipe, 2227 VFRange &Range); 2228 2229 /// Build a VPReplicationRecipe for \p I and enclose it within a Region if it 2230 /// is predicated. \return \p VPBB augmented with this new recipe if \p I is 2231 /// not predicated, otherwise \return a new VPBasicBlock that succeeds the new 2232 /// Region. Update the packing decision of predicated instructions if they 2233 /// feed \p I. Range.End may be decreased to ensure same recipe behavior from 2234 /// \p Range.Start to \p Range.End. 2235 VPBasicBlock *handleReplication( 2236 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 2237 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe); 2238 2239 /// Create a replicating region for instruction \p I that requires 2240 /// predication. \p PredRecipe is a VPReplicateRecipe holding \p I. 2241 VPRegionBlock *createReplicateRegion(Instruction *I, 2242 VPRecipeBase *PredRecipe); 2243 2244 /// Build a VPlan according to the information gathered by Legal. \return a 2245 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 2246 /// exclusive, possibly decreasing \p Range.End. 2247 VPlan *buildVPlan(VFRange &Range); 2248 }; 2249 2250 } // namespace llvm 2251 2252 namespace { 2253 2254 /// \brief This holds vectorization requirements that must be verified late in 2255 /// the process. The requirements are set by legalize and costmodel. Once 2256 /// vectorization has been determined to be possible and profitable the 2257 /// requirements can be verified by looking for metadata or compiler options. 2258 /// For example, some loops require FP commutativity which is only allowed if 2259 /// vectorization is explicitly specified or if the fast-math compiler option 2260 /// has been provided. 2261 /// Late evaluation of these requirements allows helpful diagnostics to be 2262 /// composed that tells the user what need to be done to vectorize the loop. For 2263 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2264 /// evaluation should be used only when diagnostics can generated that can be 2265 /// followed by a non-expert user. 2266 class LoopVectorizationRequirements { 2267 public: 2268 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2269 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2270 2271 void addUnsafeAlgebraInst(Instruction *I) { 2272 // First unsafe algebra instruction. 2273 if (!UnsafeAlgebraInst) 2274 UnsafeAlgebraInst = I; 2275 } 2276 2277 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2278 2279 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2280 const char *PassName = Hints.vectorizeAnalysisPassName(); 2281 bool Failed = false; 2282 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2283 ORE.emit( 2284 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2285 UnsafeAlgebraInst->getDebugLoc(), 2286 UnsafeAlgebraInst->getParent()) 2287 << "loop not vectorized: cannot prove it is safe to reorder " 2288 "floating-point operations"); 2289 Failed = true; 2290 } 2291 2292 // Test if runtime memcheck thresholds are exceeded. 2293 bool PragmaThresholdReached = 2294 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2295 bool ThresholdReached = 2296 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2297 if ((ThresholdReached && !Hints.allowReordering()) || 2298 PragmaThresholdReached) { 2299 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2300 L->getStartLoc(), 2301 L->getHeader()) 2302 << "loop not vectorized: cannot prove it is safe to reorder " 2303 "memory operations"); 2304 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2305 Failed = true; 2306 } 2307 2308 return Failed; 2309 } 2310 2311 private: 2312 unsigned NumRuntimePointerChecks; 2313 Instruction *UnsafeAlgebraInst; 2314 2315 /// Interface to emit optimization remarks. 2316 OptimizationRemarkEmitter &ORE; 2317 }; 2318 2319 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2320 if (L.empty()) { 2321 if (!hasCyclesInLoopBody(L)) 2322 V.push_back(&L); 2323 return; 2324 } 2325 for (Loop *InnerL : L) 2326 addAcyclicInnerLoop(*InnerL, V); 2327 } 2328 2329 /// The LoopVectorize Pass. 2330 struct LoopVectorize : public FunctionPass { 2331 /// Pass identification, replacement for typeid 2332 static char ID; 2333 2334 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2335 : FunctionPass(ID) { 2336 Impl.DisableUnrolling = NoUnrolling; 2337 Impl.AlwaysVectorize = AlwaysVectorize; 2338 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2339 } 2340 2341 LoopVectorizePass Impl; 2342 2343 bool runOnFunction(Function &F) override { 2344 if (skipFunction(F)) 2345 return false; 2346 2347 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2348 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2349 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2350 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2351 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2352 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2353 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2354 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2355 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2356 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2357 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2358 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2359 2360 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2361 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2362 2363 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2364 GetLAA, *ORE); 2365 } 2366 2367 void getAnalysisUsage(AnalysisUsage &AU) const override { 2368 AU.addRequired<AssumptionCacheTracker>(); 2369 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2370 AU.addRequired<DominatorTreeWrapperPass>(); 2371 AU.addRequired<LoopInfoWrapperPass>(); 2372 AU.addRequired<ScalarEvolutionWrapperPass>(); 2373 AU.addRequired<TargetTransformInfoWrapperPass>(); 2374 AU.addRequired<AAResultsWrapperPass>(); 2375 AU.addRequired<LoopAccessLegacyAnalysis>(); 2376 AU.addRequired<DemandedBitsWrapperPass>(); 2377 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2378 AU.addPreserved<LoopInfoWrapperPass>(); 2379 AU.addPreserved<DominatorTreeWrapperPass>(); 2380 AU.addPreserved<BasicAAWrapperPass>(); 2381 AU.addPreserved<GlobalsAAWrapperPass>(); 2382 } 2383 }; 2384 2385 } // end anonymous namespace 2386 2387 //===----------------------------------------------------------------------===// 2388 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2389 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2390 //===----------------------------------------------------------------------===// 2391 2392 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2393 // We need to place the broadcast of invariant variables outside the loop. 2394 Instruction *Instr = dyn_cast<Instruction>(V); 2395 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2396 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2397 2398 // Place the code for broadcasting invariant variables in the new preheader. 2399 IRBuilder<>::InsertPointGuard Guard(Builder); 2400 if (Invariant) 2401 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2402 2403 // Broadcast the scalar into all locations in the vector. 2404 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2405 2406 return Shuf; 2407 } 2408 2409 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2410 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2411 Value *Start = II.getStartValue(); 2412 2413 // Construct the initial value of the vector IV in the vector loop preheader 2414 auto CurrIP = Builder.saveIP(); 2415 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2416 if (isa<TruncInst>(EntryVal)) { 2417 assert(Start->getType()->isIntegerTy() && 2418 "Truncation requires an integer type"); 2419 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2420 Step = Builder.CreateTrunc(Step, TruncType); 2421 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2422 } 2423 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2424 Value *SteppedStart = 2425 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2426 2427 // We create vector phi nodes for both integer and floating-point induction 2428 // variables. Here, we determine the kind of arithmetic we will perform. 2429 Instruction::BinaryOps AddOp; 2430 Instruction::BinaryOps MulOp; 2431 if (Step->getType()->isIntegerTy()) { 2432 AddOp = Instruction::Add; 2433 MulOp = Instruction::Mul; 2434 } else { 2435 AddOp = II.getInductionOpcode(); 2436 MulOp = Instruction::FMul; 2437 } 2438 2439 // Multiply the vectorization factor by the step using integer or 2440 // floating-point arithmetic as appropriate. 2441 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2442 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2443 2444 // Create a vector splat to use in the induction update. 2445 // 2446 // FIXME: If the step is non-constant, we create the vector splat with 2447 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2448 // handle a constant vector splat. 2449 Value *SplatVF = isa<Constant>(Mul) 2450 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2451 : Builder.CreateVectorSplat(VF, Mul); 2452 Builder.restoreIP(CurrIP); 2453 2454 // We may need to add the step a number of times, depending on the unroll 2455 // factor. The last of those goes into the PHI. 2456 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2457 &*LoopVectorBody->getFirstInsertionPt()); 2458 Instruction *LastInduction = VecInd; 2459 for (unsigned Part = 0; Part < UF; ++Part) { 2460 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2461 if (isa<TruncInst>(EntryVal)) 2462 addMetadata(LastInduction, EntryVal); 2463 LastInduction = cast<Instruction>(addFastMathFlag( 2464 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2465 } 2466 2467 // Move the last step to the end of the latch block. This ensures consistent 2468 // placement of all induction updates. 2469 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2470 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2471 auto *ICmp = cast<Instruction>(Br->getCondition()); 2472 LastInduction->moveBefore(ICmp); 2473 LastInduction->setName("vec.ind.next"); 2474 2475 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2476 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2477 } 2478 2479 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2480 return Cost->isScalarAfterVectorization(I, VF) || 2481 Cost->isProfitableToScalarize(I, VF); 2482 } 2483 2484 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2485 if (shouldScalarizeInstruction(IV)) 2486 return true; 2487 auto isScalarInst = [&](User *U) -> bool { 2488 auto *I = cast<Instruction>(U); 2489 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2490 }; 2491 return any_of(IV->users(), isScalarInst); 2492 } 2493 2494 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2495 2496 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2497 "Primary induction variable must have an integer type"); 2498 2499 auto II = Legal->getInductionVars()->find(IV); 2500 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2501 2502 auto ID = II->second; 2503 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2504 2505 // The scalar value to broadcast. This will be derived from the canonical 2506 // induction variable. 2507 Value *ScalarIV = nullptr; 2508 2509 // The value from the original loop to which we are mapping the new induction 2510 // variable. 2511 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2512 2513 // True if we have vectorized the induction variable. 2514 auto VectorizedIV = false; 2515 2516 // Determine if we want a scalar version of the induction variable. This is 2517 // true if the induction variable itself is not widened, or if it has at 2518 // least one user in the loop that is not widened. 2519 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2520 2521 // Generate code for the induction step. Note that induction steps are 2522 // required to be loop-invariant 2523 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2524 "Induction step should be loop invariant"); 2525 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2526 Value *Step = nullptr; 2527 if (PSE.getSE()->isSCEVable(IV->getType())) { 2528 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2529 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2530 LoopVectorPreHeader->getTerminator()); 2531 } else { 2532 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2533 } 2534 2535 // Try to create a new independent vector induction variable. If we can't 2536 // create the phi node, we will splat the scalar induction variable in each 2537 // loop iteration. 2538 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2539 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2540 VectorizedIV = true; 2541 } 2542 2543 // If we haven't yet vectorized the induction variable, or if we will create 2544 // a scalar one, we need to define the scalar induction variable and step 2545 // values. If we were given a truncation type, truncate the canonical 2546 // induction variable and step. Otherwise, derive these values from the 2547 // induction descriptor. 2548 if (!VectorizedIV || NeedsScalarIV) { 2549 ScalarIV = Induction; 2550 if (IV != OldInduction) { 2551 ScalarIV = IV->getType()->isIntegerTy() 2552 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2553 : Builder.CreateCast(Instruction::SIToFP, Induction, 2554 IV->getType()); 2555 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2556 ScalarIV->setName("offset.idx"); 2557 } 2558 if (Trunc) { 2559 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2560 assert(Step->getType()->isIntegerTy() && 2561 "Truncation requires an integer step"); 2562 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2563 Step = Builder.CreateTrunc(Step, TruncType); 2564 } 2565 } 2566 2567 // If we haven't yet vectorized the induction variable, splat the scalar 2568 // induction variable, and build the necessary step vectors. 2569 if (!VectorizedIV) { 2570 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2571 for (unsigned Part = 0; Part < UF; ++Part) { 2572 Value *EntryPart = 2573 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2574 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2575 if (Trunc) 2576 addMetadata(EntryPart, Trunc); 2577 } 2578 } 2579 2580 // If an induction variable is only used for counting loop iterations or 2581 // calculating addresses, it doesn't need to be widened. Create scalar steps 2582 // that can be used by instructions we will later scalarize. Note that the 2583 // addition of the scalar steps will not increase the number of instructions 2584 // in the loop in the common case prior to InstCombine. We will be trading 2585 // one vector extract for each scalar step. 2586 if (NeedsScalarIV) 2587 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2588 } 2589 2590 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2591 Instruction::BinaryOps BinOp) { 2592 // Create and check the types. 2593 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2594 int VLen = Val->getType()->getVectorNumElements(); 2595 2596 Type *STy = Val->getType()->getScalarType(); 2597 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2598 "Induction Step must be an integer or FP"); 2599 assert(Step->getType() == STy && "Step has wrong type"); 2600 2601 SmallVector<Constant *, 8> Indices; 2602 2603 if (STy->isIntegerTy()) { 2604 // Create a vector of consecutive numbers from zero to VF. 2605 for (int i = 0; i < VLen; ++i) 2606 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2607 2608 // Add the consecutive indices to the vector value. 2609 Constant *Cv = ConstantVector::get(Indices); 2610 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2611 Step = Builder.CreateVectorSplat(VLen, Step); 2612 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2613 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2614 // which can be found from the original scalar operations. 2615 Step = Builder.CreateMul(Cv, Step); 2616 return Builder.CreateAdd(Val, Step, "induction"); 2617 } 2618 2619 // Floating point induction. 2620 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2621 "Binary Opcode should be specified for FP induction"); 2622 // Create a vector of consecutive numbers from zero to VF. 2623 for (int i = 0; i < VLen; ++i) 2624 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2625 2626 // Add the consecutive indices to the vector value. 2627 Constant *Cv = ConstantVector::get(Indices); 2628 2629 Step = Builder.CreateVectorSplat(VLen, Step); 2630 2631 // Floating point operations had to be 'fast' to enable the induction. 2632 FastMathFlags Flags; 2633 Flags.setUnsafeAlgebra(); 2634 2635 Value *MulOp = Builder.CreateFMul(Cv, Step); 2636 if (isa<Instruction>(MulOp)) 2637 // Have to check, MulOp may be a constant 2638 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2639 2640 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2641 if (isa<Instruction>(BOp)) 2642 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2643 return BOp; 2644 } 2645 2646 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2647 Value *EntryVal, 2648 const InductionDescriptor &ID) { 2649 2650 // We shouldn't have to build scalar steps if we aren't vectorizing. 2651 assert(VF > 1 && "VF should be greater than one"); 2652 2653 // Get the value type and ensure it and the step have the same integer type. 2654 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2655 assert(ScalarIVTy == Step->getType() && 2656 "Val and Step should have the same type"); 2657 2658 // We build scalar steps for both integer and floating-point induction 2659 // variables. Here, we determine the kind of arithmetic we will perform. 2660 Instruction::BinaryOps AddOp; 2661 Instruction::BinaryOps MulOp; 2662 if (ScalarIVTy->isIntegerTy()) { 2663 AddOp = Instruction::Add; 2664 MulOp = Instruction::Mul; 2665 } else { 2666 AddOp = ID.getInductionOpcode(); 2667 MulOp = Instruction::FMul; 2668 } 2669 2670 // Determine the number of scalars we need to generate for each unroll 2671 // iteration. If EntryVal is uniform, we only need to generate the first 2672 // lane. Otherwise, we generate all VF values. 2673 unsigned Lanes = 2674 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2675 : VF; 2676 // Compute the scalar steps and save the results in VectorLoopValueMap. 2677 for (unsigned Part = 0; Part < UF; ++Part) { 2678 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2679 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2680 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2681 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2682 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2683 } 2684 } 2685 } 2686 2687 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2688 2689 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2690 ValueToValueMap(); 2691 2692 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2693 if (Stride == 1 || Stride == -1) 2694 return Stride; 2695 return 0; 2696 } 2697 2698 bool LoopVectorizationLegality::isUniform(Value *V) { 2699 return LAI->isUniform(V); 2700 } 2701 2702 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2703 assert(V != Induction && "The new induction variable should not be used."); 2704 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2705 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2706 2707 // If we have a stride that is replaced by one, do it here. 2708 if (Legal->hasStride(V)) 2709 V = ConstantInt::get(V->getType(), 1); 2710 2711 // If we have a vector mapped to this value, return it. 2712 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2713 return VectorLoopValueMap.getVectorValue(V, Part); 2714 2715 // If the value has not been vectorized, check if it has been scalarized 2716 // instead. If it has been scalarized, and we actually need the value in 2717 // vector form, we will construct the vector values on demand. 2718 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2719 2720 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2721 2722 // If we've scalarized a value, that value should be an instruction. 2723 auto *I = cast<Instruction>(V); 2724 2725 // If we aren't vectorizing, we can just copy the scalar map values over to 2726 // the vector map. 2727 if (VF == 1) { 2728 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2729 return ScalarValue; 2730 } 2731 2732 // Get the last scalar instruction we generated for V and Part. If the value 2733 // is known to be uniform after vectorization, this corresponds to lane zero 2734 // of the Part unroll iteration. Otherwise, the last instruction is the one 2735 // we created for the last vector lane of the Part unroll iteration. 2736 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2737 auto *LastInst = cast<Instruction>( 2738 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2739 2740 // Set the insert point after the last scalarized instruction. This ensures 2741 // the insertelement sequence will directly follow the scalar definitions. 2742 auto OldIP = Builder.saveIP(); 2743 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2744 Builder.SetInsertPoint(&*NewIP); 2745 2746 // However, if we are vectorizing, we need to construct the vector values. 2747 // If the value is known to be uniform after vectorization, we can just 2748 // broadcast the scalar value corresponding to lane zero for each unroll 2749 // iteration. Otherwise, we construct the vector values using insertelement 2750 // instructions. Since the resulting vectors are stored in 2751 // VectorLoopValueMap, we will only generate the insertelements once. 2752 Value *VectorValue = nullptr; 2753 if (Cost->isUniformAfterVectorization(I, VF)) { 2754 VectorValue = getBroadcastInstrs(ScalarValue); 2755 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2756 } else { 2757 // Initialize packing with insertelements to start from undef. 2758 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2759 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2760 for (unsigned Lane = 0; Lane < VF; ++Lane) 2761 packScalarIntoVectorValue(V, {Part, Lane}); 2762 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2763 } 2764 Builder.restoreIP(OldIP); 2765 return VectorValue; 2766 } 2767 2768 // If this scalar is unknown, assume that it is a constant or that it is 2769 // loop invariant. Broadcast V and save the value for future uses. 2770 Value *B = getBroadcastInstrs(V); 2771 VectorLoopValueMap.setVectorValue(V, Part, B); 2772 return B; 2773 } 2774 2775 Value * 2776 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2777 const VPIteration &Instance) { 2778 // If the value is not an instruction contained in the loop, it should 2779 // already be scalar. 2780 if (OrigLoop->isLoopInvariant(V)) 2781 return V; 2782 2783 assert(Instance.Lane > 0 2784 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2785 : true && "Uniform values only have lane zero"); 2786 2787 // If the value from the original loop has not been vectorized, it is 2788 // represented by UF x VF scalar values in the new loop. Return the requested 2789 // scalar value. 2790 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2791 return VectorLoopValueMap.getScalarValue(V, Instance); 2792 2793 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2794 // for the given unroll part. If this entry is not a vector type (i.e., the 2795 // vectorization factor is one), there is no need to generate an 2796 // extractelement instruction. 2797 auto *U = getOrCreateVectorValue(V, Instance.Part); 2798 if (!U->getType()->isVectorTy()) { 2799 assert(VF == 1 && "Value not scalarized has non-vector type"); 2800 return U; 2801 } 2802 2803 // Otherwise, the value from the original loop has been vectorized and is 2804 // represented by UF vector values. Extract and return the requested scalar 2805 // value from the appropriate vector lane. 2806 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2807 } 2808 2809 void InnerLoopVectorizer::packScalarIntoVectorValue( 2810 Value *V, const VPIteration &Instance) { 2811 assert(V != Induction && "The new induction variable should not be used."); 2812 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2813 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2814 2815 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2816 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2817 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2818 Builder.getInt32(Instance.Lane)); 2819 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2820 } 2821 2822 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2823 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2824 SmallVector<Constant *, 8> ShuffleMask; 2825 for (unsigned i = 0; i < VF; ++i) 2826 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2827 2828 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2829 ConstantVector::get(ShuffleMask), 2830 "reverse"); 2831 } 2832 2833 // Try to vectorize the interleave group that \p Instr belongs to. 2834 // 2835 // E.g. Translate following interleaved load group (factor = 3): 2836 // for (i = 0; i < N; i+=3) { 2837 // R = Pic[i]; // Member of index 0 2838 // G = Pic[i+1]; // Member of index 1 2839 // B = Pic[i+2]; // Member of index 2 2840 // ... // do something to R, G, B 2841 // } 2842 // To: 2843 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2844 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2845 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2846 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2847 // 2848 // Or translate following interleaved store group (factor = 3): 2849 // for (i = 0; i < N; i+=3) { 2850 // ... do something to R, G, B 2851 // Pic[i] = R; // Member of index 0 2852 // Pic[i+1] = G; // Member of index 1 2853 // Pic[i+2] = B; // Member of index 2 2854 // } 2855 // To: 2856 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2857 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2858 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2859 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2860 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2861 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2862 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2863 assert(Group && "Fail to get an interleaved access group."); 2864 2865 // Skip if current instruction is not the insert position. 2866 if (Instr != Group->getInsertPos()) 2867 return; 2868 2869 Value *Ptr = getPointerOperand(Instr); 2870 2871 // Prepare for the vector type of the interleaved load/store. 2872 Type *ScalarTy = getMemInstValueType(Instr); 2873 unsigned InterleaveFactor = Group->getFactor(); 2874 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2875 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2876 2877 // Prepare for the new pointers. 2878 setDebugLocFromInst(Builder, Ptr); 2879 SmallVector<Value *, 2> NewPtrs; 2880 unsigned Index = Group->getIndex(Instr); 2881 2882 // If the group is reverse, adjust the index to refer to the last vector lane 2883 // instead of the first. We adjust the index from the first vector lane, 2884 // rather than directly getting the pointer for lane VF - 1, because the 2885 // pointer operand of the interleaved access is supposed to be uniform. For 2886 // uniform instructions, we're only required to generate a value for the 2887 // first vector lane in each unroll iteration. 2888 if (Group->isReverse()) 2889 Index += (VF - 1) * Group->getFactor(); 2890 2891 for (unsigned Part = 0; Part < UF; Part++) { 2892 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2893 2894 // Notice current instruction could be any index. Need to adjust the address 2895 // to the member of index 0. 2896 // 2897 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2898 // b = A[i]; // Member of index 0 2899 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2900 // 2901 // E.g. A[i+1] = a; // Member of index 1 2902 // A[i] = b; // Member of index 0 2903 // A[i+2] = c; // Member of index 2 (Current instruction) 2904 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2905 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2906 2907 // Cast to the vector pointer type. 2908 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2909 } 2910 2911 setDebugLocFromInst(Builder, Instr); 2912 Value *UndefVec = UndefValue::get(VecTy); 2913 2914 // Vectorize the interleaved load group. 2915 if (isa<LoadInst>(Instr)) { 2916 2917 // For each unroll part, create a wide load for the group. 2918 SmallVector<Value *, 2> NewLoads; 2919 for (unsigned Part = 0; Part < UF; Part++) { 2920 auto *NewLoad = Builder.CreateAlignedLoad( 2921 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2922 addMetadata(NewLoad, Instr); 2923 NewLoads.push_back(NewLoad); 2924 } 2925 2926 // For each member in the group, shuffle out the appropriate data from the 2927 // wide loads. 2928 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2929 Instruction *Member = Group->getMember(I); 2930 2931 // Skip the gaps in the group. 2932 if (!Member) 2933 continue; 2934 2935 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2936 for (unsigned Part = 0; Part < UF; Part++) { 2937 Value *StridedVec = Builder.CreateShuffleVector( 2938 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2939 2940 // If this member has different type, cast the result type. 2941 if (Member->getType() != ScalarTy) { 2942 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2943 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2944 } 2945 2946 if (Group->isReverse()) 2947 StridedVec = reverseVector(StridedVec); 2948 2949 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2950 } 2951 } 2952 return; 2953 } 2954 2955 // The sub vector type for current instruction. 2956 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2957 2958 // Vectorize the interleaved store group. 2959 for (unsigned Part = 0; Part < UF; Part++) { 2960 // Collect the stored vector from each member. 2961 SmallVector<Value *, 4> StoredVecs; 2962 for (unsigned i = 0; i < InterleaveFactor; i++) { 2963 // Interleaved store group doesn't allow a gap, so each index has a member 2964 Instruction *Member = Group->getMember(i); 2965 assert(Member && "Fail to get a member from an interleaved store group"); 2966 2967 Value *StoredVec = getOrCreateVectorValue( 2968 cast<StoreInst>(Member)->getValueOperand(), Part); 2969 if (Group->isReverse()) 2970 StoredVec = reverseVector(StoredVec); 2971 2972 // If this member has different type, cast it to an unified type. 2973 if (StoredVec->getType() != SubVT) 2974 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2975 2976 StoredVecs.push_back(StoredVec); 2977 } 2978 2979 // Concatenate all vectors into a wide vector. 2980 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2981 2982 // Interleave the elements in the wide vector. 2983 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2984 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2985 "interleaved.vec"); 2986 2987 Instruction *NewStoreInstr = 2988 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2989 addMetadata(NewStoreInstr, Instr); 2990 } 2991 } 2992 2993 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2994 // Attempt to issue a wide load. 2995 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2996 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2997 2998 assert((LI || SI) && "Invalid Load/Store instruction"); 2999 3000 LoopVectorizationCostModel::InstWidening Decision = 3001 Cost->getWideningDecision(Instr, VF); 3002 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 3003 "CM decision should be taken at this point"); 3004 if (Decision == LoopVectorizationCostModel::CM_Interleave) 3005 return vectorizeInterleaveGroup(Instr); 3006 3007 Type *ScalarDataTy = getMemInstValueType(Instr); 3008 Type *DataTy = VectorType::get(ScalarDataTy, VF); 3009 Value *Ptr = getPointerOperand(Instr); 3010 unsigned Alignment = getMemInstAlignment(Instr); 3011 // An alignment of 0 means target abi alignment. We need to use the scalar's 3012 // target abi alignment in such a case. 3013 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3014 if (!Alignment) 3015 Alignment = DL.getABITypeAlignment(ScalarDataTy); 3016 unsigned AddressSpace = getMemInstAddressSpace(Instr); 3017 3018 // Determine if the pointer operand of the access is either consecutive or 3019 // reverse consecutive. 3020 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 3021 bool Reverse = ConsecutiveStride < 0; 3022 bool CreateGatherScatter = 3023 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3024 3025 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3026 // gather/scatter. Otherwise Decision should have been to Scalarize. 3027 assert((ConsecutiveStride || CreateGatherScatter) && 3028 "The instruction should be scalarized"); 3029 3030 // Handle consecutive loads/stores. 3031 if (ConsecutiveStride) 3032 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 3033 3034 VectorParts Mask = createBlockInMask(Instr->getParent()); 3035 // Handle Stores: 3036 if (SI) { 3037 assert(!Legal->isUniform(SI->getPointerOperand()) && 3038 "We do not allow storing to uniform addresses"); 3039 setDebugLocFromInst(Builder, SI); 3040 3041 for (unsigned Part = 0; Part < UF; ++Part) { 3042 Instruction *NewSI = nullptr; 3043 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3044 if (CreateGatherScatter) { 3045 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 3046 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3047 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3048 MaskPart); 3049 } else { 3050 // Calculate the pointer for the specific unroll-part. 3051 Value *PartPtr = 3052 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3053 3054 if (Reverse) { 3055 // If we store to reverse consecutive memory locations, then we need 3056 // to reverse the order of elements in the stored value. 3057 StoredVal = reverseVector(StoredVal); 3058 // We don't want to update the value in the map as it might be used in 3059 // another expression. So don't call resetVectorValue(StoredVal). 3060 3061 // If the address is consecutive but reversed, then the 3062 // wide store needs to start at the last vector element. 3063 PartPtr = 3064 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3065 PartPtr = 3066 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3067 if (Mask[Part]) // The reverse of a null all-one mask is a null mask. 3068 Mask[Part] = reverseVector(Mask[Part]); 3069 } 3070 3071 Value *VecPtr = 3072 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3073 3074 if (Legal->isMaskRequired(SI) && Mask[Part]) 3075 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3076 Mask[Part]); 3077 else 3078 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3079 } 3080 addMetadata(NewSI, SI); 3081 } 3082 return; 3083 } 3084 3085 // Handle loads. 3086 assert(LI && "Must have a load instruction"); 3087 setDebugLocFromInst(Builder, LI); 3088 for (unsigned Part = 0; Part < UF; ++Part) { 3089 Value *NewLI; 3090 if (CreateGatherScatter) { 3091 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 3092 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3093 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3094 nullptr, "wide.masked.gather"); 3095 addMetadata(NewLI, LI); 3096 } else { 3097 // Calculate the pointer for the specific unroll-part. 3098 Value *PartPtr = 3099 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3100 3101 if (Reverse) { 3102 // If the address is consecutive but reversed, then the 3103 // wide load needs to start at the last vector element. 3104 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3105 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3106 if (Mask[Part]) // The reverse of a null all-one mask is a null mask. 3107 Mask[Part] = reverseVector(Mask[Part]); 3108 } 3109 3110 Value *VecPtr = 3111 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3112 if (Legal->isMaskRequired(LI) && Mask[Part]) 3113 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3114 UndefValue::get(DataTy), 3115 "wide.masked.load"); 3116 else 3117 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3118 3119 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3120 addMetadata(NewLI, LI); 3121 if (Reverse) 3122 NewLI = reverseVector(NewLI); 3123 } 3124 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3125 } 3126 } 3127 3128 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3129 const VPIteration &Instance, 3130 bool IfPredicateInstr) { 3131 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3132 3133 setDebugLocFromInst(Builder, Instr); 3134 3135 // Does this instruction return a value ? 3136 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3137 3138 Instruction *Cloned = Instr->clone(); 3139 if (!IsVoidRetTy) 3140 Cloned->setName(Instr->getName() + ".cloned"); 3141 3142 // Replace the operands of the cloned instructions with their scalar 3143 // equivalents in the new loop. 3144 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3145 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 3146 Cloned->setOperand(op, NewOp); 3147 } 3148 addNewMetadata(Cloned, Instr); 3149 3150 // Place the cloned scalar in the new loop. 3151 Builder.Insert(Cloned); 3152 3153 // Add the cloned scalar to the scalar map entry. 3154 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 3155 3156 // If we just cloned a new assumption, add it the assumption cache. 3157 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3158 if (II->getIntrinsicID() == Intrinsic::assume) 3159 AC->registerAssumption(II); 3160 3161 // End if-block. 3162 if (IfPredicateInstr) 3163 PredicatedInstructions.push_back(Cloned); 3164 } 3165 3166 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3167 Value *End, Value *Step, 3168 Instruction *DL) { 3169 BasicBlock *Header = L->getHeader(); 3170 BasicBlock *Latch = L->getLoopLatch(); 3171 // As we're just creating this loop, it's possible no latch exists 3172 // yet. If so, use the header as this will be a single block loop. 3173 if (!Latch) 3174 Latch = Header; 3175 3176 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3177 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3178 setDebugLocFromInst(Builder, OldInst); 3179 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3180 3181 Builder.SetInsertPoint(Latch->getTerminator()); 3182 setDebugLocFromInst(Builder, OldInst); 3183 3184 // Create i+1 and fill the PHINode. 3185 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3186 Induction->addIncoming(Start, L->getLoopPreheader()); 3187 Induction->addIncoming(Next, Latch); 3188 // Create the compare. 3189 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3190 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3191 3192 // Now we have two terminators. Remove the old one from the block. 3193 Latch->getTerminator()->eraseFromParent(); 3194 3195 return Induction; 3196 } 3197 3198 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3199 if (TripCount) 3200 return TripCount; 3201 3202 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3203 // Find the loop boundaries. 3204 ScalarEvolution *SE = PSE.getSE(); 3205 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3206 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3207 "Invalid loop count"); 3208 3209 Type *IdxTy = Legal->getWidestInductionType(); 3210 3211 // The exit count might have the type of i64 while the phi is i32. This can 3212 // happen if we have an induction variable that is sign extended before the 3213 // compare. The only way that we get a backedge taken count is that the 3214 // induction variable was signed and as such will not overflow. In such a case 3215 // truncation is legal. 3216 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3217 IdxTy->getPrimitiveSizeInBits()) 3218 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3219 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3220 3221 // Get the total trip count from the count by adding 1. 3222 const SCEV *ExitCount = SE->getAddExpr( 3223 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3224 3225 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3226 3227 // Expand the trip count and place the new instructions in the preheader. 3228 // Notice that the pre-header does not change, only the loop body. 3229 SCEVExpander Exp(*SE, DL, "induction"); 3230 3231 // Count holds the overall loop count (N). 3232 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3233 L->getLoopPreheader()->getTerminator()); 3234 3235 if (TripCount->getType()->isPointerTy()) 3236 TripCount = 3237 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3238 L->getLoopPreheader()->getTerminator()); 3239 3240 return TripCount; 3241 } 3242 3243 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3244 if (VectorTripCount) 3245 return VectorTripCount; 3246 3247 Value *TC = getOrCreateTripCount(L); 3248 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3249 3250 // Now we need to generate the expression for the part of the loop that the 3251 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3252 // iterations are not required for correctness, or N - Step, otherwise. Step 3253 // is equal to the vectorization factor (number of SIMD elements) times the 3254 // unroll factor (number of SIMD instructions). 3255 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3256 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3257 3258 // If there is a non-reversed interleaved group that may speculatively access 3259 // memory out-of-bounds, we need to ensure that there will be at least one 3260 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3261 // the trip count, we set the remainder to be equal to the step. If the step 3262 // does not evenly divide the trip count, no adjustment is necessary since 3263 // there will already be scalar iterations. Note that the minimum iterations 3264 // check ensures that N >= Step. 3265 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3266 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3267 R = Builder.CreateSelect(IsZero, Step, R); 3268 } 3269 3270 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3271 3272 return VectorTripCount; 3273 } 3274 3275 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3276 BasicBlock *Bypass) { 3277 Value *Count = getOrCreateTripCount(L); 3278 BasicBlock *BB = L->getLoopPreheader(); 3279 IRBuilder<> Builder(BB->getTerminator()); 3280 3281 // Generate code to check if the loop's trip count is less than VF * UF, or 3282 // equal to it in case a scalar epilogue is required; this implies that the 3283 // vector trip count is zero. This check also covers the case where adding one 3284 // to the backedge-taken count overflowed leading to an incorrect trip count 3285 // of zero. In this case we will also jump to the scalar loop. 3286 auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3287 : ICmpInst::ICMP_ULT; 3288 Value *CheckMinIters = Builder.CreateICmp( 3289 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3290 3291 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3292 // Update dominator tree immediately if the generated block is a 3293 // LoopBypassBlock because SCEV expansions to generate loop bypass 3294 // checks may query it before the current function is finished. 3295 DT->addNewBlock(NewBB, BB); 3296 if (L->getParentLoop()) 3297 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3298 ReplaceInstWithInst(BB->getTerminator(), 3299 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3300 LoopBypassBlocks.push_back(BB); 3301 } 3302 3303 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3304 BasicBlock *BB = L->getLoopPreheader(); 3305 3306 // Generate the code to check that the SCEV assumptions that we made. 3307 // We want the new basic block to start at the first instruction in a 3308 // sequence of instructions that form a check. 3309 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3310 "scev.check"); 3311 Value *SCEVCheck = 3312 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3313 3314 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3315 if (C->isZero()) 3316 return; 3317 3318 // Create a new block containing the stride check. 3319 BB->setName("vector.scevcheck"); 3320 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3321 // Update dominator tree immediately if the generated block is a 3322 // LoopBypassBlock because SCEV expansions to generate loop bypass 3323 // checks may query it before the current function is finished. 3324 DT->addNewBlock(NewBB, BB); 3325 if (L->getParentLoop()) 3326 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3327 ReplaceInstWithInst(BB->getTerminator(), 3328 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3329 LoopBypassBlocks.push_back(BB); 3330 AddedSafetyChecks = true; 3331 } 3332 3333 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3334 BasicBlock *BB = L->getLoopPreheader(); 3335 3336 // Generate the code that checks in runtime if arrays overlap. We put the 3337 // checks into a separate block to make the more common case of few elements 3338 // faster. 3339 Instruction *FirstCheckInst; 3340 Instruction *MemRuntimeCheck; 3341 std::tie(FirstCheckInst, MemRuntimeCheck) = 3342 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3343 if (!MemRuntimeCheck) 3344 return; 3345 3346 // Create a new block containing the memory check. 3347 BB->setName("vector.memcheck"); 3348 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3349 // Update dominator tree immediately if the generated block is a 3350 // LoopBypassBlock because SCEV expansions to generate loop bypass 3351 // checks may query it before the current function is finished. 3352 DT->addNewBlock(NewBB, BB); 3353 if (L->getParentLoop()) 3354 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3355 ReplaceInstWithInst(BB->getTerminator(), 3356 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3357 LoopBypassBlocks.push_back(BB); 3358 AddedSafetyChecks = true; 3359 3360 // We currently don't use LoopVersioning for the actual loop cloning but we 3361 // still use it to add the noalias metadata. 3362 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3363 PSE.getSE()); 3364 LVer->prepareNoAliasMetadata(); 3365 } 3366 3367 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3368 /* 3369 In this function we generate a new loop. The new loop will contain 3370 the vectorized instructions while the old loop will continue to run the 3371 scalar remainder. 3372 3373 [ ] <-- loop iteration number check. 3374 / | 3375 / v 3376 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3377 | / | 3378 | / v 3379 || [ ] <-- vector pre header. 3380 |/ | 3381 | v 3382 | [ ] \ 3383 | [ ]_| <-- vector loop. 3384 | | 3385 | v 3386 | -[ ] <--- middle-block. 3387 | / | 3388 | / v 3389 -|- >[ ] <--- new preheader. 3390 | | 3391 | v 3392 | [ ] \ 3393 | [ ]_| <-- old scalar loop to handle remainder. 3394 \ | 3395 \ v 3396 >[ ] <-- exit block. 3397 ... 3398 */ 3399 3400 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3401 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3402 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3403 assert(VectorPH && "Invalid loop structure"); 3404 assert(ExitBlock && "Must have an exit block"); 3405 3406 // Some loops have a single integer induction variable, while other loops 3407 // don't. One example is c++ iterators that often have multiple pointer 3408 // induction variables. In the code below we also support a case where we 3409 // don't have a single induction variable. 3410 // 3411 // We try to obtain an induction variable from the original loop as hard 3412 // as possible. However if we don't find one that: 3413 // - is an integer 3414 // - counts from zero, stepping by one 3415 // - is the size of the widest induction variable type 3416 // then we create a new one. 3417 OldInduction = Legal->getPrimaryInduction(); 3418 Type *IdxTy = Legal->getWidestInductionType(); 3419 3420 // Split the single block loop into the two loop structure described above. 3421 BasicBlock *VecBody = 3422 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3423 BasicBlock *MiddleBlock = 3424 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3425 BasicBlock *ScalarPH = 3426 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3427 3428 // Create and register the new vector loop. 3429 Loop *Lp = new Loop(); 3430 Loop *ParentLoop = OrigLoop->getParentLoop(); 3431 3432 // Insert the new loop into the loop nest and register the new basic blocks 3433 // before calling any utilities such as SCEV that require valid LoopInfo. 3434 if (ParentLoop) { 3435 ParentLoop->addChildLoop(Lp); 3436 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3437 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3438 } else { 3439 LI->addTopLevelLoop(Lp); 3440 } 3441 Lp->addBasicBlockToLoop(VecBody, *LI); 3442 3443 // Find the loop boundaries. 3444 Value *Count = getOrCreateTripCount(Lp); 3445 3446 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3447 3448 // Now, compare the new count to zero. If it is zero skip the vector loop and 3449 // jump to the scalar loop. This check also covers the case where the 3450 // backedge-taken count is uint##_max: adding one to it will overflow leading 3451 // to an incorrect trip count of zero. In this (rare) case we will also jump 3452 // to the scalar loop. 3453 emitMinimumIterationCountCheck(Lp, ScalarPH); 3454 3455 // Generate the code to check any assumptions that we've made for SCEV 3456 // expressions. 3457 emitSCEVChecks(Lp, ScalarPH); 3458 3459 // Generate the code that checks in runtime if arrays overlap. We put the 3460 // checks into a separate block to make the more common case of few elements 3461 // faster. 3462 emitMemRuntimeChecks(Lp, ScalarPH); 3463 3464 // Generate the induction variable. 3465 // The loop step is equal to the vectorization factor (num of SIMD elements) 3466 // times the unroll factor (num of SIMD instructions). 3467 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3468 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3469 Induction = 3470 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3471 getDebugLocFromInstOrOperands(OldInduction)); 3472 3473 // We are going to resume the execution of the scalar loop. 3474 // Go over all of the induction variables that we found and fix the 3475 // PHIs that are left in the scalar version of the loop. 3476 // The starting values of PHI nodes depend on the counter of the last 3477 // iteration in the vectorized loop. 3478 // If we come from a bypass edge then we need to start from the original 3479 // start value. 3480 3481 // This variable saves the new starting index for the scalar loop. It is used 3482 // to test if there are any tail iterations left once the vector loop has 3483 // completed. 3484 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3485 for (auto &InductionEntry : *List) { 3486 PHINode *OrigPhi = InductionEntry.first; 3487 InductionDescriptor II = InductionEntry.second; 3488 3489 // Create phi nodes to merge from the backedge-taken check block. 3490 PHINode *BCResumeVal = PHINode::Create( 3491 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3492 Value *&EndValue = IVEndValues[OrigPhi]; 3493 if (OrigPhi == OldInduction) { 3494 // We know what the end value is. 3495 EndValue = CountRoundDown; 3496 } else { 3497 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3498 Type *StepType = II.getStep()->getType(); 3499 Instruction::CastOps CastOp = 3500 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3501 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3502 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3503 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3504 EndValue->setName("ind.end"); 3505 } 3506 3507 // The new PHI merges the original incoming value, in case of a bypass, 3508 // or the value at the end of the vectorized loop. 3509 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3510 3511 // Fix the scalar body counter (PHI node). 3512 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3513 3514 // The old induction's phi node in the scalar body needs the truncated 3515 // value. 3516 for (BasicBlock *BB : LoopBypassBlocks) 3517 BCResumeVal->addIncoming(II.getStartValue(), BB); 3518 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3519 } 3520 3521 // Add a check in the middle block to see if we have completed 3522 // all of the iterations in the first vector loop. 3523 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3524 Value *CmpN = 3525 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3526 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3527 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3528 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3529 3530 // Get ready to start creating new instructions into the vectorized body. 3531 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3532 3533 // Save the state. 3534 LoopVectorPreHeader = Lp->getLoopPreheader(); 3535 LoopScalarPreHeader = ScalarPH; 3536 LoopMiddleBlock = MiddleBlock; 3537 LoopExitBlock = ExitBlock; 3538 LoopVectorBody = VecBody; 3539 LoopScalarBody = OldBasicBlock; 3540 3541 // Keep all loop hints from the original loop on the vector loop (we'll 3542 // replace the vectorizer-specific hints below). 3543 if (MDNode *LID = OrigLoop->getLoopID()) 3544 Lp->setLoopID(LID); 3545 3546 LoopVectorizeHints Hints(Lp, true, *ORE); 3547 Hints.setAlreadyVectorized(); 3548 3549 return LoopVectorPreHeader; 3550 } 3551 3552 // Fix up external users of the induction variable. At this point, we are 3553 // in LCSSA form, with all external PHIs that use the IV having one input value, 3554 // coming from the remainder loop. We need those PHIs to also have a correct 3555 // value for the IV when arriving directly from the middle block. 3556 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3557 const InductionDescriptor &II, 3558 Value *CountRoundDown, Value *EndValue, 3559 BasicBlock *MiddleBlock) { 3560 // There are two kinds of external IV usages - those that use the value 3561 // computed in the last iteration (the PHI) and those that use the penultimate 3562 // value (the value that feeds into the phi from the loop latch). 3563 // We allow both, but they, obviously, have different values. 3564 3565 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3566 3567 DenseMap<Value *, Value *> MissingVals; 3568 3569 // An external user of the last iteration's value should see the value that 3570 // the remainder loop uses to initialize its own IV. 3571 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3572 for (User *U : PostInc->users()) { 3573 Instruction *UI = cast<Instruction>(U); 3574 if (!OrigLoop->contains(UI)) { 3575 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3576 MissingVals[UI] = EndValue; 3577 } 3578 } 3579 3580 // An external user of the penultimate value need to see EndValue - Step. 3581 // The simplest way to get this is to recompute it from the constituent SCEVs, 3582 // that is Start + (Step * (CRD - 1)). 3583 for (User *U : OrigPhi->users()) { 3584 auto *UI = cast<Instruction>(U); 3585 if (!OrigLoop->contains(UI)) { 3586 const DataLayout &DL = 3587 OrigLoop->getHeader()->getModule()->getDataLayout(); 3588 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3589 3590 IRBuilder<> B(MiddleBlock->getTerminator()); 3591 Value *CountMinusOne = B.CreateSub( 3592 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3593 Value *CMO = 3594 !II.getStep()->getType()->isIntegerTy() 3595 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3596 II.getStep()->getType()) 3597 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3598 CMO->setName("cast.cmo"); 3599 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3600 Escape->setName("ind.escape"); 3601 MissingVals[UI] = Escape; 3602 } 3603 } 3604 3605 for (auto &I : MissingVals) { 3606 PHINode *PHI = cast<PHINode>(I.first); 3607 // One corner case we have to handle is two IVs "chasing" each-other, 3608 // that is %IV2 = phi [...], [ %IV1, %latch ] 3609 // In this case, if IV1 has an external use, we need to avoid adding both 3610 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3611 // don't already have an incoming value for the middle block. 3612 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3613 PHI->addIncoming(I.second, MiddleBlock); 3614 } 3615 } 3616 3617 namespace { 3618 struct CSEDenseMapInfo { 3619 static bool canHandle(const Instruction *I) { 3620 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3621 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3622 } 3623 static inline Instruction *getEmptyKey() { 3624 return DenseMapInfo<Instruction *>::getEmptyKey(); 3625 } 3626 static inline Instruction *getTombstoneKey() { 3627 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3628 } 3629 static unsigned getHashValue(const Instruction *I) { 3630 assert(canHandle(I) && "Unknown instruction!"); 3631 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3632 I->value_op_end())); 3633 } 3634 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3635 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3636 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3637 return LHS == RHS; 3638 return LHS->isIdenticalTo(RHS); 3639 } 3640 }; 3641 } 3642 3643 ///\brief Perform cse of induction variable instructions. 3644 static void cse(BasicBlock *BB) { 3645 // Perform simple cse. 3646 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3647 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3648 Instruction *In = &*I++; 3649 3650 if (!CSEDenseMapInfo::canHandle(In)) 3651 continue; 3652 3653 // Check if we can replace this instruction with any of the 3654 // visited instructions. 3655 if (Instruction *V = CSEMap.lookup(In)) { 3656 In->replaceAllUsesWith(V); 3657 In->eraseFromParent(); 3658 continue; 3659 } 3660 3661 CSEMap[In] = In; 3662 } 3663 } 3664 3665 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3666 /// convenience wrapper for the type-based getScalarizationOverhead API. 3667 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3668 const TargetTransformInfo &TTI) { 3669 if (VF == 1) 3670 return 0; 3671 3672 unsigned Cost = 0; 3673 Type *RetTy = ToVectorTy(I->getType(), VF); 3674 if (!RetTy->isVoidTy() && 3675 (!isa<LoadInst>(I) || 3676 !TTI.supportsEfficientVectorElementLoadStore())) 3677 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3678 3679 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3680 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3681 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3682 } 3683 else if (!isa<StoreInst>(I) || 3684 !TTI.supportsEfficientVectorElementLoadStore()) { 3685 SmallVector<const Value *, 4> Operands(I->operand_values()); 3686 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3687 } 3688 3689 return Cost; 3690 } 3691 3692 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3693 // Return the cost of the instruction, including scalarization overhead if it's 3694 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3695 // i.e. either vector version isn't available, or is too expensive. 3696 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3697 const TargetTransformInfo &TTI, 3698 const TargetLibraryInfo *TLI, 3699 bool &NeedToScalarize) { 3700 Function *F = CI->getCalledFunction(); 3701 StringRef FnName = CI->getCalledFunction()->getName(); 3702 Type *ScalarRetTy = CI->getType(); 3703 SmallVector<Type *, 4> Tys, ScalarTys; 3704 for (auto &ArgOp : CI->arg_operands()) 3705 ScalarTys.push_back(ArgOp->getType()); 3706 3707 // Estimate cost of scalarized vector call. The source operands are assumed 3708 // to be vectors, so we need to extract individual elements from there, 3709 // execute VF scalar calls, and then gather the result into the vector return 3710 // value. 3711 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3712 if (VF == 1) 3713 return ScalarCallCost; 3714 3715 // Compute corresponding vector type for return value and arguments. 3716 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3717 for (Type *ScalarTy : ScalarTys) 3718 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3719 3720 // Compute costs of unpacking argument values for the scalar calls and 3721 // packing the return values to a vector. 3722 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3723 3724 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3725 3726 // If we can't emit a vector call for this function, then the currently found 3727 // cost is the cost we need to return. 3728 NeedToScalarize = true; 3729 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3730 return Cost; 3731 3732 // If the corresponding vector cost is cheaper, return its cost. 3733 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3734 if (VectorCallCost < Cost) { 3735 NeedToScalarize = false; 3736 return VectorCallCost; 3737 } 3738 return Cost; 3739 } 3740 3741 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3742 // factor VF. Return the cost of the instruction, including scalarization 3743 // overhead if it's needed. 3744 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3745 const TargetTransformInfo &TTI, 3746 const TargetLibraryInfo *TLI) { 3747 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3748 assert(ID && "Expected intrinsic call!"); 3749 3750 FastMathFlags FMF; 3751 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3752 FMF = FPMO->getFastMathFlags(); 3753 3754 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3755 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3756 } 3757 3758 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3759 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3760 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3761 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3762 } 3763 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3764 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3765 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3766 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3767 } 3768 3769 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3770 // For every instruction `I` in MinBWs, truncate the operands, create a 3771 // truncated version of `I` and reextend its result. InstCombine runs 3772 // later and will remove any ext/trunc pairs. 3773 // 3774 SmallPtrSet<Value *, 4> Erased; 3775 for (const auto &KV : Cost->getMinimalBitwidths()) { 3776 // If the value wasn't vectorized, we must maintain the original scalar 3777 // type. The absence of the value from VectorLoopValueMap indicates that it 3778 // wasn't vectorized. 3779 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3780 continue; 3781 for (unsigned Part = 0; Part < UF; ++Part) { 3782 Value *I = getOrCreateVectorValue(KV.first, Part); 3783 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3784 continue; 3785 Type *OriginalTy = I->getType(); 3786 Type *ScalarTruncatedTy = 3787 IntegerType::get(OriginalTy->getContext(), KV.second); 3788 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3789 OriginalTy->getVectorNumElements()); 3790 if (TruncatedTy == OriginalTy) 3791 continue; 3792 3793 IRBuilder<> B(cast<Instruction>(I)); 3794 auto ShrinkOperand = [&](Value *V) -> Value * { 3795 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3796 if (ZI->getSrcTy() == TruncatedTy) 3797 return ZI->getOperand(0); 3798 return B.CreateZExtOrTrunc(V, TruncatedTy); 3799 }; 3800 3801 // The actual instruction modification depends on the instruction type, 3802 // unfortunately. 3803 Value *NewI = nullptr; 3804 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3805 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3806 ShrinkOperand(BO->getOperand(1))); 3807 3808 // Any wrapping introduced by shrinking this operation shouldn't be 3809 // considered undefined behavior. So, we can't unconditionally copy 3810 // arithmetic wrapping flags to NewI. 3811 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3812 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3813 NewI = 3814 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3815 ShrinkOperand(CI->getOperand(1))); 3816 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3817 NewI = B.CreateSelect(SI->getCondition(), 3818 ShrinkOperand(SI->getTrueValue()), 3819 ShrinkOperand(SI->getFalseValue())); 3820 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3821 switch (CI->getOpcode()) { 3822 default: 3823 llvm_unreachable("Unhandled cast!"); 3824 case Instruction::Trunc: 3825 NewI = ShrinkOperand(CI->getOperand(0)); 3826 break; 3827 case Instruction::SExt: 3828 NewI = B.CreateSExtOrTrunc( 3829 CI->getOperand(0), 3830 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3831 break; 3832 case Instruction::ZExt: 3833 NewI = B.CreateZExtOrTrunc( 3834 CI->getOperand(0), 3835 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3836 break; 3837 } 3838 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3839 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3840 auto *O0 = B.CreateZExtOrTrunc( 3841 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3842 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3843 auto *O1 = B.CreateZExtOrTrunc( 3844 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3845 3846 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3847 } else if (isa<LoadInst>(I)) { 3848 // Don't do anything with the operands, just extend the result. 3849 continue; 3850 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3851 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3852 auto *O0 = B.CreateZExtOrTrunc( 3853 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3854 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3855 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3856 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3857 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3858 auto *O0 = B.CreateZExtOrTrunc( 3859 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3860 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3861 } else { 3862 llvm_unreachable("Unhandled instruction type!"); 3863 } 3864 3865 // Lastly, extend the result. 3866 NewI->takeName(cast<Instruction>(I)); 3867 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3868 I->replaceAllUsesWith(Res); 3869 cast<Instruction>(I)->eraseFromParent(); 3870 Erased.insert(I); 3871 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3872 } 3873 } 3874 3875 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3876 for (const auto &KV : Cost->getMinimalBitwidths()) { 3877 // If the value wasn't vectorized, we must maintain the original scalar 3878 // type. The absence of the value from VectorLoopValueMap indicates that it 3879 // wasn't vectorized. 3880 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3881 continue; 3882 for (unsigned Part = 0; Part < UF; ++Part) { 3883 Value *I = getOrCreateVectorValue(KV.first, Part); 3884 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3885 if (Inst && Inst->use_empty()) { 3886 Value *NewI = Inst->getOperand(0); 3887 Inst->eraseFromParent(); 3888 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3889 } 3890 } 3891 } 3892 } 3893 3894 void InnerLoopVectorizer::fixVectorizedLoop() { 3895 // Insert truncates and extends for any truncated instructions as hints to 3896 // InstCombine. 3897 if (VF > 1) 3898 truncateToMinimalBitwidths(); 3899 3900 // At this point every instruction in the original loop is widened to a 3901 // vector form. Now we need to fix the recurrences in the loop. These PHI 3902 // nodes are currently empty because we did not want to introduce cycles. 3903 // This is the second stage of vectorizing recurrences. 3904 fixCrossIterationPHIs(); 3905 3906 // Update the dominator tree. 3907 // 3908 // FIXME: After creating the structure of the new loop, the dominator tree is 3909 // no longer up-to-date, and it remains that way until we update it 3910 // here. An out-of-date dominator tree is problematic for SCEV, 3911 // because SCEVExpander uses it to guide code generation. The 3912 // vectorizer use SCEVExpanders in several places. Instead, we should 3913 // keep the dominator tree up-to-date as we go. 3914 updateAnalysis(); 3915 3916 // Fix-up external users of the induction variables. 3917 for (auto &Entry : *Legal->getInductionVars()) 3918 fixupIVUsers(Entry.first, Entry.second, 3919 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3920 IVEndValues[Entry.first], LoopMiddleBlock); 3921 3922 fixLCSSAPHIs(); 3923 for (Instruction *PI : PredicatedInstructions) 3924 sinkScalarOperands(&*PI); 3925 3926 // Remove redundant induction instructions. 3927 cse(LoopVectorBody); 3928 } 3929 3930 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3931 // In order to support recurrences we need to be able to vectorize Phi nodes. 3932 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3933 // stage #2: We now need to fix the recurrences by adding incoming edges to 3934 // the currently empty PHI nodes. At this point every instruction in the 3935 // original loop is widened to a vector form so we can use them to construct 3936 // the incoming edges. 3937 for (Instruction &I : *OrigLoop->getHeader()) { 3938 PHINode *Phi = dyn_cast<PHINode>(&I); 3939 if (!Phi) 3940 break; 3941 // Handle first-order recurrences and reductions that need to be fixed. 3942 if (Legal->isFirstOrderRecurrence(Phi)) 3943 fixFirstOrderRecurrence(Phi); 3944 else if (Legal->isReductionVariable(Phi)) 3945 fixReduction(Phi); 3946 } 3947 } 3948 3949 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3950 3951 // This is the second phase of vectorizing first-order recurrences. An 3952 // overview of the transformation is described below. Suppose we have the 3953 // following loop. 3954 // 3955 // for (int i = 0; i < n; ++i) 3956 // b[i] = a[i] - a[i - 1]; 3957 // 3958 // There is a first-order recurrence on "a". For this loop, the shorthand 3959 // scalar IR looks like: 3960 // 3961 // scalar.ph: 3962 // s_init = a[-1] 3963 // br scalar.body 3964 // 3965 // scalar.body: 3966 // i = phi [0, scalar.ph], [i+1, scalar.body] 3967 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3968 // s2 = a[i] 3969 // b[i] = s2 - s1 3970 // br cond, scalar.body, ... 3971 // 3972 // In this example, s1 is a recurrence because it's value depends on the 3973 // previous iteration. In the first phase of vectorization, we created a 3974 // temporary value for s1. We now complete the vectorization and produce the 3975 // shorthand vector IR shown below (for VF = 4, UF = 1). 3976 // 3977 // vector.ph: 3978 // v_init = vector(..., ..., ..., a[-1]) 3979 // br vector.body 3980 // 3981 // vector.body 3982 // i = phi [0, vector.ph], [i+4, vector.body] 3983 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3984 // v2 = a[i, i+1, i+2, i+3]; 3985 // v3 = vector(v1(3), v2(0, 1, 2)) 3986 // b[i, i+1, i+2, i+3] = v2 - v3 3987 // br cond, vector.body, middle.block 3988 // 3989 // middle.block: 3990 // x = v2(3) 3991 // br scalar.ph 3992 // 3993 // scalar.ph: 3994 // s_init = phi [x, middle.block], [a[-1], otherwise] 3995 // br scalar.body 3996 // 3997 // After execution completes the vector loop, we extract the next value of 3998 // the recurrence (x) to use as the initial value in the scalar loop. 3999 4000 // Get the original loop preheader and single loop latch. 4001 auto *Preheader = OrigLoop->getLoopPreheader(); 4002 auto *Latch = OrigLoop->getLoopLatch(); 4003 4004 // Get the initial and previous values of the scalar recurrence. 4005 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4006 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4007 4008 // Create a vector from the initial value. 4009 auto *VectorInit = ScalarInit; 4010 if (VF > 1) { 4011 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4012 VectorInit = Builder.CreateInsertElement( 4013 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4014 Builder.getInt32(VF - 1), "vector.recur.init"); 4015 } 4016 4017 // We constructed a temporary phi node in the first phase of vectorization. 4018 // This phi node will eventually be deleted. 4019 Builder.SetInsertPoint( 4020 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4021 4022 // Create a phi node for the new recurrence. The current value will either be 4023 // the initial value inserted into a vector or loop-varying vector value. 4024 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4025 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4026 4027 // Get the vectorized previous value of the last part UF - 1. It appears last 4028 // among all unrolled iterations, due to the order of their construction. 4029 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4030 4031 // Set the insertion point after the previous value if it is an instruction. 4032 // Note that the previous value may have been constant-folded so it is not 4033 // guaranteed to be an instruction in the vector loop. Also, if the previous 4034 // value is a phi node, we should insert after all the phi nodes to avoid 4035 // breaking basic block verification. 4036 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4037 isa<PHINode>(PreviousLastPart)) 4038 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4039 else 4040 Builder.SetInsertPoint( 4041 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4042 4043 // We will construct a vector for the recurrence by combining the values for 4044 // the current and previous iterations. This is the required shuffle mask. 4045 SmallVector<Constant *, 8> ShuffleMask(VF); 4046 ShuffleMask[0] = Builder.getInt32(VF - 1); 4047 for (unsigned I = 1; I < VF; ++I) 4048 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4049 4050 // The vector from which to take the initial value for the current iteration 4051 // (actual or unrolled). Initially, this is the vector phi node. 4052 Value *Incoming = VecPhi; 4053 4054 // Shuffle the current and previous vector and update the vector parts. 4055 for (unsigned Part = 0; Part < UF; ++Part) { 4056 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4057 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4058 auto *Shuffle = 4059 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4060 ConstantVector::get(ShuffleMask)) 4061 : Incoming; 4062 PhiPart->replaceAllUsesWith(Shuffle); 4063 cast<Instruction>(PhiPart)->eraseFromParent(); 4064 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4065 Incoming = PreviousPart; 4066 } 4067 4068 // Fix the latch value of the new recurrence in the vector loop. 4069 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4070 4071 // Extract the last vector element in the middle block. This will be the 4072 // initial value for the recurrence when jumping to the scalar loop. 4073 auto *ExtractForScalar = Incoming; 4074 if (VF > 1) { 4075 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4076 ExtractForScalar = Builder.CreateExtractElement( 4077 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4078 } 4079 // Extract the second last element in the middle block if the 4080 // Phi is used outside the loop. We need to extract the phi itself 4081 // and not the last element (the phi update in the current iteration). This 4082 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4083 // when the scalar loop is not run at all. 4084 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4085 if (VF > 1) 4086 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4087 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4088 // When loop is unrolled without vectorizing, initialize 4089 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4090 // `Incoming`. This is analogous to the vectorized case above: extracting the 4091 // second last element when VF > 1. 4092 else if (UF > 1) 4093 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4094 4095 // Fix the initial value of the original recurrence in the scalar loop. 4096 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4097 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4098 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4099 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4100 Start->addIncoming(Incoming, BB); 4101 } 4102 4103 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4104 Phi->setName("scalar.recur"); 4105 4106 // Finally, fix users of the recurrence outside the loop. The users will need 4107 // either the last value of the scalar recurrence or the last value of the 4108 // vector recurrence we extracted in the middle block. Since the loop is in 4109 // LCSSA form, we just need to find the phi node for the original scalar 4110 // recurrence in the exit block, and then add an edge for the middle block. 4111 for (auto &I : *LoopExitBlock) { 4112 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4113 if (!LCSSAPhi) 4114 break; 4115 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4116 LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4117 break; 4118 } 4119 } 4120 } 4121 4122 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4123 Constant *Zero = Builder.getInt32(0); 4124 4125 // Get it's reduction variable descriptor. 4126 assert(Legal->isReductionVariable(Phi) && 4127 "Unable to find the reduction variable"); 4128 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4129 4130 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4131 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4132 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4133 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4134 RdxDesc.getMinMaxRecurrenceKind(); 4135 setDebugLocFromInst(Builder, ReductionStartValue); 4136 4137 // We need to generate a reduction vector from the incoming scalar. 4138 // To do so, we need to generate the 'identity' vector and override 4139 // one of the elements with the incoming scalar reduction. We need 4140 // to do it in the vector-loop preheader. 4141 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4142 4143 // This is the vector-clone of the value that leaves the loop. 4144 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4145 4146 // Find the reduction identity variable. Zero for addition, or, xor, 4147 // one for multiplication, -1 for And. 4148 Value *Identity; 4149 Value *VectorStart; 4150 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4151 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4152 // MinMax reduction have the start value as their identify. 4153 if (VF == 1) { 4154 VectorStart = Identity = ReductionStartValue; 4155 } else { 4156 VectorStart = Identity = 4157 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4158 } 4159 } else { 4160 // Handle other reduction kinds: 4161 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4162 RK, VecTy->getScalarType()); 4163 if (VF == 1) { 4164 Identity = Iden; 4165 // This vector is the Identity vector where the first element is the 4166 // incoming scalar reduction. 4167 VectorStart = ReductionStartValue; 4168 } else { 4169 Identity = ConstantVector::getSplat(VF, Iden); 4170 4171 // This vector is the Identity vector where the first element is the 4172 // incoming scalar reduction. 4173 VectorStart = 4174 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4175 } 4176 } 4177 4178 // Fix the vector-loop phi. 4179 4180 // Reductions do not have to start at zero. They can start with 4181 // any loop invariant values. 4182 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4183 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4184 for (unsigned Part = 0; Part < UF; ++Part) { 4185 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4186 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4187 // Make sure to add the reduction stat value only to the 4188 // first unroll part. 4189 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4190 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4191 cast<PHINode>(VecRdxPhi) 4192 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4193 } 4194 4195 // Before each round, move the insertion point right between 4196 // the PHIs and the values we are going to write. 4197 // This allows us to write both PHINodes and the extractelement 4198 // instructions. 4199 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4200 4201 setDebugLocFromInst(Builder, LoopExitInst); 4202 4203 // If the vector reduction can be performed in a smaller type, we truncate 4204 // then extend the loop exit value to enable InstCombine to evaluate the 4205 // entire expression in the smaller type. 4206 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4207 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4208 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 4209 VectorParts RdxParts(UF); 4210 for (unsigned Part = 0; Part < UF; ++Part) { 4211 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4212 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4213 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4214 : Builder.CreateZExt(Trunc, VecTy); 4215 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4216 UI != RdxParts[Part]->user_end();) 4217 if (*UI != Trunc) { 4218 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4219 RdxParts[Part] = Extnd; 4220 } else { 4221 ++UI; 4222 } 4223 } 4224 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4225 for (unsigned Part = 0; Part < UF; ++Part) { 4226 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4227 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4228 } 4229 } 4230 4231 // Reduce all of the unrolled parts into a single vector. 4232 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4233 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4234 setDebugLocFromInst(Builder, ReducedPartRdx); 4235 for (unsigned Part = 1; Part < UF; ++Part) { 4236 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4237 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4238 // Floating point operations had to be 'fast' to enable the reduction. 4239 ReducedPartRdx = addFastMathFlag( 4240 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4241 ReducedPartRdx, "bin.rdx")); 4242 else 4243 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4244 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4245 } 4246 4247 if (VF > 1) { 4248 bool NoNaN = Legal->hasFunNoNaNAttr(); 4249 ReducedPartRdx = 4250 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4251 // If the reduction can be performed in a smaller type, we need to extend 4252 // the reduction to the wider type before we branch to the original loop. 4253 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4254 ReducedPartRdx = 4255 RdxDesc.isSigned() 4256 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4257 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4258 } 4259 4260 // Create a phi node that merges control-flow from the backedge-taken check 4261 // block and the middle block. 4262 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4263 LoopScalarPreHeader->getTerminator()); 4264 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4265 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4266 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4267 4268 // Now, we need to fix the users of the reduction variable 4269 // inside and outside of the scalar remainder loop. 4270 // We know that the loop is in LCSSA form. We need to update the 4271 // PHI nodes in the exit blocks. 4272 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4273 LEE = LoopExitBlock->end(); 4274 LEI != LEE; ++LEI) { 4275 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4276 if (!LCSSAPhi) 4277 break; 4278 4279 // All PHINodes need to have a single entry edge, or two if 4280 // we already fixed them. 4281 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4282 4283 // We found a reduction value exit-PHI. Update it with the 4284 // incoming bypass edge. 4285 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4286 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4287 } // end of the LCSSA phi scan. 4288 4289 // Fix the scalar loop reduction variable with the incoming reduction sum 4290 // from the vector body and from the backedge value. 4291 int IncomingEdgeBlockIdx = 4292 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4293 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4294 // Pick the other block. 4295 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4296 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4297 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4298 } 4299 4300 void InnerLoopVectorizer::fixLCSSAPHIs() { 4301 for (Instruction &LEI : *LoopExitBlock) { 4302 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4303 if (!LCSSAPhi) 4304 break; 4305 if (LCSSAPhi->getNumIncomingValues() == 1) { 4306 assert(OrigLoop->isLoopInvariant(LCSSAPhi->getIncomingValue(0)) && 4307 "Incoming value isn't loop invariant"); 4308 LCSSAPhi->addIncoming(LCSSAPhi->getIncomingValue(0), LoopMiddleBlock); 4309 } 4310 } 4311 } 4312 4313 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4314 4315 // The basic block and loop containing the predicated instruction. 4316 auto *PredBB = PredInst->getParent(); 4317 auto *VectorLoop = LI->getLoopFor(PredBB); 4318 4319 // Initialize a worklist with the operands of the predicated instruction. 4320 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4321 4322 // Holds instructions that we need to analyze again. An instruction may be 4323 // reanalyzed if we don't yet know if we can sink it or not. 4324 SmallVector<Instruction *, 8> InstsToReanalyze; 4325 4326 // Returns true if a given use occurs in the predicated block. Phi nodes use 4327 // their operands in their corresponding predecessor blocks. 4328 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4329 auto *I = cast<Instruction>(U.getUser()); 4330 BasicBlock *BB = I->getParent(); 4331 if (auto *Phi = dyn_cast<PHINode>(I)) 4332 BB = Phi->getIncomingBlock( 4333 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4334 return BB == PredBB; 4335 }; 4336 4337 // Iteratively sink the scalarized operands of the predicated instruction 4338 // into the block we created for it. When an instruction is sunk, it's 4339 // operands are then added to the worklist. The algorithm ends after one pass 4340 // through the worklist doesn't sink a single instruction. 4341 bool Changed; 4342 do { 4343 4344 // Add the instructions that need to be reanalyzed to the worklist, and 4345 // reset the changed indicator. 4346 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4347 InstsToReanalyze.clear(); 4348 Changed = false; 4349 4350 while (!Worklist.empty()) { 4351 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4352 4353 // We can't sink an instruction if it is a phi node, is already in the 4354 // predicated block, is not in the loop, or may have side effects. 4355 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4356 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4357 continue; 4358 4359 // It's legal to sink the instruction if all its uses occur in the 4360 // predicated block. Otherwise, there's nothing to do yet, and we may 4361 // need to reanalyze the instruction. 4362 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4363 InstsToReanalyze.push_back(I); 4364 continue; 4365 } 4366 4367 // Move the instruction to the beginning of the predicated block, and add 4368 // it's operands to the worklist. 4369 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4370 Worklist.insert(I->op_begin(), I->op_end()); 4371 4372 // The sinking may have enabled other instructions to be sunk, so we will 4373 // need to iterate. 4374 Changed = true; 4375 } 4376 } while (Changed); 4377 } 4378 4379 InnerLoopVectorizer::VectorParts 4380 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4381 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4382 4383 // Look for cached value. 4384 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4385 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 4386 if (ECEntryIt != EdgeMaskCache.end()) 4387 return ECEntryIt->second; 4388 4389 VectorParts SrcMask = createBlockInMask(Src); 4390 4391 // The terminator has to be a branch inst! 4392 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4393 assert(BI && "Unexpected terminator found"); 4394 4395 if (!BI->isConditional()) 4396 return EdgeMaskCache[Edge] = SrcMask; 4397 4398 VectorParts EdgeMask(UF); 4399 for (unsigned Part = 0; Part < UF; ++Part) { 4400 auto *EdgeMaskPart = getOrCreateVectorValue(BI->getCondition(), Part); 4401 if (BI->getSuccessor(0) != Dst) 4402 EdgeMaskPart = Builder.CreateNot(EdgeMaskPart); 4403 4404 if (SrcMask[Part]) // Otherwise block in-mask is all-one, no need to AND. 4405 EdgeMaskPart = Builder.CreateAnd(EdgeMaskPart, SrcMask[Part]); 4406 4407 EdgeMask[Part] = EdgeMaskPart; 4408 } 4409 4410 return EdgeMaskCache[Edge] = EdgeMask; 4411 } 4412 4413 InnerLoopVectorizer::VectorParts 4414 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4415 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4416 4417 // Look for cached value. 4418 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 4419 if (BCEntryIt != BlockMaskCache.end()) 4420 return BCEntryIt->second; 4421 4422 // All-one mask is modelled as no-mask following the convention for masked 4423 // load/store/gather/scatter. Initialize BlockMask to no-mask. 4424 VectorParts BlockMask(UF); 4425 for (unsigned Part = 0; Part < UF; ++Part) 4426 BlockMask[Part] = nullptr; 4427 4428 // Loop incoming mask is all-one. 4429 if (OrigLoop->getHeader() == BB) 4430 return BlockMaskCache[BB] = BlockMask; 4431 4432 // This is the block mask. We OR all incoming edges. 4433 for (auto *Predecessor : predecessors(BB)) { 4434 VectorParts EdgeMask = createEdgeMask(Predecessor, BB); 4435 if (!EdgeMask[0]) // Mask of predecessor is all-one so mask of block is too. 4436 return BlockMaskCache[BB] = EdgeMask; 4437 4438 if (!BlockMask[0]) { // BlockMask has its initialized nullptr value. 4439 BlockMask = EdgeMask; 4440 continue; 4441 } 4442 4443 for (unsigned Part = 0; Part < UF; ++Part) 4444 BlockMask[Part] = Builder.CreateOr(BlockMask[Part], EdgeMask[Part]); 4445 } 4446 4447 return BlockMaskCache[BB] = BlockMask; 4448 } 4449 4450 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4451 unsigned VF) { 4452 PHINode *P = cast<PHINode>(PN); 4453 // In order to support recurrences we need to be able to vectorize Phi nodes. 4454 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4455 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4456 // this value when we vectorize all of the instructions that use the PHI. 4457 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4458 for (unsigned Part = 0; Part < UF; ++Part) { 4459 // This is phase one of vectorizing PHIs. 4460 Type *VecTy = 4461 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4462 Value *EntryPart = PHINode::Create( 4463 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4464 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4465 } 4466 return; 4467 } 4468 4469 setDebugLocFromInst(Builder, P); 4470 // Check for PHI nodes that are lowered to vector selects. 4471 if (P->getParent() != OrigLoop->getHeader()) { 4472 // We know that all PHIs in non-header blocks are converted into 4473 // selects, so we don't have to worry about the insertion order and we 4474 // can just use the builder. 4475 // At this point we generate the predication tree. There may be 4476 // duplications since this is a simple recursive scan, but future 4477 // optimizations will clean it up. 4478 4479 unsigned NumIncoming = P->getNumIncomingValues(); 4480 4481 // Generate a sequence of selects of the form: 4482 // SELECT(Mask3, In3, 4483 // SELECT(Mask2, In2, 4484 // ( ...))) 4485 VectorParts Entry(UF); 4486 for (unsigned In = 0; In < NumIncoming; In++) { 4487 VectorParts Cond = 4488 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4489 4490 for (unsigned Part = 0; Part < UF; ++Part) { 4491 Value *In0 = getOrCreateVectorValue(P->getIncomingValue(In), Part); 4492 // We might have single edge PHIs (blocks) - use an identity 4493 // 'select' for the first PHI operand. 4494 if (In == 0) 4495 Entry[Part] = Builder.CreateSelect(Cond[Part], In0, In0); 4496 else 4497 // Select between the current value and the previous incoming edge 4498 // based on the incoming mask. 4499 Entry[Part] = Builder.CreateSelect(Cond[Part], In0, Entry[Part], 4500 "predphi"); 4501 } 4502 } 4503 for (unsigned Part = 0; Part < UF; ++Part) 4504 VectorLoopValueMap.setVectorValue(P, Part, Entry[Part]); 4505 return; 4506 } 4507 4508 // This PHINode must be an induction variable. 4509 // Make sure that we know about it. 4510 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4511 4512 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4513 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4514 4515 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4516 // which can be found from the original scalar operations. 4517 switch (II.getKind()) { 4518 case InductionDescriptor::IK_NoInduction: 4519 llvm_unreachable("Unknown induction"); 4520 case InductionDescriptor::IK_IntInduction: 4521 case InductionDescriptor::IK_FpInduction: 4522 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4523 case InductionDescriptor::IK_PtrInduction: { 4524 // Handle the pointer induction variable case. 4525 assert(P->getType()->isPointerTy() && "Unexpected type."); 4526 // This is the normalized GEP that starts counting at zero. 4527 Value *PtrInd = Induction; 4528 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4529 // Determine the number of scalars we need to generate for each unroll 4530 // iteration. If the instruction is uniform, we only need to generate the 4531 // first lane. Otherwise, we generate all VF values. 4532 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4533 // These are the scalar results. Notice that we don't generate vector GEPs 4534 // because scalar GEPs result in better code. 4535 for (unsigned Part = 0; Part < UF; ++Part) { 4536 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4537 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4538 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4539 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4540 SclrGep->setName("next.gep"); 4541 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4542 } 4543 } 4544 return; 4545 } 4546 } 4547 } 4548 4549 /// A helper function for checking whether an integer division-related 4550 /// instruction may divide by zero (in which case it must be predicated if 4551 /// executed conditionally in the scalar code). 4552 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4553 /// Non-zero divisors that are non compile-time constants will not be 4554 /// converted into multiplication, so we will still end up scalarizing 4555 /// the division, but can do so w/o predication. 4556 static bool mayDivideByZero(Instruction &I) { 4557 assert((I.getOpcode() == Instruction::UDiv || 4558 I.getOpcode() == Instruction::SDiv || 4559 I.getOpcode() == Instruction::URem || 4560 I.getOpcode() == Instruction::SRem) && 4561 "Unexpected instruction"); 4562 Value *Divisor = I.getOperand(1); 4563 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4564 return !CInt || CInt->isZero(); 4565 } 4566 4567 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4568 switch (I.getOpcode()) { 4569 case Instruction::Br: 4570 case Instruction::PHI: 4571 llvm_unreachable("This instruction is handled by a different recipe."); 4572 case Instruction::GetElementPtr: { 4573 // Construct a vector GEP by widening the operands of the scalar GEP as 4574 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4575 // results in a vector of pointers when at least one operand of the GEP 4576 // is vector-typed. Thus, to keep the representation compact, we only use 4577 // vector-typed operands for loop-varying values. 4578 auto *GEP = cast<GetElementPtrInst>(&I); 4579 4580 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4581 // If we are vectorizing, but the GEP has only loop-invariant operands, 4582 // the GEP we build (by only using vector-typed operands for 4583 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4584 // produce a vector of pointers, we need to either arbitrarily pick an 4585 // operand to broadcast, or broadcast a clone of the original GEP. 4586 // Here, we broadcast a clone of the original. 4587 // 4588 // TODO: If at some point we decide to scalarize instructions having 4589 // loop-invariant operands, this special case will no longer be 4590 // required. We would add the scalarization decision to 4591 // collectLoopScalars() and teach getVectorValue() to broadcast 4592 // the lane-zero scalar value. 4593 auto *Clone = Builder.Insert(GEP->clone()); 4594 for (unsigned Part = 0; Part < UF; ++Part) { 4595 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4596 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4597 addMetadata(EntryPart, GEP); 4598 } 4599 } else { 4600 // If the GEP has at least one loop-varying operand, we are sure to 4601 // produce a vector of pointers. But if we are only unrolling, we want 4602 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4603 // produce with the code below will be scalar (if VF == 1) or vector 4604 // (otherwise). Note that for the unroll-only case, we still maintain 4605 // values in the vector mapping with initVector, as we do for other 4606 // instructions. 4607 for (unsigned Part = 0; Part < UF; ++Part) { 4608 4609 // The pointer operand of the new GEP. If it's loop-invariant, we 4610 // won't broadcast it. 4611 auto *Ptr = 4612 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4613 ? GEP->getPointerOperand() 4614 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4615 4616 // Collect all the indices for the new GEP. If any index is 4617 // loop-invariant, we won't broadcast it. 4618 SmallVector<Value *, 4> Indices; 4619 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4620 if (OrigLoop->isLoopInvariant(U.get())) 4621 Indices.push_back(U.get()); 4622 else 4623 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4624 } 4625 4626 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4627 // but it should be a vector, otherwise. 4628 auto *NewGEP = GEP->isInBounds() 4629 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4630 : Builder.CreateGEP(Ptr, Indices); 4631 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4632 "NewGEP is not a pointer vector"); 4633 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4634 addMetadata(NewGEP, GEP); 4635 } 4636 } 4637 4638 break; 4639 } 4640 case Instruction::UDiv: 4641 case Instruction::SDiv: 4642 case Instruction::SRem: 4643 case Instruction::URem: 4644 case Instruction::Add: 4645 case Instruction::FAdd: 4646 case Instruction::Sub: 4647 case Instruction::FSub: 4648 case Instruction::Mul: 4649 case Instruction::FMul: 4650 case Instruction::FDiv: 4651 case Instruction::FRem: 4652 case Instruction::Shl: 4653 case Instruction::LShr: 4654 case Instruction::AShr: 4655 case Instruction::And: 4656 case Instruction::Or: 4657 case Instruction::Xor: { 4658 // Just widen binops. 4659 auto *BinOp = cast<BinaryOperator>(&I); 4660 setDebugLocFromInst(Builder, BinOp); 4661 4662 for (unsigned Part = 0; Part < UF; ++Part) { 4663 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4664 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4665 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4666 4667 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4668 VecOp->copyIRFlags(BinOp); 4669 4670 // Use this vector value for all users of the original instruction. 4671 VectorLoopValueMap.setVectorValue(&I, Part, V); 4672 addMetadata(V, BinOp); 4673 } 4674 4675 break; 4676 } 4677 case Instruction::Select: { 4678 // Widen selects. 4679 // If the selector is loop invariant we can create a select 4680 // instruction with a scalar condition. Otherwise, use vector-select. 4681 auto *SE = PSE.getSE(); 4682 bool InvariantCond = 4683 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4684 setDebugLocFromInst(Builder, &I); 4685 4686 // The condition can be loop invariant but still defined inside the 4687 // loop. This means that we can't just use the original 'cond' value. 4688 // We have to take the 'vectorized' value and pick the first lane. 4689 // Instcombine will make this a no-op. 4690 4691 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4692 4693 for (unsigned Part = 0; Part < UF; ++Part) { 4694 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4695 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4696 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4697 Value *Sel = 4698 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4699 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4700 addMetadata(Sel, &I); 4701 } 4702 4703 break; 4704 } 4705 4706 case Instruction::ICmp: 4707 case Instruction::FCmp: { 4708 // Widen compares. Generate vector compares. 4709 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4710 auto *Cmp = dyn_cast<CmpInst>(&I); 4711 setDebugLocFromInst(Builder, Cmp); 4712 for (unsigned Part = 0; Part < UF; ++Part) { 4713 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4714 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4715 Value *C = nullptr; 4716 if (FCmp) { 4717 // Propagate fast math flags. 4718 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4719 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4720 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4721 } else { 4722 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4723 } 4724 VectorLoopValueMap.setVectorValue(&I, Part, C); 4725 addMetadata(C, &I); 4726 } 4727 4728 break; 4729 } 4730 4731 case Instruction::Store: 4732 case Instruction::Load: 4733 vectorizeMemoryInstruction(&I); 4734 break; 4735 case Instruction::ZExt: 4736 case Instruction::SExt: 4737 case Instruction::FPToUI: 4738 case Instruction::FPToSI: 4739 case Instruction::FPExt: 4740 case Instruction::PtrToInt: 4741 case Instruction::IntToPtr: 4742 case Instruction::SIToFP: 4743 case Instruction::UIToFP: 4744 case Instruction::Trunc: 4745 case Instruction::FPTrunc: 4746 case Instruction::BitCast: { 4747 auto *CI = dyn_cast<CastInst>(&I); 4748 setDebugLocFromInst(Builder, CI); 4749 4750 /// Vectorize casts. 4751 Type *DestTy = 4752 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4753 4754 for (unsigned Part = 0; Part < UF; ++Part) { 4755 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4756 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4757 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4758 addMetadata(Cast, &I); 4759 } 4760 break; 4761 } 4762 4763 case Instruction::Call: { 4764 // Ignore dbg intrinsics. 4765 if (isa<DbgInfoIntrinsic>(I)) 4766 break; 4767 setDebugLocFromInst(Builder, &I); 4768 4769 Module *M = I.getParent()->getParent()->getParent(); 4770 auto *CI = cast<CallInst>(&I); 4771 4772 StringRef FnName = CI->getCalledFunction()->getName(); 4773 Function *F = CI->getCalledFunction(); 4774 Type *RetTy = ToVectorTy(CI->getType(), VF); 4775 SmallVector<Type *, 4> Tys; 4776 for (Value *ArgOperand : CI->arg_operands()) 4777 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4778 4779 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4780 4781 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4782 // version of the instruction. 4783 // Is it beneficial to perform intrinsic call compared to lib call? 4784 bool NeedToScalarize; 4785 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4786 bool UseVectorIntrinsic = 4787 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4788 assert((UseVectorIntrinsic || !NeedToScalarize) && 4789 "Instruction should be scalarized elsewhere."); 4790 4791 for (unsigned Part = 0; Part < UF; ++Part) { 4792 SmallVector<Value *, 4> Args; 4793 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4794 Value *Arg = CI->getArgOperand(i); 4795 // Some intrinsics have a scalar argument - don't replace it with a 4796 // vector. 4797 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4798 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4799 Args.push_back(Arg); 4800 } 4801 4802 Function *VectorF; 4803 if (UseVectorIntrinsic) { 4804 // Use vector version of the intrinsic. 4805 Type *TysForDecl[] = {CI->getType()}; 4806 if (VF > 1) 4807 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4808 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4809 } else { 4810 // Use vector version of the library call. 4811 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4812 assert(!VFnName.empty() && "Vector function name is empty."); 4813 VectorF = M->getFunction(VFnName); 4814 if (!VectorF) { 4815 // Generate a declaration 4816 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4817 VectorF = 4818 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4819 VectorF->copyAttributesFrom(F); 4820 } 4821 } 4822 assert(VectorF && "Can't create vector function."); 4823 4824 SmallVector<OperandBundleDef, 1> OpBundles; 4825 CI->getOperandBundlesAsDefs(OpBundles); 4826 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4827 4828 if (isa<FPMathOperator>(V)) 4829 V->copyFastMathFlags(CI); 4830 4831 VectorLoopValueMap.setVectorValue(&I, Part, V); 4832 addMetadata(V, &I); 4833 } 4834 4835 break; 4836 } 4837 4838 default: 4839 // All other instructions are scalarized. 4840 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4841 llvm_unreachable("Unhandled instruction!"); 4842 } // end of switch. 4843 } 4844 4845 void InnerLoopVectorizer::updateAnalysis() { 4846 // Forget the original basic block. 4847 PSE.getSE()->forgetLoop(OrigLoop); 4848 4849 // Update the dominator tree information. 4850 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4851 "Entry does not dominate exit."); 4852 4853 DT->addNewBlock(LoopMiddleBlock, 4854 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4855 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4856 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4857 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4858 DEBUG(DT->verifyDomTree()); 4859 } 4860 4861 /// \brief Check whether it is safe to if-convert this phi node. 4862 /// 4863 /// Phi nodes with constant expressions that can trap are not safe to if 4864 /// convert. 4865 static bool canIfConvertPHINodes(BasicBlock *BB) { 4866 for (Instruction &I : *BB) { 4867 auto *Phi = dyn_cast<PHINode>(&I); 4868 if (!Phi) 4869 return true; 4870 for (Value *V : Phi->incoming_values()) 4871 if (auto *C = dyn_cast<Constant>(V)) 4872 if (C->canTrap()) 4873 return false; 4874 } 4875 return true; 4876 } 4877 4878 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4879 if (!EnableIfConversion) { 4880 ORE->emit(createMissedAnalysis("IfConversionDisabled") 4881 << "if-conversion is disabled"); 4882 return false; 4883 } 4884 4885 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4886 4887 // A list of pointers that we can safely read and write to. 4888 SmallPtrSet<Value *, 8> SafePointes; 4889 4890 // Collect safe addresses. 4891 for (BasicBlock *BB : TheLoop->blocks()) { 4892 if (blockNeedsPredication(BB)) 4893 continue; 4894 4895 for (Instruction &I : *BB) 4896 if (auto *Ptr = getPointerOperand(&I)) 4897 SafePointes.insert(Ptr); 4898 } 4899 4900 // Collect the blocks that need predication. 4901 BasicBlock *Header = TheLoop->getHeader(); 4902 for (BasicBlock *BB : TheLoop->blocks()) { 4903 // We don't support switch statements inside loops. 4904 if (!isa<BranchInst>(BB->getTerminator())) { 4905 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 4906 << "loop contains a switch statement"); 4907 return false; 4908 } 4909 4910 // We must be able to predicate all blocks that need to be predicated. 4911 if (blockNeedsPredication(BB)) { 4912 if (!blockCanBePredicated(BB, SafePointes)) { 4913 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4914 << "control flow cannot be substituted for a select"); 4915 return false; 4916 } 4917 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4918 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4919 << "control flow cannot be substituted for a select"); 4920 return false; 4921 } 4922 } 4923 4924 // We can if-convert this loop. 4925 return true; 4926 } 4927 4928 bool LoopVectorizationLegality::canVectorize() { 4929 // Store the result and return it at the end instead of exiting early, in case 4930 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 4931 bool Result = true; 4932 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4933 // be canonicalized. 4934 if (!TheLoop->getLoopPreheader()) { 4935 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4936 << "loop control flow is not understood by vectorizer"); 4937 if (ORE->allowExtraAnalysis()) 4938 Result = false; 4939 else 4940 return false; 4941 } 4942 4943 // FIXME: The code is currently dead, since the loop gets sent to 4944 // LoopVectorizationLegality is already an innermost loop. 4945 // 4946 // We can only vectorize innermost loops. 4947 if (!TheLoop->empty()) { 4948 ORE->emit(createMissedAnalysis("NotInnermostLoop") 4949 << "loop is not the innermost loop"); 4950 if (ORE->allowExtraAnalysis()) 4951 Result = false; 4952 else 4953 return false; 4954 } 4955 4956 // We must have a single backedge. 4957 if (TheLoop->getNumBackEdges() != 1) { 4958 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4959 << "loop control flow is not understood by vectorizer"); 4960 if (ORE->allowExtraAnalysis()) 4961 Result = false; 4962 else 4963 return false; 4964 } 4965 4966 // We must have a single exiting block. 4967 if (!TheLoop->getExitingBlock()) { 4968 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4969 << "loop control flow is not understood by vectorizer"); 4970 if (ORE->allowExtraAnalysis()) 4971 Result = false; 4972 else 4973 return false; 4974 } 4975 4976 // We only handle bottom-tested loops, i.e. loop in which the condition is 4977 // checked at the end of each iteration. With that we can assume that all 4978 // instructions in the loop are executed the same number of times. 4979 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4980 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4981 << "loop control flow is not understood by vectorizer"); 4982 if (ORE->allowExtraAnalysis()) 4983 Result = false; 4984 else 4985 return false; 4986 } 4987 4988 // We need to have a loop header. 4989 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4990 << '\n'); 4991 4992 // Check if we can if-convert non-single-bb loops. 4993 unsigned NumBlocks = TheLoop->getNumBlocks(); 4994 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4995 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4996 if (ORE->allowExtraAnalysis()) 4997 Result = false; 4998 else 4999 return false; 5000 } 5001 5002 // Check if we can vectorize the instructions and CFG in this loop. 5003 if (!canVectorizeInstrs()) { 5004 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5005 if (ORE->allowExtraAnalysis()) 5006 Result = false; 5007 else 5008 return false; 5009 } 5010 5011 // Go over each instruction and look at memory deps. 5012 if (!canVectorizeMemory()) { 5013 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5014 if (ORE->allowExtraAnalysis()) 5015 Result = false; 5016 else 5017 return false; 5018 } 5019 5020 DEBUG(dbgs() << "LV: We can vectorize this loop" 5021 << (LAI->getRuntimePointerChecking()->Need 5022 ? " (with a runtime bound check)" 5023 : "") 5024 << "!\n"); 5025 5026 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5027 5028 // If an override option has been passed in for interleaved accesses, use it. 5029 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5030 UseInterleaved = EnableInterleavedMemAccesses; 5031 5032 // Analyze interleaved memory accesses. 5033 if (UseInterleaved) 5034 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5035 5036 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5037 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5038 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5039 5040 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5041 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5042 << "Too many SCEV assumptions need to be made and checked " 5043 << "at runtime"); 5044 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5045 if (ORE->allowExtraAnalysis()) 5046 Result = false; 5047 else 5048 return false; 5049 } 5050 5051 // Okay! We've done all the tests. If any have failed, return false. Otherwise 5052 // we can vectorize, and at this point we don't have any other mem analysis 5053 // which may limit our maximum vectorization factor, so just return true with 5054 // no restrictions. 5055 return Result; 5056 } 5057 5058 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5059 if (Ty->isPointerTy()) 5060 return DL.getIntPtrType(Ty); 5061 5062 // It is possible that char's or short's overflow when we ask for the loop's 5063 // trip count, work around this by changing the type size. 5064 if (Ty->getScalarSizeInBits() < 32) 5065 return Type::getInt32Ty(Ty->getContext()); 5066 5067 return Ty; 5068 } 5069 5070 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5071 Ty0 = convertPointerToIntegerType(DL, Ty0); 5072 Ty1 = convertPointerToIntegerType(DL, Ty1); 5073 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5074 return Ty0; 5075 return Ty1; 5076 } 5077 5078 /// \brief Check that the instruction has outside loop users and is not an 5079 /// identified reduction variable. 5080 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5081 SmallPtrSetImpl<Value *> &AllowedExit) { 5082 // Reduction and Induction instructions are allowed to have exit users. All 5083 // other instructions must not have external users. 5084 if (!AllowedExit.count(Inst)) 5085 // Check that all of the users of the loop are inside the BB. 5086 for (User *U : Inst->users()) { 5087 Instruction *UI = cast<Instruction>(U); 5088 // This user may be a reduction exit value. 5089 if (!TheLoop->contains(UI)) { 5090 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5091 return true; 5092 } 5093 } 5094 return false; 5095 } 5096 5097 void LoopVectorizationLegality::addInductionPhi( 5098 PHINode *Phi, const InductionDescriptor &ID, 5099 SmallPtrSetImpl<Value *> &AllowedExit) { 5100 Inductions[Phi] = ID; 5101 Type *PhiTy = Phi->getType(); 5102 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5103 5104 // Get the widest type. 5105 if (!PhiTy->isFloatingPointTy()) { 5106 if (!WidestIndTy) 5107 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5108 else 5109 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5110 } 5111 5112 // Int inductions are special because we only allow one IV. 5113 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5114 ID.getConstIntStepValue() && 5115 ID.getConstIntStepValue()->isOne() && 5116 isa<Constant>(ID.getStartValue()) && 5117 cast<Constant>(ID.getStartValue())->isNullValue()) { 5118 5119 // Use the phi node with the widest type as induction. Use the last 5120 // one if there are multiple (no good reason for doing this other 5121 // than it is expedient). We've checked that it begins at zero and 5122 // steps by one, so this is a canonical induction variable. 5123 if (!PrimaryInduction || PhiTy == WidestIndTy) 5124 PrimaryInduction = Phi; 5125 } 5126 5127 // Both the PHI node itself, and the "post-increment" value feeding 5128 // back into the PHI node may have external users. 5129 // We can allow those uses, except if the SCEVs we have for them rely 5130 // on predicates that only hold within the loop, since allowing the exit 5131 // currently means re-using this SCEV outside the loop. 5132 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5133 AllowedExit.insert(Phi); 5134 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5135 } 5136 5137 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5138 return; 5139 } 5140 5141 bool LoopVectorizationLegality::canVectorizeInstrs() { 5142 BasicBlock *Header = TheLoop->getHeader(); 5143 5144 // Look for the attribute signaling the absence of NaNs. 5145 Function &F = *Header->getParent(); 5146 HasFunNoNaNAttr = 5147 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5148 5149 // For each block in the loop. 5150 for (BasicBlock *BB : TheLoop->blocks()) { 5151 // Scan the instructions in the block and look for hazards. 5152 for (Instruction &I : *BB) { 5153 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5154 Type *PhiTy = Phi->getType(); 5155 // Check that this PHI type is allowed. 5156 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5157 !PhiTy->isPointerTy()) { 5158 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5159 << "loop control flow is not understood by vectorizer"); 5160 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5161 return false; 5162 } 5163 5164 // If this PHINode is not in the header block, then we know that we 5165 // can convert it to select during if-conversion. No need to check if 5166 // the PHIs in this block are induction or reduction variables. 5167 if (BB != Header) { 5168 // Check that this instruction has no outside users or is an 5169 // identified reduction value with an outside user. 5170 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5171 continue; 5172 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5173 << "value could not be identified as " 5174 "an induction or reduction variable"); 5175 return false; 5176 } 5177 5178 // We only allow if-converted PHIs with exactly two incoming values. 5179 if (Phi->getNumIncomingValues() != 2) { 5180 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5181 << "control flow not understood by vectorizer"); 5182 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5183 return false; 5184 } 5185 5186 RecurrenceDescriptor RedDes; 5187 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5188 if (RedDes.hasUnsafeAlgebra()) 5189 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5190 AllowedExit.insert(RedDes.getLoopExitInstr()); 5191 Reductions[Phi] = RedDes; 5192 continue; 5193 } 5194 5195 InductionDescriptor ID; 5196 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5197 addInductionPhi(Phi, ID, AllowedExit); 5198 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5199 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5200 continue; 5201 } 5202 5203 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5204 SinkAfter, DT)) { 5205 FirstOrderRecurrences.insert(Phi); 5206 continue; 5207 } 5208 5209 // As a last resort, coerce the PHI to a AddRec expression 5210 // and re-try classifying it a an induction PHI. 5211 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5212 addInductionPhi(Phi, ID, AllowedExit); 5213 continue; 5214 } 5215 5216 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5217 << "value that could not be identified as " 5218 "reduction is used outside the loop"); 5219 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5220 return false; 5221 } // end of PHI handling 5222 5223 // We handle calls that: 5224 // * Are debug info intrinsics. 5225 // * Have a mapping to an IR intrinsic. 5226 // * Have a vector version available. 5227 auto *CI = dyn_cast<CallInst>(&I); 5228 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5229 !isa<DbgInfoIntrinsic>(CI) && 5230 !(CI->getCalledFunction() && TLI && 5231 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5232 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5233 << "call instruction cannot be vectorized"); 5234 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5235 return false; 5236 } 5237 5238 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5239 // second argument is the same (i.e. loop invariant) 5240 if (CI && hasVectorInstrinsicScalarOpd( 5241 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5242 auto *SE = PSE.getSE(); 5243 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5244 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5245 << "intrinsic instruction cannot be vectorized"); 5246 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5247 return false; 5248 } 5249 } 5250 5251 // Check that the instruction return type is vectorizable. 5252 // Also, we can't vectorize extractelement instructions. 5253 if ((!VectorType::isValidElementType(I.getType()) && 5254 !I.getType()->isVoidTy()) || 5255 isa<ExtractElementInst>(I)) { 5256 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5257 << "instruction return type cannot be vectorized"); 5258 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5259 return false; 5260 } 5261 5262 // Check that the stored type is vectorizable. 5263 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5264 Type *T = ST->getValueOperand()->getType(); 5265 if (!VectorType::isValidElementType(T)) { 5266 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5267 << "store instruction cannot be vectorized"); 5268 return false; 5269 } 5270 5271 // FP instructions can allow unsafe algebra, thus vectorizable by 5272 // non-IEEE-754 compliant SIMD units. 5273 // This applies to floating-point math operations and calls, not memory 5274 // operations, shuffles, or casts, as they don't change precision or 5275 // semantics. 5276 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5277 !I.hasUnsafeAlgebra()) { 5278 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5279 Hints->setPotentiallyUnsafe(); 5280 } 5281 5282 // Reduction instructions are allowed to have exit users. 5283 // All other instructions must not have external users. 5284 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5285 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5286 << "value cannot be used outside the loop"); 5287 return false; 5288 } 5289 5290 } // next instr. 5291 } 5292 5293 if (!PrimaryInduction) { 5294 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5295 if (Inductions.empty()) { 5296 ORE->emit(createMissedAnalysis("NoInductionVariable") 5297 << "loop induction variable could not be identified"); 5298 return false; 5299 } 5300 } 5301 5302 // Now we know the widest induction type, check if our found induction 5303 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5304 // will create another. 5305 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5306 PrimaryInduction = nullptr; 5307 5308 return true; 5309 } 5310 5311 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5312 5313 // We should not collect Scalars more than once per VF. Right now, this 5314 // function is called from collectUniformsAndScalars(), which already does 5315 // this check. Collecting Scalars for VF=1 does not make any sense. 5316 assert(VF >= 2 && !Scalars.count(VF) && 5317 "This function should not be visited twice for the same VF"); 5318 5319 SmallSetVector<Instruction *, 8> Worklist; 5320 5321 // These sets are used to seed the analysis with pointers used by memory 5322 // accesses that will remain scalar. 5323 SmallSetVector<Instruction *, 8> ScalarPtrs; 5324 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5325 5326 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5327 // The pointer operands of loads and stores will be scalar as long as the 5328 // memory access is not a gather or scatter operation. The value operand of a 5329 // store will remain scalar if the store is scalarized. 5330 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5331 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5332 assert(WideningDecision != CM_Unknown && 5333 "Widening decision should be ready at this moment"); 5334 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5335 if (Ptr == Store->getValueOperand()) 5336 return WideningDecision == CM_Scalarize; 5337 assert(Ptr == getPointerOperand(MemAccess) && 5338 "Ptr is neither a value or pointer operand"); 5339 return WideningDecision != CM_GatherScatter; 5340 }; 5341 5342 // A helper that returns true if the given value is a bitcast or 5343 // getelementptr instruction contained in the loop. 5344 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5345 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5346 isa<GetElementPtrInst>(V)) && 5347 !TheLoop->isLoopInvariant(V); 5348 }; 5349 5350 // A helper that evaluates a memory access's use of a pointer. If the use 5351 // will be a scalar use, and the pointer is only used by memory accesses, we 5352 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5353 // PossibleNonScalarPtrs. 5354 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5355 5356 // We only care about bitcast and getelementptr instructions contained in 5357 // the loop. 5358 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5359 return; 5360 5361 // If the pointer has already been identified as scalar (e.g., if it was 5362 // also identified as uniform), there's nothing to do. 5363 auto *I = cast<Instruction>(Ptr); 5364 if (Worklist.count(I)) 5365 return; 5366 5367 // If the use of the pointer will be a scalar use, and all users of the 5368 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5369 // place the pointer in PossibleNonScalarPtrs. 5370 if (isScalarUse(MemAccess, Ptr) && all_of(I->users(), [&](User *U) { 5371 return isa<LoadInst>(U) || isa<StoreInst>(U); 5372 })) 5373 ScalarPtrs.insert(I); 5374 else 5375 PossibleNonScalarPtrs.insert(I); 5376 }; 5377 5378 // We seed the scalars analysis with three classes of instructions: (1) 5379 // instructions marked uniform-after-vectorization, (2) bitcast and 5380 // getelementptr instructions used by memory accesses requiring a scalar use, 5381 // and (3) pointer induction variables and their update instructions (we 5382 // currently only scalarize these). 5383 // 5384 // (1) Add to the worklist all instructions that have been identified as 5385 // uniform-after-vectorization. 5386 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5387 5388 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5389 // memory accesses requiring a scalar use. The pointer operands of loads and 5390 // stores will be scalar as long as the memory accesses is not a gather or 5391 // scatter operation. The value operand of a store will remain scalar if the 5392 // store is scalarized. 5393 for (auto *BB : TheLoop->blocks()) 5394 for (auto &I : *BB) { 5395 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5396 evaluatePtrUse(Load, Load->getPointerOperand()); 5397 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5398 evaluatePtrUse(Store, Store->getPointerOperand()); 5399 evaluatePtrUse(Store, Store->getValueOperand()); 5400 } 5401 } 5402 for (auto *I : ScalarPtrs) 5403 if (!PossibleNonScalarPtrs.count(I)) { 5404 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5405 Worklist.insert(I); 5406 } 5407 5408 // (3) Add to the worklist all pointer induction variables and their update 5409 // instructions. 5410 // 5411 // TODO: Once we are able to vectorize pointer induction variables we should 5412 // no longer insert them into the worklist here. 5413 auto *Latch = TheLoop->getLoopLatch(); 5414 for (auto &Induction : *Legal->getInductionVars()) { 5415 auto *Ind = Induction.first; 5416 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5417 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5418 continue; 5419 Worklist.insert(Ind); 5420 Worklist.insert(IndUpdate); 5421 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5422 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5423 } 5424 5425 // Insert the forced scalars. 5426 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5427 // induction variable when the PHI user is scalarized. 5428 if (ForcedScalars.count(VF)) 5429 for (auto *I : ForcedScalars.find(VF)->second) 5430 Worklist.insert(I); 5431 5432 // Expand the worklist by looking through any bitcasts and getelementptr 5433 // instructions we've already identified as scalar. This is similar to the 5434 // expansion step in collectLoopUniforms(); however, here we're only 5435 // expanding to include additional bitcasts and getelementptr instructions. 5436 unsigned Idx = 0; 5437 while (Idx != Worklist.size()) { 5438 Instruction *Dst = Worklist[Idx++]; 5439 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5440 continue; 5441 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5442 if (all_of(Src->users(), [&](User *U) -> bool { 5443 auto *J = cast<Instruction>(U); 5444 return !TheLoop->contains(J) || Worklist.count(J) || 5445 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5446 isScalarUse(J, Src)); 5447 })) { 5448 Worklist.insert(Src); 5449 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5450 } 5451 } 5452 5453 // An induction variable will remain scalar if all users of the induction 5454 // variable and induction variable update remain scalar. 5455 for (auto &Induction : *Legal->getInductionVars()) { 5456 auto *Ind = Induction.first; 5457 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5458 5459 // We already considered pointer induction variables, so there's no reason 5460 // to look at their users again. 5461 // 5462 // TODO: Once we are able to vectorize pointer induction variables we 5463 // should no longer skip over them here. 5464 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5465 continue; 5466 5467 // Determine if all users of the induction variable are scalar after 5468 // vectorization. 5469 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5470 auto *I = cast<Instruction>(U); 5471 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5472 }); 5473 if (!ScalarInd) 5474 continue; 5475 5476 // Determine if all users of the induction variable update instruction are 5477 // scalar after vectorization. 5478 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5479 auto *I = cast<Instruction>(U); 5480 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5481 }); 5482 if (!ScalarIndUpdate) 5483 continue; 5484 5485 // The induction variable and its update instruction will remain scalar. 5486 Worklist.insert(Ind); 5487 Worklist.insert(IndUpdate); 5488 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5489 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5490 } 5491 5492 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5493 } 5494 5495 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5496 if (!blockNeedsPredication(I->getParent())) 5497 return false; 5498 switch(I->getOpcode()) { 5499 default: 5500 break; 5501 case Instruction::Store: 5502 return !isMaskRequired(I); 5503 case Instruction::UDiv: 5504 case Instruction::SDiv: 5505 case Instruction::SRem: 5506 case Instruction::URem: 5507 return mayDivideByZero(*I); 5508 } 5509 return false; 5510 } 5511 5512 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5513 unsigned VF) { 5514 // Get and ensure we have a valid memory instruction. 5515 LoadInst *LI = dyn_cast<LoadInst>(I); 5516 StoreInst *SI = dyn_cast<StoreInst>(I); 5517 assert((LI || SI) && "Invalid memory instruction"); 5518 5519 auto *Ptr = getPointerOperand(I); 5520 5521 // In order to be widened, the pointer should be consecutive, first of all. 5522 if (!isConsecutivePtr(Ptr)) 5523 return false; 5524 5525 // If the instruction is a store located in a predicated block, it will be 5526 // scalarized. 5527 if (isScalarWithPredication(I)) 5528 return false; 5529 5530 // If the instruction's allocated size doesn't equal it's type size, it 5531 // requires padding and will be scalarized. 5532 auto &DL = I->getModule()->getDataLayout(); 5533 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5534 if (hasIrregularType(ScalarTy, DL, VF)) 5535 return false; 5536 5537 return true; 5538 } 5539 5540 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5541 5542 // We should not collect Uniforms more than once per VF. Right now, 5543 // this function is called from collectUniformsAndScalars(), which 5544 // already does this check. Collecting Uniforms for VF=1 does not make any 5545 // sense. 5546 5547 assert(VF >= 2 && !Uniforms.count(VF) && 5548 "This function should not be visited twice for the same VF"); 5549 5550 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5551 // not analyze again. Uniforms.count(VF) will return 1. 5552 Uniforms[VF].clear(); 5553 5554 // We now know that the loop is vectorizable! 5555 // Collect instructions inside the loop that will remain uniform after 5556 // vectorization. 5557 5558 // Global values, params and instructions outside of current loop are out of 5559 // scope. 5560 auto isOutOfScope = [&](Value *V) -> bool { 5561 Instruction *I = dyn_cast<Instruction>(V); 5562 return (!I || !TheLoop->contains(I)); 5563 }; 5564 5565 SetVector<Instruction *> Worklist; 5566 BasicBlock *Latch = TheLoop->getLoopLatch(); 5567 5568 // Start with the conditional branch. If the branch condition is an 5569 // instruction contained in the loop that is only used by the branch, it is 5570 // uniform. 5571 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5572 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5573 Worklist.insert(Cmp); 5574 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5575 } 5576 5577 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5578 // are pointers that are treated like consecutive pointers during 5579 // vectorization. The pointer operands of interleaved accesses are an 5580 // example. 5581 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5582 5583 // Holds pointer operands of instructions that are possibly non-uniform. 5584 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5585 5586 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5587 InstWidening WideningDecision = getWideningDecision(I, VF); 5588 assert(WideningDecision != CM_Unknown && 5589 "Widening decision should be ready at this moment"); 5590 5591 return (WideningDecision == CM_Widen || 5592 WideningDecision == CM_Interleave); 5593 }; 5594 // Iterate over the instructions in the loop, and collect all 5595 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5596 // that a consecutive-like pointer operand will be scalarized, we collect it 5597 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5598 // getelementptr instruction can be used by both vectorized and scalarized 5599 // memory instructions. For example, if a loop loads and stores from the same 5600 // location, but the store is conditional, the store will be scalarized, and 5601 // the getelementptr won't remain uniform. 5602 for (auto *BB : TheLoop->blocks()) 5603 for (auto &I : *BB) { 5604 5605 // If there's no pointer operand, there's nothing to do. 5606 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5607 if (!Ptr) 5608 continue; 5609 5610 // True if all users of Ptr are memory accesses that have Ptr as their 5611 // pointer operand. 5612 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5613 return getPointerOperand(U) == Ptr; 5614 }); 5615 5616 // Ensure the memory instruction will not be scalarized or used by 5617 // gather/scatter, making its pointer operand non-uniform. If the pointer 5618 // operand is used by any instruction other than a memory access, we 5619 // conservatively assume the pointer operand may be non-uniform. 5620 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5621 PossibleNonUniformPtrs.insert(Ptr); 5622 5623 // If the memory instruction will be vectorized and its pointer operand 5624 // is consecutive-like, or interleaving - the pointer operand should 5625 // remain uniform. 5626 else 5627 ConsecutiveLikePtrs.insert(Ptr); 5628 } 5629 5630 // Add to the Worklist all consecutive and consecutive-like pointers that 5631 // aren't also identified as possibly non-uniform. 5632 for (auto *V : ConsecutiveLikePtrs) 5633 if (!PossibleNonUniformPtrs.count(V)) { 5634 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5635 Worklist.insert(V); 5636 } 5637 5638 // Expand Worklist in topological order: whenever a new instruction 5639 // is added , its users should be either already inside Worklist, or 5640 // out of scope. It ensures a uniform instruction will only be used 5641 // by uniform instructions or out of scope instructions. 5642 unsigned idx = 0; 5643 while (idx != Worklist.size()) { 5644 Instruction *I = Worklist[idx++]; 5645 5646 for (auto OV : I->operand_values()) { 5647 if (isOutOfScope(OV)) 5648 continue; 5649 auto *OI = cast<Instruction>(OV); 5650 if (all_of(OI->users(), [&](User *U) -> bool { 5651 auto *J = cast<Instruction>(U); 5652 return !TheLoop->contains(J) || Worklist.count(J) || 5653 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5654 })) { 5655 Worklist.insert(OI); 5656 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5657 } 5658 } 5659 } 5660 5661 // Returns true if Ptr is the pointer operand of a memory access instruction 5662 // I, and I is known to not require scalarization. 5663 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5664 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5665 }; 5666 5667 // For an instruction to be added into Worklist above, all its users inside 5668 // the loop should also be in Worklist. However, this condition cannot be 5669 // true for phi nodes that form a cyclic dependence. We must process phi 5670 // nodes separately. An induction variable will remain uniform if all users 5671 // of the induction variable and induction variable update remain uniform. 5672 // The code below handles both pointer and non-pointer induction variables. 5673 for (auto &Induction : *Legal->getInductionVars()) { 5674 auto *Ind = Induction.first; 5675 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5676 5677 // Determine if all users of the induction variable are uniform after 5678 // vectorization. 5679 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5680 auto *I = cast<Instruction>(U); 5681 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5682 isVectorizedMemAccessUse(I, Ind); 5683 }); 5684 if (!UniformInd) 5685 continue; 5686 5687 // Determine if all users of the induction variable update instruction are 5688 // uniform after vectorization. 5689 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5690 auto *I = cast<Instruction>(U); 5691 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5692 isVectorizedMemAccessUse(I, IndUpdate); 5693 }); 5694 if (!UniformIndUpdate) 5695 continue; 5696 5697 // The induction variable and its update instruction will remain uniform. 5698 Worklist.insert(Ind); 5699 Worklist.insert(IndUpdate); 5700 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5701 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5702 } 5703 5704 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5705 } 5706 5707 bool LoopVectorizationLegality::canVectorizeMemory() { 5708 LAI = &(*GetLAA)(*TheLoop); 5709 InterleaveInfo.setLAI(LAI); 5710 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5711 if (LAR) { 5712 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5713 "loop not vectorized: ", *LAR); 5714 ORE->emit(VR); 5715 } 5716 if (!LAI->canVectorizeMemory()) 5717 return false; 5718 5719 if (LAI->hasStoreToLoopInvariantAddress()) { 5720 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5721 << "write to a loop invariant address could not be vectorized"); 5722 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5723 return false; 5724 } 5725 5726 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5727 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5728 5729 return true; 5730 } 5731 5732 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5733 Value *In0 = const_cast<Value *>(V); 5734 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5735 if (!PN) 5736 return false; 5737 5738 return Inductions.count(PN); 5739 } 5740 5741 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5742 return FirstOrderRecurrences.count(Phi); 5743 } 5744 5745 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5746 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5747 } 5748 5749 bool LoopVectorizationLegality::blockCanBePredicated( 5750 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5751 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5752 5753 for (Instruction &I : *BB) { 5754 // Check that we don't have a constant expression that can trap as operand. 5755 for (Value *Operand : I.operands()) { 5756 if (auto *C = dyn_cast<Constant>(Operand)) 5757 if (C->canTrap()) 5758 return false; 5759 } 5760 // We might be able to hoist the load. 5761 if (I.mayReadFromMemory()) { 5762 auto *LI = dyn_cast<LoadInst>(&I); 5763 if (!LI) 5764 return false; 5765 if (!SafePtrs.count(LI->getPointerOperand())) { 5766 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5767 isLegalMaskedGather(LI->getType())) { 5768 MaskedOp.insert(LI); 5769 continue; 5770 } 5771 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5772 if (IsAnnotatedParallel) 5773 continue; 5774 return false; 5775 } 5776 } 5777 5778 if (I.mayWriteToMemory()) { 5779 auto *SI = dyn_cast<StoreInst>(&I); 5780 // We only support predication of stores in basic blocks with one 5781 // predecessor. 5782 if (!SI) 5783 return false; 5784 5785 // Build a masked store if it is legal for the target. 5786 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5787 SI->getPointerOperand()) || 5788 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5789 MaskedOp.insert(SI); 5790 continue; 5791 } 5792 5793 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5794 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5795 5796 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5797 !isSinglePredecessor) 5798 return false; 5799 } 5800 if (I.mayThrow()) 5801 return false; 5802 } 5803 5804 return true; 5805 } 5806 5807 void InterleavedAccessInfo::collectConstStrideAccesses( 5808 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5809 const ValueToValueMap &Strides) { 5810 5811 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5812 5813 // Since it's desired that the load/store instructions be maintained in 5814 // "program order" for the interleaved access analysis, we have to visit the 5815 // blocks in the loop in reverse postorder (i.e., in a topological order). 5816 // Such an ordering will ensure that any load/store that may be executed 5817 // before a second load/store will precede the second load/store in 5818 // AccessStrideInfo. 5819 LoopBlocksDFS DFS(TheLoop); 5820 DFS.perform(LI); 5821 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5822 for (auto &I : *BB) { 5823 auto *LI = dyn_cast<LoadInst>(&I); 5824 auto *SI = dyn_cast<StoreInst>(&I); 5825 if (!LI && !SI) 5826 continue; 5827 5828 Value *Ptr = getPointerOperand(&I); 5829 // We don't check wrapping here because we don't know yet if Ptr will be 5830 // part of a full group or a group with gaps. Checking wrapping for all 5831 // pointers (even those that end up in groups with no gaps) will be overly 5832 // conservative. For full groups, wrapping should be ok since if we would 5833 // wrap around the address space we would do a memory access at nullptr 5834 // even without the transformation. The wrapping checks are therefore 5835 // deferred until after we've formed the interleaved groups. 5836 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5837 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5838 5839 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5840 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5841 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5842 5843 // An alignment of 0 means target ABI alignment. 5844 unsigned Align = getMemInstAlignment(&I); 5845 if (!Align) 5846 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5847 5848 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5849 } 5850 } 5851 5852 // Analyze interleaved accesses and collect them into interleaved load and 5853 // store groups. 5854 // 5855 // When generating code for an interleaved load group, we effectively hoist all 5856 // loads in the group to the location of the first load in program order. When 5857 // generating code for an interleaved store group, we sink all stores to the 5858 // location of the last store. This code motion can change the order of load 5859 // and store instructions and may break dependences. 5860 // 5861 // The code generation strategy mentioned above ensures that we won't violate 5862 // any write-after-read (WAR) dependences. 5863 // 5864 // E.g., for the WAR dependence: a = A[i]; // (1) 5865 // A[i] = b; // (2) 5866 // 5867 // The store group of (2) is always inserted at or below (2), and the load 5868 // group of (1) is always inserted at or above (1). Thus, the instructions will 5869 // never be reordered. All other dependences are checked to ensure the 5870 // correctness of the instruction reordering. 5871 // 5872 // The algorithm visits all memory accesses in the loop in bottom-up program 5873 // order. Program order is established by traversing the blocks in the loop in 5874 // reverse postorder when collecting the accesses. 5875 // 5876 // We visit the memory accesses in bottom-up order because it can simplify the 5877 // construction of store groups in the presence of write-after-write (WAW) 5878 // dependences. 5879 // 5880 // E.g., for the WAW dependence: A[i] = a; // (1) 5881 // A[i] = b; // (2) 5882 // A[i + 1] = c; // (3) 5883 // 5884 // We will first create a store group with (3) and (2). (1) can't be added to 5885 // this group because it and (2) are dependent. However, (1) can be grouped 5886 // with other accesses that may precede it in program order. Note that a 5887 // bottom-up order does not imply that WAW dependences should not be checked. 5888 void InterleavedAccessInfo::analyzeInterleaving( 5889 const ValueToValueMap &Strides) { 5890 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5891 5892 // Holds all accesses with a constant stride. 5893 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5894 collectConstStrideAccesses(AccessStrideInfo, Strides); 5895 5896 if (AccessStrideInfo.empty()) 5897 return; 5898 5899 // Collect the dependences in the loop. 5900 collectDependences(); 5901 5902 // Holds all interleaved store groups temporarily. 5903 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5904 // Holds all interleaved load groups temporarily. 5905 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5906 5907 // Search in bottom-up program order for pairs of accesses (A and B) that can 5908 // form interleaved load or store groups. In the algorithm below, access A 5909 // precedes access B in program order. We initialize a group for B in the 5910 // outer loop of the algorithm, and then in the inner loop, we attempt to 5911 // insert each A into B's group if: 5912 // 5913 // 1. A and B have the same stride, 5914 // 2. A and B have the same memory object size, and 5915 // 3. A belongs in B's group according to its distance from B. 5916 // 5917 // Special care is taken to ensure group formation will not break any 5918 // dependences. 5919 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5920 BI != E; ++BI) { 5921 Instruction *B = BI->first; 5922 StrideDescriptor DesB = BI->second; 5923 5924 // Initialize a group for B if it has an allowable stride. Even if we don't 5925 // create a group for B, we continue with the bottom-up algorithm to ensure 5926 // we don't break any of B's dependences. 5927 InterleaveGroup *Group = nullptr; 5928 if (isStrided(DesB.Stride)) { 5929 Group = getInterleaveGroup(B); 5930 if (!Group) { 5931 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5932 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5933 } 5934 if (B->mayWriteToMemory()) 5935 StoreGroups.insert(Group); 5936 else 5937 LoadGroups.insert(Group); 5938 } 5939 5940 for (auto AI = std::next(BI); AI != E; ++AI) { 5941 Instruction *A = AI->first; 5942 StrideDescriptor DesA = AI->second; 5943 5944 // Our code motion strategy implies that we can't have dependences 5945 // between accesses in an interleaved group and other accesses located 5946 // between the first and last member of the group. Note that this also 5947 // means that a group can't have more than one member at a given offset. 5948 // The accesses in a group can have dependences with other accesses, but 5949 // we must ensure we don't extend the boundaries of the group such that 5950 // we encompass those dependent accesses. 5951 // 5952 // For example, assume we have the sequence of accesses shown below in a 5953 // stride-2 loop: 5954 // 5955 // (1, 2) is a group | A[i] = a; // (1) 5956 // | A[i-1] = b; // (2) | 5957 // A[i-3] = c; // (3) 5958 // A[i] = d; // (4) | (2, 4) is not a group 5959 // 5960 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5961 // but not with (4). If we did, the dependent access (3) would be within 5962 // the boundaries of the (2, 4) group. 5963 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5964 5965 // If a dependence exists and A is already in a group, we know that A 5966 // must be a store since A precedes B and WAR dependences are allowed. 5967 // Thus, A would be sunk below B. We release A's group to prevent this 5968 // illegal code motion. A will then be free to form another group with 5969 // instructions that precede it. 5970 if (isInterleaved(A)) { 5971 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 5972 StoreGroups.remove(StoreGroup); 5973 releaseGroup(StoreGroup); 5974 } 5975 5976 // If a dependence exists and A is not already in a group (or it was 5977 // and we just released it), B might be hoisted above A (if B is a 5978 // load) or another store might be sunk below A (if B is a store). In 5979 // either case, we can't add additional instructions to B's group. B 5980 // will only form a group with instructions that it precedes. 5981 break; 5982 } 5983 5984 // At this point, we've checked for illegal code motion. If either A or B 5985 // isn't strided, there's nothing left to do. 5986 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5987 continue; 5988 5989 // Ignore A if it's already in a group or isn't the same kind of memory 5990 // operation as B. 5991 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5992 continue; 5993 5994 // Check rules 1 and 2. Ignore A if its stride or size is different from 5995 // that of B. 5996 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 5997 continue; 5998 5999 // Ignore A if the memory object of A and B don't belong to the same 6000 // address space 6001 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6002 continue; 6003 6004 // Calculate the distance from A to B. 6005 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6006 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6007 if (!DistToB) 6008 continue; 6009 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6010 6011 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6012 // size. 6013 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6014 continue; 6015 6016 // Ignore A if either A or B is in a predicated block. Although we 6017 // currently prevent group formation for predicated accesses, we may be 6018 // able to relax this limitation in the future once we handle more 6019 // complicated blocks. 6020 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6021 continue; 6022 6023 // The index of A is the index of B plus A's distance to B in multiples 6024 // of the size. 6025 int IndexA = 6026 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6027 6028 // Try to insert A into B's group. 6029 if (Group->insertMember(A, IndexA, DesA.Align)) { 6030 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6031 << " into the interleave group with" << *B << '\n'); 6032 InterleaveGroupMap[A] = Group; 6033 6034 // Set the first load in program order as the insert position. 6035 if (A->mayReadFromMemory()) 6036 Group->setInsertPos(A); 6037 } 6038 } // Iteration over A accesses. 6039 } // Iteration over B accesses. 6040 6041 // Remove interleaved store groups with gaps. 6042 for (InterleaveGroup *Group : StoreGroups) 6043 if (Group->getNumMembers() != Group->getFactor()) 6044 releaseGroup(Group); 6045 6046 // Remove interleaved groups with gaps (currently only loads) whose memory 6047 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6048 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6049 // not check wrapping (see documentation there). 6050 // FORNOW we use Assume=false; 6051 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6052 // of runtime SCEV assumptions checks (thereby potentially failing to 6053 // vectorize altogether). 6054 // Additional optional optimizations: 6055 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6056 // wrap then we can deduce that all pointers in the group don't wrap. 6057 // This means that we can forcefully peel the loop in order to only have to 6058 // check the first pointer for no-wrap. When we'll change to use Assume=true 6059 // we'll only need at most one runtime check per interleaved group. 6060 // 6061 for (InterleaveGroup *Group : LoadGroups) { 6062 6063 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6064 // load would wrap around the address space we would do a memory access at 6065 // nullptr even without the transformation. 6066 if (Group->getNumMembers() == Group->getFactor()) 6067 continue; 6068 6069 // Case 2: If first and last members of the group don't wrap this implies 6070 // that all the pointers in the group don't wrap. 6071 // So we check only group member 0 (which is always guaranteed to exist), 6072 // and group member Factor - 1; If the latter doesn't exist we rely on 6073 // peeling (if it is a non-reveresed accsess -- see Case 3). 6074 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6075 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6076 /*ShouldCheckWrap=*/true)) { 6077 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6078 "first group member potentially pointer-wrapping.\n"); 6079 releaseGroup(Group); 6080 continue; 6081 } 6082 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6083 if (LastMember) { 6084 Value *LastMemberPtr = getPointerOperand(LastMember); 6085 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6086 /*ShouldCheckWrap=*/true)) { 6087 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6088 "last group member potentially pointer-wrapping.\n"); 6089 releaseGroup(Group); 6090 } 6091 } else { 6092 // Case 3: A non-reversed interleaved load group with gaps: We need 6093 // to execute at least one scalar epilogue iteration. This will ensure 6094 // we don't speculatively access memory out-of-bounds. We only need 6095 // to look for a member at index factor - 1, since every group must have 6096 // a member at index zero. 6097 if (Group->isReverse()) { 6098 releaseGroup(Group); 6099 continue; 6100 } 6101 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6102 RequiresScalarEpilogue = true; 6103 } 6104 } 6105 } 6106 6107 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6108 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6109 ORE->emit(createMissedAnalysis("ConditionalStore") 6110 << "store that is conditionally executed prevents vectorization"); 6111 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6112 return None; 6113 } 6114 6115 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 6116 // TODO: It may by useful to do since it's still likely to be dynamically 6117 // uniform if the target can skip. 6118 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 6119 6120 ORE->emit( 6121 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 6122 << "runtime pointer checks needed. Not enabled for divergent target"); 6123 6124 return None; 6125 } 6126 6127 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6128 return computeFeasibleMaxVF(OptForSize); 6129 6130 if (Legal->getRuntimePointerChecking()->Need) { 6131 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6132 << "runtime pointer checks needed. Enable vectorization of this " 6133 "loop with '#pragma clang loop vectorize(enable)' when " 6134 "compiling with -Os/-Oz"); 6135 DEBUG(dbgs() 6136 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6137 return None; 6138 } 6139 6140 // If we optimize the program for size, avoid creating the tail loop. 6141 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6142 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6143 6144 // If we don't know the precise trip count, don't try to vectorize. 6145 if (TC < 2) { 6146 ORE->emit( 6147 createMissedAnalysis("UnknownLoopCountComplexCFG") 6148 << "unable to calculate the loop count due to complex control flow"); 6149 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6150 return None; 6151 } 6152 6153 unsigned MaxVF = computeFeasibleMaxVF(OptForSize); 6154 6155 if (TC % MaxVF != 0) { 6156 // If the trip count that we found modulo the vectorization factor is not 6157 // zero then we require a tail. 6158 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6159 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6160 // smaller MaxVF that does not require a scalar epilog. 6161 6162 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6163 << "cannot optimize for size and vectorize at the " 6164 "same time. Enable vectorization of this loop " 6165 "with '#pragma clang loop vectorize(enable)' " 6166 "when compiling with -Os/-Oz"); 6167 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6168 return None; 6169 } 6170 6171 return MaxVF; 6172 } 6173 6174 unsigned LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize) { 6175 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6176 unsigned SmallestType, WidestType; 6177 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6178 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6179 unsigned MaxSafeDepDist = -1U; 6180 6181 // Get the maximum safe dependence distance in bits computed by LAA. If the 6182 // loop contains any interleaved accesses, we divide the dependence distance 6183 // by the maximum interleave factor of all interleaved groups. Note that 6184 // although the division ensures correctness, this is a fairly conservative 6185 // computation because the maximum distance computed by LAA may not involve 6186 // any of the interleaved accesses. 6187 if (Legal->getMaxSafeDepDistBytes() != -1U) 6188 MaxSafeDepDist = 6189 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 6190 6191 WidestRegister = 6192 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 6193 unsigned MaxVectorSize = WidestRegister / WidestType; 6194 6195 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6196 << WidestType << " bits.\n"); 6197 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 6198 << " bits.\n"); 6199 6200 if (MaxVectorSize == 0) { 6201 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6202 MaxVectorSize = 1; 6203 } 6204 6205 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6206 " into one vector!"); 6207 6208 unsigned MaxVF = MaxVectorSize; 6209 if (MaximizeBandwidth && !OptForSize) { 6210 // Collect all viable vectorization factors. 6211 SmallVector<unsigned, 8> VFs; 6212 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6213 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 6214 VFs.push_back(VS); 6215 6216 // For each VF calculate its register usage. 6217 auto RUs = calculateRegisterUsage(VFs); 6218 6219 // Select the largest VF which doesn't require more registers than existing 6220 // ones. 6221 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6222 for (int i = RUs.size() - 1; i >= 0; --i) { 6223 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6224 MaxVF = VFs[i]; 6225 break; 6226 } 6227 } 6228 } 6229 return MaxVF; 6230 } 6231 6232 LoopVectorizationCostModel::VectorizationFactor 6233 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6234 float Cost = expectedCost(1).first; 6235 #ifndef NDEBUG 6236 const float ScalarCost = Cost; 6237 #endif /* NDEBUG */ 6238 unsigned Width = 1; 6239 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6240 6241 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6242 // Ignore scalar width, because the user explicitly wants vectorization. 6243 if (ForceVectorization && MaxVF > 1) { 6244 Width = 2; 6245 Cost = expectedCost(Width).first / (float)Width; 6246 } 6247 6248 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6249 // Notice that the vector loop needs to be executed less times, so 6250 // we need to divide the cost of the vector loops by the width of 6251 // the vector elements. 6252 VectorizationCostTy C = expectedCost(i); 6253 float VectorCost = C.first / (float)i; 6254 DEBUG(dbgs() << "LV: Vector loop of width " << i 6255 << " costs: " << (int)VectorCost << ".\n"); 6256 if (!C.second && !ForceVectorization) { 6257 DEBUG( 6258 dbgs() << "LV: Not considering vector loop of width " << i 6259 << " because it will not generate any vector instructions.\n"); 6260 continue; 6261 } 6262 if (VectorCost < Cost) { 6263 Cost = VectorCost; 6264 Width = i; 6265 } 6266 } 6267 6268 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6269 << "LV: Vectorization seems to be not beneficial, " 6270 << "but was forced by a user.\n"); 6271 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6272 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6273 return Factor; 6274 } 6275 6276 std::pair<unsigned, unsigned> 6277 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6278 unsigned MinWidth = -1U; 6279 unsigned MaxWidth = 8; 6280 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6281 6282 // For each block. 6283 for (BasicBlock *BB : TheLoop->blocks()) { 6284 // For each instruction in the loop. 6285 for (Instruction &I : *BB) { 6286 Type *T = I.getType(); 6287 6288 // Skip ignored values. 6289 if (ValuesToIgnore.count(&I)) 6290 continue; 6291 6292 // Only examine Loads, Stores and PHINodes. 6293 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6294 continue; 6295 6296 // Examine PHI nodes that are reduction variables. Update the type to 6297 // account for the recurrence type. 6298 if (auto *PN = dyn_cast<PHINode>(&I)) { 6299 if (!Legal->isReductionVariable(PN)) 6300 continue; 6301 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6302 T = RdxDesc.getRecurrenceType(); 6303 } 6304 6305 // Examine the stored values. 6306 if (auto *ST = dyn_cast<StoreInst>(&I)) 6307 T = ST->getValueOperand()->getType(); 6308 6309 // Ignore loaded pointer types and stored pointer types that are not 6310 // vectorizable. 6311 // 6312 // FIXME: The check here attempts to predict whether a load or store will 6313 // be vectorized. We only know this for certain after a VF has 6314 // been selected. Here, we assume that if an access can be 6315 // vectorized, it will be. We should also look at extending this 6316 // optimization to non-pointer types. 6317 // 6318 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6319 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6320 continue; 6321 6322 MinWidth = std::min(MinWidth, 6323 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6324 MaxWidth = std::max(MaxWidth, 6325 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6326 } 6327 } 6328 6329 return {MinWidth, MaxWidth}; 6330 } 6331 6332 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6333 unsigned VF, 6334 unsigned LoopCost) { 6335 6336 // -- The interleave heuristics -- 6337 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6338 // There are many micro-architectural considerations that we can't predict 6339 // at this level. For example, frontend pressure (on decode or fetch) due to 6340 // code size, or the number and capabilities of the execution ports. 6341 // 6342 // We use the following heuristics to select the interleave count: 6343 // 1. If the code has reductions, then we interleave to break the cross 6344 // iteration dependency. 6345 // 2. If the loop is really small, then we interleave to reduce the loop 6346 // overhead. 6347 // 3. We don't interleave if we think that we will spill registers to memory 6348 // due to the increased register pressure. 6349 6350 // When we optimize for size, we don't interleave. 6351 if (OptForSize) 6352 return 1; 6353 6354 // We used the distance for the interleave count. 6355 if (Legal->getMaxSafeDepDistBytes() != -1U) 6356 return 1; 6357 6358 // Do not interleave loops with a relatively small trip count. 6359 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6360 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6361 return 1; 6362 6363 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6364 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6365 << " registers\n"); 6366 6367 if (VF == 1) { 6368 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6369 TargetNumRegisters = ForceTargetNumScalarRegs; 6370 } else { 6371 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6372 TargetNumRegisters = ForceTargetNumVectorRegs; 6373 } 6374 6375 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6376 // We divide by these constants so assume that we have at least one 6377 // instruction that uses at least one register. 6378 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6379 R.NumInstructions = std::max(R.NumInstructions, 1U); 6380 6381 // We calculate the interleave count using the following formula. 6382 // Subtract the number of loop invariants from the number of available 6383 // registers. These registers are used by all of the interleaved instances. 6384 // Next, divide the remaining registers by the number of registers that is 6385 // required by the loop, in order to estimate how many parallel instances 6386 // fit without causing spills. All of this is rounded down if necessary to be 6387 // a power of two. We want power of two interleave count to simplify any 6388 // addressing operations or alignment considerations. 6389 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6390 R.MaxLocalUsers); 6391 6392 // Don't count the induction variable as interleaved. 6393 if (EnableIndVarRegisterHeur) 6394 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6395 std::max(1U, (R.MaxLocalUsers - 1))); 6396 6397 // Clamp the interleave ranges to reasonable counts. 6398 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6399 6400 // Check if the user has overridden the max. 6401 if (VF == 1) { 6402 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6403 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6404 } else { 6405 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6406 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6407 } 6408 6409 // If we did not calculate the cost for VF (because the user selected the VF) 6410 // then we calculate the cost of VF here. 6411 if (LoopCost == 0) 6412 LoopCost = expectedCost(VF).first; 6413 6414 // Clamp the calculated IC to be between the 1 and the max interleave count 6415 // that the target allows. 6416 if (IC > MaxInterleaveCount) 6417 IC = MaxInterleaveCount; 6418 else if (IC < 1) 6419 IC = 1; 6420 6421 // Interleave if we vectorized this loop and there is a reduction that could 6422 // benefit from interleaving. 6423 if (VF > 1 && Legal->getReductionVars()->size()) { 6424 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6425 return IC; 6426 } 6427 6428 // Note that if we've already vectorized the loop we will have done the 6429 // runtime check and so interleaving won't require further checks. 6430 bool InterleavingRequiresRuntimePointerCheck = 6431 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6432 6433 // We want to interleave small loops in order to reduce the loop overhead and 6434 // potentially expose ILP opportunities. 6435 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6436 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6437 // We assume that the cost overhead is 1 and we use the cost model 6438 // to estimate the cost of the loop and interleave until the cost of the 6439 // loop overhead is about 5% of the cost of the loop. 6440 unsigned SmallIC = 6441 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6442 6443 // Interleave until store/load ports (estimated by max interleave count) are 6444 // saturated. 6445 unsigned NumStores = Legal->getNumStores(); 6446 unsigned NumLoads = Legal->getNumLoads(); 6447 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6448 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6449 6450 // If we have a scalar reduction (vector reductions are already dealt with 6451 // by this point), we can increase the critical path length if the loop 6452 // we're interleaving is inside another loop. Limit, by default to 2, so the 6453 // critical path only gets increased by one reduction operation. 6454 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6455 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6456 SmallIC = std::min(SmallIC, F); 6457 StoresIC = std::min(StoresIC, F); 6458 LoadsIC = std::min(LoadsIC, F); 6459 } 6460 6461 if (EnableLoadStoreRuntimeInterleave && 6462 std::max(StoresIC, LoadsIC) > SmallIC) { 6463 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6464 return std::max(StoresIC, LoadsIC); 6465 } 6466 6467 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6468 return SmallIC; 6469 } 6470 6471 // Interleave if this is a large loop (small loops are already dealt with by 6472 // this point) that could benefit from interleaving. 6473 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6474 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6475 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6476 return IC; 6477 } 6478 6479 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6480 return 1; 6481 } 6482 6483 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6484 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6485 // This function calculates the register usage by measuring the highest number 6486 // of values that are alive at a single location. Obviously, this is a very 6487 // rough estimation. We scan the loop in a topological order in order and 6488 // assign a number to each instruction. We use RPO to ensure that defs are 6489 // met before their users. We assume that each instruction that has in-loop 6490 // users starts an interval. We record every time that an in-loop value is 6491 // used, so we have a list of the first and last occurrences of each 6492 // instruction. Next, we transpose this data structure into a multi map that 6493 // holds the list of intervals that *end* at a specific location. This multi 6494 // map allows us to perform a linear search. We scan the instructions linearly 6495 // and record each time that a new interval starts, by placing it in a set. 6496 // If we find this value in the multi-map then we remove it from the set. 6497 // The max register usage is the maximum size of the set. 6498 // We also search for instructions that are defined outside the loop, but are 6499 // used inside the loop. We need this number separately from the max-interval 6500 // usage number because when we unroll, loop-invariant values do not take 6501 // more register. 6502 LoopBlocksDFS DFS(TheLoop); 6503 DFS.perform(LI); 6504 6505 RegisterUsage RU; 6506 RU.NumInstructions = 0; 6507 6508 // Each 'key' in the map opens a new interval. The values 6509 // of the map are the index of the 'last seen' usage of the 6510 // instruction that is the key. 6511 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6512 // Maps instruction to its index. 6513 DenseMap<unsigned, Instruction *> IdxToInstr; 6514 // Marks the end of each interval. 6515 IntervalMap EndPoint; 6516 // Saves the list of instruction indices that are used in the loop. 6517 SmallSet<Instruction *, 8> Ends; 6518 // Saves the list of values that are used in the loop but are 6519 // defined outside the loop, such as arguments and constants. 6520 SmallPtrSet<Value *, 8> LoopInvariants; 6521 6522 unsigned Index = 0; 6523 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6524 RU.NumInstructions += BB->size(); 6525 for (Instruction &I : *BB) { 6526 IdxToInstr[Index++] = &I; 6527 6528 // Save the end location of each USE. 6529 for (Value *U : I.operands()) { 6530 auto *Instr = dyn_cast<Instruction>(U); 6531 6532 // Ignore non-instruction values such as arguments, constants, etc. 6533 if (!Instr) 6534 continue; 6535 6536 // If this instruction is outside the loop then record it and continue. 6537 if (!TheLoop->contains(Instr)) { 6538 LoopInvariants.insert(Instr); 6539 continue; 6540 } 6541 6542 // Overwrite previous end points. 6543 EndPoint[Instr] = Index; 6544 Ends.insert(Instr); 6545 } 6546 } 6547 } 6548 6549 // Saves the list of intervals that end with the index in 'key'. 6550 typedef SmallVector<Instruction *, 2> InstrList; 6551 DenseMap<unsigned, InstrList> TransposeEnds; 6552 6553 // Transpose the EndPoints to a list of values that end at each index. 6554 for (auto &Interval : EndPoint) 6555 TransposeEnds[Interval.second].push_back(Interval.first); 6556 6557 SmallSet<Instruction *, 8> OpenIntervals; 6558 6559 // Get the size of the widest register. 6560 unsigned MaxSafeDepDist = -1U; 6561 if (Legal->getMaxSafeDepDistBytes() != -1U) 6562 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6563 unsigned WidestRegister = 6564 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6565 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6566 6567 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6568 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6569 6570 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6571 6572 // A lambda that gets the register usage for the given type and VF. 6573 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6574 if (Ty->isTokenTy()) 6575 return 0U; 6576 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6577 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6578 }; 6579 6580 for (unsigned int i = 0; i < Index; ++i) { 6581 Instruction *I = IdxToInstr[i]; 6582 6583 // Remove all of the instructions that end at this location. 6584 InstrList &List = TransposeEnds[i]; 6585 for (Instruction *ToRemove : List) 6586 OpenIntervals.erase(ToRemove); 6587 6588 // Ignore instructions that are never used within the loop. 6589 if (!Ends.count(I)) 6590 continue; 6591 6592 // Skip ignored values. 6593 if (ValuesToIgnore.count(I)) 6594 continue; 6595 6596 // For each VF find the maximum usage of registers. 6597 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6598 if (VFs[j] == 1) { 6599 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6600 continue; 6601 } 6602 collectUniformsAndScalars(VFs[j]); 6603 // Count the number of live intervals. 6604 unsigned RegUsage = 0; 6605 for (auto Inst : OpenIntervals) { 6606 // Skip ignored values for VF > 1. 6607 if (VecValuesToIgnore.count(Inst) || 6608 isScalarAfterVectorization(Inst, VFs[j])) 6609 continue; 6610 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6611 } 6612 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6613 } 6614 6615 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6616 << OpenIntervals.size() << '\n'); 6617 6618 // Add the current instruction to the list of open intervals. 6619 OpenIntervals.insert(I); 6620 } 6621 6622 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6623 unsigned Invariant = 0; 6624 if (VFs[i] == 1) 6625 Invariant = LoopInvariants.size(); 6626 else { 6627 for (auto Inst : LoopInvariants) 6628 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6629 } 6630 6631 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6632 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6633 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6634 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6635 6636 RU.LoopInvariantRegs = Invariant; 6637 RU.MaxLocalUsers = MaxUsages[i]; 6638 RUs[i] = RU; 6639 } 6640 6641 return RUs; 6642 } 6643 6644 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6645 6646 // If we aren't vectorizing the loop, or if we've already collected the 6647 // instructions to scalarize, there's nothing to do. Collection may already 6648 // have occurred if we have a user-selected VF and are now computing the 6649 // expected cost for interleaving. 6650 if (VF < 2 || InstsToScalarize.count(VF)) 6651 return; 6652 6653 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6654 // not profitable to scalarize any instructions, the presence of VF in the 6655 // map will indicate that we've analyzed it already. 6656 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6657 6658 // Find all the instructions that are scalar with predication in the loop and 6659 // determine if it would be better to not if-convert the blocks they are in. 6660 // If so, we also record the instructions to scalarize. 6661 for (BasicBlock *BB : TheLoop->blocks()) { 6662 if (!Legal->blockNeedsPredication(BB)) 6663 continue; 6664 for (Instruction &I : *BB) 6665 if (Legal->isScalarWithPredication(&I)) { 6666 ScalarCostsTy ScalarCosts; 6667 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6668 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6669 6670 // Remember that BB will remain after vectorization. 6671 PredicatedBBsAfterVectorization.insert(BB); 6672 } 6673 } 6674 } 6675 6676 int LoopVectorizationCostModel::computePredInstDiscount( 6677 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6678 unsigned VF) { 6679 6680 assert(!isUniformAfterVectorization(PredInst, VF) && 6681 "Instruction marked uniform-after-vectorization will be predicated"); 6682 6683 // Initialize the discount to zero, meaning that the scalar version and the 6684 // vector version cost the same. 6685 int Discount = 0; 6686 6687 // Holds instructions to analyze. The instructions we visit are mapped in 6688 // ScalarCosts. Those instructions are the ones that would be scalarized if 6689 // we find that the scalar version costs less. 6690 SmallVector<Instruction *, 8> Worklist; 6691 6692 // Returns true if the given instruction can be scalarized. 6693 auto canBeScalarized = [&](Instruction *I) -> bool { 6694 6695 // We only attempt to scalarize instructions forming a single-use chain 6696 // from the original predicated block that would otherwise be vectorized. 6697 // Although not strictly necessary, we give up on instructions we know will 6698 // already be scalar to avoid traversing chains that are unlikely to be 6699 // beneficial. 6700 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6701 isScalarAfterVectorization(I, VF)) 6702 return false; 6703 6704 // If the instruction is scalar with predication, it will be analyzed 6705 // separately. We ignore it within the context of PredInst. 6706 if (Legal->isScalarWithPredication(I)) 6707 return false; 6708 6709 // If any of the instruction's operands are uniform after vectorization, 6710 // the instruction cannot be scalarized. This prevents, for example, a 6711 // masked load from being scalarized. 6712 // 6713 // We assume we will only emit a value for lane zero of an instruction 6714 // marked uniform after vectorization, rather than VF identical values. 6715 // Thus, if we scalarize an instruction that uses a uniform, we would 6716 // create uses of values corresponding to the lanes we aren't emitting code 6717 // for. This behavior can be changed by allowing getScalarValue to clone 6718 // the lane zero values for uniforms rather than asserting. 6719 for (Use &U : I->operands()) 6720 if (auto *J = dyn_cast<Instruction>(U.get())) 6721 if (isUniformAfterVectorization(J, VF)) 6722 return false; 6723 6724 // Otherwise, we can scalarize the instruction. 6725 return true; 6726 }; 6727 6728 // Returns true if an operand that cannot be scalarized must be extracted 6729 // from a vector. We will account for this scalarization overhead below. Note 6730 // that the non-void predicated instructions are placed in their own blocks, 6731 // and their return values are inserted into vectors. Thus, an extract would 6732 // still be required. 6733 auto needsExtract = [&](Instruction *I) -> bool { 6734 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6735 }; 6736 6737 // Compute the expected cost discount from scalarizing the entire expression 6738 // feeding the predicated instruction. We currently only consider expressions 6739 // that are single-use instruction chains. 6740 Worklist.push_back(PredInst); 6741 while (!Worklist.empty()) { 6742 Instruction *I = Worklist.pop_back_val(); 6743 6744 // If we've already analyzed the instruction, there's nothing to do. 6745 if (ScalarCosts.count(I)) 6746 continue; 6747 6748 // Compute the cost of the vector instruction. Note that this cost already 6749 // includes the scalarization overhead of the predicated instruction. 6750 unsigned VectorCost = getInstructionCost(I, VF).first; 6751 6752 // Compute the cost of the scalarized instruction. This cost is the cost of 6753 // the instruction as if it wasn't if-converted and instead remained in the 6754 // predicated block. We will scale this cost by block probability after 6755 // computing the scalarization overhead. 6756 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6757 6758 // Compute the scalarization overhead of needed insertelement instructions 6759 // and phi nodes. 6760 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6761 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6762 true, false); 6763 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6764 } 6765 6766 // Compute the scalarization overhead of needed extractelement 6767 // instructions. For each of the instruction's operands, if the operand can 6768 // be scalarized, add it to the worklist; otherwise, account for the 6769 // overhead. 6770 for (Use &U : I->operands()) 6771 if (auto *J = dyn_cast<Instruction>(U.get())) { 6772 assert(VectorType::isValidElementType(J->getType()) && 6773 "Instruction has non-scalar type"); 6774 if (canBeScalarized(J)) 6775 Worklist.push_back(J); 6776 else if (needsExtract(J)) 6777 ScalarCost += TTI.getScalarizationOverhead( 6778 ToVectorTy(J->getType(),VF), false, true); 6779 } 6780 6781 // Scale the total scalar cost by block probability. 6782 ScalarCost /= getReciprocalPredBlockProb(); 6783 6784 // Compute the discount. A non-negative discount means the vector version 6785 // of the instruction costs more, and scalarizing would be beneficial. 6786 Discount += VectorCost - ScalarCost; 6787 ScalarCosts[I] = ScalarCost; 6788 } 6789 6790 return Discount; 6791 } 6792 6793 LoopVectorizationCostModel::VectorizationCostTy 6794 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6795 VectorizationCostTy Cost; 6796 6797 // For each block. 6798 for (BasicBlock *BB : TheLoop->blocks()) { 6799 VectorizationCostTy BlockCost; 6800 6801 // For each instruction in the old loop. 6802 for (Instruction &I : *BB) { 6803 // Skip dbg intrinsics. 6804 if (isa<DbgInfoIntrinsic>(I)) 6805 continue; 6806 6807 // Skip ignored values. 6808 if (ValuesToIgnore.count(&I)) 6809 continue; 6810 6811 VectorizationCostTy C = getInstructionCost(&I, VF); 6812 6813 // Check if we should override the cost. 6814 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6815 C.first = ForceTargetInstructionCost; 6816 6817 BlockCost.first += C.first; 6818 BlockCost.second |= C.second; 6819 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6820 << VF << " For instruction: " << I << '\n'); 6821 } 6822 6823 // If we are vectorizing a predicated block, it will have been 6824 // if-converted. This means that the block's instructions (aside from 6825 // stores and instructions that may divide by zero) will now be 6826 // unconditionally executed. For the scalar case, we may not always execute 6827 // the predicated block. Thus, scale the block's cost by the probability of 6828 // executing it. 6829 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6830 BlockCost.first /= getReciprocalPredBlockProb(); 6831 6832 Cost.first += BlockCost.first; 6833 Cost.second |= BlockCost.second; 6834 } 6835 6836 return Cost; 6837 } 6838 6839 /// \brief Gets Address Access SCEV after verifying that the access pattern 6840 /// is loop invariant except the induction variable dependence. 6841 /// 6842 /// This SCEV can be sent to the Target in order to estimate the address 6843 /// calculation cost. 6844 static const SCEV *getAddressAccessSCEV( 6845 Value *Ptr, 6846 LoopVectorizationLegality *Legal, 6847 ScalarEvolution *SE, 6848 const Loop *TheLoop) { 6849 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6850 if (!Gep) 6851 return nullptr; 6852 6853 // We are looking for a gep with all loop invariant indices except for one 6854 // which should be an induction variable. 6855 unsigned NumOperands = Gep->getNumOperands(); 6856 for (unsigned i = 1; i < NumOperands; ++i) { 6857 Value *Opd = Gep->getOperand(i); 6858 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6859 !Legal->isInductionVariable(Opd)) 6860 return nullptr; 6861 } 6862 6863 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6864 return SE->getSCEV(Ptr); 6865 } 6866 6867 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6868 return Legal->hasStride(I->getOperand(0)) || 6869 Legal->hasStride(I->getOperand(1)); 6870 } 6871 6872 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6873 unsigned VF) { 6874 Type *ValTy = getMemInstValueType(I); 6875 auto SE = PSE.getSE(); 6876 6877 unsigned Alignment = getMemInstAlignment(I); 6878 unsigned AS = getMemInstAddressSpace(I); 6879 Value *Ptr = getPointerOperand(I); 6880 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6881 6882 // Figure out whether the access is strided and get the stride value 6883 // if it's known in compile time 6884 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 6885 6886 // Get the cost of the scalar memory instruction and address computation. 6887 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6888 6889 Cost += VF * 6890 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6891 AS, I); 6892 6893 // Get the overhead of the extractelement and insertelement instructions 6894 // we might create due to scalarization. 6895 Cost += getScalarizationOverhead(I, VF, TTI); 6896 6897 // If we have a predicated store, it may not be executed for each vector 6898 // lane. Scale the cost by the probability of executing the predicated 6899 // block. 6900 if (Legal->isScalarWithPredication(I)) 6901 Cost /= getReciprocalPredBlockProb(); 6902 6903 return Cost; 6904 } 6905 6906 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6907 unsigned VF) { 6908 Type *ValTy = getMemInstValueType(I); 6909 Type *VectorTy = ToVectorTy(ValTy, VF); 6910 unsigned Alignment = getMemInstAlignment(I); 6911 Value *Ptr = getPointerOperand(I); 6912 unsigned AS = getMemInstAddressSpace(I); 6913 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6914 6915 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6916 "Stride should be 1 or -1 for consecutive memory access"); 6917 unsigned Cost = 0; 6918 if (Legal->isMaskRequired(I)) 6919 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6920 else 6921 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 6922 6923 bool Reverse = ConsecutiveStride < 0; 6924 if (Reverse) 6925 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6926 return Cost; 6927 } 6928 6929 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6930 unsigned VF) { 6931 LoadInst *LI = cast<LoadInst>(I); 6932 Type *ValTy = LI->getType(); 6933 Type *VectorTy = ToVectorTy(ValTy, VF); 6934 unsigned Alignment = LI->getAlignment(); 6935 unsigned AS = LI->getPointerAddressSpace(); 6936 6937 return TTI.getAddressComputationCost(ValTy) + 6938 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 6939 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6940 } 6941 6942 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6943 unsigned VF) { 6944 Type *ValTy = getMemInstValueType(I); 6945 Type *VectorTy = ToVectorTy(ValTy, VF); 6946 unsigned Alignment = getMemInstAlignment(I); 6947 Value *Ptr = getPointerOperand(I); 6948 6949 return TTI.getAddressComputationCost(VectorTy) + 6950 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6951 Legal->isMaskRequired(I), Alignment); 6952 } 6953 6954 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6955 unsigned VF) { 6956 Type *ValTy = getMemInstValueType(I); 6957 Type *VectorTy = ToVectorTy(ValTy, VF); 6958 unsigned AS = getMemInstAddressSpace(I); 6959 6960 auto Group = Legal->getInterleavedAccessGroup(I); 6961 assert(Group && "Fail to get an interleaved access group."); 6962 6963 unsigned InterleaveFactor = Group->getFactor(); 6964 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6965 6966 // Holds the indices of existing members in an interleaved load group. 6967 // An interleaved store group doesn't need this as it doesn't allow gaps. 6968 SmallVector<unsigned, 4> Indices; 6969 if (isa<LoadInst>(I)) { 6970 for (unsigned i = 0; i < InterleaveFactor; i++) 6971 if (Group->getMember(i)) 6972 Indices.push_back(i); 6973 } 6974 6975 // Calculate the cost of the whole interleaved group. 6976 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 6977 Group->getFactor(), Indices, 6978 Group->getAlignment(), AS); 6979 6980 if (Group->isReverse()) 6981 Cost += Group->getNumMembers() * 6982 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6983 return Cost; 6984 } 6985 6986 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6987 unsigned VF) { 6988 6989 // Calculate scalar cost only. Vectorization cost should be ready at this 6990 // moment. 6991 if (VF == 1) { 6992 Type *ValTy = getMemInstValueType(I); 6993 unsigned Alignment = getMemInstAlignment(I); 6994 unsigned AS = getMemInstAddressSpace(I); 6995 6996 return TTI.getAddressComputationCost(ValTy) + 6997 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 6998 } 6999 return getWideningCost(I, VF); 7000 } 7001 7002 LoopVectorizationCostModel::VectorizationCostTy 7003 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7004 // If we know that this instruction will remain uniform, check the cost of 7005 // the scalar version. 7006 if (isUniformAfterVectorization(I, VF)) 7007 VF = 1; 7008 7009 if (VF > 1 && isProfitableToScalarize(I, VF)) 7010 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7011 7012 // Forced scalars do not have any scalarization overhead. 7013 if (VF > 1 && ForcedScalars.count(VF) && 7014 ForcedScalars.find(VF)->second.count(I)) 7015 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 7016 7017 Type *VectorTy; 7018 unsigned C = getInstructionCost(I, VF, VectorTy); 7019 7020 bool TypeNotScalarized = 7021 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 7022 return VectorizationCostTy(C, TypeNotScalarized); 7023 } 7024 7025 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7026 if (VF == 1) 7027 return; 7028 for (BasicBlock *BB : TheLoop->blocks()) { 7029 // For each instruction in the old loop. 7030 for (Instruction &I : *BB) { 7031 Value *Ptr = getPointerOperand(&I); 7032 if (!Ptr) 7033 continue; 7034 7035 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7036 // Scalar load + broadcast 7037 unsigned Cost = getUniformMemOpCost(&I, VF); 7038 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7039 continue; 7040 } 7041 7042 // We assume that widening is the best solution when possible. 7043 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7044 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7045 setWideningDecision(&I, VF, CM_Widen, Cost); 7046 continue; 7047 } 7048 7049 // Choose between Interleaving, Gather/Scatter or Scalarization. 7050 unsigned InterleaveCost = UINT_MAX; 7051 unsigned NumAccesses = 1; 7052 if (Legal->isAccessInterleaved(&I)) { 7053 auto Group = Legal->getInterleavedAccessGroup(&I); 7054 assert(Group && "Fail to get an interleaved access group."); 7055 7056 // Make one decision for the whole group. 7057 if (getWideningDecision(&I, VF) != CM_Unknown) 7058 continue; 7059 7060 NumAccesses = Group->getNumMembers(); 7061 InterleaveCost = getInterleaveGroupCost(&I, VF); 7062 } 7063 7064 unsigned GatherScatterCost = 7065 Legal->isLegalGatherOrScatter(&I) 7066 ? getGatherScatterCost(&I, VF) * NumAccesses 7067 : UINT_MAX; 7068 7069 unsigned ScalarizationCost = 7070 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7071 7072 // Choose better solution for the current VF, 7073 // write down this decision and use it during vectorization. 7074 unsigned Cost; 7075 InstWidening Decision; 7076 if (InterleaveCost <= GatherScatterCost && 7077 InterleaveCost < ScalarizationCost) { 7078 Decision = CM_Interleave; 7079 Cost = InterleaveCost; 7080 } else if (GatherScatterCost < ScalarizationCost) { 7081 Decision = CM_GatherScatter; 7082 Cost = GatherScatterCost; 7083 } else { 7084 Decision = CM_Scalarize; 7085 Cost = ScalarizationCost; 7086 } 7087 // If the instructions belongs to an interleave group, the whole group 7088 // receives the same decision. The whole group receives the cost, but 7089 // the cost will actually be assigned to one instruction. 7090 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7091 setWideningDecision(Group, VF, Decision, Cost); 7092 else 7093 setWideningDecision(&I, VF, Decision, Cost); 7094 } 7095 } 7096 7097 // Make sure that any load of address and any other address computation 7098 // remains scalar unless there is gather/scatter support. This avoids 7099 // inevitable extracts into address registers, and also has the benefit of 7100 // activating LSR more, since that pass can't optimize vectorized 7101 // addresses. 7102 if (TTI.prefersVectorizedAddressing()) 7103 return; 7104 7105 // Start with all scalar pointer uses. 7106 SmallPtrSet<Instruction *, 8> AddrDefs; 7107 for (BasicBlock *BB : TheLoop->blocks()) 7108 for (Instruction &I : *BB) { 7109 Instruction *PtrDef = 7110 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7111 if (PtrDef && TheLoop->contains(PtrDef) && 7112 getWideningDecision(&I, VF) != CM_GatherScatter) 7113 AddrDefs.insert(PtrDef); 7114 } 7115 7116 // Add all instructions used to generate the addresses. 7117 SmallVector<Instruction *, 4> Worklist; 7118 for (auto *I : AddrDefs) 7119 Worklist.push_back(I); 7120 while (!Worklist.empty()) { 7121 Instruction *I = Worklist.pop_back_val(); 7122 for (auto &Op : I->operands()) 7123 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7124 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7125 AddrDefs.insert(InstOp).second == true) 7126 Worklist.push_back(InstOp); 7127 } 7128 7129 for (auto *I : AddrDefs) { 7130 if (isa<LoadInst>(I)) { 7131 // Setting the desired widening decision should ideally be handled in 7132 // by cost functions, but since this involves the task of finding out 7133 // if the loaded register is involved in an address computation, it is 7134 // instead changed here when we know this is the case. 7135 if (getWideningDecision(I, VF) == CM_Widen) 7136 // Scalarize a widened load of address. 7137 setWideningDecision(I, VF, CM_Scalarize, 7138 (VF * getMemoryInstructionCost(I, 1))); 7139 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7140 // Scalarize an interleave group of address loads. 7141 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7142 if (Instruction *Member = Group->getMember(I)) 7143 setWideningDecision(Member, VF, CM_Scalarize, 7144 (VF * getMemoryInstructionCost(Member, 1))); 7145 } 7146 } 7147 } else 7148 // Make sure I gets scalarized and a cost estimate without 7149 // scalarization overhead. 7150 ForcedScalars[VF].insert(I); 7151 } 7152 } 7153 7154 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7155 unsigned VF, 7156 Type *&VectorTy) { 7157 Type *RetTy = I->getType(); 7158 if (canTruncateToMinimalBitwidth(I, VF)) 7159 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7160 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7161 auto SE = PSE.getSE(); 7162 7163 // TODO: We need to estimate the cost of intrinsic calls. 7164 switch (I->getOpcode()) { 7165 case Instruction::GetElementPtr: 7166 // We mark this instruction as zero-cost because the cost of GEPs in 7167 // vectorized code depends on whether the corresponding memory instruction 7168 // is scalarized or not. Therefore, we handle GEPs with the memory 7169 // instruction cost. 7170 return 0; 7171 case Instruction::Br: { 7172 // In cases of scalarized and predicated instructions, there will be VF 7173 // predicated blocks in the vectorized loop. Each branch around these 7174 // blocks requires also an extract of its vector compare i1 element. 7175 bool ScalarPredicatedBB = false; 7176 BranchInst *BI = cast<BranchInst>(I); 7177 if (VF > 1 && BI->isConditional() && 7178 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7179 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7180 ScalarPredicatedBB = true; 7181 7182 if (ScalarPredicatedBB) { 7183 // Return cost for branches around scalarized and predicated blocks. 7184 Type *Vec_i1Ty = 7185 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7186 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7187 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7188 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7189 // The back-edge branch will remain, as will all scalar branches. 7190 return TTI.getCFInstrCost(Instruction::Br); 7191 else 7192 // This branch will be eliminated by if-conversion. 7193 return 0; 7194 // Note: We currently assume zero cost for an unconditional branch inside 7195 // a predicated block since it will become a fall-through, although we 7196 // may decide in the future to call TTI for all branches. 7197 } 7198 case Instruction::PHI: { 7199 auto *Phi = cast<PHINode>(I); 7200 7201 // First-order recurrences are replaced by vector shuffles inside the loop. 7202 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7203 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7204 VectorTy, VF - 1, VectorTy); 7205 7206 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7207 // converted into select instructions. We require N - 1 selects per phi 7208 // node, where N is the number of incoming values. 7209 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7210 return (Phi->getNumIncomingValues() - 1) * 7211 TTI.getCmpSelInstrCost( 7212 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7213 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7214 7215 return TTI.getCFInstrCost(Instruction::PHI); 7216 } 7217 case Instruction::UDiv: 7218 case Instruction::SDiv: 7219 case Instruction::URem: 7220 case Instruction::SRem: 7221 // If we have a predicated instruction, it may not be executed for each 7222 // vector lane. Get the scalarization cost and scale this amount by the 7223 // probability of executing the predicated block. If the instruction is not 7224 // predicated, we fall through to the next case. 7225 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7226 unsigned Cost = 0; 7227 7228 // These instructions have a non-void type, so account for the phi nodes 7229 // that we will create. This cost is likely to be zero. The phi node 7230 // cost, if any, should be scaled by the block probability because it 7231 // models a copy at the end of each predicated block. 7232 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7233 7234 // The cost of the non-predicated instruction. 7235 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7236 7237 // The cost of insertelement and extractelement instructions needed for 7238 // scalarization. 7239 Cost += getScalarizationOverhead(I, VF, TTI); 7240 7241 // Scale the cost by the probability of executing the predicated blocks. 7242 // This assumes the predicated block for each vector lane is equally 7243 // likely. 7244 return Cost / getReciprocalPredBlockProb(); 7245 } 7246 LLVM_FALLTHROUGH; 7247 case Instruction::Add: 7248 case Instruction::FAdd: 7249 case Instruction::Sub: 7250 case Instruction::FSub: 7251 case Instruction::Mul: 7252 case Instruction::FMul: 7253 case Instruction::FDiv: 7254 case Instruction::FRem: 7255 case Instruction::Shl: 7256 case Instruction::LShr: 7257 case Instruction::AShr: 7258 case Instruction::And: 7259 case Instruction::Or: 7260 case Instruction::Xor: { 7261 // Since we will replace the stride by 1 the multiplication should go away. 7262 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7263 return 0; 7264 // Certain instructions can be cheaper to vectorize if they have a constant 7265 // second vector operand. One example of this are shifts on x86. 7266 TargetTransformInfo::OperandValueKind Op1VK = 7267 TargetTransformInfo::OK_AnyValue; 7268 TargetTransformInfo::OperandValueKind Op2VK = 7269 TargetTransformInfo::OK_AnyValue; 7270 TargetTransformInfo::OperandValueProperties Op1VP = 7271 TargetTransformInfo::OP_None; 7272 TargetTransformInfo::OperandValueProperties Op2VP = 7273 TargetTransformInfo::OP_None; 7274 Value *Op2 = I->getOperand(1); 7275 7276 // Check for a splat or for a non uniform vector of constants. 7277 if (isa<ConstantInt>(Op2)) { 7278 ConstantInt *CInt = cast<ConstantInt>(Op2); 7279 if (CInt && CInt->getValue().isPowerOf2()) 7280 Op2VP = TargetTransformInfo::OP_PowerOf2; 7281 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7282 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7283 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7284 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7285 if (SplatValue) { 7286 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7287 if (CInt && CInt->getValue().isPowerOf2()) 7288 Op2VP = TargetTransformInfo::OP_PowerOf2; 7289 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7290 } 7291 } else if (Legal->isUniform(Op2)) { 7292 Op2VK = TargetTransformInfo::OK_UniformValue; 7293 } 7294 SmallVector<const Value *, 4> Operands(I->operand_values()); 7295 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7296 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7297 Op2VK, Op1VP, Op2VP, Operands); 7298 } 7299 case Instruction::Select: { 7300 SelectInst *SI = cast<SelectInst>(I); 7301 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7302 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7303 Type *CondTy = SI->getCondition()->getType(); 7304 if (!ScalarCond) 7305 CondTy = VectorType::get(CondTy, VF); 7306 7307 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7308 } 7309 case Instruction::ICmp: 7310 case Instruction::FCmp: { 7311 Type *ValTy = I->getOperand(0)->getType(); 7312 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7313 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7314 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7315 VectorTy = ToVectorTy(ValTy, VF); 7316 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7317 } 7318 case Instruction::Store: 7319 case Instruction::Load: { 7320 unsigned Width = VF; 7321 if (Width > 1) { 7322 InstWidening Decision = getWideningDecision(I, Width); 7323 assert(Decision != CM_Unknown && 7324 "CM decision should be taken at this point"); 7325 if (Decision == CM_Scalarize) 7326 Width = 1; 7327 } 7328 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7329 return getMemoryInstructionCost(I, VF); 7330 } 7331 case Instruction::ZExt: 7332 case Instruction::SExt: 7333 case Instruction::FPToUI: 7334 case Instruction::FPToSI: 7335 case Instruction::FPExt: 7336 case Instruction::PtrToInt: 7337 case Instruction::IntToPtr: 7338 case Instruction::SIToFP: 7339 case Instruction::UIToFP: 7340 case Instruction::Trunc: 7341 case Instruction::FPTrunc: 7342 case Instruction::BitCast: { 7343 // We optimize the truncation of induction variables having constant 7344 // integer steps. The cost of these truncations is the same as the scalar 7345 // operation. 7346 if (isOptimizableIVTruncate(I, VF)) { 7347 auto *Trunc = cast<TruncInst>(I); 7348 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7349 Trunc->getSrcTy(), Trunc); 7350 } 7351 7352 Type *SrcScalarTy = I->getOperand(0)->getType(); 7353 Type *SrcVecTy = 7354 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7355 if (canTruncateToMinimalBitwidth(I, VF)) { 7356 // This cast is going to be shrunk. This may remove the cast or it might 7357 // turn it into slightly different cast. For example, if MinBW == 16, 7358 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7359 // 7360 // Calculate the modified src and dest types. 7361 Type *MinVecTy = VectorTy; 7362 if (I->getOpcode() == Instruction::Trunc) { 7363 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7364 VectorTy = 7365 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7366 } else if (I->getOpcode() == Instruction::ZExt || 7367 I->getOpcode() == Instruction::SExt) { 7368 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7369 VectorTy = 7370 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7371 } 7372 } 7373 7374 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7375 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7376 } 7377 case Instruction::Call: { 7378 bool NeedToScalarize; 7379 CallInst *CI = cast<CallInst>(I); 7380 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7381 if (getVectorIntrinsicIDForCall(CI, TLI)) 7382 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7383 return CallCost; 7384 } 7385 default: 7386 // The cost of executing VF copies of the scalar instruction. This opcode 7387 // is unknown. Assume that it is the same as 'mul'. 7388 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7389 getScalarizationOverhead(I, VF, TTI); 7390 } // end of switch. 7391 } 7392 7393 char LoopVectorize::ID = 0; 7394 static const char lv_name[] = "Loop Vectorization"; 7395 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7396 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7397 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7398 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7399 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7400 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7401 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7402 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7403 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7404 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7405 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7406 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7407 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7408 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7409 7410 namespace llvm { 7411 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7412 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7413 } 7414 } 7415 7416 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7417 7418 // Check if the pointer operand of a load or store instruction is 7419 // consecutive. 7420 if (auto *Ptr = getPointerOperand(Inst)) 7421 return Legal->isConsecutivePtr(Ptr); 7422 return false; 7423 } 7424 7425 void LoopVectorizationCostModel::collectValuesToIgnore() { 7426 // Ignore ephemeral values. 7427 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7428 7429 // Ignore type-promoting instructions we identified during reduction 7430 // detection. 7431 for (auto &Reduction : *Legal->getReductionVars()) { 7432 RecurrenceDescriptor &RedDes = Reduction.second; 7433 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7434 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7435 } 7436 } 7437 7438 LoopVectorizationCostModel::VectorizationFactor 7439 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7440 7441 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7442 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7443 0U}; 7444 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7445 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7446 return NoVectorization; 7447 7448 if (UserVF) { 7449 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7450 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7451 // Collect the instructions (and their associated costs) that will be more 7452 // profitable to scalarize. 7453 CM.selectUserVectorizationFactor(UserVF); 7454 buildVPlans(UserVF, UserVF); 7455 DEBUG(printPlans(dbgs())); 7456 return {UserVF, 0}; 7457 } 7458 7459 unsigned MaxVF = MaybeMaxVF.getValue(); 7460 assert(MaxVF != 0 && "MaxVF is zero."); 7461 7462 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7463 // Collect Uniform and Scalar instructions after vectorization with VF. 7464 CM.collectUniformsAndScalars(VF); 7465 7466 // Collect the instructions (and their associated costs) that will be more 7467 // profitable to scalarize. 7468 if (VF > 1) 7469 CM.collectInstsToScalarize(VF); 7470 } 7471 7472 buildVPlans(1, MaxVF); 7473 DEBUG(printPlans(dbgs())); 7474 if (MaxVF == 1) 7475 return NoVectorization; 7476 7477 // Select the optimal vectorization factor. 7478 return CM.selectVectorizationFactor(MaxVF); 7479 } 7480 7481 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 7482 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n'); 7483 BestVF = VF; 7484 BestUF = UF; 7485 7486 for (auto *VPlanIter = VPlans.begin(); VPlanIter != VPlans.end();) { 7487 VPlan *Plan = *VPlanIter; 7488 if (Plan->hasVF(VF)) 7489 ++VPlanIter; 7490 else { 7491 VPlanIter = VPlans.erase(VPlanIter); 7492 delete Plan; 7493 } 7494 } 7495 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7496 } 7497 7498 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7499 DominatorTree *DT) { 7500 // Perform the actual loop transformation. 7501 7502 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7503 VPTransformState State{ 7504 BestVF, BestUF, LI, DT, ILV.Builder, ILV.VectorLoopValueMap, &ILV}; 7505 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7506 7507 //===------------------------------------------------===// 7508 // 7509 // Notice: any optimization or new instruction that go 7510 // into the code below should also be implemented in 7511 // the cost-model. 7512 // 7513 //===------------------------------------------------===// 7514 7515 // 2. Copy and widen instructions from the old loop into the new loop. 7516 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7517 VPlan *Plan = *VPlans.begin(); 7518 Plan->execute(&State); 7519 7520 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7521 // predication, updating analyses. 7522 ILV.fixVectorizedLoop(); 7523 } 7524 7525 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7526 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7527 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7528 7529 // We create new control-flow for the vectorized loop, so the original 7530 // condition will be dead after vectorization if it's only used by the 7531 // branch. 7532 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7533 if (Cmp && Cmp->hasOneUse()) 7534 DeadInstructions.insert(Cmp); 7535 7536 // We create new "steps" for induction variable updates to which the original 7537 // induction variables map. An original update instruction will be dead if 7538 // all its users except the induction variable are dead. 7539 for (auto &Induction : *Legal->getInductionVars()) { 7540 PHINode *Ind = Induction.first; 7541 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7542 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 7543 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7544 })) 7545 DeadInstructions.insert(IndUpdate); 7546 } 7547 } 7548 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7549 7550 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7551 7552 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7553 Instruction::BinaryOps BinOp) { 7554 // When unrolling and the VF is 1, we only need to add a simple scalar. 7555 Type *Ty = Val->getType(); 7556 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7557 7558 if (Ty->isFloatingPointTy()) { 7559 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7560 7561 // Floating point operations had to be 'fast' to enable the unrolling. 7562 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7563 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7564 } 7565 Constant *C = ConstantInt::get(Ty, StartIdx); 7566 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7567 } 7568 7569 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7570 SmallVector<Metadata *, 4> MDs; 7571 // Reserve first location for self reference to the LoopID metadata node. 7572 MDs.push_back(nullptr); 7573 bool IsUnrollMetadata = false; 7574 MDNode *LoopID = L->getLoopID(); 7575 if (LoopID) { 7576 // First find existing loop unrolling disable metadata. 7577 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7578 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7579 if (MD) { 7580 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7581 IsUnrollMetadata = 7582 S && S->getString().startswith("llvm.loop.unroll.disable"); 7583 } 7584 MDs.push_back(LoopID->getOperand(i)); 7585 } 7586 } 7587 7588 if (!IsUnrollMetadata) { 7589 // Add runtime unroll disable metadata. 7590 LLVMContext &Context = L->getHeader()->getContext(); 7591 SmallVector<Metadata *, 1> DisableOperands; 7592 DisableOperands.push_back( 7593 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7594 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7595 MDs.push_back(DisableNode); 7596 MDNode *NewLoopID = MDNode::get(Context, MDs); 7597 // Set operand 0 to refer to the loop id itself. 7598 NewLoopID->replaceOperandWith(0, NewLoopID); 7599 L->setLoopID(NewLoopID); 7600 } 7601 } 7602 7603 namespace { 7604 /// VPWidenRecipe is a recipe for producing a copy of vector type for each 7605 /// Instruction in its ingredients independently, in order. This recipe covers 7606 /// most of the traditional vectorization cases where each ingredient transforms 7607 /// into a vectorized version of itself. 7608 class VPWidenRecipe : public VPRecipeBase { 7609 private: 7610 /// Hold the ingredients by pointing to their original BasicBlock location. 7611 BasicBlock::iterator Begin; 7612 BasicBlock::iterator End; 7613 7614 public: 7615 VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) { 7616 End = I->getIterator(); 7617 Begin = End++; 7618 } 7619 7620 ~VPWidenRecipe() {} 7621 7622 /// Method to support type inquiry through isa, cast, and dyn_cast. 7623 static inline bool classof(const VPRecipeBase *V) { 7624 return V->getVPRecipeID() == VPRecipeBase::VPWidenSC; 7625 } 7626 7627 /// Produce widened copies of all Ingredients. 7628 void execute(VPTransformState &State) override { 7629 for (auto &Instr : make_range(Begin, End)) 7630 State.ILV->widenInstruction(Instr); 7631 } 7632 7633 /// Augment the recipe to include Instr, if it lies at its End. 7634 bool appendInstruction(Instruction *Instr) { 7635 if (End != Instr->getIterator()) 7636 return false; 7637 End++; 7638 return true; 7639 } 7640 7641 /// Print the recipe. 7642 void print(raw_ostream &O, const Twine &Indent) const override { 7643 O << " +\n" << Indent << "\"WIDEN\\l\""; 7644 for (auto &Instr : make_range(Begin, End)) 7645 O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\""; 7646 } 7647 }; 7648 7649 /// A recipe for handling phi nodes of integer and floating-point inductions, 7650 /// producing their vector and scalar values. 7651 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase { 7652 private: 7653 PHINode *IV; 7654 TruncInst *Trunc; 7655 7656 public: 7657 VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr) 7658 : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {} 7659 7660 ~VPWidenIntOrFpInductionRecipe() {} 7661 7662 /// Method to support type inquiry through isa, cast, and dyn_cast. 7663 static inline bool classof(const VPRecipeBase *V) { 7664 return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC; 7665 } 7666 7667 /// Generate the vectorized and scalarized versions of the phi node as 7668 /// needed by their users. 7669 void execute(VPTransformState &State) override { 7670 assert(!State.Instance && "Int or FP induction being replicated."); 7671 State.ILV->widenIntOrFpInduction(IV, Trunc); 7672 } 7673 7674 /// Print the recipe. 7675 void print(raw_ostream &O, const Twine &Indent) const override { 7676 O << " +\n" << Indent << "\"WIDEN-INDUCTION"; 7677 if (Trunc) { 7678 O << "\\l\""; 7679 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 7680 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\""; 7681 } else 7682 O << " " << VPlanIngredient(IV) << "\\l\""; 7683 } 7684 }; 7685 7686 /// A recipe for handling all phi nodes except for integer and FP inductions. 7687 class VPWidenPHIRecipe : public VPRecipeBase { 7688 private: 7689 PHINode *Phi; 7690 7691 public: 7692 VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {} 7693 7694 ~VPWidenPHIRecipe() {} 7695 7696 /// Method to support type inquiry through isa, cast, and dyn_cast. 7697 static inline bool classof(const VPRecipeBase *V) { 7698 return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC; 7699 } 7700 7701 /// Generate the phi/select nodes. 7702 void execute(VPTransformState &State) override { 7703 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7704 } 7705 7706 /// Print the recipe. 7707 void print(raw_ostream &O, const Twine &Indent) const override { 7708 O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; 7709 } 7710 }; 7711 7712 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load 7713 /// or stores into one wide load/store and shuffles. 7714 class VPInterleaveRecipe : public VPRecipeBase { 7715 private: 7716 const InterleaveGroup *IG; 7717 7718 public: 7719 VPInterleaveRecipe(const InterleaveGroup *IG) 7720 : VPRecipeBase(VPInterleaveSC), IG(IG) {} 7721 7722 ~VPInterleaveRecipe() {} 7723 7724 /// Method to support type inquiry through isa, cast, and dyn_cast. 7725 static inline bool classof(const VPRecipeBase *V) { 7726 return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC; 7727 } 7728 7729 /// Generate the wide load or store, and shuffles. 7730 void execute(VPTransformState &State) override { 7731 assert(!State.Instance && "Interleave group being replicated."); 7732 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7733 } 7734 7735 /// Print the recipe. 7736 void print(raw_ostream &O, const Twine &Indent) const override; 7737 7738 const InterleaveGroup *getInterleaveGroup() { return IG; } 7739 }; 7740 7741 /// VPReplicateRecipe replicates a given instruction producing multiple scalar 7742 /// copies of the original scalar type, one per lane, instead of producing a 7743 /// single copy of widened type for all lanes. If the instruction is known to be 7744 /// uniform only one copy, per lane zero, will be generated. 7745 class VPReplicateRecipe : public VPRecipeBase { 7746 private: 7747 /// The instruction being replicated. 7748 Instruction *Ingredient; 7749 7750 /// Indicator if only a single replica per lane is needed. 7751 bool IsUniform; 7752 7753 /// Indicator if the replicas are also predicated. 7754 bool IsPredicated; 7755 7756 /// Indicator if the scalar values should also be packed into a vector. 7757 bool AlsoPack; 7758 7759 public: 7760 VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false) 7761 : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform), 7762 IsPredicated(IsPredicated) { 7763 // Retain the previous behavior of predicateInstructions(), where an 7764 // insert-element of a predicated instruction got hoisted into the 7765 // predicated basic block iff it was its only user. This is achieved by 7766 // having predicated instructions also pack their values into a vector by 7767 // default unless they have a replicated user which uses their scalar value. 7768 AlsoPack = IsPredicated && !I->use_empty(); 7769 } 7770 7771 ~VPReplicateRecipe() {} 7772 7773 /// Method to support type inquiry through isa, cast, and dyn_cast. 7774 static inline bool classof(const VPRecipeBase *V) { 7775 return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC; 7776 } 7777 7778 /// Generate replicas of the desired Ingredient. Replicas will be generated 7779 /// for all parts and lanes unless a specific part and lane are specified in 7780 /// the \p State. 7781 void execute(VPTransformState &State) override; 7782 7783 void setAlsoPack(bool Pack) { AlsoPack = Pack; } 7784 7785 /// Print the recipe. 7786 void print(raw_ostream &O, const Twine &Indent) const override { 7787 O << " +\n" 7788 << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 7789 << VPlanIngredient(Ingredient); 7790 if (AlsoPack) 7791 O << " (S->V)"; 7792 O << "\\l\""; 7793 } 7794 }; 7795 7796 /// A recipe for generating conditional branches on the bits of a mask. 7797 class VPBranchOnMaskRecipe : public VPRecipeBase { 7798 private: 7799 /// The input IR basic block used to obtain the mask providing the condition 7800 /// bits for the branch. 7801 BasicBlock *MaskedBasicBlock; 7802 7803 public: 7804 VPBranchOnMaskRecipe(BasicBlock *BB) 7805 : VPRecipeBase(VPBranchOnMaskSC), MaskedBasicBlock(BB) {} 7806 7807 /// Method to support type inquiry through isa, cast, and dyn_cast. 7808 static inline bool classof(const VPRecipeBase *V) { 7809 return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC; 7810 } 7811 7812 /// Generate the extraction of the appropriate bit from the block mask and the 7813 /// conditional branch. 7814 void execute(VPTransformState &State) override; 7815 7816 /// Print the recipe. 7817 void print(raw_ostream &O, const Twine &Indent) const override { 7818 O << " +\n" 7819 << Indent << "\"BRANCH-ON-MASK-OF " << MaskedBasicBlock->getName() 7820 << "\\l\""; 7821 } 7822 }; 7823 7824 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when 7825 /// control converges back from a Branch-on-Mask. The phi nodes are needed in 7826 /// order to merge values that are set under such a branch and feed their uses. 7827 /// The phi nodes can be scalar or vector depending on the users of the value. 7828 /// This recipe works in concert with VPBranchOnMaskRecipe. 7829 class VPPredInstPHIRecipe : public VPRecipeBase { 7830 private: 7831 Instruction *PredInst; 7832 7833 public: 7834 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi 7835 /// nodes after merging back from a Branch-on-Mask. 7836 VPPredInstPHIRecipe(Instruction *PredInst) 7837 : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {} 7838 7839 ~VPPredInstPHIRecipe() {} 7840 7841 /// Method to support type inquiry through isa, cast, and dyn_cast. 7842 static inline bool classof(const VPRecipeBase *V) { 7843 return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC; 7844 } 7845 7846 /// Generates phi nodes for live-outs as needed to retain SSA form. 7847 void execute(VPTransformState &State) override; 7848 7849 /// Print the recipe. 7850 void print(raw_ostream &O, const Twine &Indent) const override { 7851 O << " +\n" 7852 << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) 7853 << "\\l\""; 7854 } 7855 }; 7856 } // end anonymous namespace 7857 7858 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7859 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 7860 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7861 bool PredicateAtRangeStart = Predicate(Range.Start); 7862 7863 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7864 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7865 Range.End = TmpVF; 7866 break; 7867 } 7868 7869 return PredicateAtRangeStart; 7870 } 7871 7872 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7873 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7874 /// of VF's starting at a given VF and extending it as much as possible. Each 7875 /// vectorization decision can potentially shorten this sub-range during 7876 /// buildVPlan(). 7877 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 7878 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7879 VFRange SubRange = {VF, MaxVF + 1}; 7880 VPlan *Plan = buildVPlan(SubRange); 7881 VPlans.push_back(Plan); 7882 VF = SubRange.End; 7883 } 7884 } 7885 7886 VPInterleaveRecipe * 7887 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 7888 VFRange &Range) { 7889 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(I); 7890 if (!IG) 7891 return nullptr; 7892 7893 // Now check if IG is relevant for VF's in the given range. 7894 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 7895 return [=](unsigned VF) -> bool { 7896 return (VF >= 2 && // Query is illegal for VF == 1 7897 CM.getWideningDecision(I, VF) == 7898 LoopVectorizationCostModel::CM_Interleave); 7899 }; 7900 }; 7901 if (!getDecisionAndClampRange(isIGMember(I), Range)) 7902 return nullptr; 7903 7904 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 7905 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 7906 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 7907 assert(I == IG->getInsertPos() && 7908 "Generating a recipe for an adjunct member of an interleave group"); 7909 7910 return new VPInterleaveRecipe(IG); 7911 } 7912 7913 VPWidenIntOrFpInductionRecipe * 7914 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 7915 VFRange &Range) { 7916 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 7917 // Check if this is an integer or fp induction. If so, build the recipe that 7918 // produces its scalar and vector values. 7919 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 7920 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7921 II.getKind() == InductionDescriptor::IK_FpInduction) 7922 return new VPWidenIntOrFpInductionRecipe(Phi); 7923 7924 return nullptr; 7925 } 7926 7927 // Optimize the special case where the source is a constant integer 7928 // induction variable. Notice that we can only optimize the 'trunc' case 7929 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7930 // (c) other casts depend on pointer size. 7931 7932 // Determine whether \p K is a truncation based on an induction variable that 7933 // can be optimized. 7934 auto isOptimizableIVTruncate = 7935 [&](Instruction *K) -> std::function<bool(unsigned)> { 7936 return 7937 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 7938 }; 7939 7940 if (isa<TruncInst>(I) && 7941 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 7942 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7943 cast<TruncInst>(I)); 7944 return nullptr; 7945 } 7946 7947 VPWidenRecipe *LoopVectorizationPlanner::tryToWiden( 7948 Instruction *I, VPWidenRecipe *LastWidenRecipe, VFRange &Range) { 7949 7950 if (Legal->isScalarWithPredication(I)) 7951 return nullptr; 7952 7953 static DenseSet<unsigned> VectorizableOpcodes = { 7954 Instruction::Br, Instruction::PHI, Instruction::GetElementPtr, 7955 Instruction::UDiv, Instruction::SDiv, Instruction::SRem, 7956 Instruction::URem, Instruction::Add, Instruction::FAdd, 7957 Instruction::Sub, Instruction::FSub, Instruction::Mul, 7958 Instruction::FMul, Instruction::FDiv, Instruction::FRem, 7959 Instruction::Shl, Instruction::LShr, Instruction::AShr, 7960 Instruction::And, Instruction::Or, Instruction::Xor, 7961 Instruction::Select, Instruction::ICmp, Instruction::FCmp, 7962 Instruction::Store, Instruction::Load, Instruction::ZExt, 7963 Instruction::SExt, Instruction::FPToUI, Instruction::FPToSI, 7964 Instruction::FPExt, Instruction::PtrToInt, Instruction::IntToPtr, 7965 Instruction::SIToFP, Instruction::UIToFP, Instruction::Trunc, 7966 Instruction::FPTrunc, Instruction::BitCast, Instruction::Call}; 7967 7968 if (!VectorizableOpcodes.count(I->getOpcode())) 7969 return nullptr; 7970 7971 if (CallInst *CI = dyn_cast<CallInst>(I)) { 7972 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7973 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7974 ID == Intrinsic::lifetime_start)) 7975 return nullptr; 7976 } 7977 7978 auto willWiden = [&](unsigned VF) -> bool { 7979 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 7980 CM.isProfitableToScalarize(I, VF))) 7981 return false; 7982 if (CallInst *CI = dyn_cast<CallInst>(I)) { 7983 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7984 // The following case may be scalarized depending on the VF. 7985 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7986 // version of the instruction. 7987 // Is it beneficial to perform intrinsic call compared to lib call? 7988 bool NeedToScalarize; 7989 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 7990 bool UseVectorIntrinsic = 7991 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 7992 return UseVectorIntrinsic || !NeedToScalarize; 7993 } 7994 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 7995 LoopVectorizationCostModel::InstWidening Decision = 7996 CM.getWideningDecision(I, VF); 7997 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7998 "CM decision should be taken at this point."); 7999 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 8000 "Interleave memory opportunity should be caught earlier."); 8001 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8002 } 8003 return true; 8004 }; 8005 8006 if (!getDecisionAndClampRange(willWiden, Range)) 8007 return nullptr; 8008 8009 // Success: widen this instruction. We optimize the common case where 8010 // consecutive instructions can be represented by a single recipe. 8011 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 8012 return LastWidenRecipe; 8013 return new VPWidenRecipe(I); 8014 } 8015 8016 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 8017 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8018 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe) { 8019 8020 bool IsUniform = getDecisionAndClampRange( 8021 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 8022 Range); 8023 8024 bool IsPredicated = Legal->isScalarWithPredication(I); 8025 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 8026 8027 // Find if I uses a predicated instruction. If so, it will use its scalar 8028 // value. Avoid hoisting the insert-element which packs the scalar value into 8029 // a vector value, as that happens iff all users use the vector value. 8030 for (auto &Op : I->operands()) 8031 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8032 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8033 PredInst2Recipe[PredInst]->setAlsoPack(false); 8034 8035 // Finalize the recipe for Instr, first if it is not predicated. 8036 if (!IsPredicated) { 8037 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8038 VPBB->appendRecipe(Recipe); 8039 return VPBB; 8040 } 8041 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8042 assert(VPBB->getSuccessors().empty() && 8043 "VPBB has successors when handling predicated replication."); 8044 // Record predicated instructions for above packing optimizations. 8045 PredInst2Recipe[I] = Recipe; 8046 VPBlockBase *Region = VPBB->setOneSuccessor(createReplicateRegion(I, Recipe)); 8047 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock())); 8048 } 8049 8050 VPRegionBlock * 8051 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 8052 VPRecipeBase *PredRecipe) { 8053 // Instructions marked for predication are replicated and placed under an 8054 // if-then construct to prevent side-effects. 8055 8056 // Build the triangular if-then region. 8057 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8058 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8059 auto *BOMRecipe = new VPBranchOnMaskRecipe(Instr->getParent()); 8060 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8061 auto *PHIRecipe = 8062 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 8063 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8064 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8065 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8066 8067 // Note: first set Entry as region entry and then connect successors starting 8068 // from it in order, to propagate the "parent" of each VPBasicBlock. 8069 Entry->setTwoSuccessors(Pred, Exit); 8070 Pred->setOneSuccessor(Exit); 8071 8072 return Region; 8073 } 8074 8075 VPlan *LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 8076 8077 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8078 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 8079 8080 // Collect instructions from the original loop that will become trivially dead 8081 // in the vectorized loop. We don't need to vectorize these instructions. For 8082 // example, original induction update instructions can become dead because we 8083 // separately emit induction "steps" when generating code for the new loop. 8084 // Similarly, we create a new latch condition when setting up the structure 8085 // of the new loop, so the old one can become dead. 8086 SmallPtrSet<Instruction *, 4> DeadInstructions; 8087 collectTriviallyDeadInstructions(DeadInstructions); 8088 8089 // Hold a mapping from predicated instructions to their recipes, in order to 8090 // fix their AlsoPack behavior if a user is determined to replicate and use a 8091 // scalar instead of vector value. 8092 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8093 8094 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8095 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8096 VPlan *Plan = new VPlan(VPBB); 8097 8098 // Scan the body of the loop in a topological order to visit each basic block 8099 // after having visited its predecessor basic blocks. 8100 LoopBlocksDFS DFS(OrigLoop); 8101 DFS.perform(LI); 8102 8103 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8104 // Relevant instructions from basic block BB will be grouped into VPRecipe 8105 // ingredients and fill a new VPBasicBlock. 8106 unsigned VPBBsForBB = 0; 8107 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8108 VPBB->setOneSuccessor(FirstVPBBForBB); 8109 VPBB = FirstVPBBForBB; 8110 VPWidenRecipe *LastWidenRecipe = nullptr; 8111 8112 std::vector<Instruction *> Ingredients; 8113 8114 // Organize the ingredients to vectorize from current basic block in the 8115 // right order. 8116 for (Instruction &I : *BB) { 8117 Instruction *Instr = &I; 8118 8119 // First filter out irrelevant instructions, to ensure no recipes are 8120 // built for them. 8121 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) || 8122 DeadInstructions.count(Instr)) 8123 continue; 8124 8125 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 8126 // member of the IG, do not construct any Recipe for it. 8127 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(Instr); 8128 if (IG && Instr != IG->getInsertPos() && 8129 Range.Start >= 2 && // Query is illegal for VF == 1 8130 CM.getWideningDecision(Instr, Range.Start) == 8131 LoopVectorizationCostModel::CM_Interleave) 8132 continue; 8133 8134 // Move instructions to handle first-order recurrences, step 1: avoid 8135 // handling this instruction until after we've handled the instruction it 8136 // should follow. 8137 auto SAIt = SinkAfter.find(Instr); 8138 if (SAIt != SinkAfter.end()) { 8139 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second 8140 << " to vectorize a 1st order recurrence.\n"); 8141 SinkAfterInverse[SAIt->second] = Instr; 8142 continue; 8143 } 8144 8145 Ingredients.push_back(Instr); 8146 8147 // Move instructions to handle first-order recurrences, step 2: push the 8148 // instruction to be sunk at its insertion point. 8149 auto SAInvIt = SinkAfterInverse.find(Instr); 8150 if (SAInvIt != SinkAfterInverse.end()) 8151 Ingredients.push_back(SAInvIt->second); 8152 } 8153 8154 // Introduce each ingredient into VPlan. 8155 for (Instruction *Instr : Ingredients) { 8156 VPRecipeBase *Recipe = nullptr; 8157 8158 // Check if Instr should belong to an interleave memory recipe, or already 8159 // does. In the latter case Instr is irrelevant. 8160 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 8161 VPBB->appendRecipe(Recipe); 8162 continue; 8163 } 8164 8165 // Check if Instr should form some PHI recipe. 8166 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 8167 VPBB->appendRecipe(Recipe); 8168 continue; 8169 } 8170 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 8171 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 8172 continue; 8173 } 8174 8175 // Check if Instr is to be widened by a general VPWidenRecipe, after 8176 // having first checked for specific widening recipes that deal with 8177 // Interleave Groups, Inductions and Phi nodes. 8178 if ((Recipe = tryToWiden(Instr, LastWidenRecipe, Range))) { 8179 if (Recipe != LastWidenRecipe) 8180 VPBB->appendRecipe(Recipe); 8181 LastWidenRecipe = cast<VPWidenRecipe>(Recipe); 8182 continue; 8183 } 8184 8185 // Otherwise, if all widening options failed, Instruction is to be 8186 // replicated. This may create a successor for VPBB. 8187 VPBasicBlock *NextVPBB = 8188 handleReplication(Instr, Range, VPBB, PredInst2Recipe); 8189 if (NextVPBB != VPBB) { 8190 VPBB = NextVPBB; 8191 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8192 : ""); 8193 } 8194 } 8195 } 8196 8197 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8198 // may also be empty, such as the last one VPBB, reflecting original 8199 // basic-blocks with no recipes. 8200 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8201 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8202 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8203 PreEntry->disconnectSuccessor(Entry); 8204 delete PreEntry; 8205 8206 std::string PlanName; 8207 raw_string_ostream RSO(PlanName); 8208 unsigned VF = Range.Start; 8209 Plan->addVF(VF); 8210 RSO << "Initial VPlan for VF={" << VF; 8211 for (VF *= 2; VF < Range.End; VF *= 2) { 8212 Plan->addVF(VF); 8213 RSO << "," << VF; 8214 } 8215 RSO << "},UF>=1"; 8216 RSO.flush(); 8217 Plan->setName(PlanName); 8218 8219 return Plan; 8220 } 8221 8222 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 8223 O << " +\n" 8224 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8225 IG->getInsertPos()->printAsOperand(O, false); 8226 O << "\\l\""; 8227 for (unsigned i = 0; i < IG->getFactor(); ++i) 8228 if (Instruction *I = IG->getMember(i)) 8229 O << " +\n" 8230 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 8231 } 8232 8233 void VPReplicateRecipe::execute(VPTransformState &State) { 8234 8235 if (State.Instance) { // Generate a single instance. 8236 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 8237 // Insert scalar instance packing it into a vector. 8238 if (AlsoPack && State.VF > 1) { 8239 // If we're constructing lane 0, initialize to start from undef. 8240 if (State.Instance->Lane == 0) { 8241 Value *Undef = 8242 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8243 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8244 } 8245 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8246 } 8247 return; 8248 } 8249 8250 // Generate scalar instances for all VF lanes of all UF parts, unless the 8251 // instruction is uniform inwhich case generate only the first lane for each 8252 // of the UF parts. 8253 unsigned EndLane = IsUniform ? 1 : State.VF; 8254 for (unsigned Part = 0; Part < State.UF; ++Part) 8255 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8256 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 8257 } 8258 8259 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8260 assert(State.Instance && "Branch on Mask works only on single instance."); 8261 8262 unsigned Part = State.Instance->Part; 8263 unsigned Lane = State.Instance->Lane; 8264 8265 auto Cond = State.ILV->createBlockInMask(MaskedBasicBlock); 8266 8267 Value *ConditionBit = Cond[Part]; 8268 if (!ConditionBit) // Block in mask is all-one. 8269 ConditionBit = State.Builder.getTrue(); 8270 else if (ConditionBit->getType()->isVectorTy()) 8271 ConditionBit = State.Builder.CreateExtractElement( 8272 ConditionBit, State.Builder.getInt32(Lane)); 8273 8274 // Replace the temporary unreachable terminator with a new conditional branch, 8275 // whose two destinations will be set later when they are created. 8276 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8277 assert(isa<UnreachableInst>(CurrentTerminator) && 8278 "Expected to replace unreachable terminator with conditional branch."); 8279 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8280 CondBr->setSuccessor(0, nullptr); 8281 ReplaceInstWithInst(CurrentTerminator, CondBr); 8282 8283 DEBUG(dbgs() << "\nLV: vectorizing BranchOnMask recipe " 8284 << MaskedBasicBlock->getName()); 8285 } 8286 8287 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8288 assert(State.Instance && "Predicated instruction PHI works per instance."); 8289 Instruction *ScalarPredInst = cast<Instruction>( 8290 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8291 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8292 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8293 assert(PredicatingBB && "Predicated block has no single predecessor."); 8294 8295 // By current pack/unpack logic we need to generate only a single phi node: if 8296 // a vector value for the predicated instruction exists at this point it means 8297 // the instruction has vector users only, and a phi for the vector value is 8298 // needed. In this case the recipe of the predicated instruction is marked to 8299 // also do that packing, thereby "hoisting" the insert-element sequence. 8300 // Otherwise, a phi node for the scalar value is needed. 8301 unsigned Part = State.Instance->Part; 8302 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8303 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8304 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8305 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8306 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8307 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8308 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8309 } else { 8310 Type *PredInstType = PredInst->getType(); 8311 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8312 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8313 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8314 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8315 } 8316 } 8317 8318 bool LoopVectorizePass::processLoop(Loop *L) { 8319 assert(L->empty() && "Only process inner loops."); 8320 8321 #ifndef NDEBUG 8322 const std::string DebugLocStr = getDebugLocString(L); 8323 #endif /* NDEBUG */ 8324 8325 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8326 << L->getHeader()->getParent()->getName() << "\" from " 8327 << DebugLocStr << "\n"); 8328 8329 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 8330 8331 DEBUG(dbgs() << "LV: Loop hints:" 8332 << " force=" 8333 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8334 ? "disabled" 8335 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8336 ? "enabled" 8337 : "?")) 8338 << " width=" << Hints.getWidth() 8339 << " unroll=" << Hints.getInterleave() << "\n"); 8340 8341 // Function containing loop 8342 Function *F = L->getHeader()->getParent(); 8343 8344 // Looking at the diagnostic output is the only way to determine if a loop 8345 // was vectorized (other than looking at the IR or machine code), so it 8346 // is important to generate an optimization remark for each loop. Most of 8347 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8348 // generated as OptimizationRemark and OptimizationRemarkMissed are 8349 // less verbose reporting vectorized loops and unvectorized loops that may 8350 // benefit from vectorization, respectively. 8351 8352 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 8353 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8354 return false; 8355 } 8356 8357 PredicatedScalarEvolution PSE(*SE, *L); 8358 8359 // Check if it is legal to vectorize the loop. 8360 LoopVectorizationRequirements Requirements(*ORE); 8361 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 8362 &Requirements, &Hints); 8363 if (!LVL.canVectorize()) { 8364 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8365 emitMissedWarning(F, L, Hints, ORE); 8366 return false; 8367 } 8368 8369 // Check the function attributes to find out if this function should be 8370 // optimized for size. 8371 bool OptForSize = 8372 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 8373 8374 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8375 // count by optimizing for size, to minimize overheads. 8376 unsigned ExpectedTC = SE->getSmallConstantMaxTripCount(L); 8377 bool HasExpectedTC = (ExpectedTC > 0); 8378 8379 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 8380 auto EstimatedTC = getLoopEstimatedTripCount(L); 8381 if (EstimatedTC) { 8382 ExpectedTC = *EstimatedTC; 8383 HasExpectedTC = true; 8384 } 8385 } 8386 8387 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 8388 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8389 << "This loop is worth vectorizing only if no scalar " 8390 << "iteration overheads are incurred."); 8391 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8392 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8393 else { 8394 DEBUG(dbgs() << "\n"); 8395 // Loops with a very small trip count are considered for vectorization 8396 // under OptForSize, thereby making sure the cost of their loop body is 8397 // dominant, free of runtime guards and scalar iteration overheads. 8398 OptForSize = true; 8399 } 8400 } 8401 8402 // Check the function attributes to see if implicit floats are allowed. 8403 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8404 // an integer loop and the vector instructions selected are purely integer 8405 // vector instructions? 8406 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8407 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 8408 "attribute is used.\n"); 8409 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 8410 "NoImplicitFloat", L) 8411 << "loop not vectorized due to NoImplicitFloat attribute"); 8412 emitMissedWarning(F, L, Hints, ORE); 8413 return false; 8414 } 8415 8416 // Check if the target supports potentially unsafe FP vectorization. 8417 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8418 // for the target we're vectorizing for, to make sure none of the 8419 // additional fp-math flags can help. 8420 if (Hints.isPotentiallyUnsafe() && 8421 TTI->isFPVectorizationPotentiallyUnsafe()) { 8422 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 8423 ORE->emit( 8424 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 8425 << "loop not vectorized due to unsafe FP support."); 8426 emitMissedWarning(F, L, Hints, ORE); 8427 return false; 8428 } 8429 8430 // Use the cost model. 8431 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 8432 &Hints); 8433 CM.collectValuesToIgnore(); 8434 8435 // Use the planner for vectorization. 8436 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 8437 8438 // Get user vectorization factor. 8439 unsigned UserVF = Hints.getWidth(); 8440 8441 // Plan how to best vectorize, return the best VF and its cost. 8442 LoopVectorizationCostModel::VectorizationFactor VF = 8443 LVP.plan(OptForSize, UserVF); 8444 8445 // Select the interleave count. 8446 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 8447 8448 // Get user interleave count. 8449 unsigned UserIC = Hints.getInterleave(); 8450 8451 // Identify the diagnostic messages that should be produced. 8452 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8453 bool VectorizeLoop = true, InterleaveLoop = true; 8454 if (Requirements.doesNotMeet(F, L, Hints)) { 8455 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8456 "requirements.\n"); 8457 emitMissedWarning(F, L, Hints, ORE); 8458 return false; 8459 } 8460 8461 if (VF.Width == 1) { 8462 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8463 VecDiagMsg = std::make_pair( 8464 "VectorizationNotBeneficial", 8465 "the cost-model indicates that vectorization is not beneficial"); 8466 VectorizeLoop = false; 8467 } 8468 8469 if (IC == 1 && UserIC <= 1) { 8470 // Tell the user interleaving is not beneficial. 8471 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8472 IntDiagMsg = std::make_pair( 8473 "InterleavingNotBeneficial", 8474 "the cost-model indicates that interleaving is not beneficial"); 8475 InterleaveLoop = false; 8476 if (UserIC == 1) { 8477 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8478 IntDiagMsg.second += 8479 " and is explicitly disabled or interleave count is set to 1"; 8480 } 8481 } else if (IC > 1 && UserIC == 1) { 8482 // Tell the user interleaving is beneficial, but it explicitly disabled. 8483 DEBUG(dbgs() 8484 << "LV: Interleaving is beneficial but is explicitly disabled."); 8485 IntDiagMsg = std::make_pair( 8486 "InterleavingBeneficialButDisabled", 8487 "the cost-model indicates that interleaving is beneficial " 8488 "but is explicitly disabled or interleave count is set to 1"); 8489 InterleaveLoop = false; 8490 } 8491 8492 // Override IC if user provided an interleave count. 8493 IC = UserIC > 0 ? UserIC : IC; 8494 8495 // Emit diagnostic messages, if any. 8496 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8497 if (!VectorizeLoop && !InterleaveLoop) { 8498 // Do not vectorize or interleaving the loop. 8499 ORE->emit(OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8500 L->getStartLoc(), L->getHeader()) 8501 << VecDiagMsg.second); 8502 ORE->emit(OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8503 L->getStartLoc(), L->getHeader()) 8504 << IntDiagMsg.second); 8505 return false; 8506 } else if (!VectorizeLoop && InterleaveLoop) { 8507 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8508 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8509 L->getStartLoc(), L->getHeader()) 8510 << VecDiagMsg.second); 8511 } else if (VectorizeLoop && !InterleaveLoop) { 8512 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8513 << DebugLocStr << '\n'); 8514 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8515 L->getStartLoc(), L->getHeader()) 8516 << IntDiagMsg.second); 8517 } else if (VectorizeLoop && InterleaveLoop) { 8518 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8519 << DebugLocStr << '\n'); 8520 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8521 } 8522 8523 LVP.setBestPlan(VF.Width, IC); 8524 8525 using namespace ore; 8526 if (!VectorizeLoop) { 8527 assert(IC > 1 && "interleave count should not be 1 or 0"); 8528 // If we decided that it is not legal to vectorize the loop, then 8529 // interleave it. 8530 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 8531 &CM); 8532 LVP.executePlan(Unroller, DT); 8533 8534 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8535 L->getHeader()) 8536 << "interleaved loop (interleaved count: " 8537 << NV("InterleaveCount", IC) << ")"); 8538 } else { 8539 // If we decided that it is *legal* to vectorize the loop, then do it. 8540 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8541 &LVL, &CM); 8542 LVP.executePlan(LB, DT); 8543 ++LoopsVectorized; 8544 8545 // Add metadata to disable runtime unrolling a scalar loop when there are 8546 // no runtime checks about strides and memory. A scalar loop that is 8547 // rarely used is not worth unrolling. 8548 if (!LB.areSafetyChecksAdded()) 8549 AddRuntimeUnrollDisableMetaData(L); 8550 8551 // Report the vectorization decision. 8552 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8553 L->getHeader()) 8554 << "vectorized loop (vectorization width: " 8555 << NV("VectorizationFactor", VF.Width) 8556 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 8557 } 8558 8559 // Mark the loop as already vectorized to avoid vectorizing again. 8560 Hints.setAlreadyVectorized(); 8561 8562 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8563 return true; 8564 } 8565 8566 bool LoopVectorizePass::runImpl( 8567 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8568 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8569 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8570 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8571 OptimizationRemarkEmitter &ORE_) { 8572 8573 SE = &SE_; 8574 LI = &LI_; 8575 TTI = &TTI_; 8576 DT = &DT_; 8577 BFI = &BFI_; 8578 TLI = TLI_; 8579 AA = &AA_; 8580 AC = &AC_; 8581 GetLAA = &GetLAA_; 8582 DB = &DB_; 8583 ORE = &ORE_; 8584 8585 // Don't attempt if 8586 // 1. the target claims to have no vector registers, and 8587 // 2. interleaving won't help ILP. 8588 // 8589 // The second condition is necessary because, even if the target has no 8590 // vector registers, loop vectorization may still enable scalar 8591 // interleaving. 8592 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8593 return false; 8594 8595 bool Changed = false; 8596 8597 // The vectorizer requires loops to be in simplified form. 8598 // Since simplification may add new inner loops, it has to run before the 8599 // legality and profitability checks. This means running the loop vectorizer 8600 // will simplify all loops, regardless of whether anything end up being 8601 // vectorized. 8602 for (auto &L : *LI) 8603 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8604 8605 // Build up a worklist of inner-loops to vectorize. This is necessary as 8606 // the act of vectorizing or partially unrolling a loop creates new loops 8607 // and can invalidate iterators across the loops. 8608 SmallVector<Loop *, 8> Worklist; 8609 8610 for (Loop *L : *LI) 8611 addAcyclicInnerLoop(*L, Worklist); 8612 8613 LoopsAnalyzed += Worklist.size(); 8614 8615 // Now walk the identified inner loops. 8616 while (!Worklist.empty()) { 8617 Loop *L = Worklist.pop_back_val(); 8618 8619 // For the inner loops we actually process, form LCSSA to simplify the 8620 // transform. 8621 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8622 8623 Changed |= processLoop(L); 8624 } 8625 8626 // Process each loop nest in the function. 8627 return Changed; 8628 8629 } 8630 8631 8632 PreservedAnalyses LoopVectorizePass::run(Function &F, 8633 FunctionAnalysisManager &AM) { 8634 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8635 auto &LI = AM.getResult<LoopAnalysis>(F); 8636 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8637 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8638 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8639 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8640 auto &AA = AM.getResult<AAManager>(F); 8641 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8642 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8643 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8644 8645 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8646 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8647 [&](Loop &L) -> const LoopAccessInfo & { 8648 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 8649 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8650 }; 8651 bool Changed = 8652 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8653 if (!Changed) 8654 return PreservedAnalyses::all(); 8655 PreservedAnalyses PA; 8656 PA.preserve<LoopAnalysis>(); 8657 PA.preserve<DominatorTreeAnalysis>(); 8658 PA.preserve<BasicAA>(); 8659 PA.preserve<GlobalsAA>(); 8660 return PA; 8661 } 8662