1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/AliasSetTracker.h" 58 #include "llvm/Analysis/AssumptionCache.h" 59 #include "llvm/Analysis/BlockFrequencyInfo.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/LoopInfo.h" 62 #include "llvm/Analysis/LoopIterator.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/ScalarEvolution.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 67 #include "llvm/Analysis/TargetTransformInfo.h" 68 #include "llvm/Analysis/ValueTracking.h" 69 #include "llvm/IR/Constants.h" 70 #include "llvm/IR/DataLayout.h" 71 #include "llvm/IR/DebugInfo.h" 72 #include "llvm/IR/DerivedTypes.h" 73 #include "llvm/IR/DiagnosticInfo.h" 74 #include "llvm/IR/Dominators.h" 75 #include "llvm/IR/Function.h" 76 #include "llvm/IR/IRBuilder.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/LLVMContext.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/PatternMatch.h" 82 #include "llvm/IR/Type.h" 83 #include "llvm/IR/Value.h" 84 #include "llvm/IR/ValueHandle.h" 85 #include "llvm/IR/Verifier.h" 86 #include "llvm/Pass.h" 87 #include "llvm/Support/BranchProbability.h" 88 #include "llvm/Support/CommandLine.h" 89 #include "llvm/Support/Debug.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Transforms/Scalar.h" 92 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 93 #include "llvm/Transforms/Utils/Local.h" 94 #include "llvm/Transforms/Utils/VectorUtils.h" 95 #include <algorithm> 96 #include <map> 97 #include <tuple> 98 99 using namespace llvm; 100 using namespace llvm::PatternMatch; 101 102 #define LV_NAME "loop-vectorize" 103 #define DEBUG_TYPE LV_NAME 104 105 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 106 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 107 108 static cl::opt<unsigned> 109 VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden, 110 cl::desc("Sets the SIMD width. Zero is autoselect.")); 111 112 static cl::opt<unsigned> 113 VectorizationInterleave("force-vector-interleave", cl::init(0), cl::Hidden, 114 cl::desc("Sets the vectorization interleave count. " 115 "Zero is autoselect.")); 116 117 static cl::opt<bool> 118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 119 cl::desc("Enable if-conversion during vectorization.")); 120 121 /// We don't vectorize loops with a known constant trip count below this number. 122 static cl::opt<unsigned> 123 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 124 cl::Hidden, 125 cl::desc("Don't vectorize loops with a constant " 126 "trip count that is smaller than this " 127 "value.")); 128 129 /// This enables versioning on the strides of symbolically striding memory 130 /// accesses in code like the following. 131 /// for (i = 0; i < N; ++i) 132 /// A[i * Stride1] += B[i * Stride2] ... 133 /// 134 /// Will be roughly translated to 135 /// if (Stride1 == 1 && Stride2 == 1) { 136 /// for (i = 0; i < N; i+=4) 137 /// A[i:i+3] += ... 138 /// } else 139 /// ... 140 static cl::opt<bool> EnableMemAccessVersioning( 141 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 142 cl::desc("Enable symblic stride memory access versioning")); 143 144 /// We don't unroll loops with a known constant trip count below this number. 145 static const unsigned TinyTripCountUnrollThreshold = 128; 146 147 /// When performing memory disambiguation checks at runtime do not make more 148 /// than this number of comparisons. 149 static const unsigned RuntimeMemoryCheckThreshold = 8; 150 151 /// Maximum simd width. 152 static const unsigned MaxVectorWidth = 64; 153 154 static cl::opt<unsigned> ForceTargetNumScalarRegs( 155 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 156 cl::desc("A flag that overrides the target's number of scalar registers.")); 157 158 static cl::opt<unsigned> ForceTargetNumVectorRegs( 159 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 160 cl::desc("A flag that overrides the target's number of vector registers.")); 161 162 /// Maximum vectorization interleave count. 163 static const unsigned MaxInterleaveFactor = 16; 164 165 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 166 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 167 cl::desc("A flag that overrides the target's max interleave factor for " 168 "scalar loops.")); 169 170 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 171 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 172 cl::desc("A flag that overrides the target's max interleave factor for " 173 "vectorized loops.")); 174 175 static cl::opt<unsigned> ForceTargetInstructionCost( 176 "force-target-instruction-cost", cl::init(0), cl::Hidden, 177 cl::desc("A flag that overrides the target's expected cost for " 178 "an instruction to a single constant value. Mostly " 179 "useful for getting consistent testing.")); 180 181 static cl::opt<unsigned> SmallLoopCost( 182 "small-loop-cost", cl::init(20), cl::Hidden, 183 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 184 185 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 186 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 187 cl::desc("Enable the use of the block frequency analysis to access PGO " 188 "heuristics minimizing code growth in cold regions and being more " 189 "aggressive in hot regions.")); 190 191 // Runtime unroll loops for load/store throughput. 192 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 193 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 194 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 195 196 /// The number of stores in a loop that are allowed to need predication. 197 static cl::opt<unsigned> NumberOfStoresToPredicate( 198 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 199 cl::desc("Max number of stores to be predicated behind an if.")); 200 201 static cl::opt<bool> EnableIndVarRegisterHeur( 202 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 203 cl::desc("Count the induction variable only once when unrolling")); 204 205 static cl::opt<bool> EnableCondStoresVectorization( 206 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 207 cl::desc("Enable if predication of stores during vectorization.")); 208 209 static cl::opt<unsigned> MaxNestedScalarReductionUF( 210 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, 211 cl::desc("The maximum unroll factor to use when unrolling a scalar " 212 "reduction in a nested loop.")); 213 214 namespace { 215 216 // Forward declarations. 217 class LoopVectorizationLegality; 218 class LoopVectorizationCostModel; 219 class LoopVectorizeHints; 220 221 /// Optimization analysis message produced during vectorization. Messages inform 222 /// the user why vectorization did not occur. 223 class Report { 224 std::string Message; 225 raw_string_ostream Out; 226 Instruction *Instr; 227 228 public: 229 Report(Instruction *I = nullptr) : Out(Message), Instr(I) { 230 Out << "loop not vectorized: "; 231 } 232 233 template <typename A> Report &operator<<(const A &Value) { 234 Out << Value; 235 return *this; 236 } 237 238 Instruction *getInstr() { return Instr; } 239 240 std::string &str() { return Out.str(); } 241 operator Twine() { return Out.str(); } 242 }; 243 244 /// InnerLoopVectorizer vectorizes loops which contain only one basic 245 /// block to a specified vectorization factor (VF). 246 /// This class performs the widening of scalars into vectors, or multiple 247 /// scalars. This class also implements the following features: 248 /// * It inserts an epilogue loop for handling loops that don't have iteration 249 /// counts that are known to be a multiple of the vectorization factor. 250 /// * It handles the code generation for reduction variables. 251 /// * Scalarization (implementation using scalars) of un-vectorizable 252 /// instructions. 253 /// InnerLoopVectorizer does not perform any vectorization-legality 254 /// checks, and relies on the caller to check for the different legality 255 /// aspects. The InnerLoopVectorizer relies on the 256 /// LoopVectorizationLegality class to provide information about the induction 257 /// and reduction variables that were found to a given vectorization factor. 258 class InnerLoopVectorizer { 259 public: 260 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 261 DominatorTree *DT, const DataLayout *DL, 262 const TargetLibraryInfo *TLI, unsigned VecWidth, 263 unsigned UnrollFactor) 264 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 265 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 266 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 267 Legal(nullptr) {} 268 269 // Perform the actual loop widening (vectorization). 270 void vectorize(LoopVectorizationLegality *L) { 271 Legal = L; 272 // Create a new empty loop. Unlink the old loop and connect the new one. 273 createEmptyLoop(); 274 // Widen each instruction in the old loop to a new one in the new loop. 275 // Use the Legality module to find the induction and reduction variables. 276 vectorizeLoop(); 277 // Register the new loop and update the analysis passes. 278 updateAnalysis(); 279 } 280 281 virtual ~InnerLoopVectorizer() {} 282 283 protected: 284 /// A small list of PHINodes. 285 typedef SmallVector<PHINode*, 4> PhiVector; 286 /// When we unroll loops we have multiple vector values for each scalar. 287 /// This data structure holds the unrolled and vectorized values that 288 /// originated from one scalar instruction. 289 typedef SmallVector<Value*, 2> VectorParts; 290 291 // When we if-convert we need create edge masks. We have to cache values so 292 // that we don't end up with exponential recursion/IR. 293 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 294 VectorParts> EdgeMaskCache; 295 296 /// \brief Add code that checks at runtime if the accessed arrays overlap. 297 /// 298 /// Returns a pair of instructions where the first element is the first 299 /// instruction generated in possibly a sequence of instructions and the 300 /// second value is the final comparator value or NULL if no check is needed. 301 std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc); 302 303 /// \brief Add checks for strides that where assumed to be 1. 304 /// 305 /// Returns the last check instruction and the first check instruction in the 306 /// pair as (first, last). 307 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 308 309 /// Create an empty loop, based on the loop ranges of the old loop. 310 void createEmptyLoop(); 311 /// Copy and widen the instructions from the old loop. 312 virtual void vectorizeLoop(); 313 314 /// \brief The Loop exit block may have single value PHI nodes where the 315 /// incoming value is 'Undef'. While vectorizing we only handled real values 316 /// that were defined inside the loop. Here we fix the 'undef case'. 317 /// See PR14725. 318 void fixLCSSAPHIs(); 319 320 /// A helper function that computes the predicate of the block BB, assuming 321 /// that the header block of the loop is set to True. It returns the *entry* 322 /// mask for the block BB. 323 VectorParts createBlockInMask(BasicBlock *BB); 324 /// A helper function that computes the predicate of the edge between SRC 325 /// and DST. 326 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 327 328 /// A helper function to vectorize a single BB within the innermost loop. 329 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 330 331 /// Vectorize a single PHINode in a block. This method handles the induction 332 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 333 /// arbitrary length vectors. 334 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 335 unsigned UF, unsigned VF, PhiVector *PV); 336 337 /// Insert the new loop to the loop hierarchy and pass manager 338 /// and update the analysis passes. 339 void updateAnalysis(); 340 341 /// This instruction is un-vectorizable. Implement it as a sequence 342 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 343 /// scalarized instruction behind an if block predicated on the control 344 /// dependence of the instruction. 345 virtual void scalarizeInstruction(Instruction *Instr, 346 bool IfPredicateStore=false); 347 348 /// Vectorize Load and Store instructions, 349 virtual void vectorizeMemoryInstruction(Instruction *Instr); 350 351 /// Create a broadcast instruction. This method generates a broadcast 352 /// instruction (shuffle) for loop invariant values and for the induction 353 /// value. If this is the induction variable then we extend it to N, N+1, ... 354 /// this is needed because each iteration in the loop corresponds to a SIMD 355 /// element. 356 virtual Value *getBroadcastInstrs(Value *V); 357 358 /// This function adds 0, 1, 2 ... to each vector element, starting at zero. 359 /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...). 360 /// The sequence starts at StartIndex. 361 virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate); 362 363 /// When we go over instructions in the basic block we rely on previous 364 /// values within the current basic block or on loop invariant values. 365 /// When we widen (vectorize) values we place them in the map. If the values 366 /// are not within the map, they have to be loop invariant, so we simply 367 /// broadcast them into a vector. 368 VectorParts &getVectorValue(Value *V); 369 370 /// Generate a shuffle sequence that will reverse the vector Vec. 371 virtual Value *reverseVector(Value *Vec); 372 373 /// This is a helper class that holds the vectorizer state. It maps scalar 374 /// instructions to vector instructions. When the code is 'unrolled' then 375 /// then a single scalar value is mapped to multiple vector parts. The parts 376 /// are stored in the VectorPart type. 377 struct ValueMap { 378 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 379 /// are mapped. 380 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 381 382 /// \return True if 'Key' is saved in the Value Map. 383 bool has(Value *Key) const { return MapStorage.count(Key); } 384 385 /// Initializes a new entry in the map. Sets all of the vector parts to the 386 /// save value in 'Val'. 387 /// \return A reference to a vector with splat values. 388 VectorParts &splat(Value *Key, Value *Val) { 389 VectorParts &Entry = MapStorage[Key]; 390 Entry.assign(UF, Val); 391 return Entry; 392 } 393 394 ///\return A reference to the value that is stored at 'Key'. 395 VectorParts &get(Value *Key) { 396 VectorParts &Entry = MapStorage[Key]; 397 if (Entry.empty()) 398 Entry.resize(UF); 399 assert(Entry.size() == UF); 400 return Entry; 401 } 402 403 private: 404 /// The unroll factor. Each entry in the map stores this number of vector 405 /// elements. 406 unsigned UF; 407 408 /// Map storage. We use std::map and not DenseMap because insertions to a 409 /// dense map invalidates its iterators. 410 std::map<Value *, VectorParts> MapStorage; 411 }; 412 413 /// The original loop. 414 Loop *OrigLoop; 415 /// Scev analysis to use. 416 ScalarEvolution *SE; 417 /// Loop Info. 418 LoopInfo *LI; 419 /// Dominator Tree. 420 DominatorTree *DT; 421 /// Alias Analysis. 422 AliasAnalysis *AA; 423 /// Data Layout. 424 const DataLayout *DL; 425 /// Target Library Info. 426 const TargetLibraryInfo *TLI; 427 428 /// The vectorization SIMD factor to use. Each vector will have this many 429 /// vector elements. 430 unsigned VF; 431 432 protected: 433 /// The vectorization unroll factor to use. Each scalar is vectorized to this 434 /// many different vector instructions. 435 unsigned UF; 436 437 /// The builder that we use 438 IRBuilder<> Builder; 439 440 // --- Vectorization state --- 441 442 /// The vector-loop preheader. 443 BasicBlock *LoopVectorPreHeader; 444 /// The scalar-loop preheader. 445 BasicBlock *LoopScalarPreHeader; 446 /// Middle Block between the vector and the scalar. 447 BasicBlock *LoopMiddleBlock; 448 ///The ExitBlock of the scalar loop. 449 BasicBlock *LoopExitBlock; 450 ///The vector loop body. 451 SmallVector<BasicBlock *, 4> LoopVectorBody; 452 ///The scalar loop body. 453 BasicBlock *LoopScalarBody; 454 /// A list of all bypass blocks. The first block is the entry of the loop. 455 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 456 457 /// The new Induction variable which was added to the new block. 458 PHINode *Induction; 459 /// The induction variable of the old basic block. 460 PHINode *OldInduction; 461 /// Holds the extended (to the widest induction type) start index. 462 Value *ExtendedIdx; 463 /// Maps scalars to widened vectors. 464 ValueMap WidenMap; 465 EdgeMaskCache MaskCache; 466 467 LoopVectorizationLegality *Legal; 468 }; 469 470 class InnerLoopUnroller : public InnerLoopVectorizer { 471 public: 472 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 473 DominatorTree *DT, const DataLayout *DL, 474 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 475 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 476 477 private: 478 void scalarizeInstruction(Instruction *Instr, 479 bool IfPredicateStore = false) override; 480 void vectorizeMemoryInstruction(Instruction *Instr) override; 481 Value *getBroadcastInstrs(Value *V) override; 482 Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override; 483 Value *reverseVector(Value *Vec) override; 484 }; 485 486 /// \brief Look for a meaningful debug location on the instruction or it's 487 /// operands. 488 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 489 if (!I) 490 return I; 491 492 DebugLoc Empty; 493 if (I->getDebugLoc() != Empty) 494 return I; 495 496 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 497 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 498 if (OpInst->getDebugLoc() != Empty) 499 return OpInst; 500 } 501 502 return I; 503 } 504 505 /// \brief Set the debug location in the builder using the debug location in the 506 /// instruction. 507 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 508 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 509 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 510 else 511 B.SetCurrentDebugLocation(DebugLoc()); 512 } 513 514 #ifndef NDEBUG 515 /// \return string containing a file name and a line # for the given loop. 516 static std::string getDebugLocString(const Loop *L) { 517 std::string Result; 518 if (L) { 519 raw_string_ostream OS(Result); 520 const DebugLoc LoopDbgLoc = L->getStartLoc(); 521 if (!LoopDbgLoc.isUnknown()) 522 LoopDbgLoc.print(L->getHeader()->getContext(), OS); 523 else 524 // Just print the module name. 525 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 526 OS.flush(); 527 } 528 return Result; 529 } 530 #endif 531 532 /// \brief Propagate known metadata from one instruction to another. 533 static void propagateMetadata(Instruction *To, const Instruction *From) { 534 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 535 From->getAllMetadataOtherThanDebugLoc(Metadata); 536 537 for (auto M : Metadata) { 538 unsigned Kind = M.first; 539 540 // These are safe to transfer (this is safe for TBAA, even when we 541 // if-convert, because should that metadata have had a control dependency 542 // on the condition, and thus actually aliased with some other 543 // non-speculated memory access when the condition was false, this would be 544 // caught by the runtime overlap checks). 545 if (Kind != LLVMContext::MD_tbaa && 546 Kind != LLVMContext::MD_alias_scope && 547 Kind != LLVMContext::MD_noalias && 548 Kind != LLVMContext::MD_fpmath) 549 continue; 550 551 To->setMetadata(Kind, M.second); 552 } 553 } 554 555 /// \brief Propagate known metadata from one instruction to a vector of others. 556 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 557 for (Value *V : To) 558 if (Instruction *I = dyn_cast<Instruction>(V)) 559 propagateMetadata(I, From); 560 } 561 562 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 563 /// to what vectorization factor. 564 /// This class does not look at the profitability of vectorization, only the 565 /// legality. This class has two main kinds of checks: 566 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 567 /// will change the order of memory accesses in a way that will change the 568 /// correctness of the program. 569 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 570 /// checks for a number of different conditions, such as the availability of a 571 /// single induction variable, that all types are supported and vectorize-able, 572 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 573 /// This class is also used by InnerLoopVectorizer for identifying 574 /// induction variable and the different reduction variables. 575 class LoopVectorizationLegality { 576 public: 577 unsigned NumLoads; 578 unsigned NumStores; 579 unsigned NumPredStores; 580 581 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 582 DominatorTree *DT, TargetLibraryInfo *TLI, 583 AliasAnalysis *AA, Function *F, 584 const TargetTransformInfo *TTI) 585 : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 586 DT(DT), TLI(TLI), AA(AA), TheFunction(F), TTI(TTI), Induction(nullptr), 587 WidestIndTy(nullptr), HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) { 588 } 589 590 /// This enum represents the kinds of reductions that we support. 591 enum ReductionKind { 592 RK_NoReduction, ///< Not a reduction. 593 RK_IntegerAdd, ///< Sum of integers. 594 RK_IntegerMult, ///< Product of integers. 595 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 596 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 597 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 598 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 599 RK_FloatAdd, ///< Sum of floats. 600 RK_FloatMult, ///< Product of floats. 601 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 602 }; 603 604 /// This enum represents the kinds of inductions that we support. 605 enum InductionKind { 606 IK_NoInduction, ///< Not an induction variable. 607 IK_IntInduction, ///< Integer induction variable. Step = 1. 608 IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1. 609 IK_PtrInduction, ///< Pointer induction var. Step = sizeof(elem). 610 IK_ReversePtrInduction ///< Reverse ptr indvar. Step = - sizeof(elem). 611 }; 612 613 // This enum represents the kind of minmax reduction. 614 enum MinMaxReductionKind { 615 MRK_Invalid, 616 MRK_UIntMin, 617 MRK_UIntMax, 618 MRK_SIntMin, 619 MRK_SIntMax, 620 MRK_FloatMin, 621 MRK_FloatMax 622 }; 623 624 /// This struct holds information about reduction variables. 625 struct ReductionDescriptor { 626 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 627 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 628 629 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 630 MinMaxReductionKind MK) 631 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 632 633 // The starting value of the reduction. 634 // It does not have to be zero! 635 TrackingVH<Value> StartValue; 636 // The instruction who's value is used outside the loop. 637 Instruction *LoopExitInstr; 638 // The kind of the reduction. 639 ReductionKind Kind; 640 // If this a min/max reduction the kind of reduction. 641 MinMaxReductionKind MinMaxKind; 642 }; 643 644 /// This POD struct holds information about a potential reduction operation. 645 struct ReductionInstDesc { 646 ReductionInstDesc(bool IsRedux, Instruction *I) : 647 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 648 649 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 650 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 651 652 // Is this instruction a reduction candidate. 653 bool IsReduction; 654 // The last instruction in a min/max pattern (select of the select(icmp()) 655 // pattern), or the current reduction instruction otherwise. 656 Instruction *PatternLastInst; 657 // If this is a min/max pattern the comparison predicate. 658 MinMaxReductionKind MinMaxKind; 659 }; 660 661 /// This struct holds information about the memory runtime legality 662 /// check that a group of pointers do not overlap. 663 struct RuntimePointerCheck { 664 RuntimePointerCheck() : Need(false) {} 665 666 /// Reset the state of the pointer runtime information. 667 void reset() { 668 Need = false; 669 Pointers.clear(); 670 Starts.clear(); 671 Ends.clear(); 672 IsWritePtr.clear(); 673 DependencySetId.clear(); 674 AliasSetId.clear(); 675 } 676 677 /// Insert a pointer and calculate the start and end SCEVs. 678 void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, 679 unsigned DepSetId, unsigned ASId, ValueToValueMap &Strides); 680 681 /// This flag indicates if we need to add the runtime check. 682 bool Need; 683 /// Holds the pointers that we need to check. 684 SmallVector<TrackingVH<Value>, 2> Pointers; 685 /// Holds the pointer value at the beginning of the loop. 686 SmallVector<const SCEV*, 2> Starts; 687 /// Holds the pointer value at the end of the loop. 688 SmallVector<const SCEV*, 2> Ends; 689 /// Holds the information if this pointer is used for writing to memory. 690 SmallVector<bool, 2> IsWritePtr; 691 /// Holds the id of the set of pointers that could be dependent because of a 692 /// shared underlying object. 693 SmallVector<unsigned, 2> DependencySetId; 694 /// Holds the id of the disjoint alias set to which this pointer belongs. 695 SmallVector<unsigned, 2> AliasSetId; 696 }; 697 698 /// A struct for saving information about induction variables. 699 struct InductionInfo { 700 InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {} 701 InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {} 702 /// Start value. 703 TrackingVH<Value> StartValue; 704 /// Induction kind. 705 InductionKind IK; 706 }; 707 708 /// ReductionList contains the reduction descriptors for all 709 /// of the reductions that were found in the loop. 710 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 711 712 /// InductionList saves induction variables and maps them to the 713 /// induction descriptor. 714 typedef MapVector<PHINode*, InductionInfo> InductionList; 715 716 /// Returns true if it is legal to vectorize this loop. 717 /// This does not mean that it is profitable to vectorize this 718 /// loop, only that it is legal to do so. 719 bool canVectorize(); 720 721 /// Returns the Induction variable. 722 PHINode *getInduction() { return Induction; } 723 724 /// Returns the reduction variables found in the loop. 725 ReductionList *getReductionVars() { return &Reductions; } 726 727 /// Returns the induction variables found in the loop. 728 InductionList *getInductionVars() { return &Inductions; } 729 730 /// Returns the widest induction type. 731 Type *getWidestInductionType() { return WidestIndTy; } 732 733 /// Returns True if V is an induction variable in this loop. 734 bool isInductionVariable(const Value *V); 735 736 /// Return true if the block BB needs to be predicated in order for the loop 737 /// to be vectorized. 738 bool blockNeedsPredication(BasicBlock *BB); 739 740 /// Check if this pointer is consecutive when vectorizing. This happens 741 /// when the last index of the GEP is the induction variable, or that the 742 /// pointer itself is an induction variable. 743 /// This check allows us to vectorize A[idx] into a wide load/store. 744 /// Returns: 745 /// 0 - Stride is unknown or non-consecutive. 746 /// 1 - Address is consecutive. 747 /// -1 - Address is consecutive, and decreasing. 748 int isConsecutivePtr(Value *Ptr); 749 750 /// Returns true if the value V is uniform within the loop. 751 bool isUniform(Value *V); 752 753 /// Returns true if this instruction will remain scalar after vectorization. 754 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 755 756 /// Returns the information that we collected about runtime memory check. 757 RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; } 758 759 /// This function returns the identity element (or neutral element) for 760 /// the operation K. 761 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 762 763 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 764 765 bool hasStride(Value *V) { return StrideSet.count(V); } 766 bool mustCheckStrides() { return !StrideSet.empty(); } 767 SmallPtrSet<Value *, 8>::iterator strides_begin() { 768 return StrideSet.begin(); 769 } 770 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 771 772 /// Returns true if the target machine supports masked store operation 773 /// for the given \p DataType and kind of access to \p Ptr. 774 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 775 return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr)); 776 } 777 /// Returns true if the target machine supports masked load operation 778 /// for the given \p DataType and kind of access to \p Ptr. 779 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 780 return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr)); 781 } 782 /// Returns true if vector representation of the instruction \p I 783 /// requires mask. 784 bool isMaskRequired(const Instruction* I) { 785 return (MaskedOp.count(I) != 0); 786 } 787 private: 788 /// Check if a single basic block loop is vectorizable. 789 /// At this point we know that this is a loop with a constant trip count 790 /// and we only need to check individual instructions. 791 bool canVectorizeInstrs(); 792 793 /// When we vectorize loops we may change the order in which 794 /// we read and write from memory. This method checks if it is 795 /// legal to vectorize the code, considering only memory constrains. 796 /// Returns true if the loop is vectorizable 797 bool canVectorizeMemory(); 798 799 /// Return true if we can vectorize this loop using the IF-conversion 800 /// transformation. 801 bool canVectorizeWithIfConvert(); 802 803 /// Collect the variables that need to stay uniform after vectorization. 804 void collectLoopUniforms(); 805 806 /// Return true if all of the instructions in the block can be speculatively 807 /// executed. \p SafePtrs is a list of addresses that are known to be legal 808 /// and we know that we can read from them without segfault. 809 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 810 811 /// Returns True, if 'Phi' is the kind of reduction variable for type 812 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 813 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 814 /// Returns a struct describing if the instruction 'I' can be a reduction 815 /// variable of type 'Kind'. If the reduction is a min/max pattern of 816 /// select(icmp()) this function advances the instruction pointer 'I' from the 817 /// compare instruction to the select instruction and stores this pointer in 818 /// 'PatternLastInst' member of the returned struct. 819 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 820 ReductionInstDesc &Desc); 821 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 822 /// pattern corresponding to a min(X, Y) or max(X, Y). 823 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 824 ReductionInstDesc &Prev); 825 /// Returns the induction kind of Phi. This function may return NoInduction 826 /// if the PHI is not an induction variable. 827 InductionKind isInductionVariable(PHINode *Phi); 828 829 /// \brief Collect memory access with loop invariant strides. 830 /// 831 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 832 /// invariant. 833 void collectStridedAcccess(Value *LoadOrStoreInst); 834 835 /// Report an analysis message to assist the user in diagnosing loops that are 836 /// not vectorized. 837 void emitAnalysis(Report &Message) { 838 DebugLoc DL = TheLoop->getStartLoc(); 839 if (Instruction *I = Message.getInstr()) 840 DL = I->getDebugLoc(); 841 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 842 *TheFunction, DL, Message.str()); 843 } 844 845 /// The loop that we evaluate. 846 Loop *TheLoop; 847 /// Scev analysis. 848 ScalarEvolution *SE; 849 /// DataLayout analysis. 850 const DataLayout *DL; 851 /// Dominators. 852 DominatorTree *DT; 853 /// Target Library Info. 854 TargetLibraryInfo *TLI; 855 /// Alias analysis. 856 AliasAnalysis *AA; 857 /// Parent function 858 Function *TheFunction; 859 /// Target Transform Info 860 const TargetTransformInfo *TTI; 861 862 // --- vectorization state --- // 863 864 /// Holds the integer induction variable. This is the counter of the 865 /// loop. 866 PHINode *Induction; 867 /// Holds the reduction variables. 868 ReductionList Reductions; 869 /// Holds all of the induction variables that we found in the loop. 870 /// Notice that inductions don't need to start at zero and that induction 871 /// variables can be pointers. 872 InductionList Inductions; 873 /// Holds the widest induction type encountered. 874 Type *WidestIndTy; 875 876 /// Allowed outside users. This holds the reduction 877 /// vars which can be accessed from outside the loop. 878 SmallPtrSet<Value*, 4> AllowedExit; 879 /// This set holds the variables which are known to be uniform after 880 /// vectorization. 881 SmallPtrSet<Instruction*, 4> Uniforms; 882 /// We need to check that all of the pointers in this list are disjoint 883 /// at runtime. 884 RuntimePointerCheck PtrRtCheck; 885 /// Can we assume the absence of NaNs. 886 bool HasFunNoNaNAttr; 887 888 unsigned MaxSafeDepDistBytes; 889 890 ValueToValueMap Strides; 891 SmallPtrSet<Value *, 8> StrideSet; 892 893 /// While vectorizing these instructions we have to generate a 894 /// call to the appropriate masked intrinsic 895 SmallPtrSet<const Instruction*, 8> MaskedOp; 896 }; 897 898 /// LoopVectorizationCostModel - estimates the expected speedups due to 899 /// vectorization. 900 /// In many cases vectorization is not profitable. This can happen because of 901 /// a number of reasons. In this class we mainly attempt to predict the 902 /// expected speedup/slowdowns due to the supported instruction set. We use the 903 /// TargetTransformInfo to query the different backends for the cost of 904 /// different operations. 905 class LoopVectorizationCostModel { 906 public: 907 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 908 LoopVectorizationLegality *Legal, 909 const TargetTransformInfo &TTI, 910 const DataLayout *DL, const TargetLibraryInfo *TLI, 911 AssumptionCache *AC, const Function *F, 912 const LoopVectorizeHints *Hints) 913 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI), 914 TheFunction(F), Hints(Hints) { 915 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 916 } 917 918 /// Information about vectorization costs 919 struct VectorizationFactor { 920 unsigned Width; // Vector width with best cost 921 unsigned Cost; // Cost of the loop with that width 922 }; 923 /// \return The most profitable vectorization factor and the cost of that VF. 924 /// This method checks every power of two up to VF. If UserVF is not ZERO 925 /// then this vectorization factor will be selected if vectorization is 926 /// possible. 927 VectorizationFactor selectVectorizationFactor(bool OptForSize); 928 929 /// \return The size (in bits) of the widest type in the code that 930 /// needs to be vectorized. We ignore values that remain scalar such as 931 /// 64 bit loop indices. 932 unsigned getWidestType(); 933 934 /// \return The most profitable unroll factor. 935 /// If UserUF is non-zero then this method finds the best unroll-factor 936 /// based on register pressure and other parameters. 937 /// VF and LoopCost are the selected vectorization factor and the cost of the 938 /// selected VF. 939 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); 940 941 /// \brief A struct that represents some properties of the register usage 942 /// of a loop. 943 struct RegisterUsage { 944 /// Holds the number of loop invariant values that are used in the loop. 945 unsigned LoopInvariantRegs; 946 /// Holds the maximum number of concurrent live intervals in the loop. 947 unsigned MaxLocalUsers; 948 /// Holds the number of instructions in the loop. 949 unsigned NumInstructions; 950 }; 951 952 /// \return information about the register usage of the loop. 953 RegisterUsage calculateRegisterUsage(); 954 955 private: 956 /// Returns the expected execution cost. The unit of the cost does 957 /// not matter because we use the 'cost' units to compare different 958 /// vector widths. The cost that is returned is *not* normalized by 959 /// the factor width. 960 unsigned expectedCost(unsigned VF); 961 962 /// Returns the execution time cost of an instruction for a given vector 963 /// width. Vector width of one means scalar. 964 unsigned getInstructionCost(Instruction *I, unsigned VF); 965 966 /// A helper function for converting Scalar types to vector types. 967 /// If the incoming type is void, we return void. If the VF is 1, we return 968 /// the scalar type. 969 static Type* ToVectorTy(Type *Scalar, unsigned VF); 970 971 /// Returns whether the instruction is a load or store and will be a emitted 972 /// as a vector operation. 973 bool isConsecutiveLoadOrStore(Instruction *I); 974 975 /// Report an analysis message to assist the user in diagnosing loops that are 976 /// not vectorized. 977 void emitAnalysis(Report &Message) { 978 DebugLoc DL = TheLoop->getStartLoc(); 979 if (Instruction *I = Message.getInstr()) 980 DL = I->getDebugLoc(); 981 emitOptimizationRemarkAnalysis(TheFunction->getContext(), DEBUG_TYPE, 982 *TheFunction, DL, Message.str()); 983 } 984 985 /// Values used only by @llvm.assume calls. 986 SmallPtrSet<const Value *, 32> EphValues; 987 988 /// The loop that we evaluate. 989 Loop *TheLoop; 990 /// Scev analysis. 991 ScalarEvolution *SE; 992 /// Loop Info analysis. 993 LoopInfo *LI; 994 /// Vectorization legality. 995 LoopVectorizationLegality *Legal; 996 /// Vector target information. 997 const TargetTransformInfo &TTI; 998 /// Target data layout information. 999 const DataLayout *DL; 1000 /// Target Library Info. 1001 const TargetLibraryInfo *TLI; 1002 const Function *TheFunction; 1003 // Loop Vectorize Hint. 1004 const LoopVectorizeHints *Hints; 1005 }; 1006 1007 /// Utility class for getting and setting loop vectorizer hints in the form 1008 /// of loop metadata. 1009 /// This class keeps a number of loop annotations locally (as member variables) 1010 /// and can, upon request, write them back as metadata on the loop. It will 1011 /// initially scan the loop for existing metadata, and will update the local 1012 /// values based on information in the loop. 1013 /// We cannot write all values to metadata, as the mere presence of some info, 1014 /// for example 'force', means a decision has been made. So, we need to be 1015 /// careful NOT to add them if the user hasn't specifically asked so. 1016 class LoopVectorizeHints { 1017 enum HintKind { 1018 HK_WIDTH, 1019 HK_UNROLL, 1020 HK_FORCE 1021 }; 1022 1023 /// Hint - associates name and validation with the hint value. 1024 struct Hint { 1025 const char * Name; 1026 unsigned Value; // This may have to change for non-numeric values. 1027 HintKind Kind; 1028 1029 Hint(const char * Name, unsigned Value, HintKind Kind) 1030 : Name(Name), Value(Value), Kind(Kind) { } 1031 1032 bool validate(unsigned Val) { 1033 switch (Kind) { 1034 case HK_WIDTH: 1035 return isPowerOf2_32(Val) && Val <= MaxVectorWidth; 1036 case HK_UNROLL: 1037 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1038 case HK_FORCE: 1039 return (Val <= 1); 1040 } 1041 return false; 1042 } 1043 }; 1044 1045 /// Vectorization width. 1046 Hint Width; 1047 /// Vectorization interleave factor. 1048 Hint Interleave; 1049 /// Vectorization forced 1050 Hint Force; 1051 1052 /// Return the loop metadata prefix. 1053 static StringRef Prefix() { return "llvm.loop."; } 1054 1055 public: 1056 enum ForceKind { 1057 FK_Undefined = -1, ///< Not selected. 1058 FK_Disabled = 0, ///< Forcing disabled. 1059 FK_Enabled = 1, ///< Forcing enabled. 1060 }; 1061 1062 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1063 : Width("vectorize.width", VectorizationFactor, HK_WIDTH), 1064 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1065 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1066 TheLoop(L) { 1067 // Populate values with existing loop metadata. 1068 getHintsFromMetadata(); 1069 1070 // force-vector-interleave overrides DisableInterleaving. 1071 if (VectorizationInterleave.getNumOccurrences() > 0) 1072 Interleave.Value = VectorizationInterleave; 1073 1074 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1075 << "LV: Interleaving disabled by the pass manager\n"); 1076 } 1077 1078 /// Mark the loop L as already vectorized by setting the width to 1. 1079 void setAlreadyVectorized() { 1080 Width.Value = Interleave.Value = 1; 1081 Hint Hints[] = {Width, Interleave}; 1082 writeHintsToMetadata(Hints); 1083 } 1084 1085 /// Dumps all the hint information. 1086 std::string emitRemark() const { 1087 Report R; 1088 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1089 R << "vectorization is explicitly disabled"; 1090 else { 1091 R << "use -Rpass-analysis=loop-vectorize for more info"; 1092 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1093 R << " (Force=true"; 1094 if (Width.Value != 0) 1095 R << ", Vector Width=" << Width.Value; 1096 if (Interleave.Value != 0) 1097 R << ", Interleave Count=" << Interleave.Value; 1098 R << ")"; 1099 } 1100 } 1101 1102 return R.str(); 1103 } 1104 1105 unsigned getWidth() const { return Width.Value; } 1106 unsigned getInterleave() const { return Interleave.Value; } 1107 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1108 1109 private: 1110 /// Find hints specified in the loop metadata and update local values. 1111 void getHintsFromMetadata() { 1112 MDNode *LoopID = TheLoop->getLoopID(); 1113 if (!LoopID) 1114 return; 1115 1116 // First operand should refer to the loop id itself. 1117 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1118 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1119 1120 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1121 const MDString *S = nullptr; 1122 SmallVector<Metadata *, 4> Args; 1123 1124 // The expected hint is either a MDString or a MDNode with the first 1125 // operand a MDString. 1126 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1127 if (!MD || MD->getNumOperands() == 0) 1128 continue; 1129 S = dyn_cast<MDString>(MD->getOperand(0)); 1130 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1131 Args.push_back(MD->getOperand(i)); 1132 } else { 1133 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1134 assert(Args.size() == 0 && "too many arguments for MDString"); 1135 } 1136 1137 if (!S) 1138 continue; 1139 1140 // Check if the hint starts with the loop metadata prefix. 1141 StringRef Name = S->getString(); 1142 if (Args.size() == 1) 1143 setHint(Name, Args[0]); 1144 } 1145 } 1146 1147 /// Checks string hint with one operand and set value if valid. 1148 void setHint(StringRef Name, Metadata *Arg) { 1149 if (!Name.startswith(Prefix())) 1150 return; 1151 Name = Name.substr(Prefix().size(), StringRef::npos); 1152 1153 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1154 if (!C) return; 1155 unsigned Val = C->getZExtValue(); 1156 1157 Hint *Hints[] = {&Width, &Interleave, &Force}; 1158 for (auto H : Hints) { 1159 if (Name == H->Name) { 1160 if (H->validate(Val)) 1161 H->Value = Val; 1162 else 1163 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1164 break; 1165 } 1166 } 1167 } 1168 1169 /// Create a new hint from name / value pair. 1170 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1171 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1172 Metadata *MDs[] = {MDString::get(Context, Name), 1173 ConstantAsMetadata::get( 1174 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1175 return MDNode::get(Context, MDs); 1176 } 1177 1178 /// Matches metadata with hint name. 1179 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1180 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1181 if (!Name) 1182 return false; 1183 1184 for (auto H : HintTypes) 1185 if (Name->getString().endswith(H.Name)) 1186 return true; 1187 return false; 1188 } 1189 1190 /// Sets current hints into loop metadata, keeping other values intact. 1191 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1192 if (HintTypes.size() == 0) 1193 return; 1194 1195 // Reserve the first element to LoopID (see below). 1196 SmallVector<Metadata *, 4> MDs(1); 1197 // If the loop already has metadata, then ignore the existing operands. 1198 MDNode *LoopID = TheLoop->getLoopID(); 1199 if (LoopID) { 1200 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1201 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1202 // If node in update list, ignore old value. 1203 if (!matchesHintMetadataName(Node, HintTypes)) 1204 MDs.push_back(Node); 1205 } 1206 } 1207 1208 // Now, add the missing hints. 1209 for (auto H : HintTypes) 1210 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1211 1212 // Replace current metadata node with new one. 1213 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1214 MDNode *NewLoopID = MDNode::get(Context, MDs); 1215 // Set operand 0 to refer to the loop id itself. 1216 NewLoopID->replaceOperandWith(0, NewLoopID); 1217 1218 TheLoop->setLoopID(NewLoopID); 1219 } 1220 1221 /// The loop these hints belong to. 1222 const Loop *TheLoop; 1223 }; 1224 1225 static void emitMissedWarning(Function *F, Loop *L, 1226 const LoopVectorizeHints &LH) { 1227 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1228 L->getStartLoc(), LH.emitRemark()); 1229 1230 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1231 if (LH.getWidth() != 1) 1232 emitLoopVectorizeWarning( 1233 F->getContext(), *F, L->getStartLoc(), 1234 "failed explicitly specified loop vectorization"); 1235 else if (LH.getInterleave() != 1) 1236 emitLoopInterleaveWarning( 1237 F->getContext(), *F, L->getStartLoc(), 1238 "failed explicitly specified loop interleaving"); 1239 } 1240 } 1241 1242 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1243 if (L.empty()) 1244 return V.push_back(&L); 1245 1246 for (Loop *InnerL : L) 1247 addInnerLoop(*InnerL, V); 1248 } 1249 1250 /// The LoopVectorize Pass. 1251 struct LoopVectorize : public FunctionPass { 1252 /// Pass identification, replacement for typeid 1253 static char ID; 1254 1255 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1256 : FunctionPass(ID), 1257 DisableUnrolling(NoUnrolling), 1258 AlwaysVectorize(AlwaysVectorize) { 1259 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1260 } 1261 1262 ScalarEvolution *SE; 1263 const DataLayout *DL; 1264 LoopInfo *LI; 1265 TargetTransformInfo *TTI; 1266 DominatorTree *DT; 1267 BlockFrequencyInfo *BFI; 1268 TargetLibraryInfo *TLI; 1269 AliasAnalysis *AA; 1270 AssumptionCache *AC; 1271 bool DisableUnrolling; 1272 bool AlwaysVectorize; 1273 1274 BlockFrequency ColdEntryFreq; 1275 1276 bool runOnFunction(Function &F) override { 1277 SE = &getAnalysis<ScalarEvolution>(); 1278 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1279 DL = DLP ? &DLP->getDataLayout() : nullptr; 1280 LI = &getAnalysis<LoopInfo>(); 1281 TTI = &getAnalysis<TargetTransformInfo>(); 1282 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1283 BFI = &getAnalysis<BlockFrequencyInfo>(); 1284 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1285 AA = &getAnalysis<AliasAnalysis>(); 1286 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1287 1288 // Compute some weights outside of the loop over the loops. Compute this 1289 // using a BranchProbability to re-use its scaling math. 1290 const BranchProbability ColdProb(1, 5); // 20% 1291 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1292 1293 // If the target claims to have no vector registers don't attempt 1294 // vectorization. 1295 if (!TTI->getNumberOfRegisters(true)) 1296 return false; 1297 1298 if (!DL) { 1299 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 1300 << ": Missing data layout\n"); 1301 return false; 1302 } 1303 1304 // Build up a worklist of inner-loops to vectorize. This is necessary as 1305 // the act of vectorizing or partially unrolling a loop creates new loops 1306 // and can invalidate iterators across the loops. 1307 SmallVector<Loop *, 8> Worklist; 1308 1309 for (Loop *L : *LI) 1310 addInnerLoop(*L, Worklist); 1311 1312 LoopsAnalyzed += Worklist.size(); 1313 1314 // Now walk the identified inner loops. 1315 bool Changed = false; 1316 while (!Worklist.empty()) 1317 Changed |= processLoop(Worklist.pop_back_val()); 1318 1319 // Process each loop nest in the function. 1320 return Changed; 1321 } 1322 1323 bool processLoop(Loop *L) { 1324 assert(L->empty() && "Only process inner loops."); 1325 1326 #ifndef NDEBUG 1327 const std::string DebugLocStr = getDebugLocString(L); 1328 #endif /* NDEBUG */ 1329 1330 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1331 << L->getHeader()->getParent()->getName() << "\" from " 1332 << DebugLocStr << "\n"); 1333 1334 LoopVectorizeHints Hints(L, DisableUnrolling); 1335 1336 DEBUG(dbgs() << "LV: Loop hints:" 1337 << " force=" 1338 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1339 ? "disabled" 1340 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1341 ? "enabled" 1342 : "?")) << " width=" << Hints.getWidth() 1343 << " unroll=" << Hints.getInterleave() << "\n"); 1344 1345 // Function containing loop 1346 Function *F = L->getHeader()->getParent(); 1347 1348 // Looking at the diagnostic output is the only way to determine if a loop 1349 // was vectorized (other than looking at the IR or machine code), so it 1350 // is important to generate an optimization remark for each loop. Most of 1351 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1352 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1353 // less verbose reporting vectorized loops and unvectorized loops that may 1354 // benefit from vectorization, respectively. 1355 1356 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1357 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1358 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1359 L->getStartLoc(), Hints.emitRemark()); 1360 return false; 1361 } 1362 1363 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1364 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1365 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1366 L->getStartLoc(), Hints.emitRemark()); 1367 return false; 1368 } 1369 1370 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) { 1371 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1372 emitOptimizationRemarkAnalysis( 1373 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1374 "loop not vectorized: vector width and interleave count are " 1375 "explicitly set to 1"); 1376 return false; 1377 } 1378 1379 // Check the loop for a trip count threshold: 1380 // do not vectorize loops with a tiny trip count. 1381 const unsigned TC = SE->getSmallConstantTripCount(L); 1382 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1383 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1384 << "This loop is not worth vectorizing."); 1385 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1386 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1387 else { 1388 DEBUG(dbgs() << "\n"); 1389 emitOptimizationRemarkAnalysis( 1390 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1391 "vectorization is not beneficial and is not explicitly forced"); 1392 return false; 1393 } 1394 } 1395 1396 // Check if it is legal to vectorize the loop. 1397 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI); 1398 if (!LVL.canVectorize()) { 1399 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1400 emitMissedWarning(F, L, Hints); 1401 return false; 1402 } 1403 1404 // Use the cost model. 1405 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AC, F, 1406 &Hints); 1407 1408 // Check the function attributes to find out if this function should be 1409 // optimized for size. 1410 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1411 F->hasFnAttribute(Attribute::OptimizeForSize); 1412 1413 // Compute the weighted frequency of this loop being executed and see if it 1414 // is less than 20% of the function entry baseline frequency. Note that we 1415 // always have a canonical loop here because we think we *can* vectoriez. 1416 // FIXME: This is hidden behind a flag due to pervasive problems with 1417 // exactly what block frequency models. 1418 if (LoopVectorizeWithBlockFrequency) { 1419 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1420 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1421 LoopEntryFreq < ColdEntryFreq) 1422 OptForSize = true; 1423 } 1424 1425 // Check the function attributes to see if implicit floats are allowed.a 1426 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1427 // an integer loop and the vector instructions selected are purely integer 1428 // vector instructions? 1429 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1430 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1431 "attribute is used.\n"); 1432 emitOptimizationRemarkAnalysis( 1433 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1434 "loop not vectorized due to NoImplicitFloat attribute"); 1435 emitMissedWarning(F, L, Hints); 1436 return false; 1437 } 1438 1439 // Select the optimal vectorization factor. 1440 const LoopVectorizationCostModel::VectorizationFactor VF = 1441 CM.selectVectorizationFactor(OptForSize); 1442 1443 // Select the unroll factor. 1444 const unsigned UF = 1445 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); 1446 1447 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1448 << DebugLocStr << '\n'); 1449 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1450 1451 if (VF.Width == 1) { 1452 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1453 1454 if (UF == 1) { 1455 emitOptimizationRemarkAnalysis( 1456 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1457 "not beneficial to vectorize and user disabled interleaving"); 1458 return false; 1459 } 1460 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1461 1462 // Report the unrolling decision. 1463 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1464 Twine("unrolled with interleaving factor " + 1465 Twine(UF) + 1466 " (vectorization not beneficial)")); 1467 1468 // We decided not to vectorize, but we may want to unroll. 1469 1470 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1471 Unroller.vectorize(&LVL); 1472 } else { 1473 // If we decided that it is *legal* to vectorize the loop then do it. 1474 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1475 LB.vectorize(&LVL); 1476 ++LoopsVectorized; 1477 1478 // Report the vectorization decision. 1479 emitOptimizationRemark( 1480 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1481 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1482 ", unrolling interleave factor: " + Twine(UF) + ")"); 1483 } 1484 1485 // Mark the loop as already vectorized to avoid vectorizing again. 1486 Hints.setAlreadyVectorized(); 1487 1488 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1489 return true; 1490 } 1491 1492 void getAnalysisUsage(AnalysisUsage &AU) const override { 1493 AU.addRequired<AssumptionCacheTracker>(); 1494 AU.addRequiredID(LoopSimplifyID); 1495 AU.addRequiredID(LCSSAID); 1496 AU.addRequired<BlockFrequencyInfo>(); 1497 AU.addRequired<DominatorTreeWrapperPass>(); 1498 AU.addRequired<LoopInfo>(); 1499 AU.addRequired<ScalarEvolution>(); 1500 AU.addRequired<TargetTransformInfo>(); 1501 AU.addRequired<AliasAnalysis>(); 1502 AU.addPreserved<LoopInfo>(); 1503 AU.addPreserved<DominatorTreeWrapperPass>(); 1504 AU.addPreserved<AliasAnalysis>(); 1505 } 1506 1507 }; 1508 1509 } // end anonymous namespace 1510 1511 //===----------------------------------------------------------------------===// 1512 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1513 // LoopVectorizationCostModel. 1514 //===----------------------------------------------------------------------===// 1515 1516 static Value *stripIntegerCast(Value *V) { 1517 if (CastInst *CI = dyn_cast<CastInst>(V)) 1518 if (CI->getOperand(0)->getType()->isIntegerTy()) 1519 return CI->getOperand(0); 1520 return V; 1521 } 1522 1523 ///\brief Replaces the symbolic stride in a pointer SCEV expression by one. 1524 /// 1525 /// If \p OrigPtr is not null, use it to look up the stride value instead of 1526 /// \p Ptr. 1527 static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE, 1528 ValueToValueMap &PtrToStride, 1529 Value *Ptr, Value *OrigPtr = nullptr) { 1530 1531 const SCEV *OrigSCEV = SE->getSCEV(Ptr); 1532 1533 // If there is an entry in the map return the SCEV of the pointer with the 1534 // symbolic stride replaced by one. 1535 ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr); 1536 if (SI != PtrToStride.end()) { 1537 Value *StrideVal = SI->second; 1538 1539 // Strip casts. 1540 StrideVal = stripIntegerCast(StrideVal); 1541 1542 // Replace symbolic stride by one. 1543 Value *One = ConstantInt::get(StrideVal->getType(), 1); 1544 ValueToValueMap RewriteMap; 1545 RewriteMap[StrideVal] = One; 1546 1547 const SCEV *ByOne = 1548 SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true); 1549 DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne 1550 << "\n"); 1551 return ByOne; 1552 } 1553 1554 // Otherwise, just return the SCEV of the original pointer. 1555 return SE->getSCEV(Ptr); 1556 } 1557 1558 void LoopVectorizationLegality::RuntimePointerCheck::insert( 1559 ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId, 1560 unsigned ASId, ValueToValueMap &Strides) { 1561 // Get the stride replaced scev. 1562 const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 1563 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc); 1564 assert(AR && "Invalid addrec expression"); 1565 const SCEV *Ex = SE->getBackedgeTakenCount(Lp); 1566 const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE); 1567 Pointers.push_back(Ptr); 1568 Starts.push_back(AR->getStart()); 1569 Ends.push_back(ScEnd); 1570 IsWritePtr.push_back(WritePtr); 1571 DependencySetId.push_back(DepSetId); 1572 AliasSetId.push_back(ASId); 1573 } 1574 1575 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1576 // We need to place the broadcast of invariant variables outside the loop. 1577 Instruction *Instr = dyn_cast<Instruction>(V); 1578 bool NewInstr = 1579 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1580 Instr->getParent()) != LoopVectorBody.end()); 1581 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1582 1583 // Place the code for broadcasting invariant variables in the new preheader. 1584 IRBuilder<>::InsertPointGuard Guard(Builder); 1585 if (Invariant) 1586 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1587 1588 // Broadcast the scalar into all locations in the vector. 1589 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1590 1591 return Shuf; 1592 } 1593 1594 Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx, 1595 bool Negate) { 1596 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1597 assert(Val->getType()->getScalarType()->isIntegerTy() && 1598 "Elem must be an integer"); 1599 // Create the types. 1600 Type *ITy = Val->getType()->getScalarType(); 1601 VectorType *Ty = cast<VectorType>(Val->getType()); 1602 int VLen = Ty->getNumElements(); 1603 SmallVector<Constant*, 8> Indices; 1604 1605 // Create a vector of consecutive numbers from zero to VF. 1606 for (int i = 0; i < VLen; ++i) { 1607 int64_t Idx = Negate ? (-i) : i; 1608 Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate)); 1609 } 1610 1611 // Add the consecutive indices to the vector value. 1612 Constant *Cv = ConstantVector::get(Indices); 1613 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1614 return Builder.CreateAdd(Val, Cv, "induction"); 1615 } 1616 1617 /// \brief Find the operand of the GEP that should be checked for consecutive 1618 /// stores. This ignores trailing indices that have no effect on the final 1619 /// pointer. 1620 static unsigned getGEPInductionOperand(const DataLayout *DL, 1621 const GetElementPtrInst *Gep) { 1622 unsigned LastOperand = Gep->getNumOperands() - 1; 1623 unsigned GEPAllocSize = DL->getTypeAllocSize( 1624 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1625 1626 // Walk backwards and try to peel off zeros. 1627 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1628 // Find the type we're currently indexing into. 1629 gep_type_iterator GEPTI = gep_type_begin(Gep); 1630 std::advance(GEPTI, LastOperand - 1); 1631 1632 // If it's a type with the same allocation size as the result of the GEP we 1633 // can peel off the zero index. 1634 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1635 break; 1636 --LastOperand; 1637 } 1638 1639 return LastOperand; 1640 } 1641 1642 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1643 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1644 // Make sure that the pointer does not point to structs. 1645 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1646 return 0; 1647 1648 // If this value is a pointer induction variable we know it is consecutive. 1649 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1650 if (Phi && Inductions.count(Phi)) { 1651 InductionInfo II = Inductions[Phi]; 1652 if (IK_PtrInduction == II.IK) 1653 return 1; 1654 else if (IK_ReversePtrInduction == II.IK) 1655 return -1; 1656 } 1657 1658 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1659 if (!Gep) 1660 return 0; 1661 1662 unsigned NumOperands = Gep->getNumOperands(); 1663 Value *GpPtr = Gep->getPointerOperand(); 1664 // If this GEP value is a consecutive pointer induction variable and all of 1665 // the indices are constant then we know it is consecutive. We can 1666 Phi = dyn_cast<PHINode>(GpPtr); 1667 if (Phi && Inductions.count(Phi)) { 1668 1669 // Make sure that the pointer does not point to structs. 1670 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1671 if (GepPtrType->getElementType()->isAggregateType()) 1672 return 0; 1673 1674 // Make sure that all of the index operands are loop invariant. 1675 for (unsigned i = 1; i < NumOperands; ++i) 1676 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1677 return 0; 1678 1679 InductionInfo II = Inductions[Phi]; 1680 if (IK_PtrInduction == II.IK) 1681 return 1; 1682 else if (IK_ReversePtrInduction == II.IK) 1683 return -1; 1684 } 1685 1686 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1687 1688 // Check that all of the gep indices are uniform except for our induction 1689 // operand. 1690 for (unsigned i = 0; i != NumOperands; ++i) 1691 if (i != InductionOperand && 1692 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1693 return 0; 1694 1695 // We can emit wide load/stores only if the last non-zero index is the 1696 // induction variable. 1697 const SCEV *Last = nullptr; 1698 if (!Strides.count(Gep)) 1699 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1700 else { 1701 // Because of the multiplication by a stride we can have a s/zext cast. 1702 // We are going to replace this stride by 1 so the cast is safe to ignore. 1703 // 1704 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1705 // %0 = trunc i64 %indvars.iv to i32 1706 // %mul = mul i32 %0, %Stride1 1707 // %idxprom = zext i32 %mul to i64 << Safe cast. 1708 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1709 // 1710 Last = replaceSymbolicStrideSCEV(SE, Strides, 1711 Gep->getOperand(InductionOperand), Gep); 1712 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1713 Last = 1714 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1715 ? C->getOperand() 1716 : Last; 1717 } 1718 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1719 const SCEV *Step = AR->getStepRecurrence(*SE); 1720 1721 // The memory is consecutive because the last index is consecutive 1722 // and all other indices are loop invariant. 1723 if (Step->isOne()) 1724 return 1; 1725 if (Step->isAllOnesValue()) 1726 return -1; 1727 } 1728 1729 return 0; 1730 } 1731 1732 bool LoopVectorizationLegality::isUniform(Value *V) { 1733 return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop)); 1734 } 1735 1736 InnerLoopVectorizer::VectorParts& 1737 InnerLoopVectorizer::getVectorValue(Value *V) { 1738 assert(V != Induction && "The new induction variable should not be used."); 1739 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1740 1741 // If we have a stride that is replaced by one, do it here. 1742 if (Legal->hasStride(V)) 1743 V = ConstantInt::get(V->getType(), 1); 1744 1745 // If we have this scalar in the map, return it. 1746 if (WidenMap.has(V)) 1747 return WidenMap.get(V); 1748 1749 // If this scalar is unknown, assume that it is a constant or that it is 1750 // loop invariant. Broadcast V and save the value for future uses. 1751 Value *B = getBroadcastInstrs(V); 1752 return WidenMap.splat(V, B); 1753 } 1754 1755 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1756 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1757 SmallVector<Constant*, 8> ShuffleMask; 1758 for (unsigned i = 0; i < VF; ++i) 1759 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1760 1761 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1762 ConstantVector::get(ShuffleMask), 1763 "reverse"); 1764 } 1765 1766 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1767 // Attempt to issue a wide load. 1768 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1769 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1770 1771 assert((LI || SI) && "Invalid Load/Store instruction"); 1772 1773 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1774 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1775 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1776 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1777 // An alignment of 0 means target abi alignment. We need to use the scalar's 1778 // target abi alignment in such a case. 1779 if (!Alignment) 1780 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1781 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1782 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1783 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1784 1785 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 1786 !Legal->isMaskRequired(SI)) 1787 return scalarizeInstruction(Instr, true); 1788 1789 if (ScalarAllocatedSize != VectorElementSize) 1790 return scalarizeInstruction(Instr); 1791 1792 // If the pointer is loop invariant or if it is non-consecutive, 1793 // scalarize the load. 1794 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1795 bool Reverse = ConsecutiveStride < 0; 1796 bool UniformLoad = LI && Legal->isUniform(Ptr); 1797 if (!ConsecutiveStride || UniformLoad) 1798 return scalarizeInstruction(Instr); 1799 1800 Constant *Zero = Builder.getInt32(0); 1801 VectorParts &Entry = WidenMap.get(Instr); 1802 1803 // Handle consecutive loads/stores. 1804 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1805 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1806 setDebugLocFromInst(Builder, Gep); 1807 Value *PtrOperand = Gep->getPointerOperand(); 1808 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1809 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1810 1811 // Create the new GEP with the new induction variable. 1812 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1813 Gep2->setOperand(0, FirstBasePtr); 1814 Gep2->setName("gep.indvar.base"); 1815 Ptr = Builder.Insert(Gep2); 1816 } else if (Gep) { 1817 setDebugLocFromInst(Builder, Gep); 1818 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1819 OrigLoop) && "Base ptr must be invariant"); 1820 1821 // The last index does not have to be the induction. It can be 1822 // consecutive and be a function of the index. For example A[I+1]; 1823 unsigned NumOperands = Gep->getNumOperands(); 1824 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1825 // Create the new GEP with the new induction variable. 1826 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1827 1828 for (unsigned i = 0; i < NumOperands; ++i) { 1829 Value *GepOperand = Gep->getOperand(i); 1830 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1831 1832 // Update last index or loop invariant instruction anchored in loop. 1833 if (i == InductionOperand || 1834 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1835 assert((i == InductionOperand || 1836 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1837 "Must be last index or loop invariant"); 1838 1839 VectorParts &GEPParts = getVectorValue(GepOperand); 1840 Value *Index = GEPParts[0]; 1841 Index = Builder.CreateExtractElement(Index, Zero); 1842 Gep2->setOperand(i, Index); 1843 Gep2->setName("gep.indvar.idx"); 1844 } 1845 } 1846 Ptr = Builder.Insert(Gep2); 1847 } else { 1848 // Use the induction element ptr. 1849 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1850 setDebugLocFromInst(Builder, Ptr); 1851 VectorParts &PtrVal = getVectorValue(Ptr); 1852 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1853 } 1854 1855 VectorParts Mask = createBlockInMask(Instr->getParent()); 1856 // Handle Stores: 1857 if (SI) { 1858 assert(!Legal->isUniform(SI->getPointerOperand()) && 1859 "We do not allow storing to uniform addresses"); 1860 setDebugLocFromInst(Builder, SI); 1861 // We don't want to update the value in the map as it might be used in 1862 // another expression. So don't use a reference type for "StoredVal". 1863 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1864 1865 for (unsigned Part = 0; Part < UF; ++Part) { 1866 // Calculate the pointer for the specific unroll-part. 1867 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1868 1869 if (Reverse) { 1870 // If we store to reverse consecutive memory locations then we need 1871 // to reverse the order of elements in the stored value. 1872 StoredVal[Part] = reverseVector(StoredVal[Part]); 1873 // If the address is consecutive but reversed, then the 1874 // wide store needs to start at the last vector element. 1875 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1876 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1877 } 1878 1879 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1880 DataTy->getPointerTo(AddressSpace)); 1881 1882 Instruction *NewSI; 1883 if (Legal->isMaskRequired(SI)) 1884 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 1885 Mask[Part]); 1886 else 1887 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 1888 propagateMetadata(NewSI, SI); 1889 } 1890 return; 1891 } 1892 1893 // Handle loads. 1894 assert(LI && "Must have a load instruction"); 1895 setDebugLocFromInst(Builder, LI); 1896 for (unsigned Part = 0; Part < UF; ++Part) { 1897 // Calculate the pointer for the specific unroll-part. 1898 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1899 1900 if (Reverse) { 1901 // If the address is consecutive but reversed, then the 1902 // wide load needs to start at the last vector element. 1903 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1904 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1905 } 1906 1907 Instruction* NewLI; 1908 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1909 DataTy->getPointerTo(AddressSpace)); 1910 if (Legal->isMaskRequired(LI)) 1911 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 1912 UndefValue::get(DataTy), 1913 "wide.masked.load"); 1914 else 1915 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 1916 propagateMetadata(NewLI, LI); 1917 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 1918 } 1919 } 1920 1921 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1922 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1923 // Holds vector parameters or scalars, in case of uniform vals. 1924 SmallVector<VectorParts, 4> Params; 1925 1926 setDebugLocFromInst(Builder, Instr); 1927 1928 // Find all of the vectorized parameters. 1929 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1930 Value *SrcOp = Instr->getOperand(op); 1931 1932 // If we are accessing the old induction variable, use the new one. 1933 if (SrcOp == OldInduction) { 1934 Params.push_back(getVectorValue(SrcOp)); 1935 continue; 1936 } 1937 1938 // Try using previously calculated values. 1939 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1940 1941 // If the src is an instruction that appeared earlier in the basic block 1942 // then it should already be vectorized. 1943 if (SrcInst && OrigLoop->contains(SrcInst)) { 1944 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1945 // The parameter is a vector value from earlier. 1946 Params.push_back(WidenMap.get(SrcInst)); 1947 } else { 1948 // The parameter is a scalar from outside the loop. Maybe even a constant. 1949 VectorParts Scalars; 1950 Scalars.append(UF, SrcOp); 1951 Params.push_back(Scalars); 1952 } 1953 } 1954 1955 assert(Params.size() == Instr->getNumOperands() && 1956 "Invalid number of operands"); 1957 1958 // Does this instruction return a value ? 1959 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1960 1961 Value *UndefVec = IsVoidRetTy ? nullptr : 1962 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1963 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1964 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1965 1966 Instruction *InsertPt = Builder.GetInsertPoint(); 1967 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1968 BasicBlock *CondBlock = nullptr; 1969 1970 VectorParts Cond; 1971 Loop *VectorLp = nullptr; 1972 if (IfPredicateStore) { 1973 assert(Instr->getParent()->getSinglePredecessor() && 1974 "Only support single predecessor blocks"); 1975 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1976 Instr->getParent()); 1977 VectorLp = LI->getLoopFor(IfBlock); 1978 assert(VectorLp && "Must have a loop for this block"); 1979 } 1980 1981 // For each vector unroll 'part': 1982 for (unsigned Part = 0; Part < UF; ++Part) { 1983 // For each scalar that we create: 1984 for (unsigned Width = 0; Width < VF; ++Width) { 1985 1986 // Start if-block. 1987 Value *Cmp = nullptr; 1988 if (IfPredicateStore) { 1989 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1990 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1991 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1992 LoopVectorBody.push_back(CondBlock); 1993 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 1994 // Update Builder with newly created basic block. 1995 Builder.SetInsertPoint(InsertPt); 1996 } 1997 1998 Instruction *Cloned = Instr->clone(); 1999 if (!IsVoidRetTy) 2000 Cloned->setName(Instr->getName() + ".cloned"); 2001 // Replace the operands of the cloned instructions with extracted scalars. 2002 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2003 Value *Op = Params[op][Part]; 2004 // Param is a vector. Need to extract the right lane. 2005 if (Op->getType()->isVectorTy()) 2006 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2007 Cloned->setOperand(op, Op); 2008 } 2009 2010 // Place the cloned scalar in the new loop. 2011 Builder.Insert(Cloned); 2012 2013 // If the original scalar returns a value we need to place it in a vector 2014 // so that future users will be able to use it. 2015 if (!IsVoidRetTy) 2016 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2017 Builder.getInt32(Width)); 2018 // End if-block. 2019 if (IfPredicateStore) { 2020 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 2021 LoopVectorBody.push_back(NewIfBlock); 2022 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 2023 Builder.SetInsertPoint(InsertPt); 2024 Instruction *OldBr = IfBlock->getTerminator(); 2025 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 2026 OldBr->eraseFromParent(); 2027 IfBlock = NewIfBlock; 2028 } 2029 } 2030 } 2031 } 2032 2033 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 2034 Instruction *Loc) { 2035 if (FirstInst) 2036 return FirstInst; 2037 if (Instruction *I = dyn_cast<Instruction>(V)) 2038 return I->getParent() == Loc->getParent() ? I : nullptr; 2039 return nullptr; 2040 } 2041 2042 std::pair<Instruction *, Instruction *> 2043 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 2044 Instruction *tnullptr = nullptr; 2045 if (!Legal->mustCheckStrides()) 2046 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2047 2048 IRBuilder<> ChkBuilder(Loc); 2049 2050 // Emit checks. 2051 Value *Check = nullptr; 2052 Instruction *FirstInst = nullptr; 2053 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 2054 SE = Legal->strides_end(); 2055 SI != SE; ++SI) { 2056 Value *Ptr = stripIntegerCast(*SI); 2057 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 2058 "stride.chk"); 2059 // Store the first instruction we create. 2060 FirstInst = getFirstInst(FirstInst, C, Loc); 2061 if (Check) 2062 Check = ChkBuilder.CreateOr(Check, C); 2063 else 2064 Check = C; 2065 } 2066 2067 // We have to do this trickery because the IRBuilder might fold the check to a 2068 // constant expression in which case there is no Instruction anchored in a 2069 // the block. 2070 LLVMContext &Ctx = Loc->getContext(); 2071 Instruction *TheCheck = 2072 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 2073 ChkBuilder.Insert(TheCheck, "stride.not.one"); 2074 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 2075 2076 return std::make_pair(FirstInst, TheCheck); 2077 } 2078 2079 std::pair<Instruction *, Instruction *> 2080 InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) { 2081 LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck = 2082 Legal->getRuntimePointerCheck(); 2083 2084 Instruction *tnullptr = nullptr; 2085 if (!PtrRtCheck->Need) 2086 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 2087 2088 unsigned NumPointers = PtrRtCheck->Pointers.size(); 2089 SmallVector<TrackingVH<Value> , 2> Starts; 2090 SmallVector<TrackingVH<Value> , 2> Ends; 2091 2092 LLVMContext &Ctx = Loc->getContext(); 2093 SCEVExpander Exp(*SE, "induction"); 2094 Instruction *FirstInst = nullptr; 2095 2096 for (unsigned i = 0; i < NumPointers; ++i) { 2097 Value *Ptr = PtrRtCheck->Pointers[i]; 2098 const SCEV *Sc = SE->getSCEV(Ptr); 2099 2100 if (SE->isLoopInvariant(Sc, OrigLoop)) { 2101 DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" << 2102 *Ptr <<"\n"); 2103 Starts.push_back(Ptr); 2104 Ends.push_back(Ptr); 2105 } else { 2106 DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n'); 2107 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 2108 2109 // Use this type for pointer arithmetic. 2110 Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS); 2111 2112 Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc); 2113 Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc); 2114 Starts.push_back(Start); 2115 Ends.push_back(End); 2116 } 2117 } 2118 2119 IRBuilder<> ChkBuilder(Loc); 2120 // Our instructions might fold to a constant. 2121 Value *MemoryRuntimeCheck = nullptr; 2122 for (unsigned i = 0; i < NumPointers; ++i) { 2123 for (unsigned j = i+1; j < NumPointers; ++j) { 2124 // No need to check if two readonly pointers intersect. 2125 if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j]) 2126 continue; 2127 2128 // Only need to check pointers between two different dependency sets. 2129 if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j]) 2130 continue; 2131 // Only need to check pointers in the same alias set. 2132 if (PtrRtCheck->AliasSetId[i] != PtrRtCheck->AliasSetId[j]) 2133 continue; 2134 2135 unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace(); 2136 unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace(); 2137 2138 assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) && 2139 (AS1 == Ends[i]->getType()->getPointerAddressSpace()) && 2140 "Trying to bounds check pointers with different address spaces"); 2141 2142 Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0); 2143 Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1); 2144 2145 Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc"); 2146 Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc"); 2147 Value *End0 = ChkBuilder.CreateBitCast(Ends[i], PtrArithTy1, "bc"); 2148 Value *End1 = ChkBuilder.CreateBitCast(Ends[j], PtrArithTy0, "bc"); 2149 2150 Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0"); 2151 FirstInst = getFirstInst(FirstInst, Cmp0, Loc); 2152 Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1"); 2153 FirstInst = getFirstInst(FirstInst, Cmp1, Loc); 2154 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict"); 2155 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2156 if (MemoryRuntimeCheck) { 2157 IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, 2158 "conflict.rdx"); 2159 FirstInst = getFirstInst(FirstInst, IsConflict, Loc); 2160 } 2161 MemoryRuntimeCheck = IsConflict; 2162 } 2163 } 2164 2165 // We have to do this trickery because the IRBuilder might fold the check to a 2166 // constant expression in which case there is no Instruction anchored in a 2167 // the block. 2168 Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck, 2169 ConstantInt::getTrue(Ctx)); 2170 ChkBuilder.Insert(Check, "memcheck.conflict"); 2171 FirstInst = getFirstInst(FirstInst, Check, Loc); 2172 return std::make_pair(FirstInst, Check); 2173 } 2174 2175 void InnerLoopVectorizer::createEmptyLoop() { 2176 /* 2177 In this function we generate a new loop. The new loop will contain 2178 the vectorized instructions while the old loop will continue to run the 2179 scalar remainder. 2180 2181 [ ] <-- Back-edge taken count overflow check. 2182 / | 2183 / v 2184 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2185 | / | 2186 | / v 2187 || [ ] <-- vector pre header. 2188 || | 2189 || v 2190 || [ ] \ 2191 || [ ]_| <-- vector loop. 2192 || | 2193 | \ v 2194 | >[ ] <--- middle-block. 2195 | / | 2196 | / v 2197 -|- >[ ] <--- new preheader. 2198 | | 2199 | v 2200 | [ ] \ 2201 | [ ]_| <-- old scalar loop to handle remainder. 2202 \ | 2203 \ v 2204 >[ ] <-- exit block. 2205 ... 2206 */ 2207 2208 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2209 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2210 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2211 assert(BypassBlock && "Invalid loop structure"); 2212 assert(ExitBlock && "Must have an exit block"); 2213 2214 // Some loops have a single integer induction variable, while other loops 2215 // don't. One example is c++ iterators that often have multiple pointer 2216 // induction variables. In the code below we also support a case where we 2217 // don't have a single induction variable. 2218 OldInduction = Legal->getInduction(); 2219 Type *IdxTy = Legal->getWidestInductionType(); 2220 2221 // Find the loop boundaries. 2222 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2223 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2224 2225 // The exit count might have the type of i64 while the phi is i32. This can 2226 // happen if we have an induction variable that is sign extended before the 2227 // compare. The only way that we get a backedge taken count is that the 2228 // induction variable was signed and as such will not overflow. In such a case 2229 // truncation is legal. 2230 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2231 IdxTy->getPrimitiveSizeInBits()) 2232 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2233 2234 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2235 // Get the total trip count from the count by adding 1. 2236 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2237 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2238 2239 // Expand the trip count and place the new instructions in the preheader. 2240 // Notice that the pre-header does not change, only the loop body. 2241 SCEVExpander Exp(*SE, "induction"); 2242 2243 // We need to test whether the backedge-taken count is uint##_max. Adding one 2244 // to it will cause overflow and an incorrect loop trip count in the vector 2245 // body. In case of overflow we want to directly jump to the scalar remainder 2246 // loop. 2247 Value *BackedgeCount = 2248 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2249 BypassBlock->getTerminator()); 2250 if (BackedgeCount->getType()->isPointerTy()) 2251 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2252 "backedge.ptrcnt.to.int", 2253 BypassBlock->getTerminator()); 2254 Instruction *CheckBCOverflow = 2255 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2256 Constant::getAllOnesValue(BackedgeCount->getType()), 2257 "backedge.overflow", BypassBlock->getTerminator()); 2258 2259 // The loop index does not have to start at Zero. Find the original start 2260 // value from the induction PHI node. If we don't have an induction variable 2261 // then we know that it starts at zero. 2262 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2263 Value *StartIdx = ExtendedIdx = OldInduction ? 2264 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2265 IdxTy): 2266 ConstantInt::get(IdxTy, 0); 2267 2268 // We need an instruction to anchor the overflow check on. StartIdx needs to 2269 // be defined before the overflow check branch. Because the scalar preheader 2270 // is going to merge the start index and so the overflow branch block needs to 2271 // contain a definition of the start index. 2272 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2273 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2274 BypassBlock->getTerminator()); 2275 2276 // Count holds the overall loop count (N). 2277 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2278 BypassBlock->getTerminator()); 2279 2280 LoopBypassBlocks.push_back(BypassBlock); 2281 2282 // Split the single block loop into the two loop structure described above. 2283 BasicBlock *VectorPH = 2284 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2285 BasicBlock *VecBody = 2286 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2287 BasicBlock *MiddleBlock = 2288 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2289 BasicBlock *ScalarPH = 2290 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2291 2292 // Create and register the new vector loop. 2293 Loop* Lp = new Loop(); 2294 Loop *ParentLoop = OrigLoop->getParentLoop(); 2295 2296 // Insert the new loop into the loop nest and register the new basic blocks 2297 // before calling any utilities such as SCEV that require valid LoopInfo. 2298 if (ParentLoop) { 2299 ParentLoop->addChildLoop(Lp); 2300 ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase()); 2301 ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase()); 2302 ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase()); 2303 } else { 2304 LI->addTopLevelLoop(Lp); 2305 } 2306 Lp->addBasicBlockToLoop(VecBody, LI->getBase()); 2307 2308 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2309 // inside the loop. 2310 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2311 2312 // Generate the induction variable. 2313 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2314 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2315 // The loop step is equal to the vectorization factor (num of SIMD elements) 2316 // times the unroll factor (num of SIMD instructions). 2317 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2318 2319 // This is the IR builder that we use to add all of the logic for bypassing 2320 // the new vector loop. 2321 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2322 setDebugLocFromInst(BypassBuilder, 2323 getDebugLocFromInstOrOperands(OldInduction)); 2324 2325 // We may need to extend the index in case there is a type mismatch. 2326 // We know that the count starts at zero and does not overflow. 2327 if (Count->getType() != IdxTy) { 2328 // The exit count can be of pointer type. Convert it to the correct 2329 // integer type. 2330 if (ExitCount->getType()->isPointerTy()) 2331 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2332 else 2333 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2334 } 2335 2336 // Add the start index to the loop count to get the new end index. 2337 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2338 2339 // Now we need to generate the expression for N - (N % VF), which is 2340 // the part that the vectorized body will execute. 2341 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2342 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2343 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2344 "end.idx.rnd.down"); 2345 2346 // Now, compare the new count to zero. If it is zero skip the vector loop and 2347 // jump to the scalar loop. 2348 Value *Cmp = 2349 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2350 2351 BasicBlock *LastBypassBlock = BypassBlock; 2352 2353 // Generate code to check that the loops trip count that we computed by adding 2354 // one to the backedge-taken count will not overflow. 2355 { 2356 auto PastOverflowCheck = 2357 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2358 BasicBlock *CheckBlock = 2359 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2360 if (ParentLoop) 2361 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2362 LoopBypassBlocks.push_back(CheckBlock); 2363 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2364 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2365 OldTerm->eraseFromParent(); 2366 LastBypassBlock = CheckBlock; 2367 } 2368 2369 // Generate the code to check that the strides we assumed to be one are really 2370 // one. We want the new basic block to start at the first instruction in a 2371 // sequence of instructions that form a check. 2372 Instruction *StrideCheck; 2373 Instruction *FirstCheckInst; 2374 std::tie(FirstCheckInst, StrideCheck) = 2375 addStrideCheck(LastBypassBlock->getTerminator()); 2376 if (StrideCheck) { 2377 // Create a new block containing the stride check. 2378 BasicBlock *CheckBlock = 2379 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2380 if (ParentLoop) 2381 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2382 LoopBypassBlocks.push_back(CheckBlock); 2383 2384 // Replace the branch into the memory check block with a conditional branch 2385 // for the "few elements case". 2386 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2387 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2388 OldTerm->eraseFromParent(); 2389 2390 Cmp = StrideCheck; 2391 LastBypassBlock = CheckBlock; 2392 } 2393 2394 // Generate the code that checks in runtime if arrays overlap. We put the 2395 // checks into a separate block to make the more common case of few elements 2396 // faster. 2397 Instruction *MemRuntimeCheck; 2398 std::tie(FirstCheckInst, MemRuntimeCheck) = 2399 addRuntimeCheck(LastBypassBlock->getTerminator()); 2400 if (MemRuntimeCheck) { 2401 // Create a new block containing the memory check. 2402 BasicBlock *CheckBlock = 2403 LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck"); 2404 if (ParentLoop) 2405 ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase()); 2406 LoopBypassBlocks.push_back(CheckBlock); 2407 2408 // Replace the branch into the memory check block with a conditional branch 2409 // for the "few elements case". 2410 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2411 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2412 OldTerm->eraseFromParent(); 2413 2414 Cmp = MemRuntimeCheck; 2415 LastBypassBlock = CheckBlock; 2416 } 2417 2418 LastBypassBlock->getTerminator()->eraseFromParent(); 2419 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2420 LastBypassBlock); 2421 2422 // We are going to resume the execution of the scalar loop. 2423 // Go over all of the induction variables that we found and fix the 2424 // PHIs that are left in the scalar version of the loop. 2425 // The starting values of PHI nodes depend on the counter of the last 2426 // iteration in the vectorized loop. 2427 // If we come from a bypass edge then we need to start from the original 2428 // start value. 2429 2430 // This variable saves the new starting index for the scalar loop. 2431 PHINode *ResumeIndex = nullptr; 2432 LoopVectorizationLegality::InductionList::iterator I, E; 2433 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2434 // Set builder to point to last bypass block. 2435 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2436 for (I = List->begin(), E = List->end(); I != E; ++I) { 2437 PHINode *OrigPhi = I->first; 2438 LoopVectorizationLegality::InductionInfo II = I->second; 2439 2440 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2441 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2442 MiddleBlock->getTerminator()); 2443 // We might have extended the type of the induction variable but we need a 2444 // truncated version for the scalar loop. 2445 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2446 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2447 MiddleBlock->getTerminator()) : nullptr; 2448 2449 // Create phi nodes to merge from the backedge-taken check block. 2450 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2451 ScalarPH->getTerminator()); 2452 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2453 2454 PHINode *BCTruncResumeVal = nullptr; 2455 if (OrigPhi == OldInduction) { 2456 BCTruncResumeVal = 2457 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2458 ScalarPH->getTerminator()); 2459 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2460 } 2461 2462 Value *EndValue = nullptr; 2463 switch (II.IK) { 2464 case LoopVectorizationLegality::IK_NoInduction: 2465 llvm_unreachable("Unknown induction"); 2466 case LoopVectorizationLegality::IK_IntInduction: { 2467 // Handle the integer induction counter. 2468 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2469 2470 // We have the canonical induction variable. 2471 if (OrigPhi == OldInduction) { 2472 // Create a truncated version of the resume value for the scalar loop, 2473 // we might have promoted the type to a larger width. 2474 EndValue = 2475 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2476 // The new PHI merges the original incoming value, in case of a bypass, 2477 // or the value at the end of the vectorized loop. 2478 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2479 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2480 TruncResumeVal->addIncoming(EndValue, VecBody); 2481 2482 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2483 2484 // We know what the end value is. 2485 EndValue = IdxEndRoundDown; 2486 // We also know which PHI node holds it. 2487 ResumeIndex = ResumeVal; 2488 break; 2489 } 2490 2491 // Not the canonical induction variable - add the vector loop count to the 2492 // start value. 2493 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2494 II.StartValue->getType(), 2495 "cast.crd"); 2496 EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end"); 2497 break; 2498 } 2499 case LoopVectorizationLegality::IK_ReverseIntInduction: { 2500 // Convert the CountRoundDown variable to the PHI size. 2501 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2502 II.StartValue->getType(), 2503 "cast.crd"); 2504 // Handle reverse integer induction counter. 2505 EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end"); 2506 break; 2507 } 2508 case LoopVectorizationLegality::IK_PtrInduction: { 2509 // For pointer induction variables, calculate the offset using 2510 // the end index. 2511 EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown, 2512 "ptr.ind.end"); 2513 break; 2514 } 2515 case LoopVectorizationLegality::IK_ReversePtrInduction: { 2516 // The value at the end of the loop for the reverse pointer is calculated 2517 // by creating a GEP with a negative index starting from the start value. 2518 Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0); 2519 Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown, 2520 "rev.ind.end"); 2521 EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx, 2522 "rev.ptr.ind.end"); 2523 break; 2524 } 2525 }// end of case 2526 2527 // The new PHI merges the original incoming value, in case of a bypass, 2528 // or the value at the end of the vectorized loop. 2529 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2530 if (OrigPhi == OldInduction) 2531 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2532 else 2533 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2534 } 2535 ResumeVal->addIncoming(EndValue, VecBody); 2536 2537 // Fix the scalar body counter (PHI node). 2538 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2539 2540 // The old induction's phi node in the scalar body needs the truncated 2541 // value. 2542 if (OrigPhi == OldInduction) { 2543 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2544 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2545 } else { 2546 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2547 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2548 } 2549 } 2550 2551 // If we are generating a new induction variable then we also need to 2552 // generate the code that calculates the exit value. This value is not 2553 // simply the end of the counter because we may skip the vectorized body 2554 // in case of a runtime check. 2555 if (!OldInduction){ 2556 assert(!ResumeIndex && "Unexpected resume value found"); 2557 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2558 MiddleBlock->getTerminator()); 2559 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2560 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2561 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2562 } 2563 2564 // Make sure that we found the index where scalar loop needs to continue. 2565 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2566 "Invalid resume Index"); 2567 2568 // Add a check in the middle block to see if we have completed 2569 // all of the iterations in the first vector loop. 2570 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2571 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2572 ResumeIndex, "cmp.n", 2573 MiddleBlock->getTerminator()); 2574 2575 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2576 // Remove the old terminator. 2577 MiddleBlock->getTerminator()->eraseFromParent(); 2578 2579 // Create i+1 and fill the PHINode. 2580 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2581 Induction->addIncoming(StartIdx, VectorPH); 2582 Induction->addIncoming(NextIdx, VecBody); 2583 // Create the compare. 2584 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2585 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2586 2587 // Now we have two terminators. Remove the old one from the block. 2588 VecBody->getTerminator()->eraseFromParent(); 2589 2590 // Get ready to start creating new instructions into the vectorized body. 2591 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2592 2593 // Save the state. 2594 LoopVectorPreHeader = VectorPH; 2595 LoopScalarPreHeader = ScalarPH; 2596 LoopMiddleBlock = MiddleBlock; 2597 LoopExitBlock = ExitBlock; 2598 LoopVectorBody.push_back(VecBody); 2599 LoopScalarBody = OldBasicBlock; 2600 2601 LoopVectorizeHints Hints(Lp, true); 2602 Hints.setAlreadyVectorized(); 2603 } 2604 2605 /// This function returns the identity element (or neutral element) for 2606 /// the operation K. 2607 Constant* 2608 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2609 switch (K) { 2610 case RK_IntegerXor: 2611 case RK_IntegerAdd: 2612 case RK_IntegerOr: 2613 // Adding, Xoring, Oring zero to a number does not change it. 2614 return ConstantInt::get(Tp, 0); 2615 case RK_IntegerMult: 2616 // Multiplying a number by 1 does not change it. 2617 return ConstantInt::get(Tp, 1); 2618 case RK_IntegerAnd: 2619 // AND-ing a number with an all-1 value does not change it. 2620 return ConstantInt::get(Tp, -1, true); 2621 case RK_FloatMult: 2622 // Multiplying a number by 1 does not change it. 2623 return ConstantFP::get(Tp, 1.0L); 2624 case RK_FloatAdd: 2625 // Adding zero to a number does not change it. 2626 return ConstantFP::get(Tp, 0.0L); 2627 default: 2628 llvm_unreachable("Unknown reduction kind"); 2629 } 2630 } 2631 2632 /// This function translates the reduction kind to an LLVM binary operator. 2633 static unsigned 2634 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2635 switch (Kind) { 2636 case LoopVectorizationLegality::RK_IntegerAdd: 2637 return Instruction::Add; 2638 case LoopVectorizationLegality::RK_IntegerMult: 2639 return Instruction::Mul; 2640 case LoopVectorizationLegality::RK_IntegerOr: 2641 return Instruction::Or; 2642 case LoopVectorizationLegality::RK_IntegerAnd: 2643 return Instruction::And; 2644 case LoopVectorizationLegality::RK_IntegerXor: 2645 return Instruction::Xor; 2646 case LoopVectorizationLegality::RK_FloatMult: 2647 return Instruction::FMul; 2648 case LoopVectorizationLegality::RK_FloatAdd: 2649 return Instruction::FAdd; 2650 case LoopVectorizationLegality::RK_IntegerMinMax: 2651 return Instruction::ICmp; 2652 case LoopVectorizationLegality::RK_FloatMinMax: 2653 return Instruction::FCmp; 2654 default: 2655 llvm_unreachable("Unknown reduction operation"); 2656 } 2657 } 2658 2659 Value *createMinMaxOp(IRBuilder<> &Builder, 2660 LoopVectorizationLegality::MinMaxReductionKind RK, 2661 Value *Left, 2662 Value *Right) { 2663 CmpInst::Predicate P = CmpInst::ICMP_NE; 2664 switch (RK) { 2665 default: 2666 llvm_unreachable("Unknown min/max reduction kind"); 2667 case LoopVectorizationLegality::MRK_UIntMin: 2668 P = CmpInst::ICMP_ULT; 2669 break; 2670 case LoopVectorizationLegality::MRK_UIntMax: 2671 P = CmpInst::ICMP_UGT; 2672 break; 2673 case LoopVectorizationLegality::MRK_SIntMin: 2674 P = CmpInst::ICMP_SLT; 2675 break; 2676 case LoopVectorizationLegality::MRK_SIntMax: 2677 P = CmpInst::ICMP_SGT; 2678 break; 2679 case LoopVectorizationLegality::MRK_FloatMin: 2680 P = CmpInst::FCMP_OLT; 2681 break; 2682 case LoopVectorizationLegality::MRK_FloatMax: 2683 P = CmpInst::FCMP_OGT; 2684 break; 2685 } 2686 2687 Value *Cmp; 2688 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2689 RK == LoopVectorizationLegality::MRK_FloatMax) 2690 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2691 else 2692 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2693 2694 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2695 return Select; 2696 } 2697 2698 namespace { 2699 struct CSEDenseMapInfo { 2700 static bool canHandle(Instruction *I) { 2701 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2702 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2703 } 2704 static inline Instruction *getEmptyKey() { 2705 return DenseMapInfo<Instruction *>::getEmptyKey(); 2706 } 2707 static inline Instruction *getTombstoneKey() { 2708 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2709 } 2710 static unsigned getHashValue(Instruction *I) { 2711 assert(canHandle(I) && "Unknown instruction!"); 2712 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2713 I->value_op_end())); 2714 } 2715 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2716 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2717 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2718 return LHS == RHS; 2719 return LHS->isIdenticalTo(RHS); 2720 } 2721 }; 2722 } 2723 2724 /// \brief Check whether this block is a predicated block. 2725 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2726 /// = ...; " blocks. We start with one vectorized basic block. For every 2727 /// conditional block we split this vectorized block. Therefore, every second 2728 /// block will be a predicated one. 2729 static bool isPredicatedBlock(unsigned BlockNum) { 2730 return BlockNum % 2; 2731 } 2732 2733 ///\brief Perform cse of induction variable instructions. 2734 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2735 // Perform simple cse. 2736 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2737 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2738 BasicBlock *BB = BBs[i]; 2739 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2740 Instruction *In = I++; 2741 2742 if (!CSEDenseMapInfo::canHandle(In)) 2743 continue; 2744 2745 // Check if we can replace this instruction with any of the 2746 // visited instructions. 2747 if (Instruction *V = CSEMap.lookup(In)) { 2748 In->replaceAllUsesWith(V); 2749 In->eraseFromParent(); 2750 continue; 2751 } 2752 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2753 // ...;" blocks for predicated stores. Every second block is a predicated 2754 // block. 2755 if (isPredicatedBlock(i)) 2756 continue; 2757 2758 CSEMap[In] = In; 2759 } 2760 } 2761 } 2762 2763 /// \brief Adds a 'fast' flag to floating point operations. 2764 static Value *addFastMathFlag(Value *V) { 2765 if (isa<FPMathOperator>(V)){ 2766 FastMathFlags Flags; 2767 Flags.setUnsafeAlgebra(); 2768 cast<Instruction>(V)->setFastMathFlags(Flags); 2769 } 2770 return V; 2771 } 2772 2773 void InnerLoopVectorizer::vectorizeLoop() { 2774 //===------------------------------------------------===// 2775 // 2776 // Notice: any optimization or new instruction that go 2777 // into the code below should be also be implemented in 2778 // the cost-model. 2779 // 2780 //===------------------------------------------------===// 2781 Constant *Zero = Builder.getInt32(0); 2782 2783 // In order to support reduction variables we need to be able to vectorize 2784 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2785 // stages. First, we create a new vector PHI node with no incoming edges. 2786 // We use this value when we vectorize all of the instructions that use the 2787 // PHI. Next, after all of the instructions in the block are complete we 2788 // add the new incoming edges to the PHI. At this point all of the 2789 // instructions in the basic block are vectorized, so we can use them to 2790 // construct the PHI. 2791 PhiVector RdxPHIsToFix; 2792 2793 // Scan the loop in a topological order to ensure that defs are vectorized 2794 // before users. 2795 LoopBlocksDFS DFS(OrigLoop); 2796 DFS.perform(LI); 2797 2798 // Vectorize all of the blocks in the original loop. 2799 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2800 be = DFS.endRPO(); bb != be; ++bb) 2801 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2802 2803 // At this point every instruction in the original loop is widened to 2804 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2805 // that we vectorized. The PHI nodes are currently empty because we did 2806 // not want to introduce cycles. Notice that the remaining PHI nodes 2807 // that we need to fix are reduction variables. 2808 2809 // Create the 'reduced' values for each of the induction vars. 2810 // The reduced values are the vector values that we scalarize and combine 2811 // after the loop is finished. 2812 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2813 it != e; ++it) { 2814 PHINode *RdxPhi = *it; 2815 assert(RdxPhi && "Unable to recover vectorized PHI"); 2816 2817 // Find the reduction variable descriptor. 2818 assert(Legal->getReductionVars()->count(RdxPhi) && 2819 "Unable to find the reduction variable"); 2820 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2821 (*Legal->getReductionVars())[RdxPhi]; 2822 2823 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2824 2825 // We need to generate a reduction vector from the incoming scalar. 2826 // To do so, we need to generate the 'identity' vector and override 2827 // one of the elements with the incoming scalar reduction. We need 2828 // to do it in the vector-loop preheader. 2829 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2830 2831 // This is the vector-clone of the value that leaves the loop. 2832 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2833 Type *VecTy = VectorExit[0]->getType(); 2834 2835 // Find the reduction identity variable. Zero for addition, or, xor, 2836 // one for multiplication, -1 for And. 2837 Value *Identity; 2838 Value *VectorStart; 2839 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2840 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2841 // MinMax reduction have the start value as their identify. 2842 if (VF == 1) { 2843 VectorStart = Identity = RdxDesc.StartValue; 2844 } else { 2845 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2846 RdxDesc.StartValue, 2847 "minmax.ident"); 2848 } 2849 } else { 2850 // Handle other reduction kinds: 2851 Constant *Iden = 2852 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2853 VecTy->getScalarType()); 2854 if (VF == 1) { 2855 Identity = Iden; 2856 // This vector is the Identity vector where the first element is the 2857 // incoming scalar reduction. 2858 VectorStart = RdxDesc.StartValue; 2859 } else { 2860 Identity = ConstantVector::getSplat(VF, Iden); 2861 2862 // This vector is the Identity vector where the first element is the 2863 // incoming scalar reduction. 2864 VectorStart = Builder.CreateInsertElement(Identity, 2865 RdxDesc.StartValue, Zero); 2866 } 2867 } 2868 2869 // Fix the vector-loop phi. 2870 2871 // Reductions do not have to start at zero. They can start with 2872 // any loop invariant values. 2873 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2874 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2875 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2876 VectorParts &Val = getVectorValue(LoopVal); 2877 for (unsigned part = 0; part < UF; ++part) { 2878 // Make sure to add the reduction stat value only to the 2879 // first unroll part. 2880 Value *StartVal = (part == 0) ? VectorStart : Identity; 2881 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 2882 LoopVectorPreHeader); 2883 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2884 LoopVectorBody.back()); 2885 } 2886 2887 // Before each round, move the insertion point right between 2888 // the PHIs and the values we are going to write. 2889 // This allows us to write both PHINodes and the extractelement 2890 // instructions. 2891 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2892 2893 VectorParts RdxParts; 2894 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2895 for (unsigned part = 0; part < UF; ++part) { 2896 // This PHINode contains the vectorized reduction variable, or 2897 // the initial value vector, if we bypass the vector loop. 2898 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2899 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2900 Value *StartVal = (part == 0) ? VectorStart : Identity; 2901 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2902 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2903 NewPhi->addIncoming(RdxExitVal[part], 2904 LoopVectorBody.back()); 2905 RdxParts.push_back(NewPhi); 2906 } 2907 2908 // Reduce all of the unrolled parts into a single vector. 2909 Value *ReducedPartRdx = RdxParts[0]; 2910 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2911 setDebugLocFromInst(Builder, ReducedPartRdx); 2912 for (unsigned part = 1; part < UF; ++part) { 2913 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2914 // Floating point operations had to be 'fast' to enable the reduction. 2915 ReducedPartRdx = addFastMathFlag( 2916 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2917 ReducedPartRdx, "bin.rdx")); 2918 else 2919 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2920 ReducedPartRdx, RdxParts[part]); 2921 } 2922 2923 if (VF > 1) { 2924 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2925 // and vector ops, reducing the set of values being computed by half each 2926 // round. 2927 assert(isPowerOf2_32(VF) && 2928 "Reduction emission only supported for pow2 vectors!"); 2929 Value *TmpVec = ReducedPartRdx; 2930 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2931 for (unsigned i = VF; i != 1; i >>= 1) { 2932 // Move the upper half of the vector to the lower half. 2933 for (unsigned j = 0; j != i/2; ++j) 2934 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2935 2936 // Fill the rest of the mask with undef. 2937 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2938 UndefValue::get(Builder.getInt32Ty())); 2939 2940 Value *Shuf = 2941 Builder.CreateShuffleVector(TmpVec, 2942 UndefValue::get(TmpVec->getType()), 2943 ConstantVector::get(ShuffleMask), 2944 "rdx.shuf"); 2945 2946 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2947 // Floating point operations had to be 'fast' to enable the reduction. 2948 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2949 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2950 else 2951 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2952 } 2953 2954 // The result is in the first element of the vector. 2955 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2956 Builder.getInt32(0)); 2957 } 2958 2959 // Create a phi node that merges control-flow from the backedge-taken check 2960 // block and the middle block. 2961 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2962 LoopScalarPreHeader->getTerminator()); 2963 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 2964 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2965 2966 // Now, we need to fix the users of the reduction variable 2967 // inside and outside of the scalar remainder loop. 2968 // We know that the loop is in LCSSA form. We need to update the 2969 // PHI nodes in the exit blocks. 2970 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2971 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2972 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2973 if (!LCSSAPhi) break; 2974 2975 // All PHINodes need to have a single entry edge, or two if 2976 // we already fixed them. 2977 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2978 2979 // We found our reduction value exit-PHI. Update it with the 2980 // incoming bypass edge. 2981 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2982 // Add an edge coming from the bypass. 2983 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2984 break; 2985 } 2986 }// end of the LCSSA phi scan. 2987 2988 // Fix the scalar loop reduction variable with the incoming reduction sum 2989 // from the vector body and from the backedge value. 2990 int IncomingEdgeBlockIdx = 2991 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2992 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2993 // Pick the other block. 2994 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2995 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 2996 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2997 }// end of for each redux variable. 2998 2999 fixLCSSAPHIs(); 3000 3001 // Remove redundant induction instructions. 3002 cse(LoopVectorBody); 3003 } 3004 3005 void InnerLoopVectorizer::fixLCSSAPHIs() { 3006 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3007 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 3008 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3009 if (!LCSSAPhi) break; 3010 if (LCSSAPhi->getNumIncomingValues() == 1) 3011 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3012 LoopMiddleBlock); 3013 } 3014 } 3015 3016 InnerLoopVectorizer::VectorParts 3017 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3018 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3019 "Invalid edge"); 3020 3021 // Look for cached value. 3022 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 3023 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3024 if (ECEntryIt != MaskCache.end()) 3025 return ECEntryIt->second; 3026 3027 VectorParts SrcMask = createBlockInMask(Src); 3028 3029 // The terminator has to be a branch inst! 3030 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3031 assert(BI && "Unexpected terminator found"); 3032 3033 if (BI->isConditional()) { 3034 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3035 3036 if (BI->getSuccessor(0) != Dst) 3037 for (unsigned part = 0; part < UF; ++part) 3038 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3039 3040 for (unsigned part = 0; part < UF; ++part) 3041 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 3042 3043 MaskCache[Edge] = EdgeMask; 3044 return EdgeMask; 3045 } 3046 3047 MaskCache[Edge] = SrcMask; 3048 return SrcMask; 3049 } 3050 3051 InnerLoopVectorizer::VectorParts 3052 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 3053 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 3054 3055 // Loop incoming mask is all-one. 3056 if (OrigLoop->getHeader() == BB) { 3057 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 3058 return getVectorValue(C); 3059 } 3060 3061 // This is the block mask. We OR all incoming edges, and with zero. 3062 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 3063 VectorParts BlockMask = getVectorValue(Zero); 3064 3065 // For each pred: 3066 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 3067 VectorParts EM = createEdgeMask(*it, BB); 3068 for (unsigned part = 0; part < UF; ++part) 3069 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 3070 } 3071 3072 return BlockMask; 3073 } 3074 3075 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 3076 InnerLoopVectorizer::VectorParts &Entry, 3077 unsigned UF, unsigned VF, PhiVector *PV) { 3078 PHINode* P = cast<PHINode>(PN); 3079 // Handle reduction variables: 3080 if (Legal->getReductionVars()->count(P)) { 3081 for (unsigned part = 0; part < UF; ++part) { 3082 // This is phase one of vectorizing PHIs. 3083 Type *VecTy = (VF == 1) ? PN->getType() : 3084 VectorType::get(PN->getType(), VF); 3085 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 3086 LoopVectorBody.back()-> getFirstInsertionPt()); 3087 } 3088 PV->push_back(P); 3089 return; 3090 } 3091 3092 setDebugLocFromInst(Builder, P); 3093 // Check for PHI nodes that are lowered to vector selects. 3094 if (P->getParent() != OrigLoop->getHeader()) { 3095 // We know that all PHIs in non-header blocks are converted into 3096 // selects, so we don't have to worry about the insertion order and we 3097 // can just use the builder. 3098 // At this point we generate the predication tree. There may be 3099 // duplications since this is a simple recursive scan, but future 3100 // optimizations will clean it up. 3101 3102 unsigned NumIncoming = P->getNumIncomingValues(); 3103 3104 // Generate a sequence of selects of the form: 3105 // SELECT(Mask3, In3, 3106 // SELECT(Mask2, In2, 3107 // ( ...))) 3108 for (unsigned In = 0; In < NumIncoming; In++) { 3109 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 3110 P->getParent()); 3111 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 3112 3113 for (unsigned part = 0; part < UF; ++part) { 3114 // We might have single edge PHIs (blocks) - use an identity 3115 // 'select' for the first PHI operand. 3116 if (In == 0) 3117 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3118 In0[part]); 3119 else 3120 // Select between the current value and the previous incoming edge 3121 // based on the incoming mask. 3122 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 3123 Entry[part], "predphi"); 3124 } 3125 } 3126 return; 3127 } 3128 3129 // This PHINode must be an induction variable. 3130 // Make sure that we know about it. 3131 assert(Legal->getInductionVars()->count(P) && 3132 "Not an induction variable"); 3133 3134 LoopVectorizationLegality::InductionInfo II = 3135 Legal->getInductionVars()->lookup(P); 3136 3137 switch (II.IK) { 3138 case LoopVectorizationLegality::IK_NoInduction: 3139 llvm_unreachable("Unknown induction"); 3140 case LoopVectorizationLegality::IK_IntInduction: { 3141 assert(P->getType() == II.StartValue->getType() && "Types must match"); 3142 Type *PhiTy = P->getType(); 3143 Value *Broadcasted; 3144 if (P == OldInduction) { 3145 // Handle the canonical induction variable. We might have had to 3146 // extend the type. 3147 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 3148 } else { 3149 // Handle other induction variables that are now based on the 3150 // canonical one. 3151 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 3152 "normalized.idx"); 3153 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 3154 Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx, 3155 "offset.idx"); 3156 } 3157 Broadcasted = getBroadcastInstrs(Broadcasted); 3158 // After broadcasting the induction variable we need to make the vector 3159 // consecutive by adding 0, 1, 2, etc. 3160 for (unsigned part = 0; part < UF; ++part) 3161 Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false); 3162 return; 3163 } 3164 case LoopVectorizationLegality::IK_ReverseIntInduction: 3165 case LoopVectorizationLegality::IK_PtrInduction: 3166 case LoopVectorizationLegality::IK_ReversePtrInduction: 3167 // Handle reverse integer and pointer inductions. 3168 Value *StartIdx = ExtendedIdx; 3169 // This is the normalized GEP that starts counting at zero. 3170 Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx, 3171 "normalized.idx"); 3172 3173 // Handle the reverse integer induction variable case. 3174 if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) { 3175 IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType()); 3176 Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy, 3177 "resize.norm.idx"); 3178 Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI, 3179 "reverse.idx"); 3180 3181 // This is a new value so do not hoist it out. 3182 Value *Broadcasted = getBroadcastInstrs(ReverseInd); 3183 // After broadcasting the induction variable we need to make the 3184 // vector consecutive by adding ... -3, -2, -1, 0. 3185 for (unsigned part = 0; part < UF; ++part) 3186 Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part, 3187 true); 3188 return; 3189 } 3190 3191 // Handle the pointer induction variable case. 3192 assert(P->getType()->isPointerTy() && "Unexpected type."); 3193 3194 // Is this a reverse induction ptr or a consecutive induction ptr. 3195 bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction == 3196 II.IK); 3197 3198 // This is the vector of results. Notice that we don't generate 3199 // vector geps because scalar geps result in better code. 3200 for (unsigned part = 0; part < UF; ++part) { 3201 if (VF == 1) { 3202 int EltIndex = (part) * (Reverse ? -1 : 1); 3203 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3204 Value *GlobalIdx; 3205 if (Reverse) 3206 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3207 else 3208 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3209 3210 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3211 "next.gep"); 3212 Entry[part] = SclrGep; 3213 continue; 3214 } 3215 3216 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3217 for (unsigned int i = 0; i < VF; ++i) { 3218 int EltIndex = (i + part * VF) * (Reverse ? -1 : 1); 3219 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3220 Value *GlobalIdx; 3221 if (!Reverse) 3222 GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx"); 3223 else 3224 GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx"); 3225 3226 Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx, 3227 "next.gep"); 3228 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3229 Builder.getInt32(i), 3230 "insert.gep"); 3231 } 3232 Entry[part] = VecVal; 3233 } 3234 return; 3235 } 3236 } 3237 3238 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3239 // For each instruction in the old loop. 3240 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3241 VectorParts &Entry = WidenMap.get(it); 3242 switch (it->getOpcode()) { 3243 case Instruction::Br: 3244 // Nothing to do for PHIs and BR, since we already took care of the 3245 // loop control flow instructions. 3246 continue; 3247 case Instruction::PHI:{ 3248 // Vectorize PHINodes. 3249 widenPHIInstruction(it, Entry, UF, VF, PV); 3250 continue; 3251 }// End of PHI. 3252 3253 case Instruction::Add: 3254 case Instruction::FAdd: 3255 case Instruction::Sub: 3256 case Instruction::FSub: 3257 case Instruction::Mul: 3258 case Instruction::FMul: 3259 case Instruction::UDiv: 3260 case Instruction::SDiv: 3261 case Instruction::FDiv: 3262 case Instruction::URem: 3263 case Instruction::SRem: 3264 case Instruction::FRem: 3265 case Instruction::Shl: 3266 case Instruction::LShr: 3267 case Instruction::AShr: 3268 case Instruction::And: 3269 case Instruction::Or: 3270 case Instruction::Xor: { 3271 // Just widen binops. 3272 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3273 setDebugLocFromInst(Builder, BinOp); 3274 VectorParts &A = getVectorValue(it->getOperand(0)); 3275 VectorParts &B = getVectorValue(it->getOperand(1)); 3276 3277 // Use this vector value for all users of the original instruction. 3278 for (unsigned Part = 0; Part < UF; ++Part) { 3279 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3280 3281 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3282 VecOp->copyIRFlags(BinOp); 3283 3284 Entry[Part] = V; 3285 } 3286 3287 propagateMetadata(Entry, it); 3288 break; 3289 } 3290 case Instruction::Select: { 3291 // Widen selects. 3292 // If the selector is loop invariant we can create a select 3293 // instruction with a scalar condition. Otherwise, use vector-select. 3294 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3295 OrigLoop); 3296 setDebugLocFromInst(Builder, it); 3297 3298 // The condition can be loop invariant but still defined inside the 3299 // loop. This means that we can't just use the original 'cond' value. 3300 // We have to take the 'vectorized' value and pick the first lane. 3301 // Instcombine will make this a no-op. 3302 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3303 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3304 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3305 3306 Value *ScalarCond = (VF == 1) ? Cond[0] : 3307 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3308 3309 for (unsigned Part = 0; Part < UF; ++Part) { 3310 Entry[Part] = Builder.CreateSelect( 3311 InvariantCond ? ScalarCond : Cond[Part], 3312 Op0[Part], 3313 Op1[Part]); 3314 } 3315 3316 propagateMetadata(Entry, it); 3317 break; 3318 } 3319 3320 case Instruction::ICmp: 3321 case Instruction::FCmp: { 3322 // Widen compares. Generate vector compares. 3323 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3324 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3325 setDebugLocFromInst(Builder, it); 3326 VectorParts &A = getVectorValue(it->getOperand(0)); 3327 VectorParts &B = getVectorValue(it->getOperand(1)); 3328 for (unsigned Part = 0; Part < UF; ++Part) { 3329 Value *C = nullptr; 3330 if (FCmp) 3331 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3332 else 3333 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3334 Entry[Part] = C; 3335 } 3336 3337 propagateMetadata(Entry, it); 3338 break; 3339 } 3340 3341 case Instruction::Store: 3342 case Instruction::Load: 3343 vectorizeMemoryInstruction(it); 3344 break; 3345 case Instruction::ZExt: 3346 case Instruction::SExt: 3347 case Instruction::FPToUI: 3348 case Instruction::FPToSI: 3349 case Instruction::FPExt: 3350 case Instruction::PtrToInt: 3351 case Instruction::IntToPtr: 3352 case Instruction::SIToFP: 3353 case Instruction::UIToFP: 3354 case Instruction::Trunc: 3355 case Instruction::FPTrunc: 3356 case Instruction::BitCast: { 3357 CastInst *CI = dyn_cast<CastInst>(it); 3358 setDebugLocFromInst(Builder, it); 3359 /// Optimize the special case where the source is the induction 3360 /// variable. Notice that we can only optimize the 'trunc' case 3361 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3362 /// c. other casts depend on pointer size. 3363 if (CI->getOperand(0) == OldInduction && 3364 it->getOpcode() == Instruction::Trunc) { 3365 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3366 CI->getType()); 3367 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3368 for (unsigned Part = 0; Part < UF; ++Part) 3369 Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false); 3370 propagateMetadata(Entry, it); 3371 break; 3372 } 3373 /// Vectorize casts. 3374 Type *DestTy = (VF == 1) ? CI->getType() : 3375 VectorType::get(CI->getType(), VF); 3376 3377 VectorParts &A = getVectorValue(it->getOperand(0)); 3378 for (unsigned Part = 0; Part < UF; ++Part) 3379 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3380 propagateMetadata(Entry, it); 3381 break; 3382 } 3383 3384 case Instruction::Call: { 3385 // Ignore dbg intrinsics. 3386 if (isa<DbgInfoIntrinsic>(it)) 3387 break; 3388 setDebugLocFromInst(Builder, it); 3389 3390 Module *M = BB->getParent()->getParent(); 3391 CallInst *CI = cast<CallInst>(it); 3392 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3393 assert(ID && "Not an intrinsic call!"); 3394 switch (ID) { 3395 case Intrinsic::assume: 3396 case Intrinsic::lifetime_end: 3397 case Intrinsic::lifetime_start: 3398 scalarizeInstruction(it); 3399 break; 3400 default: 3401 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); 3402 for (unsigned Part = 0; Part < UF; ++Part) { 3403 SmallVector<Value *, 4> Args; 3404 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3405 if (HasScalarOpd && i == 1) { 3406 Args.push_back(CI->getArgOperand(i)); 3407 continue; 3408 } 3409 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3410 Args.push_back(Arg[Part]); 3411 } 3412 Type *Tys[] = {CI->getType()}; 3413 if (VF > 1) 3414 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3415 3416 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3417 Entry[Part] = Builder.CreateCall(F, Args); 3418 } 3419 3420 propagateMetadata(Entry, it); 3421 break; 3422 } 3423 break; 3424 } 3425 3426 default: 3427 // All other instructions are unsupported. Scalarize them. 3428 scalarizeInstruction(it); 3429 break; 3430 }// end of switch. 3431 }// end of for_each instr. 3432 } 3433 3434 void InnerLoopVectorizer::updateAnalysis() { 3435 // Forget the original basic block. 3436 SE->forgetLoop(OrigLoop); 3437 3438 // Update the dominator tree information. 3439 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3440 "Entry does not dominate exit."); 3441 3442 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3443 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3444 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3445 3446 // Due to if predication of stores we might create a sequence of "if(pred) 3447 // a[i] = ...; " blocks. 3448 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3449 if (i == 0) 3450 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3451 else if (isPredicatedBlock(i)) { 3452 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3453 } else { 3454 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3455 } 3456 } 3457 3458 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3459 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3460 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3461 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3462 3463 DEBUG(DT->verifyDomTree()); 3464 } 3465 3466 /// \brief Check whether it is safe to if-convert this phi node. 3467 /// 3468 /// Phi nodes with constant expressions that can trap are not safe to if 3469 /// convert. 3470 static bool canIfConvertPHINodes(BasicBlock *BB) { 3471 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3472 PHINode *Phi = dyn_cast<PHINode>(I); 3473 if (!Phi) 3474 return true; 3475 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3476 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3477 if (C->canTrap()) 3478 return false; 3479 } 3480 return true; 3481 } 3482 3483 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3484 if (!EnableIfConversion) { 3485 emitAnalysis(Report() << "if-conversion is disabled"); 3486 return false; 3487 } 3488 3489 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3490 3491 // A list of pointers that we can safely read and write to. 3492 SmallPtrSet<Value *, 8> SafePointes; 3493 3494 // Collect safe addresses. 3495 for (Loop::block_iterator BI = TheLoop->block_begin(), 3496 BE = TheLoop->block_end(); BI != BE; ++BI) { 3497 BasicBlock *BB = *BI; 3498 3499 if (blockNeedsPredication(BB)) 3500 continue; 3501 3502 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3503 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3504 SafePointes.insert(LI->getPointerOperand()); 3505 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3506 SafePointes.insert(SI->getPointerOperand()); 3507 } 3508 } 3509 3510 // Collect the blocks that need predication. 3511 BasicBlock *Header = TheLoop->getHeader(); 3512 for (Loop::block_iterator BI = TheLoop->block_begin(), 3513 BE = TheLoop->block_end(); BI != BE; ++BI) { 3514 BasicBlock *BB = *BI; 3515 3516 // We don't support switch statements inside loops. 3517 if (!isa<BranchInst>(BB->getTerminator())) { 3518 emitAnalysis(Report(BB->getTerminator()) 3519 << "loop contains a switch statement"); 3520 return false; 3521 } 3522 3523 // We must be able to predicate all blocks that need to be predicated. 3524 if (blockNeedsPredication(BB)) { 3525 if (!blockCanBePredicated(BB, SafePointes)) { 3526 emitAnalysis(Report(BB->getTerminator()) 3527 << "control flow cannot be substituted for a select"); 3528 return false; 3529 } 3530 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3531 emitAnalysis(Report(BB->getTerminator()) 3532 << "control flow cannot be substituted for a select"); 3533 return false; 3534 } 3535 } 3536 3537 // We can if-convert this loop. 3538 return true; 3539 } 3540 3541 bool LoopVectorizationLegality::canVectorize() { 3542 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3543 // be canonicalized. 3544 if (!TheLoop->getLoopPreheader()) { 3545 emitAnalysis( 3546 Report() << "loop control flow is not understood by vectorizer"); 3547 return false; 3548 } 3549 3550 // We can only vectorize innermost loops. 3551 if (TheLoop->getSubLoopsVector().size()) { 3552 emitAnalysis(Report() << "loop is not the innermost loop"); 3553 return false; 3554 } 3555 3556 // We must have a single backedge. 3557 if (TheLoop->getNumBackEdges() != 1) { 3558 emitAnalysis( 3559 Report() << "loop control flow is not understood by vectorizer"); 3560 return false; 3561 } 3562 3563 // We must have a single exiting block. 3564 if (!TheLoop->getExitingBlock()) { 3565 emitAnalysis( 3566 Report() << "loop control flow is not understood by vectorizer"); 3567 return false; 3568 } 3569 3570 // We only handle bottom-tested loops, i.e. loop in which the condition is 3571 // checked at the end of each iteration. With that we can assume that all 3572 // instructions in the loop are executed the same number of times. 3573 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 3574 emitAnalysis( 3575 Report() << "loop control flow is not understood by vectorizer"); 3576 return false; 3577 } 3578 3579 // We need to have a loop header. 3580 DEBUG(dbgs() << "LV: Found a loop: " << 3581 TheLoop->getHeader()->getName() << '\n'); 3582 3583 // Check if we can if-convert non-single-bb loops. 3584 unsigned NumBlocks = TheLoop->getNumBlocks(); 3585 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3586 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3587 return false; 3588 } 3589 3590 // ScalarEvolution needs to be able to find the exit count. 3591 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3592 if (ExitCount == SE->getCouldNotCompute()) { 3593 emitAnalysis(Report() << "could not determine number of loop iterations"); 3594 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3595 return false; 3596 } 3597 3598 // Check if we can vectorize the instructions and CFG in this loop. 3599 if (!canVectorizeInstrs()) { 3600 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3601 return false; 3602 } 3603 3604 // Go over each instruction and look at memory deps. 3605 if (!canVectorizeMemory()) { 3606 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3607 return false; 3608 } 3609 3610 // Collect all of the variables that remain uniform after vectorization. 3611 collectLoopUniforms(); 3612 3613 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3614 (PtrRtCheck.Need ? " (with a runtime bound check)" : "") 3615 <<"!\n"); 3616 3617 // Okay! We can vectorize. At this point we don't have any other mem analysis 3618 // which may limit our maximum vectorization factor, so just return true with 3619 // no restrictions. 3620 return true; 3621 } 3622 3623 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3624 if (Ty->isPointerTy()) 3625 return DL.getIntPtrType(Ty); 3626 3627 // It is possible that char's or short's overflow when we ask for the loop's 3628 // trip count, work around this by changing the type size. 3629 if (Ty->getScalarSizeInBits() < 32) 3630 return Type::getInt32Ty(Ty->getContext()); 3631 3632 return Ty; 3633 } 3634 3635 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3636 Ty0 = convertPointerToIntegerType(DL, Ty0); 3637 Ty1 = convertPointerToIntegerType(DL, Ty1); 3638 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3639 return Ty0; 3640 return Ty1; 3641 } 3642 3643 /// \brief Check that the instruction has outside loop users and is not an 3644 /// identified reduction variable. 3645 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3646 SmallPtrSetImpl<Value *> &Reductions) { 3647 // Reduction instructions are allowed to have exit users. All other 3648 // instructions must not have external users. 3649 if (!Reductions.count(Inst)) 3650 //Check that all of the users of the loop are inside the BB. 3651 for (User *U : Inst->users()) { 3652 Instruction *UI = cast<Instruction>(U); 3653 // This user may be a reduction exit value. 3654 if (!TheLoop->contains(UI)) { 3655 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3656 return true; 3657 } 3658 } 3659 return false; 3660 } 3661 3662 bool LoopVectorizationLegality::canVectorizeInstrs() { 3663 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3664 BasicBlock *Header = TheLoop->getHeader(); 3665 3666 // Look for the attribute signaling the absence of NaNs. 3667 Function &F = *Header->getParent(); 3668 if (F.hasFnAttribute("no-nans-fp-math")) 3669 HasFunNoNaNAttr = F.getAttributes().getAttribute( 3670 AttributeSet::FunctionIndex, 3671 "no-nans-fp-math").getValueAsString() == "true"; 3672 3673 // For each block in the loop. 3674 for (Loop::block_iterator bb = TheLoop->block_begin(), 3675 be = TheLoop->block_end(); bb != be; ++bb) { 3676 3677 // Scan the instructions in the block and look for hazards. 3678 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3679 ++it) { 3680 3681 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3682 Type *PhiTy = Phi->getType(); 3683 // Check that this PHI type is allowed. 3684 if (!PhiTy->isIntegerTy() && 3685 !PhiTy->isFloatingPointTy() && 3686 !PhiTy->isPointerTy()) { 3687 emitAnalysis(Report(it) 3688 << "loop control flow is not understood by vectorizer"); 3689 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3690 return false; 3691 } 3692 3693 // If this PHINode is not in the header block, then we know that we 3694 // can convert it to select during if-conversion. No need to check if 3695 // the PHIs in this block are induction or reduction variables. 3696 if (*bb != Header) { 3697 // Check that this instruction has no outside users or is an 3698 // identified reduction value with an outside user. 3699 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3700 continue; 3701 emitAnalysis(Report(it) << "value could not be identified as " 3702 "an induction or reduction variable"); 3703 return false; 3704 } 3705 3706 // We only allow if-converted PHIs with more than two incoming values. 3707 if (Phi->getNumIncomingValues() != 2) { 3708 emitAnalysis(Report(it) 3709 << "control flow not understood by vectorizer"); 3710 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3711 return false; 3712 } 3713 3714 // This is the value coming from the preheader. 3715 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3716 // Check if this is an induction variable. 3717 InductionKind IK = isInductionVariable(Phi); 3718 3719 if (IK_NoInduction != IK) { 3720 // Get the widest type. 3721 if (!WidestIndTy) 3722 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3723 else 3724 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3725 3726 // Int inductions are special because we only allow one IV. 3727 if (IK == IK_IntInduction) { 3728 // Use the phi node with the widest type as induction. Use the last 3729 // one if there are multiple (no good reason for doing this other 3730 // than it is expedient). 3731 if (!Induction || PhiTy == WidestIndTy) 3732 Induction = Phi; 3733 } 3734 3735 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3736 Inductions[Phi] = InductionInfo(StartValue, IK); 3737 3738 // Until we explicitly handle the case of an induction variable with 3739 // an outside loop user we have to give up vectorizing this loop. 3740 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3741 emitAnalysis(Report(it) << "use of induction value outside of the " 3742 "loop is not handled by vectorizer"); 3743 return false; 3744 } 3745 3746 continue; 3747 } 3748 3749 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3750 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3751 continue; 3752 } 3753 if (AddReductionVar(Phi, RK_IntegerMult)) { 3754 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3755 continue; 3756 } 3757 if (AddReductionVar(Phi, RK_IntegerOr)) { 3758 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3759 continue; 3760 } 3761 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3762 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3763 continue; 3764 } 3765 if (AddReductionVar(Phi, RK_IntegerXor)) { 3766 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3767 continue; 3768 } 3769 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3770 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3771 continue; 3772 } 3773 if (AddReductionVar(Phi, RK_FloatMult)) { 3774 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3775 continue; 3776 } 3777 if (AddReductionVar(Phi, RK_FloatAdd)) { 3778 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3779 continue; 3780 } 3781 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3782 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3783 "\n"); 3784 continue; 3785 } 3786 3787 emitAnalysis(Report(it) << "value that could not be identified as " 3788 "reduction is used outside the loop"); 3789 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3790 return false; 3791 }// end of PHI handling 3792 3793 // We still don't handle functions. However, we can ignore dbg intrinsic 3794 // calls and we do handle certain intrinsic and libm functions. 3795 CallInst *CI = dyn_cast<CallInst>(it); 3796 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3797 emitAnalysis(Report(it) << "call instruction cannot be vectorized"); 3798 DEBUG(dbgs() << "LV: Found a call site.\n"); 3799 return false; 3800 } 3801 3802 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3803 // second argument is the same (i.e. loop invariant) 3804 if (CI && 3805 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3806 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3807 emitAnalysis(Report(it) 3808 << "intrinsic instruction cannot be vectorized"); 3809 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3810 return false; 3811 } 3812 } 3813 3814 // Check that the instruction return type is vectorizable. 3815 // Also, we can't vectorize extractelement instructions. 3816 if ((!VectorType::isValidElementType(it->getType()) && 3817 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3818 emitAnalysis(Report(it) 3819 << "instruction return type cannot be vectorized"); 3820 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3821 return false; 3822 } 3823 3824 // Check that the stored type is vectorizable. 3825 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3826 Type *T = ST->getValueOperand()->getType(); 3827 if (!VectorType::isValidElementType(T)) { 3828 emitAnalysis(Report(ST) << "store instruction cannot be vectorized"); 3829 return false; 3830 } 3831 if (EnableMemAccessVersioning) 3832 collectStridedAcccess(ST); 3833 } 3834 3835 if (EnableMemAccessVersioning) 3836 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3837 collectStridedAcccess(LI); 3838 3839 // Reduction instructions are allowed to have exit users. 3840 // All other instructions must not have external users. 3841 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3842 emitAnalysis(Report(it) << "value cannot be used outside the loop"); 3843 return false; 3844 } 3845 3846 } // next instr. 3847 3848 } 3849 3850 if (!Induction) { 3851 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3852 if (Inductions.empty()) { 3853 emitAnalysis(Report() 3854 << "loop induction variable could not be identified"); 3855 return false; 3856 } 3857 } 3858 3859 return true; 3860 } 3861 3862 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3863 /// return the induction operand of the gep pointer. 3864 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3865 const DataLayout *DL, Loop *Lp) { 3866 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3867 if (!GEP) 3868 return Ptr; 3869 3870 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3871 3872 // Check that all of the gep indices are uniform except for our induction 3873 // operand. 3874 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3875 if (i != InductionOperand && 3876 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3877 return Ptr; 3878 return GEP->getOperand(InductionOperand); 3879 } 3880 3881 ///\brief Look for a cast use of the passed value. 3882 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3883 Value *UniqueCast = nullptr; 3884 for (User *U : Ptr->users()) { 3885 CastInst *CI = dyn_cast<CastInst>(U); 3886 if (CI && CI->getType() == Ty) { 3887 if (!UniqueCast) 3888 UniqueCast = CI; 3889 else 3890 return nullptr; 3891 } 3892 } 3893 return UniqueCast; 3894 } 3895 3896 ///\brief Get the stride of a pointer access in a loop. 3897 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3898 /// pointer to the Value, or null otherwise. 3899 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3900 const DataLayout *DL, Loop *Lp) { 3901 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3902 if (!PtrTy || PtrTy->isAggregateType()) 3903 return nullptr; 3904 3905 // Try to remove a gep instruction to make the pointer (actually index at this 3906 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3907 // pointer, otherwise, we are analyzing the index. 3908 Value *OrigPtr = Ptr; 3909 3910 // The size of the pointer access. 3911 int64_t PtrAccessSize = 1; 3912 3913 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3914 const SCEV *V = SE->getSCEV(Ptr); 3915 3916 if (Ptr != OrigPtr) 3917 // Strip off casts. 3918 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3919 V = C->getOperand(); 3920 3921 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3922 if (!S) 3923 return nullptr; 3924 3925 V = S->getStepRecurrence(*SE); 3926 if (!V) 3927 return nullptr; 3928 3929 // Strip off the size of access multiplication if we are still analyzing the 3930 // pointer. 3931 if (OrigPtr == Ptr) { 3932 DL->getTypeAllocSize(PtrTy->getElementType()); 3933 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3934 if (M->getOperand(0)->getSCEVType() != scConstant) 3935 return nullptr; 3936 3937 const APInt &APStepVal = 3938 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3939 3940 // Huge step value - give up. 3941 if (APStepVal.getBitWidth() > 64) 3942 return nullptr; 3943 3944 int64_t StepVal = APStepVal.getSExtValue(); 3945 if (PtrAccessSize != StepVal) 3946 return nullptr; 3947 V = M->getOperand(1); 3948 } 3949 } 3950 3951 // Strip off casts. 3952 Type *StripedOffRecurrenceCast = nullptr; 3953 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3954 StripedOffRecurrenceCast = C->getType(); 3955 V = C->getOperand(); 3956 } 3957 3958 // Look for the loop invariant symbolic value. 3959 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3960 if (!U) 3961 return nullptr; 3962 3963 Value *Stride = U->getValue(); 3964 if (!Lp->isLoopInvariant(Stride)) 3965 return nullptr; 3966 3967 // If we have stripped off the recurrence cast we have to make sure that we 3968 // return the value that is used in this loop so that we can replace it later. 3969 if (StripedOffRecurrenceCast) 3970 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3971 3972 return Stride; 3973 } 3974 3975 void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) { 3976 Value *Ptr = nullptr; 3977 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3978 Ptr = LI->getPointerOperand(); 3979 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3980 Ptr = SI->getPointerOperand(); 3981 else 3982 return; 3983 3984 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3985 if (!Stride) 3986 return; 3987 3988 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3989 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3990 Strides[Ptr] = Stride; 3991 StrideSet.insert(Stride); 3992 } 3993 3994 void LoopVectorizationLegality::collectLoopUniforms() { 3995 // We now know that the loop is vectorizable! 3996 // Collect variables that will remain uniform after vectorization. 3997 std::vector<Value*> Worklist; 3998 BasicBlock *Latch = TheLoop->getLoopLatch(); 3999 4000 // Start with the conditional branch and walk up the block. 4001 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4002 4003 // Also add all consecutive pointer values; these values will be uniform 4004 // after vectorization (and subsequent cleanup) and, until revectorization is 4005 // supported, all dependencies must also be uniform. 4006 for (Loop::block_iterator B = TheLoop->block_begin(), 4007 BE = TheLoop->block_end(); B != BE; ++B) 4008 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 4009 I != IE; ++I) 4010 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 4011 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4012 4013 while (Worklist.size()) { 4014 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4015 Worklist.pop_back(); 4016 4017 // Look at instructions inside this loop. 4018 // Stop when reaching PHI nodes. 4019 // TODO: we need to follow values all over the loop, not only in this block. 4020 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4021 continue; 4022 4023 // This is a known uniform. 4024 Uniforms.insert(I); 4025 4026 // Insert all operands. 4027 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4028 } 4029 } 4030 4031 namespace { 4032 /// \brief Analyses memory accesses in a loop. 4033 /// 4034 /// Checks whether run time pointer checks are needed and builds sets for data 4035 /// dependence checking. 4036 class AccessAnalysis { 4037 public: 4038 /// \brief Read or write access location. 4039 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4040 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4041 4042 /// \brief Set of potential dependent memory accesses. 4043 typedef EquivalenceClasses<MemAccessInfo> DepCandidates; 4044 4045 AccessAnalysis(const DataLayout *Dl, AliasAnalysis *AA, DepCandidates &DA) : 4046 DL(Dl), AST(*AA), DepCands(DA), IsRTCheckNeeded(false) {} 4047 4048 /// \brief Register a load and whether it is only read from. 4049 void addLoad(AliasAnalysis::Location &Loc, bool IsReadOnly) { 4050 Value *Ptr = const_cast<Value*>(Loc.Ptr); 4051 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 4052 Accesses.insert(MemAccessInfo(Ptr, false)); 4053 if (IsReadOnly) 4054 ReadOnlyPtr.insert(Ptr); 4055 } 4056 4057 /// \brief Register a store. 4058 void addStore(AliasAnalysis::Location &Loc) { 4059 Value *Ptr = const_cast<Value*>(Loc.Ptr); 4060 AST.add(Ptr, AliasAnalysis::UnknownSize, Loc.AATags); 4061 Accesses.insert(MemAccessInfo(Ptr, true)); 4062 } 4063 4064 /// \brief Check whether we can check the pointers at runtime for 4065 /// non-intersection. 4066 bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 4067 unsigned &NumComparisons, ScalarEvolution *SE, 4068 Loop *TheLoop, ValueToValueMap &Strides, 4069 bool ShouldCheckStride = false); 4070 4071 /// \brief Goes over all memory accesses, checks whether a RT check is needed 4072 /// and builds sets of dependent accesses. 4073 void buildDependenceSets() { 4074 processMemAccesses(); 4075 } 4076 4077 bool isRTCheckNeeded() { return IsRTCheckNeeded; } 4078 4079 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 4080 void resetDepChecks() { CheckDeps.clear(); } 4081 4082 MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; } 4083 4084 private: 4085 typedef SetVector<MemAccessInfo> PtrAccessSet; 4086 4087 /// \brief Go over all memory access and check whether runtime pointer checks 4088 /// are needed /// and build sets of dependency check candidates. 4089 void processMemAccesses(); 4090 4091 /// Set of all accesses. 4092 PtrAccessSet Accesses; 4093 4094 /// Set of accesses that need a further dependence check. 4095 MemAccessInfoSet CheckDeps; 4096 4097 /// Set of pointers that are read only. 4098 SmallPtrSet<Value*, 16> ReadOnlyPtr; 4099 4100 const DataLayout *DL; 4101 4102 /// An alias set tracker to partition the access set by underlying object and 4103 //intrinsic property (such as TBAA metadata). 4104 AliasSetTracker AST; 4105 4106 /// Sets of potentially dependent accesses - members of one set share an 4107 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 4108 /// dependence check. 4109 DepCandidates &DepCands; 4110 4111 bool IsRTCheckNeeded; 4112 }; 4113 4114 } // end anonymous namespace 4115 4116 /// \brief Check whether a pointer can participate in a runtime bounds check. 4117 static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides, 4118 Value *Ptr) { 4119 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr); 4120 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4121 if (!AR) 4122 return false; 4123 4124 return AR->isAffine(); 4125 } 4126 4127 /// \brief Check the stride of the pointer and ensure that it does not wrap in 4128 /// the address space. 4129 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4130 const Loop *Lp, ValueToValueMap &StridesMap); 4131 4132 bool AccessAnalysis::canCheckPtrAtRT( 4133 LoopVectorizationLegality::RuntimePointerCheck &RtCheck, 4134 unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop, 4135 ValueToValueMap &StridesMap, bool ShouldCheckStride) { 4136 // Find pointers with computable bounds. We are going to use this information 4137 // to place a runtime bound check. 4138 bool CanDoRT = true; 4139 4140 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 4141 NumComparisons = 0; 4142 4143 // We assign a consecutive id to access from different alias sets. 4144 // Accesses between different groups doesn't need to be checked. 4145 unsigned ASId = 1; 4146 for (auto &AS : AST) { 4147 unsigned NumReadPtrChecks = 0; 4148 unsigned NumWritePtrChecks = 0; 4149 4150 // We assign consecutive id to access from different dependence sets. 4151 // Accesses within the same set don't need a runtime check. 4152 unsigned RunningDepId = 1; 4153 DenseMap<Value *, unsigned> DepSetId; 4154 4155 for (auto A : AS) { 4156 Value *Ptr = A.getValue(); 4157 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 4158 MemAccessInfo Access(Ptr, IsWrite); 4159 4160 if (IsWrite) 4161 ++NumWritePtrChecks; 4162 else 4163 ++NumReadPtrChecks; 4164 4165 if (hasComputableBounds(SE, StridesMap, Ptr) && 4166 // When we run after a failing dependency check we have to make sure we 4167 // don't have wrapping pointers. 4168 (!ShouldCheckStride || 4169 isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) { 4170 // The id of the dependence set. 4171 unsigned DepId; 4172 4173 if (IsDepCheckNeeded) { 4174 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 4175 unsigned &LeaderId = DepSetId[Leader]; 4176 if (!LeaderId) 4177 LeaderId = RunningDepId++; 4178 DepId = LeaderId; 4179 } else 4180 // Each access has its own dependence set. 4181 DepId = RunningDepId++; 4182 4183 RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, ASId, StridesMap); 4184 4185 DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n'); 4186 } else { 4187 CanDoRT = false; 4188 } 4189 } 4190 4191 if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2) 4192 NumComparisons += 0; // Only one dependence set. 4193 else { 4194 NumComparisons += (NumWritePtrChecks * (NumReadPtrChecks + 4195 NumWritePtrChecks - 1)); 4196 } 4197 4198 ++ASId; 4199 } 4200 4201 // If the pointers that we would use for the bounds comparison have different 4202 // address spaces, assume the values aren't directly comparable, so we can't 4203 // use them for the runtime check. We also have to assume they could 4204 // overlap. In the future there should be metadata for whether address spaces 4205 // are disjoint. 4206 unsigned NumPointers = RtCheck.Pointers.size(); 4207 for (unsigned i = 0; i < NumPointers; ++i) { 4208 for (unsigned j = i + 1; j < NumPointers; ++j) { 4209 // Only need to check pointers between two different dependency sets. 4210 if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j]) 4211 continue; 4212 // Only need to check pointers in the same alias set. 4213 if (RtCheck.AliasSetId[i] != RtCheck.AliasSetId[j]) 4214 continue; 4215 4216 Value *PtrI = RtCheck.Pointers[i]; 4217 Value *PtrJ = RtCheck.Pointers[j]; 4218 4219 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 4220 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 4221 if (ASi != ASj) { 4222 DEBUG(dbgs() << "LV: Runtime check would require comparison between" 4223 " different address spaces\n"); 4224 return false; 4225 } 4226 } 4227 } 4228 4229 return CanDoRT; 4230 } 4231 4232 void AccessAnalysis::processMemAccesses() { 4233 // We process the set twice: first we process read-write pointers, last we 4234 // process read-only pointers. This allows us to skip dependence tests for 4235 // read-only pointers. 4236 4237 DEBUG(dbgs() << "LV: Processing memory accesses...\n"); 4238 DEBUG(dbgs() << " AST: "; AST.dump()); 4239 DEBUG(dbgs() << "LV: Accesses:\n"); 4240 DEBUG({ 4241 for (auto A : Accesses) 4242 dbgs() << "\t" << *A.getPointer() << " (" << 4243 (A.getInt() ? "write" : (ReadOnlyPtr.count(A.getPointer()) ? 4244 "read-only" : "read")) << ")\n"; 4245 }); 4246 4247 // The AliasSetTracker has nicely partitioned our pointers by metadata 4248 // compatibility and potential for underlying-object overlap. As a result, we 4249 // only need to check for potential pointer dependencies within each alias 4250 // set. 4251 for (auto &AS : AST) { 4252 // Note that both the alias-set tracker and the alias sets themselves used 4253 // linked lists internally and so the iteration order here is deterministic 4254 // (matching the original instruction order within each set). 4255 4256 bool SetHasWrite = false; 4257 4258 // Map of pointers to last access encountered. 4259 typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap; 4260 UnderlyingObjToAccessMap ObjToLastAccess; 4261 4262 // Set of access to check after all writes have been processed. 4263 PtrAccessSet DeferredAccesses; 4264 4265 // Iterate over each alias set twice, once to process read/write pointers, 4266 // and then to process read-only pointers. 4267 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 4268 bool UseDeferred = SetIteration > 0; 4269 PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses; 4270 4271 for (auto AV : AS) { 4272 Value *Ptr = AV.getValue(); 4273 4274 // For a single memory access in AliasSetTracker, Accesses may contain 4275 // both read and write, and they both need to be handled for CheckDeps. 4276 for (auto AC : S) { 4277 if (AC.getPointer() != Ptr) 4278 continue; 4279 4280 bool IsWrite = AC.getInt(); 4281 4282 // If we're using the deferred access set, then it contains only 4283 // reads. 4284 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 4285 if (UseDeferred && !IsReadOnlyPtr) 4286 continue; 4287 // Otherwise, the pointer must be in the PtrAccessSet, either as a 4288 // read or a write. 4289 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 4290 S.count(MemAccessInfo(Ptr, false))) && 4291 "Alias-set pointer not in the access set?"); 4292 4293 MemAccessInfo Access(Ptr, IsWrite); 4294 DepCands.insert(Access); 4295 4296 // Memorize read-only pointers for later processing and skip them in 4297 // the first round (they need to be checked after we have seen all 4298 // write pointers). Note: we also mark pointer that are not 4299 // consecutive as "read-only" pointers (so that we check 4300 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 4301 if (!UseDeferred && IsReadOnlyPtr) { 4302 DeferredAccesses.insert(Access); 4303 continue; 4304 } 4305 4306 // If this is a write - check other reads and writes for conflicts. If 4307 // this is a read only check other writes for conflicts (but only if 4308 // there is no other write to the ptr - this is an optimization to 4309 // catch "a[i] = a[i] + " without having to do a dependence check). 4310 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 4311 CheckDeps.insert(Access); 4312 IsRTCheckNeeded = true; 4313 } 4314 4315 if (IsWrite) 4316 SetHasWrite = true; 4317 4318 // Create sets of pointers connected by a shared alias set and 4319 // underlying object. 4320 typedef SmallVector<Value *, 16> ValueVector; 4321 ValueVector TempObjects; 4322 GetUnderlyingObjects(Ptr, TempObjects, DL); 4323 for (Value *UnderlyingObj : TempObjects) { 4324 UnderlyingObjToAccessMap::iterator Prev = 4325 ObjToLastAccess.find(UnderlyingObj); 4326 if (Prev != ObjToLastAccess.end()) 4327 DepCands.unionSets(Access, Prev->second); 4328 4329 ObjToLastAccess[UnderlyingObj] = Access; 4330 } 4331 } 4332 } 4333 } 4334 } 4335 } 4336 4337 namespace { 4338 /// \brief Checks memory dependences among accesses to the same underlying 4339 /// object to determine whether there vectorization is legal or not (and at 4340 /// which vectorization factor). 4341 /// 4342 /// This class works under the assumption that we already checked that memory 4343 /// locations with different underlying pointers are "must-not alias". 4344 /// We use the ScalarEvolution framework to symbolically evalutate access 4345 /// functions pairs. Since we currently don't restructure the loop we can rely 4346 /// on the program order of memory accesses to determine their safety. 4347 /// At the moment we will only deem accesses as safe for: 4348 /// * A negative constant distance assuming program order. 4349 /// 4350 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x; 4351 /// a[i] = tmp; y = a[i]; 4352 /// 4353 /// The latter case is safe because later checks guarantuee that there can't 4354 /// be a cycle through a phi node (that is, we check that "x" and "y" is not 4355 /// the same variable: a header phi can only be an induction or a reduction, a 4356 /// reduction can't have a memory sink, an induction can't have a memory 4357 /// source). This is important and must not be violated (or we have to 4358 /// resort to checking for cycles through memory). 4359 /// 4360 /// * A positive constant distance assuming program order that is bigger 4361 /// than the biggest memory access. 4362 /// 4363 /// tmp = a[i] OR b[i] = x 4364 /// a[i+2] = tmp y = b[i+2]; 4365 /// 4366 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively. 4367 /// 4368 /// * Zero distances and all accesses have the same size. 4369 /// 4370 class MemoryDepChecker { 4371 public: 4372 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 4373 typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet; 4374 4375 MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L) 4376 : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0), 4377 ShouldRetryWithRuntimeCheck(false) {} 4378 4379 /// \brief Register the location (instructions are given increasing numbers) 4380 /// of a write access. 4381 void addAccess(StoreInst *SI) { 4382 Value *Ptr = SI->getPointerOperand(); 4383 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 4384 InstMap.push_back(SI); 4385 ++AccessIdx; 4386 } 4387 4388 /// \brief Register the location (instructions are given increasing numbers) 4389 /// of a write access. 4390 void addAccess(LoadInst *LI) { 4391 Value *Ptr = LI->getPointerOperand(); 4392 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 4393 InstMap.push_back(LI); 4394 ++AccessIdx; 4395 } 4396 4397 /// \brief Check whether the dependencies between the accesses are safe. 4398 /// 4399 /// Only checks sets with elements in \p CheckDeps. 4400 bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4401 MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides); 4402 4403 /// \brief The maximum number of bytes of a vector register we can vectorize 4404 /// the accesses safely with. 4405 unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; } 4406 4407 /// \brief In same cases when the dependency check fails we can still 4408 /// vectorize the loop with a dynamic array access check. 4409 bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; } 4410 4411 private: 4412 ScalarEvolution *SE; 4413 const DataLayout *DL; 4414 const Loop *InnermostLoop; 4415 4416 /// \brief Maps access locations (ptr, read/write) to program order. 4417 DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses; 4418 4419 /// \brief Memory access instructions in program order. 4420 SmallVector<Instruction *, 16> InstMap; 4421 4422 /// \brief The program order index to be used for the next instruction. 4423 unsigned AccessIdx; 4424 4425 // We can access this many bytes in parallel safely. 4426 unsigned MaxSafeDepDistBytes; 4427 4428 /// \brief If we see a non-constant dependence distance we can still try to 4429 /// vectorize this loop with runtime checks. 4430 bool ShouldRetryWithRuntimeCheck; 4431 4432 /// \brief Check whether there is a plausible dependence between the two 4433 /// accesses. 4434 /// 4435 /// Access \p A must happen before \p B in program order. The two indices 4436 /// identify the index into the program order map. 4437 /// 4438 /// This function checks whether there is a plausible dependence (or the 4439 /// absence of such can't be proved) between the two accesses. If there is a 4440 /// plausible dependence but the dependence distance is bigger than one 4441 /// element access it records this distance in \p MaxSafeDepDistBytes (if this 4442 /// distance is smaller than any other distance encountered so far). 4443 /// Otherwise, this function returns true signaling a possible dependence. 4444 bool isDependent(const MemAccessInfo &A, unsigned AIdx, 4445 const MemAccessInfo &B, unsigned BIdx, 4446 ValueToValueMap &Strides); 4447 4448 /// \brief Check whether the data dependence could prevent store-load 4449 /// forwarding. 4450 bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize); 4451 }; 4452 4453 } // end anonymous namespace 4454 4455 static bool isInBoundsGep(Value *Ptr) { 4456 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) 4457 return GEP->isInBounds(); 4458 return false; 4459 } 4460 4461 /// \brief Check whether the access through \p Ptr has a constant stride. 4462 static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr, 4463 const Loop *Lp, ValueToValueMap &StridesMap) { 4464 const Type *Ty = Ptr->getType(); 4465 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 4466 4467 // Make sure that the pointer does not point to aggregate types. 4468 const PointerType *PtrTy = cast<PointerType>(Ty); 4469 if (PtrTy->getElementType()->isAggregateType()) { 4470 DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr << 4471 "\n"); 4472 return 0; 4473 } 4474 4475 const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr); 4476 4477 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 4478 if (!AR) { 4479 DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer " 4480 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4481 return 0; 4482 } 4483 4484 // The accesss function must stride over the innermost loop. 4485 if (Lp != AR->getLoop()) { 4486 DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << 4487 *Ptr << " SCEV: " << *PtrScev << "\n"); 4488 } 4489 4490 // The address calculation must not wrap. Otherwise, a dependence could be 4491 // inverted. 4492 // An inbounds getelementptr that is a AddRec with a unit stride 4493 // cannot wrap per definition. The unit stride requirement is checked later. 4494 // An getelementptr without an inbounds attribute and unit stride would have 4495 // to access the pointer value "0" which is undefined behavior in address 4496 // space 0, therefore we can also vectorize this case. 4497 bool IsInBoundsGEP = isInBoundsGep(Ptr); 4498 bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask); 4499 bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0; 4500 if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) { 4501 DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space " 4502 << *Ptr << " SCEV: " << *PtrScev << "\n"); 4503 return 0; 4504 } 4505 4506 // Check the step is constant. 4507 const SCEV *Step = AR->getStepRecurrence(*SE); 4508 4509 // Calculate the pointer stride and check if it is consecutive. 4510 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4511 if (!C) { 4512 DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr << 4513 " SCEV: " << *PtrScev << "\n"); 4514 return 0; 4515 } 4516 4517 int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType()); 4518 const APInt &APStepVal = C->getValue()->getValue(); 4519 4520 // Huge step value - give up. 4521 if (APStepVal.getBitWidth() > 64) 4522 return 0; 4523 4524 int64_t StepVal = APStepVal.getSExtValue(); 4525 4526 // Strided access. 4527 int64_t Stride = StepVal / Size; 4528 int64_t Rem = StepVal % Size; 4529 if (Rem) 4530 return 0; 4531 4532 // If the SCEV could wrap but we have an inbounds gep with a unit stride we 4533 // know we can't "wrap around the address space". In case of address space 4534 // zero we know that this won't happen without triggering undefined behavior. 4535 if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) && 4536 Stride != 1 && Stride != -1) 4537 return 0; 4538 4539 return Stride; 4540 } 4541 4542 bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance, 4543 unsigned TypeByteSize) { 4544 // If loads occur at a distance that is not a multiple of a feasible vector 4545 // factor store-load forwarding does not take place. 4546 // Positive dependences might cause troubles because vectorizing them might 4547 // prevent store-load forwarding making vectorized code run a lot slower. 4548 // a[i] = a[i-3] ^ a[i-8]; 4549 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 4550 // hence on your typical architecture store-load forwarding does not take 4551 // place. Vectorizing in such cases does not make sense. 4552 // Store-load forwarding distance. 4553 const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize; 4554 // Maximum vector factor. 4555 unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize; 4556 if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues) 4557 MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes; 4558 4559 for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues; 4560 vf *= 2) { 4561 if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) { 4562 MaxVFWithoutSLForwardIssues = (vf >>=1); 4563 break; 4564 } 4565 } 4566 4567 if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) { 4568 DEBUG(dbgs() << "LV: Distance " << Distance << 4569 " that could cause a store-load forwarding conflict\n"); 4570 return true; 4571 } 4572 4573 if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes && 4574 MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize) 4575 MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues; 4576 return false; 4577 } 4578 4579 bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 4580 const MemAccessInfo &B, unsigned BIdx, 4581 ValueToValueMap &Strides) { 4582 assert (AIdx < BIdx && "Must pass arguments in program order"); 4583 4584 Value *APtr = A.getPointer(); 4585 Value *BPtr = B.getPointer(); 4586 bool AIsWrite = A.getInt(); 4587 bool BIsWrite = B.getInt(); 4588 4589 // Two reads are independent. 4590 if (!AIsWrite && !BIsWrite) 4591 return false; 4592 4593 // We cannot check pointers in different address spaces. 4594 if (APtr->getType()->getPointerAddressSpace() != 4595 BPtr->getType()->getPointerAddressSpace()) 4596 return true; 4597 4598 const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr); 4599 const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr); 4600 4601 int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides); 4602 int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides); 4603 4604 const SCEV *Src = AScev; 4605 const SCEV *Sink = BScev; 4606 4607 // If the induction step is negative we have to invert source and sink of the 4608 // dependence. 4609 if (StrideAPtr < 0) { 4610 //Src = BScev; 4611 //Sink = AScev; 4612 std::swap(APtr, BPtr); 4613 std::swap(Src, Sink); 4614 std::swap(AIsWrite, BIsWrite); 4615 std::swap(AIdx, BIdx); 4616 std::swap(StrideAPtr, StrideBPtr); 4617 } 4618 4619 const SCEV *Dist = SE->getMinusSCEV(Sink, Src); 4620 4621 DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink 4622 << "(Induction step: " << StrideAPtr << ")\n"); 4623 DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to " 4624 << *InstMap[BIdx] << ": " << *Dist << "\n"); 4625 4626 // Need consecutive accesses. We don't want to vectorize 4627 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in 4628 // the address space. 4629 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){ 4630 DEBUG(dbgs() << "Non-consecutive pointer access\n"); 4631 return true; 4632 } 4633 4634 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 4635 if (!C) { 4636 DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n"); 4637 ShouldRetryWithRuntimeCheck = true; 4638 return true; 4639 } 4640 4641 Type *ATy = APtr->getType()->getPointerElementType(); 4642 Type *BTy = BPtr->getType()->getPointerElementType(); 4643 unsigned TypeByteSize = DL->getTypeAllocSize(ATy); 4644 4645 // Negative distances are not plausible dependencies. 4646 const APInt &Val = C->getValue()->getValue(); 4647 if (Val.isNegative()) { 4648 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 4649 if (IsTrueDataDependence && 4650 (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) || 4651 ATy != BTy)) 4652 return true; 4653 4654 DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n"); 4655 return false; 4656 } 4657 4658 // Write to the same location with the same size. 4659 // Could be improved to assert type sizes are the same (i32 == float, etc). 4660 if (Val == 0) { 4661 if (ATy == BTy) 4662 return false; 4663 DEBUG(dbgs() << "LV: Zero dependence difference but different types\n"); 4664 return true; 4665 } 4666 4667 assert(Val.isStrictlyPositive() && "Expect a positive value"); 4668 4669 // Positive distance bigger than max vectorization factor. 4670 if (ATy != BTy) { 4671 DEBUG(dbgs() << 4672 "LV: ReadWrite-Write positive dependency with different types\n"); 4673 return false; 4674 } 4675 4676 unsigned Distance = (unsigned) Val.getZExtValue(); 4677 4678 // Bail out early if passed-in parameters make vectorization not feasible. 4679 unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1; 4680 unsigned ForcedUnroll = VectorizationInterleave ? VectorizationInterleave : 1; 4681 4682 // The distance must be bigger than the size needed for a vectorized version 4683 // of the operation and the size of the vectorized operation must not be 4684 // bigger than the currrent maximum size. 4685 if (Distance < 2*TypeByteSize || 4686 2*TypeByteSize > MaxSafeDepDistBytes || 4687 Distance < TypeByteSize * ForcedUnroll * ForcedFactor) { 4688 DEBUG(dbgs() << "LV: Failure because of Positive distance " 4689 << Val.getSExtValue() << '\n'); 4690 return true; 4691 } 4692 4693 MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ? 4694 Distance : MaxSafeDepDistBytes; 4695 4696 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 4697 if (IsTrueDataDependence && 4698 couldPreventStoreLoadForward(Distance, TypeByteSize)) 4699 return true; 4700 4701 DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() << 4702 " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n'); 4703 4704 return false; 4705 } 4706 4707 bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets, 4708 MemAccessInfoSet &CheckDeps, 4709 ValueToValueMap &Strides) { 4710 4711 MaxSafeDepDistBytes = -1U; 4712 while (!CheckDeps.empty()) { 4713 MemAccessInfo CurAccess = *CheckDeps.begin(); 4714 4715 // Get the relevant memory access set. 4716 EquivalenceClasses<MemAccessInfo>::iterator I = 4717 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 4718 4719 // Check accesses within this set. 4720 EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE; 4721 AI = AccessSets.member_begin(I), AE = AccessSets.member_end(); 4722 4723 // Check every access pair. 4724 while (AI != AE) { 4725 CheckDeps.erase(*AI); 4726 EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI); 4727 while (OI != AE) { 4728 // Check every accessing instruction pair in program order. 4729 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 4730 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 4731 for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(), 4732 I2E = Accesses[*OI].end(); I2 != I2E; ++I2) { 4733 if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides)) 4734 return false; 4735 if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides)) 4736 return false; 4737 } 4738 ++OI; 4739 } 4740 AI++; 4741 } 4742 } 4743 return true; 4744 } 4745 4746 bool LoopVectorizationLegality::canVectorizeMemory() { 4747 4748 typedef SmallVector<Value*, 16> ValueVector; 4749 typedef SmallPtrSet<Value*, 16> ValueSet; 4750 4751 // Holds the Load and Store *instructions*. 4752 ValueVector Loads; 4753 ValueVector Stores; 4754 4755 // Holds all the different accesses in the loop. 4756 unsigned NumReads = 0; 4757 unsigned NumReadWrites = 0; 4758 4759 PtrRtCheck.Pointers.clear(); 4760 PtrRtCheck.Need = false; 4761 4762 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4763 MemoryDepChecker DepChecker(SE, DL, TheLoop); 4764 4765 // For each block. 4766 for (Loop::block_iterator bb = TheLoop->block_begin(), 4767 be = TheLoop->block_end(); bb != be; ++bb) { 4768 4769 // Scan the BB and collect legal loads and stores. 4770 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4771 ++it) { 4772 4773 // If this is a load, save it. If this instruction can read from memory 4774 // but is not a load, then we quit. Notice that we don't handle function 4775 // calls that read or write. 4776 if (it->mayReadFromMemory()) { 4777 // Many math library functions read the rounding mode. We will only 4778 // vectorize a loop if it contains known function calls that don't set 4779 // the flag. Therefore, it is safe to ignore this read from memory. 4780 CallInst *Call = dyn_cast<CallInst>(it); 4781 if (Call && getIntrinsicIDForCall(Call, TLI)) 4782 continue; 4783 4784 LoadInst *Ld = dyn_cast<LoadInst>(it); 4785 if (!Ld || (!Ld->isSimple() && !IsAnnotatedParallel)) { 4786 emitAnalysis(Report(Ld) 4787 << "read with atomic ordering or volatile read"); 4788 DEBUG(dbgs() << "LV: Found a non-simple load.\n"); 4789 return false; 4790 } 4791 NumLoads++; 4792 Loads.push_back(Ld); 4793 DepChecker.addAccess(Ld); 4794 continue; 4795 } 4796 4797 // Save 'store' instructions. Abort if other instructions write to memory. 4798 if (it->mayWriteToMemory()) { 4799 StoreInst *St = dyn_cast<StoreInst>(it); 4800 if (!St) { 4801 emitAnalysis(Report(it) << "instruction cannot be vectorized"); 4802 return false; 4803 } 4804 if (!St->isSimple() && !IsAnnotatedParallel) { 4805 emitAnalysis(Report(St) 4806 << "write with atomic ordering or volatile write"); 4807 DEBUG(dbgs() << "LV: Found a non-simple store.\n"); 4808 return false; 4809 } 4810 NumStores++; 4811 Stores.push_back(St); 4812 DepChecker.addAccess(St); 4813 } 4814 } // Next instr. 4815 } // Next block. 4816 4817 // Now we have two lists that hold the loads and the stores. 4818 // Next, we find the pointers that they use. 4819 4820 // Check if we see any stores. If there are no stores, then we don't 4821 // care if the pointers are *restrict*. 4822 if (!Stores.size()) { 4823 DEBUG(dbgs() << "LV: Found a read-only loop!\n"); 4824 return true; 4825 } 4826 4827 AccessAnalysis::DepCandidates DependentAccesses; 4828 AccessAnalysis Accesses(DL, AA, DependentAccesses); 4829 4830 // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects 4831 // multiple times on the same object. If the ptr is accessed twice, once 4832 // for read and once for write, it will only appear once (on the write 4833 // list). This is okay, since we are going to check for conflicts between 4834 // writes and between reads and writes, but not between reads and reads. 4835 ValueSet Seen; 4836 4837 ValueVector::iterator I, IE; 4838 for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) { 4839 StoreInst *ST = cast<StoreInst>(*I); 4840 Value* Ptr = ST->getPointerOperand(); 4841 4842 if (isUniform(Ptr)) { 4843 emitAnalysis( 4844 Report(ST) 4845 << "write to a loop invariant address could not be vectorized"); 4846 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4847 return false; 4848 } 4849 4850 // If we did *not* see this pointer before, insert it to the read-write 4851 // list. At this phase it is only a 'write' list. 4852 if (Seen.insert(Ptr).second) { 4853 ++NumReadWrites; 4854 4855 AliasAnalysis::Location Loc = AA->getLocation(ST); 4856 // The TBAA metadata could have a control dependency on the predication 4857 // condition, so we cannot rely on it when determining whether or not we 4858 // need runtime pointer checks. 4859 if (blockNeedsPredication(ST->getParent())) 4860 Loc.AATags.TBAA = nullptr; 4861 4862 Accesses.addStore(Loc); 4863 } 4864 } 4865 4866 if (IsAnnotatedParallel) { 4867 DEBUG(dbgs() 4868 << "LV: A loop annotated parallel, ignore memory dependency " 4869 << "checks.\n"); 4870 return true; 4871 } 4872 4873 for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) { 4874 LoadInst *LD = cast<LoadInst>(*I); 4875 Value* Ptr = LD->getPointerOperand(); 4876 // If we did *not* see this pointer before, insert it to the 4877 // read list. If we *did* see it before, then it is already in 4878 // the read-write list. This allows us to vectorize expressions 4879 // such as A[i] += x; Because the address of A[i] is a read-write 4880 // pointer. This only works if the index of A[i] is consecutive. 4881 // If the address of i is unknown (for example A[B[i]]) then we may 4882 // read a few words, modify, and write a few words, and some of the 4883 // words may be written to the same address. 4884 bool IsReadOnlyPtr = false; 4885 if (Seen.insert(Ptr).second || 4886 !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) { 4887 ++NumReads; 4888 IsReadOnlyPtr = true; 4889 } 4890 4891 AliasAnalysis::Location Loc = AA->getLocation(LD); 4892 // The TBAA metadata could have a control dependency on the predication 4893 // condition, so we cannot rely on it when determining whether or not we 4894 // need runtime pointer checks. 4895 if (blockNeedsPredication(LD->getParent())) 4896 Loc.AATags.TBAA = nullptr; 4897 4898 Accesses.addLoad(Loc, IsReadOnlyPtr); 4899 } 4900 4901 // If we write (or read-write) to a single destination and there are no 4902 // other reads in this loop then is it safe to vectorize. 4903 if (NumReadWrites == 1 && NumReads == 0) { 4904 DEBUG(dbgs() << "LV: Found a write-only loop!\n"); 4905 return true; 4906 } 4907 4908 // Build dependence sets and check whether we need a runtime pointer bounds 4909 // check. 4910 Accesses.buildDependenceSets(); 4911 bool NeedRTCheck = Accesses.isRTCheckNeeded(); 4912 4913 // Find pointers with computable bounds. We are going to use this information 4914 // to place a runtime bound check. 4915 unsigned NumComparisons = 0; 4916 bool CanDoRT = false; 4917 if (NeedRTCheck) 4918 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop, 4919 Strides); 4920 4921 DEBUG(dbgs() << "LV: We need to do " << NumComparisons << 4922 " pointer comparisons.\n"); 4923 4924 // If we only have one set of dependences to check pointers among we don't 4925 // need a runtime check. 4926 if (NumComparisons == 0 && NeedRTCheck) 4927 NeedRTCheck = false; 4928 4929 // Check that we did not collect too many pointers or found an unsizeable 4930 // pointer. 4931 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4932 PtrRtCheck.reset(); 4933 CanDoRT = false; 4934 } 4935 4936 if (CanDoRT) { 4937 DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n"); 4938 } 4939 4940 if (NeedRTCheck && !CanDoRT) { 4941 emitAnalysis(Report() << "cannot identify array bounds"); 4942 DEBUG(dbgs() << "LV: We can't vectorize because we can't find " << 4943 "the array bounds.\n"); 4944 PtrRtCheck.reset(); 4945 return false; 4946 } 4947 4948 PtrRtCheck.Need = NeedRTCheck; 4949 4950 bool CanVecMem = true; 4951 if (Accesses.isDependencyCheckNeeded()) { 4952 DEBUG(dbgs() << "LV: Checking memory dependencies\n"); 4953 CanVecMem = DepChecker.areDepsSafe( 4954 DependentAccesses, Accesses.getDependenciesToCheck(), Strides); 4955 MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes(); 4956 4957 if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) { 4958 DEBUG(dbgs() << "LV: Retrying with memory checks\n"); 4959 NeedRTCheck = true; 4960 4961 // Clear the dependency checks. We assume they are not needed. 4962 Accesses.resetDepChecks(); 4963 4964 PtrRtCheck.reset(); 4965 PtrRtCheck.Need = true; 4966 4967 CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, 4968 TheLoop, Strides, true); 4969 // Check that we did not collect too many pointers or found an unsizeable 4970 // pointer. 4971 if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) { 4972 if (!CanDoRT && NumComparisons > 0) 4973 emitAnalysis(Report() 4974 << "cannot check memory dependencies at runtime"); 4975 else 4976 emitAnalysis(Report() 4977 << NumComparisons << " exceeds limit of " 4978 << RuntimeMemoryCheckThreshold 4979 << " dependent memory operations checked at runtime"); 4980 DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n"); 4981 PtrRtCheck.reset(); 4982 return false; 4983 } 4984 4985 CanVecMem = true; 4986 } 4987 } 4988 4989 if (!CanVecMem) 4990 emitAnalysis(Report() << "unsafe dependent memory operations in loop"); 4991 4992 DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") << 4993 " need a runtime memory check.\n"); 4994 4995 return CanVecMem; 4996 } 4997 4998 static bool hasMultipleUsesOf(Instruction *I, 4999 SmallPtrSetImpl<Instruction *> &Insts) { 5000 unsigned NumUses = 0; 5001 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 5002 if (Insts.count(dyn_cast<Instruction>(*Use))) 5003 ++NumUses; 5004 if (NumUses > 1) 5005 return true; 5006 } 5007 5008 return false; 5009 } 5010 5011 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) { 5012 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 5013 if (!Set.count(dyn_cast<Instruction>(*Use))) 5014 return false; 5015 return true; 5016 } 5017 5018 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 5019 ReductionKind Kind) { 5020 if (Phi->getNumIncomingValues() != 2) 5021 return false; 5022 5023 // Reduction variables are only found in the loop header block. 5024 if (Phi->getParent() != TheLoop->getHeader()) 5025 return false; 5026 5027 // Obtain the reduction start value from the value that comes from the loop 5028 // preheader. 5029 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 5030 5031 // ExitInstruction is the single value which is used outside the loop. 5032 // We only allow for a single reduction value to be used outside the loop. 5033 // This includes users of the reduction, variables (which form a cycle 5034 // which ends in the phi node). 5035 Instruction *ExitInstruction = nullptr; 5036 // Indicates that we found a reduction operation in our scan. 5037 bool FoundReduxOp = false; 5038 5039 // We start with the PHI node and scan for all of the users of this 5040 // instruction. All users must be instructions that can be used as reduction 5041 // variables (such as ADD). We must have a single out-of-block user. The cycle 5042 // must include the original PHI. 5043 bool FoundStartPHI = false; 5044 5045 // To recognize min/max patterns formed by a icmp select sequence, we store 5046 // the number of instruction we saw from the recognized min/max pattern, 5047 // to make sure we only see exactly the two instructions. 5048 unsigned NumCmpSelectPatternInst = 0; 5049 ReductionInstDesc ReduxDesc(false, nullptr); 5050 5051 SmallPtrSet<Instruction *, 8> VisitedInsts; 5052 SmallVector<Instruction *, 8> Worklist; 5053 Worklist.push_back(Phi); 5054 VisitedInsts.insert(Phi); 5055 5056 // A value in the reduction can be used: 5057 // - By the reduction: 5058 // - Reduction operation: 5059 // - One use of reduction value (safe). 5060 // - Multiple use of reduction value (not safe). 5061 // - PHI: 5062 // - All uses of the PHI must be the reduction (safe). 5063 // - Otherwise, not safe. 5064 // - By one instruction outside of the loop (safe). 5065 // - By further instructions outside of the loop (not safe). 5066 // - By an instruction that is not part of the reduction (not safe). 5067 // This is either: 5068 // * An instruction type other than PHI or the reduction operation. 5069 // * A PHI in the header other than the initial PHI. 5070 while (!Worklist.empty()) { 5071 Instruction *Cur = Worklist.back(); 5072 Worklist.pop_back(); 5073 5074 // No Users. 5075 // If the instruction has no users then this is a broken chain and can't be 5076 // a reduction variable. 5077 if (Cur->use_empty()) 5078 return false; 5079 5080 bool IsAPhi = isa<PHINode>(Cur); 5081 5082 // A header PHI use other than the original PHI. 5083 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 5084 return false; 5085 5086 // Reductions of instructions such as Div, and Sub is only possible if the 5087 // LHS is the reduction variable. 5088 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 5089 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 5090 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 5091 return false; 5092 5093 // Any reduction instruction must be of one of the allowed kinds. 5094 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 5095 if (!ReduxDesc.IsReduction) 5096 return false; 5097 5098 // A reduction operation must only have one use of the reduction value. 5099 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 5100 hasMultipleUsesOf(Cur, VisitedInsts)) 5101 return false; 5102 5103 // All inputs to a PHI node must be a reduction value. 5104 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 5105 return false; 5106 5107 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 5108 isa<SelectInst>(Cur))) 5109 ++NumCmpSelectPatternInst; 5110 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 5111 isa<SelectInst>(Cur))) 5112 ++NumCmpSelectPatternInst; 5113 5114 // Check whether we found a reduction operator. 5115 FoundReduxOp |= !IsAPhi; 5116 5117 // Process users of current instruction. Push non-PHI nodes after PHI nodes 5118 // onto the stack. This way we are going to have seen all inputs to PHI 5119 // nodes once we get to them. 5120 SmallVector<Instruction *, 8> NonPHIs; 5121 SmallVector<Instruction *, 8> PHIs; 5122 for (User *U : Cur->users()) { 5123 Instruction *UI = cast<Instruction>(U); 5124 5125 // Check if we found the exit user. 5126 BasicBlock *Parent = UI->getParent(); 5127 if (!TheLoop->contains(Parent)) { 5128 // Exit if you find multiple outside users or if the header phi node is 5129 // being used. In this case the user uses the value of the previous 5130 // iteration, in which case we would loose "VF-1" iterations of the 5131 // reduction operation if we vectorize. 5132 if (ExitInstruction != nullptr || Cur == Phi) 5133 return false; 5134 5135 // The instruction used by an outside user must be the last instruction 5136 // before we feed back to the reduction phi. Otherwise, we loose VF-1 5137 // operations on the value. 5138 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 5139 return false; 5140 5141 ExitInstruction = Cur; 5142 continue; 5143 } 5144 5145 // Process instructions only once (termination). Each reduction cycle 5146 // value must only be used once, except by phi nodes and min/max 5147 // reductions which are represented as a cmp followed by a select. 5148 ReductionInstDesc IgnoredVal(false, nullptr); 5149 if (VisitedInsts.insert(UI).second) { 5150 if (isa<PHINode>(UI)) 5151 PHIs.push_back(UI); 5152 else 5153 NonPHIs.push_back(UI); 5154 } else if (!isa<PHINode>(UI) && 5155 ((!isa<FCmpInst>(UI) && 5156 !isa<ICmpInst>(UI) && 5157 !isa<SelectInst>(UI)) || 5158 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 5159 return false; 5160 5161 // Remember that we completed the cycle. 5162 if (UI == Phi) 5163 FoundStartPHI = true; 5164 } 5165 Worklist.append(PHIs.begin(), PHIs.end()); 5166 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 5167 } 5168 5169 // This means we have seen one but not the other instruction of the 5170 // pattern or more than just a select and cmp. 5171 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 5172 NumCmpSelectPatternInst != 2) 5173 return false; 5174 5175 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 5176 return false; 5177 5178 // We found a reduction var if we have reached the original phi node and we 5179 // only have a single instruction with out-of-loop users. 5180 5181 // This instruction is allowed to have out-of-loop users. 5182 AllowedExit.insert(ExitInstruction); 5183 5184 // Save the description of this reduction variable. 5185 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 5186 ReduxDesc.MinMaxKind); 5187 Reductions[Phi] = RD; 5188 // We've ended the cycle. This is a reduction variable if we have an 5189 // outside user and it has a binary op. 5190 5191 return true; 5192 } 5193 5194 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 5195 /// pattern corresponding to a min(X, Y) or max(X, Y). 5196 LoopVectorizationLegality::ReductionInstDesc 5197 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 5198 ReductionInstDesc &Prev) { 5199 5200 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 5201 "Expect a select instruction"); 5202 Instruction *Cmp = nullptr; 5203 SelectInst *Select = nullptr; 5204 5205 // We must handle the select(cmp()) as a single instruction. Advance to the 5206 // select. 5207 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 5208 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 5209 return ReductionInstDesc(false, I); 5210 return ReductionInstDesc(Select, Prev.MinMaxKind); 5211 } 5212 5213 // Only handle single use cases for now. 5214 if (!(Select = dyn_cast<SelectInst>(I))) 5215 return ReductionInstDesc(false, I); 5216 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 5217 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 5218 return ReductionInstDesc(false, I); 5219 if (!Cmp->hasOneUse()) 5220 return ReductionInstDesc(false, I); 5221 5222 Value *CmpLeft; 5223 Value *CmpRight; 5224 5225 // Look for a min/max pattern. 5226 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5227 return ReductionInstDesc(Select, MRK_UIntMin); 5228 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5229 return ReductionInstDesc(Select, MRK_UIntMax); 5230 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5231 return ReductionInstDesc(Select, MRK_SIntMax); 5232 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5233 return ReductionInstDesc(Select, MRK_SIntMin); 5234 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5235 return ReductionInstDesc(Select, MRK_FloatMin); 5236 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5237 return ReductionInstDesc(Select, MRK_FloatMax); 5238 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5239 return ReductionInstDesc(Select, MRK_FloatMin); 5240 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 5241 return ReductionInstDesc(Select, MRK_FloatMax); 5242 5243 return ReductionInstDesc(false, I); 5244 } 5245 5246 LoopVectorizationLegality::ReductionInstDesc 5247 LoopVectorizationLegality::isReductionInstr(Instruction *I, 5248 ReductionKind Kind, 5249 ReductionInstDesc &Prev) { 5250 bool FP = I->getType()->isFloatingPointTy(); 5251 bool FastMath = FP && I->hasUnsafeAlgebra(); 5252 switch (I->getOpcode()) { 5253 default: 5254 return ReductionInstDesc(false, I); 5255 case Instruction::PHI: 5256 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 5257 Kind != RK_FloatMinMax)) 5258 return ReductionInstDesc(false, I); 5259 return ReductionInstDesc(I, Prev.MinMaxKind); 5260 case Instruction::Sub: 5261 case Instruction::Add: 5262 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 5263 case Instruction::Mul: 5264 return ReductionInstDesc(Kind == RK_IntegerMult, I); 5265 case Instruction::And: 5266 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 5267 case Instruction::Or: 5268 return ReductionInstDesc(Kind == RK_IntegerOr, I); 5269 case Instruction::Xor: 5270 return ReductionInstDesc(Kind == RK_IntegerXor, I); 5271 case Instruction::FMul: 5272 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 5273 case Instruction::FSub: 5274 case Instruction::FAdd: 5275 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 5276 case Instruction::FCmp: 5277 case Instruction::ICmp: 5278 case Instruction::Select: 5279 if (Kind != RK_IntegerMinMax && 5280 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 5281 return ReductionInstDesc(false, I); 5282 return isMinMaxSelectCmpPattern(I, Prev); 5283 } 5284 } 5285 5286 LoopVectorizationLegality::InductionKind 5287 LoopVectorizationLegality::isInductionVariable(PHINode *Phi) { 5288 Type *PhiTy = Phi->getType(); 5289 // We only handle integer and pointer inductions variables. 5290 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 5291 return IK_NoInduction; 5292 5293 // Check that the PHI is consecutive. 5294 const SCEV *PhiScev = SE->getSCEV(Phi); 5295 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 5296 if (!AR) { 5297 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 5298 return IK_NoInduction; 5299 } 5300 const SCEV *Step = AR->getStepRecurrence(*SE); 5301 5302 // Integer inductions need to have a stride of one. 5303 if (PhiTy->isIntegerTy()) { 5304 if (Step->isOne()) 5305 return IK_IntInduction; 5306 if (Step->isAllOnesValue()) 5307 return IK_ReverseIntInduction; 5308 return IK_NoInduction; 5309 } 5310 5311 // Calculate the pointer stride and check if it is consecutive. 5312 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5313 if (!C) 5314 return IK_NoInduction; 5315 5316 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 5317 Type *PointerElementType = PhiTy->getPointerElementType(); 5318 // The pointer stride cannot be determined if the pointer element type is not 5319 // sized. 5320 if (!PointerElementType->isSized()) 5321 return IK_NoInduction; 5322 5323 uint64_t Size = DL->getTypeAllocSize(PointerElementType); 5324 if (C->getValue()->equalsInt(Size)) 5325 return IK_PtrInduction; 5326 else if (C->getValue()->equalsInt(0 - Size)) 5327 return IK_ReversePtrInduction; 5328 5329 return IK_NoInduction; 5330 } 5331 5332 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5333 Value *In0 = const_cast<Value*>(V); 5334 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5335 if (!PN) 5336 return false; 5337 5338 return Inductions.count(PN); 5339 } 5340 5341 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5342 assert(TheLoop->contains(BB) && "Unknown block used"); 5343 5344 // Blocks that do not dominate the latch need predication. 5345 BasicBlock* Latch = TheLoop->getLoopLatch(); 5346 return !DT->dominates(BB, Latch); 5347 } 5348 5349 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 5350 SmallPtrSetImpl<Value *> &SafePtrs) { 5351 5352 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5353 // Check that we don't have a constant expression that can trap as operand. 5354 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 5355 OI != OE; ++OI) { 5356 if (Constant *C = dyn_cast<Constant>(*OI)) 5357 if (C->canTrap()) 5358 return false; 5359 } 5360 // We might be able to hoist the load. 5361 if (it->mayReadFromMemory()) { 5362 LoadInst *LI = dyn_cast<LoadInst>(it); 5363 if (!LI) 5364 return false; 5365 if (!SafePtrs.count(LI->getPointerOperand())) { 5366 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 5367 MaskedOp.insert(LI); 5368 continue; 5369 } 5370 return false; 5371 } 5372 } 5373 5374 // We don't predicate stores at the moment. 5375 if (it->mayWriteToMemory()) { 5376 StoreInst *SI = dyn_cast<StoreInst>(it); 5377 // We only support predication of stores in basic blocks with one 5378 // predecessor. 5379 if (!SI) 5380 return false; 5381 5382 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5383 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5384 5385 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5386 !isSinglePredecessor) { 5387 // Build a masked store if it is legal for the target, otherwise scalarize 5388 // the block. 5389 bool isLegalMaskedOp = 5390 isLegalMaskedStore(SI->getValueOperand()->getType(), 5391 SI->getPointerOperand()); 5392 if (isLegalMaskedOp) { 5393 --NumPredStores; 5394 MaskedOp.insert(SI); 5395 continue; 5396 } 5397 return false; 5398 } 5399 } 5400 if (it->mayThrow()) 5401 return false; 5402 5403 // The instructions below can trap. 5404 switch (it->getOpcode()) { 5405 default: continue; 5406 case Instruction::UDiv: 5407 case Instruction::SDiv: 5408 case Instruction::URem: 5409 case Instruction::SRem: 5410 return false; 5411 } 5412 } 5413 5414 return true; 5415 } 5416 5417 LoopVectorizationCostModel::VectorizationFactor 5418 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5419 // Width 1 means no vectorize 5420 VectorizationFactor Factor = { 1U, 0U }; 5421 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 5422 emitAnalysis(Report() << "runtime pointer checks needed. Enable vectorization of this loop with '#pragma clang loop vectorize(enable)' when compiling with -Os"); 5423 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 5424 return Factor; 5425 } 5426 5427 if (!EnableCondStoresVectorization && Legal->NumPredStores) { 5428 emitAnalysis(Report() << "store that is conditionally executed prevents vectorization"); 5429 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5430 return Factor; 5431 } 5432 5433 // Find the trip count. 5434 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5435 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5436 5437 unsigned WidestType = getWidestType(); 5438 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5439 unsigned MaxSafeDepDist = -1U; 5440 if (Legal->getMaxSafeDepDistBytes() != -1U) 5441 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5442 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 5443 WidestRegister : MaxSafeDepDist); 5444 unsigned MaxVectorSize = WidestRegister / WidestType; 5445 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 5446 DEBUG(dbgs() << "LV: The Widest register is: " 5447 << WidestRegister << " bits.\n"); 5448 5449 if (MaxVectorSize == 0) { 5450 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5451 MaxVectorSize = 1; 5452 } 5453 5454 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5455 " into one vector!"); 5456 5457 unsigned VF = MaxVectorSize; 5458 5459 // If we optimize the program for size, avoid creating the tail loop. 5460 if (OptForSize) { 5461 // If we are unable to calculate the trip count then don't try to vectorize. 5462 if (TC < 2) { 5463 emitAnalysis(Report() << "unable to calculate the loop count due to complex control flow"); 5464 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5465 return Factor; 5466 } 5467 5468 // Find the maximum SIMD width that can fit within the trip count. 5469 VF = TC % MaxVectorSize; 5470 5471 if (VF == 0) 5472 VF = MaxVectorSize; 5473 5474 // If the trip count that we found modulo the vectorization factor is not 5475 // zero then we require a tail. 5476 if (VF < 2) { 5477 emitAnalysis(Report() << "cannot optimize for size and vectorize at the " 5478 "same time. Enable vectorization of this loop " 5479 "with '#pragma clang loop vectorize(enable)' " 5480 "when compiling with -Os"); 5481 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 5482 return Factor; 5483 } 5484 } 5485 5486 int UserVF = Hints->getWidth(); 5487 if (UserVF != 0) { 5488 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5489 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5490 5491 Factor.Width = UserVF; 5492 return Factor; 5493 } 5494 5495 float Cost = expectedCost(1); 5496 #ifndef NDEBUG 5497 const float ScalarCost = Cost; 5498 #endif /* NDEBUG */ 5499 unsigned Width = 1; 5500 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5501 5502 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5503 // Ignore scalar width, because the user explicitly wants vectorization. 5504 if (ForceVectorization && VF > 1) { 5505 Width = 2; 5506 Cost = expectedCost(Width) / (float)Width; 5507 } 5508 5509 for (unsigned i=2; i <= VF; i*=2) { 5510 // Notice that the vector loop needs to be executed less times, so 5511 // we need to divide the cost of the vector loops by the width of 5512 // the vector elements. 5513 float VectorCost = expectedCost(i) / (float)i; 5514 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 5515 (int)VectorCost << ".\n"); 5516 if (VectorCost < Cost) { 5517 Cost = VectorCost; 5518 Width = i; 5519 } 5520 } 5521 5522 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5523 << "LV: Vectorization seems to be not beneficial, " 5524 << "but was forced by a user.\n"); 5525 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 5526 Factor.Width = Width; 5527 Factor.Cost = Width * Cost; 5528 return Factor; 5529 } 5530 5531 unsigned LoopVectorizationCostModel::getWidestType() { 5532 unsigned MaxWidth = 8; 5533 5534 // For each block. 5535 for (Loop::block_iterator bb = TheLoop->block_begin(), 5536 be = TheLoop->block_end(); bb != be; ++bb) { 5537 BasicBlock *BB = *bb; 5538 5539 // For each instruction in the loop. 5540 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5541 Type *T = it->getType(); 5542 5543 // Ignore ephemeral values. 5544 if (EphValues.count(it)) 5545 continue; 5546 5547 // Only examine Loads, Stores and PHINodes. 5548 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5549 continue; 5550 5551 // Examine PHI nodes that are reduction variables. 5552 if (PHINode *PN = dyn_cast<PHINode>(it)) 5553 if (!Legal->getReductionVars()->count(PN)) 5554 continue; 5555 5556 // Examine the stored values. 5557 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5558 T = ST->getValueOperand()->getType(); 5559 5560 // Ignore loaded pointer types and stored pointer types that are not 5561 // consecutive. However, we do want to take consecutive stores/loads of 5562 // pointer vectors into account. 5563 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 5564 continue; 5565 5566 MaxWidth = std::max(MaxWidth, 5567 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 5568 } 5569 } 5570 5571 return MaxWidth; 5572 } 5573 5574 unsigned 5575 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 5576 unsigned VF, 5577 unsigned LoopCost) { 5578 5579 // -- The unroll heuristics -- 5580 // We unroll the loop in order to expose ILP and reduce the loop overhead. 5581 // There are many micro-architectural considerations that we can't predict 5582 // at this level. For example, frontend pressure (on decode or fetch) due to 5583 // code size, or the number and capabilities of the execution ports. 5584 // 5585 // We use the following heuristics to select the unroll factor: 5586 // 1. If the code has reductions, then we unroll in order to break the cross 5587 // iteration dependency. 5588 // 2. If the loop is really small, then we unroll in order to reduce the loop 5589 // overhead. 5590 // 3. We don't unroll if we think that we will spill registers to memory due 5591 // to the increased register pressure. 5592 5593 // Use the user preference, unless 'auto' is selected. 5594 int UserUF = Hints->getInterleave(); 5595 if (UserUF != 0) 5596 return UserUF; 5597 5598 // When we optimize for size, we don't unroll. 5599 if (OptForSize) 5600 return 1; 5601 5602 // We used the distance for the unroll factor. 5603 if (Legal->getMaxSafeDepDistBytes() != -1U) 5604 return 1; 5605 5606 // Do not unroll loops with a relatively small trip count. 5607 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 5608 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 5609 return 1; 5610 5611 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5612 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 5613 " registers\n"); 5614 5615 if (VF == 1) { 5616 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5617 TargetNumRegisters = ForceTargetNumScalarRegs; 5618 } else { 5619 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5620 TargetNumRegisters = ForceTargetNumVectorRegs; 5621 } 5622 5623 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 5624 // We divide by these constants so assume that we have at least one 5625 // instruction that uses at least one register. 5626 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5627 R.NumInstructions = std::max(R.NumInstructions, 1U); 5628 5629 // We calculate the unroll factor using the following formula. 5630 // Subtract the number of loop invariants from the number of available 5631 // registers. These registers are used by all of the unrolled instances. 5632 // Next, divide the remaining registers by the number of registers that is 5633 // required by the loop, in order to estimate how many parallel instances 5634 // fit without causing spills. All of this is rounded down if necessary to be 5635 // a power of two. We want power of two unroll factors to simplify any 5636 // addressing operations or alignment considerations. 5637 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5638 R.MaxLocalUsers); 5639 5640 // Don't count the induction variable as unrolled. 5641 if (EnableIndVarRegisterHeur) 5642 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5643 std::max(1U, (R.MaxLocalUsers - 1))); 5644 5645 // Clamp the unroll factor ranges to reasonable factors. 5646 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor(); 5647 5648 // Check if the user has overridden the unroll max. 5649 if (VF == 1) { 5650 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5651 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor; 5652 } else { 5653 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5654 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor; 5655 } 5656 5657 // If we did not calculate the cost for VF (because the user selected the VF) 5658 // then we calculate the cost of VF here. 5659 if (LoopCost == 0) 5660 LoopCost = expectedCost(VF); 5661 5662 // Clamp the calculated UF to be between the 1 and the max unroll factor 5663 // that the target allows. 5664 if (UF > MaxInterleaveSize) 5665 UF = MaxInterleaveSize; 5666 else if (UF < 1) 5667 UF = 1; 5668 5669 // Unroll if we vectorized this loop and there is a reduction that could 5670 // benefit from unrolling. 5671 if (VF > 1 && Legal->getReductionVars()->size()) { 5672 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 5673 return UF; 5674 } 5675 5676 // Note that if we've already vectorized the loop we will have done the 5677 // runtime check and so unrolling won't require further checks. 5678 bool UnrollingRequiresRuntimePointerCheck = 5679 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 5680 5681 // We want to unroll small loops in order to reduce the loop overhead and 5682 // potentially expose ILP opportunities. 5683 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5684 if (!UnrollingRequiresRuntimePointerCheck && 5685 LoopCost < SmallLoopCost) { 5686 // We assume that the cost overhead is 1 and we use the cost model 5687 // to estimate the cost of the loop and unroll until the cost of the 5688 // loop overhead is about 5% of the cost of the loop. 5689 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5690 5691 // Unroll until store/load ports (estimated by max unroll factor) are 5692 // saturated. 5693 unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1); 5694 unsigned LoadsUF = UF / (Legal->NumLoads ? Legal->NumLoads : 1); 5695 5696 // If we have a scalar reduction (vector reductions are already dealt with 5697 // by this point), we can increase the critical path length if the loop 5698 // we're unrolling is inside another loop. Limit, by default to 2, so the 5699 // critical path only gets increased by one reduction operation. 5700 if (Legal->getReductionVars()->size() && 5701 TheLoop->getLoopDepth() > 1) { 5702 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF); 5703 SmallUF = std::min(SmallUF, F); 5704 StoresUF = std::min(StoresUF, F); 5705 LoadsUF = std::min(LoadsUF, F); 5706 } 5707 5708 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 5709 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 5710 return std::max(StoresUF, LoadsUF); 5711 } 5712 5713 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 5714 return SmallUF; 5715 } 5716 5717 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 5718 return 1; 5719 } 5720 5721 LoopVectorizationCostModel::RegisterUsage 5722 LoopVectorizationCostModel::calculateRegisterUsage() { 5723 // This function calculates the register usage by measuring the highest number 5724 // of values that are alive at a single location. Obviously, this is a very 5725 // rough estimation. We scan the loop in a topological order in order and 5726 // assign a number to each instruction. We use RPO to ensure that defs are 5727 // met before their users. We assume that each instruction that has in-loop 5728 // users starts an interval. We record every time that an in-loop value is 5729 // used, so we have a list of the first and last occurrences of each 5730 // instruction. Next, we transpose this data structure into a multi map that 5731 // holds the list of intervals that *end* at a specific location. This multi 5732 // map allows us to perform a linear search. We scan the instructions linearly 5733 // and record each time that a new interval starts, by placing it in a set. 5734 // If we find this value in the multi-map then we remove it from the set. 5735 // The max register usage is the maximum size of the set. 5736 // We also search for instructions that are defined outside the loop, but are 5737 // used inside the loop. We need this number separately from the max-interval 5738 // usage number because when we unroll, loop-invariant values do not take 5739 // more register. 5740 LoopBlocksDFS DFS(TheLoop); 5741 DFS.perform(LI); 5742 5743 RegisterUsage R; 5744 R.NumInstructions = 0; 5745 5746 // Each 'key' in the map opens a new interval. The values 5747 // of the map are the index of the 'last seen' usage of the 5748 // instruction that is the key. 5749 typedef DenseMap<Instruction*, unsigned> IntervalMap; 5750 // Maps instruction to its index. 5751 DenseMap<unsigned, Instruction*> IdxToInstr; 5752 // Marks the end of each interval. 5753 IntervalMap EndPoint; 5754 // Saves the list of instruction indices that are used in the loop. 5755 SmallSet<Instruction*, 8> Ends; 5756 // Saves the list of values that are used in the loop but are 5757 // defined outside the loop, such as arguments and constants. 5758 SmallPtrSet<Value*, 8> LoopInvariants; 5759 5760 unsigned Index = 0; 5761 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 5762 be = DFS.endRPO(); bb != be; ++bb) { 5763 R.NumInstructions += (*bb)->size(); 5764 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 5765 ++it) { 5766 Instruction *I = it; 5767 IdxToInstr[Index++] = I; 5768 5769 // Save the end location of each USE. 5770 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 5771 Value *U = I->getOperand(i); 5772 Instruction *Instr = dyn_cast<Instruction>(U); 5773 5774 // Ignore non-instruction values such as arguments, constants, etc. 5775 if (!Instr) continue; 5776 5777 // If this instruction is outside the loop then record it and continue. 5778 if (!TheLoop->contains(Instr)) { 5779 LoopInvariants.insert(Instr); 5780 continue; 5781 } 5782 5783 // Overwrite previous end points. 5784 EndPoint[Instr] = Index; 5785 Ends.insert(Instr); 5786 } 5787 } 5788 } 5789 5790 // Saves the list of intervals that end with the index in 'key'. 5791 typedef SmallVector<Instruction*, 2> InstrList; 5792 DenseMap<unsigned, InstrList> TransposeEnds; 5793 5794 // Transpose the EndPoints to a list of values that end at each index. 5795 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 5796 it != e; ++it) 5797 TransposeEnds[it->second].push_back(it->first); 5798 5799 SmallSet<Instruction*, 8> OpenIntervals; 5800 unsigned MaxUsage = 0; 5801 5802 5803 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5804 for (unsigned int i = 0; i < Index; ++i) { 5805 Instruction *I = IdxToInstr[i]; 5806 // Ignore instructions that are never used within the loop. 5807 if (!Ends.count(I)) continue; 5808 5809 // Ignore ephemeral values. 5810 if (EphValues.count(I)) 5811 continue; 5812 5813 // Remove all of the instructions that end at this location. 5814 InstrList &List = TransposeEnds[i]; 5815 for (unsigned int j=0, e = List.size(); j < e; ++j) 5816 OpenIntervals.erase(List[j]); 5817 5818 // Count the number of live interals. 5819 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 5820 5821 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 5822 OpenIntervals.size() << '\n'); 5823 5824 // Add the current instruction to the list of open intervals. 5825 OpenIntervals.insert(I); 5826 } 5827 5828 unsigned Invariant = LoopInvariants.size(); 5829 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 5830 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5831 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 5832 5833 R.LoopInvariantRegs = Invariant; 5834 R.MaxLocalUsers = MaxUsage; 5835 return R; 5836 } 5837 5838 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 5839 unsigned Cost = 0; 5840 5841 // For each block. 5842 for (Loop::block_iterator bb = TheLoop->block_begin(), 5843 be = TheLoop->block_end(); bb != be; ++bb) { 5844 unsigned BlockCost = 0; 5845 BasicBlock *BB = *bb; 5846 5847 // For each instruction in the old loop. 5848 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5849 // Skip dbg intrinsics. 5850 if (isa<DbgInfoIntrinsic>(it)) 5851 continue; 5852 5853 // Ignore ephemeral values. 5854 if (EphValues.count(it)) 5855 continue; 5856 5857 unsigned C = getInstructionCost(it, VF); 5858 5859 // Check if we should override the cost. 5860 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5861 C = ForceTargetInstructionCost; 5862 5863 BlockCost += C; 5864 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 5865 VF << " For instruction: " << *it << '\n'); 5866 } 5867 5868 // We assume that if-converted blocks have a 50% chance of being executed. 5869 // When the code is scalar then some of the blocks are avoided due to CF. 5870 // When the code is vectorized we execute all code paths. 5871 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5872 BlockCost /= 2; 5873 5874 Cost += BlockCost; 5875 } 5876 5877 return Cost; 5878 } 5879 5880 /// \brief Check whether the address computation for a non-consecutive memory 5881 /// access looks like an unlikely candidate for being merged into the indexing 5882 /// mode. 5883 /// 5884 /// We look for a GEP which has one index that is an induction variable and all 5885 /// other indices are loop invariant. If the stride of this access is also 5886 /// within a small bound we decide that this address computation can likely be 5887 /// merged into the addressing mode. 5888 /// In all other cases, we identify the address computation as complex. 5889 static bool isLikelyComplexAddressComputation(Value *Ptr, 5890 LoopVectorizationLegality *Legal, 5891 ScalarEvolution *SE, 5892 const Loop *TheLoop) { 5893 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5894 if (!Gep) 5895 return true; 5896 5897 // We are looking for a gep with all loop invariant indices except for one 5898 // which should be an induction variable. 5899 unsigned NumOperands = Gep->getNumOperands(); 5900 for (unsigned i = 1; i < NumOperands; ++i) { 5901 Value *Opd = Gep->getOperand(i); 5902 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5903 !Legal->isInductionVariable(Opd)) 5904 return true; 5905 } 5906 5907 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5908 // can likely be merged into the address computation. 5909 unsigned MaxMergeDistance = 64; 5910 5911 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5912 if (!AddRec) 5913 return true; 5914 5915 // Check the step is constant. 5916 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5917 // Calculate the pointer stride and check if it is consecutive. 5918 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5919 if (!C) 5920 return true; 5921 5922 const APInt &APStepVal = C->getValue()->getValue(); 5923 5924 // Huge step value - give up. 5925 if (APStepVal.getBitWidth() > 64) 5926 return true; 5927 5928 int64_t StepVal = APStepVal.getSExtValue(); 5929 5930 return StepVal > MaxMergeDistance; 5931 } 5932 5933 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5934 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 5935 return true; 5936 return false; 5937 } 5938 5939 unsigned 5940 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5941 // If we know that this instruction will remain uniform, check the cost of 5942 // the scalar version. 5943 if (Legal->isUniformAfterVectorization(I)) 5944 VF = 1; 5945 5946 Type *RetTy = I->getType(); 5947 Type *VectorTy = ToVectorTy(RetTy, VF); 5948 5949 // TODO: We need to estimate the cost of intrinsic calls. 5950 switch (I->getOpcode()) { 5951 case Instruction::GetElementPtr: 5952 // We mark this instruction as zero-cost because the cost of GEPs in 5953 // vectorized code depends on whether the corresponding memory instruction 5954 // is scalarized or not. Therefore, we handle GEPs with the memory 5955 // instruction cost. 5956 return 0; 5957 case Instruction::Br: { 5958 return TTI.getCFInstrCost(I->getOpcode()); 5959 } 5960 case Instruction::PHI: 5961 //TODO: IF-converted IFs become selects. 5962 return 0; 5963 case Instruction::Add: 5964 case Instruction::FAdd: 5965 case Instruction::Sub: 5966 case Instruction::FSub: 5967 case Instruction::Mul: 5968 case Instruction::FMul: 5969 case Instruction::UDiv: 5970 case Instruction::SDiv: 5971 case Instruction::FDiv: 5972 case Instruction::URem: 5973 case Instruction::SRem: 5974 case Instruction::FRem: 5975 case Instruction::Shl: 5976 case Instruction::LShr: 5977 case Instruction::AShr: 5978 case Instruction::And: 5979 case Instruction::Or: 5980 case Instruction::Xor: { 5981 // Since we will replace the stride by 1 the multiplication should go away. 5982 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5983 return 0; 5984 // Certain instructions can be cheaper to vectorize if they have a constant 5985 // second vector operand. One example of this are shifts on x86. 5986 TargetTransformInfo::OperandValueKind Op1VK = 5987 TargetTransformInfo::OK_AnyValue; 5988 TargetTransformInfo::OperandValueKind Op2VK = 5989 TargetTransformInfo::OK_AnyValue; 5990 TargetTransformInfo::OperandValueProperties Op1VP = 5991 TargetTransformInfo::OP_None; 5992 TargetTransformInfo::OperandValueProperties Op2VP = 5993 TargetTransformInfo::OP_None; 5994 Value *Op2 = I->getOperand(1); 5995 5996 // Check for a splat of a constant or for a non uniform vector of constants. 5997 if (isa<ConstantInt>(Op2)) { 5998 ConstantInt *CInt = cast<ConstantInt>(Op2); 5999 if (CInt && CInt->getValue().isPowerOf2()) 6000 Op2VP = TargetTransformInfo::OP_PowerOf2; 6001 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6002 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 6003 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 6004 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 6005 if (SplatValue) { 6006 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 6007 if (CInt && CInt->getValue().isPowerOf2()) 6008 Op2VP = TargetTransformInfo::OP_PowerOf2; 6009 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 6010 } 6011 } 6012 6013 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 6014 Op1VP, Op2VP); 6015 } 6016 case Instruction::Select: { 6017 SelectInst *SI = cast<SelectInst>(I); 6018 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6019 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6020 Type *CondTy = SI->getCondition()->getType(); 6021 if (!ScalarCond) 6022 CondTy = VectorType::get(CondTy, VF); 6023 6024 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 6025 } 6026 case Instruction::ICmp: 6027 case Instruction::FCmp: { 6028 Type *ValTy = I->getOperand(0)->getType(); 6029 VectorTy = ToVectorTy(ValTy, VF); 6030 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 6031 } 6032 case Instruction::Store: 6033 case Instruction::Load: { 6034 StoreInst *SI = dyn_cast<StoreInst>(I); 6035 LoadInst *LI = dyn_cast<LoadInst>(I); 6036 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 6037 LI->getType()); 6038 VectorTy = ToVectorTy(ValTy, VF); 6039 6040 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 6041 unsigned AS = SI ? SI->getPointerAddressSpace() : 6042 LI->getPointerAddressSpace(); 6043 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 6044 // We add the cost of address computation here instead of with the gep 6045 // instruction because only here we know whether the operation is 6046 // scalarized. 6047 if (VF == 1) 6048 return TTI.getAddressComputationCost(VectorTy) + 6049 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6050 6051 // Scalarized loads/stores. 6052 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6053 bool Reverse = ConsecutiveStride < 0; 6054 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 6055 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 6056 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 6057 bool IsComplexComputation = 6058 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 6059 unsigned Cost = 0; 6060 // The cost of extracting from the value vector and pointer vector. 6061 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6062 for (unsigned i = 0; i < VF; ++i) { 6063 // The cost of extracting the pointer operand. 6064 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 6065 // In case of STORE, the cost of ExtractElement from the vector. 6066 // In case of LOAD, the cost of InsertElement into the returned 6067 // vector. 6068 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 6069 Instruction::InsertElement, 6070 VectorTy, i); 6071 } 6072 6073 // The cost of the scalar loads/stores. 6074 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6075 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6076 Alignment, AS); 6077 return Cost; 6078 } 6079 6080 // Wide load/stores. 6081 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6082 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6083 6084 if (Reverse) 6085 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 6086 VectorTy, 0); 6087 return Cost; 6088 } 6089 case Instruction::ZExt: 6090 case Instruction::SExt: 6091 case Instruction::FPToUI: 6092 case Instruction::FPToSI: 6093 case Instruction::FPExt: 6094 case Instruction::PtrToInt: 6095 case Instruction::IntToPtr: 6096 case Instruction::SIToFP: 6097 case Instruction::UIToFP: 6098 case Instruction::Trunc: 6099 case Instruction::FPTrunc: 6100 case Instruction::BitCast: { 6101 // We optimize the truncation of induction variable. 6102 // The cost of these is the same as the scalar operation. 6103 if (I->getOpcode() == Instruction::Trunc && 6104 Legal->isInductionVariable(I->getOperand(0))) 6105 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6106 I->getOperand(0)->getType()); 6107 6108 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 6109 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6110 } 6111 case Instruction::Call: { 6112 CallInst *CI = cast<CallInst>(I); 6113 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 6114 assert(ID && "Not an intrinsic call!"); 6115 Type *RetTy = ToVectorTy(CI->getType(), VF); 6116 SmallVector<Type*, 4> Tys; 6117 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 6118 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 6119 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 6120 } 6121 default: { 6122 // We are scalarizing the instruction. Return the cost of the scalar 6123 // instruction, plus the cost of insert and extract into vector 6124 // elements, times the vector width. 6125 unsigned Cost = 0; 6126 6127 if (!RetTy->isVoidTy() && VF != 1) { 6128 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 6129 VectorTy); 6130 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 6131 VectorTy); 6132 6133 // The cost of inserting the results plus extracting each one of the 6134 // operands. 6135 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6136 } 6137 6138 // The cost of executing VF copies of the scalar instruction. This opcode 6139 // is unknown. Assume that it is the same as 'mul'. 6140 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6141 return Cost; 6142 } 6143 }// end of switch. 6144 } 6145 6146 Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) { 6147 if (Scalar->isVoidTy() || VF == 1) 6148 return Scalar; 6149 return VectorType::get(Scalar, VF); 6150 } 6151 6152 char LoopVectorize::ID = 0; 6153 static const char lv_name[] = "Loop Vectorization"; 6154 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6155 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 6156 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 6157 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6158 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 6159 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6160 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 6161 INITIALIZE_PASS_DEPENDENCY(LCSSA) 6162 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 6163 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6164 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6165 6166 namespace llvm { 6167 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6168 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6169 } 6170 } 6171 6172 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6173 // Check for a store. 6174 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 6175 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6176 6177 // Check for a load. 6178 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 6179 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6180 6181 return false; 6182 } 6183 6184 6185 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6186 bool IfPredicateStore) { 6187 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6188 // Holds vector parameters or scalars, in case of uniform vals. 6189 SmallVector<VectorParts, 4> Params; 6190 6191 setDebugLocFromInst(Builder, Instr); 6192 6193 // Find all of the vectorized parameters. 6194 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6195 Value *SrcOp = Instr->getOperand(op); 6196 6197 // If we are accessing the old induction variable, use the new one. 6198 if (SrcOp == OldInduction) { 6199 Params.push_back(getVectorValue(SrcOp)); 6200 continue; 6201 } 6202 6203 // Try using previously calculated values. 6204 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6205 6206 // If the src is an instruction that appeared earlier in the basic block 6207 // then it should already be vectorized. 6208 if (SrcInst && OrigLoop->contains(SrcInst)) { 6209 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6210 // The parameter is a vector value from earlier. 6211 Params.push_back(WidenMap.get(SrcInst)); 6212 } else { 6213 // The parameter is a scalar from outside the loop. Maybe even a constant. 6214 VectorParts Scalars; 6215 Scalars.append(UF, SrcOp); 6216 Params.push_back(Scalars); 6217 } 6218 } 6219 6220 assert(Params.size() == Instr->getNumOperands() && 6221 "Invalid number of operands"); 6222 6223 // Does this instruction return a value ? 6224 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6225 6226 Value *UndefVec = IsVoidRetTy ? nullptr : 6227 UndefValue::get(Instr->getType()); 6228 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6229 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6230 6231 Instruction *InsertPt = Builder.GetInsertPoint(); 6232 BasicBlock *IfBlock = Builder.GetInsertBlock(); 6233 BasicBlock *CondBlock = nullptr; 6234 6235 VectorParts Cond; 6236 Loop *VectorLp = nullptr; 6237 if (IfPredicateStore) { 6238 assert(Instr->getParent()->getSinglePredecessor() && 6239 "Only support single predecessor blocks"); 6240 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6241 Instr->getParent()); 6242 VectorLp = LI->getLoopFor(IfBlock); 6243 assert(VectorLp && "Must have a loop for this block"); 6244 } 6245 6246 // For each vector unroll 'part': 6247 for (unsigned Part = 0; Part < UF; ++Part) { 6248 // For each scalar that we create: 6249 6250 // Start an "if (pred) a[i] = ..." block. 6251 Value *Cmp = nullptr; 6252 if (IfPredicateStore) { 6253 if (Cond[Part]->getType()->isVectorTy()) 6254 Cond[Part] = 6255 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6256 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6257 ConstantInt::get(Cond[Part]->getType(), 1)); 6258 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 6259 LoopVectorBody.push_back(CondBlock); 6260 VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase()); 6261 // Update Builder with newly created basic block. 6262 Builder.SetInsertPoint(InsertPt); 6263 } 6264 6265 Instruction *Cloned = Instr->clone(); 6266 if (!IsVoidRetTy) 6267 Cloned->setName(Instr->getName() + ".cloned"); 6268 // Replace the operands of the cloned instructions with extracted scalars. 6269 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6270 Value *Op = Params[op][Part]; 6271 Cloned->setOperand(op, Op); 6272 } 6273 6274 // Place the cloned scalar in the new loop. 6275 Builder.Insert(Cloned); 6276 6277 // If the original scalar returns a value we need to place it in a vector 6278 // so that future users will be able to use it. 6279 if (!IsVoidRetTy) 6280 VecResults[Part] = Cloned; 6281 6282 // End if-block. 6283 if (IfPredicateStore) { 6284 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 6285 LoopVectorBody.push_back(NewIfBlock); 6286 VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase()); 6287 Builder.SetInsertPoint(InsertPt); 6288 Instruction *OldBr = IfBlock->getTerminator(); 6289 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 6290 OldBr->eraseFromParent(); 6291 IfBlock = NewIfBlock; 6292 } 6293 } 6294 } 6295 6296 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6297 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6298 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6299 6300 return scalarizeInstruction(Instr, IfPredicateStore); 6301 } 6302 6303 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 6304 return Vec; 6305 } 6306 6307 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 6308 return V; 6309 } 6310 6311 Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx, 6312 bool Negate) { 6313 // When unrolling and the VF is 1, we only need to add a simple scalar. 6314 Type *ITy = Val->getType(); 6315 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6316 Constant *C = ConstantInt::get(ITy, StartIdx, Negate); 6317 return Builder.CreateAdd(Val, C, "induction"); 6318 } 6319