1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 163 const char LLVMLoopVectorizeFollowupVectorized[] = 164 "llvm.loop.vectorize.followup_vectorized"; 165 const char LLVMLoopVectorizeFollowupEpilogue[] = 166 "llvm.loop.vectorize.followup_epilogue"; 167 /// @} 168 169 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 170 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 171 172 /// Loops with a known constant trip count below this number are vectorized only 173 /// if no scalar iteration overheads are incurred. 174 static cl::opt<unsigned> TinyTripCountVectorThreshold( 175 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 176 cl::desc("Loops with a constant trip count that is smaller than this " 177 "value are vectorized only if no scalar iteration overheads " 178 "are incurred.")); 179 180 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 181 // that predication is preferred, and this lists all options. I.e., the 182 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 183 // and predicate the instructions accordingly. If tail-folding fails, there are 184 // different fallback strategies depending on these values: 185 namespace PreferPredicateTy { 186 enum Option { 187 ScalarEpilogue = 0, 188 PredicateElseScalarEpilogue, 189 PredicateOrDontVectorize 190 }; 191 } // namespace PreferPredicateTy 192 193 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 194 "prefer-predicate-over-epilogue", 195 cl::init(PreferPredicateTy::ScalarEpilogue), 196 cl::Hidden, 197 cl::desc("Tail-folding and predication preferences over creating a scalar " 198 "epilogue loop."), 199 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 200 "scalar-epilogue", 201 "Don't tail-predicate loops, create scalar epilogue"), 202 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 203 "predicate-else-scalar-epilogue", 204 "prefer tail-folding, create scalar epilogue if tail " 205 "folding fails."), 206 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 207 "predicate-dont-vectorize", 208 "prefers tail-folding, don't attempt vectorization if " 209 "tail-folding fails."))); 210 211 static cl::opt<bool> MaximizeBandwidth( 212 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 213 cl::desc("Maximize bandwidth when selecting vectorization factor which " 214 "will be determined by the smallest type in loop.")); 215 216 static cl::opt<bool> EnableInterleavedMemAccesses( 217 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 218 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 219 220 /// An interleave-group may need masking if it resides in a block that needs 221 /// predication, or in order to mask away gaps. 222 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 223 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 224 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 225 226 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 227 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 228 cl::desc("We don't interleave loops with a estimated constant trip count " 229 "below this number")); 230 231 static cl::opt<unsigned> ForceTargetNumScalarRegs( 232 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 233 cl::desc("A flag that overrides the target's number of scalar registers.")); 234 235 static cl::opt<unsigned> ForceTargetNumVectorRegs( 236 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 237 cl::desc("A flag that overrides the target's number of vector registers.")); 238 239 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 240 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 241 cl::desc("A flag that overrides the target's max interleave factor for " 242 "scalar loops.")); 243 244 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 245 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 246 cl::desc("A flag that overrides the target's max interleave factor for " 247 "vectorized loops.")); 248 249 static cl::opt<unsigned> ForceTargetInstructionCost( 250 "force-target-instruction-cost", cl::init(0), cl::Hidden, 251 cl::desc("A flag that overrides the target's expected cost for " 252 "an instruction to a single constant value. Mostly " 253 "useful for getting consistent testing.")); 254 255 static cl::opt<unsigned> SmallLoopCost( 256 "small-loop-cost", cl::init(20), cl::Hidden, 257 cl::desc( 258 "The cost of a loop that is considered 'small' by the interleaver.")); 259 260 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 261 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 262 cl::desc("Enable the use of the block frequency analysis to access PGO " 263 "heuristics minimizing code growth in cold regions and being more " 264 "aggressive in hot regions.")); 265 266 // Runtime interleave loops for load/store throughput. 267 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 268 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 269 cl::desc( 270 "Enable runtime interleaving until load/store ports are saturated")); 271 272 /// Interleave small loops with scalar reductions. 273 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 274 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 275 cl::desc("Enable interleaving for loops with small iteration counts that " 276 "contain scalar reductions to expose ILP.")); 277 278 /// The number of stores in a loop that are allowed to need predication. 279 static cl::opt<unsigned> NumberOfStoresToPredicate( 280 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 281 cl::desc("Max number of stores to be predicated behind an if.")); 282 283 static cl::opt<bool> EnableIndVarRegisterHeur( 284 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 285 cl::desc("Count the induction variable only once when interleaving")); 286 287 static cl::opt<bool> EnableCondStoresVectorization( 288 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 289 cl::desc("Enable if predication of stores during vectorization.")); 290 291 static cl::opt<unsigned> MaxNestedScalarReductionIC( 292 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 293 cl::desc("The maximum interleave count to use when interleaving a scalar " 294 "reduction in a nested loop.")); 295 296 static cl::opt<bool> 297 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 298 cl::Hidden, 299 cl::desc("Prefer in-loop vector reductions, " 300 "overriding the targets preference.")); 301 302 static cl::opt<bool> PreferPredicatedReductionSelect( 303 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 304 cl::desc( 305 "Prefer predicating a reduction operation over an after loop select.")); 306 307 cl::opt<bool> EnableVPlanNativePath( 308 "enable-vplan-native-path", cl::init(false), cl::Hidden, 309 cl::desc("Enable VPlan-native vectorization path with " 310 "support for outer loop vectorization.")); 311 312 // FIXME: Remove this switch once we have divergence analysis. Currently we 313 // assume divergent non-backedge branches when this switch is true. 314 cl::opt<bool> EnableVPlanPredication( 315 "enable-vplan-predication", cl::init(false), cl::Hidden, 316 cl::desc("Enable VPlan-native vectorization path predicator with " 317 "support for outer loop vectorization.")); 318 319 // This flag enables the stress testing of the VPlan H-CFG construction in the 320 // VPlan-native vectorization path. It must be used in conjuction with 321 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 322 // verification of the H-CFGs built. 323 static cl::opt<bool> VPlanBuildStressTest( 324 "vplan-build-stress-test", cl::init(false), cl::Hidden, 325 cl::desc( 326 "Build VPlan for every supported loop nest in the function and bail " 327 "out right after the build (stress test the VPlan H-CFG construction " 328 "in the VPlan-native vectorization path).")); 329 330 cl::opt<bool> llvm::EnableLoopInterleaving( 331 "interleave-loops", cl::init(true), cl::Hidden, 332 cl::desc("Enable loop interleaving in Loop vectorization passes")); 333 cl::opt<bool> llvm::EnableLoopVectorization( 334 "vectorize-loops", cl::init(true), cl::Hidden, 335 cl::desc("Run the Loop vectorization passes")); 336 337 /// A helper function that returns the type of loaded or stored value. 338 static Type *getMemInstValueType(Value *I) { 339 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 340 "Expected Load or Store instruction"); 341 if (auto *LI = dyn_cast<LoadInst>(I)) 342 return LI->getType(); 343 return cast<StoreInst>(I)->getValueOperand()->getType(); 344 } 345 346 /// A helper function that returns true if the given type is irregular. The 347 /// type is irregular if its allocated size doesn't equal the store size of an 348 /// element of the corresponding vector type at the given vectorization factor. 349 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) { 350 assert(!VF.isScalable() && "scalable vectors not yet supported."); 351 // Determine if an array of VF elements of type Ty is "bitcast compatible" 352 // with a <VF x Ty> vector. 353 if (VF.isVector()) { 354 auto *VectorTy = VectorType::get(Ty, VF); 355 return TypeSize::get(VF.getKnownMinValue() * 356 DL.getTypeAllocSize(Ty).getFixedValue(), 357 VF.isScalable()) != DL.getTypeStoreSize(VectorTy); 358 } 359 360 // If the vectorization factor is one, we just check if an array of type Ty 361 // requires padding between elements. 362 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 363 } 364 365 /// A helper function that returns the reciprocal of the block probability of 366 /// predicated blocks. If we return X, we are assuming the predicated block 367 /// will execute once for every X iterations of the loop header. 368 /// 369 /// TODO: We should use actual block probability here, if available. Currently, 370 /// we always assume predicated blocks have a 50% chance of executing. 371 static unsigned getReciprocalPredBlockProb() { return 2; } 372 373 /// A helper function that adds a 'fast' flag to floating-point operations. 374 static Value *addFastMathFlag(Value *V) { 375 if (isa<FPMathOperator>(V)) 376 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 377 return V; 378 } 379 380 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 381 if (isa<FPMathOperator>(V)) 382 cast<Instruction>(V)->setFastMathFlags(FMF); 383 return V; 384 } 385 386 /// A helper function that returns an integer or floating-point constant with 387 /// value C. 388 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 389 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 390 : ConstantFP::get(Ty, C); 391 } 392 393 /// Returns "best known" trip count for the specified loop \p L as defined by 394 /// the following procedure: 395 /// 1) Returns exact trip count if it is known. 396 /// 2) Returns expected trip count according to profile data if any. 397 /// 3) Returns upper bound estimate if it is known. 398 /// 4) Returns None if all of the above failed. 399 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 400 // Check if exact trip count is known. 401 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 402 return ExpectedTC; 403 404 // Check if there is an expected trip count available from profile data. 405 if (LoopVectorizeWithBlockFrequency) 406 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 407 return EstimatedTC; 408 409 // Check if upper bound estimate is known. 410 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 411 return ExpectedTC; 412 413 return None; 414 } 415 416 namespace llvm { 417 418 /// InnerLoopVectorizer vectorizes loops which contain only one basic 419 /// block to a specified vectorization factor (VF). 420 /// This class performs the widening of scalars into vectors, or multiple 421 /// scalars. This class also implements the following features: 422 /// * It inserts an epilogue loop for handling loops that don't have iteration 423 /// counts that are known to be a multiple of the vectorization factor. 424 /// * It handles the code generation for reduction variables. 425 /// * Scalarization (implementation using scalars) of un-vectorizable 426 /// instructions. 427 /// InnerLoopVectorizer does not perform any vectorization-legality 428 /// checks, and relies on the caller to check for the different legality 429 /// aspects. The InnerLoopVectorizer relies on the 430 /// LoopVectorizationLegality class to provide information about the induction 431 /// and reduction variables that were found to a given vectorization factor. 432 class InnerLoopVectorizer { 433 public: 434 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 435 LoopInfo *LI, DominatorTree *DT, 436 const TargetLibraryInfo *TLI, 437 const TargetTransformInfo *TTI, AssumptionCache *AC, 438 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 439 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 440 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 441 ProfileSummaryInfo *PSI) 442 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 443 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 444 Builder(PSE.getSE()->getContext()), 445 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM), 446 BFI(BFI), PSI(PSI) { 447 // Query this against the original loop and save it here because the profile 448 // of the original loop header may change as the transformation happens. 449 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 450 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 451 } 452 453 virtual ~InnerLoopVectorizer() = default; 454 455 /// Create a new empty loop that will contain vectorized instructions later 456 /// on, while the old loop will be used as the scalar remainder. Control flow 457 /// is generated around the vectorized (and scalar epilogue) loops consisting 458 /// of various checks and bypasses. Return the pre-header block of the new 459 /// loop. 460 BasicBlock *createVectorizedLoopSkeleton(); 461 462 /// Widen a single instruction within the innermost loop. 463 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 464 VPTransformState &State); 465 466 /// Widen a single call instruction within the innermost loop. 467 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 468 VPTransformState &State); 469 470 /// Widen a single select instruction within the innermost loop. 471 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 472 bool InvariantCond, VPTransformState &State); 473 474 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 475 void fixVectorizedLoop(); 476 477 // Return true if any runtime check is added. 478 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 479 480 /// A type for vectorized values in the new loop. Each value from the 481 /// original loop, when vectorized, is represented by UF vector values in the 482 /// new unrolled loop, where UF is the unroll factor. 483 using VectorParts = SmallVector<Value *, 2>; 484 485 /// Vectorize a single GetElementPtrInst based on information gathered and 486 /// decisions taken during planning. 487 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 488 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 489 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 490 491 /// Vectorize a single PHINode in a block. This method handles the induction 492 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 493 /// arbitrary length vectors. 494 void widenPHIInstruction(Instruction *PN, unsigned UF, ElementCount VF); 495 496 /// A helper function to scalarize a single Instruction in the innermost loop. 497 /// Generates a sequence of scalar instances for each lane between \p MinLane 498 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 499 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 500 /// Instr's operands. 501 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 502 const VPIteration &Instance, bool IfPredicateInstr, 503 VPTransformState &State); 504 505 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 506 /// is provided, the integer induction variable will first be truncated to 507 /// the corresponding type. 508 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 509 510 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 511 /// vector or scalar value on-demand if one is not yet available. When 512 /// vectorizing a loop, we visit the definition of an instruction before its 513 /// uses. When visiting the definition, we either vectorize or scalarize the 514 /// instruction, creating an entry for it in the corresponding map. (In some 515 /// cases, such as induction variables, we will create both vector and scalar 516 /// entries.) Then, as we encounter uses of the definition, we derive values 517 /// for each scalar or vector use unless such a value is already available. 518 /// For example, if we scalarize a definition and one of its uses is vector, 519 /// we build the required vector on-demand with an insertelement sequence 520 /// when visiting the use. Otherwise, if the use is scalar, we can use the 521 /// existing scalar definition. 522 /// 523 /// Return a value in the new loop corresponding to \p V from the original 524 /// loop at unroll index \p Part. If the value has already been vectorized, 525 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 526 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 527 /// a new vector value on-demand by inserting the scalar values into a vector 528 /// with an insertelement sequence. If the value has been neither vectorized 529 /// nor scalarized, it must be loop invariant, so we simply broadcast the 530 /// value into a vector. 531 Value *getOrCreateVectorValue(Value *V, unsigned Part); 532 533 void setVectorValue(Value *Scalar, unsigned Part, Value *Vector) { 534 VectorLoopValueMap.setVectorValue(Scalar, Part, Vector); 535 } 536 537 /// Return a value in the new loop corresponding to \p V from the original 538 /// loop at unroll and vector indices \p Instance. If the value has been 539 /// vectorized but not scalarized, the necessary extractelement instruction 540 /// will be generated. 541 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 542 543 /// Construct the vector value of a scalarized value \p V one lane at a time. 544 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 545 546 /// Try to vectorize interleaved access group \p Group with the base address 547 /// given in \p Addr, optionally masking the vector operations if \p 548 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 549 /// values in the vectorized loop. 550 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 551 VPTransformState &State, VPValue *Addr, 552 ArrayRef<VPValue *> StoredValues, 553 VPValue *BlockInMask = nullptr); 554 555 /// Vectorize Load and Store instructions with the base address given in \p 556 /// Addr, optionally masking the vector operations if \p BlockInMask is 557 /// non-null. Use \p State to translate given VPValues to IR values in the 558 /// vectorized loop. 559 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 560 VPValue *Def, VPValue *Addr, 561 VPValue *StoredValue, VPValue *BlockInMask); 562 563 /// Set the debug location in the builder using the debug location in 564 /// the instruction. 565 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 566 567 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 568 void fixNonInductionPHIs(void); 569 570 protected: 571 friend class LoopVectorizationPlanner; 572 573 /// A small list of PHINodes. 574 using PhiVector = SmallVector<PHINode *, 4>; 575 576 /// A type for scalarized values in the new loop. Each value from the 577 /// original loop, when scalarized, is represented by UF x VF scalar values 578 /// in the new unrolled loop, where UF is the unroll factor and VF is the 579 /// vectorization factor. 580 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 581 582 /// Set up the values of the IVs correctly when exiting the vector loop. 583 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 584 Value *CountRoundDown, Value *EndValue, 585 BasicBlock *MiddleBlock); 586 587 /// Create a new induction variable inside L. 588 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 589 Value *Step, Instruction *DL); 590 591 /// Handle all cross-iteration phis in the header. 592 void fixCrossIterationPHIs(); 593 594 /// Fix a first-order recurrence. This is the second phase of vectorizing 595 /// this phi node. 596 void fixFirstOrderRecurrence(PHINode *Phi); 597 598 /// Fix a reduction cross-iteration phi. This is the second phase of 599 /// vectorizing this phi node. 600 void fixReduction(PHINode *Phi); 601 602 /// Clear NSW/NUW flags from reduction instructions if necessary. 603 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 604 605 /// The Loop exit block may have single value PHI nodes with some 606 /// incoming value. While vectorizing we only handled real values 607 /// that were defined inside the loop and we should have one value for 608 /// each predecessor of its parent basic block. See PR14725. 609 void fixLCSSAPHIs(); 610 611 /// Iteratively sink the scalarized operands of a predicated instruction into 612 /// the block that was created for it. 613 void sinkScalarOperands(Instruction *PredInst); 614 615 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 616 /// represented as. 617 void truncateToMinimalBitwidths(); 618 619 /// Create a broadcast instruction. This method generates a broadcast 620 /// instruction (shuffle) for loop invariant values and for the induction 621 /// value. If this is the induction variable then we extend it to N, N+1, ... 622 /// this is needed because each iteration in the loop corresponds to a SIMD 623 /// element. 624 virtual Value *getBroadcastInstrs(Value *V); 625 626 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 627 /// to each vector element of Val. The sequence starts at StartIndex. 628 /// \p Opcode is relevant for FP induction variable. 629 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 630 Instruction::BinaryOps Opcode = 631 Instruction::BinaryOpsEnd); 632 633 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 634 /// variable on which to base the steps, \p Step is the size of the step, and 635 /// \p EntryVal is the value from the original loop that maps to the steps. 636 /// Note that \p EntryVal doesn't have to be an induction variable - it 637 /// can also be a truncate instruction. 638 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 639 const InductionDescriptor &ID); 640 641 /// Create a vector induction phi node based on an existing scalar one. \p 642 /// EntryVal is the value from the original loop that maps to the vector phi 643 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 644 /// truncate instruction, instead of widening the original IV, we widen a 645 /// version of the IV truncated to \p EntryVal's type. 646 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 647 Value *Step, Instruction *EntryVal); 648 649 /// Returns true if an instruction \p I should be scalarized instead of 650 /// vectorized for the chosen vectorization factor. 651 bool shouldScalarizeInstruction(Instruction *I) const; 652 653 /// Returns true if we should generate a scalar version of \p IV. 654 bool needsScalarInduction(Instruction *IV) const; 655 656 /// If there is a cast involved in the induction variable \p ID, which should 657 /// be ignored in the vectorized loop body, this function records the 658 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 659 /// cast. We had already proved that the casted Phi is equal to the uncasted 660 /// Phi in the vectorized loop (under a runtime guard), and therefore 661 /// there is no need to vectorize the cast - the same value can be used in the 662 /// vector loop for both the Phi and the cast. 663 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 664 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 665 /// 666 /// \p EntryVal is the value from the original loop that maps to the vector 667 /// phi node and is used to distinguish what is the IV currently being 668 /// processed - original one (if \p EntryVal is a phi corresponding to the 669 /// original IV) or the "newly-created" one based on the proof mentioned above 670 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 671 /// latter case \p EntryVal is a TruncInst and we must not record anything for 672 /// that IV, but it's error-prone to expect callers of this routine to care 673 /// about that, hence this explicit parameter. 674 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 675 const Instruction *EntryVal, 676 Value *VectorLoopValue, 677 unsigned Part, 678 unsigned Lane = UINT_MAX); 679 680 /// Generate a shuffle sequence that will reverse the vector Vec. 681 virtual Value *reverseVector(Value *Vec); 682 683 /// Returns (and creates if needed) the original loop trip count. 684 Value *getOrCreateTripCount(Loop *NewLoop); 685 686 /// Returns (and creates if needed) the trip count of the widened loop. 687 Value *getOrCreateVectorTripCount(Loop *NewLoop); 688 689 /// Returns a bitcasted value to the requested vector type. 690 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 691 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 692 const DataLayout &DL); 693 694 /// Emit a bypass check to see if the vector trip count is zero, including if 695 /// it overflows. 696 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 697 698 /// Emit a bypass check to see if all of the SCEV assumptions we've 699 /// had to make are correct. 700 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 701 702 /// Emit bypass checks to check any memory assumptions we may have made. 703 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 704 705 /// Compute the transformed value of Index at offset StartValue using step 706 /// StepValue. 707 /// For integer induction, returns StartValue + Index * StepValue. 708 /// For pointer induction, returns StartValue[Index * StepValue]. 709 /// FIXME: The newly created binary instructions should contain nsw/nuw 710 /// flags, which can be found from the original scalar operations. 711 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 712 const DataLayout &DL, 713 const InductionDescriptor &ID) const; 714 715 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 716 /// vector loop preheader, middle block and scalar preheader. Also 717 /// allocate a loop object for the new vector loop and return it. 718 Loop *createVectorLoopSkeleton(StringRef Prefix); 719 720 /// Create new phi nodes for the induction variables to resume iteration count 721 /// in the scalar epilogue, from where the vectorized loop left off (given by 722 /// \p VectorTripCount). 723 void createInductionResumeValues(Loop *L, Value *VectorTripCount); 724 725 /// Complete the loop skeleton by adding debug MDs, creating appropriate 726 /// conditional branches in the middle block, preparing the builder and 727 /// running the verifier. Take in the vector loop \p L as argument, and return 728 /// the preheader of the completed vector loop. 729 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 730 731 /// Add additional metadata to \p To that was not present on \p Orig. 732 /// 733 /// Currently this is used to add the noalias annotations based on the 734 /// inserted memchecks. Use this for instructions that are *cloned* into the 735 /// vector loop. 736 void addNewMetadata(Instruction *To, const Instruction *Orig); 737 738 /// Add metadata from one instruction to another. 739 /// 740 /// This includes both the original MDs from \p From and additional ones (\see 741 /// addNewMetadata). Use this for *newly created* instructions in the vector 742 /// loop. 743 void addMetadata(Instruction *To, Instruction *From); 744 745 /// Similar to the previous function but it adds the metadata to a 746 /// vector of instructions. 747 void addMetadata(ArrayRef<Value *> To, Instruction *From); 748 749 /// The original loop. 750 Loop *OrigLoop; 751 752 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 753 /// dynamic knowledge to simplify SCEV expressions and converts them to a 754 /// more usable form. 755 PredicatedScalarEvolution &PSE; 756 757 /// Loop Info. 758 LoopInfo *LI; 759 760 /// Dominator Tree. 761 DominatorTree *DT; 762 763 /// Alias Analysis. 764 AAResults *AA; 765 766 /// Target Library Info. 767 const TargetLibraryInfo *TLI; 768 769 /// Target Transform Info. 770 const TargetTransformInfo *TTI; 771 772 /// Assumption Cache. 773 AssumptionCache *AC; 774 775 /// Interface to emit optimization remarks. 776 OptimizationRemarkEmitter *ORE; 777 778 /// LoopVersioning. It's only set up (non-null) if memchecks were 779 /// used. 780 /// 781 /// This is currently only used to add no-alias metadata based on the 782 /// memchecks. The actually versioning is performed manually. 783 std::unique_ptr<LoopVersioning> LVer; 784 785 /// The vectorization SIMD factor to use. Each vector will have this many 786 /// vector elements. 787 ElementCount VF; 788 789 /// The vectorization unroll factor to use. Each scalar is vectorized to this 790 /// many different vector instructions. 791 unsigned UF; 792 793 /// The builder that we use 794 IRBuilder<> Builder; 795 796 // --- Vectorization state --- 797 798 /// The vector-loop preheader. 799 BasicBlock *LoopVectorPreHeader; 800 801 /// The scalar-loop preheader. 802 BasicBlock *LoopScalarPreHeader; 803 804 /// Middle Block between the vector and the scalar. 805 BasicBlock *LoopMiddleBlock; 806 807 /// The ExitBlock of the scalar loop. 808 BasicBlock *LoopExitBlock; 809 810 /// The vector loop body. 811 BasicBlock *LoopVectorBody; 812 813 /// The scalar loop body. 814 BasicBlock *LoopScalarBody; 815 816 /// A list of all bypass blocks. The first block is the entry of the loop. 817 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 818 819 /// The new Induction variable which was added to the new block. 820 PHINode *Induction = nullptr; 821 822 /// The induction variable of the old basic block. 823 PHINode *OldInduction = nullptr; 824 825 /// Maps values from the original loop to their corresponding values in the 826 /// vectorized loop. A key value can map to either vector values, scalar 827 /// values or both kinds of values, depending on whether the key was 828 /// vectorized and scalarized. 829 VectorizerValueMap VectorLoopValueMap; 830 831 /// Store instructions that were predicated. 832 SmallVector<Instruction *, 4> PredicatedInstructions; 833 834 /// Trip count of the original loop. 835 Value *TripCount = nullptr; 836 837 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 838 Value *VectorTripCount = nullptr; 839 840 /// The legality analysis. 841 LoopVectorizationLegality *Legal; 842 843 /// The profitablity analysis. 844 LoopVectorizationCostModel *Cost; 845 846 // Record whether runtime checks are added. 847 bool AddedSafetyChecks = false; 848 849 // Holds the end values for each induction variable. We save the end values 850 // so we can later fix-up the external users of the induction variables. 851 DenseMap<PHINode *, Value *> IVEndValues; 852 853 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 854 // fixed up at the end of vector code generation. 855 SmallVector<PHINode *, 8> OrigPHIsToFix; 856 857 /// BFI and PSI are used to check for profile guided size optimizations. 858 BlockFrequencyInfo *BFI; 859 ProfileSummaryInfo *PSI; 860 861 // Whether this loop should be optimized for size based on profile guided size 862 // optimizatios. 863 bool OptForSizeBasedOnProfile; 864 }; 865 866 class InnerLoopUnroller : public InnerLoopVectorizer { 867 public: 868 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 869 LoopInfo *LI, DominatorTree *DT, 870 const TargetLibraryInfo *TLI, 871 const TargetTransformInfo *TTI, AssumptionCache *AC, 872 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 873 LoopVectorizationLegality *LVL, 874 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 875 ProfileSummaryInfo *PSI) 876 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 877 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 878 BFI, PSI) {} 879 880 private: 881 Value *getBroadcastInstrs(Value *V) override; 882 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 883 Instruction::BinaryOps Opcode = 884 Instruction::BinaryOpsEnd) override; 885 Value *reverseVector(Value *Vec) override; 886 }; 887 888 } // end namespace llvm 889 890 /// Look for a meaningful debug location on the instruction or it's 891 /// operands. 892 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 893 if (!I) 894 return I; 895 896 DebugLoc Empty; 897 if (I->getDebugLoc() != Empty) 898 return I; 899 900 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 901 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 902 if (OpInst->getDebugLoc() != Empty) 903 return OpInst; 904 } 905 906 return I; 907 } 908 909 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 910 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 911 const DILocation *DIL = Inst->getDebugLoc(); 912 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 913 !isa<DbgInfoIntrinsic>(Inst)) { 914 assert(!VF.isScalable() && "scalable vectors not yet supported."); 915 auto NewDIL = 916 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 917 if (NewDIL) 918 B.SetCurrentDebugLocation(NewDIL.getValue()); 919 else 920 LLVM_DEBUG(dbgs() 921 << "Failed to create new discriminator: " 922 << DIL->getFilename() << " Line: " << DIL->getLine()); 923 } 924 else 925 B.SetCurrentDebugLocation(DIL); 926 } else 927 B.SetCurrentDebugLocation(DebugLoc()); 928 } 929 930 /// Write a record \p DebugMsg about vectorization failure to the debug 931 /// output stream. If \p I is passed, it is an instruction that prevents 932 /// vectorization. 933 #ifndef NDEBUG 934 static void debugVectorizationFailure(const StringRef DebugMsg, 935 Instruction *I) { 936 dbgs() << "LV: Not vectorizing: " << DebugMsg; 937 if (I != nullptr) 938 dbgs() << " " << *I; 939 else 940 dbgs() << '.'; 941 dbgs() << '\n'; 942 } 943 #endif 944 945 /// Create an analysis remark that explains why vectorization failed 946 /// 947 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 948 /// RemarkName is the identifier for the remark. If \p I is passed it is an 949 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 950 /// the location of the remark. \return the remark object that can be 951 /// streamed to. 952 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 953 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 954 Value *CodeRegion = TheLoop->getHeader(); 955 DebugLoc DL = TheLoop->getStartLoc(); 956 957 if (I) { 958 CodeRegion = I->getParent(); 959 // If there is no debug location attached to the instruction, revert back to 960 // using the loop's. 961 if (I->getDebugLoc()) 962 DL = I->getDebugLoc(); 963 } 964 965 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 966 R << "loop not vectorized: "; 967 return R; 968 } 969 970 namespace llvm { 971 972 void reportVectorizationFailure(const StringRef DebugMsg, 973 const StringRef OREMsg, const StringRef ORETag, 974 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 975 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 976 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 977 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 978 ORETag, TheLoop, I) << OREMsg); 979 } 980 981 } // end namespace llvm 982 983 #ifndef NDEBUG 984 /// \return string containing a file name and a line # for the given loop. 985 static std::string getDebugLocString(const Loop *L) { 986 std::string Result; 987 if (L) { 988 raw_string_ostream OS(Result); 989 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 990 LoopDbgLoc.print(OS); 991 else 992 // Just print the module name. 993 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 994 OS.flush(); 995 } 996 return Result; 997 } 998 #endif 999 1000 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1001 const Instruction *Orig) { 1002 // If the loop was versioned with memchecks, add the corresponding no-alias 1003 // metadata. 1004 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1005 LVer->annotateInstWithNoAlias(To, Orig); 1006 } 1007 1008 void InnerLoopVectorizer::addMetadata(Instruction *To, 1009 Instruction *From) { 1010 propagateMetadata(To, From); 1011 addNewMetadata(To, From); 1012 } 1013 1014 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1015 Instruction *From) { 1016 for (Value *V : To) { 1017 if (Instruction *I = dyn_cast<Instruction>(V)) 1018 addMetadata(I, From); 1019 } 1020 } 1021 1022 namespace llvm { 1023 1024 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1025 // lowered. 1026 enum ScalarEpilogueLowering { 1027 1028 // The default: allowing scalar epilogues. 1029 CM_ScalarEpilogueAllowed, 1030 1031 // Vectorization with OptForSize: don't allow epilogues. 1032 CM_ScalarEpilogueNotAllowedOptSize, 1033 1034 // A special case of vectorisation with OptForSize: loops with a very small 1035 // trip count are considered for vectorization under OptForSize, thereby 1036 // making sure the cost of their loop body is dominant, free of runtime 1037 // guards and scalar iteration overheads. 1038 CM_ScalarEpilogueNotAllowedLowTripLoop, 1039 1040 // Loop hint predicate indicating an epilogue is undesired. 1041 CM_ScalarEpilogueNotNeededUsePredicate 1042 }; 1043 1044 /// LoopVectorizationCostModel - estimates the expected speedups due to 1045 /// vectorization. 1046 /// In many cases vectorization is not profitable. This can happen because of 1047 /// a number of reasons. In this class we mainly attempt to predict the 1048 /// expected speedup/slowdowns due to the supported instruction set. We use the 1049 /// TargetTransformInfo to query the different backends for the cost of 1050 /// different operations. 1051 class LoopVectorizationCostModel { 1052 public: 1053 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1054 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1055 LoopVectorizationLegality *Legal, 1056 const TargetTransformInfo &TTI, 1057 const TargetLibraryInfo *TLI, DemandedBits *DB, 1058 AssumptionCache *AC, 1059 OptimizationRemarkEmitter *ORE, const Function *F, 1060 const LoopVectorizeHints *Hints, 1061 InterleavedAccessInfo &IAI) 1062 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1063 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1064 Hints(Hints), InterleaveInfo(IAI) {} 1065 1066 /// \return An upper bound for the vectorization factor, or None if 1067 /// vectorization and interleaving should be avoided up front. 1068 Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC); 1069 1070 /// \return True if runtime checks are required for vectorization, and false 1071 /// otherwise. 1072 bool runtimeChecksRequired(); 1073 1074 /// \return The most profitable vectorization factor and the cost of that VF. 1075 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1076 /// then this vectorization factor will be selected if vectorization is 1077 /// possible. 1078 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1079 1080 /// Setup cost-based decisions for user vectorization factor. 1081 void selectUserVectorizationFactor(ElementCount UserVF) { 1082 collectUniformsAndScalars(UserVF); 1083 collectInstsToScalarize(UserVF); 1084 } 1085 1086 /// \return The size (in bits) of the smallest and widest types in the code 1087 /// that needs to be vectorized. We ignore values that remain scalar such as 1088 /// 64 bit loop indices. 1089 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1090 1091 /// \return The desired interleave count. 1092 /// If interleave count has been specified by metadata it will be returned. 1093 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1094 /// are the selected vectorization factor and the cost of the selected VF. 1095 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1096 1097 /// Memory access instruction may be vectorized in more than one way. 1098 /// Form of instruction after vectorization depends on cost. 1099 /// This function takes cost-based decisions for Load/Store instructions 1100 /// and collects them in a map. This decisions map is used for building 1101 /// the lists of loop-uniform and loop-scalar instructions. 1102 /// The calculated cost is saved with widening decision in order to 1103 /// avoid redundant calculations. 1104 void setCostBasedWideningDecision(ElementCount VF); 1105 1106 /// A struct that represents some properties of the register usage 1107 /// of a loop. 1108 struct RegisterUsage { 1109 /// Holds the number of loop invariant values that are used in the loop. 1110 /// The key is ClassID of target-provided register class. 1111 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1112 /// Holds the maximum number of concurrent live intervals in the loop. 1113 /// The key is ClassID of target-provided register class. 1114 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1115 }; 1116 1117 /// \return Returns information about the register usages of the loop for the 1118 /// given vectorization factors. 1119 SmallVector<RegisterUsage, 8> 1120 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1121 1122 /// Collect values we want to ignore in the cost model. 1123 void collectValuesToIgnore(); 1124 1125 /// Split reductions into those that happen in the loop, and those that happen 1126 /// outside. In loop reductions are collected into InLoopReductionChains. 1127 void collectInLoopReductions(); 1128 1129 /// \returns The smallest bitwidth each instruction can be represented with. 1130 /// The vector equivalents of these instructions should be truncated to this 1131 /// type. 1132 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1133 return MinBWs; 1134 } 1135 1136 /// \returns True if it is more profitable to scalarize instruction \p I for 1137 /// vectorization factor \p VF. 1138 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1139 assert(VF.isVector() && 1140 "Profitable to scalarize relevant only for VF > 1."); 1141 1142 // Cost model is not run in the VPlan-native path - return conservative 1143 // result until this changes. 1144 if (EnableVPlanNativePath) 1145 return false; 1146 1147 auto Scalars = InstsToScalarize.find(VF); 1148 assert(Scalars != InstsToScalarize.end() && 1149 "VF not yet analyzed for scalarization profitability"); 1150 return Scalars->second.find(I) != Scalars->second.end(); 1151 } 1152 1153 /// Returns true if \p I is known to be uniform after vectorization. 1154 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1155 if (VF.isScalar()) 1156 return true; 1157 1158 // Cost model is not run in the VPlan-native path - return conservative 1159 // result until this changes. 1160 if (EnableVPlanNativePath) 1161 return false; 1162 1163 auto UniformsPerVF = Uniforms.find(VF); 1164 assert(UniformsPerVF != Uniforms.end() && 1165 "VF not yet analyzed for uniformity"); 1166 return UniformsPerVF->second.count(I); 1167 } 1168 1169 /// Returns true if \p I is known to be scalar after vectorization. 1170 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1171 if (VF.isScalar()) 1172 return true; 1173 1174 // Cost model is not run in the VPlan-native path - return conservative 1175 // result until this changes. 1176 if (EnableVPlanNativePath) 1177 return false; 1178 1179 auto ScalarsPerVF = Scalars.find(VF); 1180 assert(ScalarsPerVF != Scalars.end() && 1181 "Scalar values are not calculated for VF"); 1182 return ScalarsPerVF->second.count(I); 1183 } 1184 1185 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1186 /// for vectorization factor \p VF. 1187 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1188 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1189 !isProfitableToScalarize(I, VF) && 1190 !isScalarAfterVectorization(I, VF); 1191 } 1192 1193 /// Decision that was taken during cost calculation for memory instruction. 1194 enum InstWidening { 1195 CM_Unknown, 1196 CM_Widen, // For consecutive accesses with stride +1. 1197 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1198 CM_Interleave, 1199 CM_GatherScatter, 1200 CM_Scalarize 1201 }; 1202 1203 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1204 /// instruction \p I and vector width \p VF. 1205 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1206 unsigned Cost) { 1207 assert(VF.isVector() && "Expected VF >=2"); 1208 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1209 } 1210 1211 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1212 /// interleaving group \p Grp and vector width \p VF. 1213 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1214 ElementCount VF, InstWidening W, unsigned Cost) { 1215 assert(VF.isVector() && "Expected VF >=2"); 1216 /// Broadcast this decicion to all instructions inside the group. 1217 /// But the cost will be assigned to one instruction only. 1218 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1219 if (auto *I = Grp->getMember(i)) { 1220 if (Grp->getInsertPos() == I) 1221 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1222 else 1223 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1224 } 1225 } 1226 } 1227 1228 /// Return the cost model decision for the given instruction \p I and vector 1229 /// width \p VF. Return CM_Unknown if this instruction did not pass 1230 /// through the cost modeling. 1231 InstWidening getWideningDecision(Instruction *I, ElementCount VF) { 1232 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1233 assert(VF.isVector() && "Expected VF >=2"); 1234 1235 // Cost model is not run in the VPlan-native path - return conservative 1236 // result until this changes. 1237 if (EnableVPlanNativePath) 1238 return CM_GatherScatter; 1239 1240 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1241 auto Itr = WideningDecisions.find(InstOnVF); 1242 if (Itr == WideningDecisions.end()) 1243 return CM_Unknown; 1244 return Itr->second.first; 1245 } 1246 1247 /// Return the vectorization cost for the given instruction \p I and vector 1248 /// width \p VF. 1249 unsigned getWideningCost(Instruction *I, ElementCount VF) { 1250 assert(VF.isVector() && "Expected VF >=2"); 1251 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1252 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1253 "The cost is not calculated"); 1254 return WideningDecisions[InstOnVF].second; 1255 } 1256 1257 /// Return True if instruction \p I is an optimizable truncate whose operand 1258 /// is an induction variable. Such a truncate will be removed by adding a new 1259 /// induction variable with the destination type. 1260 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1261 // If the instruction is not a truncate, return false. 1262 auto *Trunc = dyn_cast<TruncInst>(I); 1263 if (!Trunc) 1264 return false; 1265 1266 // Get the source and destination types of the truncate. 1267 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1268 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1269 1270 // If the truncate is free for the given types, return false. Replacing a 1271 // free truncate with an induction variable would add an induction variable 1272 // update instruction to each iteration of the loop. We exclude from this 1273 // check the primary induction variable since it will need an update 1274 // instruction regardless. 1275 Value *Op = Trunc->getOperand(0); 1276 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1277 return false; 1278 1279 // If the truncated value is not an induction variable, return false. 1280 return Legal->isInductionPhi(Op); 1281 } 1282 1283 /// Collects the instructions to scalarize for each predicated instruction in 1284 /// the loop. 1285 void collectInstsToScalarize(ElementCount VF); 1286 1287 /// Collect Uniform and Scalar values for the given \p VF. 1288 /// The sets depend on CM decision for Load/Store instructions 1289 /// that may be vectorized as interleave, gather-scatter or scalarized. 1290 void collectUniformsAndScalars(ElementCount VF) { 1291 // Do the analysis once. 1292 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1293 return; 1294 setCostBasedWideningDecision(VF); 1295 collectLoopUniforms(VF); 1296 collectLoopScalars(VF); 1297 } 1298 1299 /// Returns true if the target machine supports masked store operation 1300 /// for the given \p DataType and kind of access to \p Ptr. 1301 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1302 return Legal->isConsecutivePtr(Ptr) && 1303 TTI.isLegalMaskedStore(DataType, Alignment); 1304 } 1305 1306 /// Returns true if the target machine supports masked load operation 1307 /// for the given \p DataType and kind of access to \p Ptr. 1308 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1309 return Legal->isConsecutivePtr(Ptr) && 1310 TTI.isLegalMaskedLoad(DataType, Alignment); 1311 } 1312 1313 /// Returns true if the target machine supports masked scatter operation 1314 /// for the given \p DataType. 1315 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1316 return TTI.isLegalMaskedScatter(DataType, Alignment); 1317 } 1318 1319 /// Returns true if the target machine supports masked gather operation 1320 /// for the given \p DataType. 1321 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1322 return TTI.isLegalMaskedGather(DataType, Alignment); 1323 } 1324 1325 /// Returns true if the target machine can represent \p V as a masked gather 1326 /// or scatter operation. 1327 bool isLegalGatherOrScatter(Value *V) { 1328 bool LI = isa<LoadInst>(V); 1329 bool SI = isa<StoreInst>(V); 1330 if (!LI && !SI) 1331 return false; 1332 auto *Ty = getMemInstValueType(V); 1333 Align Align = getLoadStoreAlignment(V); 1334 return (LI && isLegalMaskedGather(Ty, Align)) || 1335 (SI && isLegalMaskedScatter(Ty, Align)); 1336 } 1337 1338 /// Returns true if \p I is an instruction that will be scalarized with 1339 /// predication. Such instructions include conditional stores and 1340 /// instructions that may divide by zero. 1341 /// If a non-zero VF has been calculated, we check if I will be scalarized 1342 /// predication for that VF. 1343 bool isScalarWithPredication(Instruction *I, 1344 ElementCount VF = ElementCount::getFixed(1)); 1345 1346 // Returns true if \p I is an instruction that will be predicated either 1347 // through scalar predication or masked load/store or masked gather/scatter. 1348 // Superset of instructions that return true for isScalarWithPredication. 1349 bool isPredicatedInst(Instruction *I) { 1350 if (!blockNeedsPredication(I->getParent())) 1351 return false; 1352 // Loads and stores that need some form of masked operation are predicated 1353 // instructions. 1354 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1355 return Legal->isMaskRequired(I); 1356 return isScalarWithPredication(I); 1357 } 1358 1359 /// Returns true if \p I is a memory instruction with consecutive memory 1360 /// access that can be widened. 1361 bool 1362 memoryInstructionCanBeWidened(Instruction *I, 1363 ElementCount VF = ElementCount::getFixed(1)); 1364 1365 /// Returns true if \p I is a memory instruction in an interleaved-group 1366 /// of memory accesses that can be vectorized with wide vector loads/stores 1367 /// and shuffles. 1368 bool 1369 interleavedAccessCanBeWidened(Instruction *I, 1370 ElementCount VF = ElementCount::getFixed(1)); 1371 1372 /// Check if \p Instr belongs to any interleaved access group. 1373 bool isAccessInterleaved(Instruction *Instr) { 1374 return InterleaveInfo.isInterleaved(Instr); 1375 } 1376 1377 /// Get the interleaved access group that \p Instr belongs to. 1378 const InterleaveGroup<Instruction> * 1379 getInterleavedAccessGroup(Instruction *Instr) { 1380 return InterleaveInfo.getInterleaveGroup(Instr); 1381 } 1382 1383 /// Returns true if an interleaved group requires a scalar iteration 1384 /// to handle accesses with gaps, and there is nothing preventing us from 1385 /// creating a scalar epilogue. 1386 bool requiresScalarEpilogue() const { 1387 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1388 } 1389 1390 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1391 /// loop hint annotation. 1392 bool isScalarEpilogueAllowed() const { 1393 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1394 } 1395 1396 /// Returns true if all loop blocks should be masked to fold tail loop. 1397 bool foldTailByMasking() const { return FoldTailByMasking; } 1398 1399 bool blockNeedsPredication(BasicBlock *BB) { 1400 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1401 } 1402 1403 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1404 /// nodes to the chain of instructions representing the reductions. Uses a 1405 /// MapVector to ensure deterministic iteration order. 1406 using ReductionChainMap = 1407 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1408 1409 /// Return the chain of instructions representing an inloop reduction. 1410 const ReductionChainMap &getInLoopReductionChains() const { 1411 return InLoopReductionChains; 1412 } 1413 1414 /// Returns true if the Phi is part of an inloop reduction. 1415 bool isInLoopReduction(PHINode *Phi) const { 1416 return InLoopReductionChains.count(Phi); 1417 } 1418 1419 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1420 /// with factor VF. Return the cost of the instruction, including 1421 /// scalarization overhead if it's needed. 1422 unsigned getVectorIntrinsicCost(CallInst *CI, ElementCount VF); 1423 1424 /// Estimate cost of a call instruction CI if it were vectorized with factor 1425 /// VF. Return the cost of the instruction, including scalarization overhead 1426 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1427 /// scalarized - 1428 /// i.e. either vector version isn't available, or is too expensive. 1429 unsigned getVectorCallCost(CallInst *CI, ElementCount VF, 1430 bool &NeedToScalarize); 1431 1432 /// Invalidates decisions already taken by the cost model. 1433 void invalidateCostModelingDecisions() { 1434 WideningDecisions.clear(); 1435 Uniforms.clear(); 1436 Scalars.clear(); 1437 } 1438 1439 private: 1440 unsigned NumPredStores = 0; 1441 1442 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1443 /// than zero. One is returned if vectorization should best be avoided due 1444 /// to cost. 1445 ElementCount computeFeasibleMaxVF(unsigned ConstTripCount, 1446 ElementCount UserVF); 1447 1448 /// The vectorization cost is a combination of the cost itself and a boolean 1449 /// indicating whether any of the contributing operations will actually 1450 /// operate on 1451 /// vector values after type legalization in the backend. If this latter value 1452 /// is 1453 /// false, then all operations will be scalarized (i.e. no vectorization has 1454 /// actually taken place). 1455 using VectorizationCostTy = std::pair<unsigned, bool>; 1456 1457 /// Returns the expected execution cost. The unit of the cost does 1458 /// not matter because we use the 'cost' units to compare different 1459 /// vector widths. The cost that is returned is *not* normalized by 1460 /// the factor width. 1461 VectorizationCostTy expectedCost(ElementCount VF); 1462 1463 /// Returns the execution time cost of an instruction for a given vector 1464 /// width. Vector width of one means scalar. 1465 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1466 1467 /// The cost-computation logic from getInstructionCost which provides 1468 /// the vector type as an output parameter. 1469 unsigned getInstructionCost(Instruction *I, ElementCount VF, Type *&VectorTy); 1470 1471 /// Calculate vectorization cost of memory instruction \p I. 1472 unsigned getMemoryInstructionCost(Instruction *I, ElementCount VF); 1473 1474 /// The cost computation for scalarized memory instruction. 1475 unsigned getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1476 1477 /// The cost computation for interleaving group of memory instructions. 1478 unsigned getInterleaveGroupCost(Instruction *I, ElementCount VF); 1479 1480 /// The cost computation for Gather/Scatter instruction. 1481 unsigned getGatherScatterCost(Instruction *I, ElementCount VF); 1482 1483 /// The cost computation for widening instruction \p I with consecutive 1484 /// memory access. 1485 unsigned getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1486 1487 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1488 /// Load: scalar load + broadcast. 1489 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1490 /// element) 1491 unsigned getUniformMemOpCost(Instruction *I, ElementCount VF); 1492 1493 /// Estimate the overhead of scalarizing an instruction. This is a 1494 /// convenience wrapper for the type-based getScalarizationOverhead API. 1495 unsigned getScalarizationOverhead(Instruction *I, ElementCount VF); 1496 1497 /// Returns whether the instruction is a load or store and will be a emitted 1498 /// as a vector operation. 1499 bool isConsecutiveLoadOrStore(Instruction *I); 1500 1501 /// Returns true if an artificially high cost for emulated masked memrefs 1502 /// should be used. 1503 bool useEmulatedMaskMemRefHack(Instruction *I); 1504 1505 /// Map of scalar integer values to the smallest bitwidth they can be legally 1506 /// represented as. The vector equivalents of these values should be truncated 1507 /// to this type. 1508 MapVector<Instruction *, uint64_t> MinBWs; 1509 1510 /// A type representing the costs for instructions if they were to be 1511 /// scalarized rather than vectorized. The entries are Instruction-Cost 1512 /// pairs. 1513 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1514 1515 /// A set containing all BasicBlocks that are known to present after 1516 /// vectorization as a predicated block. 1517 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1518 1519 /// Records whether it is allowed to have the original scalar loop execute at 1520 /// least once. This may be needed as a fallback loop in case runtime 1521 /// aliasing/dependence checks fail, or to handle the tail/remainder 1522 /// iterations when the trip count is unknown or doesn't divide by the VF, 1523 /// or as a peel-loop to handle gaps in interleave-groups. 1524 /// Under optsize and when the trip count is very small we don't allow any 1525 /// iterations to execute in the scalar loop. 1526 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1527 1528 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1529 bool FoldTailByMasking = false; 1530 1531 /// A map holding scalar costs for different vectorization factors. The 1532 /// presence of a cost for an instruction in the mapping indicates that the 1533 /// instruction will be scalarized when vectorizing with the associated 1534 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1535 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1536 1537 /// Holds the instructions known to be uniform after vectorization. 1538 /// The data is collected per VF. 1539 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1540 1541 /// Holds the instructions known to be scalar after vectorization. 1542 /// The data is collected per VF. 1543 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1544 1545 /// Holds the instructions (address computations) that are forced to be 1546 /// scalarized. 1547 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1548 1549 /// PHINodes of the reductions that should be expanded in-loop along with 1550 /// their associated chains of reduction operations, in program order from top 1551 /// (PHI) to bottom 1552 ReductionChainMap InLoopReductionChains; 1553 1554 /// Returns the expected difference in cost from scalarizing the expression 1555 /// feeding a predicated instruction \p PredInst. The instructions to 1556 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1557 /// non-negative return value implies the expression will be scalarized. 1558 /// Currently, only single-use chains are considered for scalarization. 1559 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1560 ElementCount VF); 1561 1562 /// Collect the instructions that are uniform after vectorization. An 1563 /// instruction is uniform if we represent it with a single scalar value in 1564 /// the vectorized loop corresponding to each vector iteration. Examples of 1565 /// uniform instructions include pointer operands of consecutive or 1566 /// interleaved memory accesses. Note that although uniformity implies an 1567 /// instruction will be scalar, the reverse is not true. In general, a 1568 /// scalarized instruction will be represented by VF scalar values in the 1569 /// vectorized loop, each corresponding to an iteration of the original 1570 /// scalar loop. 1571 void collectLoopUniforms(ElementCount VF); 1572 1573 /// Collect the instructions that are scalar after vectorization. An 1574 /// instruction is scalar if it is known to be uniform or will be scalarized 1575 /// during vectorization. Non-uniform scalarized instructions will be 1576 /// represented by VF values in the vectorized loop, each corresponding to an 1577 /// iteration of the original scalar loop. 1578 void collectLoopScalars(ElementCount VF); 1579 1580 /// Keeps cost model vectorization decision and cost for instructions. 1581 /// Right now it is used for memory instructions only. 1582 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1583 std::pair<InstWidening, unsigned>>; 1584 1585 DecisionList WideningDecisions; 1586 1587 /// Returns true if \p V is expected to be vectorized and it needs to be 1588 /// extracted. 1589 bool needsExtract(Value *V, ElementCount VF) const { 1590 Instruction *I = dyn_cast<Instruction>(V); 1591 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1592 TheLoop->isLoopInvariant(I)) 1593 return false; 1594 1595 // Assume we can vectorize V (and hence we need extraction) if the 1596 // scalars are not computed yet. This can happen, because it is called 1597 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1598 // the scalars are collected. That should be a safe assumption in most 1599 // cases, because we check if the operands have vectorizable types 1600 // beforehand in LoopVectorizationLegality. 1601 return Scalars.find(VF) == Scalars.end() || 1602 !isScalarAfterVectorization(I, VF); 1603 }; 1604 1605 /// Returns a range containing only operands needing to be extracted. 1606 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1607 ElementCount VF) { 1608 return SmallVector<Value *, 4>(make_filter_range( 1609 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1610 } 1611 1612 public: 1613 /// The loop that we evaluate. 1614 Loop *TheLoop; 1615 1616 /// Predicated scalar evolution analysis. 1617 PredicatedScalarEvolution &PSE; 1618 1619 /// Loop Info analysis. 1620 LoopInfo *LI; 1621 1622 /// Vectorization legality. 1623 LoopVectorizationLegality *Legal; 1624 1625 /// Vector target information. 1626 const TargetTransformInfo &TTI; 1627 1628 /// Target Library Info. 1629 const TargetLibraryInfo *TLI; 1630 1631 /// Demanded bits analysis. 1632 DemandedBits *DB; 1633 1634 /// Assumption cache. 1635 AssumptionCache *AC; 1636 1637 /// Interface to emit optimization remarks. 1638 OptimizationRemarkEmitter *ORE; 1639 1640 const Function *TheFunction; 1641 1642 /// Loop Vectorize Hint. 1643 const LoopVectorizeHints *Hints; 1644 1645 /// The interleave access information contains groups of interleaved accesses 1646 /// with the same stride and close to each other. 1647 InterleavedAccessInfo &InterleaveInfo; 1648 1649 /// Values to ignore in the cost model. 1650 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1651 1652 /// Values to ignore in the cost model when VF > 1. 1653 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1654 }; 1655 1656 } // end namespace llvm 1657 1658 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1659 // vectorization. The loop needs to be annotated with #pragma omp simd 1660 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1661 // vector length information is not provided, vectorization is not considered 1662 // explicit. Interleave hints are not allowed either. These limitations will be 1663 // relaxed in the future. 1664 // Please, note that we are currently forced to abuse the pragma 'clang 1665 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1666 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1667 // provides *explicit vectorization hints* (LV can bypass legal checks and 1668 // assume that vectorization is legal). However, both hints are implemented 1669 // using the same metadata (llvm.loop.vectorize, processed by 1670 // LoopVectorizeHints). This will be fixed in the future when the native IR 1671 // representation for pragma 'omp simd' is introduced. 1672 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1673 OptimizationRemarkEmitter *ORE) { 1674 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 1675 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1676 1677 // Only outer loops with an explicit vectorization hint are supported. 1678 // Unannotated outer loops are ignored. 1679 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1680 return false; 1681 1682 Function *Fn = OuterLp->getHeader()->getParent(); 1683 if (!Hints.allowVectorization(Fn, OuterLp, 1684 true /*VectorizeOnlyWhenForced*/)) { 1685 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1686 return false; 1687 } 1688 1689 if (Hints.getInterleave() > 1) { 1690 // TODO: Interleave support is future work. 1691 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1692 "outer loops.\n"); 1693 Hints.emitRemarkWithHints(); 1694 return false; 1695 } 1696 1697 return true; 1698 } 1699 1700 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1701 OptimizationRemarkEmitter *ORE, 1702 SmallVectorImpl<Loop *> &V) { 1703 // Collect inner loops and outer loops without irreducible control flow. For 1704 // now, only collect outer loops that have explicit vectorization hints. If we 1705 // are stress testing the VPlan H-CFG construction, we collect the outermost 1706 // loop of every loop nest. 1707 if (L.isInnermost() || VPlanBuildStressTest || 1708 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1709 LoopBlocksRPO RPOT(&L); 1710 RPOT.perform(LI); 1711 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1712 V.push_back(&L); 1713 // TODO: Collect inner loops inside marked outer loops in case 1714 // vectorization fails for the outer loop. Do not invoke 1715 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1716 // already known to be reducible. We can use an inherited attribute for 1717 // that. 1718 return; 1719 } 1720 } 1721 for (Loop *InnerL : L) 1722 collectSupportedLoops(*InnerL, LI, ORE, V); 1723 } 1724 1725 namespace { 1726 1727 /// The LoopVectorize Pass. 1728 struct LoopVectorize : public FunctionPass { 1729 /// Pass identification, replacement for typeid 1730 static char ID; 1731 1732 LoopVectorizePass Impl; 1733 1734 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1735 bool VectorizeOnlyWhenForced = false) 1736 : FunctionPass(ID), 1737 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1738 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1739 } 1740 1741 bool runOnFunction(Function &F) override { 1742 if (skipFunction(F)) 1743 return false; 1744 1745 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1746 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1747 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1748 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1749 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1750 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1751 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1752 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1753 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1754 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1755 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1756 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1757 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1758 1759 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1760 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1761 1762 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1763 GetLAA, *ORE, PSI).MadeAnyChange; 1764 } 1765 1766 void getAnalysisUsage(AnalysisUsage &AU) const override { 1767 AU.addRequired<AssumptionCacheTracker>(); 1768 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1769 AU.addRequired<DominatorTreeWrapperPass>(); 1770 AU.addRequired<LoopInfoWrapperPass>(); 1771 AU.addRequired<ScalarEvolutionWrapperPass>(); 1772 AU.addRequired<TargetTransformInfoWrapperPass>(); 1773 AU.addRequired<AAResultsWrapperPass>(); 1774 AU.addRequired<LoopAccessLegacyAnalysis>(); 1775 AU.addRequired<DemandedBitsWrapperPass>(); 1776 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1777 AU.addRequired<InjectTLIMappingsLegacy>(); 1778 1779 // We currently do not preserve loopinfo/dominator analyses with outer loop 1780 // vectorization. Until this is addressed, mark these analyses as preserved 1781 // only for non-VPlan-native path. 1782 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1783 if (!EnableVPlanNativePath) { 1784 AU.addPreserved<LoopInfoWrapperPass>(); 1785 AU.addPreserved<DominatorTreeWrapperPass>(); 1786 } 1787 1788 AU.addPreserved<BasicAAWrapperPass>(); 1789 AU.addPreserved<GlobalsAAWrapperPass>(); 1790 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1791 } 1792 }; 1793 1794 } // end anonymous namespace 1795 1796 //===----------------------------------------------------------------------===// 1797 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1798 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1799 //===----------------------------------------------------------------------===// 1800 1801 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1802 // We need to place the broadcast of invariant variables outside the loop, 1803 // but only if it's proven safe to do so. Else, broadcast will be inside 1804 // vector loop body. 1805 Instruction *Instr = dyn_cast<Instruction>(V); 1806 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1807 (!Instr || 1808 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1809 // Place the code for broadcasting invariant variables in the new preheader. 1810 IRBuilder<>::InsertPointGuard Guard(Builder); 1811 if (SafeToHoist) 1812 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1813 1814 // Broadcast the scalar into all locations in the vector. 1815 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1816 1817 return Shuf; 1818 } 1819 1820 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1821 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1822 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1823 "Expected either an induction phi-node or a truncate of it!"); 1824 Value *Start = II.getStartValue(); 1825 1826 // Construct the initial value of the vector IV in the vector loop preheader 1827 auto CurrIP = Builder.saveIP(); 1828 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1829 if (isa<TruncInst>(EntryVal)) { 1830 assert(Start->getType()->isIntegerTy() && 1831 "Truncation requires an integer type"); 1832 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1833 Step = Builder.CreateTrunc(Step, TruncType); 1834 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1835 } 1836 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1837 Value *SteppedStart = 1838 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1839 1840 // We create vector phi nodes for both integer and floating-point induction 1841 // variables. Here, we determine the kind of arithmetic we will perform. 1842 Instruction::BinaryOps AddOp; 1843 Instruction::BinaryOps MulOp; 1844 if (Step->getType()->isIntegerTy()) { 1845 AddOp = Instruction::Add; 1846 MulOp = Instruction::Mul; 1847 } else { 1848 AddOp = II.getInductionOpcode(); 1849 MulOp = Instruction::FMul; 1850 } 1851 1852 // Multiply the vectorization factor by the step using integer or 1853 // floating-point arithmetic as appropriate. 1854 Value *ConstVF = 1855 getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue()); 1856 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1857 1858 // Create a vector splat to use in the induction update. 1859 // 1860 // FIXME: If the step is non-constant, we create the vector splat with 1861 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1862 // handle a constant vector splat. 1863 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1864 Value *SplatVF = isa<Constant>(Mul) 1865 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1866 : Builder.CreateVectorSplat(VF, Mul); 1867 Builder.restoreIP(CurrIP); 1868 1869 // We may need to add the step a number of times, depending on the unroll 1870 // factor. The last of those goes into the PHI. 1871 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1872 &*LoopVectorBody->getFirstInsertionPt()); 1873 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1874 Instruction *LastInduction = VecInd; 1875 for (unsigned Part = 0; Part < UF; ++Part) { 1876 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1877 1878 if (isa<TruncInst>(EntryVal)) 1879 addMetadata(LastInduction, EntryVal); 1880 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1881 1882 LastInduction = cast<Instruction>(addFastMathFlag( 1883 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1884 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1885 } 1886 1887 // Move the last step to the end of the latch block. This ensures consistent 1888 // placement of all induction updates. 1889 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1890 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1891 auto *ICmp = cast<Instruction>(Br->getCondition()); 1892 LastInduction->moveBefore(ICmp); 1893 LastInduction->setName("vec.ind.next"); 1894 1895 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1896 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1897 } 1898 1899 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1900 return Cost->isScalarAfterVectorization(I, VF) || 1901 Cost->isProfitableToScalarize(I, VF); 1902 } 1903 1904 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1905 if (shouldScalarizeInstruction(IV)) 1906 return true; 1907 auto isScalarInst = [&](User *U) -> bool { 1908 auto *I = cast<Instruction>(U); 1909 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1910 }; 1911 return llvm::any_of(IV->users(), isScalarInst); 1912 } 1913 1914 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1915 const InductionDescriptor &ID, const Instruction *EntryVal, 1916 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1917 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1918 "Expected either an induction phi-node or a truncate of it!"); 1919 1920 // This induction variable is not the phi from the original loop but the 1921 // newly-created IV based on the proof that casted Phi is equal to the 1922 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1923 // re-uses the same InductionDescriptor that original IV uses but we don't 1924 // have to do any recording in this case - that is done when original IV is 1925 // processed. 1926 if (isa<TruncInst>(EntryVal)) 1927 return; 1928 1929 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1930 if (Casts.empty()) 1931 return; 1932 // Only the first Cast instruction in the Casts vector is of interest. 1933 // The rest of the Casts (if exist) have no uses outside the 1934 // induction update chain itself. 1935 Instruction *CastInst = *Casts.begin(); 1936 if (Lane < UINT_MAX) 1937 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1938 else 1939 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1940 } 1941 1942 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1943 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1944 "Primary induction variable must have an integer type"); 1945 1946 auto II = Legal->getInductionVars().find(IV); 1947 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1948 1949 auto ID = II->second; 1950 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1951 1952 // The value from the original loop to which we are mapping the new induction 1953 // variable. 1954 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1955 1956 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1957 1958 // Generate code for the induction step. Note that induction steps are 1959 // required to be loop-invariant 1960 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1961 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1962 "Induction step should be loop invariant"); 1963 if (PSE.getSE()->isSCEVable(IV->getType())) { 1964 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1965 return Exp.expandCodeFor(Step, Step->getType(), 1966 LoopVectorPreHeader->getTerminator()); 1967 } 1968 return cast<SCEVUnknown>(Step)->getValue(); 1969 }; 1970 1971 // The scalar value to broadcast. This is derived from the canonical 1972 // induction variable. If a truncation type is given, truncate the canonical 1973 // induction variable and step. Otherwise, derive these values from the 1974 // induction descriptor. 1975 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1976 Value *ScalarIV = Induction; 1977 if (IV != OldInduction) { 1978 ScalarIV = IV->getType()->isIntegerTy() 1979 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1980 : Builder.CreateCast(Instruction::SIToFP, Induction, 1981 IV->getType()); 1982 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1983 ScalarIV->setName("offset.idx"); 1984 } 1985 if (Trunc) { 1986 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1987 assert(Step->getType()->isIntegerTy() && 1988 "Truncation requires an integer step"); 1989 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1990 Step = Builder.CreateTrunc(Step, TruncType); 1991 } 1992 return ScalarIV; 1993 }; 1994 1995 // Create the vector values from the scalar IV, in the absence of creating a 1996 // vector IV. 1997 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1998 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1999 for (unsigned Part = 0; Part < UF; ++Part) { 2000 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2001 Value *EntryPart = 2002 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2003 ID.getInductionOpcode()); 2004 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2005 if (Trunc) 2006 addMetadata(EntryPart, Trunc); 2007 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 2008 } 2009 }; 2010 2011 // Now do the actual transformations, and start with creating the step value. 2012 Value *Step = CreateStepValue(ID.getStep()); 2013 if (VF.isZero() || VF.isScalar()) { 2014 Value *ScalarIV = CreateScalarIV(Step); 2015 CreateSplatIV(ScalarIV, Step); 2016 return; 2017 } 2018 2019 // Determine if we want a scalar version of the induction variable. This is 2020 // true if the induction variable itself is not widened, or if it has at 2021 // least one user in the loop that is not widened. 2022 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2023 if (!NeedsScalarIV) { 2024 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2025 return; 2026 } 2027 2028 // Try to create a new independent vector induction variable. If we can't 2029 // create the phi node, we will splat the scalar induction variable in each 2030 // loop iteration. 2031 if (!shouldScalarizeInstruction(EntryVal)) { 2032 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2033 Value *ScalarIV = CreateScalarIV(Step); 2034 // Create scalar steps that can be used by instructions we will later 2035 // scalarize. Note that the addition of the scalar steps will not increase 2036 // the number of instructions in the loop in the common case prior to 2037 // InstCombine. We will be trading one vector extract for each scalar step. 2038 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2039 return; 2040 } 2041 2042 // All IV users are scalar instructions, so only emit a scalar IV, not a 2043 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2044 // predicate used by the masked loads/stores. 2045 Value *ScalarIV = CreateScalarIV(Step); 2046 if (!Cost->isScalarEpilogueAllowed()) 2047 CreateSplatIV(ScalarIV, Step); 2048 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2049 } 2050 2051 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2052 Instruction::BinaryOps BinOp) { 2053 // Create and check the types. 2054 auto *ValVTy = cast<FixedVectorType>(Val->getType()); 2055 int VLen = ValVTy->getNumElements(); 2056 2057 Type *STy = Val->getType()->getScalarType(); 2058 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2059 "Induction Step must be an integer or FP"); 2060 assert(Step->getType() == STy && "Step has wrong type"); 2061 2062 SmallVector<Constant *, 8> Indices; 2063 2064 if (STy->isIntegerTy()) { 2065 // Create a vector of consecutive numbers from zero to VF. 2066 for (int i = 0; i < VLen; ++i) 2067 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2068 2069 // Add the consecutive indices to the vector value. 2070 Constant *Cv = ConstantVector::get(Indices); 2071 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2072 Step = Builder.CreateVectorSplat(VLen, Step); 2073 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2074 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2075 // which can be found from the original scalar operations. 2076 Step = Builder.CreateMul(Cv, Step); 2077 return Builder.CreateAdd(Val, Step, "induction"); 2078 } 2079 2080 // Floating point induction. 2081 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2082 "Binary Opcode should be specified for FP induction"); 2083 // Create a vector of consecutive numbers from zero to VF. 2084 for (int i = 0; i < VLen; ++i) 2085 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2086 2087 // Add the consecutive indices to the vector value. 2088 Constant *Cv = ConstantVector::get(Indices); 2089 2090 Step = Builder.CreateVectorSplat(VLen, Step); 2091 2092 // Floating point operations had to be 'fast' to enable the induction. 2093 FastMathFlags Flags; 2094 Flags.setFast(); 2095 2096 Value *MulOp = Builder.CreateFMul(Cv, Step); 2097 if (isa<Instruction>(MulOp)) 2098 // Have to check, MulOp may be a constant 2099 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2100 2101 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2102 if (isa<Instruction>(BOp)) 2103 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2104 return BOp; 2105 } 2106 2107 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2108 Instruction *EntryVal, 2109 const InductionDescriptor &ID) { 2110 // We shouldn't have to build scalar steps if we aren't vectorizing. 2111 assert(VF.isVector() && "VF should be greater than one"); 2112 assert(!VF.isScalable() && 2113 "the code below assumes a fixed number of elements at compile time"); 2114 // Get the value type and ensure it and the step have the same integer type. 2115 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2116 assert(ScalarIVTy == Step->getType() && 2117 "Val and Step should have the same type"); 2118 2119 // We build scalar steps for both integer and floating-point induction 2120 // variables. Here, we determine the kind of arithmetic we will perform. 2121 Instruction::BinaryOps AddOp; 2122 Instruction::BinaryOps MulOp; 2123 if (ScalarIVTy->isIntegerTy()) { 2124 AddOp = Instruction::Add; 2125 MulOp = Instruction::Mul; 2126 } else { 2127 AddOp = ID.getInductionOpcode(); 2128 MulOp = Instruction::FMul; 2129 } 2130 2131 // Determine the number of scalars we need to generate for each unroll 2132 // iteration. If EntryVal is uniform, we only need to generate the first 2133 // lane. Otherwise, we generate all VF values. 2134 unsigned Lanes = 2135 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) 2136 ? 1 2137 : VF.getKnownMinValue(); 2138 // Compute the scalar steps and save the results in VectorLoopValueMap. 2139 for (unsigned Part = 0; Part < UF; ++Part) { 2140 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2141 auto *StartIdx = getSignedIntOrFpConstant( 2142 ScalarIVTy, VF.getKnownMinValue() * Part + Lane); 2143 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2144 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2145 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2146 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2147 } 2148 } 2149 } 2150 2151 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2152 assert(V != Induction && "The new induction variable should not be used."); 2153 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2154 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2155 2156 // If we have a stride that is replaced by one, do it here. Defer this for 2157 // the VPlan-native path until we start running Legal checks in that path. 2158 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2159 V = ConstantInt::get(V->getType(), 1); 2160 2161 // If we have a vector mapped to this value, return it. 2162 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2163 return VectorLoopValueMap.getVectorValue(V, Part); 2164 2165 // If the value has not been vectorized, check if it has been scalarized 2166 // instead. If it has been scalarized, and we actually need the value in 2167 // vector form, we will construct the vector values on demand. 2168 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2169 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2170 2171 // If we've scalarized a value, that value should be an instruction. 2172 auto *I = cast<Instruction>(V); 2173 2174 // If we aren't vectorizing, we can just copy the scalar map values over to 2175 // the vector map. 2176 if (VF.isScalar()) { 2177 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2178 return ScalarValue; 2179 } 2180 2181 // Get the last scalar instruction we generated for V and Part. If the value 2182 // is known to be uniform after vectorization, this corresponds to lane zero 2183 // of the Part unroll iteration. Otherwise, the last instruction is the one 2184 // we created for the last vector lane of the Part unroll iteration. 2185 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2186 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) 2187 ? 0 2188 : VF.getKnownMinValue() - 1; 2189 auto *LastInst = cast<Instruction>( 2190 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2191 2192 // Set the insert point after the last scalarized instruction. This ensures 2193 // the insertelement sequence will directly follow the scalar definitions. 2194 auto OldIP = Builder.saveIP(); 2195 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2196 Builder.SetInsertPoint(&*NewIP); 2197 2198 // However, if we are vectorizing, we need to construct the vector values. 2199 // If the value is known to be uniform after vectorization, we can just 2200 // broadcast the scalar value corresponding to lane zero for each unroll 2201 // iteration. Otherwise, we construct the vector values using insertelement 2202 // instructions. Since the resulting vectors are stored in 2203 // VectorLoopValueMap, we will only generate the insertelements once. 2204 Value *VectorValue = nullptr; 2205 if (Cost->isUniformAfterVectorization(I, VF)) { 2206 VectorValue = getBroadcastInstrs(ScalarValue); 2207 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2208 } else { 2209 // Initialize packing with insertelements to start from undef. 2210 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2211 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2212 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2213 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 2214 packScalarIntoVectorValue(V, {Part, Lane}); 2215 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2216 } 2217 Builder.restoreIP(OldIP); 2218 return VectorValue; 2219 } 2220 2221 // If this scalar is unknown, assume that it is a constant or that it is 2222 // loop invariant. Broadcast V and save the value for future uses. 2223 Value *B = getBroadcastInstrs(V); 2224 VectorLoopValueMap.setVectorValue(V, Part, B); 2225 return B; 2226 } 2227 2228 Value * 2229 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2230 const VPIteration &Instance) { 2231 // If the value is not an instruction contained in the loop, it should 2232 // already be scalar. 2233 if (OrigLoop->isLoopInvariant(V)) 2234 return V; 2235 2236 assert(Instance.Lane > 0 2237 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2238 : true && "Uniform values only have lane zero"); 2239 2240 // If the value from the original loop has not been vectorized, it is 2241 // represented by UF x VF scalar values in the new loop. Return the requested 2242 // scalar value. 2243 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2244 return VectorLoopValueMap.getScalarValue(V, Instance); 2245 2246 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2247 // for the given unroll part. If this entry is not a vector type (i.e., the 2248 // vectorization factor is one), there is no need to generate an 2249 // extractelement instruction. 2250 auto *U = getOrCreateVectorValue(V, Instance.Part); 2251 if (!U->getType()->isVectorTy()) { 2252 assert(VF.isScalar() && "Value not scalarized has non-vector type"); 2253 return U; 2254 } 2255 2256 // Otherwise, the value from the original loop has been vectorized and is 2257 // represented by UF vector values. Extract and return the requested scalar 2258 // value from the appropriate vector lane. 2259 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2260 } 2261 2262 void InnerLoopVectorizer::packScalarIntoVectorValue( 2263 Value *V, const VPIteration &Instance) { 2264 assert(V != Induction && "The new induction variable should not be used."); 2265 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2266 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2267 2268 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2269 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2270 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2271 Builder.getInt32(Instance.Lane)); 2272 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2273 } 2274 2275 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2276 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2277 assert(!VF.isScalable() && "Cannot reverse scalable vectors"); 2278 SmallVector<int, 8> ShuffleMask; 2279 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 2280 ShuffleMask.push_back(VF.getKnownMinValue() - i - 1); 2281 2282 return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse"); 2283 } 2284 2285 // Return whether we allow using masked interleave-groups (for dealing with 2286 // strided loads/stores that reside in predicated blocks, or for dealing 2287 // with gaps). 2288 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2289 // If an override option has been passed in for interleaved accesses, use it. 2290 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2291 return EnableMaskedInterleavedMemAccesses; 2292 2293 return TTI.enableMaskedInterleavedAccessVectorization(); 2294 } 2295 2296 // Try to vectorize the interleave group that \p Instr belongs to. 2297 // 2298 // E.g. Translate following interleaved load group (factor = 3): 2299 // for (i = 0; i < N; i+=3) { 2300 // R = Pic[i]; // Member of index 0 2301 // G = Pic[i+1]; // Member of index 1 2302 // B = Pic[i+2]; // Member of index 2 2303 // ... // do something to R, G, B 2304 // } 2305 // To: 2306 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2307 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2308 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2309 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2310 // 2311 // Or translate following interleaved store group (factor = 3): 2312 // for (i = 0; i < N; i+=3) { 2313 // ... do something to R, G, B 2314 // Pic[i] = R; // Member of index 0 2315 // Pic[i+1] = G; // Member of index 1 2316 // Pic[i+2] = B; // Member of index 2 2317 // } 2318 // To: 2319 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2320 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2321 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2322 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2323 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2324 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2325 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2326 VPValue *Addr, ArrayRef<VPValue *> StoredValues, VPValue *BlockInMask) { 2327 Instruction *Instr = Group->getInsertPos(); 2328 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2329 2330 // Prepare for the vector type of the interleaved load/store. 2331 Type *ScalarTy = getMemInstValueType(Instr); 2332 unsigned InterleaveFactor = Group->getFactor(); 2333 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2334 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2335 2336 // Prepare for the new pointers. 2337 SmallVector<Value *, 2> AddrParts; 2338 unsigned Index = Group->getIndex(Instr); 2339 2340 // TODO: extend the masked interleaved-group support to reversed access. 2341 assert((!BlockInMask || !Group->isReverse()) && 2342 "Reversed masked interleave-group not supported."); 2343 2344 // If the group is reverse, adjust the index to refer to the last vector lane 2345 // instead of the first. We adjust the index from the first vector lane, 2346 // rather than directly getting the pointer for lane VF - 1, because the 2347 // pointer operand of the interleaved access is supposed to be uniform. For 2348 // uniform instructions, we're only required to generate a value for the 2349 // first vector lane in each unroll iteration. 2350 assert(!VF.isScalable() && 2351 "scalable vector reverse operation is not implemented"); 2352 if (Group->isReverse()) 2353 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2354 2355 for (unsigned Part = 0; Part < UF; Part++) { 2356 Value *AddrPart = State.get(Addr, {Part, 0}); 2357 setDebugLocFromInst(Builder, AddrPart); 2358 2359 // Notice current instruction could be any index. Need to adjust the address 2360 // to the member of index 0. 2361 // 2362 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2363 // b = A[i]; // Member of index 0 2364 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2365 // 2366 // E.g. A[i+1] = a; // Member of index 1 2367 // A[i] = b; // Member of index 0 2368 // A[i+2] = c; // Member of index 2 (Current instruction) 2369 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2370 2371 bool InBounds = false; 2372 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2373 InBounds = gep->isInBounds(); 2374 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2375 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2376 2377 // Cast to the vector pointer type. 2378 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2379 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2380 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2381 } 2382 2383 setDebugLocFromInst(Builder, Instr); 2384 Value *UndefVec = UndefValue::get(VecTy); 2385 2386 Value *MaskForGaps = nullptr; 2387 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2388 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2389 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2390 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2391 } 2392 2393 // Vectorize the interleaved load group. 2394 if (isa<LoadInst>(Instr)) { 2395 // For each unroll part, create a wide load for the group. 2396 SmallVector<Value *, 2> NewLoads; 2397 for (unsigned Part = 0; Part < UF; Part++) { 2398 Instruction *NewLoad; 2399 if (BlockInMask || MaskForGaps) { 2400 assert(useMaskedInterleavedAccesses(*TTI) && 2401 "masked interleaved groups are not allowed."); 2402 Value *GroupMask = MaskForGaps; 2403 if (BlockInMask) { 2404 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2405 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2406 Value *ShuffledMask = Builder.CreateShuffleVector( 2407 BlockInMaskPart, 2408 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2409 "interleaved.mask"); 2410 GroupMask = MaskForGaps 2411 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2412 MaskForGaps) 2413 : ShuffledMask; 2414 } 2415 NewLoad = 2416 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2417 GroupMask, UndefVec, "wide.masked.vec"); 2418 } 2419 else 2420 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2421 Group->getAlign(), "wide.vec"); 2422 Group->addMetadata(NewLoad); 2423 NewLoads.push_back(NewLoad); 2424 } 2425 2426 // For each member in the group, shuffle out the appropriate data from the 2427 // wide loads. 2428 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2429 Instruction *Member = Group->getMember(I); 2430 2431 // Skip the gaps in the group. 2432 if (!Member) 2433 continue; 2434 2435 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2436 auto StrideMask = 2437 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2438 for (unsigned Part = 0; Part < UF; Part++) { 2439 Value *StridedVec = Builder.CreateShuffleVector( 2440 NewLoads[Part], StrideMask, "strided.vec"); 2441 2442 // If this member has different type, cast the result type. 2443 if (Member->getType() != ScalarTy) { 2444 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2445 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2446 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2447 } 2448 2449 if (Group->isReverse()) 2450 StridedVec = reverseVector(StridedVec); 2451 2452 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2453 } 2454 } 2455 return; 2456 } 2457 2458 // The sub vector type for current instruction. 2459 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2460 auto *SubVT = VectorType::get(ScalarTy, VF); 2461 2462 // Vectorize the interleaved store group. 2463 for (unsigned Part = 0; Part < UF; Part++) { 2464 // Collect the stored vector from each member. 2465 SmallVector<Value *, 4> StoredVecs; 2466 for (unsigned i = 0; i < InterleaveFactor; i++) { 2467 // Interleaved store group doesn't allow a gap, so each index has a member 2468 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2469 2470 Value *StoredVec = State.get(StoredValues[i], Part); 2471 2472 if (Group->isReverse()) 2473 StoredVec = reverseVector(StoredVec); 2474 2475 // If this member has different type, cast it to a unified type. 2476 2477 if (StoredVec->getType() != SubVT) 2478 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2479 2480 StoredVecs.push_back(StoredVec); 2481 } 2482 2483 // Concatenate all vectors into a wide vector. 2484 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2485 2486 // Interleave the elements in the wide vector. 2487 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2488 Value *IVec = Builder.CreateShuffleVector( 2489 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2490 "interleaved.vec"); 2491 2492 Instruction *NewStoreInstr; 2493 if (BlockInMask) { 2494 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2495 Value *ShuffledMask = Builder.CreateShuffleVector( 2496 BlockInMaskPart, 2497 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2498 "interleaved.mask"); 2499 NewStoreInstr = Builder.CreateMaskedStore( 2500 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2501 } 2502 else 2503 NewStoreInstr = 2504 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2505 2506 Group->addMetadata(NewStoreInstr); 2507 } 2508 } 2509 2510 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2511 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2512 VPValue *StoredValue, VPValue *BlockInMask) { 2513 // Attempt to issue a wide load. 2514 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2515 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2516 2517 assert((LI || SI) && "Invalid Load/Store instruction"); 2518 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2519 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2520 2521 LoopVectorizationCostModel::InstWidening Decision = 2522 Cost->getWideningDecision(Instr, VF); 2523 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2524 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2525 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2526 "CM decision is not to widen the memory instruction"); 2527 2528 Type *ScalarDataTy = getMemInstValueType(Instr); 2529 2530 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2531 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2532 const Align Alignment = getLoadStoreAlignment(Instr); 2533 2534 // Determine if the pointer operand of the access is either consecutive or 2535 // reverse consecutive. 2536 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2537 bool ConsecutiveStride = 2538 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2539 bool CreateGatherScatter = 2540 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2541 2542 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2543 // gather/scatter. Otherwise Decision should have been to Scalarize. 2544 assert((ConsecutiveStride || CreateGatherScatter) && 2545 "The instruction should be scalarized"); 2546 (void)ConsecutiveStride; 2547 2548 VectorParts BlockInMaskParts(UF); 2549 bool isMaskRequired = BlockInMask; 2550 if (isMaskRequired) 2551 for (unsigned Part = 0; Part < UF; ++Part) 2552 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2553 2554 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2555 // Calculate the pointer for the specific unroll-part. 2556 GetElementPtrInst *PartPtr = nullptr; 2557 2558 bool InBounds = false; 2559 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2560 InBounds = gep->isInBounds(); 2561 2562 if (Reverse) { 2563 // If the address is consecutive but reversed, then the 2564 // wide store needs to start at the last vector element. 2565 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2566 ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue()))); 2567 PartPtr->setIsInBounds(InBounds); 2568 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2569 ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue()))); 2570 PartPtr->setIsInBounds(InBounds); 2571 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2572 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2573 } else { 2574 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2575 ScalarDataTy, Ptr, Builder.getInt32(Part * VF.getKnownMinValue()))); 2576 PartPtr->setIsInBounds(InBounds); 2577 } 2578 2579 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2580 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2581 }; 2582 2583 // Handle Stores: 2584 if (SI) { 2585 setDebugLocFromInst(Builder, SI); 2586 2587 for (unsigned Part = 0; Part < UF; ++Part) { 2588 Instruction *NewSI = nullptr; 2589 Value *StoredVal = State.get(StoredValue, Part); 2590 if (CreateGatherScatter) { 2591 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2592 Value *VectorGep = State.get(Addr, Part); 2593 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2594 MaskPart); 2595 } else { 2596 if (Reverse) { 2597 // If we store to reverse consecutive memory locations, then we need 2598 // to reverse the order of elements in the stored value. 2599 StoredVal = reverseVector(StoredVal); 2600 // We don't want to update the value in the map as it might be used in 2601 // another expression. So don't call resetVectorValue(StoredVal). 2602 } 2603 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2604 if (isMaskRequired) 2605 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2606 BlockInMaskParts[Part]); 2607 else 2608 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2609 } 2610 addMetadata(NewSI, SI); 2611 } 2612 return; 2613 } 2614 2615 // Handle loads. 2616 assert(LI && "Must have a load instruction"); 2617 setDebugLocFromInst(Builder, LI); 2618 for (unsigned Part = 0; Part < UF; ++Part) { 2619 Value *NewLI; 2620 if (CreateGatherScatter) { 2621 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2622 Value *VectorGep = State.get(Addr, Part); 2623 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2624 nullptr, "wide.masked.gather"); 2625 addMetadata(NewLI, LI); 2626 } else { 2627 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2628 if (isMaskRequired) 2629 NewLI = Builder.CreateMaskedLoad( 2630 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2631 "wide.masked.load"); 2632 else 2633 NewLI = 2634 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2635 2636 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2637 addMetadata(NewLI, LI); 2638 if (Reverse) 2639 NewLI = reverseVector(NewLI); 2640 } 2641 2642 State.set(Def, Instr, NewLI, Part); 2643 } 2644 } 2645 2646 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2647 const VPIteration &Instance, 2648 bool IfPredicateInstr, 2649 VPTransformState &State) { 2650 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2651 2652 setDebugLocFromInst(Builder, Instr); 2653 2654 // Does this instruction return a value ? 2655 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2656 2657 Instruction *Cloned = Instr->clone(); 2658 if (!IsVoidRetTy) 2659 Cloned->setName(Instr->getName() + ".cloned"); 2660 2661 // Replace the operands of the cloned instructions with their scalar 2662 // equivalents in the new loop. 2663 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2664 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 2665 auto InputInstance = Instance; 2666 if (!Operand || !OrigLoop->contains(Operand) || 2667 (Cost->isUniformAfterVectorization(Operand, State.VF))) 2668 InputInstance.Lane = 0; 2669 auto *NewOp = State.get(User.getOperand(op), InputInstance); 2670 Cloned->setOperand(op, NewOp); 2671 } 2672 addNewMetadata(Cloned, Instr); 2673 2674 // Place the cloned scalar in the new loop. 2675 Builder.Insert(Cloned); 2676 2677 // TODO: Set result for VPValue of VPReciplicateRecipe. This requires 2678 // representing scalar values in VPTransformState. Add the cloned scalar to 2679 // the scalar map entry. 2680 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2681 2682 // If we just cloned a new assumption, add it the assumption cache. 2683 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2684 if (II->getIntrinsicID() == Intrinsic::assume) 2685 AC->registerAssumption(II); 2686 2687 // End if-block. 2688 if (IfPredicateInstr) 2689 PredicatedInstructions.push_back(Cloned); 2690 } 2691 2692 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2693 Value *End, Value *Step, 2694 Instruction *DL) { 2695 BasicBlock *Header = L->getHeader(); 2696 BasicBlock *Latch = L->getLoopLatch(); 2697 // As we're just creating this loop, it's possible no latch exists 2698 // yet. If so, use the header as this will be a single block loop. 2699 if (!Latch) 2700 Latch = Header; 2701 2702 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2703 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2704 setDebugLocFromInst(Builder, OldInst); 2705 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2706 2707 Builder.SetInsertPoint(Latch->getTerminator()); 2708 setDebugLocFromInst(Builder, OldInst); 2709 2710 // Create i+1 and fill the PHINode. 2711 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2712 Induction->addIncoming(Start, L->getLoopPreheader()); 2713 Induction->addIncoming(Next, Latch); 2714 // Create the compare. 2715 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2716 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2717 2718 // Now we have two terminators. Remove the old one from the block. 2719 Latch->getTerminator()->eraseFromParent(); 2720 2721 return Induction; 2722 } 2723 2724 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2725 if (TripCount) 2726 return TripCount; 2727 2728 assert(L && "Create Trip Count for null loop."); 2729 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2730 // Find the loop boundaries. 2731 ScalarEvolution *SE = PSE.getSE(); 2732 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2733 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2734 "Invalid loop count"); 2735 2736 Type *IdxTy = Legal->getWidestInductionType(); 2737 assert(IdxTy && "No type for induction"); 2738 2739 // The exit count might have the type of i64 while the phi is i32. This can 2740 // happen if we have an induction variable that is sign extended before the 2741 // compare. The only way that we get a backedge taken count is that the 2742 // induction variable was signed and as such will not overflow. In such a case 2743 // truncation is legal. 2744 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2745 IdxTy->getPrimitiveSizeInBits()) 2746 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2747 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2748 2749 // Get the total trip count from the count by adding 1. 2750 const SCEV *ExitCount = SE->getAddExpr( 2751 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2752 2753 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2754 2755 // Expand the trip count and place the new instructions in the preheader. 2756 // Notice that the pre-header does not change, only the loop body. 2757 SCEVExpander Exp(*SE, DL, "induction"); 2758 2759 // Count holds the overall loop count (N). 2760 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2761 L->getLoopPreheader()->getTerminator()); 2762 2763 if (TripCount->getType()->isPointerTy()) 2764 TripCount = 2765 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2766 L->getLoopPreheader()->getTerminator()); 2767 2768 return TripCount; 2769 } 2770 2771 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2772 if (VectorTripCount) 2773 return VectorTripCount; 2774 2775 Value *TC = getOrCreateTripCount(L); 2776 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2777 2778 Type *Ty = TC->getType(); 2779 // This is where we can make the step a runtime constant. 2780 assert(!VF.isScalable() && "scalable vectorization is not supported yet"); 2781 Constant *Step = ConstantInt::get(Ty, VF.getKnownMinValue() * UF); 2782 2783 // If the tail is to be folded by masking, round the number of iterations N 2784 // up to a multiple of Step instead of rounding down. This is done by first 2785 // adding Step-1 and then rounding down. Note that it's ok if this addition 2786 // overflows: the vector induction variable will eventually wrap to zero given 2787 // that it starts at zero and its Step is a power of two; the loop will then 2788 // exit, with the last early-exit vector comparison also producing all-true. 2789 if (Cost->foldTailByMasking()) { 2790 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2791 "VF*UF must be a power of 2 when folding tail by masking"); 2792 TC = Builder.CreateAdd( 2793 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 2794 } 2795 2796 // Now we need to generate the expression for the part of the loop that the 2797 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2798 // iterations are not required for correctness, or N - Step, otherwise. Step 2799 // is equal to the vectorization factor (number of SIMD elements) times the 2800 // unroll factor (number of SIMD instructions). 2801 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2802 2803 // If there is a non-reversed interleaved group that may speculatively access 2804 // memory out-of-bounds, we need to ensure that there will be at least one 2805 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2806 // the trip count, we set the remainder to be equal to the step. If the step 2807 // does not evenly divide the trip count, no adjustment is necessary since 2808 // there will already be scalar iterations. Note that the minimum iterations 2809 // check ensures that N >= Step. 2810 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 2811 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2812 R = Builder.CreateSelect(IsZero, Step, R); 2813 } 2814 2815 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2816 2817 return VectorTripCount; 2818 } 2819 2820 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2821 const DataLayout &DL) { 2822 // Verify that V is a vector type with same number of elements as DstVTy. 2823 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2824 unsigned VF = DstFVTy->getNumElements(); 2825 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2826 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2827 Type *SrcElemTy = SrcVecTy->getElementType(); 2828 Type *DstElemTy = DstFVTy->getElementType(); 2829 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2830 "Vector elements must have same size"); 2831 2832 // Do a direct cast if element types are castable. 2833 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2834 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2835 } 2836 // V cannot be directly casted to desired vector type. 2837 // May happen when V is a floating point vector but DstVTy is a vector of 2838 // pointers or vice-versa. Handle this using a two-step bitcast using an 2839 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2840 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2841 "Only one type should be a pointer type"); 2842 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2843 "Only one type should be a floating point type"); 2844 Type *IntTy = 2845 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2846 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2847 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2848 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2849 } 2850 2851 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2852 BasicBlock *Bypass) { 2853 Value *Count = getOrCreateTripCount(L); 2854 // Reuse existing vector loop preheader for TC checks. 2855 // Note that new preheader block is generated for vector loop. 2856 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2857 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2858 2859 // Generate code to check if the loop's trip count is less than VF * UF, or 2860 // equal to it in case a scalar epilogue is required; this implies that the 2861 // vector trip count is zero. This check also covers the case where adding one 2862 // to the backedge-taken count overflowed leading to an incorrect trip count 2863 // of zero. In this case we will also jump to the scalar loop. 2864 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2865 : ICmpInst::ICMP_ULT; 2866 2867 // If tail is to be folded, vector loop takes care of all iterations. 2868 Value *CheckMinIters = Builder.getFalse(); 2869 if (!Cost->foldTailByMasking()) { 2870 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2871 CheckMinIters = Builder.CreateICmp( 2872 P, Count, 2873 ConstantInt::get(Count->getType(), VF.getKnownMinValue() * UF), 2874 "min.iters.check"); 2875 } 2876 // Create new preheader for vector loop. 2877 LoopVectorPreHeader = 2878 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2879 "vector.ph"); 2880 2881 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2882 DT->getNode(Bypass)->getIDom()) && 2883 "TC check is expected to dominate Bypass"); 2884 2885 // Update dominator for Bypass & LoopExit. 2886 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2887 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2888 2889 ReplaceInstWithInst( 2890 TCCheckBlock->getTerminator(), 2891 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2892 LoopBypassBlocks.push_back(TCCheckBlock); 2893 } 2894 2895 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2896 // Reuse existing vector loop preheader for SCEV checks. 2897 // Note that new preheader block is generated for vector loop. 2898 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2899 2900 // Generate the code to check that the SCEV assumptions that we made. 2901 // We want the new basic block to start at the first instruction in a 2902 // sequence of instructions that form a check. 2903 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2904 "scev.check"); 2905 Value *SCEVCheck = Exp.expandCodeForPredicate( 2906 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2907 2908 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2909 if (C->isZero()) 2910 return; 2911 2912 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 2913 (OptForSizeBasedOnProfile && 2914 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 2915 "Cannot SCEV check stride or overflow when optimizing for size"); 2916 2917 SCEVCheckBlock->setName("vector.scevcheck"); 2918 // Create new preheader for vector loop. 2919 LoopVectorPreHeader = 2920 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2921 nullptr, "vector.ph"); 2922 2923 // Update dominator only if this is first RT check. 2924 if (LoopBypassBlocks.empty()) { 2925 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2926 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2927 } 2928 2929 ReplaceInstWithInst( 2930 SCEVCheckBlock->getTerminator(), 2931 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2932 LoopBypassBlocks.push_back(SCEVCheckBlock); 2933 AddedSafetyChecks = true; 2934 } 2935 2936 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2937 // VPlan-native path does not do any analysis for runtime checks currently. 2938 if (EnableVPlanNativePath) 2939 return; 2940 2941 // Reuse existing vector loop preheader for runtime memory checks. 2942 // Note that new preheader block is generated for vector loop. 2943 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2944 2945 // Generate the code that checks in runtime if arrays overlap. We put the 2946 // checks into a separate block to make the more common case of few elements 2947 // faster. 2948 auto *LAI = Legal->getLAI(); 2949 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 2950 if (!RtPtrChecking.Need) 2951 return; 2952 2953 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 2954 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2955 "Cannot emit memory checks when optimizing for size, unless forced " 2956 "to vectorize."); 2957 ORE->emit([&]() { 2958 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2959 L->getStartLoc(), L->getHeader()) 2960 << "Code-size may be reduced by not forcing " 2961 "vectorization, or by source-code modifications " 2962 "eliminating the need for runtime checks " 2963 "(e.g., adding 'restrict')."; 2964 }); 2965 } 2966 2967 MemCheckBlock->setName("vector.memcheck"); 2968 // Create new preheader for vector loop. 2969 LoopVectorPreHeader = 2970 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2971 "vector.ph"); 2972 2973 auto *CondBranch = cast<BranchInst>( 2974 Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader)); 2975 ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch); 2976 LoopBypassBlocks.push_back(MemCheckBlock); 2977 AddedSafetyChecks = true; 2978 2979 // Update dominator only if this is first RT check. 2980 if (LoopBypassBlocks.empty()) { 2981 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2982 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2983 } 2984 2985 Instruction *FirstCheckInst; 2986 Instruction *MemRuntimeCheck; 2987 std::tie(FirstCheckInst, MemRuntimeCheck) = 2988 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 2989 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 2990 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 2991 "claimed checks are required"); 2992 CondBranch->setCondition(MemRuntimeCheck); 2993 2994 // We currently don't use LoopVersioning for the actual loop cloning but we 2995 // still use it to add the noalias metadata. 2996 LVer = std::make_unique<LoopVersioning>( 2997 *Legal->getLAI(), 2998 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 2999 DT, PSE.getSE()); 3000 LVer->prepareNoAliasMetadata(); 3001 } 3002 3003 Value *InnerLoopVectorizer::emitTransformedIndex( 3004 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3005 const InductionDescriptor &ID) const { 3006 3007 SCEVExpander Exp(*SE, DL, "induction"); 3008 auto Step = ID.getStep(); 3009 auto StartValue = ID.getStartValue(); 3010 assert(Index->getType() == Step->getType() && 3011 "Index type does not match StepValue type"); 3012 3013 // Note: the IR at this point is broken. We cannot use SE to create any new 3014 // SCEV and then expand it, hoping that SCEV's simplification will give us 3015 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3016 // lead to various SCEV crashes. So all we can do is to use builder and rely 3017 // on InstCombine for future simplifications. Here we handle some trivial 3018 // cases only. 3019 auto CreateAdd = [&B](Value *X, Value *Y) { 3020 assert(X->getType() == Y->getType() && "Types don't match!"); 3021 if (auto *CX = dyn_cast<ConstantInt>(X)) 3022 if (CX->isZero()) 3023 return Y; 3024 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3025 if (CY->isZero()) 3026 return X; 3027 return B.CreateAdd(X, Y); 3028 }; 3029 3030 auto CreateMul = [&B](Value *X, Value *Y) { 3031 assert(X->getType() == Y->getType() && "Types don't match!"); 3032 if (auto *CX = dyn_cast<ConstantInt>(X)) 3033 if (CX->isOne()) 3034 return Y; 3035 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3036 if (CY->isOne()) 3037 return X; 3038 return B.CreateMul(X, Y); 3039 }; 3040 3041 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3042 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3043 // the DomTree is not kept up-to-date for additional blocks generated in the 3044 // vector loop. By using the header as insertion point, we guarantee that the 3045 // expanded instructions dominate all their uses. 3046 auto GetInsertPoint = [this, &B]() { 3047 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3048 if (InsertBB != LoopVectorBody && 3049 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3050 return LoopVectorBody->getTerminator(); 3051 return &*B.GetInsertPoint(); 3052 }; 3053 switch (ID.getKind()) { 3054 case InductionDescriptor::IK_IntInduction: { 3055 assert(Index->getType() == StartValue->getType() && 3056 "Index type does not match StartValue type"); 3057 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3058 return B.CreateSub(StartValue, Index); 3059 auto *Offset = CreateMul( 3060 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3061 return CreateAdd(StartValue, Offset); 3062 } 3063 case InductionDescriptor::IK_PtrInduction: { 3064 assert(isa<SCEVConstant>(Step) && 3065 "Expected constant step for pointer induction"); 3066 return B.CreateGEP( 3067 StartValue->getType()->getPointerElementType(), StartValue, 3068 CreateMul(Index, 3069 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3070 } 3071 case InductionDescriptor::IK_FpInduction: { 3072 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3073 auto InductionBinOp = ID.getInductionBinOp(); 3074 assert(InductionBinOp && 3075 (InductionBinOp->getOpcode() == Instruction::FAdd || 3076 InductionBinOp->getOpcode() == Instruction::FSub) && 3077 "Original bin op should be defined for FP induction"); 3078 3079 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3080 3081 // Floating point operations had to be 'fast' to enable the induction. 3082 FastMathFlags Flags; 3083 Flags.setFast(); 3084 3085 Value *MulExp = B.CreateFMul(StepValue, Index); 3086 if (isa<Instruction>(MulExp)) 3087 // We have to check, the MulExp may be a constant. 3088 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 3089 3090 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3091 "induction"); 3092 if (isa<Instruction>(BOp)) 3093 cast<Instruction>(BOp)->setFastMathFlags(Flags); 3094 3095 return BOp; 3096 } 3097 case InductionDescriptor::IK_NoInduction: 3098 return nullptr; 3099 } 3100 llvm_unreachable("invalid enum"); 3101 } 3102 3103 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3104 LoopScalarBody = OrigLoop->getHeader(); 3105 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3106 LoopExitBlock = OrigLoop->getExitBlock(); 3107 assert(LoopExitBlock && "Must have an exit block"); 3108 assert(LoopVectorPreHeader && "Invalid loop structure"); 3109 3110 LoopMiddleBlock = 3111 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3112 LI, nullptr, Twine(Prefix) + "middle.block"); 3113 LoopScalarPreHeader = 3114 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3115 nullptr, Twine(Prefix) + "scalar.ph"); 3116 // We intentionally don't let SplitBlock to update LoopInfo since 3117 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3118 // LoopVectorBody is explicitly added to the correct place few lines later. 3119 LoopVectorBody = 3120 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3121 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3122 3123 // Update dominator for loop exit. 3124 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3125 3126 // Create and register the new vector loop. 3127 Loop *Lp = LI->AllocateLoop(); 3128 Loop *ParentLoop = OrigLoop->getParentLoop(); 3129 3130 // Insert the new loop into the loop nest and register the new basic blocks 3131 // before calling any utilities such as SCEV that require valid LoopInfo. 3132 if (ParentLoop) { 3133 ParentLoop->addChildLoop(Lp); 3134 } else { 3135 LI->addTopLevelLoop(Lp); 3136 } 3137 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3138 return Lp; 3139 } 3140 3141 void InnerLoopVectorizer::createInductionResumeValues(Loop *L, 3142 Value *VectorTripCount) { 3143 assert(VectorTripCount && L && "Expected valid arguments"); 3144 // We are going to resume the execution of the scalar loop. 3145 // Go over all of the induction variables that we found and fix the 3146 // PHIs that are left in the scalar version of the loop. 3147 // The starting values of PHI nodes depend on the counter of the last 3148 // iteration in the vectorized loop. 3149 // If we come from a bypass edge then we need to start from the original 3150 // start value. 3151 for (auto &InductionEntry : Legal->getInductionVars()) { 3152 PHINode *OrigPhi = InductionEntry.first; 3153 InductionDescriptor II = InductionEntry.second; 3154 3155 // Create phi nodes to merge from the backedge-taken check block. 3156 PHINode *BCResumeVal = 3157 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3158 LoopScalarPreHeader->getTerminator()); 3159 // Copy original phi DL over to the new one. 3160 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3161 Value *&EndValue = IVEndValues[OrigPhi]; 3162 if (OrigPhi == OldInduction) { 3163 // We know what the end value is. 3164 EndValue = VectorTripCount; 3165 } else { 3166 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3167 Type *StepType = II.getStep()->getType(); 3168 Instruction::CastOps CastOp = 3169 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3170 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3171 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3172 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3173 EndValue->setName("ind.end"); 3174 } 3175 3176 // The new PHI merges the original incoming value, in case of a bypass, 3177 // or the value at the end of the vectorized loop. 3178 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3179 3180 // Fix the scalar body counter (PHI node). 3181 // The old induction's phi node in the scalar body needs the truncated 3182 // value. 3183 for (BasicBlock *BB : LoopBypassBlocks) 3184 BCResumeVal->addIncoming(II.getStartValue(), BB); 3185 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3186 } 3187 } 3188 3189 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3190 MDNode *OrigLoopID) { 3191 assert(L && "Expected valid loop."); 3192 3193 // The trip counts should be cached by now. 3194 Value *Count = getOrCreateTripCount(L); 3195 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3196 3197 // We need the OrigLoop (scalar loop part) latch terminator to help 3198 // produce correct debug info for the middle block BB instructions. 3199 // The legality check stage guarantees that the loop will have a single 3200 // latch. 3201 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3202 "Scalar loop latch terminator isn't a branch"); 3203 BranchInst *ScalarLatchBr = 3204 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3205 3206 // Add a check in the middle block to see if we have completed 3207 // all of the iterations in the first vector loop. 3208 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3209 // If tail is to be folded, we know we don't need to run the remainder. 3210 Value *CmpN = Builder.getTrue(); 3211 if (!Cost->foldTailByMasking()) { 3212 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3213 VectorTripCount, "cmp.n", 3214 LoopMiddleBlock->getTerminator()); 3215 3216 // Here we use the same DebugLoc as the scalar loop latch branch instead 3217 // of the corresponding compare because they may have ended up with 3218 // different line numbers and we want to avoid awkward line stepping while 3219 // debugging. Eg. if the compare has got a line number inside the loop. 3220 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3221 } 3222 3223 BranchInst *BrInst = 3224 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3225 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3226 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3227 3228 // Get ready to start creating new instructions into the vectorized body. 3229 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3230 "Inconsistent vector loop preheader"); 3231 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3232 3233 Optional<MDNode *> VectorizedLoopID = 3234 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3235 LLVMLoopVectorizeFollowupVectorized}); 3236 if (VectorizedLoopID.hasValue()) { 3237 L->setLoopID(VectorizedLoopID.getValue()); 3238 3239 // Do not setAlreadyVectorized if loop attributes have been defined 3240 // explicitly. 3241 return LoopVectorPreHeader; 3242 } 3243 3244 // Keep all loop hints from the original loop on the vector loop (we'll 3245 // replace the vectorizer-specific hints below). 3246 if (MDNode *LID = OrigLoop->getLoopID()) 3247 L->setLoopID(LID); 3248 3249 LoopVectorizeHints Hints(L, true, *ORE); 3250 Hints.setAlreadyVectorized(); 3251 3252 #ifdef EXPENSIVE_CHECKS 3253 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3254 LI->verify(*DT); 3255 #endif 3256 3257 return LoopVectorPreHeader; 3258 } 3259 3260 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3261 /* 3262 In this function we generate a new loop. The new loop will contain 3263 the vectorized instructions while the old loop will continue to run the 3264 scalar remainder. 3265 3266 [ ] <-- loop iteration number check. 3267 / | 3268 / v 3269 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3270 | / | 3271 | / v 3272 || [ ] <-- vector pre header. 3273 |/ | 3274 | v 3275 | [ ] \ 3276 | [ ]_| <-- vector loop. 3277 | | 3278 | v 3279 | -[ ] <--- middle-block. 3280 | / | 3281 | / v 3282 -|- >[ ] <--- new preheader. 3283 | | 3284 | v 3285 | [ ] \ 3286 | [ ]_| <-- old scalar loop to handle remainder. 3287 \ | 3288 \ v 3289 >[ ] <-- exit block. 3290 ... 3291 */ 3292 3293 // Get the metadata of the original loop before it gets modified. 3294 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3295 3296 // Create an empty vector loop, and prepare basic blocks for the runtime 3297 // checks. 3298 Loop *Lp = createVectorLoopSkeleton(""); 3299 3300 // Now, compare the new count to zero. If it is zero skip the vector loop and 3301 // jump to the scalar loop. This check also covers the case where the 3302 // backedge-taken count is uint##_max: adding one to it will overflow leading 3303 // to an incorrect trip count of zero. In this (rare) case we will also jump 3304 // to the scalar loop. 3305 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3306 3307 // Generate the code to check any assumptions that we've made for SCEV 3308 // expressions. 3309 emitSCEVChecks(Lp, LoopScalarPreHeader); 3310 3311 // Generate the code that checks in runtime if arrays overlap. We put the 3312 // checks into a separate block to make the more common case of few elements 3313 // faster. 3314 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3315 3316 // Some loops have a single integer induction variable, while other loops 3317 // don't. One example is c++ iterators that often have multiple pointer 3318 // induction variables. In the code below we also support a case where we 3319 // don't have a single induction variable. 3320 // 3321 // We try to obtain an induction variable from the original loop as hard 3322 // as possible. However if we don't find one that: 3323 // - is an integer 3324 // - counts from zero, stepping by one 3325 // - is the size of the widest induction variable type 3326 // then we create a new one. 3327 OldInduction = Legal->getPrimaryInduction(); 3328 Type *IdxTy = Legal->getWidestInductionType(); 3329 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3330 // The loop step is equal to the vectorization factor (num of SIMD elements) 3331 // times the unroll factor (num of SIMD instructions). 3332 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3333 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 3334 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3335 Induction = 3336 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3337 getDebugLocFromInstOrOperands(OldInduction)); 3338 3339 // Emit phis for the new starting index of the scalar loop. 3340 createInductionResumeValues(Lp, CountRoundDown); 3341 3342 return completeLoopSkeleton(Lp, OrigLoopID); 3343 } 3344 3345 // Fix up external users of the induction variable. At this point, we are 3346 // in LCSSA form, with all external PHIs that use the IV having one input value, 3347 // coming from the remainder loop. We need those PHIs to also have a correct 3348 // value for the IV when arriving directly from the middle block. 3349 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3350 const InductionDescriptor &II, 3351 Value *CountRoundDown, Value *EndValue, 3352 BasicBlock *MiddleBlock) { 3353 // There are two kinds of external IV usages - those that use the value 3354 // computed in the last iteration (the PHI) and those that use the penultimate 3355 // value (the value that feeds into the phi from the loop latch). 3356 // We allow both, but they, obviously, have different values. 3357 3358 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3359 3360 DenseMap<Value *, Value *> MissingVals; 3361 3362 // An external user of the last iteration's value should see the value that 3363 // the remainder loop uses to initialize its own IV. 3364 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3365 for (User *U : PostInc->users()) { 3366 Instruction *UI = cast<Instruction>(U); 3367 if (!OrigLoop->contains(UI)) { 3368 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3369 MissingVals[UI] = EndValue; 3370 } 3371 } 3372 3373 // An external user of the penultimate value need to see EndValue - Step. 3374 // The simplest way to get this is to recompute it from the constituent SCEVs, 3375 // that is Start + (Step * (CRD - 1)). 3376 for (User *U : OrigPhi->users()) { 3377 auto *UI = cast<Instruction>(U); 3378 if (!OrigLoop->contains(UI)) { 3379 const DataLayout &DL = 3380 OrigLoop->getHeader()->getModule()->getDataLayout(); 3381 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3382 3383 IRBuilder<> B(MiddleBlock->getTerminator()); 3384 Value *CountMinusOne = B.CreateSub( 3385 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3386 Value *CMO = 3387 !II.getStep()->getType()->isIntegerTy() 3388 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3389 II.getStep()->getType()) 3390 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3391 CMO->setName("cast.cmo"); 3392 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3393 Escape->setName("ind.escape"); 3394 MissingVals[UI] = Escape; 3395 } 3396 } 3397 3398 for (auto &I : MissingVals) { 3399 PHINode *PHI = cast<PHINode>(I.first); 3400 // One corner case we have to handle is two IVs "chasing" each-other, 3401 // that is %IV2 = phi [...], [ %IV1, %latch ] 3402 // In this case, if IV1 has an external use, we need to avoid adding both 3403 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3404 // don't already have an incoming value for the middle block. 3405 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3406 PHI->addIncoming(I.second, MiddleBlock); 3407 } 3408 } 3409 3410 namespace { 3411 3412 struct CSEDenseMapInfo { 3413 static bool canHandle(const Instruction *I) { 3414 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3415 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3416 } 3417 3418 static inline Instruction *getEmptyKey() { 3419 return DenseMapInfo<Instruction *>::getEmptyKey(); 3420 } 3421 3422 static inline Instruction *getTombstoneKey() { 3423 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3424 } 3425 3426 static unsigned getHashValue(const Instruction *I) { 3427 assert(canHandle(I) && "Unknown instruction!"); 3428 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3429 I->value_op_end())); 3430 } 3431 3432 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3433 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3434 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3435 return LHS == RHS; 3436 return LHS->isIdenticalTo(RHS); 3437 } 3438 }; 3439 3440 } // end anonymous namespace 3441 3442 ///Perform cse of induction variable instructions. 3443 static void cse(BasicBlock *BB) { 3444 // Perform simple cse. 3445 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3446 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3447 Instruction *In = &*I++; 3448 3449 if (!CSEDenseMapInfo::canHandle(In)) 3450 continue; 3451 3452 // Check if we can replace this instruction with any of the 3453 // visited instructions. 3454 if (Instruction *V = CSEMap.lookup(In)) { 3455 In->replaceAllUsesWith(V); 3456 In->eraseFromParent(); 3457 continue; 3458 } 3459 3460 CSEMap[In] = In; 3461 } 3462 } 3463 3464 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3465 ElementCount VF, 3466 bool &NeedToScalarize) { 3467 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3468 Function *F = CI->getCalledFunction(); 3469 Type *ScalarRetTy = CI->getType(); 3470 SmallVector<Type *, 4> Tys, ScalarTys; 3471 for (auto &ArgOp : CI->arg_operands()) 3472 ScalarTys.push_back(ArgOp->getType()); 3473 3474 // Estimate cost of scalarized vector call. The source operands are assumed 3475 // to be vectors, so we need to extract individual elements from there, 3476 // execute VF scalar calls, and then gather the result into the vector return 3477 // value. 3478 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3479 TTI::TCK_RecipThroughput); 3480 if (VF.isScalar()) 3481 return ScalarCallCost; 3482 3483 // Compute corresponding vector type for return value and arguments. 3484 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3485 for (Type *ScalarTy : ScalarTys) 3486 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3487 3488 // Compute costs of unpacking argument values for the scalar calls and 3489 // packing the return values to a vector. 3490 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3491 3492 unsigned Cost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3493 3494 // If we can't emit a vector call for this function, then the currently found 3495 // cost is the cost we need to return. 3496 NeedToScalarize = true; 3497 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3498 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3499 3500 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3501 return Cost; 3502 3503 // If the corresponding vector cost is cheaper, return its cost. 3504 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3505 TTI::TCK_RecipThroughput); 3506 if (VectorCallCost < Cost) { 3507 NeedToScalarize = false; 3508 return VectorCallCost; 3509 } 3510 return Cost; 3511 } 3512 3513 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3514 ElementCount VF) { 3515 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3516 assert(ID && "Expected intrinsic call!"); 3517 3518 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3519 return TTI.getIntrinsicInstrCost(CostAttrs, 3520 TargetTransformInfo::TCK_RecipThroughput); 3521 } 3522 3523 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3524 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3525 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3526 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3527 } 3528 3529 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3530 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3531 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3532 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3533 } 3534 3535 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3536 // For every instruction `I` in MinBWs, truncate the operands, create a 3537 // truncated version of `I` and reextend its result. InstCombine runs 3538 // later and will remove any ext/trunc pairs. 3539 SmallPtrSet<Value *, 4> Erased; 3540 for (const auto &KV : Cost->getMinimalBitwidths()) { 3541 // If the value wasn't vectorized, we must maintain the original scalar 3542 // type. The absence of the value from VectorLoopValueMap indicates that it 3543 // wasn't vectorized. 3544 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3545 continue; 3546 for (unsigned Part = 0; Part < UF; ++Part) { 3547 Value *I = getOrCreateVectorValue(KV.first, Part); 3548 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3549 continue; 3550 Type *OriginalTy = I->getType(); 3551 Type *ScalarTruncatedTy = 3552 IntegerType::get(OriginalTy->getContext(), KV.second); 3553 auto *TruncatedTy = FixedVectorType::get( 3554 ScalarTruncatedTy, 3555 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3556 if (TruncatedTy == OriginalTy) 3557 continue; 3558 3559 IRBuilder<> B(cast<Instruction>(I)); 3560 auto ShrinkOperand = [&](Value *V) -> Value * { 3561 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3562 if (ZI->getSrcTy() == TruncatedTy) 3563 return ZI->getOperand(0); 3564 return B.CreateZExtOrTrunc(V, TruncatedTy); 3565 }; 3566 3567 // The actual instruction modification depends on the instruction type, 3568 // unfortunately. 3569 Value *NewI = nullptr; 3570 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3571 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3572 ShrinkOperand(BO->getOperand(1))); 3573 3574 // Any wrapping introduced by shrinking this operation shouldn't be 3575 // considered undefined behavior. So, we can't unconditionally copy 3576 // arithmetic wrapping flags to NewI. 3577 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3578 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3579 NewI = 3580 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3581 ShrinkOperand(CI->getOperand(1))); 3582 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3583 NewI = B.CreateSelect(SI->getCondition(), 3584 ShrinkOperand(SI->getTrueValue()), 3585 ShrinkOperand(SI->getFalseValue())); 3586 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3587 switch (CI->getOpcode()) { 3588 default: 3589 llvm_unreachable("Unhandled cast!"); 3590 case Instruction::Trunc: 3591 NewI = ShrinkOperand(CI->getOperand(0)); 3592 break; 3593 case Instruction::SExt: 3594 NewI = B.CreateSExtOrTrunc( 3595 CI->getOperand(0), 3596 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3597 break; 3598 case Instruction::ZExt: 3599 NewI = B.CreateZExtOrTrunc( 3600 CI->getOperand(0), 3601 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3602 break; 3603 } 3604 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3605 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3606 ->getNumElements(); 3607 auto *O0 = B.CreateZExtOrTrunc( 3608 SI->getOperand(0), 3609 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3610 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3611 ->getNumElements(); 3612 auto *O1 = B.CreateZExtOrTrunc( 3613 SI->getOperand(1), 3614 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3615 3616 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3617 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3618 // Don't do anything with the operands, just extend the result. 3619 continue; 3620 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3621 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3622 ->getNumElements(); 3623 auto *O0 = B.CreateZExtOrTrunc( 3624 IE->getOperand(0), 3625 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3626 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3627 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3628 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3629 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3630 ->getNumElements(); 3631 auto *O0 = B.CreateZExtOrTrunc( 3632 EE->getOperand(0), 3633 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3634 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3635 } else { 3636 // If we don't know what to do, be conservative and don't do anything. 3637 continue; 3638 } 3639 3640 // Lastly, extend the result. 3641 NewI->takeName(cast<Instruction>(I)); 3642 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3643 I->replaceAllUsesWith(Res); 3644 cast<Instruction>(I)->eraseFromParent(); 3645 Erased.insert(I); 3646 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3647 } 3648 } 3649 3650 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3651 for (const auto &KV : Cost->getMinimalBitwidths()) { 3652 // If the value wasn't vectorized, we must maintain the original scalar 3653 // type. The absence of the value from VectorLoopValueMap indicates that it 3654 // wasn't vectorized. 3655 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3656 continue; 3657 for (unsigned Part = 0; Part < UF; ++Part) { 3658 Value *I = getOrCreateVectorValue(KV.first, Part); 3659 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3660 if (Inst && Inst->use_empty()) { 3661 Value *NewI = Inst->getOperand(0); 3662 Inst->eraseFromParent(); 3663 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3664 } 3665 } 3666 } 3667 } 3668 3669 void InnerLoopVectorizer::fixVectorizedLoop() { 3670 // Insert truncates and extends for any truncated instructions as hints to 3671 // InstCombine. 3672 if (VF.isVector()) 3673 truncateToMinimalBitwidths(); 3674 3675 // Fix widened non-induction PHIs by setting up the PHI operands. 3676 if (OrigPHIsToFix.size()) { 3677 assert(EnableVPlanNativePath && 3678 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3679 fixNonInductionPHIs(); 3680 } 3681 3682 // At this point every instruction in the original loop is widened to a 3683 // vector form. Now we need to fix the recurrences in the loop. These PHI 3684 // nodes are currently empty because we did not want to introduce cycles. 3685 // This is the second stage of vectorizing recurrences. 3686 fixCrossIterationPHIs(); 3687 3688 // Forget the original basic block. 3689 PSE.getSE()->forgetLoop(OrigLoop); 3690 3691 // Fix-up external users of the induction variables. 3692 for (auto &Entry : Legal->getInductionVars()) 3693 fixupIVUsers(Entry.first, Entry.second, 3694 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3695 IVEndValues[Entry.first], LoopMiddleBlock); 3696 3697 fixLCSSAPHIs(); 3698 for (Instruction *PI : PredicatedInstructions) 3699 sinkScalarOperands(&*PI); 3700 3701 // Remove redundant induction instructions. 3702 cse(LoopVectorBody); 3703 3704 // Set/update profile weights for the vector and remainder loops as original 3705 // loop iterations are now distributed among them. Note that original loop 3706 // represented by LoopScalarBody becomes remainder loop after vectorization. 3707 // 3708 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3709 // end up getting slightly roughened result but that should be OK since 3710 // profile is not inherently precise anyway. Note also possible bypass of 3711 // vector code caused by legality checks is ignored, assigning all the weight 3712 // to the vector loop, optimistically. 3713 assert(!VF.isScalable() && 3714 "cannot use scalable ElementCount to determine unroll factor"); 3715 setProfileInfoAfterUnrolling( 3716 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3717 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3718 } 3719 3720 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3721 // In order to support recurrences we need to be able to vectorize Phi nodes. 3722 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3723 // stage #2: We now need to fix the recurrences by adding incoming edges to 3724 // the currently empty PHI nodes. At this point every instruction in the 3725 // original loop is widened to a vector form so we can use them to construct 3726 // the incoming edges. 3727 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3728 // Handle first-order recurrences and reductions that need to be fixed. 3729 if (Legal->isFirstOrderRecurrence(&Phi)) 3730 fixFirstOrderRecurrence(&Phi); 3731 else if (Legal->isReductionVariable(&Phi)) 3732 fixReduction(&Phi); 3733 } 3734 } 3735 3736 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3737 // This is the second phase of vectorizing first-order recurrences. An 3738 // overview of the transformation is described below. Suppose we have the 3739 // following loop. 3740 // 3741 // for (int i = 0; i < n; ++i) 3742 // b[i] = a[i] - a[i - 1]; 3743 // 3744 // There is a first-order recurrence on "a". For this loop, the shorthand 3745 // scalar IR looks like: 3746 // 3747 // scalar.ph: 3748 // s_init = a[-1] 3749 // br scalar.body 3750 // 3751 // scalar.body: 3752 // i = phi [0, scalar.ph], [i+1, scalar.body] 3753 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3754 // s2 = a[i] 3755 // b[i] = s2 - s1 3756 // br cond, scalar.body, ... 3757 // 3758 // In this example, s1 is a recurrence because it's value depends on the 3759 // previous iteration. In the first phase of vectorization, we created a 3760 // temporary value for s1. We now complete the vectorization and produce the 3761 // shorthand vector IR shown below (for VF = 4, UF = 1). 3762 // 3763 // vector.ph: 3764 // v_init = vector(..., ..., ..., a[-1]) 3765 // br vector.body 3766 // 3767 // vector.body 3768 // i = phi [0, vector.ph], [i+4, vector.body] 3769 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3770 // v2 = a[i, i+1, i+2, i+3]; 3771 // v3 = vector(v1(3), v2(0, 1, 2)) 3772 // b[i, i+1, i+2, i+3] = v2 - v3 3773 // br cond, vector.body, middle.block 3774 // 3775 // middle.block: 3776 // x = v2(3) 3777 // br scalar.ph 3778 // 3779 // scalar.ph: 3780 // s_init = phi [x, middle.block], [a[-1], otherwise] 3781 // br scalar.body 3782 // 3783 // After execution completes the vector loop, we extract the next value of 3784 // the recurrence (x) to use as the initial value in the scalar loop. 3785 3786 // Get the original loop preheader and single loop latch. 3787 auto *Preheader = OrigLoop->getLoopPreheader(); 3788 auto *Latch = OrigLoop->getLoopLatch(); 3789 3790 // Get the initial and previous values of the scalar recurrence. 3791 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3792 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3793 3794 // Create a vector from the initial value. 3795 auto *VectorInit = ScalarInit; 3796 if (VF.isVector()) { 3797 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3798 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 3799 VectorInit = Builder.CreateInsertElement( 3800 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3801 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 3802 } 3803 3804 // We constructed a temporary phi node in the first phase of vectorization. 3805 // This phi node will eventually be deleted. 3806 Builder.SetInsertPoint( 3807 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3808 3809 // Create a phi node for the new recurrence. The current value will either be 3810 // the initial value inserted into a vector or loop-varying vector value. 3811 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3812 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3813 3814 // Get the vectorized previous value of the last part UF - 1. It appears last 3815 // among all unrolled iterations, due to the order of their construction. 3816 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3817 3818 // Find and set the insertion point after the previous value if it is an 3819 // instruction. 3820 BasicBlock::iterator InsertPt; 3821 // Note that the previous value may have been constant-folded so it is not 3822 // guaranteed to be an instruction in the vector loop. 3823 // FIXME: Loop invariant values do not form recurrences. We should deal with 3824 // them earlier. 3825 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3826 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3827 else { 3828 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3829 if (isa<PHINode>(PreviousLastPart)) 3830 // If the previous value is a phi node, we should insert after all the phi 3831 // nodes in the block containing the PHI to avoid breaking basic block 3832 // verification. Note that the basic block may be different to 3833 // LoopVectorBody, in case we predicate the loop. 3834 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3835 else 3836 InsertPt = ++PreviousInst->getIterator(); 3837 } 3838 Builder.SetInsertPoint(&*InsertPt); 3839 3840 // We will construct a vector for the recurrence by combining the values for 3841 // the current and previous iterations. This is the required shuffle mask. 3842 assert(!VF.isScalable()); 3843 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 3844 ShuffleMask[0] = VF.getKnownMinValue() - 1; 3845 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 3846 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 3847 3848 // The vector from which to take the initial value for the current iteration 3849 // (actual or unrolled). Initially, this is the vector phi node. 3850 Value *Incoming = VecPhi; 3851 3852 // Shuffle the current and previous vector and update the vector parts. 3853 for (unsigned Part = 0; Part < UF; ++Part) { 3854 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3855 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3856 auto *Shuffle = 3857 VF.isVector() 3858 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 3859 : Incoming; 3860 PhiPart->replaceAllUsesWith(Shuffle); 3861 cast<Instruction>(PhiPart)->eraseFromParent(); 3862 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3863 Incoming = PreviousPart; 3864 } 3865 3866 // Fix the latch value of the new recurrence in the vector loop. 3867 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3868 3869 // Extract the last vector element in the middle block. This will be the 3870 // initial value for the recurrence when jumping to the scalar loop. 3871 auto *ExtractForScalar = Incoming; 3872 if (VF.isVector()) { 3873 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3874 ExtractForScalar = Builder.CreateExtractElement( 3875 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 3876 "vector.recur.extract"); 3877 } 3878 // Extract the second last element in the middle block if the 3879 // Phi is used outside the loop. We need to extract the phi itself 3880 // and not the last element (the phi update in the current iteration). This 3881 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3882 // when the scalar loop is not run at all. 3883 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3884 if (VF.isVector()) 3885 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3886 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 3887 "vector.recur.extract.for.phi"); 3888 // When loop is unrolled without vectorizing, initialize 3889 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3890 // `Incoming`. This is analogous to the vectorized case above: extracting the 3891 // second last element when VF > 1. 3892 else if (UF > 1) 3893 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3894 3895 // Fix the initial value of the original recurrence in the scalar loop. 3896 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3897 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3898 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3899 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3900 Start->addIncoming(Incoming, BB); 3901 } 3902 3903 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3904 Phi->setName("scalar.recur"); 3905 3906 // Finally, fix users of the recurrence outside the loop. The users will need 3907 // either the last value of the scalar recurrence or the last value of the 3908 // vector recurrence we extracted in the middle block. Since the loop is in 3909 // LCSSA form, we just need to find all the phi nodes for the original scalar 3910 // recurrence in the exit block, and then add an edge for the middle block. 3911 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3912 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3913 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3914 } 3915 } 3916 } 3917 3918 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3919 Constant *Zero = Builder.getInt32(0); 3920 3921 // Get it's reduction variable descriptor. 3922 assert(Legal->isReductionVariable(Phi) && 3923 "Unable to find the reduction variable"); 3924 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3925 3926 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3927 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3928 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3929 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3930 RdxDesc.getMinMaxRecurrenceKind(); 3931 setDebugLocFromInst(Builder, ReductionStartValue); 3932 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 3933 3934 // We need to generate a reduction vector from the incoming scalar. 3935 // To do so, we need to generate the 'identity' vector and override 3936 // one of the elements with the incoming scalar reduction. We need 3937 // to do it in the vector-loop preheader. 3938 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3939 3940 // This is the vector-clone of the value that leaves the loop. 3941 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3942 3943 // Find the reduction identity variable. Zero for addition, or, xor, 3944 // one for multiplication, -1 for And. 3945 Value *Identity; 3946 Value *VectorStart; 3947 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3948 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3949 // MinMax reduction have the start value as their identify. 3950 if (VF.isScalar() || IsInLoopReductionPhi) { 3951 VectorStart = Identity = ReductionStartValue; 3952 } else { 3953 VectorStart = Identity = 3954 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3955 } 3956 } else { 3957 // Handle other reduction kinds: 3958 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3959 RK, MinMaxKind, VecTy->getScalarType()); 3960 if (VF.isScalar() || IsInLoopReductionPhi) { 3961 Identity = Iden; 3962 // This vector is the Identity vector where the first element is the 3963 // incoming scalar reduction. 3964 VectorStart = ReductionStartValue; 3965 } else { 3966 Identity = ConstantVector::getSplat(VF, Iden); 3967 3968 // This vector is the Identity vector where the first element is the 3969 // incoming scalar reduction. 3970 VectorStart = 3971 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3972 } 3973 } 3974 3975 // Wrap flags are in general invalid after vectorization, clear them. 3976 clearReductionWrapFlags(RdxDesc); 3977 3978 // Fix the vector-loop phi. 3979 3980 // Reductions do not have to start at zero. They can start with 3981 // any loop invariant values. 3982 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3983 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3984 3985 for (unsigned Part = 0; Part < UF; ++Part) { 3986 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3987 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3988 // Make sure to add the reduction start value only to the 3989 // first unroll part. 3990 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3991 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3992 cast<PHINode>(VecRdxPhi) 3993 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3994 } 3995 3996 // Before each round, move the insertion point right between 3997 // the PHIs and the values we are going to write. 3998 // This allows us to write both PHINodes and the extractelement 3999 // instructions. 4000 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4001 4002 setDebugLocFromInst(Builder, LoopExitInst); 4003 4004 // If tail is folded by masking, the vector value to leave the loop should be 4005 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4006 // instead of the former. For an inloop reduction the reduction will already 4007 // be predicated, and does not need to be handled here. 4008 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4009 for (unsigned Part = 0; Part < UF; ++Part) { 4010 Value *VecLoopExitInst = 4011 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4012 Value *Sel = nullptr; 4013 for (User *U : VecLoopExitInst->users()) { 4014 if (isa<SelectInst>(U)) { 4015 assert(!Sel && "Reduction exit feeding two selects"); 4016 Sel = U; 4017 } else 4018 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4019 } 4020 assert(Sel && "Reduction exit feeds no select"); 4021 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 4022 4023 // If the target can create a predicated operator for the reduction at no 4024 // extra cost in the loop (for example a predicated vadd), it can be 4025 // cheaper for the select to remain in the loop than be sunk out of it, 4026 // and so use the select value for the phi instead of the old 4027 // LoopExitValue. 4028 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4029 if (PreferPredicatedReductionSelect || 4030 TTI->preferPredicatedReductionSelect( 4031 RdxDesc.getRecurrenceBinOp(), Phi->getType(), 4032 TargetTransformInfo::ReductionFlags())) { 4033 auto *VecRdxPhi = cast<PHINode>(getOrCreateVectorValue(Phi, Part)); 4034 VecRdxPhi->setIncomingValueForBlock( 4035 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4036 } 4037 } 4038 } 4039 4040 // If the vector reduction can be performed in a smaller type, we truncate 4041 // then extend the loop exit value to enable InstCombine to evaluate the 4042 // entire expression in the smaller type. 4043 if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) { 4044 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4045 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4046 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4047 Builder.SetInsertPoint( 4048 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4049 VectorParts RdxParts(UF); 4050 for (unsigned Part = 0; Part < UF; ++Part) { 4051 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4052 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4053 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4054 : Builder.CreateZExt(Trunc, VecTy); 4055 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4056 UI != RdxParts[Part]->user_end();) 4057 if (*UI != Trunc) { 4058 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4059 RdxParts[Part] = Extnd; 4060 } else { 4061 ++UI; 4062 } 4063 } 4064 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4065 for (unsigned Part = 0; Part < UF; ++Part) { 4066 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4067 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4068 } 4069 } 4070 4071 // Reduce all of the unrolled parts into a single vector. 4072 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4073 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4074 4075 // The middle block terminator has already been assigned a DebugLoc here (the 4076 // OrigLoop's single latch terminator). We want the whole middle block to 4077 // appear to execute on this line because: (a) it is all compiler generated, 4078 // (b) these instructions are always executed after evaluating the latch 4079 // conditional branch, and (c) other passes may add new predecessors which 4080 // terminate on this line. This is the easiest way to ensure we don't 4081 // accidentally cause an extra step back into the loop while debugging. 4082 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4083 for (unsigned Part = 1; Part < UF; ++Part) { 4084 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4085 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4086 // Floating point operations had to be 'fast' to enable the reduction. 4087 ReducedPartRdx = addFastMathFlag( 4088 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4089 ReducedPartRdx, "bin.rdx"), 4090 RdxDesc.getFastMathFlags()); 4091 else 4092 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 4093 RdxPart); 4094 } 4095 4096 // Create the reduction after the loop. Note that inloop reductions create the 4097 // target reduction in the loop using a Reduction recipe. 4098 if (VF.isVector() && !IsInLoopReductionPhi) { 4099 bool NoNaN = Legal->hasFunNoNaNAttr(); 4100 ReducedPartRdx = 4101 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4102 // If the reduction can be performed in a smaller type, we need to extend 4103 // the reduction to the wider type before we branch to the original loop. 4104 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4105 ReducedPartRdx = 4106 RdxDesc.isSigned() 4107 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4108 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4109 } 4110 4111 // Create a phi node that merges control-flow from the backedge-taken check 4112 // block and the middle block. 4113 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4114 LoopScalarPreHeader->getTerminator()); 4115 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4116 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4117 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4118 4119 // Now, we need to fix the users of the reduction variable 4120 // inside and outside of the scalar remainder loop. 4121 // We know that the loop is in LCSSA form. We need to update the 4122 // PHI nodes in the exit blocks. 4123 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4124 // All PHINodes need to have a single entry edge, or two if 4125 // we already fixed them. 4126 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4127 4128 // We found a reduction value exit-PHI. Update it with the 4129 // incoming bypass edge. 4130 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4131 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4132 } // end of the LCSSA phi scan. 4133 4134 // Fix the scalar loop reduction variable with the incoming reduction sum 4135 // from the vector body and from the backedge value. 4136 int IncomingEdgeBlockIdx = 4137 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4138 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4139 // Pick the other block. 4140 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4141 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4142 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4143 } 4144 4145 void InnerLoopVectorizer::clearReductionWrapFlags( 4146 RecurrenceDescriptor &RdxDesc) { 4147 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4148 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 4149 RK != RecurrenceDescriptor::RK_IntegerMult) 4150 return; 4151 4152 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4153 assert(LoopExitInstr && "null loop exit instruction"); 4154 SmallVector<Instruction *, 8> Worklist; 4155 SmallPtrSet<Instruction *, 8> Visited; 4156 Worklist.push_back(LoopExitInstr); 4157 Visited.insert(LoopExitInstr); 4158 4159 while (!Worklist.empty()) { 4160 Instruction *Cur = Worklist.pop_back_val(); 4161 if (isa<OverflowingBinaryOperator>(Cur)) 4162 for (unsigned Part = 0; Part < UF; ++Part) { 4163 Value *V = getOrCreateVectorValue(Cur, Part); 4164 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4165 } 4166 4167 for (User *U : Cur->users()) { 4168 Instruction *UI = cast<Instruction>(U); 4169 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4170 Visited.insert(UI).second) 4171 Worklist.push_back(UI); 4172 } 4173 } 4174 } 4175 4176 void InnerLoopVectorizer::fixLCSSAPHIs() { 4177 assert(!VF.isScalable() && "the code below assumes fixed width vectors"); 4178 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4179 if (LCSSAPhi.getNumIncomingValues() == 1) { 4180 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4181 // Non-instruction incoming values will have only one value. 4182 unsigned LastLane = 0; 4183 if (isa<Instruction>(IncomingValue)) 4184 LastLane = Cost->isUniformAfterVectorization( 4185 cast<Instruction>(IncomingValue), VF) 4186 ? 0 4187 : VF.getKnownMinValue() - 1; 4188 // Can be a loop invariant incoming value or the last scalar value to be 4189 // extracted from the vectorized loop. 4190 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4191 Value *lastIncomingValue = 4192 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 4193 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4194 } 4195 } 4196 } 4197 4198 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4199 // The basic block and loop containing the predicated instruction. 4200 auto *PredBB = PredInst->getParent(); 4201 auto *VectorLoop = LI->getLoopFor(PredBB); 4202 4203 // Initialize a worklist with the operands of the predicated instruction. 4204 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4205 4206 // Holds instructions that we need to analyze again. An instruction may be 4207 // reanalyzed if we don't yet know if we can sink it or not. 4208 SmallVector<Instruction *, 8> InstsToReanalyze; 4209 4210 // Returns true if a given use occurs in the predicated block. Phi nodes use 4211 // their operands in their corresponding predecessor blocks. 4212 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4213 auto *I = cast<Instruction>(U.getUser()); 4214 BasicBlock *BB = I->getParent(); 4215 if (auto *Phi = dyn_cast<PHINode>(I)) 4216 BB = Phi->getIncomingBlock( 4217 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4218 return BB == PredBB; 4219 }; 4220 4221 // Iteratively sink the scalarized operands of the predicated instruction 4222 // into the block we created for it. When an instruction is sunk, it's 4223 // operands are then added to the worklist. The algorithm ends after one pass 4224 // through the worklist doesn't sink a single instruction. 4225 bool Changed; 4226 do { 4227 // Add the instructions that need to be reanalyzed to the worklist, and 4228 // reset the changed indicator. 4229 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4230 InstsToReanalyze.clear(); 4231 Changed = false; 4232 4233 while (!Worklist.empty()) { 4234 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4235 4236 // We can't sink an instruction if it is a phi node, is already in the 4237 // predicated block, is not in the loop, or may have side effects. 4238 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4239 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4240 continue; 4241 4242 // It's legal to sink the instruction if all its uses occur in the 4243 // predicated block. Otherwise, there's nothing to do yet, and we may 4244 // need to reanalyze the instruction. 4245 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4246 InstsToReanalyze.push_back(I); 4247 continue; 4248 } 4249 4250 // Move the instruction to the beginning of the predicated block, and add 4251 // it's operands to the worklist. 4252 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4253 Worklist.insert(I->op_begin(), I->op_end()); 4254 4255 // The sinking may have enabled other instructions to be sunk, so we will 4256 // need to iterate. 4257 Changed = true; 4258 } 4259 } while (Changed); 4260 } 4261 4262 void InnerLoopVectorizer::fixNonInductionPHIs() { 4263 for (PHINode *OrigPhi : OrigPHIsToFix) { 4264 PHINode *NewPhi = 4265 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4266 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4267 4268 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4269 predecessors(OrigPhi->getParent())); 4270 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4271 predecessors(NewPhi->getParent())); 4272 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4273 "Scalar and Vector BB should have the same number of predecessors"); 4274 4275 // The insertion point in Builder may be invalidated by the time we get 4276 // here. Force the Builder insertion point to something valid so that we do 4277 // not run into issues during insertion point restore in 4278 // getOrCreateVectorValue calls below. 4279 Builder.SetInsertPoint(NewPhi); 4280 4281 // The predecessor order is preserved and we can rely on mapping between 4282 // scalar and vector block predecessors. 4283 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4284 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4285 4286 // When looking up the new scalar/vector values to fix up, use incoming 4287 // values from original phi. 4288 Value *ScIncV = 4289 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4290 4291 // Scalar incoming value may need a broadcast 4292 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4293 NewPhi->addIncoming(NewIncV, NewPredBB); 4294 } 4295 } 4296 } 4297 4298 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4299 VPUser &Operands, unsigned UF, 4300 ElementCount VF, bool IsPtrLoopInvariant, 4301 SmallBitVector &IsIndexLoopInvariant, 4302 VPTransformState &State) { 4303 // Construct a vector GEP by widening the operands of the scalar GEP as 4304 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4305 // results in a vector of pointers when at least one operand of the GEP 4306 // is vector-typed. Thus, to keep the representation compact, we only use 4307 // vector-typed operands for loop-varying values. 4308 4309 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4310 // If we are vectorizing, but the GEP has only loop-invariant operands, 4311 // the GEP we build (by only using vector-typed operands for 4312 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4313 // produce a vector of pointers, we need to either arbitrarily pick an 4314 // operand to broadcast, or broadcast a clone of the original GEP. 4315 // Here, we broadcast a clone of the original. 4316 // 4317 // TODO: If at some point we decide to scalarize instructions having 4318 // loop-invariant operands, this special case will no longer be 4319 // required. We would add the scalarization decision to 4320 // collectLoopScalars() and teach getVectorValue() to broadcast 4321 // the lane-zero scalar value. 4322 auto *Clone = Builder.Insert(GEP->clone()); 4323 for (unsigned Part = 0; Part < UF; ++Part) { 4324 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4325 State.set(VPDef, GEP, EntryPart, Part); 4326 addMetadata(EntryPart, GEP); 4327 } 4328 } else { 4329 // If the GEP has at least one loop-varying operand, we are sure to 4330 // produce a vector of pointers. But if we are only unrolling, we want 4331 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4332 // produce with the code below will be scalar (if VF == 1) or vector 4333 // (otherwise). Note that for the unroll-only case, we still maintain 4334 // values in the vector mapping with initVector, as we do for other 4335 // instructions. 4336 for (unsigned Part = 0; Part < UF; ++Part) { 4337 // The pointer operand of the new GEP. If it's loop-invariant, we 4338 // won't broadcast it. 4339 auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0}) 4340 : State.get(Operands.getOperand(0), Part); 4341 4342 // Collect all the indices for the new GEP. If any index is 4343 // loop-invariant, we won't broadcast it. 4344 SmallVector<Value *, 4> Indices; 4345 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4346 VPValue *Operand = Operands.getOperand(I); 4347 if (IsIndexLoopInvariant[I - 1]) 4348 Indices.push_back(State.get(Operand, {0, 0})); 4349 else 4350 Indices.push_back(State.get(Operand, Part)); 4351 } 4352 4353 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4354 // but it should be a vector, otherwise. 4355 auto *NewGEP = 4356 GEP->isInBounds() 4357 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4358 Indices) 4359 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4360 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4361 "NewGEP is not a pointer vector"); 4362 State.set(VPDef, GEP, NewGEP, Part); 4363 addMetadata(NewGEP, GEP); 4364 } 4365 } 4366 } 4367 4368 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4369 ElementCount VF) { 4370 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4371 PHINode *P = cast<PHINode>(PN); 4372 if (EnableVPlanNativePath) { 4373 // Currently we enter here in the VPlan-native path for non-induction 4374 // PHIs where all control flow is uniform. We simply widen these PHIs. 4375 // Create a vector phi with no operands - the vector phi operands will be 4376 // set at the end of vector code generation. 4377 Type *VecTy = 4378 (VF.isScalar()) ? PN->getType() : VectorType::get(PN->getType(), VF); 4379 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4380 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4381 OrigPHIsToFix.push_back(P); 4382 4383 return; 4384 } 4385 4386 assert(PN->getParent() == OrigLoop->getHeader() && 4387 "Non-header phis should have been handled elsewhere"); 4388 4389 // In order to support recurrences we need to be able to vectorize Phi nodes. 4390 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4391 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4392 // this value when we vectorize all of the instructions that use the PHI. 4393 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4394 for (unsigned Part = 0; Part < UF; ++Part) { 4395 // This is phase one of vectorizing PHIs. 4396 bool ScalarPHI = 4397 (VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4398 Type *VecTy = 4399 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), VF); 4400 Value *EntryPart = PHINode::Create( 4401 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4402 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4403 } 4404 return; 4405 } 4406 4407 setDebugLocFromInst(Builder, P); 4408 4409 // This PHINode must be an induction variable. 4410 // Make sure that we know about it. 4411 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4412 4413 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4414 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4415 4416 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4417 // which can be found from the original scalar operations. 4418 switch (II.getKind()) { 4419 case InductionDescriptor::IK_NoInduction: 4420 llvm_unreachable("Unknown induction"); 4421 case InductionDescriptor::IK_IntInduction: 4422 case InductionDescriptor::IK_FpInduction: 4423 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4424 case InductionDescriptor::IK_PtrInduction: { 4425 // Handle the pointer induction variable case. 4426 assert(P->getType()->isPointerTy() && "Unexpected type."); 4427 4428 if (Cost->isScalarAfterVectorization(P, VF)) { 4429 // This is the normalized GEP that starts counting at zero. 4430 Value *PtrInd = 4431 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4432 // Determine the number of scalars we need to generate for each unroll 4433 // iteration. If the instruction is uniform, we only need to generate the 4434 // first lane. Otherwise, we generate all VF values. 4435 unsigned Lanes = 4436 Cost->isUniformAfterVectorization(P, VF) ? 1 : VF.getKnownMinValue(); 4437 for (unsigned Part = 0; Part < UF; ++Part) { 4438 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4439 Constant *Idx = ConstantInt::get(PtrInd->getType(), 4440 Lane + Part * VF.getKnownMinValue()); 4441 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4442 Value *SclrGep = 4443 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4444 SclrGep->setName("next.gep"); 4445 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4446 } 4447 } 4448 return; 4449 } 4450 assert(isa<SCEVConstant>(II.getStep()) && 4451 "Induction step not a SCEV constant!"); 4452 Type *PhiType = II.getStep()->getType(); 4453 4454 // Build a pointer phi 4455 Value *ScalarStartValue = II.getStartValue(); 4456 Type *ScStValueType = ScalarStartValue->getType(); 4457 PHINode *NewPointerPhi = 4458 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4459 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4460 4461 // A pointer induction, performed by using a gep 4462 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4463 Instruction *InductionLoc = LoopLatch->getTerminator(); 4464 const SCEV *ScalarStep = II.getStep(); 4465 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4466 Value *ScalarStepValue = 4467 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4468 Value *InductionGEP = GetElementPtrInst::Create( 4469 ScStValueType->getPointerElementType(), NewPointerPhi, 4470 Builder.CreateMul( 4471 ScalarStepValue, 4472 ConstantInt::get(PhiType, VF.getKnownMinValue() * UF)), 4473 "ptr.ind", InductionLoc); 4474 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4475 4476 // Create UF many actual address geps that use the pointer 4477 // phi as base and a vectorized version of the step value 4478 // (<step*0, ..., step*N>) as offset. 4479 for (unsigned Part = 0; Part < UF; ++Part) { 4480 SmallVector<Constant *, 8> Indices; 4481 // Create a vector of consecutive numbers from zero to VF. 4482 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 4483 Indices.push_back( 4484 ConstantInt::get(PhiType, i + Part * VF.getKnownMinValue())); 4485 Constant *StartOffset = ConstantVector::get(Indices); 4486 4487 Value *GEP = Builder.CreateGEP( 4488 ScStValueType->getPointerElementType(), NewPointerPhi, 4489 Builder.CreateMul( 4490 StartOffset, 4491 Builder.CreateVectorSplat(VF.getKnownMinValue(), ScalarStepValue), 4492 "vector.gep")); 4493 VectorLoopValueMap.setVectorValue(P, Part, GEP); 4494 } 4495 } 4496 } 4497 } 4498 4499 /// A helper function for checking whether an integer division-related 4500 /// instruction may divide by zero (in which case it must be predicated if 4501 /// executed conditionally in the scalar code). 4502 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4503 /// Non-zero divisors that are non compile-time constants will not be 4504 /// converted into multiplication, so we will still end up scalarizing 4505 /// the division, but can do so w/o predication. 4506 static bool mayDivideByZero(Instruction &I) { 4507 assert((I.getOpcode() == Instruction::UDiv || 4508 I.getOpcode() == Instruction::SDiv || 4509 I.getOpcode() == Instruction::URem || 4510 I.getOpcode() == Instruction::SRem) && 4511 "Unexpected instruction"); 4512 Value *Divisor = I.getOperand(1); 4513 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4514 return !CInt || CInt->isZero(); 4515 } 4516 4517 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4518 VPUser &User, 4519 VPTransformState &State) { 4520 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4521 switch (I.getOpcode()) { 4522 case Instruction::Call: 4523 case Instruction::Br: 4524 case Instruction::PHI: 4525 case Instruction::GetElementPtr: 4526 case Instruction::Select: 4527 llvm_unreachable("This instruction is handled by a different recipe."); 4528 case Instruction::UDiv: 4529 case Instruction::SDiv: 4530 case Instruction::SRem: 4531 case Instruction::URem: 4532 case Instruction::Add: 4533 case Instruction::FAdd: 4534 case Instruction::Sub: 4535 case Instruction::FSub: 4536 case Instruction::FNeg: 4537 case Instruction::Mul: 4538 case Instruction::FMul: 4539 case Instruction::FDiv: 4540 case Instruction::FRem: 4541 case Instruction::Shl: 4542 case Instruction::LShr: 4543 case Instruction::AShr: 4544 case Instruction::And: 4545 case Instruction::Or: 4546 case Instruction::Xor: { 4547 // Just widen unops and binops. 4548 setDebugLocFromInst(Builder, &I); 4549 4550 for (unsigned Part = 0; Part < UF; ++Part) { 4551 SmallVector<Value *, 2> Ops; 4552 for (VPValue *VPOp : User.operands()) 4553 Ops.push_back(State.get(VPOp, Part)); 4554 4555 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4556 4557 if (auto *VecOp = dyn_cast<Instruction>(V)) 4558 VecOp->copyIRFlags(&I); 4559 4560 // Use this vector value for all users of the original instruction. 4561 State.set(Def, &I, V, Part); 4562 addMetadata(V, &I); 4563 } 4564 4565 break; 4566 } 4567 case Instruction::ICmp: 4568 case Instruction::FCmp: { 4569 // Widen compares. Generate vector compares. 4570 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4571 auto *Cmp = cast<CmpInst>(&I); 4572 setDebugLocFromInst(Builder, Cmp); 4573 for (unsigned Part = 0; Part < UF; ++Part) { 4574 Value *A = State.get(User.getOperand(0), Part); 4575 Value *B = State.get(User.getOperand(1), Part); 4576 Value *C = nullptr; 4577 if (FCmp) { 4578 // Propagate fast math flags. 4579 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4580 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4581 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4582 } else { 4583 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4584 } 4585 State.set(Def, &I, C, Part); 4586 addMetadata(C, &I); 4587 } 4588 4589 break; 4590 } 4591 4592 case Instruction::ZExt: 4593 case Instruction::SExt: 4594 case Instruction::FPToUI: 4595 case Instruction::FPToSI: 4596 case Instruction::FPExt: 4597 case Instruction::PtrToInt: 4598 case Instruction::IntToPtr: 4599 case Instruction::SIToFP: 4600 case Instruction::UIToFP: 4601 case Instruction::Trunc: 4602 case Instruction::FPTrunc: 4603 case Instruction::BitCast: { 4604 auto *CI = cast<CastInst>(&I); 4605 setDebugLocFromInst(Builder, CI); 4606 4607 /// Vectorize casts. 4608 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4609 Type *DestTy = 4610 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4611 4612 for (unsigned Part = 0; Part < UF; ++Part) { 4613 Value *A = State.get(User.getOperand(0), Part); 4614 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4615 State.set(Def, &I, Cast, Part); 4616 addMetadata(Cast, &I); 4617 } 4618 break; 4619 } 4620 default: 4621 // This instruction is not vectorized by simple widening. 4622 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4623 llvm_unreachable("Unhandled instruction!"); 4624 } // end of switch. 4625 } 4626 4627 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4628 VPUser &ArgOperands, 4629 VPTransformState &State) { 4630 assert(!isa<DbgInfoIntrinsic>(I) && 4631 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4632 setDebugLocFromInst(Builder, &I); 4633 4634 Module *M = I.getParent()->getParent()->getParent(); 4635 auto *CI = cast<CallInst>(&I); 4636 4637 SmallVector<Type *, 4> Tys; 4638 for (Value *ArgOperand : CI->arg_operands()) 4639 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4640 4641 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4642 4643 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4644 // version of the instruction. 4645 // Is it beneficial to perform intrinsic call compared to lib call? 4646 bool NeedToScalarize = false; 4647 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4648 bool UseVectorIntrinsic = 4649 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4650 assert((UseVectorIntrinsic || !NeedToScalarize) && 4651 "Instruction should be scalarized elsewhere."); 4652 4653 for (unsigned Part = 0; Part < UF; ++Part) { 4654 SmallVector<Value *, 4> Args; 4655 for (auto &I : enumerate(ArgOperands.operands())) { 4656 // Some intrinsics have a scalar argument - don't replace it with a 4657 // vector. 4658 Value *Arg; 4659 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4660 Arg = State.get(I.value(), Part); 4661 else 4662 Arg = State.get(I.value(), {0, 0}); 4663 Args.push_back(Arg); 4664 } 4665 4666 Function *VectorF; 4667 if (UseVectorIntrinsic) { 4668 // Use vector version of the intrinsic. 4669 Type *TysForDecl[] = {CI->getType()}; 4670 if (VF.isVector()) { 4671 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4672 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4673 } 4674 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4675 assert(VectorF && "Can't retrieve vector intrinsic."); 4676 } else { 4677 // Use vector version of the function call. 4678 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4679 #ifndef NDEBUG 4680 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4681 "Can't create vector function."); 4682 #endif 4683 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4684 } 4685 SmallVector<OperandBundleDef, 1> OpBundles; 4686 CI->getOperandBundlesAsDefs(OpBundles); 4687 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4688 4689 if (isa<FPMathOperator>(V)) 4690 V->copyFastMathFlags(CI); 4691 4692 State.set(Def, &I, V, Part); 4693 addMetadata(V, &I); 4694 } 4695 } 4696 4697 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 4698 VPUser &Operands, 4699 bool InvariantCond, 4700 VPTransformState &State) { 4701 setDebugLocFromInst(Builder, &I); 4702 4703 // The condition can be loop invariant but still defined inside the 4704 // loop. This means that we can't just use the original 'cond' value. 4705 // We have to take the 'vectorized' value and pick the first lane. 4706 // Instcombine will make this a no-op. 4707 auto *InvarCond = 4708 InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr; 4709 4710 for (unsigned Part = 0; Part < UF; ++Part) { 4711 Value *Cond = 4712 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4713 Value *Op0 = State.get(Operands.getOperand(1), Part); 4714 Value *Op1 = State.get(Operands.getOperand(2), Part); 4715 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4716 State.set(VPDef, &I, Sel, Part); 4717 addMetadata(Sel, &I); 4718 } 4719 } 4720 4721 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4722 // We should not collect Scalars more than once per VF. Right now, this 4723 // function is called from collectUniformsAndScalars(), which already does 4724 // this check. Collecting Scalars for VF=1 does not make any sense. 4725 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4726 "This function should not be visited twice for the same VF"); 4727 4728 SmallSetVector<Instruction *, 8> Worklist; 4729 4730 // These sets are used to seed the analysis with pointers used by memory 4731 // accesses that will remain scalar. 4732 SmallSetVector<Instruction *, 8> ScalarPtrs; 4733 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4734 auto *Latch = TheLoop->getLoopLatch(); 4735 4736 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4737 // The pointer operands of loads and stores will be scalar as long as the 4738 // memory access is not a gather or scatter operation. The value operand of a 4739 // store will remain scalar if the store is scalarized. 4740 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4741 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4742 assert(WideningDecision != CM_Unknown && 4743 "Widening decision should be ready at this moment"); 4744 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4745 if (Ptr == Store->getValueOperand()) 4746 return WideningDecision == CM_Scalarize; 4747 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4748 "Ptr is neither a value or pointer operand"); 4749 return WideningDecision != CM_GatherScatter; 4750 }; 4751 4752 // A helper that returns true if the given value is a bitcast or 4753 // getelementptr instruction contained in the loop. 4754 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4755 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4756 isa<GetElementPtrInst>(V)) && 4757 !TheLoop->isLoopInvariant(V); 4758 }; 4759 4760 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 4761 if (!isa<PHINode>(Ptr) || 4762 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 4763 return false; 4764 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 4765 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 4766 return false; 4767 return isScalarUse(MemAccess, Ptr); 4768 }; 4769 4770 // A helper that evaluates a memory access's use of a pointer. If the 4771 // pointer is actually the pointer induction of a loop, it is being 4772 // inserted into Worklist. If the use will be a scalar use, and the 4773 // pointer is only used by memory accesses, we place the pointer in 4774 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 4775 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4776 if (isScalarPtrInduction(MemAccess, Ptr)) { 4777 Worklist.insert(cast<Instruction>(Ptr)); 4778 Instruction *Update = cast<Instruction>( 4779 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 4780 Worklist.insert(Update); 4781 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 4782 << "\n"); 4783 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 4784 << "\n"); 4785 return; 4786 } 4787 // We only care about bitcast and getelementptr instructions contained in 4788 // the loop. 4789 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4790 return; 4791 4792 // If the pointer has already been identified as scalar (e.g., if it was 4793 // also identified as uniform), there's nothing to do. 4794 auto *I = cast<Instruction>(Ptr); 4795 if (Worklist.count(I)) 4796 return; 4797 4798 // If the use of the pointer will be a scalar use, and all users of the 4799 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4800 // place the pointer in PossibleNonScalarPtrs. 4801 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4802 return isa<LoadInst>(U) || isa<StoreInst>(U); 4803 })) 4804 ScalarPtrs.insert(I); 4805 else 4806 PossibleNonScalarPtrs.insert(I); 4807 }; 4808 4809 // We seed the scalars analysis with three classes of instructions: (1) 4810 // instructions marked uniform-after-vectorization and (2) bitcast, 4811 // getelementptr and (pointer) phi instructions used by memory accesses 4812 // requiring a scalar use. 4813 // 4814 // (1) Add to the worklist all instructions that have been identified as 4815 // uniform-after-vectorization. 4816 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4817 4818 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4819 // memory accesses requiring a scalar use. The pointer operands of loads and 4820 // stores will be scalar as long as the memory accesses is not a gather or 4821 // scatter operation. The value operand of a store will remain scalar if the 4822 // store is scalarized. 4823 for (auto *BB : TheLoop->blocks()) 4824 for (auto &I : *BB) { 4825 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4826 evaluatePtrUse(Load, Load->getPointerOperand()); 4827 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4828 evaluatePtrUse(Store, Store->getPointerOperand()); 4829 evaluatePtrUse(Store, Store->getValueOperand()); 4830 } 4831 } 4832 for (auto *I : ScalarPtrs) 4833 if (!PossibleNonScalarPtrs.count(I)) { 4834 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4835 Worklist.insert(I); 4836 } 4837 4838 // Insert the forced scalars. 4839 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4840 // induction variable when the PHI user is scalarized. 4841 auto ForcedScalar = ForcedScalars.find(VF); 4842 if (ForcedScalar != ForcedScalars.end()) 4843 for (auto *I : ForcedScalar->second) 4844 Worklist.insert(I); 4845 4846 // Expand the worklist by looking through any bitcasts and getelementptr 4847 // instructions we've already identified as scalar. This is similar to the 4848 // expansion step in collectLoopUniforms(); however, here we're only 4849 // expanding to include additional bitcasts and getelementptr instructions. 4850 unsigned Idx = 0; 4851 while (Idx != Worklist.size()) { 4852 Instruction *Dst = Worklist[Idx++]; 4853 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4854 continue; 4855 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4856 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4857 auto *J = cast<Instruction>(U); 4858 return !TheLoop->contains(J) || Worklist.count(J) || 4859 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4860 isScalarUse(J, Src)); 4861 })) { 4862 Worklist.insert(Src); 4863 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4864 } 4865 } 4866 4867 // An induction variable will remain scalar if all users of the induction 4868 // variable and induction variable update remain scalar. 4869 for (auto &Induction : Legal->getInductionVars()) { 4870 auto *Ind = Induction.first; 4871 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4872 4873 // If tail-folding is applied, the primary induction variable will be used 4874 // to feed a vector compare. 4875 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4876 continue; 4877 4878 // Determine if all users of the induction variable are scalar after 4879 // vectorization. 4880 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4881 auto *I = cast<Instruction>(U); 4882 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4883 }); 4884 if (!ScalarInd) 4885 continue; 4886 4887 // Determine if all users of the induction variable update instruction are 4888 // scalar after vectorization. 4889 auto ScalarIndUpdate = 4890 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4891 auto *I = cast<Instruction>(U); 4892 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4893 }); 4894 if (!ScalarIndUpdate) 4895 continue; 4896 4897 // The induction variable and its update instruction will remain scalar. 4898 Worklist.insert(Ind); 4899 Worklist.insert(IndUpdate); 4900 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4901 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4902 << "\n"); 4903 } 4904 4905 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4906 } 4907 4908 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, 4909 ElementCount VF) { 4910 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4911 if (!blockNeedsPredication(I->getParent())) 4912 return false; 4913 switch(I->getOpcode()) { 4914 default: 4915 break; 4916 case Instruction::Load: 4917 case Instruction::Store: { 4918 if (!Legal->isMaskRequired(I)) 4919 return false; 4920 auto *Ptr = getLoadStorePointerOperand(I); 4921 auto *Ty = getMemInstValueType(I); 4922 // We have already decided how to vectorize this instruction, get that 4923 // result. 4924 if (VF.isVector()) { 4925 InstWidening WideningDecision = getWideningDecision(I, VF); 4926 assert(WideningDecision != CM_Unknown && 4927 "Widening decision should be ready at this moment"); 4928 return WideningDecision == CM_Scalarize; 4929 } 4930 const Align Alignment = getLoadStoreAlignment(I); 4931 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4932 isLegalMaskedGather(Ty, Alignment)) 4933 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4934 isLegalMaskedScatter(Ty, Alignment)); 4935 } 4936 case Instruction::UDiv: 4937 case Instruction::SDiv: 4938 case Instruction::SRem: 4939 case Instruction::URem: 4940 return mayDivideByZero(*I); 4941 } 4942 return false; 4943 } 4944 4945 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4946 Instruction *I, ElementCount VF) { 4947 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4948 assert(getWideningDecision(I, VF) == CM_Unknown && 4949 "Decision should not be set yet."); 4950 auto *Group = getInterleavedAccessGroup(I); 4951 assert(Group && "Must have a group."); 4952 4953 // If the instruction's allocated size doesn't equal it's type size, it 4954 // requires padding and will be scalarized. 4955 auto &DL = I->getModule()->getDataLayout(); 4956 auto *ScalarTy = getMemInstValueType(I); 4957 if (hasIrregularType(ScalarTy, DL, VF)) 4958 return false; 4959 4960 // Check if masking is required. 4961 // A Group may need masking for one of two reasons: it resides in a block that 4962 // needs predication, or it was decided to use masking to deal with gaps. 4963 bool PredicatedAccessRequiresMasking = 4964 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4965 bool AccessWithGapsRequiresMasking = 4966 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4967 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4968 return true; 4969 4970 // If masked interleaving is required, we expect that the user/target had 4971 // enabled it, because otherwise it either wouldn't have been created or 4972 // it should have been invalidated by the CostModel. 4973 assert(useMaskedInterleavedAccesses(TTI) && 4974 "Masked interleave-groups for predicated accesses are not enabled."); 4975 4976 auto *Ty = getMemInstValueType(I); 4977 const Align Alignment = getLoadStoreAlignment(I); 4978 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4979 : TTI.isLegalMaskedStore(Ty, Alignment); 4980 } 4981 4982 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4983 Instruction *I, ElementCount VF) { 4984 // Get and ensure we have a valid memory instruction. 4985 LoadInst *LI = dyn_cast<LoadInst>(I); 4986 StoreInst *SI = dyn_cast<StoreInst>(I); 4987 assert((LI || SI) && "Invalid memory instruction"); 4988 4989 auto *Ptr = getLoadStorePointerOperand(I); 4990 4991 // In order to be widened, the pointer should be consecutive, first of all. 4992 if (!Legal->isConsecutivePtr(Ptr)) 4993 return false; 4994 4995 // If the instruction is a store located in a predicated block, it will be 4996 // scalarized. 4997 if (isScalarWithPredication(I)) 4998 return false; 4999 5000 // If the instruction's allocated size doesn't equal it's type size, it 5001 // requires padding and will be scalarized. 5002 auto &DL = I->getModule()->getDataLayout(); 5003 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5004 if (hasIrregularType(ScalarTy, DL, VF)) 5005 return false; 5006 5007 return true; 5008 } 5009 5010 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5011 // We should not collect Uniforms more than once per VF. Right now, 5012 // this function is called from collectUniformsAndScalars(), which 5013 // already does this check. Collecting Uniforms for VF=1 does not make any 5014 // sense. 5015 5016 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5017 "This function should not be visited twice for the same VF"); 5018 5019 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5020 // not analyze again. Uniforms.count(VF) will return 1. 5021 Uniforms[VF].clear(); 5022 5023 // We now know that the loop is vectorizable! 5024 // Collect instructions inside the loop that will remain uniform after 5025 // vectorization. 5026 5027 // Global values, params and instructions outside of current loop are out of 5028 // scope. 5029 auto isOutOfScope = [&](Value *V) -> bool { 5030 Instruction *I = dyn_cast<Instruction>(V); 5031 return (!I || !TheLoop->contains(I)); 5032 }; 5033 5034 SetVector<Instruction *> Worklist; 5035 BasicBlock *Latch = TheLoop->getLoopLatch(); 5036 5037 // Instructions that are scalar with predication must not be considered 5038 // uniform after vectorization, because that would create an erroneous 5039 // replicating region where only a single instance out of VF should be formed. 5040 // TODO: optimize such seldom cases if found important, see PR40816. 5041 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5042 if (isOutOfScope(I)) { 5043 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5044 << *I << "\n"); 5045 return; 5046 } 5047 if (isScalarWithPredication(I, VF)) { 5048 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5049 << *I << "\n"); 5050 return; 5051 } 5052 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5053 Worklist.insert(I); 5054 }; 5055 5056 // Start with the conditional branch. If the branch condition is an 5057 // instruction contained in the loop that is only used by the branch, it is 5058 // uniform. 5059 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5060 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5061 addToWorklistIfAllowed(Cmp); 5062 5063 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5064 // are pointers that are treated like consecutive pointers during 5065 // vectorization. The pointer operands of interleaved accesses are an 5066 // example. 5067 SmallSetVector<Value *, 8> ConsecutiveLikePtrs; 5068 5069 // Holds pointer operands of instructions that are possibly non-uniform. 5070 SmallPtrSet<Value *, 8> PossibleNonUniformPtrs; 5071 5072 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5073 InstWidening WideningDecision = getWideningDecision(I, VF); 5074 assert(WideningDecision != CM_Unknown && 5075 "Widening decision should be ready at this moment"); 5076 5077 // The address of a uniform mem op is itself uniform. We exclude stores 5078 // here as there's an assumption in the current code that all uses of 5079 // uniform instructions are uniform and, as noted below, uniform stores are 5080 // still handled via replication (i.e. aren't uniform after vectorization). 5081 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5082 assert(WideningDecision == CM_Scalarize); 5083 return true; 5084 } 5085 5086 return (WideningDecision == CM_Widen || 5087 WideningDecision == CM_Widen_Reverse || 5088 WideningDecision == CM_Interleave); 5089 }; 5090 5091 5092 // Returns true if Ptr is the pointer operand of a memory access instruction 5093 // I, and I is known to not require scalarization. 5094 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5095 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5096 }; 5097 5098 // Iterate over the instructions in the loop, and collect all 5099 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5100 // that a consecutive-like pointer operand will be scalarized, we collect it 5101 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5102 // getelementptr instruction can be used by both vectorized and scalarized 5103 // memory instructions. For example, if a loop loads and stores from the same 5104 // location, but the store is conditional, the store will be scalarized, and 5105 // the getelementptr won't remain uniform. 5106 for (auto *BB : TheLoop->blocks()) 5107 for (auto &I : *BB) { 5108 // If there's no pointer operand, there's nothing to do. 5109 auto *Ptr = getLoadStorePointerOperand(&I); 5110 if (!Ptr) 5111 continue; 5112 5113 // For now, avoid walking use lists in other functions. 5114 // TODO: Rewrite this algorithm from uses up. 5115 if (!isa<Instruction>(Ptr) && !isa<Argument>(Ptr)) 5116 continue; 5117 5118 // A uniform memory op is itself uniform. We exclude stores here as we 5119 // haven't yet added dedicated logic in the CLONE path and rely on 5120 // REPLICATE + DSE for correctness. 5121 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5122 addToWorklistIfAllowed(&I); 5123 5124 // True if all users of Ptr are memory accesses that have Ptr as their 5125 // pointer operand. Since loops are assumed to be in LCSSA form, this 5126 // disallows uses outside the loop as well. 5127 auto UsersAreMemAccesses = 5128 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5129 return getLoadStorePointerOperand(U) == Ptr; 5130 }); 5131 5132 // Ensure the memory instruction will not be scalarized or used by 5133 // gather/scatter, making its pointer operand non-uniform. If the pointer 5134 // operand is used by any instruction other than a memory access, we 5135 // conservatively assume the pointer operand may be non-uniform. 5136 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5137 PossibleNonUniformPtrs.insert(Ptr); 5138 5139 // If the memory instruction will be vectorized and its pointer operand 5140 // is consecutive-like, or interleaving - the pointer operand should 5141 // remain uniform. 5142 else 5143 ConsecutiveLikePtrs.insert(Ptr); 5144 } 5145 5146 // Add to the Worklist all consecutive and consecutive-like pointers that 5147 // aren't also identified as possibly non-uniform. 5148 for (auto *V : ConsecutiveLikePtrs) 5149 if (!PossibleNonUniformPtrs.count(V)) 5150 if (auto *I = dyn_cast<Instruction>(V)) 5151 addToWorklistIfAllowed(I); 5152 5153 // Expand Worklist in topological order: whenever a new instruction 5154 // is added , its users should be already inside Worklist. It ensures 5155 // a uniform instruction will only be used by uniform instructions. 5156 unsigned idx = 0; 5157 while (idx != Worklist.size()) { 5158 Instruction *I = Worklist[idx++]; 5159 5160 for (auto OV : I->operand_values()) { 5161 // isOutOfScope operands cannot be uniform instructions. 5162 if (isOutOfScope(OV)) 5163 continue; 5164 // First order recurrence Phi's should typically be considered 5165 // non-uniform. 5166 auto *OP = dyn_cast<PHINode>(OV); 5167 if (OP && Legal->isFirstOrderRecurrence(OP)) 5168 continue; 5169 // If all the users of the operand are uniform, then add the 5170 // operand into the uniform worklist. 5171 auto *OI = cast<Instruction>(OV); 5172 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5173 auto *J = cast<Instruction>(U); 5174 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5175 })) 5176 addToWorklistIfAllowed(OI); 5177 } 5178 } 5179 5180 // For an instruction to be added into Worklist above, all its users inside 5181 // the loop should also be in Worklist. However, this condition cannot be 5182 // true for phi nodes that form a cyclic dependence. We must process phi 5183 // nodes separately. An induction variable will remain uniform if all users 5184 // of the induction variable and induction variable update remain uniform. 5185 // The code below handles both pointer and non-pointer induction variables. 5186 for (auto &Induction : Legal->getInductionVars()) { 5187 auto *Ind = Induction.first; 5188 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5189 5190 // Determine if all users of the induction variable are uniform after 5191 // vectorization. 5192 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5193 auto *I = cast<Instruction>(U); 5194 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5195 isVectorizedMemAccessUse(I, Ind); 5196 }); 5197 if (!UniformInd) 5198 continue; 5199 5200 // Determine if all users of the induction variable update instruction are 5201 // uniform after vectorization. 5202 auto UniformIndUpdate = 5203 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5204 auto *I = cast<Instruction>(U); 5205 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5206 isVectorizedMemAccessUse(I, IndUpdate); 5207 }); 5208 if (!UniformIndUpdate) 5209 continue; 5210 5211 // The induction variable and its update instruction will remain uniform. 5212 addToWorklistIfAllowed(Ind); 5213 addToWorklistIfAllowed(IndUpdate); 5214 } 5215 5216 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5217 } 5218 5219 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5220 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5221 5222 if (Legal->getRuntimePointerChecking()->Need) { 5223 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5224 "runtime pointer checks needed. Enable vectorization of this " 5225 "loop with '#pragma clang loop vectorize(enable)' when " 5226 "compiling with -Os/-Oz", 5227 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5228 return true; 5229 } 5230 5231 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5232 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5233 "runtime SCEV checks needed. Enable vectorization of this " 5234 "loop with '#pragma clang loop vectorize(enable)' when " 5235 "compiling with -Os/-Oz", 5236 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5237 return true; 5238 } 5239 5240 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5241 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5242 reportVectorizationFailure("Runtime stride check for small trip count", 5243 "runtime stride == 1 checks needed. Enable vectorization of " 5244 "this loop without such check by compiling with -Os/-Oz", 5245 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5246 return true; 5247 } 5248 5249 return false; 5250 } 5251 5252 Optional<ElementCount> 5253 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5254 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5255 // TODO: It may by useful to do since it's still likely to be dynamically 5256 // uniform if the target can skip. 5257 reportVectorizationFailure( 5258 "Not inserting runtime ptr check for divergent target", 5259 "runtime pointer checks needed. Not enabled for divergent target", 5260 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5261 return None; 5262 } 5263 5264 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5265 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5266 if (TC == 1) { 5267 reportVectorizationFailure("Single iteration (non) loop", 5268 "loop trip count is one, irrelevant for vectorization", 5269 "SingleIterationLoop", ORE, TheLoop); 5270 return None; 5271 } 5272 5273 ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF); 5274 5275 switch (ScalarEpilogueStatus) { 5276 case CM_ScalarEpilogueAllowed: 5277 return MaxVF; 5278 case CM_ScalarEpilogueNotNeededUsePredicate: 5279 LLVM_DEBUG( 5280 dbgs() << "LV: vector predicate hint/switch found.\n" 5281 << "LV: Not allowing scalar epilogue, creating predicated " 5282 << "vector loop.\n"); 5283 break; 5284 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5285 // fallthrough as a special case of OptForSize 5286 case CM_ScalarEpilogueNotAllowedOptSize: 5287 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5288 LLVM_DEBUG( 5289 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5290 else 5291 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5292 << "count.\n"); 5293 5294 // Bail if runtime checks are required, which are not good when optimising 5295 // for size. 5296 if (runtimeChecksRequired()) 5297 return None; 5298 break; 5299 } 5300 5301 // Now try the tail folding 5302 5303 // Invalidate interleave groups that require an epilogue if we can't mask 5304 // the interleave-group. 5305 if (!useMaskedInterleavedAccesses(TTI)) { 5306 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5307 "No decisions should have been taken at this point"); 5308 // Note: There is no need to invalidate any cost modeling decisions here, as 5309 // non where taken so far. 5310 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5311 } 5312 5313 assert(!MaxVF.isScalable() && 5314 "Scalable vectors do not yet support tail folding"); 5315 assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) && 5316 "MaxVF must be a power of 2"); 5317 unsigned MaxVFtimesIC = 5318 UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue(); 5319 if (TC > 0 && TC % MaxVFtimesIC == 0) { 5320 // Accept MaxVF if we do not have a tail. 5321 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5322 return MaxVF; 5323 } 5324 5325 // If we don't know the precise trip count, or if the trip count that we 5326 // found modulo the vectorization factor is not zero, try to fold the tail 5327 // by masking. 5328 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5329 if (Legal->prepareToFoldTailByMasking()) { 5330 FoldTailByMasking = true; 5331 return MaxVF; 5332 } 5333 5334 // If there was a tail-folding hint/switch, but we can't fold the tail by 5335 // masking, fallback to a vectorization with a scalar epilogue. 5336 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5337 if (PreferPredicateOverEpilogue == PreferPredicateTy::PredicateOrDontVectorize) { 5338 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5339 return None; 5340 } 5341 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5342 "scalar epilogue instead.\n"); 5343 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5344 return MaxVF; 5345 } 5346 5347 if (TC == 0) { 5348 reportVectorizationFailure( 5349 "Unable to calculate the loop count due to complex control flow", 5350 "unable to calculate the loop count due to complex control flow", 5351 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5352 return None; 5353 } 5354 5355 reportVectorizationFailure( 5356 "Cannot optimize for size and vectorize at the same time.", 5357 "cannot optimize for size and vectorize at the same time. " 5358 "Enable vectorization of this loop with '#pragma clang loop " 5359 "vectorize(enable)' when compiling with -Os/-Oz", 5360 "NoTailLoopWithOptForSize", ORE, TheLoop); 5361 return None; 5362 } 5363 5364 ElementCount 5365 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5366 ElementCount UserVF) { 5367 assert(!UserVF.isScalable() && "scalable vectorization not yet handled"); 5368 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5369 unsigned SmallestType, WidestType; 5370 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5371 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5372 5373 // Get the maximum safe dependence distance in bits computed by LAA. 5374 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5375 // the memory accesses that is most restrictive (involved in the smallest 5376 // dependence distance). 5377 unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits(); 5378 5379 if (UserVF.isNonZero()) { 5380 // If legally unsafe, clamp the user vectorization factor to a safe value. 5381 unsigned MaxSafeVF = PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType); 5382 if (UserVF.getFixedValue() <= MaxSafeVF) 5383 return UserVF; 5384 5385 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5386 << " is unsafe, clamping to max safe VF=" << MaxSafeVF 5387 << ".\n"); 5388 ORE->emit([&]() { 5389 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5390 TheLoop->getStartLoc(), 5391 TheLoop->getHeader()) 5392 << "User-specified vectorization factor " 5393 << ore::NV("UserVectorizationFactor", UserVF) 5394 << " is unsafe, clamping to maximum safe vectorization factor " 5395 << ore::NV("VectorizationFactor", MaxSafeVF); 5396 }); 5397 return ElementCount::getFixed(MaxSafeVF); 5398 } 5399 5400 WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits); 5401 5402 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5403 // Note that both WidestRegister and WidestType may not be a powers of 2. 5404 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5405 5406 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5407 << " / " << WidestType << " bits.\n"); 5408 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5409 << WidestRegister << " bits.\n"); 5410 5411 assert(MaxVectorSize <= WidestRegister && 5412 "Did not expect to pack so many elements" 5413 " into one vector!"); 5414 if (MaxVectorSize == 0) { 5415 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5416 MaxVectorSize = 1; 5417 return ElementCount::getFixed(MaxVectorSize); 5418 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5419 isPowerOf2_32(ConstTripCount)) { 5420 // We need to clamp the VF to be the ConstTripCount. There is no point in 5421 // choosing a higher viable VF as done in the loop below. 5422 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5423 << ConstTripCount << "\n"); 5424 MaxVectorSize = ConstTripCount; 5425 return ElementCount::getFixed(MaxVectorSize); 5426 } 5427 5428 unsigned MaxVF = MaxVectorSize; 5429 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5430 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5431 // Collect all viable vectorization factors larger than the default MaxVF 5432 // (i.e. MaxVectorSize). 5433 SmallVector<ElementCount, 8> VFs; 5434 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5435 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5436 VFs.push_back(ElementCount::getFixed(VS)); 5437 5438 // For each VF calculate its register usage. 5439 auto RUs = calculateRegisterUsage(VFs); 5440 5441 // Select the largest VF which doesn't require more registers than existing 5442 // ones. 5443 for (int i = RUs.size() - 1; i >= 0; --i) { 5444 bool Selected = true; 5445 for (auto& pair : RUs[i].MaxLocalUsers) { 5446 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5447 if (pair.second > TargetNumRegisters) 5448 Selected = false; 5449 } 5450 if (Selected) { 5451 MaxVF = VFs[i].getKnownMinValue(); 5452 break; 5453 } 5454 } 5455 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5456 if (MaxVF < MinVF) { 5457 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5458 << ") with target's minimum: " << MinVF << '\n'); 5459 MaxVF = MinVF; 5460 } 5461 } 5462 } 5463 return ElementCount::getFixed(MaxVF); 5464 } 5465 5466 VectorizationFactor 5467 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 5468 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 5469 5470 float Cost = expectedCost(ElementCount::getFixed(1)).first; 5471 const float ScalarCost = Cost; 5472 unsigned Width = 1; 5473 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5474 5475 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5476 if (ForceVectorization && MaxVF.isVector()) { 5477 // Ignore scalar width, because the user explicitly wants vectorization. 5478 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5479 // evaluation. 5480 Cost = std::numeric_limits<float>::max(); 5481 } 5482 5483 for (unsigned i = 2; i <= MaxVF.getFixedValue(); i *= 2) { 5484 // Notice that the vector loop needs to be executed less times, so 5485 // we need to divide the cost of the vector loops by the width of 5486 // the vector elements. 5487 VectorizationCostTy C = expectedCost(ElementCount::getFixed(i)); 5488 float VectorCost = C.first / (float)i; 5489 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5490 << " costs: " << (int)VectorCost << ".\n"); 5491 if (!C.second && !ForceVectorization) { 5492 LLVM_DEBUG( 5493 dbgs() << "LV: Not considering vector loop of width " << i 5494 << " because it will not generate any vector instructions.\n"); 5495 continue; 5496 } 5497 if (VectorCost < Cost) { 5498 Cost = VectorCost; 5499 Width = i; 5500 } 5501 } 5502 5503 if (!EnableCondStoresVectorization && NumPredStores) { 5504 reportVectorizationFailure("There are conditional stores.", 5505 "store that is conditionally executed prevents vectorization", 5506 "ConditionalStore", ORE, TheLoop); 5507 Width = 1; 5508 Cost = ScalarCost; 5509 } 5510 5511 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5512 << "LV: Vectorization seems to be not beneficial, " 5513 << "but was forced by a user.\n"); 5514 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5515 VectorizationFactor Factor = {ElementCount::getFixed(Width), 5516 (unsigned)(Width * Cost)}; 5517 return Factor; 5518 } 5519 5520 std::pair<unsigned, unsigned> 5521 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5522 unsigned MinWidth = -1U; 5523 unsigned MaxWidth = 8; 5524 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5525 5526 // For each block. 5527 for (BasicBlock *BB : TheLoop->blocks()) { 5528 // For each instruction in the loop. 5529 for (Instruction &I : BB->instructionsWithoutDebug()) { 5530 Type *T = I.getType(); 5531 5532 // Skip ignored values. 5533 if (ValuesToIgnore.count(&I)) 5534 continue; 5535 5536 // Only examine Loads, Stores and PHINodes. 5537 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5538 continue; 5539 5540 // Examine PHI nodes that are reduction variables. Update the type to 5541 // account for the recurrence type. 5542 if (auto *PN = dyn_cast<PHINode>(&I)) { 5543 if (!Legal->isReductionVariable(PN)) 5544 continue; 5545 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5546 T = RdxDesc.getRecurrenceType(); 5547 } 5548 5549 // Examine the stored values. 5550 if (auto *ST = dyn_cast<StoreInst>(&I)) 5551 T = ST->getValueOperand()->getType(); 5552 5553 // Ignore loaded pointer types and stored pointer types that are not 5554 // vectorizable. 5555 // 5556 // FIXME: The check here attempts to predict whether a load or store will 5557 // be vectorized. We only know this for certain after a VF has 5558 // been selected. Here, we assume that if an access can be 5559 // vectorized, it will be. We should also look at extending this 5560 // optimization to non-pointer types. 5561 // 5562 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5563 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5564 continue; 5565 5566 MinWidth = std::min(MinWidth, 5567 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5568 MaxWidth = std::max(MaxWidth, 5569 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5570 } 5571 } 5572 5573 return {MinWidth, MaxWidth}; 5574 } 5575 5576 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5577 unsigned LoopCost) { 5578 // -- The interleave heuristics -- 5579 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5580 // There are many micro-architectural considerations that we can't predict 5581 // at this level. For example, frontend pressure (on decode or fetch) due to 5582 // code size, or the number and capabilities of the execution ports. 5583 // 5584 // We use the following heuristics to select the interleave count: 5585 // 1. If the code has reductions, then we interleave to break the cross 5586 // iteration dependency. 5587 // 2. If the loop is really small, then we interleave to reduce the loop 5588 // overhead. 5589 // 3. We don't interleave if we think that we will spill registers to memory 5590 // due to the increased register pressure. 5591 5592 if (!isScalarEpilogueAllowed()) 5593 return 1; 5594 5595 // We used the distance for the interleave count. 5596 if (Legal->getMaxSafeDepDistBytes() != -1U) 5597 return 1; 5598 5599 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5600 const bool HasReductions = !Legal->getReductionVars().empty(); 5601 // Do not interleave loops with a relatively small known or estimated trip 5602 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5603 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5604 // because with the above conditions interleaving can expose ILP and break 5605 // cross iteration dependences for reductions. 5606 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5607 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5608 return 1; 5609 5610 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5611 // We divide by these constants so assume that we have at least one 5612 // instruction that uses at least one register. 5613 for (auto& pair : R.MaxLocalUsers) { 5614 pair.second = std::max(pair.second, 1U); 5615 } 5616 5617 // We calculate the interleave count using the following formula. 5618 // Subtract the number of loop invariants from the number of available 5619 // registers. These registers are used by all of the interleaved instances. 5620 // Next, divide the remaining registers by the number of registers that is 5621 // required by the loop, in order to estimate how many parallel instances 5622 // fit without causing spills. All of this is rounded down if necessary to be 5623 // a power of two. We want power of two interleave count to simplify any 5624 // addressing operations or alignment considerations. 5625 // We also want power of two interleave counts to ensure that the induction 5626 // variable of the vector loop wraps to zero, when tail is folded by masking; 5627 // this currently happens when OptForSize, in which case IC is set to 1 above. 5628 unsigned IC = UINT_MAX; 5629 5630 for (auto& pair : R.MaxLocalUsers) { 5631 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5632 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5633 << " registers of " 5634 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5635 if (VF.isScalar()) { 5636 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5637 TargetNumRegisters = ForceTargetNumScalarRegs; 5638 } else { 5639 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5640 TargetNumRegisters = ForceTargetNumVectorRegs; 5641 } 5642 unsigned MaxLocalUsers = pair.second; 5643 unsigned LoopInvariantRegs = 0; 5644 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5645 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5646 5647 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5648 // Don't count the induction variable as interleaved. 5649 if (EnableIndVarRegisterHeur) { 5650 TmpIC = 5651 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5652 std::max(1U, (MaxLocalUsers - 1))); 5653 } 5654 5655 IC = std::min(IC, TmpIC); 5656 } 5657 5658 // Clamp the interleave ranges to reasonable counts. 5659 assert(!VF.isScalable() && "scalable vectors not yet supported."); 5660 unsigned MaxInterleaveCount = 5661 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5662 5663 // Check if the user has overridden the max. 5664 if (VF.isScalar()) { 5665 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5666 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5667 } else { 5668 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5669 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5670 } 5671 5672 // If trip count is known or estimated compile time constant, limit the 5673 // interleave count to be less than the trip count divided by VF, provided it 5674 // is at least 1. 5675 if (BestKnownTC) { 5676 MaxInterleaveCount = 5677 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5678 // Make sure MaxInterleaveCount is greater than 0. 5679 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5680 } 5681 5682 assert(MaxInterleaveCount > 0 && 5683 "Maximum interleave count must be greater than 0"); 5684 5685 // Clamp the calculated IC to be between the 1 and the max interleave count 5686 // that the target and trip count allows. 5687 if (IC > MaxInterleaveCount) 5688 IC = MaxInterleaveCount; 5689 else 5690 // Make sure IC is greater than 0. 5691 IC = std::max(1u, IC); 5692 5693 assert(IC > 0 && "Interleave count must be greater than 0."); 5694 5695 // If we did not calculate the cost for VF (because the user selected the VF) 5696 // then we calculate the cost of VF here. 5697 if (LoopCost == 0) 5698 LoopCost = expectedCost(VF).first; 5699 5700 assert(LoopCost && "Non-zero loop cost expected"); 5701 5702 // Interleave if we vectorized this loop and there is a reduction that could 5703 // benefit from interleaving. 5704 if (VF.isVector() && HasReductions) { 5705 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5706 return IC; 5707 } 5708 5709 // Note that if we've already vectorized the loop we will have done the 5710 // runtime check and so interleaving won't require further checks. 5711 bool InterleavingRequiresRuntimePointerCheck = 5712 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5713 5714 // We want to interleave small loops in order to reduce the loop overhead and 5715 // potentially expose ILP opportunities. 5716 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5717 << "LV: IC is " << IC << '\n' 5718 << "LV: VF is " << VF.getKnownMinValue() << '\n'); 5719 const bool AggressivelyInterleaveReductions = 5720 TTI.enableAggressiveInterleaving(HasReductions); 5721 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5722 // We assume that the cost overhead is 1 and we use the cost model 5723 // to estimate the cost of the loop and interleave until the cost of the 5724 // loop overhead is about 5% of the cost of the loop. 5725 unsigned SmallIC = 5726 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5727 5728 // Interleave until store/load ports (estimated by max interleave count) are 5729 // saturated. 5730 unsigned NumStores = Legal->getNumStores(); 5731 unsigned NumLoads = Legal->getNumLoads(); 5732 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5733 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5734 5735 // If we have a scalar reduction (vector reductions are already dealt with 5736 // by this point), we can increase the critical path length if the loop 5737 // we're interleaving is inside another loop. Limit, by default to 2, so the 5738 // critical path only gets increased by one reduction operation. 5739 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5740 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5741 SmallIC = std::min(SmallIC, F); 5742 StoresIC = std::min(StoresIC, F); 5743 LoadsIC = std::min(LoadsIC, F); 5744 } 5745 5746 if (EnableLoadStoreRuntimeInterleave && 5747 std::max(StoresIC, LoadsIC) > SmallIC) { 5748 LLVM_DEBUG( 5749 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5750 return std::max(StoresIC, LoadsIC); 5751 } 5752 5753 // If there are scalar reductions and TTI has enabled aggressive 5754 // interleaving for reductions, we will interleave to expose ILP. 5755 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5756 AggressivelyInterleaveReductions) { 5757 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5758 // Interleave no less than SmallIC but not as aggressive as the normal IC 5759 // to satisfy the rare situation when resources are too limited. 5760 return std::max(IC / 2, SmallIC); 5761 } else { 5762 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5763 return SmallIC; 5764 } 5765 } 5766 5767 // Interleave if this is a large loop (small loops are already dealt with by 5768 // this point) that could benefit from interleaving. 5769 if (AggressivelyInterleaveReductions) { 5770 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5771 return IC; 5772 } 5773 5774 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5775 return 1; 5776 } 5777 5778 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5779 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5780 // This function calculates the register usage by measuring the highest number 5781 // of values that are alive at a single location. Obviously, this is a very 5782 // rough estimation. We scan the loop in a topological order in order and 5783 // assign a number to each instruction. We use RPO to ensure that defs are 5784 // met before their users. We assume that each instruction that has in-loop 5785 // users starts an interval. We record every time that an in-loop value is 5786 // used, so we have a list of the first and last occurrences of each 5787 // instruction. Next, we transpose this data structure into a multi map that 5788 // holds the list of intervals that *end* at a specific location. This multi 5789 // map allows us to perform a linear search. We scan the instructions linearly 5790 // and record each time that a new interval starts, by placing it in a set. 5791 // If we find this value in the multi-map then we remove it from the set. 5792 // The max register usage is the maximum size of the set. 5793 // We also search for instructions that are defined outside the loop, but are 5794 // used inside the loop. We need this number separately from the max-interval 5795 // usage number because when we unroll, loop-invariant values do not take 5796 // more register. 5797 LoopBlocksDFS DFS(TheLoop); 5798 DFS.perform(LI); 5799 5800 RegisterUsage RU; 5801 5802 // Each 'key' in the map opens a new interval. The values 5803 // of the map are the index of the 'last seen' usage of the 5804 // instruction that is the key. 5805 using IntervalMap = DenseMap<Instruction *, unsigned>; 5806 5807 // Maps instruction to its index. 5808 SmallVector<Instruction *, 64> IdxToInstr; 5809 // Marks the end of each interval. 5810 IntervalMap EndPoint; 5811 // Saves the list of instruction indices that are used in the loop. 5812 SmallPtrSet<Instruction *, 8> Ends; 5813 // Saves the list of values that are used in the loop but are 5814 // defined outside the loop, such as arguments and constants. 5815 SmallPtrSet<Value *, 8> LoopInvariants; 5816 5817 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5818 for (Instruction &I : BB->instructionsWithoutDebug()) { 5819 IdxToInstr.push_back(&I); 5820 5821 // Save the end location of each USE. 5822 for (Value *U : I.operands()) { 5823 auto *Instr = dyn_cast<Instruction>(U); 5824 5825 // Ignore non-instruction values such as arguments, constants, etc. 5826 if (!Instr) 5827 continue; 5828 5829 // If this instruction is outside the loop then record it and continue. 5830 if (!TheLoop->contains(Instr)) { 5831 LoopInvariants.insert(Instr); 5832 continue; 5833 } 5834 5835 // Overwrite previous end points. 5836 EndPoint[Instr] = IdxToInstr.size(); 5837 Ends.insert(Instr); 5838 } 5839 } 5840 } 5841 5842 // Saves the list of intervals that end with the index in 'key'. 5843 using InstrList = SmallVector<Instruction *, 2>; 5844 DenseMap<unsigned, InstrList> TransposeEnds; 5845 5846 // Transpose the EndPoints to a list of values that end at each index. 5847 for (auto &Interval : EndPoint) 5848 TransposeEnds[Interval.second].push_back(Interval.first); 5849 5850 SmallPtrSet<Instruction *, 8> OpenIntervals; 5851 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5852 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5853 5854 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5855 5856 // A lambda that gets the register usage for the given type and VF. 5857 const auto &TTICapture = TTI; 5858 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 5859 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5860 return 0U; 5861 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 5862 }; 5863 5864 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5865 Instruction *I = IdxToInstr[i]; 5866 5867 // Remove all of the instructions that end at this location. 5868 InstrList &List = TransposeEnds[i]; 5869 for (Instruction *ToRemove : List) 5870 OpenIntervals.erase(ToRemove); 5871 5872 // Ignore instructions that are never used within the loop. 5873 if (!Ends.count(I)) 5874 continue; 5875 5876 // Skip ignored values. 5877 if (ValuesToIgnore.count(I)) 5878 continue; 5879 5880 // For each VF find the maximum usage of registers. 5881 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5882 // Count the number of live intervals. 5883 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5884 5885 if (VFs[j].isScalar()) { 5886 for (auto Inst : OpenIntervals) { 5887 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5888 if (RegUsage.find(ClassID) == RegUsage.end()) 5889 RegUsage[ClassID] = 1; 5890 else 5891 RegUsage[ClassID] += 1; 5892 } 5893 } else { 5894 collectUniformsAndScalars(VFs[j]); 5895 for (auto Inst : OpenIntervals) { 5896 // Skip ignored values for VF > 1. 5897 if (VecValuesToIgnore.count(Inst)) 5898 continue; 5899 if (isScalarAfterVectorization(Inst, VFs[j])) { 5900 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5901 if (RegUsage.find(ClassID) == RegUsage.end()) 5902 RegUsage[ClassID] = 1; 5903 else 5904 RegUsage[ClassID] += 1; 5905 } else { 5906 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5907 if (RegUsage.find(ClassID) == RegUsage.end()) 5908 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5909 else 5910 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5911 } 5912 } 5913 } 5914 5915 for (auto& pair : RegUsage) { 5916 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5917 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5918 else 5919 MaxUsages[j][pair.first] = pair.second; 5920 } 5921 } 5922 5923 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5924 << OpenIntervals.size() << '\n'); 5925 5926 // Add the current instruction to the list of open intervals. 5927 OpenIntervals.insert(I); 5928 } 5929 5930 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5931 SmallMapVector<unsigned, unsigned, 4> Invariant; 5932 5933 for (auto Inst : LoopInvariants) { 5934 unsigned Usage = 5935 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5936 unsigned ClassID = 5937 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 5938 if (Invariant.find(ClassID) == Invariant.end()) 5939 Invariant[ClassID] = Usage; 5940 else 5941 Invariant[ClassID] += Usage; 5942 } 5943 5944 LLVM_DEBUG({ 5945 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5946 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5947 << " item\n"; 5948 for (const auto &pair : MaxUsages[i]) { 5949 dbgs() << "LV(REG): RegisterClass: " 5950 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5951 << " registers\n"; 5952 } 5953 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5954 << " item\n"; 5955 for (const auto &pair : Invariant) { 5956 dbgs() << "LV(REG): RegisterClass: " 5957 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5958 << " registers\n"; 5959 } 5960 }); 5961 5962 RU.LoopInvariantRegs = Invariant; 5963 RU.MaxLocalUsers = MaxUsages[i]; 5964 RUs[i] = RU; 5965 } 5966 5967 return RUs; 5968 } 5969 5970 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5971 // TODO: Cost model for emulated masked load/store is completely 5972 // broken. This hack guides the cost model to use an artificially 5973 // high enough value to practically disable vectorization with such 5974 // operations, except where previously deployed legality hack allowed 5975 // using very low cost values. This is to avoid regressions coming simply 5976 // from moving "masked load/store" check from legality to cost model. 5977 // Masked Load/Gather emulation was previously never allowed. 5978 // Limited number of Masked Store/Scatter emulation was allowed. 5979 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5980 return isa<LoadInst>(I) || 5981 (isa<StoreInst>(I) && 5982 NumPredStores > NumberOfStoresToPredicate); 5983 } 5984 5985 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 5986 // If we aren't vectorizing the loop, or if we've already collected the 5987 // instructions to scalarize, there's nothing to do. Collection may already 5988 // have occurred if we have a user-selected VF and are now computing the 5989 // expected cost for interleaving. 5990 if (VF.isScalar() || VF.isZero() || 5991 InstsToScalarize.find(VF) != InstsToScalarize.end()) 5992 return; 5993 5994 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5995 // not profitable to scalarize any instructions, the presence of VF in the 5996 // map will indicate that we've analyzed it already. 5997 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5998 5999 // Find all the instructions that are scalar with predication in the loop and 6000 // determine if it would be better to not if-convert the blocks they are in. 6001 // If so, we also record the instructions to scalarize. 6002 for (BasicBlock *BB : TheLoop->blocks()) { 6003 if (!blockNeedsPredication(BB)) 6004 continue; 6005 for (Instruction &I : *BB) 6006 if (isScalarWithPredication(&I)) { 6007 ScalarCostsTy ScalarCosts; 6008 // Do not apply discount logic if hacked cost is needed 6009 // for emulated masked memrefs. 6010 if (!useEmulatedMaskMemRefHack(&I) && 6011 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6012 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6013 // Remember that BB will remain after vectorization. 6014 PredicatedBBsAfterVectorization.insert(BB); 6015 } 6016 } 6017 } 6018 6019 int LoopVectorizationCostModel::computePredInstDiscount( 6020 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6021 ElementCount VF) { 6022 assert(!isUniformAfterVectorization(PredInst, VF) && 6023 "Instruction marked uniform-after-vectorization will be predicated"); 6024 6025 // Initialize the discount to zero, meaning that the scalar version and the 6026 // vector version cost the same. 6027 int Discount = 0; 6028 6029 // Holds instructions to analyze. The instructions we visit are mapped in 6030 // ScalarCosts. Those instructions are the ones that would be scalarized if 6031 // we find that the scalar version costs less. 6032 SmallVector<Instruction *, 8> Worklist; 6033 6034 // Returns true if the given instruction can be scalarized. 6035 auto canBeScalarized = [&](Instruction *I) -> bool { 6036 // We only attempt to scalarize instructions forming a single-use chain 6037 // from the original predicated block that would otherwise be vectorized. 6038 // Although not strictly necessary, we give up on instructions we know will 6039 // already be scalar to avoid traversing chains that are unlikely to be 6040 // beneficial. 6041 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6042 isScalarAfterVectorization(I, VF)) 6043 return false; 6044 6045 // If the instruction is scalar with predication, it will be analyzed 6046 // separately. We ignore it within the context of PredInst. 6047 if (isScalarWithPredication(I)) 6048 return false; 6049 6050 // If any of the instruction's operands are uniform after vectorization, 6051 // the instruction cannot be scalarized. This prevents, for example, a 6052 // masked load from being scalarized. 6053 // 6054 // We assume we will only emit a value for lane zero of an instruction 6055 // marked uniform after vectorization, rather than VF identical values. 6056 // Thus, if we scalarize an instruction that uses a uniform, we would 6057 // create uses of values corresponding to the lanes we aren't emitting code 6058 // for. This behavior can be changed by allowing getScalarValue to clone 6059 // the lane zero values for uniforms rather than asserting. 6060 for (Use &U : I->operands()) 6061 if (auto *J = dyn_cast<Instruction>(U.get())) 6062 if (isUniformAfterVectorization(J, VF)) 6063 return false; 6064 6065 // Otherwise, we can scalarize the instruction. 6066 return true; 6067 }; 6068 6069 // Compute the expected cost discount from scalarizing the entire expression 6070 // feeding the predicated instruction. We currently only consider expressions 6071 // that are single-use instruction chains. 6072 Worklist.push_back(PredInst); 6073 while (!Worklist.empty()) { 6074 Instruction *I = Worklist.pop_back_val(); 6075 6076 // If we've already analyzed the instruction, there's nothing to do. 6077 if (ScalarCosts.find(I) != ScalarCosts.end()) 6078 continue; 6079 6080 // Compute the cost of the vector instruction. Note that this cost already 6081 // includes the scalarization overhead of the predicated instruction. 6082 unsigned VectorCost = getInstructionCost(I, VF).first; 6083 6084 // Compute the cost of the scalarized instruction. This cost is the cost of 6085 // the instruction as if it wasn't if-converted and instead remained in the 6086 // predicated block. We will scale this cost by block probability after 6087 // computing the scalarization overhead. 6088 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6089 unsigned ScalarCost = 6090 VF.getKnownMinValue() * 6091 getInstructionCost(I, ElementCount::getFixed(1)).first; 6092 6093 // Compute the scalarization overhead of needed insertelement instructions 6094 // and phi nodes. 6095 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6096 ScalarCost += TTI.getScalarizationOverhead( 6097 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6098 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6099 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6100 ScalarCost += 6101 VF.getKnownMinValue() * 6102 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6103 } 6104 6105 // Compute the scalarization overhead of needed extractelement 6106 // instructions. For each of the instruction's operands, if the operand can 6107 // be scalarized, add it to the worklist; otherwise, account for the 6108 // overhead. 6109 for (Use &U : I->operands()) 6110 if (auto *J = dyn_cast<Instruction>(U.get())) { 6111 assert(VectorType::isValidElementType(J->getType()) && 6112 "Instruction has non-scalar type"); 6113 if (canBeScalarized(J)) 6114 Worklist.push_back(J); 6115 else if (needsExtract(J, VF)) { 6116 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6117 ScalarCost += TTI.getScalarizationOverhead( 6118 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6119 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6120 } 6121 } 6122 6123 // Scale the total scalar cost by block probability. 6124 ScalarCost /= getReciprocalPredBlockProb(); 6125 6126 // Compute the discount. A non-negative discount means the vector version 6127 // of the instruction costs more, and scalarizing would be beneficial. 6128 Discount += VectorCost - ScalarCost; 6129 ScalarCosts[I] = ScalarCost; 6130 } 6131 6132 return Discount; 6133 } 6134 6135 LoopVectorizationCostModel::VectorizationCostTy 6136 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6137 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6138 VectorizationCostTy Cost; 6139 6140 // For each block. 6141 for (BasicBlock *BB : TheLoop->blocks()) { 6142 VectorizationCostTy BlockCost; 6143 6144 // For each instruction in the old loop. 6145 for (Instruction &I : BB->instructionsWithoutDebug()) { 6146 // Skip ignored values. 6147 if (ValuesToIgnore.count(&I) || 6148 (VF.isVector() && VecValuesToIgnore.count(&I))) 6149 continue; 6150 6151 VectorizationCostTy C = getInstructionCost(&I, VF); 6152 6153 // Check if we should override the cost. 6154 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6155 C.first = ForceTargetInstructionCost; 6156 6157 BlockCost.first += C.first; 6158 BlockCost.second |= C.second; 6159 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6160 << " for VF " << VF << " For instruction: " << I 6161 << '\n'); 6162 } 6163 6164 // If we are vectorizing a predicated block, it will have been 6165 // if-converted. This means that the block's instructions (aside from 6166 // stores and instructions that may divide by zero) will now be 6167 // unconditionally executed. For the scalar case, we may not always execute 6168 // the predicated block. Thus, scale the block's cost by the probability of 6169 // executing it. 6170 if (VF.isScalar() && blockNeedsPredication(BB)) 6171 BlockCost.first /= getReciprocalPredBlockProb(); 6172 6173 Cost.first += BlockCost.first; 6174 Cost.second |= BlockCost.second; 6175 } 6176 6177 return Cost; 6178 } 6179 6180 /// Gets Address Access SCEV after verifying that the access pattern 6181 /// is loop invariant except the induction variable dependence. 6182 /// 6183 /// This SCEV can be sent to the Target in order to estimate the address 6184 /// calculation cost. 6185 static const SCEV *getAddressAccessSCEV( 6186 Value *Ptr, 6187 LoopVectorizationLegality *Legal, 6188 PredicatedScalarEvolution &PSE, 6189 const Loop *TheLoop) { 6190 6191 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6192 if (!Gep) 6193 return nullptr; 6194 6195 // We are looking for a gep with all loop invariant indices except for one 6196 // which should be an induction variable. 6197 auto SE = PSE.getSE(); 6198 unsigned NumOperands = Gep->getNumOperands(); 6199 for (unsigned i = 1; i < NumOperands; ++i) { 6200 Value *Opd = Gep->getOperand(i); 6201 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6202 !Legal->isInductionVariable(Opd)) 6203 return nullptr; 6204 } 6205 6206 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6207 return PSE.getSCEV(Ptr); 6208 } 6209 6210 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6211 return Legal->hasStride(I->getOperand(0)) || 6212 Legal->hasStride(I->getOperand(1)); 6213 } 6214 6215 unsigned 6216 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6217 ElementCount VF) { 6218 assert(VF.isVector() && 6219 "Scalarization cost of instruction implies vectorization."); 6220 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6221 Type *ValTy = getMemInstValueType(I); 6222 auto SE = PSE.getSE(); 6223 6224 unsigned AS = getLoadStoreAddressSpace(I); 6225 Value *Ptr = getLoadStorePointerOperand(I); 6226 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6227 6228 // Figure out whether the access is strided and get the stride value 6229 // if it's known in compile time 6230 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6231 6232 // Get the cost of the scalar memory instruction and address computation. 6233 unsigned Cost = 6234 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6235 6236 // Don't pass *I here, since it is scalar but will actually be part of a 6237 // vectorized loop where the user of it is a vectorized instruction. 6238 const Align Alignment = getLoadStoreAlignment(I); 6239 Cost += VF.getKnownMinValue() * 6240 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6241 AS, TTI::TCK_RecipThroughput); 6242 6243 // Get the overhead of the extractelement and insertelement instructions 6244 // we might create due to scalarization. 6245 Cost += getScalarizationOverhead(I, VF); 6246 6247 // If we have a predicated store, it may not be executed for each vector 6248 // lane. Scale the cost by the probability of executing the predicated 6249 // block. 6250 if (isPredicatedInst(I)) { 6251 Cost /= getReciprocalPredBlockProb(); 6252 6253 if (useEmulatedMaskMemRefHack(I)) 6254 // Artificially setting to a high enough value to practically disable 6255 // vectorization with such operations. 6256 Cost = 3000000; 6257 } 6258 6259 return Cost; 6260 } 6261 6262 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6263 ElementCount VF) { 6264 Type *ValTy = getMemInstValueType(I); 6265 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6266 Value *Ptr = getLoadStorePointerOperand(I); 6267 unsigned AS = getLoadStoreAddressSpace(I); 6268 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6269 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6270 6271 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6272 "Stride should be 1 or -1 for consecutive memory access"); 6273 const Align Alignment = getLoadStoreAlignment(I); 6274 unsigned Cost = 0; 6275 if (Legal->isMaskRequired(I)) 6276 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6277 CostKind); 6278 else 6279 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6280 CostKind, I); 6281 6282 bool Reverse = ConsecutiveStride < 0; 6283 if (Reverse) 6284 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6285 return Cost; 6286 } 6287 6288 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6289 ElementCount VF) { 6290 assert(Legal->isUniformMemOp(*I)); 6291 6292 Type *ValTy = getMemInstValueType(I); 6293 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6294 const Align Alignment = getLoadStoreAlignment(I); 6295 unsigned AS = getLoadStoreAddressSpace(I); 6296 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6297 if (isa<LoadInst>(I)) { 6298 return TTI.getAddressComputationCost(ValTy) + 6299 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6300 CostKind) + 6301 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6302 } 6303 StoreInst *SI = cast<StoreInst>(I); 6304 6305 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6306 return TTI.getAddressComputationCost(ValTy) + 6307 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6308 CostKind) + 6309 (isLoopInvariantStoreValue 6310 ? 0 6311 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6312 VF.getKnownMinValue() - 1)); 6313 } 6314 6315 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6316 ElementCount VF) { 6317 Type *ValTy = getMemInstValueType(I); 6318 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6319 const Align Alignment = getLoadStoreAlignment(I); 6320 const Value *Ptr = getLoadStorePointerOperand(I); 6321 6322 return TTI.getAddressComputationCost(VectorTy) + 6323 TTI.getGatherScatterOpCost( 6324 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6325 TargetTransformInfo::TCK_RecipThroughput, I); 6326 } 6327 6328 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6329 ElementCount VF) { 6330 Type *ValTy = getMemInstValueType(I); 6331 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6332 unsigned AS = getLoadStoreAddressSpace(I); 6333 6334 auto Group = getInterleavedAccessGroup(I); 6335 assert(Group && "Fail to get an interleaved access group."); 6336 6337 unsigned InterleaveFactor = Group->getFactor(); 6338 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6339 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6340 6341 // Holds the indices of existing members in an interleaved load group. 6342 // An interleaved store group doesn't need this as it doesn't allow gaps. 6343 SmallVector<unsigned, 4> Indices; 6344 if (isa<LoadInst>(I)) { 6345 for (unsigned i = 0; i < InterleaveFactor; i++) 6346 if (Group->getMember(i)) 6347 Indices.push_back(i); 6348 } 6349 6350 // Calculate the cost of the whole interleaved group. 6351 bool UseMaskForGaps = 6352 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6353 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6354 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6355 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6356 6357 if (Group->isReverse()) { 6358 // TODO: Add support for reversed masked interleaved access. 6359 assert(!Legal->isMaskRequired(I) && 6360 "Reverse masked interleaved access not supported."); 6361 Cost += Group->getNumMembers() * 6362 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6363 } 6364 return Cost; 6365 } 6366 6367 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6368 ElementCount VF) { 6369 // Calculate scalar cost only. Vectorization cost should be ready at this 6370 // moment. 6371 if (VF.isScalar()) { 6372 Type *ValTy = getMemInstValueType(I); 6373 const Align Alignment = getLoadStoreAlignment(I); 6374 unsigned AS = getLoadStoreAddressSpace(I); 6375 6376 return TTI.getAddressComputationCost(ValTy) + 6377 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6378 TTI::TCK_RecipThroughput, I); 6379 } 6380 return getWideningCost(I, VF); 6381 } 6382 6383 LoopVectorizationCostModel::VectorizationCostTy 6384 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6385 ElementCount VF) { 6386 assert(!VF.isScalable() && 6387 "the cost model is not yet implemented for scalable vectorization"); 6388 // If we know that this instruction will remain uniform, check the cost of 6389 // the scalar version. 6390 if (isUniformAfterVectorization(I, VF)) 6391 VF = ElementCount::getFixed(1); 6392 6393 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6394 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6395 6396 // Forced scalars do not have any scalarization overhead. 6397 auto ForcedScalar = ForcedScalars.find(VF); 6398 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6399 auto InstSet = ForcedScalar->second; 6400 if (InstSet.count(I)) 6401 return VectorizationCostTy( 6402 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6403 VF.getKnownMinValue()), 6404 false); 6405 } 6406 6407 Type *VectorTy; 6408 unsigned C = getInstructionCost(I, VF, VectorTy); 6409 6410 bool TypeNotScalarized = 6411 VF.isVector() && VectorTy->isVectorTy() && 6412 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 6413 return VectorizationCostTy(C, TypeNotScalarized); 6414 } 6415 6416 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6417 ElementCount VF) { 6418 6419 assert(!VF.isScalable() && 6420 "cannot compute scalarization overhead for scalable vectorization"); 6421 if (VF.isScalar()) 6422 return 0; 6423 6424 unsigned Cost = 0; 6425 Type *RetTy = ToVectorTy(I->getType(), VF); 6426 if (!RetTy->isVoidTy() && 6427 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6428 Cost += TTI.getScalarizationOverhead( 6429 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 6430 true, false); 6431 6432 // Some targets keep addresses scalar. 6433 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6434 return Cost; 6435 6436 // Some targets support efficient element stores. 6437 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6438 return Cost; 6439 6440 // Collect operands to consider. 6441 CallInst *CI = dyn_cast<CallInst>(I); 6442 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6443 6444 // Skip operands that do not require extraction/scalarization and do not incur 6445 // any overhead. 6446 return Cost + TTI.getOperandsScalarizationOverhead( 6447 filterExtractingOperands(Ops, VF), VF.getKnownMinValue()); 6448 } 6449 6450 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6451 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6452 if (VF.isScalar()) 6453 return; 6454 NumPredStores = 0; 6455 for (BasicBlock *BB : TheLoop->blocks()) { 6456 // For each instruction in the old loop. 6457 for (Instruction &I : *BB) { 6458 Value *Ptr = getLoadStorePointerOperand(&I); 6459 if (!Ptr) 6460 continue; 6461 6462 // TODO: We should generate better code and update the cost model for 6463 // predicated uniform stores. Today they are treated as any other 6464 // predicated store (see added test cases in 6465 // invariant-store-vectorization.ll). 6466 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6467 NumPredStores++; 6468 6469 if (Legal->isUniformMemOp(I)) { 6470 // TODO: Avoid replicating loads and stores instead of 6471 // relying on instcombine to remove them. 6472 // Load: Scalar load + broadcast 6473 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6474 unsigned Cost = getUniformMemOpCost(&I, VF); 6475 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6476 continue; 6477 } 6478 6479 // We assume that widening is the best solution when possible. 6480 if (memoryInstructionCanBeWidened(&I, VF)) { 6481 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6482 int ConsecutiveStride = 6483 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6484 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6485 "Expected consecutive stride."); 6486 InstWidening Decision = 6487 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6488 setWideningDecision(&I, VF, Decision, Cost); 6489 continue; 6490 } 6491 6492 // Choose between Interleaving, Gather/Scatter or Scalarization. 6493 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6494 unsigned NumAccesses = 1; 6495 if (isAccessInterleaved(&I)) { 6496 auto Group = getInterleavedAccessGroup(&I); 6497 assert(Group && "Fail to get an interleaved access group."); 6498 6499 // Make one decision for the whole group. 6500 if (getWideningDecision(&I, VF) != CM_Unknown) 6501 continue; 6502 6503 NumAccesses = Group->getNumMembers(); 6504 if (interleavedAccessCanBeWidened(&I, VF)) 6505 InterleaveCost = getInterleaveGroupCost(&I, VF); 6506 } 6507 6508 unsigned GatherScatterCost = 6509 isLegalGatherOrScatter(&I) 6510 ? getGatherScatterCost(&I, VF) * NumAccesses 6511 : std::numeric_limits<unsigned>::max(); 6512 6513 unsigned ScalarizationCost = 6514 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6515 6516 // Choose better solution for the current VF, 6517 // write down this decision and use it during vectorization. 6518 unsigned Cost; 6519 InstWidening Decision; 6520 if (InterleaveCost <= GatherScatterCost && 6521 InterleaveCost < ScalarizationCost) { 6522 Decision = CM_Interleave; 6523 Cost = InterleaveCost; 6524 } else if (GatherScatterCost < ScalarizationCost) { 6525 Decision = CM_GatherScatter; 6526 Cost = GatherScatterCost; 6527 } else { 6528 Decision = CM_Scalarize; 6529 Cost = ScalarizationCost; 6530 } 6531 // If the instructions belongs to an interleave group, the whole group 6532 // receives the same decision. The whole group receives the cost, but 6533 // the cost will actually be assigned to one instruction. 6534 if (auto Group = getInterleavedAccessGroup(&I)) 6535 setWideningDecision(Group, VF, Decision, Cost); 6536 else 6537 setWideningDecision(&I, VF, Decision, Cost); 6538 } 6539 } 6540 6541 // Make sure that any load of address and any other address computation 6542 // remains scalar unless there is gather/scatter support. This avoids 6543 // inevitable extracts into address registers, and also has the benefit of 6544 // activating LSR more, since that pass can't optimize vectorized 6545 // addresses. 6546 if (TTI.prefersVectorizedAddressing()) 6547 return; 6548 6549 // Start with all scalar pointer uses. 6550 SmallPtrSet<Instruction *, 8> AddrDefs; 6551 for (BasicBlock *BB : TheLoop->blocks()) 6552 for (Instruction &I : *BB) { 6553 Instruction *PtrDef = 6554 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6555 if (PtrDef && TheLoop->contains(PtrDef) && 6556 getWideningDecision(&I, VF) != CM_GatherScatter) 6557 AddrDefs.insert(PtrDef); 6558 } 6559 6560 // Add all instructions used to generate the addresses. 6561 SmallVector<Instruction *, 4> Worklist; 6562 for (auto *I : AddrDefs) 6563 Worklist.push_back(I); 6564 while (!Worklist.empty()) { 6565 Instruction *I = Worklist.pop_back_val(); 6566 for (auto &Op : I->operands()) 6567 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6568 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6569 AddrDefs.insert(InstOp).second) 6570 Worklist.push_back(InstOp); 6571 } 6572 6573 for (auto *I : AddrDefs) { 6574 if (isa<LoadInst>(I)) { 6575 // Setting the desired widening decision should ideally be handled in 6576 // by cost functions, but since this involves the task of finding out 6577 // if the loaded register is involved in an address computation, it is 6578 // instead changed here when we know this is the case. 6579 InstWidening Decision = getWideningDecision(I, VF); 6580 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6581 // Scalarize a widened load of address. 6582 setWideningDecision( 6583 I, VF, CM_Scalarize, 6584 (VF.getKnownMinValue() * 6585 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6586 else if (auto Group = getInterleavedAccessGroup(I)) { 6587 // Scalarize an interleave group of address loads. 6588 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6589 if (Instruction *Member = Group->getMember(I)) 6590 setWideningDecision( 6591 Member, VF, CM_Scalarize, 6592 (VF.getKnownMinValue() * 6593 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6594 } 6595 } 6596 } else 6597 // Make sure I gets scalarized and a cost estimate without 6598 // scalarization overhead. 6599 ForcedScalars[VF].insert(I); 6600 } 6601 } 6602 6603 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6604 ElementCount VF, 6605 Type *&VectorTy) { 6606 Type *RetTy = I->getType(); 6607 if (canTruncateToMinimalBitwidth(I, VF)) 6608 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6609 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6610 auto SE = PSE.getSE(); 6611 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6612 6613 // TODO: We need to estimate the cost of intrinsic calls. 6614 switch (I->getOpcode()) { 6615 case Instruction::GetElementPtr: 6616 // We mark this instruction as zero-cost because the cost of GEPs in 6617 // vectorized code depends on whether the corresponding memory instruction 6618 // is scalarized or not. Therefore, we handle GEPs with the memory 6619 // instruction cost. 6620 return 0; 6621 case Instruction::Br: { 6622 // In cases of scalarized and predicated instructions, there will be VF 6623 // predicated blocks in the vectorized loop. Each branch around these 6624 // blocks requires also an extract of its vector compare i1 element. 6625 bool ScalarPredicatedBB = false; 6626 BranchInst *BI = cast<BranchInst>(I); 6627 if (VF.isVector() && BI->isConditional() && 6628 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6629 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6630 ScalarPredicatedBB = true; 6631 6632 if (ScalarPredicatedBB) { 6633 // Return cost for branches around scalarized and predicated blocks. 6634 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6635 auto *Vec_i1Ty = 6636 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6637 return (TTI.getScalarizationOverhead( 6638 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 6639 false, true) + 6640 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 6641 VF.getKnownMinValue())); 6642 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6643 // The back-edge branch will remain, as will all scalar branches. 6644 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6645 else 6646 // This branch will be eliminated by if-conversion. 6647 return 0; 6648 // Note: We currently assume zero cost for an unconditional branch inside 6649 // a predicated block since it will become a fall-through, although we 6650 // may decide in the future to call TTI for all branches. 6651 } 6652 case Instruction::PHI: { 6653 auto *Phi = cast<PHINode>(I); 6654 6655 // First-order recurrences are replaced by vector shuffles inside the loop. 6656 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6657 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 6658 return TTI.getShuffleCost( 6659 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 6660 VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 6661 6662 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6663 // converted into select instructions. We require N - 1 selects per phi 6664 // node, where N is the number of incoming values. 6665 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 6666 return (Phi->getNumIncomingValues() - 1) * 6667 TTI.getCmpSelInstrCost( 6668 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6669 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6670 CmpInst::BAD_ICMP_PREDICATE, CostKind); 6671 6672 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6673 } 6674 case Instruction::UDiv: 6675 case Instruction::SDiv: 6676 case Instruction::URem: 6677 case Instruction::SRem: 6678 // If we have a predicated instruction, it may not be executed for each 6679 // vector lane. Get the scalarization cost and scale this amount by the 6680 // probability of executing the predicated block. If the instruction is not 6681 // predicated, we fall through to the next case. 6682 if (VF.isVector() && isScalarWithPredication(I)) { 6683 unsigned Cost = 0; 6684 6685 // These instructions have a non-void type, so account for the phi nodes 6686 // that we will create. This cost is likely to be zero. The phi node 6687 // cost, if any, should be scaled by the block probability because it 6688 // models a copy at the end of each predicated block. 6689 Cost += VF.getKnownMinValue() * 6690 TTI.getCFInstrCost(Instruction::PHI, CostKind); 6691 6692 // The cost of the non-predicated instruction. 6693 Cost += VF.getKnownMinValue() * 6694 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6695 6696 // The cost of insertelement and extractelement instructions needed for 6697 // scalarization. 6698 Cost += getScalarizationOverhead(I, VF); 6699 6700 // Scale the cost by the probability of executing the predicated blocks. 6701 // This assumes the predicated block for each vector lane is equally 6702 // likely. 6703 return Cost / getReciprocalPredBlockProb(); 6704 } 6705 LLVM_FALLTHROUGH; 6706 case Instruction::Add: 6707 case Instruction::FAdd: 6708 case Instruction::Sub: 6709 case Instruction::FSub: 6710 case Instruction::Mul: 6711 case Instruction::FMul: 6712 case Instruction::FDiv: 6713 case Instruction::FRem: 6714 case Instruction::Shl: 6715 case Instruction::LShr: 6716 case Instruction::AShr: 6717 case Instruction::And: 6718 case Instruction::Or: 6719 case Instruction::Xor: { 6720 // Since we will replace the stride by 1 the multiplication should go away. 6721 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6722 return 0; 6723 // Certain instructions can be cheaper to vectorize if they have a constant 6724 // second vector operand. One example of this are shifts on x86. 6725 Value *Op2 = I->getOperand(1); 6726 TargetTransformInfo::OperandValueProperties Op2VP; 6727 TargetTransformInfo::OperandValueKind Op2VK = 6728 TTI.getOperandInfo(Op2, Op2VP); 6729 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6730 Op2VK = TargetTransformInfo::OK_UniformValue; 6731 6732 SmallVector<const Value *, 4> Operands(I->operand_values()); 6733 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6734 return N * TTI.getArithmeticInstrCost( 6735 I->getOpcode(), VectorTy, CostKind, 6736 TargetTransformInfo::OK_AnyValue, 6737 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6738 } 6739 case Instruction::FNeg: { 6740 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 6741 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6742 return N * TTI.getArithmeticInstrCost( 6743 I->getOpcode(), VectorTy, CostKind, 6744 TargetTransformInfo::OK_AnyValue, 6745 TargetTransformInfo::OK_AnyValue, 6746 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6747 I->getOperand(0), I); 6748 } 6749 case Instruction::Select: { 6750 SelectInst *SI = cast<SelectInst>(I); 6751 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6752 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6753 Type *CondTy = SI->getCondition()->getType(); 6754 if (!ScalarCond) { 6755 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 6756 CondTy = VectorType::get(CondTy, VF); 6757 } 6758 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6759 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 6760 } 6761 case Instruction::ICmp: 6762 case Instruction::FCmp: { 6763 Type *ValTy = I->getOperand(0)->getType(); 6764 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6765 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6766 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6767 VectorTy = ToVectorTy(ValTy, VF); 6768 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 6769 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 6770 } 6771 case Instruction::Store: 6772 case Instruction::Load: { 6773 ElementCount Width = VF; 6774 if (Width.isVector()) { 6775 InstWidening Decision = getWideningDecision(I, Width); 6776 assert(Decision != CM_Unknown && 6777 "CM decision should be taken at this point"); 6778 if (Decision == CM_Scalarize) 6779 Width = ElementCount::getFixed(1); 6780 } 6781 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6782 return getMemoryInstructionCost(I, VF); 6783 } 6784 case Instruction::ZExt: 6785 case Instruction::SExt: 6786 case Instruction::FPToUI: 6787 case Instruction::FPToSI: 6788 case Instruction::FPExt: 6789 case Instruction::PtrToInt: 6790 case Instruction::IntToPtr: 6791 case Instruction::SIToFP: 6792 case Instruction::UIToFP: 6793 case Instruction::Trunc: 6794 case Instruction::FPTrunc: 6795 case Instruction::BitCast: { 6796 // Computes the CastContextHint from a Load/Store instruction. 6797 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 6798 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6799 "Expected a load or a store!"); 6800 6801 if (VF.isScalar() || !TheLoop->contains(I)) 6802 return TTI::CastContextHint::Normal; 6803 6804 switch (getWideningDecision(I, VF)) { 6805 case LoopVectorizationCostModel::CM_GatherScatter: 6806 return TTI::CastContextHint::GatherScatter; 6807 case LoopVectorizationCostModel::CM_Interleave: 6808 return TTI::CastContextHint::Interleave; 6809 case LoopVectorizationCostModel::CM_Scalarize: 6810 case LoopVectorizationCostModel::CM_Widen: 6811 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 6812 : TTI::CastContextHint::Normal; 6813 case LoopVectorizationCostModel::CM_Widen_Reverse: 6814 return TTI::CastContextHint::Reversed; 6815 case LoopVectorizationCostModel::CM_Unknown: 6816 llvm_unreachable("Instr did not go through cost modelling?"); 6817 } 6818 6819 llvm_unreachable("Unhandled case!"); 6820 }; 6821 6822 unsigned Opcode = I->getOpcode(); 6823 TTI::CastContextHint CCH = TTI::CastContextHint::None; 6824 // For Trunc, the context is the only user, which must be a StoreInst. 6825 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 6826 if (I->hasOneUse()) 6827 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 6828 CCH = ComputeCCH(Store); 6829 } 6830 // For Z/Sext, the context is the operand, which must be a LoadInst. 6831 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 6832 Opcode == Instruction::FPExt) { 6833 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 6834 CCH = ComputeCCH(Load); 6835 } 6836 6837 // We optimize the truncation of induction variables having constant 6838 // integer steps. The cost of these truncations is the same as the scalar 6839 // operation. 6840 if (isOptimizableIVTruncate(I, VF)) { 6841 auto *Trunc = cast<TruncInst>(I); 6842 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6843 Trunc->getSrcTy(), CCH, CostKind, Trunc); 6844 } 6845 6846 Type *SrcScalarTy = I->getOperand(0)->getType(); 6847 Type *SrcVecTy = 6848 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6849 if (canTruncateToMinimalBitwidth(I, VF)) { 6850 // This cast is going to be shrunk. This may remove the cast or it might 6851 // turn it into slightly different cast. For example, if MinBW == 16, 6852 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6853 // 6854 // Calculate the modified src and dest types. 6855 Type *MinVecTy = VectorTy; 6856 if (Opcode == Instruction::Trunc) { 6857 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6858 VectorTy = 6859 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6860 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 6861 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6862 VectorTy = 6863 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6864 } 6865 } 6866 6867 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 6868 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6869 return N * 6870 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 6871 } 6872 case Instruction::Call: { 6873 bool NeedToScalarize; 6874 CallInst *CI = cast<CallInst>(I); 6875 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6876 if (getVectorIntrinsicIDForCall(CI, TLI)) 6877 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6878 return CallCost; 6879 } 6880 case Instruction::ExtractValue: 6881 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 6882 default: 6883 // The cost of executing VF copies of the scalar instruction. This opcode 6884 // is unknown. Assume that it is the same as 'mul'. 6885 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 6886 Instruction::Mul, VectorTy, CostKind) + 6887 getScalarizationOverhead(I, VF); 6888 } // end of switch. 6889 } 6890 6891 char LoopVectorize::ID = 0; 6892 6893 static const char lv_name[] = "Loop Vectorization"; 6894 6895 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6896 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6897 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6898 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6899 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6900 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6901 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6902 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6903 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6904 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6905 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6906 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6907 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6908 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6909 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6910 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6911 6912 namespace llvm { 6913 6914 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6915 6916 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6917 bool VectorizeOnlyWhenForced) { 6918 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6919 } 6920 6921 } // end namespace llvm 6922 6923 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6924 // Check if the pointer operand of a load or store instruction is 6925 // consecutive. 6926 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6927 return Legal->isConsecutivePtr(Ptr); 6928 return false; 6929 } 6930 6931 void LoopVectorizationCostModel::collectValuesToIgnore() { 6932 // Ignore ephemeral values. 6933 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6934 6935 // Ignore type-promoting instructions we identified during reduction 6936 // detection. 6937 for (auto &Reduction : Legal->getReductionVars()) { 6938 RecurrenceDescriptor &RedDes = Reduction.second; 6939 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6940 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6941 } 6942 // Ignore type-casting instructions we identified during induction 6943 // detection. 6944 for (auto &Induction : Legal->getInductionVars()) { 6945 InductionDescriptor &IndDes = Induction.second; 6946 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6947 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6948 } 6949 } 6950 6951 void LoopVectorizationCostModel::collectInLoopReductions() { 6952 for (auto &Reduction : Legal->getReductionVars()) { 6953 PHINode *Phi = Reduction.first; 6954 RecurrenceDescriptor &RdxDesc = Reduction.second; 6955 6956 // We don't collect reductions that are type promoted (yet). 6957 if (RdxDesc.getRecurrenceType() != Phi->getType()) 6958 continue; 6959 6960 // If the target would prefer this reduction to happen "in-loop", then we 6961 // want to record it as such. 6962 unsigned Opcode = RdxDesc.getRecurrenceBinOp(); 6963 if (!PreferInLoopReductions && 6964 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 6965 TargetTransformInfo::ReductionFlags())) 6966 continue; 6967 6968 // Check that we can correctly put the reductions into the loop, by 6969 // finding the chain of operations that leads from the phi to the loop 6970 // exit value. 6971 SmallVector<Instruction *, 4> ReductionOperations = 6972 RdxDesc.getReductionOpChain(Phi, TheLoop); 6973 bool InLoop = !ReductionOperations.empty(); 6974 if (InLoop) 6975 InLoopReductionChains[Phi] = ReductionOperations; 6976 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 6977 << " reduction for phi: " << *Phi << "\n"); 6978 } 6979 } 6980 6981 // TODO: we could return a pair of values that specify the max VF and 6982 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6983 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6984 // doesn't have a cost model that can choose which plan to execute if 6985 // more than one is generated. 6986 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6987 LoopVectorizationCostModel &CM) { 6988 unsigned WidestType; 6989 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6990 return WidestVectorRegBits / WidestType; 6991 } 6992 6993 VectorizationFactor 6994 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 6995 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 6996 ElementCount VF = UserVF; 6997 // Outer loop handling: They may require CFG and instruction level 6998 // transformations before even evaluating whether vectorization is profitable. 6999 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7000 // the vectorization pipeline. 7001 if (!OrigLoop->isInnermost()) { 7002 // If the user doesn't provide a vectorization factor, determine a 7003 // reasonable one. 7004 if (UserVF.isZero()) { 7005 VF = ElementCount::getFixed( 7006 determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM)); 7007 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7008 7009 // Make sure we have a VF > 1 for stress testing. 7010 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7011 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7012 << "overriding computed VF.\n"); 7013 VF = ElementCount::getFixed(4); 7014 } 7015 } 7016 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7017 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7018 "VF needs to be a power of two"); 7019 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7020 << "VF " << VF << " to build VPlans.\n"); 7021 buildVPlans(VF, VF); 7022 7023 // For VPlan build stress testing, we bail out after VPlan construction. 7024 if (VPlanBuildStressTest) 7025 return VectorizationFactor::Disabled(); 7026 7027 return {VF, 0 /*Cost*/}; 7028 } 7029 7030 LLVM_DEBUG( 7031 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7032 "VPlan-native path.\n"); 7033 return VectorizationFactor::Disabled(); 7034 } 7035 7036 Optional<VectorizationFactor> 7037 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7038 assert(!UserVF.isScalable() && "scalable vectorization not yet handled"); 7039 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7040 Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 7041 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 7042 return None; 7043 7044 // Invalidate interleave groups if all blocks of loop will be predicated. 7045 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7046 !useMaskedInterleavedAccesses(*TTI)) { 7047 LLVM_DEBUG( 7048 dbgs() 7049 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7050 "which requires masked-interleaved support.\n"); 7051 if (CM.InterleaveInfo.invalidateGroups()) 7052 // Invalidating interleave groups also requires invalidating all decisions 7053 // based on them, which includes widening decisions and uniform and scalar 7054 // values. 7055 CM.invalidateCostModelingDecisions(); 7056 } 7057 7058 ElementCount MaxVF = MaybeMaxVF.getValue(); 7059 assert(MaxVF.isNonZero() && "MaxVF is zero."); 7060 7061 if (!UserVF.isZero() && UserVF.getFixedValue() <= MaxVF.getFixedValue()) { 7062 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7063 assert(isPowerOf2_32(UserVF.getFixedValue()) && 7064 "VF needs to be a power of two"); 7065 // Collect the instructions (and their associated costs) that will be more 7066 // profitable to scalarize. 7067 CM.selectUserVectorizationFactor(UserVF); 7068 CM.collectInLoopReductions(); 7069 buildVPlansWithVPRecipes(UserVF, UserVF); 7070 LLVM_DEBUG(printPlans(dbgs())); 7071 return {{UserVF, 0}}; 7072 } 7073 7074 for (ElementCount VF = ElementCount::getFixed(1); 7075 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7076 // Collect Uniform and Scalar instructions after vectorization with VF. 7077 CM.collectUniformsAndScalars(VF); 7078 7079 // Collect the instructions (and their associated costs) that will be more 7080 // profitable to scalarize. 7081 if (VF.isVector()) 7082 CM.collectInstsToScalarize(VF); 7083 } 7084 7085 CM.collectInLoopReductions(); 7086 7087 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 7088 LLVM_DEBUG(printPlans(dbgs())); 7089 if (MaxVF.isScalar()) 7090 return VectorizationFactor::Disabled(); 7091 7092 // Select the optimal vectorization factor. 7093 return CM.selectVectorizationFactor(MaxVF); 7094 } 7095 7096 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7097 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7098 << '\n'); 7099 BestVF = VF; 7100 BestUF = UF; 7101 7102 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7103 return !Plan->hasVF(VF); 7104 }); 7105 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7106 } 7107 7108 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7109 DominatorTree *DT) { 7110 // Perform the actual loop transformation. 7111 7112 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7113 VPCallbackILV CallbackILV(ILV); 7114 7115 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7116 7117 VPTransformState State{*BestVF, BestUF, LI, 7118 DT, ILV.Builder, ILV.VectorLoopValueMap, 7119 &ILV, CallbackILV}; 7120 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7121 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7122 State.CanonicalIV = ILV.Induction; 7123 7124 //===------------------------------------------------===// 7125 // 7126 // Notice: any optimization or new instruction that go 7127 // into the code below should also be implemented in 7128 // the cost-model. 7129 // 7130 //===------------------------------------------------===// 7131 7132 // 2. Copy and widen instructions from the old loop into the new loop. 7133 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7134 VPlans.front()->execute(&State); 7135 7136 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7137 // predication, updating analyses. 7138 ILV.fixVectorizedLoop(); 7139 } 7140 7141 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7142 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7143 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7144 7145 // We create new control-flow for the vectorized loop, so the original 7146 // condition will be dead after vectorization if it's only used by the 7147 // branch. 7148 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7149 if (Cmp && Cmp->hasOneUse()) { 7150 DeadInstructions.insert(Cmp); 7151 7152 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7153 for (Value *Op : Cmp->operands()) { 7154 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7155 DeadInstructions.insert(cast<Instruction>(Op)); 7156 } 7157 } 7158 7159 // We create new "steps" for induction variable updates to which the original 7160 // induction variables map. An original update instruction will be dead if 7161 // all its users except the induction variable are dead. 7162 for (auto &Induction : Legal->getInductionVars()) { 7163 PHINode *Ind = Induction.first; 7164 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7165 7166 // If the tail is to be folded by masking, the primary induction variable, 7167 // if exists, isn't dead: it will be used for masking. Don't kill it. 7168 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7169 continue; 7170 7171 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7172 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7173 })) 7174 DeadInstructions.insert(IndUpdate); 7175 7176 // We record as "Dead" also the type-casting instructions we had identified 7177 // during induction analysis. We don't need any handling for them in the 7178 // vectorized loop because we have proven that, under a proper runtime 7179 // test guarding the vectorized loop, the value of the phi, and the casted 7180 // value of the phi, are the same. The last instruction in this casting chain 7181 // will get its scalar/vector/widened def from the scalar/vector/widened def 7182 // of the respective phi node. Any other casts in the induction def-use chain 7183 // have no other uses outside the phi update chain, and will be ignored. 7184 InductionDescriptor &IndDes = Induction.second; 7185 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7186 DeadInstructions.insert(Casts.begin(), Casts.end()); 7187 } 7188 } 7189 7190 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7191 7192 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7193 7194 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7195 Instruction::BinaryOps BinOp) { 7196 // When unrolling and the VF is 1, we only need to add a simple scalar. 7197 Type *Ty = Val->getType(); 7198 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7199 7200 if (Ty->isFloatingPointTy()) { 7201 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7202 7203 // Floating point operations had to be 'fast' to enable the unrolling. 7204 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7205 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7206 } 7207 Constant *C = ConstantInt::get(Ty, StartIdx); 7208 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7209 } 7210 7211 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7212 SmallVector<Metadata *, 4> MDs; 7213 // Reserve first location for self reference to the LoopID metadata node. 7214 MDs.push_back(nullptr); 7215 bool IsUnrollMetadata = false; 7216 MDNode *LoopID = L->getLoopID(); 7217 if (LoopID) { 7218 // First find existing loop unrolling disable metadata. 7219 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7220 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7221 if (MD) { 7222 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7223 IsUnrollMetadata = 7224 S && S->getString().startswith("llvm.loop.unroll.disable"); 7225 } 7226 MDs.push_back(LoopID->getOperand(i)); 7227 } 7228 } 7229 7230 if (!IsUnrollMetadata) { 7231 // Add runtime unroll disable metadata. 7232 LLVMContext &Context = L->getHeader()->getContext(); 7233 SmallVector<Metadata *, 1> DisableOperands; 7234 DisableOperands.push_back( 7235 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7236 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7237 MDs.push_back(DisableNode); 7238 MDNode *NewLoopID = MDNode::get(Context, MDs); 7239 // Set operand 0 to refer to the loop id itself. 7240 NewLoopID->replaceOperandWith(0, NewLoopID); 7241 L->setLoopID(NewLoopID); 7242 } 7243 } 7244 7245 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7246 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7247 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7248 bool PredicateAtRangeStart = Predicate(Range.Start); 7249 7250 for (ElementCount TmpVF = Range.Start * 2; 7251 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 7252 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7253 Range.End = TmpVF; 7254 break; 7255 } 7256 7257 return PredicateAtRangeStart; 7258 } 7259 7260 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7261 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7262 /// of VF's starting at a given VF and extending it as much as possible. Each 7263 /// vectorization decision can potentially shorten this sub-range during 7264 /// buildVPlan(). 7265 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 7266 ElementCount MaxVF) { 7267 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7268 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7269 VFRange SubRange = {VF, MaxVFPlusOne}; 7270 VPlans.push_back(buildVPlan(SubRange)); 7271 VF = SubRange.End; 7272 } 7273 } 7274 7275 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 7276 VPlanPtr &Plan) { 7277 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7278 7279 // Look for cached value. 7280 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7281 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7282 if (ECEntryIt != EdgeMaskCache.end()) 7283 return ECEntryIt->second; 7284 7285 VPValue *SrcMask = createBlockInMask(Src, Plan); 7286 7287 // The terminator has to be a branch inst! 7288 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7289 assert(BI && "Unexpected terminator found"); 7290 7291 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 7292 return EdgeMaskCache[Edge] = SrcMask; 7293 7294 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 7295 assert(EdgeMask && "No Edge Mask found for condition"); 7296 7297 if (BI->getSuccessor(0) != Dst) 7298 EdgeMask = Builder.createNot(EdgeMask); 7299 7300 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7301 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7302 7303 return EdgeMaskCache[Edge] = EdgeMask; 7304 } 7305 7306 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 7307 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7308 7309 // Look for cached value. 7310 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7311 if (BCEntryIt != BlockMaskCache.end()) 7312 return BCEntryIt->second; 7313 7314 // All-one mask is modelled as no-mask following the convention for masked 7315 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7316 VPValue *BlockMask = nullptr; 7317 7318 if (OrigLoop->getHeader() == BB) { 7319 if (!CM.blockNeedsPredication(BB)) 7320 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 7321 7322 // Create the block in mask as the first non-phi instruction in the block. 7323 VPBuilder::InsertPointGuard Guard(Builder); 7324 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 7325 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 7326 7327 // Introduce the early-exit compare IV <= BTC to form header block mask. 7328 // This is used instead of IV < TC because TC may wrap, unlike BTC. 7329 // Start by constructing the desired canonical IV. 7330 VPValue *IV = nullptr; 7331 if (Legal->getPrimaryInduction()) 7332 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 7333 else { 7334 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 7335 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 7336 IV = IVRecipe->getVPValue(); 7337 } 7338 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 7339 bool TailFolded = !CM.isScalarEpilogueAllowed(); 7340 7341 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 7342 // While ActiveLaneMask is a binary op that consumes the loop tripcount 7343 // as a second argument, we only pass the IV here and extract the 7344 // tripcount from the transform state where codegen of the VP instructions 7345 // happen. 7346 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 7347 } else { 7348 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 7349 } 7350 return BlockMaskCache[BB] = BlockMask; 7351 } 7352 7353 // This is the block mask. We OR all incoming edges. 7354 for (auto *Predecessor : predecessors(BB)) { 7355 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7356 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7357 return BlockMaskCache[BB] = EdgeMask; 7358 7359 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7360 BlockMask = EdgeMask; 7361 continue; 7362 } 7363 7364 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7365 } 7366 7367 return BlockMaskCache[BB] = BlockMask; 7368 } 7369 7370 VPWidenMemoryInstructionRecipe * 7371 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 7372 VPlanPtr &Plan) { 7373 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7374 "Must be called with either a load or store"); 7375 7376 auto willWiden = [&](ElementCount VF) -> bool { 7377 assert(!VF.isScalable() && "unexpected scalable ElementCount"); 7378 if (VF.isScalar()) 7379 return false; 7380 LoopVectorizationCostModel::InstWidening Decision = 7381 CM.getWideningDecision(I, VF); 7382 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7383 "CM decision should be taken at this point."); 7384 if (Decision == LoopVectorizationCostModel::CM_Interleave) 7385 return true; 7386 if (CM.isScalarAfterVectorization(I, VF) || 7387 CM.isProfitableToScalarize(I, VF)) 7388 return false; 7389 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7390 }; 7391 7392 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7393 return nullptr; 7394 7395 VPValue *Mask = nullptr; 7396 if (Legal->isMaskRequired(I)) 7397 Mask = createBlockInMask(I->getParent(), Plan); 7398 7399 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 7400 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 7401 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 7402 7403 StoreInst *Store = cast<StoreInst>(I); 7404 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 7405 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 7406 } 7407 7408 VPWidenIntOrFpInductionRecipe * 7409 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 7410 // Check if this is an integer or fp induction. If so, build the recipe that 7411 // produces its scalar and vector values. 7412 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 7413 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7414 II.getKind() == InductionDescriptor::IK_FpInduction) 7415 return new VPWidenIntOrFpInductionRecipe(Phi); 7416 7417 return nullptr; 7418 } 7419 7420 VPWidenIntOrFpInductionRecipe * 7421 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 7422 VFRange &Range) const { 7423 // Optimize the special case where the source is a constant integer 7424 // induction variable. Notice that we can only optimize the 'trunc' case 7425 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7426 // (c) other casts depend on pointer size. 7427 7428 // Determine whether \p K is a truncation based on an induction variable that 7429 // can be optimized. 7430 auto isOptimizableIVTruncate = 7431 [&](Instruction *K) -> std::function<bool(ElementCount)> { 7432 return [=](ElementCount VF) -> bool { 7433 return CM.isOptimizableIVTruncate(K, VF); 7434 }; 7435 }; 7436 7437 if (LoopVectorizationPlanner::getDecisionAndClampRange( 7438 isOptimizableIVTruncate(I), Range)) 7439 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7440 I); 7441 return nullptr; 7442 } 7443 7444 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 7445 // We know that all PHIs in non-header blocks are converted into selects, so 7446 // we don't have to worry about the insertion order and we can just use the 7447 // builder. At this point we generate the predication tree. There may be 7448 // duplications since this is a simple recursive scan, but future 7449 // optimizations will clean it up. 7450 7451 SmallVector<VPValue *, 2> Operands; 7452 unsigned NumIncoming = Phi->getNumIncomingValues(); 7453 for (unsigned In = 0; In < NumIncoming; In++) { 7454 VPValue *EdgeMask = 7455 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7456 assert((EdgeMask || NumIncoming == 1) && 7457 "Multiple predecessors with one having a full mask"); 7458 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 7459 if (EdgeMask) 7460 Operands.push_back(EdgeMask); 7461 } 7462 return new VPBlendRecipe(Phi, Operands); 7463 } 7464 7465 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 7466 VPlan &Plan) const { 7467 7468 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7469 [this, CI](ElementCount VF) { 7470 return CM.isScalarWithPredication(CI, VF); 7471 }, 7472 Range); 7473 7474 if (IsPredicated) 7475 return nullptr; 7476 7477 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7478 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7479 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 7480 ID == Intrinsic::pseudoprobe)) 7481 return nullptr; 7482 7483 auto willWiden = [&](ElementCount VF) -> bool { 7484 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7485 // The following case may be scalarized depending on the VF. 7486 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7487 // version of the instruction. 7488 // Is it beneficial to perform intrinsic call compared to lib call? 7489 bool NeedToScalarize = false; 7490 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 7491 bool UseVectorIntrinsic = 7492 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 7493 return UseVectorIntrinsic || !NeedToScalarize; 7494 }; 7495 7496 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7497 return nullptr; 7498 7499 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 7500 } 7501 7502 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 7503 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 7504 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 7505 // Instruction should be widened, unless it is scalar after vectorization, 7506 // scalarization is profitable or it is predicated. 7507 auto WillScalarize = [this, I](ElementCount VF) -> bool { 7508 return CM.isScalarAfterVectorization(I, VF) || 7509 CM.isProfitableToScalarize(I, VF) || 7510 CM.isScalarWithPredication(I, VF); 7511 }; 7512 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 7513 Range); 7514 } 7515 7516 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 7517 auto IsVectorizableOpcode = [](unsigned Opcode) { 7518 switch (Opcode) { 7519 case Instruction::Add: 7520 case Instruction::And: 7521 case Instruction::AShr: 7522 case Instruction::BitCast: 7523 case Instruction::FAdd: 7524 case Instruction::FCmp: 7525 case Instruction::FDiv: 7526 case Instruction::FMul: 7527 case Instruction::FNeg: 7528 case Instruction::FPExt: 7529 case Instruction::FPToSI: 7530 case Instruction::FPToUI: 7531 case Instruction::FPTrunc: 7532 case Instruction::FRem: 7533 case Instruction::FSub: 7534 case Instruction::ICmp: 7535 case Instruction::IntToPtr: 7536 case Instruction::LShr: 7537 case Instruction::Mul: 7538 case Instruction::Or: 7539 case Instruction::PtrToInt: 7540 case Instruction::SDiv: 7541 case Instruction::Select: 7542 case Instruction::SExt: 7543 case Instruction::Shl: 7544 case Instruction::SIToFP: 7545 case Instruction::SRem: 7546 case Instruction::Sub: 7547 case Instruction::Trunc: 7548 case Instruction::UDiv: 7549 case Instruction::UIToFP: 7550 case Instruction::URem: 7551 case Instruction::Xor: 7552 case Instruction::ZExt: 7553 return true; 7554 } 7555 return false; 7556 }; 7557 7558 if (!IsVectorizableOpcode(I->getOpcode())) 7559 return nullptr; 7560 7561 // Success: widen this instruction. 7562 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7563 } 7564 7565 VPBasicBlock *VPRecipeBuilder::handleReplication( 7566 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7567 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7568 VPlanPtr &Plan) { 7569 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7570 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 7571 Range); 7572 7573 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7574 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 7575 Range); 7576 7577 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 7578 IsUniform, IsPredicated); 7579 setRecipe(I, Recipe); 7580 Plan->addVPValue(I, Recipe); 7581 7582 // Find if I uses a predicated instruction. If so, it will use its scalar 7583 // value. Avoid hoisting the insert-element which packs the scalar value into 7584 // a vector value, as that happens iff all users use the vector value. 7585 for (auto &Op : I->operands()) 7586 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7587 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7588 PredInst2Recipe[PredInst]->setAlsoPack(false); 7589 7590 // Finalize the recipe for Instr, first if it is not predicated. 7591 if (!IsPredicated) { 7592 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7593 VPBB->appendRecipe(Recipe); 7594 return VPBB; 7595 } 7596 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7597 assert(VPBB->getSuccessors().empty() && 7598 "VPBB has successors when handling predicated replication."); 7599 // Record predicated instructions for above packing optimizations. 7600 PredInst2Recipe[I] = Recipe; 7601 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7602 VPBlockUtils::insertBlockAfter(Region, VPBB); 7603 auto *RegSucc = new VPBasicBlock(); 7604 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7605 return RegSucc; 7606 } 7607 7608 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7609 VPRecipeBase *PredRecipe, 7610 VPlanPtr &Plan) { 7611 // Instructions marked for predication are replicated and placed under an 7612 // if-then construct to prevent side-effects. 7613 7614 // Generate recipes to compute the block mask for this region. 7615 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7616 7617 // Build the triangular if-then region. 7618 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7619 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7620 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7621 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7622 auto *PHIRecipe = Instr->getType()->isVoidTy() 7623 ? nullptr 7624 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 7625 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7626 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7627 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7628 7629 // Note: first set Entry as region entry and then connect successors starting 7630 // from it in order, to propagate the "parent" of each VPBasicBlock. 7631 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7632 VPBlockUtils::connectBlocks(Pred, Exit); 7633 7634 return Region; 7635 } 7636 7637 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7638 VFRange &Range, 7639 VPlanPtr &Plan) { 7640 // First, check for specific widening recipes that deal with calls, memory 7641 // operations, inductions and Phi nodes. 7642 if (auto *CI = dyn_cast<CallInst>(Instr)) 7643 return tryToWidenCall(CI, Range, *Plan); 7644 7645 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7646 return tryToWidenMemory(Instr, Range, Plan); 7647 7648 VPRecipeBase *Recipe; 7649 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7650 if (Phi->getParent() != OrigLoop->getHeader()) 7651 return tryToBlend(Phi, Plan); 7652 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7653 return Recipe; 7654 return new VPWidenPHIRecipe(Phi); 7655 } 7656 7657 if (isa<TruncInst>(Instr) && 7658 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7659 return Recipe; 7660 7661 if (!shouldWiden(Instr, Range)) 7662 return nullptr; 7663 7664 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7665 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 7666 OrigLoop); 7667 7668 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7669 bool InvariantCond = 7670 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7671 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 7672 InvariantCond); 7673 } 7674 7675 return tryToWiden(Instr, *Plan); 7676 } 7677 7678 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 7679 ElementCount MaxVF) { 7680 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7681 7682 // Collect instructions from the original loop that will become trivially dead 7683 // in the vectorized loop. We don't need to vectorize these instructions. For 7684 // example, original induction update instructions can become dead because we 7685 // separately emit induction "steps" when generating code for the new loop. 7686 // Similarly, we create a new latch condition when setting up the structure 7687 // of the new loop, so the old one can become dead. 7688 SmallPtrSet<Instruction *, 4> DeadInstructions; 7689 collectTriviallyDeadInstructions(DeadInstructions); 7690 7691 // Add assume instructions we need to drop to DeadInstructions, to prevent 7692 // them from being added to the VPlan. 7693 // TODO: We only need to drop assumes in blocks that get flattend. If the 7694 // control flow is preserved, we should keep them. 7695 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7696 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7697 7698 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7699 // Dead instructions do not need sinking. Remove them from SinkAfter. 7700 for (Instruction *I : DeadInstructions) 7701 SinkAfter.erase(I); 7702 7703 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7704 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7705 VFRange SubRange = {VF, MaxVFPlusOne}; 7706 VPlans.push_back( 7707 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 7708 VF = SubRange.End; 7709 } 7710 } 7711 7712 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7713 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 7714 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7715 7716 // Hold a mapping from predicated instructions to their recipes, in order to 7717 // fix their AlsoPack behavior if a user is determined to replicate and use a 7718 // scalar instead of vector value. 7719 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7720 7721 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7722 7723 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7724 7725 // --------------------------------------------------------------------------- 7726 // Pre-construction: record ingredients whose recipes we'll need to further 7727 // process after constructing the initial VPlan. 7728 // --------------------------------------------------------------------------- 7729 7730 // Mark instructions we'll need to sink later and their targets as 7731 // ingredients whose recipe we'll need to record. 7732 for (auto &Entry : SinkAfter) { 7733 RecipeBuilder.recordRecipeOf(Entry.first); 7734 RecipeBuilder.recordRecipeOf(Entry.second); 7735 } 7736 for (auto &Reduction : CM.getInLoopReductionChains()) { 7737 PHINode *Phi = Reduction.first; 7738 RecurrenceDescriptor::RecurrenceKind Kind = 7739 Legal->getReductionVars()[Phi].getRecurrenceKind(); 7740 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 7741 7742 RecipeBuilder.recordRecipeOf(Phi); 7743 for (auto &R : ReductionOperations) { 7744 RecipeBuilder.recordRecipeOf(R); 7745 // For min/max reducitons, where we have a pair of icmp/select, we also 7746 // need to record the ICmp recipe, so it can be removed later. 7747 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7748 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7749 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 7750 } 7751 } 7752 } 7753 7754 // For each interleave group which is relevant for this (possibly trimmed) 7755 // Range, add it to the set of groups to be later applied to the VPlan and add 7756 // placeholders for its members' Recipes which we'll be replacing with a 7757 // single VPInterleaveRecipe. 7758 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7759 auto applyIG = [IG, this](ElementCount VF) -> bool { 7760 return (VF.isVector() && // Query is illegal for VF == 1 7761 CM.getWideningDecision(IG->getInsertPos(), VF) == 7762 LoopVectorizationCostModel::CM_Interleave); 7763 }; 7764 if (!getDecisionAndClampRange(applyIG, Range)) 7765 continue; 7766 InterleaveGroups.insert(IG); 7767 for (unsigned i = 0; i < IG->getFactor(); i++) 7768 if (Instruction *Member = IG->getMember(i)) 7769 RecipeBuilder.recordRecipeOf(Member); 7770 }; 7771 7772 // --------------------------------------------------------------------------- 7773 // Build initial VPlan: Scan the body of the loop in a topological order to 7774 // visit each basic block after having visited its predecessor basic blocks. 7775 // --------------------------------------------------------------------------- 7776 7777 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7778 auto Plan = std::make_unique<VPlan>(); 7779 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7780 Plan->setEntry(VPBB); 7781 7782 // Scan the body of the loop in a topological order to visit each basic block 7783 // after having visited its predecessor basic blocks. 7784 LoopBlocksDFS DFS(OrigLoop); 7785 DFS.perform(LI); 7786 7787 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7788 // Relevant instructions from basic block BB will be grouped into VPRecipe 7789 // ingredients and fill a new VPBasicBlock. 7790 unsigned VPBBsForBB = 0; 7791 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7792 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7793 VPBB = FirstVPBBForBB; 7794 Builder.setInsertPoint(VPBB); 7795 7796 // Introduce each ingredient into VPlan. 7797 // TODO: Model and preserve debug instrinsics in VPlan. 7798 for (Instruction &I : BB->instructionsWithoutDebug()) { 7799 Instruction *Instr = &I; 7800 7801 // First filter out irrelevant instructions, to ensure no recipes are 7802 // built for them. 7803 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 7804 continue; 7805 7806 if (auto Recipe = 7807 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7808 // Check if the recipe can be converted to a VPValue. We need the extra 7809 // down-casting step until VPRecipeBase inherits from VPValue. 7810 VPValue *MaybeVPValue = Recipe->toVPValue(); 7811 if (!Instr->getType()->isVoidTy() && MaybeVPValue) 7812 Plan->addVPValue(Instr, MaybeVPValue); 7813 7814 RecipeBuilder.setRecipe(Instr, Recipe); 7815 VPBB->appendRecipe(Recipe); 7816 continue; 7817 } 7818 7819 // Otherwise, if all widening options failed, Instruction is to be 7820 // replicated. This may create a successor for VPBB. 7821 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7822 Instr, Range, VPBB, PredInst2Recipe, Plan); 7823 if (NextVPBB != VPBB) { 7824 VPBB = NextVPBB; 7825 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7826 : ""); 7827 } 7828 } 7829 } 7830 7831 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7832 // may also be empty, such as the last one VPBB, reflecting original 7833 // basic-blocks with no recipes. 7834 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7835 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7836 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7837 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7838 delete PreEntry; 7839 7840 // --------------------------------------------------------------------------- 7841 // Transform initial VPlan: Apply previously taken decisions, in order, to 7842 // bring the VPlan to its final state. 7843 // --------------------------------------------------------------------------- 7844 7845 // Apply Sink-After legal constraints. 7846 for (auto &Entry : SinkAfter) { 7847 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7848 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7849 Sink->moveAfter(Target); 7850 } 7851 7852 // Interleave memory: for each Interleave Group we marked earlier as relevant 7853 // for this VPlan, replace the Recipes widening its memory instructions with a 7854 // single VPInterleaveRecipe at its insertion point. 7855 for (auto IG : InterleaveGroups) { 7856 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7857 RecipeBuilder.getRecipe(IG->getInsertPos())); 7858 SmallVector<VPValue *, 4> StoredValues; 7859 for (unsigned i = 0; i < IG->getFactor(); ++i) 7860 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 7861 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 7862 7863 (new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 7864 Recipe->getMask())) 7865 ->insertBefore(Recipe); 7866 7867 for (unsigned i = 0; i < IG->getFactor(); ++i) 7868 if (Instruction *Member = IG->getMember(i)) { 7869 if (!Member->getType()->isVoidTy()) { 7870 VPValue *OriginalV = Plan->getVPValue(Member); 7871 Plan->removeVPValueFor(Member); 7872 OriginalV->replaceAllUsesWith(Plan->getOrAddVPValue(Member)); 7873 } 7874 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7875 } 7876 } 7877 7878 // Adjust the recipes for any inloop reductions. 7879 if (Range.Start.isVector()) 7880 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 7881 7882 // Finally, if tail is folded by masking, introduce selects between the phi 7883 // and the live-out instruction of each reduction, at the end of the latch. 7884 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 7885 Builder.setInsertPoint(VPBB); 7886 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7887 for (auto &Reduction : Legal->getReductionVars()) { 7888 if (CM.isInLoopReduction(Reduction.first)) 7889 continue; 7890 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 7891 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 7892 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7893 } 7894 } 7895 7896 std::string PlanName; 7897 raw_string_ostream RSO(PlanName); 7898 ElementCount VF = Range.Start; 7899 Plan->addVF(VF); 7900 RSO << "Initial VPlan for VF={" << VF; 7901 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 7902 Plan->addVF(VF); 7903 RSO << "," << VF; 7904 } 7905 RSO << "},UF>=1"; 7906 RSO.flush(); 7907 Plan->setName(PlanName); 7908 7909 return Plan; 7910 } 7911 7912 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7913 // Outer loop handling: They may require CFG and instruction level 7914 // transformations before even evaluating whether vectorization is profitable. 7915 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7916 // the vectorization pipeline. 7917 assert(!OrigLoop->isInnermost()); 7918 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7919 7920 // Create new empty VPlan 7921 auto Plan = std::make_unique<VPlan>(); 7922 7923 // Build hierarchical CFG 7924 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7925 HCFGBuilder.buildHierarchicalCFG(); 7926 7927 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 7928 VF *= 2) 7929 Plan->addVF(VF); 7930 7931 if (EnableVPlanPredication) { 7932 VPlanPredicator VPP(*Plan); 7933 VPP.predicate(); 7934 7935 // Avoid running transformation to recipes until masked code generation in 7936 // VPlan-native path is in place. 7937 return Plan; 7938 } 7939 7940 SmallPtrSet<Instruction *, 1> DeadInstructions; 7941 VPlanTransforms::VPInstructionsToVPRecipes( 7942 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7943 return Plan; 7944 } 7945 7946 // Adjust the recipes for any inloop reductions. The chain of instructions 7947 // leading from the loop exit instr to the phi need to be converted to 7948 // reductions, with one operand being vector and the other being the scalar 7949 // reduction chain. 7950 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 7951 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 7952 for (auto &Reduction : CM.getInLoopReductionChains()) { 7953 PHINode *Phi = Reduction.first; 7954 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 7955 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 7956 7957 // ReductionOperations are orders top-down from the phi's use to the 7958 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 7959 // which of the two operands will remain scalar and which will be reduced. 7960 // For minmax the chain will be the select instructions. 7961 Instruction *Chain = Phi; 7962 for (Instruction *R : ReductionOperations) { 7963 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 7964 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc.getRecurrenceKind(); 7965 7966 VPValue *ChainOp = Plan->getVPValue(Chain); 7967 unsigned FirstOpId; 7968 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7969 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7970 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 7971 "Expected to replace a VPWidenSelectSC"); 7972 FirstOpId = 1; 7973 } else { 7974 assert(isa<VPWidenRecipe>(WidenRecipe) && 7975 "Expected to replace a VPWidenSC"); 7976 FirstOpId = 0; 7977 } 7978 unsigned VecOpId = 7979 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 7980 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 7981 7982 auto *CondOp = CM.foldTailByMasking() 7983 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 7984 : nullptr; 7985 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 7986 &RdxDesc, R, ChainOp, VecOp, CondOp, Legal->hasFunNoNaNAttr(), TTI); 7987 WidenRecipe->toVPValue()->replaceAllUsesWith(RedRecipe); 7988 Plan->removeVPValueFor(R); 7989 Plan->addVPValue(R, RedRecipe); 7990 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 7991 WidenRecipe->eraseFromParent(); 7992 7993 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7994 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7995 VPRecipeBase *CompareRecipe = 7996 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 7997 assert(isa<VPWidenRecipe>(CompareRecipe) && 7998 "Expected to replace a VPWidenSC"); 7999 assert(CompareRecipe->toVPValue()->getNumUsers() == 0 && 8000 "Expected no remaining users"); 8001 CompareRecipe->eraseFromParent(); 8002 } 8003 Chain = R; 8004 } 8005 } 8006 } 8007 8008 Value* LoopVectorizationPlanner::VPCallbackILV:: 8009 getOrCreateVectorValues(Value *V, unsigned Part) { 8010 return ILV.getOrCreateVectorValue(V, Part); 8011 } 8012 8013 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 8014 Value *V, const VPIteration &Instance) { 8015 return ILV.getOrCreateScalarValue(V, Instance); 8016 } 8017 8018 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 8019 VPSlotTracker &SlotTracker) const { 8020 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8021 IG->getInsertPos()->printAsOperand(O, false); 8022 O << ", "; 8023 getAddr()->printAsOperand(O, SlotTracker); 8024 VPValue *Mask = getMask(); 8025 if (Mask) { 8026 O << ", "; 8027 Mask->printAsOperand(O, SlotTracker); 8028 } 8029 for (unsigned i = 0; i < IG->getFactor(); ++i) 8030 if (Instruction *I = IG->getMember(i)) 8031 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 8032 } 8033 8034 void VPWidenCallRecipe::execute(VPTransformState &State) { 8035 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 8036 *this, State); 8037 } 8038 8039 void VPWidenSelectRecipe::execute(VPTransformState &State) { 8040 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 8041 this, *this, InvariantCond, State); 8042 } 8043 8044 void VPWidenRecipe::execute(VPTransformState &State) { 8045 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 8046 } 8047 8048 void VPWidenGEPRecipe::execute(VPTransformState &State) { 8049 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 8050 *this, State.UF, State.VF, IsPtrLoopInvariant, 8051 IsIndexLoopInvariant, State); 8052 } 8053 8054 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8055 assert(!State.Instance && "Int or FP induction being replicated."); 8056 State.ILV->widenIntOrFpInduction(IV, Trunc); 8057 } 8058 8059 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8060 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8061 } 8062 8063 void VPBlendRecipe::execute(VPTransformState &State) { 8064 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8065 // We know that all PHIs in non-header blocks are converted into 8066 // selects, so we don't have to worry about the insertion order and we 8067 // can just use the builder. 8068 // At this point we generate the predication tree. There may be 8069 // duplications since this is a simple recursive scan, but future 8070 // optimizations will clean it up. 8071 8072 unsigned NumIncoming = getNumIncomingValues(); 8073 8074 // Generate a sequence of selects of the form: 8075 // SELECT(Mask3, In3, 8076 // SELECT(Mask2, In2, 8077 // SELECT(Mask1, In1, 8078 // In0))) 8079 // Note that Mask0 is never used: lanes for which no path reaches this phi and 8080 // are essentially undef are taken from In0. 8081 InnerLoopVectorizer::VectorParts Entry(State.UF); 8082 for (unsigned In = 0; In < NumIncoming; ++In) { 8083 for (unsigned Part = 0; Part < State.UF; ++Part) { 8084 // We might have single edge PHIs (blocks) - use an identity 8085 // 'select' for the first PHI operand. 8086 Value *In0 = State.get(getIncomingValue(In), Part); 8087 if (In == 0) 8088 Entry[Part] = In0; // Initialize with the first incoming value. 8089 else { 8090 // Select between the current value and the previous incoming edge 8091 // based on the incoming mask. 8092 Value *Cond = State.get(getMask(In), Part); 8093 Entry[Part] = 8094 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8095 } 8096 } 8097 } 8098 for (unsigned Part = 0; Part < State.UF; ++Part) 8099 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8100 } 8101 8102 void VPInterleaveRecipe::execute(VPTransformState &State) { 8103 assert(!State.Instance && "Interleave group being replicated."); 8104 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getStoredValues(), 8105 getMask()); 8106 } 8107 8108 void VPReductionRecipe::execute(VPTransformState &State) { 8109 assert(!State.Instance && "Reduction being replicated."); 8110 for (unsigned Part = 0; Part < State.UF; ++Part) { 8111 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc->getRecurrenceKind(); 8112 Value *NewVecOp = State.get(getVecOp(), Part); 8113 if (VPValue *Cond = getCondOp()) { 8114 Value *NewCond = State.get(Cond, Part); 8115 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 8116 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 8117 Kind, RdxDesc->getMinMaxRecurrenceKind(), VecTy->getElementType()); 8118 Constant *IdenVec = 8119 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 8120 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 8121 NewVecOp = Select; 8122 } 8123 Value *NewRed = 8124 createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp, NoNaN); 8125 Value *PrevInChain = State.get(getChainOp(), Part); 8126 Value *NextInChain; 8127 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 8128 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 8129 NextInChain = 8130 createMinMaxOp(State.Builder, RdxDesc->getMinMaxRecurrenceKind(), 8131 NewRed, PrevInChain); 8132 } else { 8133 NextInChain = State.Builder.CreateBinOp( 8134 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 8135 PrevInChain); 8136 } 8137 State.set(this, getUnderlyingInstr(), NextInChain, Part); 8138 } 8139 } 8140 8141 void VPReplicateRecipe::execute(VPTransformState &State) { 8142 if (State.Instance) { // Generate a single instance. 8143 State.ILV->scalarizeInstruction(getUnderlyingInstr(), *this, 8144 *State.Instance, IsPredicated, State); 8145 // Insert scalar instance packing it into a vector. 8146 if (AlsoPack && State.VF.isVector()) { 8147 // If we're constructing lane 0, initialize to start from undef. 8148 if (State.Instance->Lane == 0) { 8149 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 8150 Value *Undef = UndefValue::get( 8151 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 8152 State.ValueMap.setVectorValue(getUnderlyingInstr(), 8153 State.Instance->Part, Undef); 8154 } 8155 State.ILV->packScalarIntoVectorValue(getUnderlyingInstr(), 8156 *State.Instance); 8157 } 8158 return; 8159 } 8160 8161 // Generate scalar instances for all VF lanes of all UF parts, unless the 8162 // instruction is uniform inwhich case generate only the first lane for each 8163 // of the UF parts. 8164 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 8165 for (unsigned Part = 0; Part < State.UF; ++Part) 8166 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8167 State.ILV->scalarizeInstruction(getUnderlyingInstr(), *this, {Part, Lane}, 8168 IsPredicated, State); 8169 } 8170 8171 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8172 assert(State.Instance && "Branch on Mask works only on single instance."); 8173 8174 unsigned Part = State.Instance->Part; 8175 unsigned Lane = State.Instance->Lane; 8176 8177 Value *ConditionBit = nullptr; 8178 VPValue *BlockInMask = getMask(); 8179 if (BlockInMask) { 8180 ConditionBit = State.get(BlockInMask, Part); 8181 if (ConditionBit->getType()->isVectorTy()) 8182 ConditionBit = State.Builder.CreateExtractElement( 8183 ConditionBit, State.Builder.getInt32(Lane)); 8184 } else // Block in mask is all-one. 8185 ConditionBit = State.Builder.getTrue(); 8186 8187 // Replace the temporary unreachable terminator with a new conditional branch, 8188 // whose two destinations will be set later when they are created. 8189 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8190 assert(isa<UnreachableInst>(CurrentTerminator) && 8191 "Expected to replace unreachable terminator with conditional branch."); 8192 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8193 CondBr->setSuccessor(0, nullptr); 8194 ReplaceInstWithInst(CurrentTerminator, CondBr); 8195 } 8196 8197 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8198 assert(State.Instance && "Predicated instruction PHI works per instance."); 8199 Instruction *ScalarPredInst = 8200 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 8201 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8202 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8203 assert(PredicatingBB && "Predicated block has no single predecessor."); 8204 8205 // By current pack/unpack logic we need to generate only a single phi node: if 8206 // a vector value for the predicated instruction exists at this point it means 8207 // the instruction has vector users only, and a phi for the vector value is 8208 // needed. In this case the recipe of the predicated instruction is marked to 8209 // also do that packing, thereby "hoisting" the insert-element sequence. 8210 // Otherwise, a phi node for the scalar value is needed. 8211 unsigned Part = State.Instance->Part; 8212 Instruction *PredInst = 8213 cast<Instruction>(getOperand(0)->getUnderlyingValue()); 8214 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8215 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8216 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8217 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8218 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8219 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8220 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8221 } else { 8222 Type *PredInstType = PredInst->getType(); 8223 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8224 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8225 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8226 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8227 } 8228 } 8229 8230 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8231 Instruction *Instr = getUnderlyingInstr(); 8232 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 8233 State.ILV->vectorizeMemoryInstruction(Instr, State, 8234 StoredValue ? nullptr : this, getAddr(), 8235 StoredValue, getMask()); 8236 } 8237 8238 // Determine how to lower the scalar epilogue, which depends on 1) optimising 8239 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 8240 // predication, and 4) a TTI hook that analyses whether the loop is suitable 8241 // for predication. 8242 static ScalarEpilogueLowering getScalarEpilogueLowering( 8243 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 8244 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 8245 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 8246 LoopVectorizationLegality &LVL) { 8247 // 1) OptSize takes precedence over all other options, i.e. if this is set, 8248 // don't look at hints or options, and don't request a scalar epilogue. 8249 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 8250 // LoopAccessInfo (due to code dependency and not being able to reliably get 8251 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 8252 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 8253 // versioning when the vectorization is forced, unlike hasOptSize. So revert 8254 // back to the old way and vectorize with versioning when forced. See D81345.) 8255 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 8256 PGSOQueryType::IRPass) && 8257 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 8258 return CM_ScalarEpilogueNotAllowedOptSize; 8259 8260 bool PredicateOptDisabled = PreferPredicateOverEpilogue.getNumOccurrences() && 8261 !PreferPredicateOverEpilogue; 8262 8263 // 2) Next, if disabling predication is requested on the command line, honour 8264 // this and request a scalar epilogue. 8265 if (PredicateOptDisabled) 8266 return CM_ScalarEpilogueAllowed; 8267 8268 // 3) and 4) look if enabling predication is requested on the command line, 8269 // with a loop hint, or if the TTI hook indicates this is profitable, request 8270 // predication. 8271 if (PreferPredicateOverEpilogue || 8272 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 8273 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 8274 LVL.getLAI()) && 8275 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 8276 return CM_ScalarEpilogueNotNeededUsePredicate; 8277 8278 return CM_ScalarEpilogueAllowed; 8279 } 8280 8281 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V, 8282 unsigned Part) { 8283 set(Def, V, Part); 8284 ILV->setVectorValue(IRDef, Part, V); 8285 } 8286 8287 // Process the loop in the VPlan-native vectorization path. This path builds 8288 // VPlan upfront in the vectorization pipeline, which allows to apply 8289 // VPlan-to-VPlan transformations from the very beginning without modifying the 8290 // input LLVM IR. 8291 static bool processLoopInVPlanNativePath( 8292 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 8293 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 8294 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 8295 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 8296 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 8297 8298 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 8299 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 8300 return false; 8301 } 8302 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 8303 Function *F = L->getHeader()->getParent(); 8304 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 8305 8306 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8307 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 8308 8309 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 8310 &Hints, IAI); 8311 // Use the planner for outer loop vectorization. 8312 // TODO: CM is not used at this point inside the planner. Turn CM into an 8313 // optional argument if we don't need it in the future. 8314 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 8315 8316 // Get user vectorization factor. 8317 const unsigned UserVF = Hints.getWidth(); 8318 8319 // Plan how to best vectorize, return the best VF and its cost. 8320 const VectorizationFactor VF = 8321 LVP.planInVPlanNativePath(ElementCount::getFixed(UserVF)); 8322 8323 // If we are stress testing VPlan builds, do not attempt to generate vector 8324 // code. Masked vector code generation support will follow soon. 8325 // Also, do not attempt to vectorize if no vector code will be produced. 8326 if (VPlanBuildStressTest || EnableVPlanPredication || 8327 VectorizationFactor::Disabled() == VF) 8328 return false; 8329 8330 LVP.setBestPlan(VF.Width, 1); 8331 8332 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 8333 &CM, BFI, PSI); 8334 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 8335 << L->getHeader()->getParent()->getName() << "\"\n"); 8336 LVP.executePlan(LB, DT); 8337 8338 // Mark the loop as already vectorized to avoid vectorizing again. 8339 Hints.setAlreadyVectorized(); 8340 8341 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8342 return true; 8343 } 8344 8345 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 8346 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 8347 !EnableLoopInterleaving), 8348 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 8349 !EnableLoopVectorization) {} 8350 8351 bool LoopVectorizePass::processLoop(Loop *L) { 8352 assert((EnableVPlanNativePath || L->isInnermost()) && 8353 "VPlan-native path is not enabled. Only process inner loops."); 8354 8355 #ifndef NDEBUG 8356 const std::string DebugLocStr = getDebugLocString(L); 8357 #endif /* NDEBUG */ 8358 8359 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8360 << L->getHeader()->getParent()->getName() << "\" from " 8361 << DebugLocStr << "\n"); 8362 8363 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 8364 8365 LLVM_DEBUG( 8366 dbgs() << "LV: Loop hints:" 8367 << " force=" 8368 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8369 ? "disabled" 8370 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8371 ? "enabled" 8372 : "?")) 8373 << " width=" << Hints.getWidth() 8374 << " unroll=" << Hints.getInterleave() << "\n"); 8375 8376 // Function containing loop 8377 Function *F = L->getHeader()->getParent(); 8378 8379 // Looking at the diagnostic output is the only way to determine if a loop 8380 // was vectorized (other than looking at the IR or machine code), so it 8381 // is important to generate an optimization remark for each loop. Most of 8382 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8383 // generated as OptimizationRemark and OptimizationRemarkMissed are 8384 // less verbose reporting vectorized loops and unvectorized loops that may 8385 // benefit from vectorization, respectively. 8386 8387 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 8388 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8389 return false; 8390 } 8391 8392 PredicatedScalarEvolution PSE(*SE, *L); 8393 8394 // Check if it is legal to vectorize the loop. 8395 LoopVectorizationRequirements Requirements(*ORE); 8396 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 8397 &Requirements, &Hints, DB, AC, BFI, PSI); 8398 if (!LVL.canVectorize(EnableVPlanNativePath)) { 8399 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8400 Hints.emitRemarkWithHints(); 8401 return false; 8402 } 8403 8404 // Check the function attributes and profiles to find out if this function 8405 // should be optimized for size. 8406 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8407 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 8408 8409 // Entrance to the VPlan-native vectorization path. Outer loops are processed 8410 // here. They may require CFG and instruction level transformations before 8411 // even evaluating whether vectorization is profitable. Since we cannot modify 8412 // the incoming IR, we need to build VPlan upfront in the vectorization 8413 // pipeline. 8414 if (!L->isInnermost()) 8415 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 8416 ORE, BFI, PSI, Hints); 8417 8418 assert(L->isInnermost() && "Inner loop expected."); 8419 8420 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8421 // count by optimizing for size, to minimize overheads. 8422 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 8423 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 8424 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8425 << "This loop is worth vectorizing only if no scalar " 8426 << "iteration overheads are incurred."); 8427 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8428 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8429 else { 8430 LLVM_DEBUG(dbgs() << "\n"); 8431 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 8432 } 8433 } 8434 8435 // Check the function attributes to see if implicit floats are allowed. 8436 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8437 // an integer loop and the vector instructions selected are purely integer 8438 // vector instructions? 8439 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8440 reportVectorizationFailure( 8441 "Can't vectorize when the NoImplicitFloat attribute is used", 8442 "loop not vectorized due to NoImplicitFloat attribute", 8443 "NoImplicitFloat", ORE, L); 8444 Hints.emitRemarkWithHints(); 8445 return false; 8446 } 8447 8448 // Check if the target supports potentially unsafe FP vectorization. 8449 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8450 // for the target we're vectorizing for, to make sure none of the 8451 // additional fp-math flags can help. 8452 if (Hints.isPotentiallyUnsafe() && 8453 TTI->isFPVectorizationPotentiallyUnsafe()) { 8454 reportVectorizationFailure( 8455 "Potentially unsafe FP op prevents vectorization", 8456 "loop not vectorized due to unsafe FP support.", 8457 "UnsafeFP", ORE, L); 8458 Hints.emitRemarkWithHints(); 8459 return false; 8460 } 8461 8462 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 8463 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 8464 8465 // If an override option has been passed in for interleaved accesses, use it. 8466 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 8467 UseInterleaved = EnableInterleavedMemAccesses; 8468 8469 // Analyze interleaved memory accesses. 8470 if (UseInterleaved) { 8471 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 8472 } 8473 8474 // Use the cost model. 8475 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 8476 F, &Hints, IAI); 8477 CM.collectValuesToIgnore(); 8478 8479 // Use the planner for vectorization. 8480 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 8481 8482 // Get user vectorization factor and interleave count. 8483 unsigned UserVF = Hints.getWidth(); 8484 unsigned UserIC = Hints.getInterleave(); 8485 8486 // Plan how to best vectorize, return the best VF and its cost. 8487 Optional<VectorizationFactor> MaybeVF = 8488 LVP.plan(ElementCount::getFixed(UserVF), UserIC); 8489 8490 VectorizationFactor VF = VectorizationFactor::Disabled(); 8491 unsigned IC = 1; 8492 8493 if (MaybeVF) { 8494 VF = *MaybeVF; 8495 // Select the interleave count. 8496 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 8497 } 8498 8499 // Identify the diagnostic messages that should be produced. 8500 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8501 bool VectorizeLoop = true, InterleaveLoop = true; 8502 if (Requirements.doesNotMeet(F, L, Hints)) { 8503 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8504 "requirements.\n"); 8505 Hints.emitRemarkWithHints(); 8506 return false; 8507 } 8508 8509 if (VF.Width.isScalar()) { 8510 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8511 VecDiagMsg = std::make_pair( 8512 "VectorizationNotBeneficial", 8513 "the cost-model indicates that vectorization is not beneficial"); 8514 VectorizeLoop = false; 8515 } 8516 8517 if (!MaybeVF && UserIC > 1) { 8518 // Tell the user interleaving was avoided up-front, despite being explicitly 8519 // requested. 8520 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 8521 "interleaving should be avoided up front\n"); 8522 IntDiagMsg = std::make_pair( 8523 "InterleavingAvoided", 8524 "Ignoring UserIC, because interleaving was avoided up front"); 8525 InterleaveLoop = false; 8526 } else if (IC == 1 && UserIC <= 1) { 8527 // Tell the user interleaving is not beneficial. 8528 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8529 IntDiagMsg = std::make_pair( 8530 "InterleavingNotBeneficial", 8531 "the cost-model indicates that interleaving is not beneficial"); 8532 InterleaveLoop = false; 8533 if (UserIC == 1) { 8534 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8535 IntDiagMsg.second += 8536 " and is explicitly disabled or interleave count is set to 1"; 8537 } 8538 } else if (IC > 1 && UserIC == 1) { 8539 // Tell the user interleaving is beneficial, but it explicitly disabled. 8540 LLVM_DEBUG( 8541 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 8542 IntDiagMsg = std::make_pair( 8543 "InterleavingBeneficialButDisabled", 8544 "the cost-model indicates that interleaving is beneficial " 8545 "but is explicitly disabled or interleave count is set to 1"); 8546 InterleaveLoop = false; 8547 } 8548 8549 // Override IC if user provided an interleave count. 8550 IC = UserIC > 0 ? UserIC : IC; 8551 8552 // Emit diagnostic messages, if any. 8553 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8554 if (!VectorizeLoop && !InterleaveLoop) { 8555 // Do not vectorize or interleaving the loop. 8556 ORE->emit([&]() { 8557 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8558 L->getStartLoc(), L->getHeader()) 8559 << VecDiagMsg.second; 8560 }); 8561 ORE->emit([&]() { 8562 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8563 L->getStartLoc(), L->getHeader()) 8564 << IntDiagMsg.second; 8565 }); 8566 return false; 8567 } else if (!VectorizeLoop && InterleaveLoop) { 8568 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8569 ORE->emit([&]() { 8570 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8571 L->getStartLoc(), L->getHeader()) 8572 << VecDiagMsg.second; 8573 }); 8574 } else if (VectorizeLoop && !InterleaveLoop) { 8575 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 8576 << ") in " << DebugLocStr << '\n'); 8577 ORE->emit([&]() { 8578 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8579 L->getStartLoc(), L->getHeader()) 8580 << IntDiagMsg.second; 8581 }); 8582 } else if (VectorizeLoop && InterleaveLoop) { 8583 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 8584 << ") in " << DebugLocStr << '\n'); 8585 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8586 } 8587 8588 LVP.setBestPlan(VF.Width, IC); 8589 8590 using namespace ore; 8591 bool DisableRuntimeUnroll = false; 8592 MDNode *OrigLoopID = L->getLoopID(); 8593 8594 if (!VectorizeLoop) { 8595 assert(IC > 1 && "interleave count should not be 1 or 0"); 8596 // If we decided that it is not legal to vectorize the loop, then 8597 // interleave it. 8598 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 8599 BFI, PSI); 8600 LVP.executePlan(Unroller, DT); 8601 8602 ORE->emit([&]() { 8603 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8604 L->getHeader()) 8605 << "interleaved loop (interleaved count: " 8606 << NV("InterleaveCount", IC) << ")"; 8607 }); 8608 } else { 8609 // If we decided that it is *legal* to vectorize the loop, then do it. 8610 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8611 &LVL, &CM, BFI, PSI); 8612 LVP.executePlan(LB, DT); 8613 ++LoopsVectorized; 8614 8615 // Add metadata to disable runtime unrolling a scalar loop when there are 8616 // no runtime checks about strides and memory. A scalar loop that is 8617 // rarely used is not worth unrolling. 8618 if (!LB.areSafetyChecksAdded()) 8619 DisableRuntimeUnroll = true; 8620 8621 // Report the vectorization decision. 8622 ORE->emit([&]() { 8623 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8624 L->getHeader()) 8625 << "vectorized loop (vectorization width: " 8626 << NV("VectorizationFactor", VF.Width) 8627 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8628 }); 8629 } 8630 8631 Optional<MDNode *> RemainderLoopID = 8632 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 8633 LLVMLoopVectorizeFollowupEpilogue}); 8634 if (RemainderLoopID.hasValue()) { 8635 L->setLoopID(RemainderLoopID.getValue()); 8636 } else { 8637 if (DisableRuntimeUnroll) 8638 AddRuntimeUnrollDisableMetaData(L); 8639 8640 // Mark the loop as already vectorized to avoid vectorizing again. 8641 Hints.setAlreadyVectorized(); 8642 } 8643 8644 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8645 return true; 8646 } 8647 8648 LoopVectorizeResult LoopVectorizePass::runImpl( 8649 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8650 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8651 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 8652 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8653 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 8654 SE = &SE_; 8655 LI = &LI_; 8656 TTI = &TTI_; 8657 DT = &DT_; 8658 BFI = &BFI_; 8659 TLI = TLI_; 8660 AA = &AA_; 8661 AC = &AC_; 8662 GetLAA = &GetLAA_; 8663 DB = &DB_; 8664 ORE = &ORE_; 8665 PSI = PSI_; 8666 8667 // Don't attempt if 8668 // 1. the target claims to have no vector registers, and 8669 // 2. interleaving won't help ILP. 8670 // 8671 // The second condition is necessary because, even if the target has no 8672 // vector registers, loop vectorization may still enable scalar 8673 // interleaving. 8674 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8675 TTI->getMaxInterleaveFactor(1) < 2) 8676 return LoopVectorizeResult(false, false); 8677 8678 bool Changed = false, CFGChanged = false; 8679 8680 // The vectorizer requires loops to be in simplified form. 8681 // Since simplification may add new inner loops, it has to run before the 8682 // legality and profitability checks. This means running the loop vectorizer 8683 // will simplify all loops, regardless of whether anything end up being 8684 // vectorized. 8685 for (auto &L : *LI) 8686 Changed |= CFGChanged |= 8687 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8688 8689 // Build up a worklist of inner-loops to vectorize. This is necessary as 8690 // the act of vectorizing or partially unrolling a loop creates new loops 8691 // and can invalidate iterators across the loops. 8692 SmallVector<Loop *, 8> Worklist; 8693 8694 for (Loop *L : *LI) 8695 collectSupportedLoops(*L, LI, ORE, Worklist); 8696 8697 LoopsAnalyzed += Worklist.size(); 8698 8699 // Now walk the identified inner loops. 8700 while (!Worklist.empty()) { 8701 Loop *L = Worklist.pop_back_val(); 8702 8703 // For the inner loops we actually process, form LCSSA to simplify the 8704 // transform. 8705 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8706 8707 Changed |= CFGChanged |= processLoop(L); 8708 } 8709 8710 // Process each loop nest in the function. 8711 return LoopVectorizeResult(Changed, CFGChanged); 8712 } 8713 8714 PreservedAnalyses LoopVectorizePass::run(Function &F, 8715 FunctionAnalysisManager &AM) { 8716 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8717 auto &LI = AM.getResult<LoopAnalysis>(F); 8718 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8719 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8720 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8721 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8722 auto &AA = AM.getResult<AAManager>(F); 8723 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8724 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8725 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8726 MemorySSA *MSSA = EnableMSSALoopDependency 8727 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8728 : nullptr; 8729 8730 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8731 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8732 [&](Loop &L) -> const LoopAccessInfo & { 8733 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 8734 TLI, TTI, nullptr, MSSA}; 8735 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8736 }; 8737 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 8738 ProfileSummaryInfo *PSI = 8739 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8740 LoopVectorizeResult Result = 8741 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8742 if (!Result.MadeAnyChange) 8743 return PreservedAnalyses::all(); 8744 PreservedAnalyses PA; 8745 8746 // We currently do not preserve loopinfo/dominator analyses with outer loop 8747 // vectorization. Until this is addressed, mark these analyses as preserved 8748 // only for non-VPlan-native path. 8749 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8750 if (!EnableVPlanNativePath) { 8751 PA.preserve<LoopAnalysis>(); 8752 PA.preserve<DominatorTreeAnalysis>(); 8753 } 8754 PA.preserve<BasicAA>(); 8755 PA.preserve<GlobalsAA>(); 8756 if (!Result.MadeCFGChange) 8757 PA.preserveSet<CFGAnalyses>(); 8758 return PA; 8759 } 8760