1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 AnalysisKey ShouldRunExtraVectorPasses::Key;
432 
433 /// InnerLoopVectorizer vectorizes loops which contain only one basic
434 /// block to a specified vectorization factor (VF).
435 /// This class performs the widening of scalars into vectors, or multiple
436 /// scalars. This class also implements the following features:
437 /// * It inserts an epilogue loop for handling loops that don't have iteration
438 ///   counts that are known to be a multiple of the vectorization factor.
439 /// * It handles the code generation for reduction variables.
440 /// * Scalarization (implementation using scalars) of un-vectorizable
441 ///   instructions.
442 /// InnerLoopVectorizer does not perform any vectorization-legality
443 /// checks, and relies on the caller to check for the different legality
444 /// aspects. The InnerLoopVectorizer relies on the
445 /// LoopVectorizationLegality class to provide information about the induction
446 /// and reduction variables that were found to a given vectorization factor.
447 class InnerLoopVectorizer {
448 public:
449   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
450                       LoopInfo *LI, DominatorTree *DT,
451                       const TargetLibraryInfo *TLI,
452                       const TargetTransformInfo *TTI, AssumptionCache *AC,
453                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
454                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
455                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
456                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
457       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
458         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
459         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
460         PSI(PSI), RTChecks(RTChecks) {
461     // Query this against the original loop and save it here because the profile
462     // of the original loop header may change as the transformation happens.
463     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
464         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
465   }
466 
467   virtual ~InnerLoopVectorizer() = default;
468 
469   /// Create a new empty loop that will contain vectorized instructions later
470   /// on, while the old loop will be used as the scalar remainder. Control flow
471   /// is generated around the vectorized (and scalar epilogue) loops consisting
472   /// of various checks and bypasses. Return the pre-header block of the new
473   /// loop and the start value for the canonical induction, if it is != 0. The
474   /// latter is the case when vectorizing the epilogue loop. In the case of
475   /// epilogue vectorization, this function is overriden to handle the more
476   /// complex control flow around the loops.
477   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
478 
479   /// Widen a single call instruction within the innermost loop.
480   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
481                             VPTransformState &State);
482 
483   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
484   void fixVectorizedLoop(VPTransformState &State);
485 
486   // Return true if any runtime check is added.
487   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
488 
489   /// A type for vectorized values in the new loop. Each value from the
490   /// original loop, when vectorized, is represented by UF vector values in the
491   /// new unrolled loop, where UF is the unroll factor.
492   using VectorParts = SmallVector<Value *, 2>;
493 
494   /// Vectorize a single first-order recurrence or pointer induction PHINode in
495   /// a block. This method handles the induction variable canonicalization. It
496   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
497   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
498                            VPTransformState &State);
499 
500   /// A helper function to scalarize a single Instruction in the innermost loop.
501   /// Generates a sequence of scalar instances for each lane between \p MinLane
502   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
503   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
504   /// Instr's operands.
505   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
506                             const VPIteration &Instance, bool IfPredicateInstr,
507                             VPTransformState &State);
508 
509   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
510   /// is provided, the integer induction variable will first be truncated to
511   /// the corresponding type. \p CanonicalIV is the scalar value generated for
512   /// the canonical induction variable.
513   void widenIntOrFpInduction(PHINode *IV, VPWidenIntOrFpInductionRecipe *Def,
514                              VPTransformState &State, Value *CanonicalIV);
515 
516   /// Construct the vector value of a scalarized value \p V one lane at a time.
517   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
518                                  VPTransformState &State);
519 
520   /// Try to vectorize interleaved access group \p Group with the base address
521   /// given in \p Addr, optionally masking the vector operations if \p
522   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
523   /// values in the vectorized loop.
524   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
525                                 ArrayRef<VPValue *> VPDefs,
526                                 VPTransformState &State, VPValue *Addr,
527                                 ArrayRef<VPValue *> StoredValues,
528                                 VPValue *BlockInMask = nullptr);
529 
530   /// Set the debug location in the builder \p Ptr using the debug location in
531   /// \p V. If \p Ptr is None then it uses the class member's Builder.
532   void setDebugLocFromInst(const Value *V,
533                            Optional<IRBuilder<> *> CustomBuilder = None);
534 
535   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
536   void fixNonInductionPHIs(VPTransformState &State);
537 
538   /// Returns true if the reordering of FP operations is not allowed, but we are
539   /// able to vectorize with strict in-order reductions for the given RdxDesc.
540   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
541 
542   /// Create a broadcast instruction. This method generates a broadcast
543   /// instruction (shuffle) for loop invariant values and for the induction
544   /// value. If this is the induction variable then we extend it to N, N+1, ...
545   /// this is needed because each iteration in the loop corresponds to a SIMD
546   /// element.
547   virtual Value *getBroadcastInstrs(Value *V);
548 
549   /// Add metadata from one instruction to another.
550   ///
551   /// This includes both the original MDs from \p From and additional ones (\see
552   /// addNewMetadata).  Use this for *newly created* instructions in the vector
553   /// loop.
554   void addMetadata(Instruction *To, Instruction *From);
555 
556   /// Similar to the previous function but it adds the metadata to a
557   /// vector of instructions.
558   void addMetadata(ArrayRef<Value *> To, Instruction *From);
559 
560   // Returns the resume value (bc.merge.rdx) for a reduction as
561   // generated by fixReduction.
562   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
563 
564 protected:
565   friend class LoopVectorizationPlanner;
566 
567   /// A small list of PHINodes.
568   using PhiVector = SmallVector<PHINode *, 4>;
569 
570   /// A type for scalarized values in the new loop. Each value from the
571   /// original loop, when scalarized, is represented by UF x VF scalar values
572   /// in the new unrolled loop, where UF is the unroll factor and VF is the
573   /// vectorization factor.
574   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
575 
576   /// Set up the values of the IVs correctly when exiting the vector loop.
577   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
578                     Value *CountRoundDown, Value *EndValue,
579                     BasicBlock *MiddleBlock);
580 
581   /// Introduce a conditional branch (on true, condition to be set later) at the
582   /// end of the header=latch connecting it to itself (across the backedge) and
583   /// to the exit block of \p L.
584   void createHeaderBranch(Loop *L);
585 
586   /// Handle all cross-iteration phis in the header.
587   void fixCrossIterationPHIs(VPTransformState &State);
588 
589   /// Create the exit value of first order recurrences in the middle block and
590   /// update their users.
591   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
592                                VPTransformState &State);
593 
594   /// Create code for the loop exit value of the reduction.
595   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
596 
597   /// Clear NSW/NUW flags from reduction instructions if necessary.
598   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
599                                VPTransformState &State);
600 
601   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
602   /// means we need to add the appropriate incoming value from the middle
603   /// block as exiting edges from the scalar epilogue loop (if present) are
604   /// already in place, and we exit the vector loop exclusively to the middle
605   /// block.
606   void fixLCSSAPHIs(VPTransformState &State);
607 
608   /// Iteratively sink the scalarized operands of a predicated instruction into
609   /// the block that was created for it.
610   void sinkScalarOperands(Instruction *PredInst);
611 
612   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
613   /// represented as.
614   void truncateToMinimalBitwidths(VPTransformState &State);
615 
616   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
617   /// variable on which to base the steps, \p Step is the size of the step, and
618   /// \p EntryVal is the value from the original loop that maps to the steps.
619   /// Note that \p EntryVal doesn't have to be an induction variable - it
620   /// can also be a truncate instruction.
621   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
622                         const InductionDescriptor &ID, VPValue *Def,
623                         VPTransformState &State);
624 
625   /// Create a vector induction phi node based on an existing scalar one. \p
626   /// EntryVal is the value from the original loop that maps to the vector phi
627   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
628   /// truncate instruction, instead of widening the original IV, we widen a
629   /// version of the IV truncated to \p EntryVal's type.
630   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
631                                        Value *Step, Value *Start,
632                                        Instruction *EntryVal, VPValue *Def,
633                                        VPTransformState &State);
634 
635   /// Returns (and creates if needed) the original loop trip count.
636   Value *getOrCreateTripCount(Loop *NewLoop);
637 
638   /// Returns (and creates if needed) the trip count of the widened loop.
639   Value *getOrCreateVectorTripCount(Loop *NewLoop);
640 
641   /// Returns a bitcasted value to the requested vector type.
642   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
643   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
644                                 const DataLayout &DL);
645 
646   /// Emit a bypass check to see if the vector trip count is zero, including if
647   /// it overflows.
648   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
649 
650   /// Emit a bypass check to see if all of the SCEV assumptions we've
651   /// had to make are correct. Returns the block containing the checks or
652   /// nullptr if no checks have been added.
653   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
654 
655   /// Emit bypass checks to check any memory assumptions we may have made.
656   /// Returns the block containing the checks or nullptr if no checks have been
657   /// added.
658   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
659 
660   /// Compute the transformed value of Index at offset StartValue using step
661   /// StepValue.
662   /// For integer induction, returns StartValue + Index * StepValue.
663   /// For pointer induction, returns StartValue[Index * StepValue].
664   /// FIXME: The newly created binary instructions should contain nsw/nuw
665   /// flags, which can be found from the original scalar operations.
666   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
667                               const DataLayout &DL,
668                               const InductionDescriptor &ID,
669                               BasicBlock *VectorHeader) const;
670 
671   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
672   /// vector loop preheader, middle block and scalar preheader. Also
673   /// allocate a loop object for the new vector loop and return it.
674   Loop *createVectorLoopSkeleton(StringRef Prefix);
675 
676   /// Create new phi nodes for the induction variables to resume iteration count
677   /// in the scalar epilogue, from where the vectorized loop left off.
678   /// In cases where the loop skeleton is more complicated (eg. epilogue
679   /// vectorization) and the resume values can come from an additional bypass
680   /// block, the \p AdditionalBypass pair provides information about the bypass
681   /// block and the end value on the edge from bypass to this loop.
682   void createInductionResumeValues(
683       Loop *L,
684       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
685 
686   /// Complete the loop skeleton by adding debug MDs, creating appropriate
687   /// conditional branches in the middle block, preparing the builder and
688   /// running the verifier. Take in the vector loop \p L as argument, and return
689   /// the preheader of the completed vector loop.
690   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
691 
692   /// Add additional metadata to \p To that was not present on \p Orig.
693   ///
694   /// Currently this is used to add the noalias annotations based on the
695   /// inserted memchecks.  Use this for instructions that are *cloned* into the
696   /// vector loop.
697   void addNewMetadata(Instruction *To, const Instruction *Orig);
698 
699   /// Collect poison-generating recipes that may generate a poison value that is
700   /// used after vectorization, even when their operands are not poison. Those
701   /// recipes meet the following conditions:
702   ///  * Contribute to the address computation of a recipe generating a widen
703   ///    memory load/store (VPWidenMemoryInstructionRecipe or
704   ///    VPInterleaveRecipe).
705   ///  * Such a widen memory load/store has at least one underlying Instruction
706   ///    that is in a basic block that needs predication and after vectorization
707   ///    the generated instruction won't be predicated.
708   void collectPoisonGeneratingRecipes(VPTransformState &State);
709 
710   /// Allow subclasses to override and print debug traces before/after vplan
711   /// execution, when trace information is requested.
712   virtual void printDebugTracesAtStart(){};
713   virtual void printDebugTracesAtEnd(){};
714 
715   /// The original loop.
716   Loop *OrigLoop;
717 
718   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
719   /// dynamic knowledge to simplify SCEV expressions and converts them to a
720   /// more usable form.
721   PredicatedScalarEvolution &PSE;
722 
723   /// Loop Info.
724   LoopInfo *LI;
725 
726   /// Dominator Tree.
727   DominatorTree *DT;
728 
729   /// Alias Analysis.
730   AAResults *AA;
731 
732   /// Target Library Info.
733   const TargetLibraryInfo *TLI;
734 
735   /// Target Transform Info.
736   const TargetTransformInfo *TTI;
737 
738   /// Assumption Cache.
739   AssumptionCache *AC;
740 
741   /// Interface to emit optimization remarks.
742   OptimizationRemarkEmitter *ORE;
743 
744   /// LoopVersioning.  It's only set up (non-null) if memchecks were
745   /// used.
746   ///
747   /// This is currently only used to add no-alias metadata based on the
748   /// memchecks.  The actually versioning is performed manually.
749   std::unique_ptr<LoopVersioning> LVer;
750 
751   /// The vectorization SIMD factor to use. Each vector will have this many
752   /// vector elements.
753   ElementCount VF;
754 
755   /// The vectorization unroll factor to use. Each scalar is vectorized to this
756   /// many different vector instructions.
757   unsigned UF;
758 
759   /// The builder that we use
760   IRBuilder<> Builder;
761 
762   // --- Vectorization state ---
763 
764   /// The vector-loop preheader.
765   BasicBlock *LoopVectorPreHeader;
766 
767   /// The scalar-loop preheader.
768   BasicBlock *LoopScalarPreHeader;
769 
770   /// Middle Block between the vector and the scalar.
771   BasicBlock *LoopMiddleBlock;
772 
773   /// The unique ExitBlock of the scalar loop if one exists.  Note that
774   /// there can be multiple exiting edges reaching this block.
775   BasicBlock *LoopExitBlock;
776 
777   /// The vector loop body.
778   BasicBlock *LoopVectorBody;
779 
780   /// The scalar loop body.
781   BasicBlock *LoopScalarBody;
782 
783   /// A list of all bypass blocks. The first block is the entry of the loop.
784   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
785 
786   /// Store instructions that were predicated.
787   SmallVector<Instruction *, 4> PredicatedInstructions;
788 
789   /// Trip count of the original loop.
790   Value *TripCount = nullptr;
791 
792   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
793   Value *VectorTripCount = nullptr;
794 
795   /// The legality analysis.
796   LoopVectorizationLegality *Legal;
797 
798   /// The profitablity analysis.
799   LoopVectorizationCostModel *Cost;
800 
801   // Record whether runtime checks are added.
802   bool AddedSafetyChecks = false;
803 
804   // Holds the end values for each induction variable. We save the end values
805   // so we can later fix-up the external users of the induction variables.
806   DenseMap<PHINode *, Value *> IVEndValues;
807 
808   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
809   // fixed up at the end of vector code generation.
810   SmallVector<PHINode *, 8> OrigPHIsToFix;
811 
812   /// BFI and PSI are used to check for profile guided size optimizations.
813   BlockFrequencyInfo *BFI;
814   ProfileSummaryInfo *PSI;
815 
816   // Whether this loop should be optimized for size based on profile guided size
817   // optimizatios.
818   bool OptForSizeBasedOnProfile;
819 
820   /// Structure to hold information about generated runtime checks, responsible
821   /// for cleaning the checks, if vectorization turns out unprofitable.
822   GeneratedRTChecks &RTChecks;
823 
824   // Holds the resume values for reductions in the loops, used to set the
825   // correct start value of reduction PHIs when vectorizing the epilogue.
826   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
827       ReductionResumeValues;
828 };
829 
830 class InnerLoopUnroller : public InnerLoopVectorizer {
831 public:
832   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
833                     LoopInfo *LI, DominatorTree *DT,
834                     const TargetLibraryInfo *TLI,
835                     const TargetTransformInfo *TTI, AssumptionCache *AC,
836                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
837                     LoopVectorizationLegality *LVL,
838                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
839                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
840       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
841                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
842                             BFI, PSI, Check) {}
843 
844 private:
845   Value *getBroadcastInstrs(Value *V) override;
846 };
847 
848 /// Encapsulate information regarding vectorization of a loop and its epilogue.
849 /// This information is meant to be updated and used across two stages of
850 /// epilogue vectorization.
851 struct EpilogueLoopVectorizationInfo {
852   ElementCount MainLoopVF = ElementCount::getFixed(0);
853   unsigned MainLoopUF = 0;
854   ElementCount EpilogueVF = ElementCount::getFixed(0);
855   unsigned EpilogueUF = 0;
856   BasicBlock *MainLoopIterationCountCheck = nullptr;
857   BasicBlock *EpilogueIterationCountCheck = nullptr;
858   BasicBlock *SCEVSafetyCheck = nullptr;
859   BasicBlock *MemSafetyCheck = nullptr;
860   Value *TripCount = nullptr;
861   Value *VectorTripCount = nullptr;
862 
863   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
864                                 ElementCount EVF, unsigned EUF)
865       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
866     assert(EUF == 1 &&
867            "A high UF for the epilogue loop is likely not beneficial.");
868   }
869 };
870 
871 /// An extension of the inner loop vectorizer that creates a skeleton for a
872 /// vectorized loop that has its epilogue (residual) also vectorized.
873 /// The idea is to run the vplan on a given loop twice, firstly to setup the
874 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
875 /// from the first step and vectorize the epilogue.  This is achieved by
876 /// deriving two concrete strategy classes from this base class and invoking
877 /// them in succession from the loop vectorizer planner.
878 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
879 public:
880   InnerLoopAndEpilogueVectorizer(
881       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
882       DominatorTree *DT, const TargetLibraryInfo *TLI,
883       const TargetTransformInfo *TTI, AssumptionCache *AC,
884       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
885       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
886       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
887       GeneratedRTChecks &Checks)
888       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
889                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
890                             Checks),
891         EPI(EPI) {}
892 
893   // Override this function to handle the more complex control flow around the
894   // three loops.
895   std::pair<BasicBlock *, Value *>
896   createVectorizedLoopSkeleton() final override {
897     return createEpilogueVectorizedLoopSkeleton();
898   }
899 
900   /// The interface for creating a vectorized skeleton using one of two
901   /// different strategies, each corresponding to one execution of the vplan
902   /// as described above.
903   virtual std::pair<BasicBlock *, Value *>
904   createEpilogueVectorizedLoopSkeleton() = 0;
905 
906   /// Holds and updates state information required to vectorize the main loop
907   /// and its epilogue in two separate passes. This setup helps us avoid
908   /// regenerating and recomputing runtime safety checks. It also helps us to
909   /// shorten the iteration-count-check path length for the cases where the
910   /// iteration count of the loop is so small that the main vector loop is
911   /// completely skipped.
912   EpilogueLoopVectorizationInfo &EPI;
913 };
914 
915 /// A specialized derived class of inner loop vectorizer that performs
916 /// vectorization of *main* loops in the process of vectorizing loops and their
917 /// epilogues.
918 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
919 public:
920   EpilogueVectorizerMainLoop(
921       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
922       DominatorTree *DT, const TargetLibraryInfo *TLI,
923       const TargetTransformInfo *TTI, AssumptionCache *AC,
924       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
925       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
926       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
927       GeneratedRTChecks &Check)
928       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
929                                        EPI, LVL, CM, BFI, PSI, Check) {}
930   /// Implements the interface for creating a vectorized skeleton using the
931   /// *main loop* strategy (ie the first pass of vplan execution).
932   std::pair<BasicBlock *, Value *>
933   createEpilogueVectorizedLoopSkeleton() final override;
934 
935 protected:
936   /// Emits an iteration count bypass check once for the main loop (when \p
937   /// ForEpilogue is false) and once for the epilogue loop (when \p
938   /// ForEpilogue is true).
939   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
940                                              bool ForEpilogue);
941   void printDebugTracesAtStart() override;
942   void printDebugTracesAtEnd() override;
943 };
944 
945 // A specialized derived class of inner loop vectorizer that performs
946 // vectorization of *epilogue* loops in the process of vectorizing loops and
947 // their epilogues.
948 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
949 public:
950   EpilogueVectorizerEpilogueLoop(
951       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
952       DominatorTree *DT, const TargetLibraryInfo *TLI,
953       const TargetTransformInfo *TTI, AssumptionCache *AC,
954       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
955       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
956       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
957       GeneratedRTChecks &Checks)
958       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
959                                        EPI, LVL, CM, BFI, PSI, Checks) {}
960   /// Implements the interface for creating a vectorized skeleton using the
961   /// *epilogue loop* strategy (ie the second pass of vplan execution).
962   std::pair<BasicBlock *, Value *>
963   createEpilogueVectorizedLoopSkeleton() final override;
964 
965 protected:
966   /// Emits an iteration count bypass check after the main vector loop has
967   /// finished to see if there are any iterations left to execute by either
968   /// the vector epilogue or the scalar epilogue.
969   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
970                                                       BasicBlock *Bypass,
971                                                       BasicBlock *Insert);
972   void printDebugTracesAtStart() override;
973   void printDebugTracesAtEnd() override;
974 };
975 } // end namespace llvm
976 
977 /// Look for a meaningful debug location on the instruction or it's
978 /// operands.
979 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
980   if (!I)
981     return I;
982 
983   DebugLoc Empty;
984   if (I->getDebugLoc() != Empty)
985     return I;
986 
987   for (Use &Op : I->operands()) {
988     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
989       if (OpInst->getDebugLoc() != Empty)
990         return OpInst;
991   }
992 
993   return I;
994 }
995 
996 void InnerLoopVectorizer::setDebugLocFromInst(
997     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
998   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
999   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1000     const DILocation *DIL = Inst->getDebugLoc();
1001 
1002     // When a FSDiscriminator is enabled, we don't need to add the multiply
1003     // factors to the discriminators.
1004     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1005         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1006       // FIXME: For scalable vectors, assume vscale=1.
1007       auto NewDIL =
1008           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1009       if (NewDIL)
1010         B->SetCurrentDebugLocation(NewDIL.getValue());
1011       else
1012         LLVM_DEBUG(dbgs()
1013                    << "Failed to create new discriminator: "
1014                    << DIL->getFilename() << " Line: " << DIL->getLine());
1015     } else
1016       B->SetCurrentDebugLocation(DIL);
1017   } else
1018     B->SetCurrentDebugLocation(DebugLoc());
1019 }
1020 
1021 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1022 /// is passed, the message relates to that particular instruction.
1023 #ifndef NDEBUG
1024 static void debugVectorizationMessage(const StringRef Prefix,
1025                                       const StringRef DebugMsg,
1026                                       Instruction *I) {
1027   dbgs() << "LV: " << Prefix << DebugMsg;
1028   if (I != nullptr)
1029     dbgs() << " " << *I;
1030   else
1031     dbgs() << '.';
1032   dbgs() << '\n';
1033 }
1034 #endif
1035 
1036 /// Create an analysis remark that explains why vectorization failed
1037 ///
1038 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1039 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1040 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1041 /// the location of the remark.  \return the remark object that can be
1042 /// streamed to.
1043 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1044     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1045   Value *CodeRegion = TheLoop->getHeader();
1046   DebugLoc DL = TheLoop->getStartLoc();
1047 
1048   if (I) {
1049     CodeRegion = I->getParent();
1050     // If there is no debug location attached to the instruction, revert back to
1051     // using the loop's.
1052     if (I->getDebugLoc())
1053       DL = I->getDebugLoc();
1054   }
1055 
1056   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1057 }
1058 
1059 namespace llvm {
1060 
1061 /// Return a value for Step multiplied by VF.
1062 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF,
1063                        int64_t Step) {
1064   assert(Ty->isIntegerTy() && "Expected an integer step");
1065   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1066   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1067 }
1068 
1069 /// Return the runtime value for VF.
1070 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1071   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1072   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1073 }
1074 
1075 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) {
1076   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1077   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1078   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1079   return B.CreateUIToFP(RuntimeVF, FTy);
1080 }
1081 
1082 void reportVectorizationFailure(const StringRef DebugMsg,
1083                                 const StringRef OREMsg, const StringRef ORETag,
1084                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1085                                 Instruction *I) {
1086   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1087   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1088   ORE->emit(
1089       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1090       << "loop not vectorized: " << OREMsg);
1091 }
1092 
1093 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1094                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1095                              Instruction *I) {
1096   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1097   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1098   ORE->emit(
1099       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1100       << Msg);
1101 }
1102 
1103 } // end namespace llvm
1104 
1105 #ifndef NDEBUG
1106 /// \return string containing a file name and a line # for the given loop.
1107 static std::string getDebugLocString(const Loop *L) {
1108   std::string Result;
1109   if (L) {
1110     raw_string_ostream OS(Result);
1111     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1112       LoopDbgLoc.print(OS);
1113     else
1114       // Just print the module name.
1115       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1116     OS.flush();
1117   }
1118   return Result;
1119 }
1120 #endif
1121 
1122 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1123                                          const Instruction *Orig) {
1124   // If the loop was versioned with memchecks, add the corresponding no-alias
1125   // metadata.
1126   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1127     LVer->annotateInstWithNoAlias(To, Orig);
1128 }
1129 
1130 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1131     VPTransformState &State) {
1132 
1133   // Collect recipes in the backward slice of `Root` that may generate a poison
1134   // value that is used after vectorization.
1135   SmallPtrSet<VPRecipeBase *, 16> Visited;
1136   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1137     SmallVector<VPRecipeBase *, 16> Worklist;
1138     Worklist.push_back(Root);
1139 
1140     // Traverse the backward slice of Root through its use-def chain.
1141     while (!Worklist.empty()) {
1142       VPRecipeBase *CurRec = Worklist.back();
1143       Worklist.pop_back();
1144 
1145       if (!Visited.insert(CurRec).second)
1146         continue;
1147 
1148       // Prune search if we find another recipe generating a widen memory
1149       // instruction. Widen memory instructions involved in address computation
1150       // will lead to gather/scatter instructions, which don't need to be
1151       // handled.
1152       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1153           isa<VPInterleaveRecipe>(CurRec) ||
1154           isa<VPCanonicalIVPHIRecipe>(CurRec))
1155         continue;
1156 
1157       // This recipe contributes to the address computation of a widen
1158       // load/store. Collect recipe if its underlying instruction has
1159       // poison-generating flags.
1160       Instruction *Instr = CurRec->getUnderlyingInstr();
1161       if (Instr && Instr->hasPoisonGeneratingFlags())
1162         State.MayGeneratePoisonRecipes.insert(CurRec);
1163 
1164       // Add new definitions to the worklist.
1165       for (VPValue *operand : CurRec->operands())
1166         if (VPDef *OpDef = operand->getDef())
1167           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1168     }
1169   });
1170 
1171   // Traverse all the recipes in the VPlan and collect the poison-generating
1172   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1173   // VPInterleaveRecipe.
1174   auto Iter = depth_first(
1175       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1176   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1177     for (VPRecipeBase &Recipe : *VPBB) {
1178       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1179         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1180         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1181         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1182             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1183           collectPoisonGeneratingInstrsInBackwardSlice(
1184               cast<VPRecipeBase>(AddrDef));
1185       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1186         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1187         if (AddrDef) {
1188           // Check if any member of the interleave group needs predication.
1189           const InterleaveGroup<Instruction> *InterGroup =
1190               InterleaveRec->getInterleaveGroup();
1191           bool NeedPredication = false;
1192           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1193                I < NumMembers; ++I) {
1194             Instruction *Member = InterGroup->getMember(I);
1195             if (Member)
1196               NeedPredication |=
1197                   Legal->blockNeedsPredication(Member->getParent());
1198           }
1199 
1200           if (NeedPredication)
1201             collectPoisonGeneratingInstrsInBackwardSlice(
1202                 cast<VPRecipeBase>(AddrDef));
1203         }
1204       }
1205     }
1206   }
1207 }
1208 
1209 void InnerLoopVectorizer::addMetadata(Instruction *To,
1210                                       Instruction *From) {
1211   propagateMetadata(To, From);
1212   addNewMetadata(To, From);
1213 }
1214 
1215 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1216                                       Instruction *From) {
1217   for (Value *V : To) {
1218     if (Instruction *I = dyn_cast<Instruction>(V))
1219       addMetadata(I, From);
1220   }
1221 }
1222 
1223 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1224     const RecurrenceDescriptor &RdxDesc) {
1225   auto It = ReductionResumeValues.find(&RdxDesc);
1226   assert(It != ReductionResumeValues.end() &&
1227          "Expected to find a resume value for the reduction.");
1228   return It->second;
1229 }
1230 
1231 namespace llvm {
1232 
1233 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1234 // lowered.
1235 enum ScalarEpilogueLowering {
1236 
1237   // The default: allowing scalar epilogues.
1238   CM_ScalarEpilogueAllowed,
1239 
1240   // Vectorization with OptForSize: don't allow epilogues.
1241   CM_ScalarEpilogueNotAllowedOptSize,
1242 
1243   // A special case of vectorisation with OptForSize: loops with a very small
1244   // trip count are considered for vectorization under OptForSize, thereby
1245   // making sure the cost of their loop body is dominant, free of runtime
1246   // guards and scalar iteration overheads.
1247   CM_ScalarEpilogueNotAllowedLowTripLoop,
1248 
1249   // Loop hint predicate indicating an epilogue is undesired.
1250   CM_ScalarEpilogueNotNeededUsePredicate,
1251 
1252   // Directive indicating we must either tail fold or not vectorize
1253   CM_ScalarEpilogueNotAllowedUsePredicate
1254 };
1255 
1256 /// ElementCountComparator creates a total ordering for ElementCount
1257 /// for the purposes of using it in a set structure.
1258 struct ElementCountComparator {
1259   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1260     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1261            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1262   }
1263 };
1264 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1265 
1266 /// LoopVectorizationCostModel - estimates the expected speedups due to
1267 /// vectorization.
1268 /// In many cases vectorization is not profitable. This can happen because of
1269 /// a number of reasons. In this class we mainly attempt to predict the
1270 /// expected speedup/slowdowns due to the supported instruction set. We use the
1271 /// TargetTransformInfo to query the different backends for the cost of
1272 /// different operations.
1273 class LoopVectorizationCostModel {
1274 public:
1275   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1276                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1277                              LoopVectorizationLegality *Legal,
1278                              const TargetTransformInfo &TTI,
1279                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1280                              AssumptionCache *AC,
1281                              OptimizationRemarkEmitter *ORE, const Function *F,
1282                              const LoopVectorizeHints *Hints,
1283                              InterleavedAccessInfo &IAI)
1284       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1285         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1286         Hints(Hints), InterleaveInfo(IAI) {}
1287 
1288   /// \return An upper bound for the vectorization factors (both fixed and
1289   /// scalable). If the factors are 0, vectorization and interleaving should be
1290   /// avoided up front.
1291   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1292 
1293   /// \return True if runtime checks are required for vectorization, and false
1294   /// otherwise.
1295   bool runtimeChecksRequired();
1296 
1297   /// \return The most profitable vectorization factor and the cost of that VF.
1298   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1299   /// then this vectorization factor will be selected if vectorization is
1300   /// possible.
1301   VectorizationFactor
1302   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1303 
1304   VectorizationFactor
1305   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1306                                     const LoopVectorizationPlanner &LVP);
1307 
1308   /// Setup cost-based decisions for user vectorization factor.
1309   /// \return true if the UserVF is a feasible VF to be chosen.
1310   bool selectUserVectorizationFactor(ElementCount UserVF) {
1311     collectUniformsAndScalars(UserVF);
1312     collectInstsToScalarize(UserVF);
1313     return expectedCost(UserVF).first.isValid();
1314   }
1315 
1316   /// \return The size (in bits) of the smallest and widest types in the code
1317   /// that needs to be vectorized. We ignore values that remain scalar such as
1318   /// 64 bit loop indices.
1319   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1320 
1321   /// \return The desired interleave count.
1322   /// If interleave count has been specified by metadata it will be returned.
1323   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1324   /// are the selected vectorization factor and the cost of the selected VF.
1325   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1326 
1327   /// Memory access instruction may be vectorized in more than one way.
1328   /// Form of instruction after vectorization depends on cost.
1329   /// This function takes cost-based decisions for Load/Store instructions
1330   /// and collects them in a map. This decisions map is used for building
1331   /// the lists of loop-uniform and loop-scalar instructions.
1332   /// The calculated cost is saved with widening decision in order to
1333   /// avoid redundant calculations.
1334   void setCostBasedWideningDecision(ElementCount VF);
1335 
1336   /// A struct that represents some properties of the register usage
1337   /// of a loop.
1338   struct RegisterUsage {
1339     /// Holds the number of loop invariant values that are used in the loop.
1340     /// The key is ClassID of target-provided register class.
1341     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1342     /// Holds the maximum number of concurrent live intervals in the loop.
1343     /// The key is ClassID of target-provided register class.
1344     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1345   };
1346 
1347   /// \return Returns information about the register usages of the loop for the
1348   /// given vectorization factors.
1349   SmallVector<RegisterUsage, 8>
1350   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1351 
1352   /// Collect values we want to ignore in the cost model.
1353   void collectValuesToIgnore();
1354 
1355   /// Collect all element types in the loop for which widening is needed.
1356   void collectElementTypesForWidening();
1357 
1358   /// Split reductions into those that happen in the loop, and those that happen
1359   /// outside. In loop reductions are collected into InLoopReductionChains.
1360   void collectInLoopReductions();
1361 
1362   /// Returns true if we should use strict in-order reductions for the given
1363   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1364   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1365   /// of FP operations.
1366   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1367     return !Hints->allowReordering() && RdxDesc.isOrdered();
1368   }
1369 
1370   /// \returns The smallest bitwidth each instruction can be represented with.
1371   /// The vector equivalents of these instructions should be truncated to this
1372   /// type.
1373   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1374     return MinBWs;
1375   }
1376 
1377   /// \returns True if it is more profitable to scalarize instruction \p I for
1378   /// vectorization factor \p VF.
1379   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1380     assert(VF.isVector() &&
1381            "Profitable to scalarize relevant only for VF > 1.");
1382 
1383     // Cost model is not run in the VPlan-native path - return conservative
1384     // result until this changes.
1385     if (EnableVPlanNativePath)
1386       return false;
1387 
1388     auto Scalars = InstsToScalarize.find(VF);
1389     assert(Scalars != InstsToScalarize.end() &&
1390            "VF not yet analyzed for scalarization profitability");
1391     return Scalars->second.find(I) != Scalars->second.end();
1392   }
1393 
1394   /// Returns true if \p I is known to be uniform after vectorization.
1395   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1396     if (VF.isScalar())
1397       return true;
1398 
1399     // Cost model is not run in the VPlan-native path - return conservative
1400     // result until this changes.
1401     if (EnableVPlanNativePath)
1402       return false;
1403 
1404     auto UniformsPerVF = Uniforms.find(VF);
1405     assert(UniformsPerVF != Uniforms.end() &&
1406            "VF not yet analyzed for uniformity");
1407     return UniformsPerVF->second.count(I);
1408   }
1409 
1410   /// Returns true if \p I is known to be scalar after vectorization.
1411   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1412     if (VF.isScalar())
1413       return true;
1414 
1415     // Cost model is not run in the VPlan-native path - return conservative
1416     // result until this changes.
1417     if (EnableVPlanNativePath)
1418       return false;
1419 
1420     auto ScalarsPerVF = Scalars.find(VF);
1421     assert(ScalarsPerVF != Scalars.end() &&
1422            "Scalar values are not calculated for VF");
1423     return ScalarsPerVF->second.count(I);
1424   }
1425 
1426   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1427   /// for vectorization factor \p VF.
1428   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1429     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1430            !isProfitableToScalarize(I, VF) &&
1431            !isScalarAfterVectorization(I, VF);
1432   }
1433 
1434   /// Decision that was taken during cost calculation for memory instruction.
1435   enum InstWidening {
1436     CM_Unknown,
1437     CM_Widen,         // For consecutive accesses with stride +1.
1438     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1439     CM_Interleave,
1440     CM_GatherScatter,
1441     CM_Scalarize
1442   };
1443 
1444   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1445   /// instruction \p I and vector width \p VF.
1446   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1447                            InstructionCost Cost) {
1448     assert(VF.isVector() && "Expected VF >=2");
1449     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1450   }
1451 
1452   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1453   /// interleaving group \p Grp and vector width \p VF.
1454   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1455                            ElementCount VF, InstWidening W,
1456                            InstructionCost Cost) {
1457     assert(VF.isVector() && "Expected VF >=2");
1458     /// Broadcast this decicion to all instructions inside the group.
1459     /// But the cost will be assigned to one instruction only.
1460     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1461       if (auto *I = Grp->getMember(i)) {
1462         if (Grp->getInsertPos() == I)
1463           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1464         else
1465           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1466       }
1467     }
1468   }
1469 
1470   /// Return the cost model decision for the given instruction \p I and vector
1471   /// width \p VF. Return CM_Unknown if this instruction did not pass
1472   /// through the cost modeling.
1473   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1474     assert(VF.isVector() && "Expected VF to be a vector VF");
1475     // Cost model is not run in the VPlan-native path - return conservative
1476     // result until this changes.
1477     if (EnableVPlanNativePath)
1478       return CM_GatherScatter;
1479 
1480     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1481     auto Itr = WideningDecisions.find(InstOnVF);
1482     if (Itr == WideningDecisions.end())
1483       return CM_Unknown;
1484     return Itr->second.first;
1485   }
1486 
1487   /// Return the vectorization cost for the given instruction \p I and vector
1488   /// width \p VF.
1489   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1490     assert(VF.isVector() && "Expected VF >=2");
1491     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1492     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1493            "The cost is not calculated");
1494     return WideningDecisions[InstOnVF].second;
1495   }
1496 
1497   /// Return True if instruction \p I is an optimizable truncate whose operand
1498   /// is an induction variable. Such a truncate will be removed by adding a new
1499   /// induction variable with the destination type.
1500   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1501     // If the instruction is not a truncate, return false.
1502     auto *Trunc = dyn_cast<TruncInst>(I);
1503     if (!Trunc)
1504       return false;
1505 
1506     // Get the source and destination types of the truncate.
1507     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1508     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1509 
1510     // If the truncate is free for the given types, return false. Replacing a
1511     // free truncate with an induction variable would add an induction variable
1512     // update instruction to each iteration of the loop. We exclude from this
1513     // check the primary induction variable since it will need an update
1514     // instruction regardless.
1515     Value *Op = Trunc->getOperand(0);
1516     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1517       return false;
1518 
1519     // If the truncated value is not an induction variable, return false.
1520     return Legal->isInductionPhi(Op);
1521   }
1522 
1523   /// Collects the instructions to scalarize for each predicated instruction in
1524   /// the loop.
1525   void collectInstsToScalarize(ElementCount VF);
1526 
1527   /// Collect Uniform and Scalar values for the given \p VF.
1528   /// The sets depend on CM decision for Load/Store instructions
1529   /// that may be vectorized as interleave, gather-scatter or scalarized.
1530   void collectUniformsAndScalars(ElementCount VF) {
1531     // Do the analysis once.
1532     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1533       return;
1534     setCostBasedWideningDecision(VF);
1535     collectLoopUniforms(VF);
1536     collectLoopScalars(VF);
1537   }
1538 
1539   /// Returns true if the target machine supports masked store operation
1540   /// for the given \p DataType and kind of access to \p Ptr.
1541   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1542     return Legal->isConsecutivePtr(DataType, Ptr) &&
1543            TTI.isLegalMaskedStore(DataType, Alignment);
1544   }
1545 
1546   /// Returns true if the target machine supports masked load operation
1547   /// for the given \p DataType and kind of access to \p Ptr.
1548   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1549     return Legal->isConsecutivePtr(DataType, Ptr) &&
1550            TTI.isLegalMaskedLoad(DataType, Alignment);
1551   }
1552 
1553   /// Returns true if the target machine can represent \p V as a masked gather
1554   /// or scatter operation.
1555   bool isLegalGatherOrScatter(Value *V,
1556                               ElementCount VF = ElementCount::getFixed(1)) {
1557     bool LI = isa<LoadInst>(V);
1558     bool SI = isa<StoreInst>(V);
1559     if (!LI && !SI)
1560       return false;
1561     auto *Ty = getLoadStoreType(V);
1562     Align Align = getLoadStoreAlignment(V);
1563     if (VF.isVector())
1564       Ty = VectorType::get(Ty, VF);
1565     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1566            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1567   }
1568 
1569   /// Returns true if the target machine supports all of the reduction
1570   /// variables found for the given VF.
1571   bool canVectorizeReductions(ElementCount VF) const {
1572     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1573       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1574       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1575     }));
1576   }
1577 
1578   /// Returns true if \p I is an instruction that will be scalarized with
1579   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1580   /// instructions include conditional stores and instructions that may divide
1581   /// by zero.
1582   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1583 
1584   // Returns true if \p I is an instruction that will be predicated either
1585   // through scalar predication or masked load/store or masked gather/scatter.
1586   // \p VF is the vectorization factor that will be used to vectorize \p I.
1587   // Superset of instructions that return true for isScalarWithPredication.
1588   bool isPredicatedInst(Instruction *I, ElementCount VF,
1589                         bool IsKnownUniform = false) {
1590     // When we know the load is uniform and the original scalar loop was not
1591     // predicated we don't need to mark it as a predicated instruction. Any
1592     // vectorised blocks created when tail-folding are something artificial we
1593     // have introduced and we know there is always at least one active lane.
1594     // That's why we call Legal->blockNeedsPredication here because it doesn't
1595     // query tail-folding.
1596     if (IsKnownUniform && isa<LoadInst>(I) &&
1597         !Legal->blockNeedsPredication(I->getParent()))
1598       return false;
1599     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1600       return false;
1601     // Loads and stores that need some form of masked operation are predicated
1602     // instructions.
1603     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1604       return Legal->isMaskRequired(I);
1605     return isScalarWithPredication(I, VF);
1606   }
1607 
1608   /// Returns true if \p I is a memory instruction with consecutive memory
1609   /// access that can be widened.
1610   bool
1611   memoryInstructionCanBeWidened(Instruction *I,
1612                                 ElementCount VF = ElementCount::getFixed(1));
1613 
1614   /// Returns true if \p I is a memory instruction in an interleaved-group
1615   /// of memory accesses that can be vectorized with wide vector loads/stores
1616   /// and shuffles.
1617   bool
1618   interleavedAccessCanBeWidened(Instruction *I,
1619                                 ElementCount VF = ElementCount::getFixed(1));
1620 
1621   /// Check if \p Instr belongs to any interleaved access group.
1622   bool isAccessInterleaved(Instruction *Instr) {
1623     return InterleaveInfo.isInterleaved(Instr);
1624   }
1625 
1626   /// Get the interleaved access group that \p Instr belongs to.
1627   const InterleaveGroup<Instruction> *
1628   getInterleavedAccessGroup(Instruction *Instr) {
1629     return InterleaveInfo.getInterleaveGroup(Instr);
1630   }
1631 
1632   /// Returns true if we're required to use a scalar epilogue for at least
1633   /// the final iteration of the original loop.
1634   bool requiresScalarEpilogue(ElementCount VF) const {
1635     if (!isScalarEpilogueAllowed())
1636       return false;
1637     // If we might exit from anywhere but the latch, must run the exiting
1638     // iteration in scalar form.
1639     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1640       return true;
1641     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1642   }
1643 
1644   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1645   /// loop hint annotation.
1646   bool isScalarEpilogueAllowed() const {
1647     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1648   }
1649 
1650   /// Returns true if all loop blocks should be masked to fold tail loop.
1651   bool foldTailByMasking() const { return FoldTailByMasking; }
1652 
1653   /// Returns true if the instructions in this block requires predication
1654   /// for any reason, e.g. because tail folding now requires a predicate
1655   /// or because the block in the original loop was predicated.
1656   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1657     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1658   }
1659 
1660   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1661   /// nodes to the chain of instructions representing the reductions. Uses a
1662   /// MapVector to ensure deterministic iteration order.
1663   using ReductionChainMap =
1664       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1665 
1666   /// Return the chain of instructions representing an inloop reduction.
1667   const ReductionChainMap &getInLoopReductionChains() const {
1668     return InLoopReductionChains;
1669   }
1670 
1671   /// Returns true if the Phi is part of an inloop reduction.
1672   bool isInLoopReduction(PHINode *Phi) const {
1673     return InLoopReductionChains.count(Phi);
1674   }
1675 
1676   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1677   /// with factor VF.  Return the cost of the instruction, including
1678   /// scalarization overhead if it's needed.
1679   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1680 
1681   /// Estimate cost of a call instruction CI if it were vectorized with factor
1682   /// VF. Return the cost of the instruction, including scalarization overhead
1683   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1684   /// scalarized -
1685   /// i.e. either vector version isn't available, or is too expensive.
1686   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1687                                     bool &NeedToScalarize) const;
1688 
1689   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1690   /// that of B.
1691   bool isMoreProfitable(const VectorizationFactor &A,
1692                         const VectorizationFactor &B) const;
1693 
1694   /// Invalidates decisions already taken by the cost model.
1695   void invalidateCostModelingDecisions() {
1696     WideningDecisions.clear();
1697     Uniforms.clear();
1698     Scalars.clear();
1699   }
1700 
1701 private:
1702   unsigned NumPredStores = 0;
1703 
1704   /// \return An upper bound for the vectorization factors for both
1705   /// fixed and scalable vectorization, where the minimum-known number of
1706   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1707   /// disabled or unsupported, then the scalable part will be equal to
1708   /// ElementCount::getScalable(0).
1709   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1710                                            ElementCount UserVF,
1711                                            bool FoldTailByMasking);
1712 
1713   /// \return the maximized element count based on the targets vector
1714   /// registers and the loop trip-count, but limited to a maximum safe VF.
1715   /// This is a helper function of computeFeasibleMaxVF.
1716   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1717   /// issue that occurred on one of the buildbots which cannot be reproduced
1718   /// without having access to the properietary compiler (see comments on
1719   /// D98509). The issue is currently under investigation and this workaround
1720   /// will be removed as soon as possible.
1721   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1722                                        unsigned SmallestType,
1723                                        unsigned WidestType,
1724                                        const ElementCount &MaxSafeVF,
1725                                        bool FoldTailByMasking);
1726 
1727   /// \return the maximum legal scalable VF, based on the safe max number
1728   /// of elements.
1729   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1730 
1731   /// The vectorization cost is a combination of the cost itself and a boolean
1732   /// indicating whether any of the contributing operations will actually
1733   /// operate on vector values after type legalization in the backend. If this
1734   /// latter value is false, then all operations will be scalarized (i.e. no
1735   /// vectorization has actually taken place).
1736   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1737 
1738   /// Returns the expected execution cost. The unit of the cost does
1739   /// not matter because we use the 'cost' units to compare different
1740   /// vector widths. The cost that is returned is *not* normalized by
1741   /// the factor width. If \p Invalid is not nullptr, this function
1742   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1743   /// each instruction that has an Invalid cost for the given VF.
1744   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1745   VectorizationCostTy
1746   expectedCost(ElementCount VF,
1747                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1748 
1749   /// Returns the execution time cost of an instruction for a given vector
1750   /// width. Vector width of one means scalar.
1751   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1752 
1753   /// The cost-computation logic from getInstructionCost which provides
1754   /// the vector type as an output parameter.
1755   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1756                                      Type *&VectorTy);
1757 
1758   /// Return the cost of instructions in an inloop reduction pattern, if I is
1759   /// part of that pattern.
1760   Optional<InstructionCost>
1761   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1762                           TTI::TargetCostKind CostKind);
1763 
1764   /// Calculate vectorization cost of memory instruction \p I.
1765   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1766 
1767   /// The cost computation for scalarized memory instruction.
1768   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1769 
1770   /// The cost computation for interleaving group of memory instructions.
1771   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1772 
1773   /// The cost computation for Gather/Scatter instruction.
1774   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1775 
1776   /// The cost computation for widening instruction \p I with consecutive
1777   /// memory access.
1778   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1779 
1780   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1781   /// Load: scalar load + broadcast.
1782   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1783   /// element)
1784   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1785 
1786   /// Estimate the overhead of scalarizing an instruction. This is a
1787   /// convenience wrapper for the type-based getScalarizationOverhead API.
1788   InstructionCost getScalarizationOverhead(Instruction *I,
1789                                            ElementCount VF) const;
1790 
1791   /// Returns whether the instruction is a load or store and will be a emitted
1792   /// as a vector operation.
1793   bool isConsecutiveLoadOrStore(Instruction *I);
1794 
1795   /// Returns true if an artificially high cost for emulated masked memrefs
1796   /// should be used.
1797   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1798 
1799   /// Map of scalar integer values to the smallest bitwidth they can be legally
1800   /// represented as. The vector equivalents of these values should be truncated
1801   /// to this type.
1802   MapVector<Instruction *, uint64_t> MinBWs;
1803 
1804   /// A type representing the costs for instructions if they were to be
1805   /// scalarized rather than vectorized. The entries are Instruction-Cost
1806   /// pairs.
1807   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1808 
1809   /// A set containing all BasicBlocks that are known to present after
1810   /// vectorization as a predicated block.
1811   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1812 
1813   /// Records whether it is allowed to have the original scalar loop execute at
1814   /// least once. This may be needed as a fallback loop in case runtime
1815   /// aliasing/dependence checks fail, or to handle the tail/remainder
1816   /// iterations when the trip count is unknown or doesn't divide by the VF,
1817   /// or as a peel-loop to handle gaps in interleave-groups.
1818   /// Under optsize and when the trip count is very small we don't allow any
1819   /// iterations to execute in the scalar loop.
1820   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1821 
1822   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1823   bool FoldTailByMasking = false;
1824 
1825   /// A map holding scalar costs for different vectorization factors. The
1826   /// presence of a cost for an instruction in the mapping indicates that the
1827   /// instruction will be scalarized when vectorizing with the associated
1828   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1829   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1830 
1831   /// Holds the instructions known to be uniform after vectorization.
1832   /// The data is collected per VF.
1833   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1834 
1835   /// Holds the instructions known to be scalar after vectorization.
1836   /// The data is collected per VF.
1837   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1838 
1839   /// Holds the instructions (address computations) that are forced to be
1840   /// scalarized.
1841   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1842 
1843   /// PHINodes of the reductions that should be expanded in-loop along with
1844   /// their associated chains of reduction operations, in program order from top
1845   /// (PHI) to bottom
1846   ReductionChainMap InLoopReductionChains;
1847 
1848   /// A Map of inloop reduction operations and their immediate chain operand.
1849   /// FIXME: This can be removed once reductions can be costed correctly in
1850   /// vplan. This was added to allow quick lookup to the inloop operations,
1851   /// without having to loop through InLoopReductionChains.
1852   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1853 
1854   /// Returns the expected difference in cost from scalarizing the expression
1855   /// feeding a predicated instruction \p PredInst. The instructions to
1856   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1857   /// non-negative return value implies the expression will be scalarized.
1858   /// Currently, only single-use chains are considered for scalarization.
1859   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1860                               ElementCount VF);
1861 
1862   /// Collect the instructions that are uniform after vectorization. An
1863   /// instruction is uniform if we represent it with a single scalar value in
1864   /// the vectorized loop corresponding to each vector iteration. Examples of
1865   /// uniform instructions include pointer operands of consecutive or
1866   /// interleaved memory accesses. Note that although uniformity implies an
1867   /// instruction will be scalar, the reverse is not true. In general, a
1868   /// scalarized instruction will be represented by VF scalar values in the
1869   /// vectorized loop, each corresponding to an iteration of the original
1870   /// scalar loop.
1871   void collectLoopUniforms(ElementCount VF);
1872 
1873   /// Collect the instructions that are scalar after vectorization. An
1874   /// instruction is scalar if it is known to be uniform or will be scalarized
1875   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1876   /// to the list if they are used by a load/store instruction that is marked as
1877   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1878   /// VF values in the vectorized loop, each corresponding to an iteration of
1879   /// the original scalar loop.
1880   void collectLoopScalars(ElementCount VF);
1881 
1882   /// Keeps cost model vectorization decision and cost for instructions.
1883   /// Right now it is used for memory instructions only.
1884   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1885                                 std::pair<InstWidening, InstructionCost>>;
1886 
1887   DecisionList WideningDecisions;
1888 
1889   /// Returns true if \p V is expected to be vectorized and it needs to be
1890   /// extracted.
1891   bool needsExtract(Value *V, ElementCount VF) const {
1892     Instruction *I = dyn_cast<Instruction>(V);
1893     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1894         TheLoop->isLoopInvariant(I))
1895       return false;
1896 
1897     // Assume we can vectorize V (and hence we need extraction) if the
1898     // scalars are not computed yet. This can happen, because it is called
1899     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1900     // the scalars are collected. That should be a safe assumption in most
1901     // cases, because we check if the operands have vectorizable types
1902     // beforehand in LoopVectorizationLegality.
1903     return Scalars.find(VF) == Scalars.end() ||
1904            !isScalarAfterVectorization(I, VF);
1905   };
1906 
1907   /// Returns a range containing only operands needing to be extracted.
1908   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1909                                                    ElementCount VF) const {
1910     return SmallVector<Value *, 4>(make_filter_range(
1911         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1912   }
1913 
1914   /// Determines if we have the infrastructure to vectorize loop \p L and its
1915   /// epilogue, assuming the main loop is vectorized by \p VF.
1916   bool isCandidateForEpilogueVectorization(const Loop &L,
1917                                            const ElementCount VF) const;
1918 
1919   /// Returns true if epilogue vectorization is considered profitable, and
1920   /// false otherwise.
1921   /// \p VF is the vectorization factor chosen for the original loop.
1922   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1923 
1924 public:
1925   /// The loop that we evaluate.
1926   Loop *TheLoop;
1927 
1928   /// Predicated scalar evolution analysis.
1929   PredicatedScalarEvolution &PSE;
1930 
1931   /// Loop Info analysis.
1932   LoopInfo *LI;
1933 
1934   /// Vectorization legality.
1935   LoopVectorizationLegality *Legal;
1936 
1937   /// Vector target information.
1938   const TargetTransformInfo &TTI;
1939 
1940   /// Target Library Info.
1941   const TargetLibraryInfo *TLI;
1942 
1943   /// Demanded bits analysis.
1944   DemandedBits *DB;
1945 
1946   /// Assumption cache.
1947   AssumptionCache *AC;
1948 
1949   /// Interface to emit optimization remarks.
1950   OptimizationRemarkEmitter *ORE;
1951 
1952   const Function *TheFunction;
1953 
1954   /// Loop Vectorize Hint.
1955   const LoopVectorizeHints *Hints;
1956 
1957   /// The interleave access information contains groups of interleaved accesses
1958   /// with the same stride and close to each other.
1959   InterleavedAccessInfo &InterleaveInfo;
1960 
1961   /// Values to ignore in the cost model.
1962   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1963 
1964   /// Values to ignore in the cost model when VF > 1.
1965   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1966 
1967   /// All element types found in the loop.
1968   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1969 
1970   /// Profitable vector factors.
1971   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1972 };
1973 } // end namespace llvm
1974 
1975 /// Helper struct to manage generating runtime checks for vectorization.
1976 ///
1977 /// The runtime checks are created up-front in temporary blocks to allow better
1978 /// estimating the cost and un-linked from the existing IR. After deciding to
1979 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1980 /// temporary blocks are completely removed.
1981 class GeneratedRTChecks {
1982   /// Basic block which contains the generated SCEV checks, if any.
1983   BasicBlock *SCEVCheckBlock = nullptr;
1984 
1985   /// The value representing the result of the generated SCEV checks. If it is
1986   /// nullptr, either no SCEV checks have been generated or they have been used.
1987   Value *SCEVCheckCond = nullptr;
1988 
1989   /// Basic block which contains the generated memory runtime checks, if any.
1990   BasicBlock *MemCheckBlock = nullptr;
1991 
1992   /// The value representing the result of the generated memory runtime checks.
1993   /// If it is nullptr, either no memory runtime checks have been generated or
1994   /// they have been used.
1995   Value *MemRuntimeCheckCond = nullptr;
1996 
1997   DominatorTree *DT;
1998   LoopInfo *LI;
1999 
2000   SCEVExpander SCEVExp;
2001   SCEVExpander MemCheckExp;
2002 
2003 public:
2004   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
2005                     const DataLayout &DL)
2006       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
2007         MemCheckExp(SE, DL, "scev.check") {}
2008 
2009   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
2010   /// accurately estimate the cost of the runtime checks. The blocks are
2011   /// un-linked from the IR and is added back during vector code generation. If
2012   /// there is no vector code generation, the check blocks are removed
2013   /// completely.
2014   void Create(Loop *L, const LoopAccessInfo &LAI,
2015               const SCEVUnionPredicate &UnionPred) {
2016 
2017     BasicBlock *LoopHeader = L->getHeader();
2018     BasicBlock *Preheader = L->getLoopPreheader();
2019 
2020     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
2021     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
2022     // may be used by SCEVExpander. The blocks will be un-linked from their
2023     // predecessors and removed from LI & DT at the end of the function.
2024     if (!UnionPred.isAlwaysTrue()) {
2025       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
2026                                   nullptr, "vector.scevcheck");
2027 
2028       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
2029           &UnionPred, SCEVCheckBlock->getTerminator());
2030     }
2031 
2032     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
2033     if (RtPtrChecking.Need) {
2034       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
2035       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
2036                                  "vector.memcheck");
2037 
2038       MemRuntimeCheckCond =
2039           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
2040                            RtPtrChecking.getChecks(), MemCheckExp);
2041       assert(MemRuntimeCheckCond &&
2042              "no RT checks generated although RtPtrChecking "
2043              "claimed checks are required");
2044     }
2045 
2046     if (!MemCheckBlock && !SCEVCheckBlock)
2047       return;
2048 
2049     // Unhook the temporary block with the checks, update various places
2050     // accordingly.
2051     if (SCEVCheckBlock)
2052       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2053     if (MemCheckBlock)
2054       MemCheckBlock->replaceAllUsesWith(Preheader);
2055 
2056     if (SCEVCheckBlock) {
2057       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2058       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2059       Preheader->getTerminator()->eraseFromParent();
2060     }
2061     if (MemCheckBlock) {
2062       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2063       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2064       Preheader->getTerminator()->eraseFromParent();
2065     }
2066 
2067     DT->changeImmediateDominator(LoopHeader, Preheader);
2068     if (MemCheckBlock) {
2069       DT->eraseNode(MemCheckBlock);
2070       LI->removeBlock(MemCheckBlock);
2071     }
2072     if (SCEVCheckBlock) {
2073       DT->eraseNode(SCEVCheckBlock);
2074       LI->removeBlock(SCEVCheckBlock);
2075     }
2076   }
2077 
2078   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2079   /// unused.
2080   ~GeneratedRTChecks() {
2081     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2082     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2083     if (!SCEVCheckCond)
2084       SCEVCleaner.markResultUsed();
2085 
2086     if (!MemRuntimeCheckCond)
2087       MemCheckCleaner.markResultUsed();
2088 
2089     if (MemRuntimeCheckCond) {
2090       auto &SE = *MemCheckExp.getSE();
2091       // Memory runtime check generation creates compares that use expanded
2092       // values. Remove them before running the SCEVExpanderCleaners.
2093       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2094         if (MemCheckExp.isInsertedInstruction(&I))
2095           continue;
2096         SE.forgetValue(&I);
2097         I.eraseFromParent();
2098       }
2099     }
2100     MemCheckCleaner.cleanup();
2101     SCEVCleaner.cleanup();
2102 
2103     if (SCEVCheckCond)
2104       SCEVCheckBlock->eraseFromParent();
2105     if (MemRuntimeCheckCond)
2106       MemCheckBlock->eraseFromParent();
2107   }
2108 
2109   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2110   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2111   /// depending on the generated condition.
2112   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2113                              BasicBlock *LoopVectorPreHeader,
2114                              BasicBlock *LoopExitBlock) {
2115     if (!SCEVCheckCond)
2116       return nullptr;
2117     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2118       if (C->isZero())
2119         return nullptr;
2120 
2121     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2122 
2123     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2124     // Create new preheader for vector loop.
2125     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2126       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2127 
2128     SCEVCheckBlock->getTerminator()->eraseFromParent();
2129     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2130     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2131                                                 SCEVCheckBlock);
2132 
2133     DT->addNewBlock(SCEVCheckBlock, Pred);
2134     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2135 
2136     ReplaceInstWithInst(
2137         SCEVCheckBlock->getTerminator(),
2138         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2139     // Mark the check as used, to prevent it from being removed during cleanup.
2140     SCEVCheckCond = nullptr;
2141     return SCEVCheckBlock;
2142   }
2143 
2144   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2145   /// the branches to branch to the vector preheader or \p Bypass, depending on
2146   /// the generated condition.
2147   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2148                                    BasicBlock *LoopVectorPreHeader) {
2149     // Check if we generated code that checks in runtime if arrays overlap.
2150     if (!MemRuntimeCheckCond)
2151       return nullptr;
2152 
2153     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2154     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2155                                                 MemCheckBlock);
2156 
2157     DT->addNewBlock(MemCheckBlock, Pred);
2158     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2159     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2160 
2161     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2162       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2163 
2164     ReplaceInstWithInst(
2165         MemCheckBlock->getTerminator(),
2166         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2167     MemCheckBlock->getTerminator()->setDebugLoc(
2168         Pred->getTerminator()->getDebugLoc());
2169 
2170     // Mark the check as used, to prevent it from being removed during cleanup.
2171     MemRuntimeCheckCond = nullptr;
2172     return MemCheckBlock;
2173   }
2174 };
2175 
2176 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2177 // vectorization. The loop needs to be annotated with #pragma omp simd
2178 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2179 // vector length information is not provided, vectorization is not considered
2180 // explicit. Interleave hints are not allowed either. These limitations will be
2181 // relaxed in the future.
2182 // Please, note that we are currently forced to abuse the pragma 'clang
2183 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2184 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2185 // provides *explicit vectorization hints* (LV can bypass legal checks and
2186 // assume that vectorization is legal). However, both hints are implemented
2187 // using the same metadata (llvm.loop.vectorize, processed by
2188 // LoopVectorizeHints). This will be fixed in the future when the native IR
2189 // representation for pragma 'omp simd' is introduced.
2190 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2191                                    OptimizationRemarkEmitter *ORE) {
2192   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2193   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2194 
2195   // Only outer loops with an explicit vectorization hint are supported.
2196   // Unannotated outer loops are ignored.
2197   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2198     return false;
2199 
2200   Function *Fn = OuterLp->getHeader()->getParent();
2201   if (!Hints.allowVectorization(Fn, OuterLp,
2202                                 true /*VectorizeOnlyWhenForced*/)) {
2203     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2204     return false;
2205   }
2206 
2207   if (Hints.getInterleave() > 1) {
2208     // TODO: Interleave support is future work.
2209     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2210                          "outer loops.\n");
2211     Hints.emitRemarkWithHints();
2212     return false;
2213   }
2214 
2215   return true;
2216 }
2217 
2218 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2219                                   OptimizationRemarkEmitter *ORE,
2220                                   SmallVectorImpl<Loop *> &V) {
2221   // Collect inner loops and outer loops without irreducible control flow. For
2222   // now, only collect outer loops that have explicit vectorization hints. If we
2223   // are stress testing the VPlan H-CFG construction, we collect the outermost
2224   // loop of every loop nest.
2225   if (L.isInnermost() || VPlanBuildStressTest ||
2226       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2227     LoopBlocksRPO RPOT(&L);
2228     RPOT.perform(LI);
2229     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2230       V.push_back(&L);
2231       // TODO: Collect inner loops inside marked outer loops in case
2232       // vectorization fails for the outer loop. Do not invoke
2233       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2234       // already known to be reducible. We can use an inherited attribute for
2235       // that.
2236       return;
2237     }
2238   }
2239   for (Loop *InnerL : L)
2240     collectSupportedLoops(*InnerL, LI, ORE, V);
2241 }
2242 
2243 namespace {
2244 
2245 /// The LoopVectorize Pass.
2246 struct LoopVectorize : public FunctionPass {
2247   /// Pass identification, replacement for typeid
2248   static char ID;
2249 
2250   LoopVectorizePass Impl;
2251 
2252   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2253                          bool VectorizeOnlyWhenForced = false)
2254       : FunctionPass(ID),
2255         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2256     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2257   }
2258 
2259   bool runOnFunction(Function &F) override {
2260     if (skipFunction(F))
2261       return false;
2262 
2263     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2264     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2265     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2266     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2267     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2268     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2269     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2270     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2271     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2272     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2273     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2274     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2275     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2276 
2277     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2278         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2279 
2280     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2281                         GetLAA, *ORE, PSI).MadeAnyChange;
2282   }
2283 
2284   void getAnalysisUsage(AnalysisUsage &AU) const override {
2285     AU.addRequired<AssumptionCacheTracker>();
2286     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2287     AU.addRequired<DominatorTreeWrapperPass>();
2288     AU.addRequired<LoopInfoWrapperPass>();
2289     AU.addRequired<ScalarEvolutionWrapperPass>();
2290     AU.addRequired<TargetTransformInfoWrapperPass>();
2291     AU.addRequired<AAResultsWrapperPass>();
2292     AU.addRequired<LoopAccessLegacyAnalysis>();
2293     AU.addRequired<DemandedBitsWrapperPass>();
2294     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2295     AU.addRequired<InjectTLIMappingsLegacy>();
2296 
2297     // We currently do not preserve loopinfo/dominator analyses with outer loop
2298     // vectorization. Until this is addressed, mark these analyses as preserved
2299     // only for non-VPlan-native path.
2300     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2301     if (!EnableVPlanNativePath) {
2302       AU.addPreserved<LoopInfoWrapperPass>();
2303       AU.addPreserved<DominatorTreeWrapperPass>();
2304     }
2305 
2306     AU.addPreserved<BasicAAWrapperPass>();
2307     AU.addPreserved<GlobalsAAWrapperPass>();
2308     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2309   }
2310 };
2311 
2312 } // end anonymous namespace
2313 
2314 //===----------------------------------------------------------------------===//
2315 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2316 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2317 //===----------------------------------------------------------------------===//
2318 
2319 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2320   // We need to place the broadcast of invariant variables outside the loop,
2321   // but only if it's proven safe to do so. Else, broadcast will be inside
2322   // vector loop body.
2323   Instruction *Instr = dyn_cast<Instruction>(V);
2324   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2325                      (!Instr ||
2326                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2327   // Place the code for broadcasting invariant variables in the new preheader.
2328   IRBuilder<>::InsertPointGuard Guard(Builder);
2329   if (SafeToHoist)
2330     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2331 
2332   // Broadcast the scalar into all locations in the vector.
2333   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2334 
2335   return Shuf;
2336 }
2337 
2338 /// This function adds
2339 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2340 /// to each vector element of Val. The sequence starts at StartIndex.
2341 /// \p Opcode is relevant for FP induction variable.
2342 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2343                             Instruction::BinaryOps BinOp, ElementCount VF,
2344                             IRBuilder<> &Builder) {
2345   assert(VF.isVector() && "only vector VFs are supported");
2346 
2347   // Create and check the types.
2348   auto *ValVTy = cast<VectorType>(Val->getType());
2349   ElementCount VLen = ValVTy->getElementCount();
2350 
2351   Type *STy = Val->getType()->getScalarType();
2352   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2353          "Induction Step must be an integer or FP");
2354   assert(Step->getType() == STy && "Step has wrong type");
2355 
2356   SmallVector<Constant *, 8> Indices;
2357 
2358   // Create a vector of consecutive numbers from zero to VF.
2359   VectorType *InitVecValVTy = ValVTy;
2360   Type *InitVecValSTy = STy;
2361   if (STy->isFloatingPointTy()) {
2362     InitVecValSTy =
2363         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2364     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2365   }
2366   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2367 
2368   // Splat the StartIdx
2369   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2370 
2371   if (STy->isIntegerTy()) {
2372     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2373     Step = Builder.CreateVectorSplat(VLen, Step);
2374     assert(Step->getType() == Val->getType() && "Invalid step vec");
2375     // FIXME: The newly created binary instructions should contain nsw/nuw
2376     // flags, which can be found from the original scalar operations.
2377     Step = Builder.CreateMul(InitVec, Step);
2378     return Builder.CreateAdd(Val, Step, "induction");
2379   }
2380 
2381   // Floating point induction.
2382   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2383          "Binary Opcode should be specified for FP induction");
2384   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2385   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2386 
2387   Step = Builder.CreateVectorSplat(VLen, Step);
2388   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2389   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2390 }
2391 
2392 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2393     const InductionDescriptor &II, Value *Step, Value *Start,
2394     Instruction *EntryVal, VPValue *Def, VPTransformState &State) {
2395   IRBuilder<> &Builder = State.Builder;
2396   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2397          "Expected either an induction phi-node or a truncate of it!");
2398 
2399   // Construct the initial value of the vector IV in the vector loop preheader
2400   auto CurrIP = Builder.saveIP();
2401   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2402   if (isa<TruncInst>(EntryVal)) {
2403     assert(Start->getType()->isIntegerTy() &&
2404            "Truncation requires an integer type");
2405     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2406     Step = Builder.CreateTrunc(Step, TruncType);
2407     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2408   }
2409 
2410   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
2411   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
2412   Value *SteppedStart = getStepVector(
2413       SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder);
2414 
2415   // We create vector phi nodes for both integer and floating-point induction
2416   // variables. Here, we determine the kind of arithmetic we will perform.
2417   Instruction::BinaryOps AddOp;
2418   Instruction::BinaryOps MulOp;
2419   if (Step->getType()->isIntegerTy()) {
2420     AddOp = Instruction::Add;
2421     MulOp = Instruction::Mul;
2422   } else {
2423     AddOp = II.getInductionOpcode();
2424     MulOp = Instruction::FMul;
2425   }
2426 
2427   // Multiply the vectorization factor by the step using integer or
2428   // floating-point arithmetic as appropriate.
2429   Type *StepType = Step->getType();
2430   Value *RuntimeVF;
2431   if (Step->getType()->isFloatingPointTy())
2432     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
2433   else
2434     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
2435   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2436 
2437   // Create a vector splat to use in the induction update.
2438   //
2439   // FIXME: If the step is non-constant, we create the vector splat with
2440   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2441   //        handle a constant vector splat.
2442   Value *SplatVF = isa<Constant>(Mul)
2443                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
2444                        : Builder.CreateVectorSplat(State.VF, Mul);
2445   Builder.restoreIP(CurrIP);
2446 
2447   // We may need to add the step a number of times, depending on the unroll
2448   // factor. The last of those goes into the PHI.
2449   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2450                                     &*LoopVectorBody->getFirstInsertionPt());
2451   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2452   Instruction *LastInduction = VecInd;
2453   for (unsigned Part = 0; Part < UF; ++Part) {
2454     State.set(Def, LastInduction, Part);
2455 
2456     if (isa<TruncInst>(EntryVal))
2457       addMetadata(LastInduction, EntryVal);
2458 
2459     LastInduction = cast<Instruction>(
2460         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2461     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2462   }
2463 
2464   // Move the last step to the end of the latch block. This ensures consistent
2465   // placement of all induction updates.
2466   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2467   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2468   LastInduction->moveBefore(Br);
2469   LastInduction->setName("vec.ind.next");
2470 
2471   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2472   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2473 }
2474 
2475 void InnerLoopVectorizer::widenIntOrFpInduction(
2476     PHINode *IV, VPWidenIntOrFpInductionRecipe *Def, VPTransformState &State,
2477     Value *CanonicalIV) {
2478   Value *Start = Def->getStartValue()->getLiveInIRValue();
2479   const InductionDescriptor &ID = Def->getInductionDescriptor();
2480   TruncInst *Trunc = Def->getTruncInst();
2481   IRBuilder<> &Builder = State.Builder;
2482   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2483   assert(!State.VF.isZero() && "VF must be non-zero");
2484 
2485   // The value from the original loop to which we are mapping the new induction
2486   // variable.
2487   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2488 
2489   auto &DL = EntryVal->getModule()->getDataLayout();
2490 
2491   // Generate code for the induction step. Note that induction steps are
2492   // required to be loop-invariant
2493   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2494     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2495            "Induction step should be loop invariant");
2496     if (PSE.getSE()->isSCEVable(IV->getType())) {
2497       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2498       return Exp.expandCodeFor(Step, Step->getType(),
2499                                State.CFG.VectorPreHeader->getTerminator());
2500     }
2501     return cast<SCEVUnknown>(Step)->getValue();
2502   };
2503 
2504   // The scalar value to broadcast. This is derived from the canonical
2505   // induction variable. If a truncation type is given, truncate the canonical
2506   // induction variable and step. Otherwise, derive these values from the
2507   // induction descriptor.
2508   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2509     Value *ScalarIV = CanonicalIV;
2510     Type *NeededType = IV->getType();
2511     if (!Def->isCanonical() || ScalarIV->getType() != NeededType) {
2512       ScalarIV =
2513           NeededType->isIntegerTy()
2514               ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType)
2515               : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType);
2516       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID,
2517                                       State.CFG.PrevBB);
2518       ScalarIV->setName("offset.idx");
2519     }
2520     if (Trunc) {
2521       auto *TruncType = cast<IntegerType>(Trunc->getType());
2522       assert(Step->getType()->isIntegerTy() &&
2523              "Truncation requires an integer step");
2524       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2525       Step = Builder.CreateTrunc(Step, TruncType);
2526     }
2527     return ScalarIV;
2528   };
2529 
2530   // Fast-math-flags propagate from the original induction instruction.
2531   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2532   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2533     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2534 
2535   // Now do the actual transformations, and start with creating the step value.
2536   Value *Step = CreateStepValue(ID.getStep());
2537   if (State.VF.isScalar()) {
2538     Value *ScalarIV = CreateScalarIV(Step);
2539     Type *ScalarTy = IntegerType::get(ScalarIV->getContext(),
2540                                       Step->getType()->getScalarSizeInBits());
2541 
2542     Instruction::BinaryOps IncOp = ID.getInductionOpcode();
2543     if (IncOp == Instruction::BinaryOpsEnd)
2544       IncOp = Instruction::Add;
2545     for (unsigned Part = 0; Part < UF; ++Part) {
2546       Value *StartIdx = ConstantInt::get(ScalarTy, Part);
2547       Instruction::BinaryOps MulOp = Instruction::Mul;
2548       if (Step->getType()->isFloatingPointTy()) {
2549         StartIdx = Builder.CreateUIToFP(StartIdx, Step->getType());
2550         MulOp = Instruction::FMul;
2551       }
2552 
2553       Value *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2554       Value *EntryPart = Builder.CreateBinOp(IncOp, ScalarIV, Mul, "induction");
2555       State.set(Def, EntryPart, Part);
2556       if (Trunc) {
2557         assert(!Step->getType()->isFloatingPointTy() &&
2558                "fp inductions shouldn't be truncated");
2559         addMetadata(EntryPart, Trunc);
2560       }
2561     }
2562     return;
2563   }
2564 
2565   // Create a new independent vector induction variable, if one is needed.
2566   if (Def->needsVectorIV())
2567     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State);
2568 
2569   if (Def->needsScalarIV()) {
2570     // Create scalar steps that can be used by instructions we will later
2571     // scalarize. Note that the addition of the scalar steps will not increase
2572     // the number of instructions in the loop in the common case prior to
2573     // InstCombine. We will be trading one vector extract for each scalar step.
2574     Value *ScalarIV = CreateScalarIV(Step);
2575     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State);
2576   }
2577 }
2578 
2579 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2580                                            Instruction *EntryVal,
2581                                            const InductionDescriptor &ID,
2582                                            VPValue *Def,
2583                                            VPTransformState &State) {
2584   IRBuilder<> &Builder = State.Builder;
2585   // We shouldn't have to build scalar steps if we aren't vectorizing.
2586   assert(State.VF.isVector() && "VF should be greater than one");
2587   // Get the value type and ensure it and the step have the same integer type.
2588   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2589   assert(ScalarIVTy == Step->getType() &&
2590          "Val and Step should have the same type");
2591 
2592   // We build scalar steps for both integer and floating-point induction
2593   // variables. Here, we determine the kind of arithmetic we will perform.
2594   Instruction::BinaryOps AddOp;
2595   Instruction::BinaryOps MulOp;
2596   if (ScalarIVTy->isIntegerTy()) {
2597     AddOp = Instruction::Add;
2598     MulOp = Instruction::Mul;
2599   } else {
2600     AddOp = ID.getInductionOpcode();
2601     MulOp = Instruction::FMul;
2602   }
2603 
2604   // Determine the number of scalars we need to generate for each unroll
2605   // iteration.
2606   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2607   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2608   // Compute the scalar steps and save the results in State.
2609   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2610                                      ScalarIVTy->getScalarSizeInBits());
2611   Type *VecIVTy = nullptr;
2612   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2613   if (!FirstLaneOnly && State.VF.isScalable()) {
2614     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2615     UnitStepVec =
2616         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2617     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2618     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2619   }
2620 
2621   for (unsigned Part = 0; Part < State.UF; ++Part) {
2622     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2623 
2624     if (!FirstLaneOnly && State.VF.isScalable()) {
2625       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2626       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2627       if (ScalarIVTy->isFloatingPointTy())
2628         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2629       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2630       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2631       State.set(Def, Add, Part);
2632       // It's useful to record the lane values too for the known minimum number
2633       // of elements so we do those below. This improves the code quality when
2634       // trying to extract the first element, for example.
2635     }
2636 
2637     if (ScalarIVTy->isFloatingPointTy())
2638       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2639 
2640     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2641       Value *StartIdx = Builder.CreateBinOp(
2642           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2643       // The step returned by `createStepForVF` is a runtime-evaluated value
2644       // when VF is scalable. Otherwise, it should be folded into a Constant.
2645       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2646              "Expected StartIdx to be folded to a constant when VF is not "
2647              "scalable");
2648       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2649       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2650       State.set(Def, Add, VPIteration(Part, Lane));
2651     }
2652   }
2653 }
2654 
2655 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2656                                                     const VPIteration &Instance,
2657                                                     VPTransformState &State) {
2658   Value *ScalarInst = State.get(Def, Instance);
2659   Value *VectorValue = State.get(Def, Instance.Part);
2660   VectorValue = Builder.CreateInsertElement(
2661       VectorValue, ScalarInst,
2662       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2663   State.set(Def, VectorValue, Instance.Part);
2664 }
2665 
2666 // Return whether we allow using masked interleave-groups (for dealing with
2667 // strided loads/stores that reside in predicated blocks, or for dealing
2668 // with gaps).
2669 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2670   // If an override option has been passed in for interleaved accesses, use it.
2671   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2672     return EnableMaskedInterleavedMemAccesses;
2673 
2674   return TTI.enableMaskedInterleavedAccessVectorization();
2675 }
2676 
2677 // Try to vectorize the interleave group that \p Instr belongs to.
2678 //
2679 // E.g. Translate following interleaved load group (factor = 3):
2680 //   for (i = 0; i < N; i+=3) {
2681 //     R = Pic[i];             // Member of index 0
2682 //     G = Pic[i+1];           // Member of index 1
2683 //     B = Pic[i+2];           // Member of index 2
2684 //     ... // do something to R, G, B
2685 //   }
2686 // To:
2687 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2688 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2689 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2690 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2691 //
2692 // Or translate following interleaved store group (factor = 3):
2693 //   for (i = 0; i < N; i+=3) {
2694 //     ... do something to R, G, B
2695 //     Pic[i]   = R;           // Member of index 0
2696 //     Pic[i+1] = G;           // Member of index 1
2697 //     Pic[i+2] = B;           // Member of index 2
2698 //   }
2699 // To:
2700 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2701 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2702 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2703 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2704 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2705 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2706     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2707     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2708     VPValue *BlockInMask) {
2709   Instruction *Instr = Group->getInsertPos();
2710   const DataLayout &DL = Instr->getModule()->getDataLayout();
2711 
2712   // Prepare for the vector type of the interleaved load/store.
2713   Type *ScalarTy = getLoadStoreType(Instr);
2714   unsigned InterleaveFactor = Group->getFactor();
2715   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2716   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2717 
2718   // Prepare for the new pointers.
2719   SmallVector<Value *, 2> AddrParts;
2720   unsigned Index = Group->getIndex(Instr);
2721 
2722   // TODO: extend the masked interleaved-group support to reversed access.
2723   assert((!BlockInMask || !Group->isReverse()) &&
2724          "Reversed masked interleave-group not supported.");
2725 
2726   // If the group is reverse, adjust the index to refer to the last vector lane
2727   // instead of the first. We adjust the index from the first vector lane,
2728   // rather than directly getting the pointer for lane VF - 1, because the
2729   // pointer operand of the interleaved access is supposed to be uniform. For
2730   // uniform instructions, we're only required to generate a value for the
2731   // first vector lane in each unroll iteration.
2732   if (Group->isReverse())
2733     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2734 
2735   for (unsigned Part = 0; Part < UF; Part++) {
2736     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2737     setDebugLocFromInst(AddrPart);
2738 
2739     // Notice current instruction could be any index. Need to adjust the address
2740     // to the member of index 0.
2741     //
2742     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2743     //       b = A[i];       // Member of index 0
2744     // Current pointer is pointed to A[i+1], adjust it to A[i].
2745     //
2746     // E.g.  A[i+1] = a;     // Member of index 1
2747     //       A[i]   = b;     // Member of index 0
2748     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2749     // Current pointer is pointed to A[i+2], adjust it to A[i].
2750 
2751     bool InBounds = false;
2752     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2753       InBounds = gep->isInBounds();
2754     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2755     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2756 
2757     // Cast to the vector pointer type.
2758     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2759     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2760     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2761   }
2762 
2763   setDebugLocFromInst(Instr);
2764   Value *PoisonVec = PoisonValue::get(VecTy);
2765 
2766   Value *MaskForGaps = nullptr;
2767   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2768     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2769     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2770   }
2771 
2772   // Vectorize the interleaved load group.
2773   if (isa<LoadInst>(Instr)) {
2774     // For each unroll part, create a wide load for the group.
2775     SmallVector<Value *, 2> NewLoads;
2776     for (unsigned Part = 0; Part < UF; Part++) {
2777       Instruction *NewLoad;
2778       if (BlockInMask || MaskForGaps) {
2779         assert(useMaskedInterleavedAccesses(*TTI) &&
2780                "masked interleaved groups are not allowed.");
2781         Value *GroupMask = MaskForGaps;
2782         if (BlockInMask) {
2783           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2784           Value *ShuffledMask = Builder.CreateShuffleVector(
2785               BlockInMaskPart,
2786               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2787               "interleaved.mask");
2788           GroupMask = MaskForGaps
2789                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2790                                                 MaskForGaps)
2791                           : ShuffledMask;
2792         }
2793         NewLoad =
2794             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2795                                      GroupMask, PoisonVec, "wide.masked.vec");
2796       }
2797       else
2798         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2799                                             Group->getAlign(), "wide.vec");
2800       Group->addMetadata(NewLoad);
2801       NewLoads.push_back(NewLoad);
2802     }
2803 
2804     // For each member in the group, shuffle out the appropriate data from the
2805     // wide loads.
2806     unsigned J = 0;
2807     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2808       Instruction *Member = Group->getMember(I);
2809 
2810       // Skip the gaps in the group.
2811       if (!Member)
2812         continue;
2813 
2814       auto StrideMask =
2815           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2816       for (unsigned Part = 0; Part < UF; Part++) {
2817         Value *StridedVec = Builder.CreateShuffleVector(
2818             NewLoads[Part], StrideMask, "strided.vec");
2819 
2820         // If this member has different type, cast the result type.
2821         if (Member->getType() != ScalarTy) {
2822           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2823           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2824           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2825         }
2826 
2827         if (Group->isReverse())
2828           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2829 
2830         State.set(VPDefs[J], StridedVec, Part);
2831       }
2832       ++J;
2833     }
2834     return;
2835   }
2836 
2837   // The sub vector type for current instruction.
2838   auto *SubVT = VectorType::get(ScalarTy, VF);
2839 
2840   // Vectorize the interleaved store group.
2841   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2842   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2843          "masked interleaved groups are not allowed.");
2844   assert((!MaskForGaps || !VF.isScalable()) &&
2845          "masking gaps for scalable vectors is not yet supported.");
2846   for (unsigned Part = 0; Part < UF; Part++) {
2847     // Collect the stored vector from each member.
2848     SmallVector<Value *, 4> StoredVecs;
2849     for (unsigned i = 0; i < InterleaveFactor; i++) {
2850       assert((Group->getMember(i) || MaskForGaps) &&
2851              "Fail to get a member from an interleaved store group");
2852       Instruction *Member = Group->getMember(i);
2853 
2854       // Skip the gaps in the group.
2855       if (!Member) {
2856         Value *Undef = PoisonValue::get(SubVT);
2857         StoredVecs.push_back(Undef);
2858         continue;
2859       }
2860 
2861       Value *StoredVec = State.get(StoredValues[i], Part);
2862 
2863       if (Group->isReverse())
2864         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2865 
2866       // If this member has different type, cast it to a unified type.
2867 
2868       if (StoredVec->getType() != SubVT)
2869         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2870 
2871       StoredVecs.push_back(StoredVec);
2872     }
2873 
2874     // Concatenate all vectors into a wide vector.
2875     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2876 
2877     // Interleave the elements in the wide vector.
2878     Value *IVec = Builder.CreateShuffleVector(
2879         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2880         "interleaved.vec");
2881 
2882     Instruction *NewStoreInstr;
2883     if (BlockInMask || MaskForGaps) {
2884       Value *GroupMask = MaskForGaps;
2885       if (BlockInMask) {
2886         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2887         Value *ShuffledMask = Builder.CreateShuffleVector(
2888             BlockInMaskPart,
2889             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2890             "interleaved.mask");
2891         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2892                                                       ShuffledMask, MaskForGaps)
2893                                 : ShuffledMask;
2894       }
2895       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2896                                                 Group->getAlign(), GroupMask);
2897     } else
2898       NewStoreInstr =
2899           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2900 
2901     Group->addMetadata(NewStoreInstr);
2902   }
2903 }
2904 
2905 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2906                                                VPReplicateRecipe *RepRecipe,
2907                                                const VPIteration &Instance,
2908                                                bool IfPredicateInstr,
2909                                                VPTransformState &State) {
2910   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2911 
2912   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2913   // the first lane and part.
2914   if (isa<NoAliasScopeDeclInst>(Instr))
2915     if (!Instance.isFirstIteration())
2916       return;
2917 
2918   setDebugLocFromInst(Instr);
2919 
2920   // Does this instruction return a value ?
2921   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2922 
2923   Instruction *Cloned = Instr->clone();
2924   if (!IsVoidRetTy)
2925     Cloned->setName(Instr->getName() + ".cloned");
2926 
2927   // If the scalarized instruction contributes to the address computation of a
2928   // widen masked load/store which was in a basic block that needed predication
2929   // and is not predicated after vectorization, we can't propagate
2930   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2931   // instruction could feed a poison value to the base address of the widen
2932   // load/store.
2933   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2934     Cloned->dropPoisonGeneratingFlags();
2935 
2936   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
2937                                Builder.GetInsertPoint());
2938   // Replace the operands of the cloned instructions with their scalar
2939   // equivalents in the new loop.
2940   for (auto &I : enumerate(RepRecipe->operands())) {
2941     auto InputInstance = Instance;
2942     VPValue *Operand = I.value();
2943     if (State.Plan->isUniformAfterVectorization(Operand))
2944       InputInstance.Lane = VPLane::getFirstLane();
2945     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2946   }
2947   addNewMetadata(Cloned, Instr);
2948 
2949   // Place the cloned scalar in the new loop.
2950   Builder.Insert(Cloned);
2951 
2952   State.set(RepRecipe, Cloned, Instance);
2953 
2954   // If we just cloned a new assumption, add it the assumption cache.
2955   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2956     AC->registerAssumption(II);
2957 
2958   // End if-block.
2959   if (IfPredicateInstr)
2960     PredicatedInstructions.push_back(Cloned);
2961 }
2962 
2963 void InnerLoopVectorizer::createHeaderBranch(Loop *L) {
2964   BasicBlock *Header = L->getHeader();
2965   assert(!L->getLoopLatch() && "loop should not have a latch at this point");
2966 
2967   IRBuilder<> B(Header->getTerminator());
2968   Instruction *OldInst =
2969       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
2970   setDebugLocFromInst(OldInst, &B);
2971 
2972   // Connect the header to the exit and header blocks and replace the old
2973   // terminator.
2974   B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header);
2975 
2976   // Now we have two terminators. Remove the old one from the block.
2977   Header->getTerminator()->eraseFromParent();
2978 }
2979 
2980 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2981   if (TripCount)
2982     return TripCount;
2983 
2984   assert(L && "Create Trip Count for null loop.");
2985   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2986   // Find the loop boundaries.
2987   ScalarEvolution *SE = PSE.getSE();
2988   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2989   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2990          "Invalid loop count");
2991 
2992   Type *IdxTy = Legal->getWidestInductionType();
2993   assert(IdxTy && "No type for induction");
2994 
2995   // The exit count might have the type of i64 while the phi is i32. This can
2996   // happen if we have an induction variable that is sign extended before the
2997   // compare. The only way that we get a backedge taken count is that the
2998   // induction variable was signed and as such will not overflow. In such a case
2999   // truncation is legal.
3000   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3001       IdxTy->getPrimitiveSizeInBits())
3002     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3003   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3004 
3005   // Get the total trip count from the count by adding 1.
3006   const SCEV *ExitCount = SE->getAddExpr(
3007       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3008 
3009   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3010 
3011   // Expand the trip count and place the new instructions in the preheader.
3012   // Notice that the pre-header does not change, only the loop body.
3013   SCEVExpander Exp(*SE, DL, "induction");
3014 
3015   // Count holds the overall loop count (N).
3016   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3017                                 L->getLoopPreheader()->getTerminator());
3018 
3019   if (TripCount->getType()->isPointerTy())
3020     TripCount =
3021         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3022                                     L->getLoopPreheader()->getTerminator());
3023 
3024   return TripCount;
3025 }
3026 
3027 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3028   if (VectorTripCount)
3029     return VectorTripCount;
3030 
3031   Value *TC = getOrCreateTripCount(L);
3032   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3033 
3034   Type *Ty = TC->getType();
3035   // This is where we can make the step a runtime constant.
3036   Value *Step = createStepForVF(Builder, Ty, VF, UF);
3037 
3038   // If the tail is to be folded by masking, round the number of iterations N
3039   // up to a multiple of Step instead of rounding down. This is done by first
3040   // adding Step-1 and then rounding down. Note that it's ok if this addition
3041   // overflows: the vector induction variable will eventually wrap to zero given
3042   // that it starts at zero and its Step is a power of two; the loop will then
3043   // exit, with the last early-exit vector comparison also producing all-true.
3044   if (Cost->foldTailByMasking()) {
3045     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3046            "VF*UF must be a power of 2 when folding tail by masking");
3047     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
3048     TC = Builder.CreateAdd(
3049         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
3050   }
3051 
3052   // Now we need to generate the expression for the part of the loop that the
3053   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3054   // iterations are not required for correctness, or N - Step, otherwise. Step
3055   // is equal to the vectorization factor (number of SIMD elements) times the
3056   // unroll factor (number of SIMD instructions).
3057   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3058 
3059   // There are cases where we *must* run at least one iteration in the remainder
3060   // loop.  See the cost model for when this can happen.  If the step evenly
3061   // divides the trip count, we set the remainder to be equal to the step. If
3062   // the step does not evenly divide the trip count, no adjustment is necessary
3063   // since there will already be scalar iterations. Note that the minimum
3064   // iterations check ensures that N >= Step.
3065   if (Cost->requiresScalarEpilogue(VF)) {
3066     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3067     R = Builder.CreateSelect(IsZero, Step, R);
3068   }
3069 
3070   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3071 
3072   return VectorTripCount;
3073 }
3074 
3075 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3076                                                    const DataLayout &DL) {
3077   // Verify that V is a vector type with same number of elements as DstVTy.
3078   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3079   unsigned VF = DstFVTy->getNumElements();
3080   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3081   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3082   Type *SrcElemTy = SrcVecTy->getElementType();
3083   Type *DstElemTy = DstFVTy->getElementType();
3084   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3085          "Vector elements must have same size");
3086 
3087   // Do a direct cast if element types are castable.
3088   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3089     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3090   }
3091   // V cannot be directly casted to desired vector type.
3092   // May happen when V is a floating point vector but DstVTy is a vector of
3093   // pointers or vice-versa. Handle this using a two-step bitcast using an
3094   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3095   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3096          "Only one type should be a pointer type");
3097   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3098          "Only one type should be a floating point type");
3099   Type *IntTy =
3100       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3101   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3102   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3103   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3104 }
3105 
3106 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3107                                                          BasicBlock *Bypass) {
3108   Value *Count = getOrCreateTripCount(L);
3109   // Reuse existing vector loop preheader for TC checks.
3110   // Note that new preheader block is generated for vector loop.
3111   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3112   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3113 
3114   // Generate code to check if the loop's trip count is less than VF * UF, or
3115   // equal to it in case a scalar epilogue is required; this implies that the
3116   // vector trip count is zero. This check also covers the case where adding one
3117   // to the backedge-taken count overflowed leading to an incorrect trip count
3118   // of zero. In this case we will also jump to the scalar loop.
3119   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3120                                             : ICmpInst::ICMP_ULT;
3121 
3122   // If tail is to be folded, vector loop takes care of all iterations.
3123   Value *CheckMinIters = Builder.getFalse();
3124   if (!Cost->foldTailByMasking()) {
3125     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
3126     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3127   }
3128   // Create new preheader for vector loop.
3129   LoopVectorPreHeader =
3130       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3131                  "vector.ph");
3132 
3133   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3134                                DT->getNode(Bypass)->getIDom()) &&
3135          "TC check is expected to dominate Bypass");
3136 
3137   // Update dominator for Bypass & LoopExit (if needed).
3138   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3139   if (!Cost->requiresScalarEpilogue(VF))
3140     // If there is an epilogue which must run, there's no edge from the
3141     // middle block to exit blocks  and thus no need to update the immediate
3142     // dominator of the exit blocks.
3143     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3144 
3145   ReplaceInstWithInst(
3146       TCCheckBlock->getTerminator(),
3147       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3148   LoopBypassBlocks.push_back(TCCheckBlock);
3149 }
3150 
3151 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3152 
3153   BasicBlock *const SCEVCheckBlock =
3154       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3155   if (!SCEVCheckBlock)
3156     return nullptr;
3157 
3158   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3159            (OptForSizeBasedOnProfile &&
3160             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3161          "Cannot SCEV check stride or overflow when optimizing for size");
3162 
3163 
3164   // Update dominator only if this is first RT check.
3165   if (LoopBypassBlocks.empty()) {
3166     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3167     if (!Cost->requiresScalarEpilogue(VF))
3168       // If there is an epilogue which must run, there's no edge from the
3169       // middle block to exit blocks  and thus no need to update the immediate
3170       // dominator of the exit blocks.
3171       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3172   }
3173 
3174   LoopBypassBlocks.push_back(SCEVCheckBlock);
3175   AddedSafetyChecks = true;
3176   return SCEVCheckBlock;
3177 }
3178 
3179 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3180                                                       BasicBlock *Bypass) {
3181   // VPlan-native path does not do any analysis for runtime checks currently.
3182   if (EnableVPlanNativePath)
3183     return nullptr;
3184 
3185   BasicBlock *const MemCheckBlock =
3186       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3187 
3188   // Check if we generated code that checks in runtime if arrays overlap. We put
3189   // the checks into a separate block to make the more common case of few
3190   // elements faster.
3191   if (!MemCheckBlock)
3192     return nullptr;
3193 
3194   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3195     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3196            "Cannot emit memory checks when optimizing for size, unless forced "
3197            "to vectorize.");
3198     ORE->emit([&]() {
3199       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3200                                         L->getStartLoc(), L->getHeader())
3201              << "Code-size may be reduced by not forcing "
3202                 "vectorization, or by source-code modifications "
3203                 "eliminating the need for runtime checks "
3204                 "(e.g., adding 'restrict').";
3205     });
3206   }
3207 
3208   LoopBypassBlocks.push_back(MemCheckBlock);
3209 
3210   AddedSafetyChecks = true;
3211 
3212   // We currently don't use LoopVersioning for the actual loop cloning but we
3213   // still use it to add the noalias metadata.
3214   LVer = std::make_unique<LoopVersioning>(
3215       *Legal->getLAI(),
3216       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3217       DT, PSE.getSE());
3218   LVer->prepareNoAliasMetadata();
3219   return MemCheckBlock;
3220 }
3221 
3222 Value *InnerLoopVectorizer::emitTransformedIndex(
3223     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3224     const InductionDescriptor &ID, BasicBlock *VectorHeader) const {
3225 
3226   SCEVExpander Exp(*SE, DL, "induction");
3227   auto Step = ID.getStep();
3228   auto StartValue = ID.getStartValue();
3229   assert(Index->getType()->getScalarType() == Step->getType() &&
3230          "Index scalar type does not match StepValue type");
3231 
3232   // Note: the IR at this point is broken. We cannot use SE to create any new
3233   // SCEV and then expand it, hoping that SCEV's simplification will give us
3234   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3235   // lead to various SCEV crashes. So all we can do is to use builder and rely
3236   // on InstCombine for future simplifications. Here we handle some trivial
3237   // cases only.
3238   auto CreateAdd = [&B](Value *X, Value *Y) {
3239     assert(X->getType() == Y->getType() && "Types don't match!");
3240     if (auto *CX = dyn_cast<ConstantInt>(X))
3241       if (CX->isZero())
3242         return Y;
3243     if (auto *CY = dyn_cast<ConstantInt>(Y))
3244       if (CY->isZero())
3245         return X;
3246     return B.CreateAdd(X, Y);
3247   };
3248 
3249   // We allow X to be a vector type, in which case Y will potentially be
3250   // splatted into a vector with the same element count.
3251   auto CreateMul = [&B](Value *X, Value *Y) {
3252     assert(X->getType()->getScalarType() == Y->getType() &&
3253            "Types don't match!");
3254     if (auto *CX = dyn_cast<ConstantInt>(X))
3255       if (CX->isOne())
3256         return Y;
3257     if (auto *CY = dyn_cast<ConstantInt>(Y))
3258       if (CY->isOne())
3259         return X;
3260     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3261     if (XVTy && !isa<VectorType>(Y->getType()))
3262       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3263     return B.CreateMul(X, Y);
3264   };
3265 
3266   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3267   // loop, choose the end of the vector loop header (=VectorHeader), because
3268   // the DomTree is not kept up-to-date for additional blocks generated in the
3269   // vector loop. By using the header as insertion point, we guarantee that the
3270   // expanded instructions dominate all their uses.
3271   auto GetInsertPoint = [this, &B, VectorHeader]() {
3272     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3273     if (InsertBB != LoopVectorBody &&
3274         LI->getLoopFor(VectorHeader) == LI->getLoopFor(InsertBB))
3275       return VectorHeader->getTerminator();
3276     return &*B.GetInsertPoint();
3277   };
3278 
3279   switch (ID.getKind()) {
3280   case InductionDescriptor::IK_IntInduction: {
3281     assert(!isa<VectorType>(Index->getType()) &&
3282            "Vector indices not supported for integer inductions yet");
3283     assert(Index->getType() == StartValue->getType() &&
3284            "Index type does not match StartValue type");
3285     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3286       return B.CreateSub(StartValue, Index);
3287     auto *Offset = CreateMul(
3288         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3289     return CreateAdd(StartValue, Offset);
3290   }
3291   case InductionDescriptor::IK_PtrInduction: {
3292     assert(isa<SCEVConstant>(Step) &&
3293            "Expected constant step for pointer induction");
3294     return B.CreateGEP(
3295         ID.getElementType(), StartValue,
3296         CreateMul(Index,
3297                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3298                                     GetInsertPoint())));
3299   }
3300   case InductionDescriptor::IK_FpInduction: {
3301     assert(!isa<VectorType>(Index->getType()) &&
3302            "Vector indices not supported for FP inductions yet");
3303     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3304     auto InductionBinOp = ID.getInductionBinOp();
3305     assert(InductionBinOp &&
3306            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3307             InductionBinOp->getOpcode() == Instruction::FSub) &&
3308            "Original bin op should be defined for FP induction");
3309 
3310     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3311     Value *MulExp = B.CreateFMul(StepValue, Index);
3312     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3313                          "induction");
3314   }
3315   case InductionDescriptor::IK_NoInduction:
3316     return nullptr;
3317   }
3318   llvm_unreachable("invalid enum");
3319 }
3320 
3321 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3322   LoopScalarBody = OrigLoop->getHeader();
3323   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3324   assert(LoopVectorPreHeader && "Invalid loop structure");
3325   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3326   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3327          "multiple exit loop without required epilogue?");
3328 
3329   LoopMiddleBlock =
3330       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3331                  LI, nullptr, Twine(Prefix) + "middle.block");
3332   LoopScalarPreHeader =
3333       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3334                  nullptr, Twine(Prefix) + "scalar.ph");
3335 
3336   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3337 
3338   // Set up the middle block terminator.  Two cases:
3339   // 1) If we know that we must execute the scalar epilogue, emit an
3340   //    unconditional branch.
3341   // 2) Otherwise, we must have a single unique exit block (due to how we
3342   //    implement the multiple exit case).  In this case, set up a conditonal
3343   //    branch from the middle block to the loop scalar preheader, and the
3344   //    exit block.  completeLoopSkeleton will update the condition to use an
3345   //    iteration check, if required to decide whether to execute the remainder.
3346   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3347     BranchInst::Create(LoopScalarPreHeader) :
3348     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3349                        Builder.getTrue());
3350   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3351   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3352 
3353   // We intentionally don't let SplitBlock to update LoopInfo since
3354   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3355   // LoopVectorBody is explicitly added to the correct place few lines later.
3356   LoopVectorBody =
3357       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3358                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3359 
3360   // Update dominator for loop exit.
3361   if (!Cost->requiresScalarEpilogue(VF))
3362     // If there is an epilogue which must run, there's no edge from the
3363     // middle block to exit blocks  and thus no need to update the immediate
3364     // dominator of the exit blocks.
3365     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3366 
3367   // Create and register the new vector loop.
3368   Loop *Lp = LI->AllocateLoop();
3369   Loop *ParentLoop = OrigLoop->getParentLoop();
3370 
3371   // Insert the new loop into the loop nest and register the new basic blocks
3372   // before calling any utilities such as SCEV that require valid LoopInfo.
3373   if (ParentLoop) {
3374     ParentLoop->addChildLoop(Lp);
3375   } else {
3376     LI->addTopLevelLoop(Lp);
3377   }
3378   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3379   return Lp;
3380 }
3381 
3382 void InnerLoopVectorizer::createInductionResumeValues(
3383     Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) {
3384   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3385           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3386          "Inconsistent information about additional bypass.");
3387 
3388   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3389   assert(VectorTripCount && L && "Expected valid arguments");
3390   // We are going to resume the execution of the scalar loop.
3391   // Go over all of the induction variables that we found and fix the
3392   // PHIs that are left in the scalar version of the loop.
3393   // The starting values of PHI nodes depend on the counter of the last
3394   // iteration in the vectorized loop.
3395   // If we come from a bypass edge then we need to start from the original
3396   // start value.
3397   Instruction *OldInduction = Legal->getPrimaryInduction();
3398   for (auto &InductionEntry : Legal->getInductionVars()) {
3399     PHINode *OrigPhi = InductionEntry.first;
3400     InductionDescriptor II = InductionEntry.second;
3401 
3402     // Create phi nodes to merge from the  backedge-taken check block.
3403     PHINode *BCResumeVal =
3404         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3405                         LoopScalarPreHeader->getTerminator());
3406     // Copy original phi DL over to the new one.
3407     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3408     Value *&EndValue = IVEndValues[OrigPhi];
3409     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3410     if (OrigPhi == OldInduction) {
3411       // We know what the end value is.
3412       EndValue = VectorTripCount;
3413     } else {
3414       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3415 
3416       // Fast-math-flags propagate from the original induction instruction.
3417       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3418         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3419 
3420       Type *StepType = II.getStep()->getType();
3421       Instruction::CastOps CastOp =
3422           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3423       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3424       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3425       EndValue =
3426           emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody);
3427       EndValue->setName("ind.end");
3428 
3429       // Compute the end value for the additional bypass (if applicable).
3430       if (AdditionalBypass.first) {
3431         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3432         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3433                                          StepType, true);
3434         CRD =
3435             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3436         EndValueFromAdditionalBypass =
3437             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody);
3438         EndValueFromAdditionalBypass->setName("ind.end");
3439       }
3440     }
3441     // The new PHI merges the original incoming value, in case of a bypass,
3442     // or the value at the end of the vectorized loop.
3443     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3444 
3445     // Fix the scalar body counter (PHI node).
3446     // The old induction's phi node in the scalar body needs the truncated
3447     // value.
3448     for (BasicBlock *BB : LoopBypassBlocks)
3449       BCResumeVal->addIncoming(II.getStartValue(), BB);
3450 
3451     if (AdditionalBypass.first)
3452       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3453                                             EndValueFromAdditionalBypass);
3454 
3455     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3456   }
3457 }
3458 
3459 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3460                                                       MDNode *OrigLoopID) {
3461   assert(L && "Expected valid loop.");
3462 
3463   // The trip counts should be cached by now.
3464   Value *Count = getOrCreateTripCount(L);
3465   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3466 
3467   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3468 
3469   // Add a check in the middle block to see if we have completed
3470   // all of the iterations in the first vector loop.  Three cases:
3471   // 1) If we require a scalar epilogue, there is no conditional branch as
3472   //    we unconditionally branch to the scalar preheader.  Do nothing.
3473   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3474   //    Thus if tail is to be folded, we know we don't need to run the
3475   //    remainder and we can use the previous value for the condition (true).
3476   // 3) Otherwise, construct a runtime check.
3477   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3478     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3479                                         Count, VectorTripCount, "cmp.n",
3480                                         LoopMiddleBlock->getTerminator());
3481 
3482     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3483     // of the corresponding compare because they may have ended up with
3484     // different line numbers and we want to avoid awkward line stepping while
3485     // debugging. Eg. if the compare has got a line number inside the loop.
3486     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3487     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3488   }
3489 
3490   // Get ready to start creating new instructions into the vectorized body.
3491   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3492          "Inconsistent vector loop preheader");
3493   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3494 
3495 #ifdef EXPENSIVE_CHECKS
3496   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3497   LI->verify(*DT);
3498 #endif
3499 
3500   return LoopVectorPreHeader;
3501 }
3502 
3503 std::pair<BasicBlock *, Value *>
3504 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3505   /*
3506    In this function we generate a new loop. The new loop will contain
3507    the vectorized instructions while the old loop will continue to run the
3508    scalar remainder.
3509 
3510        [ ] <-- loop iteration number check.
3511     /   |
3512    /    v
3513   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3514   |  /  |
3515   | /   v
3516   ||   [ ]     <-- vector pre header.
3517   |/    |
3518   |     v
3519   |    [  ] \
3520   |    [  ]_|   <-- vector loop.
3521   |     |
3522   |     v
3523   \   -[ ]   <--- middle-block.
3524    \/   |
3525    /\   v
3526    | ->[ ]     <--- new preheader.
3527    |    |
3528  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3529    |   [ ] \
3530    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3531     \   |
3532      \  v
3533       >[ ]     <-- exit block(s).
3534    ...
3535    */
3536 
3537   // Get the metadata of the original loop before it gets modified.
3538   MDNode *OrigLoopID = OrigLoop->getLoopID();
3539 
3540   // Workaround!  Compute the trip count of the original loop and cache it
3541   // before we start modifying the CFG.  This code has a systemic problem
3542   // wherein it tries to run analysis over partially constructed IR; this is
3543   // wrong, and not simply for SCEV.  The trip count of the original loop
3544   // simply happens to be prone to hitting this in practice.  In theory, we
3545   // can hit the same issue for any SCEV, or ValueTracking query done during
3546   // mutation.  See PR49900.
3547   getOrCreateTripCount(OrigLoop);
3548 
3549   // Create an empty vector loop, and prepare basic blocks for the runtime
3550   // checks.
3551   Loop *Lp = createVectorLoopSkeleton("");
3552 
3553   // Now, compare the new count to zero. If it is zero skip the vector loop and
3554   // jump to the scalar loop. This check also covers the case where the
3555   // backedge-taken count is uint##_max: adding one to it will overflow leading
3556   // to an incorrect trip count of zero. In this (rare) case we will also jump
3557   // to the scalar loop.
3558   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3559 
3560   // Generate the code to check any assumptions that we've made for SCEV
3561   // expressions.
3562   emitSCEVChecks(Lp, LoopScalarPreHeader);
3563 
3564   // Generate the code that checks in runtime if arrays overlap. We put the
3565   // checks into a separate block to make the more common case of few elements
3566   // faster.
3567   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3568 
3569   createHeaderBranch(Lp);
3570 
3571   // Emit phis for the new starting index of the scalar loop.
3572   createInductionResumeValues(Lp);
3573 
3574   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
3575 }
3576 
3577 // Fix up external users of the induction variable. At this point, we are
3578 // in LCSSA form, with all external PHIs that use the IV having one input value,
3579 // coming from the remainder loop. We need those PHIs to also have a correct
3580 // value for the IV when arriving directly from the middle block.
3581 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3582                                        const InductionDescriptor &II,
3583                                        Value *CountRoundDown, Value *EndValue,
3584                                        BasicBlock *MiddleBlock) {
3585   // There are two kinds of external IV usages - those that use the value
3586   // computed in the last iteration (the PHI) and those that use the penultimate
3587   // value (the value that feeds into the phi from the loop latch).
3588   // We allow both, but they, obviously, have different values.
3589 
3590   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3591 
3592   DenseMap<Value *, Value *> MissingVals;
3593 
3594   // An external user of the last iteration's value should see the value that
3595   // the remainder loop uses to initialize its own IV.
3596   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3597   for (User *U : PostInc->users()) {
3598     Instruction *UI = cast<Instruction>(U);
3599     if (!OrigLoop->contains(UI)) {
3600       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3601       MissingVals[UI] = EndValue;
3602     }
3603   }
3604 
3605   // An external user of the penultimate value need to see EndValue - Step.
3606   // The simplest way to get this is to recompute it from the constituent SCEVs,
3607   // that is Start + (Step * (CRD - 1)).
3608   for (User *U : OrigPhi->users()) {
3609     auto *UI = cast<Instruction>(U);
3610     if (!OrigLoop->contains(UI)) {
3611       const DataLayout &DL =
3612           OrigLoop->getHeader()->getModule()->getDataLayout();
3613       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3614 
3615       IRBuilder<> B(MiddleBlock->getTerminator());
3616 
3617       // Fast-math-flags propagate from the original induction instruction.
3618       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3619         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3620 
3621       Value *CountMinusOne = B.CreateSub(
3622           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3623       Value *CMO =
3624           !II.getStep()->getType()->isIntegerTy()
3625               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3626                              II.getStep()->getType())
3627               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3628       CMO->setName("cast.cmo");
3629       Value *Escape =
3630           emitTransformedIndex(B, CMO, PSE.getSE(), DL, II, LoopVectorBody);
3631       Escape->setName("ind.escape");
3632       MissingVals[UI] = Escape;
3633     }
3634   }
3635 
3636   for (auto &I : MissingVals) {
3637     PHINode *PHI = cast<PHINode>(I.first);
3638     // One corner case we have to handle is two IVs "chasing" each-other,
3639     // that is %IV2 = phi [...], [ %IV1, %latch ]
3640     // In this case, if IV1 has an external use, we need to avoid adding both
3641     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3642     // don't already have an incoming value for the middle block.
3643     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3644       PHI->addIncoming(I.second, MiddleBlock);
3645   }
3646 }
3647 
3648 namespace {
3649 
3650 struct CSEDenseMapInfo {
3651   static bool canHandle(const Instruction *I) {
3652     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3653            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3654   }
3655 
3656   static inline Instruction *getEmptyKey() {
3657     return DenseMapInfo<Instruction *>::getEmptyKey();
3658   }
3659 
3660   static inline Instruction *getTombstoneKey() {
3661     return DenseMapInfo<Instruction *>::getTombstoneKey();
3662   }
3663 
3664   static unsigned getHashValue(const Instruction *I) {
3665     assert(canHandle(I) && "Unknown instruction!");
3666     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3667                                                            I->value_op_end()));
3668   }
3669 
3670   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3671     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3672         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3673       return LHS == RHS;
3674     return LHS->isIdenticalTo(RHS);
3675   }
3676 };
3677 
3678 } // end anonymous namespace
3679 
3680 ///Perform cse of induction variable instructions.
3681 static void cse(BasicBlock *BB) {
3682   // Perform simple cse.
3683   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3684   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3685     if (!CSEDenseMapInfo::canHandle(&In))
3686       continue;
3687 
3688     // Check if we can replace this instruction with any of the
3689     // visited instructions.
3690     if (Instruction *V = CSEMap.lookup(&In)) {
3691       In.replaceAllUsesWith(V);
3692       In.eraseFromParent();
3693       continue;
3694     }
3695 
3696     CSEMap[&In] = &In;
3697   }
3698 }
3699 
3700 InstructionCost
3701 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3702                                               bool &NeedToScalarize) const {
3703   Function *F = CI->getCalledFunction();
3704   Type *ScalarRetTy = CI->getType();
3705   SmallVector<Type *, 4> Tys, ScalarTys;
3706   for (auto &ArgOp : CI->args())
3707     ScalarTys.push_back(ArgOp->getType());
3708 
3709   // Estimate cost of scalarized vector call. The source operands are assumed
3710   // to be vectors, so we need to extract individual elements from there,
3711   // execute VF scalar calls, and then gather the result into the vector return
3712   // value.
3713   InstructionCost ScalarCallCost =
3714       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3715   if (VF.isScalar())
3716     return ScalarCallCost;
3717 
3718   // Compute corresponding vector type for return value and arguments.
3719   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3720   for (Type *ScalarTy : ScalarTys)
3721     Tys.push_back(ToVectorTy(ScalarTy, VF));
3722 
3723   // Compute costs of unpacking argument values for the scalar calls and
3724   // packing the return values to a vector.
3725   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3726 
3727   InstructionCost Cost =
3728       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3729 
3730   // If we can't emit a vector call for this function, then the currently found
3731   // cost is the cost we need to return.
3732   NeedToScalarize = true;
3733   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3734   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3735 
3736   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3737     return Cost;
3738 
3739   // If the corresponding vector cost is cheaper, return its cost.
3740   InstructionCost VectorCallCost =
3741       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3742   if (VectorCallCost < Cost) {
3743     NeedToScalarize = false;
3744     Cost = VectorCallCost;
3745   }
3746   return Cost;
3747 }
3748 
3749 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3750   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3751     return Elt;
3752   return VectorType::get(Elt, VF);
3753 }
3754 
3755 InstructionCost
3756 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3757                                                    ElementCount VF) const {
3758   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3759   assert(ID && "Expected intrinsic call!");
3760   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3761   FastMathFlags FMF;
3762   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3763     FMF = FPMO->getFastMathFlags();
3764 
3765   SmallVector<const Value *> Arguments(CI->args());
3766   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3767   SmallVector<Type *> ParamTys;
3768   std::transform(FTy->param_begin(), FTy->param_end(),
3769                  std::back_inserter(ParamTys),
3770                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3771 
3772   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3773                                     dyn_cast<IntrinsicInst>(CI));
3774   return TTI.getIntrinsicInstrCost(CostAttrs,
3775                                    TargetTransformInfo::TCK_RecipThroughput);
3776 }
3777 
3778 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3779   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3780   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3781   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3782 }
3783 
3784 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3785   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3786   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3787   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3788 }
3789 
3790 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3791   // For every instruction `I` in MinBWs, truncate the operands, create a
3792   // truncated version of `I` and reextend its result. InstCombine runs
3793   // later and will remove any ext/trunc pairs.
3794   SmallPtrSet<Value *, 4> Erased;
3795   for (const auto &KV : Cost->getMinimalBitwidths()) {
3796     // If the value wasn't vectorized, we must maintain the original scalar
3797     // type. The absence of the value from State indicates that it
3798     // wasn't vectorized.
3799     // FIXME: Should not rely on getVPValue at this point.
3800     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3801     if (!State.hasAnyVectorValue(Def))
3802       continue;
3803     for (unsigned Part = 0; Part < UF; ++Part) {
3804       Value *I = State.get(Def, Part);
3805       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3806         continue;
3807       Type *OriginalTy = I->getType();
3808       Type *ScalarTruncatedTy =
3809           IntegerType::get(OriginalTy->getContext(), KV.second);
3810       auto *TruncatedTy = VectorType::get(
3811           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3812       if (TruncatedTy == OriginalTy)
3813         continue;
3814 
3815       IRBuilder<> B(cast<Instruction>(I));
3816       auto ShrinkOperand = [&](Value *V) -> Value * {
3817         if (auto *ZI = dyn_cast<ZExtInst>(V))
3818           if (ZI->getSrcTy() == TruncatedTy)
3819             return ZI->getOperand(0);
3820         return B.CreateZExtOrTrunc(V, TruncatedTy);
3821       };
3822 
3823       // The actual instruction modification depends on the instruction type,
3824       // unfortunately.
3825       Value *NewI = nullptr;
3826       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3827         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3828                              ShrinkOperand(BO->getOperand(1)));
3829 
3830         // Any wrapping introduced by shrinking this operation shouldn't be
3831         // considered undefined behavior. So, we can't unconditionally copy
3832         // arithmetic wrapping flags to NewI.
3833         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3834       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3835         NewI =
3836             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3837                          ShrinkOperand(CI->getOperand(1)));
3838       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3839         NewI = B.CreateSelect(SI->getCondition(),
3840                               ShrinkOperand(SI->getTrueValue()),
3841                               ShrinkOperand(SI->getFalseValue()));
3842       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3843         switch (CI->getOpcode()) {
3844         default:
3845           llvm_unreachable("Unhandled cast!");
3846         case Instruction::Trunc:
3847           NewI = ShrinkOperand(CI->getOperand(0));
3848           break;
3849         case Instruction::SExt:
3850           NewI = B.CreateSExtOrTrunc(
3851               CI->getOperand(0),
3852               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3853           break;
3854         case Instruction::ZExt:
3855           NewI = B.CreateZExtOrTrunc(
3856               CI->getOperand(0),
3857               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3858           break;
3859         }
3860       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3861         auto Elements0 =
3862             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3863         auto *O0 = B.CreateZExtOrTrunc(
3864             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3865         auto Elements1 =
3866             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3867         auto *O1 = B.CreateZExtOrTrunc(
3868             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3869 
3870         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3871       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3872         // Don't do anything with the operands, just extend the result.
3873         continue;
3874       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3875         auto Elements =
3876             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3877         auto *O0 = B.CreateZExtOrTrunc(
3878             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3879         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3880         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3881       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3882         auto Elements =
3883             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3884         auto *O0 = B.CreateZExtOrTrunc(
3885             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3886         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3887       } else {
3888         // If we don't know what to do, be conservative and don't do anything.
3889         continue;
3890       }
3891 
3892       // Lastly, extend the result.
3893       NewI->takeName(cast<Instruction>(I));
3894       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3895       I->replaceAllUsesWith(Res);
3896       cast<Instruction>(I)->eraseFromParent();
3897       Erased.insert(I);
3898       State.reset(Def, Res, Part);
3899     }
3900   }
3901 
3902   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3903   for (const auto &KV : Cost->getMinimalBitwidths()) {
3904     // If the value wasn't vectorized, we must maintain the original scalar
3905     // type. The absence of the value from State indicates that it
3906     // wasn't vectorized.
3907     // FIXME: Should not rely on getVPValue at this point.
3908     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3909     if (!State.hasAnyVectorValue(Def))
3910       continue;
3911     for (unsigned Part = 0; Part < UF; ++Part) {
3912       Value *I = State.get(Def, Part);
3913       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3914       if (Inst && Inst->use_empty()) {
3915         Value *NewI = Inst->getOperand(0);
3916         Inst->eraseFromParent();
3917         State.reset(Def, NewI, Part);
3918       }
3919     }
3920   }
3921 }
3922 
3923 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
3924   // Insert truncates and extends for any truncated instructions as hints to
3925   // InstCombine.
3926   if (VF.isVector())
3927     truncateToMinimalBitwidths(State);
3928 
3929   // Fix widened non-induction PHIs by setting up the PHI operands.
3930   if (OrigPHIsToFix.size()) {
3931     assert(EnableVPlanNativePath &&
3932            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3933     fixNonInductionPHIs(State);
3934   }
3935 
3936   // At this point every instruction in the original loop is widened to a
3937   // vector form. Now we need to fix the recurrences in the loop. These PHI
3938   // nodes are currently empty because we did not want to introduce cycles.
3939   // This is the second stage of vectorizing recurrences.
3940   fixCrossIterationPHIs(State);
3941 
3942   // Forget the original basic block.
3943   PSE.getSE()->forgetLoop(OrigLoop);
3944 
3945   // If we inserted an edge from the middle block to the unique exit block,
3946   // update uses outside the loop (phis) to account for the newly inserted
3947   // edge.
3948   if (!Cost->requiresScalarEpilogue(VF)) {
3949     // Fix-up external users of the induction variables.
3950     for (auto &Entry : Legal->getInductionVars())
3951       fixupIVUsers(Entry.first, Entry.second,
3952                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3953                    IVEndValues[Entry.first], LoopMiddleBlock);
3954 
3955     fixLCSSAPHIs(State);
3956   }
3957 
3958   for (Instruction *PI : PredicatedInstructions)
3959     sinkScalarOperands(&*PI);
3960 
3961   // Remove redundant induction instructions.
3962   cse(LoopVectorBody);
3963 
3964   // Set/update profile weights for the vector and remainder loops as original
3965   // loop iterations are now distributed among them. Note that original loop
3966   // represented by LoopScalarBody becomes remainder loop after vectorization.
3967   //
3968   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3969   // end up getting slightly roughened result but that should be OK since
3970   // profile is not inherently precise anyway. Note also possible bypass of
3971   // vector code caused by legality checks is ignored, assigning all the weight
3972   // to the vector loop, optimistically.
3973   //
3974   // For scalable vectorization we can't know at compile time how many iterations
3975   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3976   // vscale of '1'.
3977   setProfileInfoAfterUnrolling(
3978       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
3979       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
3980 }
3981 
3982 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3983   // In order to support recurrences we need to be able to vectorize Phi nodes.
3984   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3985   // stage #2: We now need to fix the recurrences by adding incoming edges to
3986   // the currently empty PHI nodes. At this point every instruction in the
3987   // original loop is widened to a vector form so we can use them to construct
3988   // the incoming edges.
3989   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
3990   for (VPRecipeBase &R : Header->phis()) {
3991     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3992       fixReduction(ReductionPhi, State);
3993     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3994       fixFirstOrderRecurrence(FOR, State);
3995   }
3996 }
3997 
3998 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3999     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
4000   // This is the second phase of vectorizing first-order recurrences. An
4001   // overview of the transformation is described below. Suppose we have the
4002   // following loop.
4003   //
4004   //   for (int i = 0; i < n; ++i)
4005   //     b[i] = a[i] - a[i - 1];
4006   //
4007   // There is a first-order recurrence on "a". For this loop, the shorthand
4008   // scalar IR looks like:
4009   //
4010   //   scalar.ph:
4011   //     s_init = a[-1]
4012   //     br scalar.body
4013   //
4014   //   scalar.body:
4015   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4016   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4017   //     s2 = a[i]
4018   //     b[i] = s2 - s1
4019   //     br cond, scalar.body, ...
4020   //
4021   // In this example, s1 is a recurrence because it's value depends on the
4022   // previous iteration. In the first phase of vectorization, we created a
4023   // vector phi v1 for s1. We now complete the vectorization and produce the
4024   // shorthand vector IR shown below (for VF = 4, UF = 1).
4025   //
4026   //   vector.ph:
4027   //     v_init = vector(..., ..., ..., a[-1])
4028   //     br vector.body
4029   //
4030   //   vector.body
4031   //     i = phi [0, vector.ph], [i+4, vector.body]
4032   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4033   //     v2 = a[i, i+1, i+2, i+3];
4034   //     v3 = vector(v1(3), v2(0, 1, 2))
4035   //     b[i, i+1, i+2, i+3] = v2 - v3
4036   //     br cond, vector.body, middle.block
4037   //
4038   //   middle.block:
4039   //     x = v2(3)
4040   //     br scalar.ph
4041   //
4042   //   scalar.ph:
4043   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4044   //     br scalar.body
4045   //
4046   // After execution completes the vector loop, we extract the next value of
4047   // the recurrence (x) to use as the initial value in the scalar loop.
4048 
4049   // Extract the last vector element in the middle block. This will be the
4050   // initial value for the recurrence when jumping to the scalar loop.
4051   VPValue *PreviousDef = PhiR->getBackedgeValue();
4052   Value *Incoming = State.get(PreviousDef, UF - 1);
4053   auto *ExtractForScalar = Incoming;
4054   auto *IdxTy = Builder.getInt32Ty();
4055   if (VF.isVector()) {
4056     auto *One = ConstantInt::get(IdxTy, 1);
4057     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4058     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4059     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4060     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4061                                                     "vector.recur.extract");
4062   }
4063   // Extract the second last element in the middle block if the
4064   // Phi is used outside the loop. We need to extract the phi itself
4065   // and not the last element (the phi update in the current iteration). This
4066   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4067   // when the scalar loop is not run at all.
4068   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4069   if (VF.isVector()) {
4070     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4071     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4072     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4073         Incoming, Idx, "vector.recur.extract.for.phi");
4074   } else if (UF > 1)
4075     // When loop is unrolled without vectorizing, initialize
4076     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4077     // of `Incoming`. This is analogous to the vectorized case above: extracting
4078     // the second last element when VF > 1.
4079     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4080 
4081   // Fix the initial value of the original recurrence in the scalar loop.
4082   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4083   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4084   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4085   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4086   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4087     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4088     Start->addIncoming(Incoming, BB);
4089   }
4090 
4091   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4092   Phi->setName("scalar.recur");
4093 
4094   // Finally, fix users of the recurrence outside the loop. The users will need
4095   // either the last value of the scalar recurrence or the last value of the
4096   // vector recurrence we extracted in the middle block. Since the loop is in
4097   // LCSSA form, we just need to find all the phi nodes for the original scalar
4098   // recurrence in the exit block, and then add an edge for the middle block.
4099   // Note that LCSSA does not imply single entry when the original scalar loop
4100   // had multiple exiting edges (as we always run the last iteration in the
4101   // scalar epilogue); in that case, there is no edge from middle to exit and
4102   // and thus no phis which needed updated.
4103   if (!Cost->requiresScalarEpilogue(VF))
4104     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4105       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
4106         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4107 }
4108 
4109 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4110                                        VPTransformState &State) {
4111   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4112   // Get it's reduction variable descriptor.
4113   assert(Legal->isReductionVariable(OrigPhi) &&
4114          "Unable to find the reduction variable");
4115   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4116 
4117   RecurKind RK = RdxDesc.getRecurrenceKind();
4118   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4119   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4120   setDebugLocFromInst(ReductionStartValue);
4121 
4122   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4123   // This is the vector-clone of the value that leaves the loop.
4124   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4125 
4126   // Wrap flags are in general invalid after vectorization, clear them.
4127   clearReductionWrapFlags(RdxDesc, State);
4128 
4129   // Before each round, move the insertion point right between
4130   // the PHIs and the values we are going to write.
4131   // This allows us to write both PHINodes and the extractelement
4132   // instructions.
4133   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4134 
4135   setDebugLocFromInst(LoopExitInst);
4136 
4137   Type *PhiTy = OrigPhi->getType();
4138   // If tail is folded by masking, the vector value to leave the loop should be
4139   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4140   // instead of the former. For an inloop reduction the reduction will already
4141   // be predicated, and does not need to be handled here.
4142   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4143     for (unsigned Part = 0; Part < UF; ++Part) {
4144       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4145       Value *Sel = nullptr;
4146       for (User *U : VecLoopExitInst->users()) {
4147         if (isa<SelectInst>(U)) {
4148           assert(!Sel && "Reduction exit feeding two selects");
4149           Sel = U;
4150         } else
4151           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4152       }
4153       assert(Sel && "Reduction exit feeds no select");
4154       State.reset(LoopExitInstDef, Sel, Part);
4155 
4156       // If the target can create a predicated operator for the reduction at no
4157       // extra cost in the loop (for example a predicated vadd), it can be
4158       // cheaper for the select to remain in the loop than be sunk out of it,
4159       // and so use the select value for the phi instead of the old
4160       // LoopExitValue.
4161       if (PreferPredicatedReductionSelect ||
4162           TTI->preferPredicatedReductionSelect(
4163               RdxDesc.getOpcode(), PhiTy,
4164               TargetTransformInfo::ReductionFlags())) {
4165         auto *VecRdxPhi =
4166             cast<PHINode>(State.get(PhiR, Part));
4167         VecRdxPhi->setIncomingValueForBlock(
4168             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4169       }
4170     }
4171   }
4172 
4173   // If the vector reduction can be performed in a smaller type, we truncate
4174   // then extend the loop exit value to enable InstCombine to evaluate the
4175   // entire expression in the smaller type.
4176   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4177     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4178     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4179     Builder.SetInsertPoint(
4180         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4181     VectorParts RdxParts(UF);
4182     for (unsigned Part = 0; Part < UF; ++Part) {
4183       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4184       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4185       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4186                                         : Builder.CreateZExt(Trunc, VecTy);
4187       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
4188         if (U != Trunc) {
4189           U->replaceUsesOfWith(RdxParts[Part], Extnd);
4190           RdxParts[Part] = Extnd;
4191         }
4192     }
4193     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4194     for (unsigned Part = 0; Part < UF; ++Part) {
4195       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4196       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4197     }
4198   }
4199 
4200   // Reduce all of the unrolled parts into a single vector.
4201   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4202   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4203 
4204   // The middle block terminator has already been assigned a DebugLoc here (the
4205   // OrigLoop's single latch terminator). We want the whole middle block to
4206   // appear to execute on this line because: (a) it is all compiler generated,
4207   // (b) these instructions are always executed after evaluating the latch
4208   // conditional branch, and (c) other passes may add new predecessors which
4209   // terminate on this line. This is the easiest way to ensure we don't
4210   // accidentally cause an extra step back into the loop while debugging.
4211   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4212   if (PhiR->isOrdered())
4213     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4214   else {
4215     // Floating-point operations should have some FMF to enable the reduction.
4216     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4217     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4218     for (unsigned Part = 1; Part < UF; ++Part) {
4219       Value *RdxPart = State.get(LoopExitInstDef, Part);
4220       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4221         ReducedPartRdx = Builder.CreateBinOp(
4222             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4223       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4224         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4225                                            ReducedPartRdx, RdxPart);
4226       else
4227         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4228     }
4229   }
4230 
4231   // Create the reduction after the loop. Note that inloop reductions create the
4232   // target reduction in the loop using a Reduction recipe.
4233   if (VF.isVector() && !PhiR->isInLoop()) {
4234     ReducedPartRdx =
4235         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4236     // If the reduction can be performed in a smaller type, we need to extend
4237     // the reduction to the wider type before we branch to the original loop.
4238     if (PhiTy != RdxDesc.getRecurrenceType())
4239       ReducedPartRdx = RdxDesc.isSigned()
4240                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4241                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4242   }
4243 
4244   PHINode *ResumePhi =
4245       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
4246 
4247   // Create a phi node that merges control-flow from the backedge-taken check
4248   // block and the middle block.
4249   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4250                                         LoopScalarPreHeader->getTerminator());
4251 
4252   // If we are fixing reductions in the epilogue loop then we should already
4253   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
4254   // we carry over the incoming values correctly.
4255   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4256     if (Incoming == LoopMiddleBlock)
4257       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4258     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4259       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4260                               Incoming);
4261     else
4262       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4263   }
4264 
4265   // Set the resume value for this reduction
4266   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4267 
4268   // Now, we need to fix the users of the reduction variable
4269   // inside and outside of the scalar remainder loop.
4270 
4271   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4272   // in the exit blocks.  See comment on analogous loop in
4273   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4274   if (!Cost->requiresScalarEpilogue(VF))
4275     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4276       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4277         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4278 
4279   // Fix the scalar loop reduction variable with the incoming reduction sum
4280   // from the vector body and from the backedge value.
4281   int IncomingEdgeBlockIdx =
4282       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4283   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4284   // Pick the other block.
4285   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4286   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4287   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4288 }
4289 
4290 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4291                                                   VPTransformState &State) {
4292   RecurKind RK = RdxDesc.getRecurrenceKind();
4293   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4294     return;
4295 
4296   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4297   assert(LoopExitInstr && "null loop exit instruction");
4298   SmallVector<Instruction *, 8> Worklist;
4299   SmallPtrSet<Instruction *, 8> Visited;
4300   Worklist.push_back(LoopExitInstr);
4301   Visited.insert(LoopExitInstr);
4302 
4303   while (!Worklist.empty()) {
4304     Instruction *Cur = Worklist.pop_back_val();
4305     if (isa<OverflowingBinaryOperator>(Cur))
4306       for (unsigned Part = 0; Part < UF; ++Part) {
4307         // FIXME: Should not rely on getVPValue at this point.
4308         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4309         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4310       }
4311 
4312     for (User *U : Cur->users()) {
4313       Instruction *UI = cast<Instruction>(U);
4314       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4315           Visited.insert(UI).second)
4316         Worklist.push_back(UI);
4317     }
4318   }
4319 }
4320 
4321 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4322   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4323     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4324       // Some phis were already hand updated by the reduction and recurrence
4325       // code above, leave them alone.
4326       continue;
4327 
4328     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4329     // Non-instruction incoming values will have only one value.
4330 
4331     VPLane Lane = VPLane::getFirstLane();
4332     if (isa<Instruction>(IncomingValue) &&
4333         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4334                                            VF))
4335       Lane = VPLane::getLastLaneForVF(VF);
4336 
4337     // Can be a loop invariant incoming value or the last scalar value to be
4338     // extracted from the vectorized loop.
4339     // FIXME: Should not rely on getVPValue at this point.
4340     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4341     Value *lastIncomingValue =
4342         OrigLoop->isLoopInvariant(IncomingValue)
4343             ? IncomingValue
4344             : State.get(State.Plan->getVPValue(IncomingValue, true),
4345                         VPIteration(UF - 1, Lane));
4346     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4347   }
4348 }
4349 
4350 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4351   // The basic block and loop containing the predicated instruction.
4352   auto *PredBB = PredInst->getParent();
4353   auto *VectorLoop = LI->getLoopFor(PredBB);
4354 
4355   // Initialize a worklist with the operands of the predicated instruction.
4356   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4357 
4358   // Holds instructions that we need to analyze again. An instruction may be
4359   // reanalyzed if we don't yet know if we can sink it or not.
4360   SmallVector<Instruction *, 8> InstsToReanalyze;
4361 
4362   // Returns true if a given use occurs in the predicated block. Phi nodes use
4363   // their operands in their corresponding predecessor blocks.
4364   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4365     auto *I = cast<Instruction>(U.getUser());
4366     BasicBlock *BB = I->getParent();
4367     if (auto *Phi = dyn_cast<PHINode>(I))
4368       BB = Phi->getIncomingBlock(
4369           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4370     return BB == PredBB;
4371   };
4372 
4373   // Iteratively sink the scalarized operands of the predicated instruction
4374   // into the block we created for it. When an instruction is sunk, it's
4375   // operands are then added to the worklist. The algorithm ends after one pass
4376   // through the worklist doesn't sink a single instruction.
4377   bool Changed;
4378   do {
4379     // Add the instructions that need to be reanalyzed to the worklist, and
4380     // reset the changed indicator.
4381     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4382     InstsToReanalyze.clear();
4383     Changed = false;
4384 
4385     while (!Worklist.empty()) {
4386       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4387 
4388       // We can't sink an instruction if it is a phi node, is not in the loop,
4389       // or may have side effects.
4390       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4391           I->mayHaveSideEffects())
4392         continue;
4393 
4394       // If the instruction is already in PredBB, check if we can sink its
4395       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4396       // sinking the scalar instruction I, hence it appears in PredBB; but it
4397       // may have failed to sink I's operands (recursively), which we try
4398       // (again) here.
4399       if (I->getParent() == PredBB) {
4400         Worklist.insert(I->op_begin(), I->op_end());
4401         continue;
4402       }
4403 
4404       // It's legal to sink the instruction if all its uses occur in the
4405       // predicated block. Otherwise, there's nothing to do yet, and we may
4406       // need to reanalyze the instruction.
4407       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4408         InstsToReanalyze.push_back(I);
4409         continue;
4410       }
4411 
4412       // Move the instruction to the beginning of the predicated block, and add
4413       // it's operands to the worklist.
4414       I->moveBefore(&*PredBB->getFirstInsertionPt());
4415       Worklist.insert(I->op_begin(), I->op_end());
4416 
4417       // The sinking may have enabled other instructions to be sunk, so we will
4418       // need to iterate.
4419       Changed = true;
4420     }
4421   } while (Changed);
4422 }
4423 
4424 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4425   for (PHINode *OrigPhi : OrigPHIsToFix) {
4426     VPWidenPHIRecipe *VPPhi =
4427         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4428     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4429     // Make sure the builder has a valid insert point.
4430     Builder.SetInsertPoint(NewPhi);
4431     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4432       VPValue *Inc = VPPhi->getIncomingValue(i);
4433       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4434       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4435     }
4436   }
4437 }
4438 
4439 bool InnerLoopVectorizer::useOrderedReductions(
4440     const RecurrenceDescriptor &RdxDesc) {
4441   return Cost->useOrderedReductions(RdxDesc);
4442 }
4443 
4444 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4445                                               VPWidenPHIRecipe *PhiR,
4446                                               VPTransformState &State) {
4447   PHINode *P = cast<PHINode>(PN);
4448   if (EnableVPlanNativePath) {
4449     // Currently we enter here in the VPlan-native path for non-induction
4450     // PHIs where all control flow is uniform. We simply widen these PHIs.
4451     // Create a vector phi with no operands - the vector phi operands will be
4452     // set at the end of vector code generation.
4453     Type *VecTy = (State.VF.isScalar())
4454                       ? PN->getType()
4455                       : VectorType::get(PN->getType(), State.VF);
4456     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4457     State.set(PhiR, VecPhi, 0);
4458     OrigPHIsToFix.push_back(P);
4459 
4460     return;
4461   }
4462 
4463   assert(PN->getParent() == OrigLoop->getHeader() &&
4464          "Non-header phis should have been handled elsewhere");
4465 
4466   // In order to support recurrences we need to be able to vectorize Phi nodes.
4467   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4468   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4469   // this value when we vectorize all of the instructions that use the PHI.
4470 
4471   assert(!Legal->isReductionVariable(P) &&
4472          "reductions should be handled elsewhere");
4473 
4474   setDebugLocFromInst(P);
4475 
4476   // This PHINode must be an induction variable.
4477   // Make sure that we know about it.
4478   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4479 
4480   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4481   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4482 
4483   auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV();
4484   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
4485 
4486   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4487   // which can be found from the original scalar operations.
4488   switch (II.getKind()) {
4489   case InductionDescriptor::IK_NoInduction:
4490     llvm_unreachable("Unknown induction");
4491   case InductionDescriptor::IK_IntInduction:
4492   case InductionDescriptor::IK_FpInduction:
4493     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4494   case InductionDescriptor::IK_PtrInduction: {
4495     // Handle the pointer induction variable case.
4496     assert(P->getType()->isPointerTy() && "Unexpected type.");
4497 
4498     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4499       // This is the normalized GEP that starts counting at zero.
4500       Value *PtrInd =
4501           Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType());
4502       // Determine the number of scalars we need to generate for each unroll
4503       // iteration. If the instruction is uniform, we only need to generate the
4504       // first lane. Otherwise, we generate all VF values.
4505       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4506       assert((IsUniform || !State.VF.isScalable()) &&
4507              "Cannot scalarize a scalable VF");
4508       unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
4509 
4510       for (unsigned Part = 0; Part < UF; ++Part) {
4511         Value *PartStart =
4512             createStepForVF(Builder, PtrInd->getType(), VF, Part);
4513 
4514         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4515           Value *Idx = Builder.CreateAdd(
4516               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4517           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4518           Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(),
4519                                                 DL, II, State.CFG.PrevBB);
4520           SclrGep->setName("next.gep");
4521           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4522         }
4523       }
4524       return;
4525     }
4526     assert(isa<SCEVConstant>(II.getStep()) &&
4527            "Induction step not a SCEV constant!");
4528     Type *PhiType = II.getStep()->getType();
4529 
4530     // Build a pointer phi
4531     Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue();
4532     Type *ScStValueType = ScalarStartValue->getType();
4533     PHINode *NewPointerPhi =
4534         PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
4535     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4536 
4537     // A pointer induction, performed by using a gep
4538     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4539     Instruction *InductionLoc = LoopLatch->getTerminator();
4540     const SCEV *ScalarStep = II.getStep();
4541     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4542     Value *ScalarStepValue =
4543         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4544     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4545     Value *NumUnrolledElems =
4546         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4547     Value *InductionGEP = GetElementPtrInst::Create(
4548         II.getElementType(), NewPointerPhi,
4549         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4550         InductionLoc);
4551     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4552 
4553     // Create UF many actual address geps that use the pointer
4554     // phi as base and a vectorized version of the step value
4555     // (<step*0, ..., step*N>) as offset.
4556     for (unsigned Part = 0; Part < State.UF; ++Part) {
4557       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4558       Value *StartOffsetScalar =
4559           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4560       Value *StartOffset =
4561           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4562       // Create a vector of consecutive numbers from zero to VF.
4563       StartOffset =
4564           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4565 
4566       Value *GEP = Builder.CreateGEP(
4567           II.getElementType(), NewPointerPhi,
4568           Builder.CreateMul(
4569               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4570               "vector.gep"));
4571       State.set(PhiR, GEP, Part);
4572     }
4573   }
4574   }
4575 }
4576 
4577 /// A helper function for checking whether an integer division-related
4578 /// instruction may divide by zero (in which case it must be predicated if
4579 /// executed conditionally in the scalar code).
4580 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4581 /// Non-zero divisors that are non compile-time constants will not be
4582 /// converted into multiplication, so we will still end up scalarizing
4583 /// the division, but can do so w/o predication.
4584 static bool mayDivideByZero(Instruction &I) {
4585   assert((I.getOpcode() == Instruction::UDiv ||
4586           I.getOpcode() == Instruction::SDiv ||
4587           I.getOpcode() == Instruction::URem ||
4588           I.getOpcode() == Instruction::SRem) &&
4589          "Unexpected instruction");
4590   Value *Divisor = I.getOperand(1);
4591   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4592   return !CInt || CInt->isZero();
4593 }
4594 
4595 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4596                                                VPUser &ArgOperands,
4597                                                VPTransformState &State) {
4598   assert(!isa<DbgInfoIntrinsic>(I) &&
4599          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4600   setDebugLocFromInst(&I);
4601 
4602   Module *M = I.getParent()->getParent()->getParent();
4603   auto *CI = cast<CallInst>(&I);
4604 
4605   SmallVector<Type *, 4> Tys;
4606   for (Value *ArgOperand : CI->args())
4607     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4608 
4609   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4610 
4611   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4612   // version of the instruction.
4613   // Is it beneficial to perform intrinsic call compared to lib call?
4614   bool NeedToScalarize = false;
4615   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4616   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4617   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4618   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4619          "Instruction should be scalarized elsewhere.");
4620   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4621          "Either the intrinsic cost or vector call cost must be valid");
4622 
4623   for (unsigned Part = 0; Part < UF; ++Part) {
4624     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4625     SmallVector<Value *, 4> Args;
4626     for (auto &I : enumerate(ArgOperands.operands())) {
4627       // Some intrinsics have a scalar argument - don't replace it with a
4628       // vector.
4629       Value *Arg;
4630       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4631         Arg = State.get(I.value(), Part);
4632       else {
4633         Arg = State.get(I.value(), VPIteration(0, 0));
4634         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
4635           TysForDecl.push_back(Arg->getType());
4636       }
4637       Args.push_back(Arg);
4638     }
4639 
4640     Function *VectorF;
4641     if (UseVectorIntrinsic) {
4642       // Use vector version of the intrinsic.
4643       if (VF.isVector())
4644         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4645       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4646       assert(VectorF && "Can't retrieve vector intrinsic.");
4647     } else {
4648       // Use vector version of the function call.
4649       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4650 #ifndef NDEBUG
4651       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4652              "Can't create vector function.");
4653 #endif
4654         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4655     }
4656       SmallVector<OperandBundleDef, 1> OpBundles;
4657       CI->getOperandBundlesAsDefs(OpBundles);
4658       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4659 
4660       if (isa<FPMathOperator>(V))
4661         V->copyFastMathFlags(CI);
4662 
4663       State.set(Def, V, Part);
4664       addMetadata(V, &I);
4665   }
4666 }
4667 
4668 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4669   // We should not collect Scalars more than once per VF. Right now, this
4670   // function is called from collectUniformsAndScalars(), which already does
4671   // this check. Collecting Scalars for VF=1 does not make any sense.
4672   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4673          "This function should not be visited twice for the same VF");
4674 
4675   SmallSetVector<Instruction *, 8> Worklist;
4676 
4677   // These sets are used to seed the analysis with pointers used by memory
4678   // accesses that will remain scalar.
4679   SmallSetVector<Instruction *, 8> ScalarPtrs;
4680   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4681   auto *Latch = TheLoop->getLoopLatch();
4682 
4683   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4684   // The pointer operands of loads and stores will be scalar as long as the
4685   // memory access is not a gather or scatter operation. The value operand of a
4686   // store will remain scalar if the store is scalarized.
4687   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4688     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4689     assert(WideningDecision != CM_Unknown &&
4690            "Widening decision should be ready at this moment");
4691     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4692       if (Ptr == Store->getValueOperand())
4693         return WideningDecision == CM_Scalarize;
4694     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4695            "Ptr is neither a value or pointer operand");
4696     return WideningDecision != CM_GatherScatter;
4697   };
4698 
4699   // A helper that returns true if the given value is a bitcast or
4700   // getelementptr instruction contained in the loop.
4701   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4702     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4703             isa<GetElementPtrInst>(V)) &&
4704            !TheLoop->isLoopInvariant(V);
4705   };
4706 
4707   // A helper that evaluates a memory access's use of a pointer. If the use will
4708   // be a scalar use and the pointer is only used by memory accesses, we place
4709   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4710   // PossibleNonScalarPtrs.
4711   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4712     // We only care about bitcast and getelementptr instructions contained in
4713     // the loop.
4714     if (!isLoopVaryingBitCastOrGEP(Ptr))
4715       return;
4716 
4717     // If the pointer has already been identified as scalar (e.g., if it was
4718     // also identified as uniform), there's nothing to do.
4719     auto *I = cast<Instruction>(Ptr);
4720     if (Worklist.count(I))
4721       return;
4722 
4723     // If the use of the pointer will be a scalar use, and all users of the
4724     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4725     // place the pointer in PossibleNonScalarPtrs.
4726     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4727           return isa<LoadInst>(U) || isa<StoreInst>(U);
4728         }))
4729       ScalarPtrs.insert(I);
4730     else
4731       PossibleNonScalarPtrs.insert(I);
4732   };
4733 
4734   // We seed the scalars analysis with three classes of instructions: (1)
4735   // instructions marked uniform-after-vectorization and (2) bitcast,
4736   // getelementptr and (pointer) phi instructions used by memory accesses
4737   // requiring a scalar use.
4738   //
4739   // (1) Add to the worklist all instructions that have been identified as
4740   // uniform-after-vectorization.
4741   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4742 
4743   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4744   // memory accesses requiring a scalar use. The pointer operands of loads and
4745   // stores will be scalar as long as the memory accesses is not a gather or
4746   // scatter operation. The value operand of a store will remain scalar if the
4747   // store is scalarized.
4748   for (auto *BB : TheLoop->blocks())
4749     for (auto &I : *BB) {
4750       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4751         evaluatePtrUse(Load, Load->getPointerOperand());
4752       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4753         evaluatePtrUse(Store, Store->getPointerOperand());
4754         evaluatePtrUse(Store, Store->getValueOperand());
4755       }
4756     }
4757   for (auto *I : ScalarPtrs)
4758     if (!PossibleNonScalarPtrs.count(I)) {
4759       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4760       Worklist.insert(I);
4761     }
4762 
4763   // Insert the forced scalars.
4764   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4765   // induction variable when the PHI user is scalarized.
4766   auto ForcedScalar = ForcedScalars.find(VF);
4767   if (ForcedScalar != ForcedScalars.end())
4768     for (auto *I : ForcedScalar->second)
4769       Worklist.insert(I);
4770 
4771   // Expand the worklist by looking through any bitcasts and getelementptr
4772   // instructions we've already identified as scalar. This is similar to the
4773   // expansion step in collectLoopUniforms(); however, here we're only
4774   // expanding to include additional bitcasts and getelementptr instructions.
4775   unsigned Idx = 0;
4776   while (Idx != Worklist.size()) {
4777     Instruction *Dst = Worklist[Idx++];
4778     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4779       continue;
4780     auto *Src = cast<Instruction>(Dst->getOperand(0));
4781     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4782           auto *J = cast<Instruction>(U);
4783           return !TheLoop->contains(J) || Worklist.count(J) ||
4784                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4785                   isScalarUse(J, Src));
4786         })) {
4787       Worklist.insert(Src);
4788       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4789     }
4790   }
4791 
4792   // An induction variable will remain scalar if all users of the induction
4793   // variable and induction variable update remain scalar.
4794   for (auto &Induction : Legal->getInductionVars()) {
4795     auto *Ind = Induction.first;
4796     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4797 
4798     // If tail-folding is applied, the primary induction variable will be used
4799     // to feed a vector compare.
4800     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4801       continue;
4802 
4803     // Returns true if \p Indvar is a pointer induction that is used directly by
4804     // load/store instruction \p I.
4805     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4806                                               Instruction *I) {
4807       return Induction.second.getKind() ==
4808                  InductionDescriptor::IK_PtrInduction &&
4809              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4810              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4811     };
4812 
4813     // Determine if all users of the induction variable are scalar after
4814     // vectorization.
4815     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4816       auto *I = cast<Instruction>(U);
4817       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4818              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4819     });
4820     if (!ScalarInd)
4821       continue;
4822 
4823     // Determine if all users of the induction variable update instruction are
4824     // scalar after vectorization.
4825     auto ScalarIndUpdate =
4826         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4827           auto *I = cast<Instruction>(U);
4828           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4829                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4830         });
4831     if (!ScalarIndUpdate)
4832       continue;
4833 
4834     // The induction variable and its update instruction will remain scalar.
4835     Worklist.insert(Ind);
4836     Worklist.insert(IndUpdate);
4837     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4838     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4839                       << "\n");
4840   }
4841 
4842   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4843 }
4844 
4845 bool LoopVectorizationCostModel::isScalarWithPredication(
4846     Instruction *I, ElementCount VF) const {
4847   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4848     return false;
4849   switch(I->getOpcode()) {
4850   default:
4851     break;
4852   case Instruction::Load:
4853   case Instruction::Store: {
4854     if (!Legal->isMaskRequired(I))
4855       return false;
4856     auto *Ptr = getLoadStorePointerOperand(I);
4857     auto *Ty = getLoadStoreType(I);
4858     Type *VTy = Ty;
4859     if (VF.isVector())
4860       VTy = VectorType::get(Ty, VF);
4861     const Align Alignment = getLoadStoreAlignment(I);
4862     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4863                                 TTI.isLegalMaskedGather(VTy, Alignment))
4864                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4865                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4866   }
4867   case Instruction::UDiv:
4868   case Instruction::SDiv:
4869   case Instruction::SRem:
4870   case Instruction::URem:
4871     return mayDivideByZero(*I);
4872   }
4873   return false;
4874 }
4875 
4876 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4877     Instruction *I, ElementCount VF) {
4878   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4879   assert(getWideningDecision(I, VF) == CM_Unknown &&
4880          "Decision should not be set yet.");
4881   auto *Group = getInterleavedAccessGroup(I);
4882   assert(Group && "Must have a group.");
4883 
4884   // If the instruction's allocated size doesn't equal it's type size, it
4885   // requires padding and will be scalarized.
4886   auto &DL = I->getModule()->getDataLayout();
4887   auto *ScalarTy = getLoadStoreType(I);
4888   if (hasIrregularType(ScalarTy, DL))
4889     return false;
4890 
4891   // Check if masking is required.
4892   // A Group may need masking for one of two reasons: it resides in a block that
4893   // needs predication, or it was decided to use masking to deal with gaps
4894   // (either a gap at the end of a load-access that may result in a speculative
4895   // load, or any gaps in a store-access).
4896   bool PredicatedAccessRequiresMasking =
4897       blockNeedsPredicationForAnyReason(I->getParent()) &&
4898       Legal->isMaskRequired(I);
4899   bool LoadAccessWithGapsRequiresEpilogMasking =
4900       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4901       !isScalarEpilogueAllowed();
4902   bool StoreAccessWithGapsRequiresMasking =
4903       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4904   if (!PredicatedAccessRequiresMasking &&
4905       !LoadAccessWithGapsRequiresEpilogMasking &&
4906       !StoreAccessWithGapsRequiresMasking)
4907     return true;
4908 
4909   // If masked interleaving is required, we expect that the user/target had
4910   // enabled it, because otherwise it either wouldn't have been created or
4911   // it should have been invalidated by the CostModel.
4912   assert(useMaskedInterleavedAccesses(TTI) &&
4913          "Masked interleave-groups for predicated accesses are not enabled.");
4914 
4915   if (Group->isReverse())
4916     return false;
4917 
4918   auto *Ty = getLoadStoreType(I);
4919   const Align Alignment = getLoadStoreAlignment(I);
4920   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4921                           : TTI.isLegalMaskedStore(Ty, Alignment);
4922 }
4923 
4924 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4925     Instruction *I, ElementCount VF) {
4926   // Get and ensure we have a valid memory instruction.
4927   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4928 
4929   auto *Ptr = getLoadStorePointerOperand(I);
4930   auto *ScalarTy = getLoadStoreType(I);
4931 
4932   // In order to be widened, the pointer should be consecutive, first of all.
4933   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4934     return false;
4935 
4936   // If the instruction is a store located in a predicated block, it will be
4937   // scalarized.
4938   if (isScalarWithPredication(I, VF))
4939     return false;
4940 
4941   // If the instruction's allocated size doesn't equal it's type size, it
4942   // requires padding and will be scalarized.
4943   auto &DL = I->getModule()->getDataLayout();
4944   if (hasIrregularType(ScalarTy, DL))
4945     return false;
4946 
4947   return true;
4948 }
4949 
4950 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4951   // We should not collect Uniforms more than once per VF. Right now,
4952   // this function is called from collectUniformsAndScalars(), which
4953   // already does this check. Collecting Uniforms for VF=1 does not make any
4954   // sense.
4955 
4956   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4957          "This function should not be visited twice for the same VF");
4958 
4959   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4960   // not analyze again.  Uniforms.count(VF) will return 1.
4961   Uniforms[VF].clear();
4962 
4963   // We now know that the loop is vectorizable!
4964   // Collect instructions inside the loop that will remain uniform after
4965   // vectorization.
4966 
4967   // Global values, params and instructions outside of current loop are out of
4968   // scope.
4969   auto isOutOfScope = [&](Value *V) -> bool {
4970     Instruction *I = dyn_cast<Instruction>(V);
4971     return (!I || !TheLoop->contains(I));
4972   };
4973 
4974   // Worklist containing uniform instructions demanding lane 0.
4975   SetVector<Instruction *> Worklist;
4976   BasicBlock *Latch = TheLoop->getLoopLatch();
4977 
4978   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4979   // that are scalar with predication must not be considered uniform after
4980   // vectorization, because that would create an erroneous replicating region
4981   // where only a single instance out of VF should be formed.
4982   // TODO: optimize such seldom cases if found important, see PR40816.
4983   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4984     if (isOutOfScope(I)) {
4985       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4986                         << *I << "\n");
4987       return;
4988     }
4989     if (isScalarWithPredication(I, VF)) {
4990       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4991                         << *I << "\n");
4992       return;
4993     }
4994     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4995     Worklist.insert(I);
4996   };
4997 
4998   // Start with the conditional branch. If the branch condition is an
4999   // instruction contained in the loop that is only used by the branch, it is
5000   // uniform.
5001   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5002   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5003     addToWorklistIfAllowed(Cmp);
5004 
5005   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5006     InstWidening WideningDecision = getWideningDecision(I, VF);
5007     assert(WideningDecision != CM_Unknown &&
5008            "Widening decision should be ready at this moment");
5009 
5010     // A uniform memory op is itself uniform.  We exclude uniform stores
5011     // here as they demand the last lane, not the first one.
5012     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5013       assert(WideningDecision == CM_Scalarize);
5014       return true;
5015     }
5016 
5017     return (WideningDecision == CM_Widen ||
5018             WideningDecision == CM_Widen_Reverse ||
5019             WideningDecision == CM_Interleave);
5020   };
5021 
5022 
5023   // Returns true if Ptr is the pointer operand of a memory access instruction
5024   // I, and I is known to not require scalarization.
5025   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5026     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5027   };
5028 
5029   // Holds a list of values which are known to have at least one uniform use.
5030   // Note that there may be other uses which aren't uniform.  A "uniform use"
5031   // here is something which only demands lane 0 of the unrolled iterations;
5032   // it does not imply that all lanes produce the same value (e.g. this is not
5033   // the usual meaning of uniform)
5034   SetVector<Value *> HasUniformUse;
5035 
5036   // Scan the loop for instructions which are either a) known to have only
5037   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5038   for (auto *BB : TheLoop->blocks())
5039     for (auto &I : *BB) {
5040       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5041         switch (II->getIntrinsicID()) {
5042         case Intrinsic::sideeffect:
5043         case Intrinsic::experimental_noalias_scope_decl:
5044         case Intrinsic::assume:
5045         case Intrinsic::lifetime_start:
5046         case Intrinsic::lifetime_end:
5047           if (TheLoop->hasLoopInvariantOperands(&I))
5048             addToWorklistIfAllowed(&I);
5049           break;
5050         default:
5051           break;
5052         }
5053       }
5054 
5055       // ExtractValue instructions must be uniform, because the operands are
5056       // known to be loop-invariant.
5057       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5058         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5059                "Expected aggregate value to be loop invariant");
5060         addToWorklistIfAllowed(EVI);
5061         continue;
5062       }
5063 
5064       // If there's no pointer operand, there's nothing to do.
5065       auto *Ptr = getLoadStorePointerOperand(&I);
5066       if (!Ptr)
5067         continue;
5068 
5069       // A uniform memory op is itself uniform.  We exclude uniform stores
5070       // here as they demand the last lane, not the first one.
5071       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5072         addToWorklistIfAllowed(&I);
5073 
5074       if (isUniformDecision(&I, VF)) {
5075         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5076         HasUniformUse.insert(Ptr);
5077       }
5078     }
5079 
5080   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5081   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5082   // disallows uses outside the loop as well.
5083   for (auto *V : HasUniformUse) {
5084     if (isOutOfScope(V))
5085       continue;
5086     auto *I = cast<Instruction>(V);
5087     auto UsersAreMemAccesses =
5088       llvm::all_of(I->users(), [&](User *U) -> bool {
5089         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5090       });
5091     if (UsersAreMemAccesses)
5092       addToWorklistIfAllowed(I);
5093   }
5094 
5095   // Expand Worklist in topological order: whenever a new instruction
5096   // is added , its users should be already inside Worklist.  It ensures
5097   // a uniform instruction will only be used by uniform instructions.
5098   unsigned idx = 0;
5099   while (idx != Worklist.size()) {
5100     Instruction *I = Worklist[idx++];
5101 
5102     for (auto OV : I->operand_values()) {
5103       // isOutOfScope operands cannot be uniform instructions.
5104       if (isOutOfScope(OV))
5105         continue;
5106       // First order recurrence Phi's should typically be considered
5107       // non-uniform.
5108       auto *OP = dyn_cast<PHINode>(OV);
5109       if (OP && Legal->isFirstOrderRecurrence(OP))
5110         continue;
5111       // If all the users of the operand are uniform, then add the
5112       // operand into the uniform worklist.
5113       auto *OI = cast<Instruction>(OV);
5114       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5115             auto *J = cast<Instruction>(U);
5116             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5117           }))
5118         addToWorklistIfAllowed(OI);
5119     }
5120   }
5121 
5122   // For an instruction to be added into Worklist above, all its users inside
5123   // the loop should also be in Worklist. However, this condition cannot be
5124   // true for phi nodes that form a cyclic dependence. We must process phi
5125   // nodes separately. An induction variable will remain uniform if all users
5126   // of the induction variable and induction variable update remain uniform.
5127   // The code below handles both pointer and non-pointer induction variables.
5128   for (auto &Induction : Legal->getInductionVars()) {
5129     auto *Ind = Induction.first;
5130     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5131 
5132     // Determine if all users of the induction variable are uniform after
5133     // vectorization.
5134     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5135       auto *I = cast<Instruction>(U);
5136       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5137              isVectorizedMemAccessUse(I, Ind);
5138     });
5139     if (!UniformInd)
5140       continue;
5141 
5142     // Determine if all users of the induction variable update instruction are
5143     // uniform after vectorization.
5144     auto UniformIndUpdate =
5145         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5146           auto *I = cast<Instruction>(U);
5147           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5148                  isVectorizedMemAccessUse(I, IndUpdate);
5149         });
5150     if (!UniformIndUpdate)
5151       continue;
5152 
5153     // The induction variable and its update instruction will remain uniform.
5154     addToWorklistIfAllowed(Ind);
5155     addToWorklistIfAllowed(IndUpdate);
5156   }
5157 
5158   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5159 }
5160 
5161 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5162   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5163 
5164   if (Legal->getRuntimePointerChecking()->Need) {
5165     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5166         "runtime pointer checks needed. Enable vectorization of this "
5167         "loop with '#pragma clang loop vectorize(enable)' when "
5168         "compiling with -Os/-Oz",
5169         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5170     return true;
5171   }
5172 
5173   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5174     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5175         "runtime SCEV checks needed. Enable vectorization of this "
5176         "loop with '#pragma clang loop vectorize(enable)' when "
5177         "compiling with -Os/-Oz",
5178         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5179     return true;
5180   }
5181 
5182   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5183   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5184     reportVectorizationFailure("Runtime stride check for small trip count",
5185         "runtime stride == 1 checks needed. Enable vectorization of "
5186         "this loop without such check by compiling with -Os/-Oz",
5187         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5188     return true;
5189   }
5190 
5191   return false;
5192 }
5193 
5194 ElementCount
5195 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5196   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5197     return ElementCount::getScalable(0);
5198 
5199   if (Hints->isScalableVectorizationDisabled()) {
5200     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5201                             "ScalableVectorizationDisabled", ORE, TheLoop);
5202     return ElementCount::getScalable(0);
5203   }
5204 
5205   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5206 
5207   auto MaxScalableVF = ElementCount::getScalable(
5208       std::numeric_limits<ElementCount::ScalarTy>::max());
5209 
5210   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5211   // FIXME: While for scalable vectors this is currently sufficient, this should
5212   // be replaced by a more detailed mechanism that filters out specific VFs,
5213   // instead of invalidating vectorization for a whole set of VFs based on the
5214   // MaxVF.
5215 
5216   // Disable scalable vectorization if the loop contains unsupported reductions.
5217   if (!canVectorizeReductions(MaxScalableVF)) {
5218     reportVectorizationInfo(
5219         "Scalable vectorization not supported for the reduction "
5220         "operations found in this loop.",
5221         "ScalableVFUnfeasible", ORE, TheLoop);
5222     return ElementCount::getScalable(0);
5223   }
5224 
5225   // Disable scalable vectorization if the loop contains any instructions
5226   // with element types not supported for scalable vectors.
5227   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5228         return !Ty->isVoidTy() &&
5229                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5230       })) {
5231     reportVectorizationInfo("Scalable vectorization is not supported "
5232                             "for all element types found in this loop.",
5233                             "ScalableVFUnfeasible", ORE, TheLoop);
5234     return ElementCount::getScalable(0);
5235   }
5236 
5237   if (Legal->isSafeForAnyVectorWidth())
5238     return MaxScalableVF;
5239 
5240   // Limit MaxScalableVF by the maximum safe dependence distance.
5241   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5242   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
5243     MaxVScale =
5244         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
5245   MaxScalableVF = ElementCount::getScalable(
5246       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5247   if (!MaxScalableVF)
5248     reportVectorizationInfo(
5249         "Max legal vector width too small, scalable vectorization "
5250         "unfeasible.",
5251         "ScalableVFUnfeasible", ORE, TheLoop);
5252 
5253   return MaxScalableVF;
5254 }
5255 
5256 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
5257     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
5258   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5259   unsigned SmallestType, WidestType;
5260   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5261 
5262   // Get the maximum safe dependence distance in bits computed by LAA.
5263   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5264   // the memory accesses that is most restrictive (involved in the smallest
5265   // dependence distance).
5266   unsigned MaxSafeElements =
5267       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5268 
5269   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5270   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5271 
5272   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5273                     << ".\n");
5274   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5275                     << ".\n");
5276 
5277   // First analyze the UserVF, fall back if the UserVF should be ignored.
5278   if (UserVF) {
5279     auto MaxSafeUserVF =
5280         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5281 
5282     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5283       // If `VF=vscale x N` is safe, then so is `VF=N`
5284       if (UserVF.isScalable())
5285         return FixedScalableVFPair(
5286             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5287       else
5288         return UserVF;
5289     }
5290 
5291     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5292 
5293     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5294     // is better to ignore the hint and let the compiler choose a suitable VF.
5295     if (!UserVF.isScalable()) {
5296       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5297                         << " is unsafe, clamping to max safe VF="
5298                         << MaxSafeFixedVF << ".\n");
5299       ORE->emit([&]() {
5300         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5301                                           TheLoop->getStartLoc(),
5302                                           TheLoop->getHeader())
5303                << "User-specified vectorization factor "
5304                << ore::NV("UserVectorizationFactor", UserVF)
5305                << " is unsafe, clamping to maximum safe vectorization factor "
5306                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5307       });
5308       return MaxSafeFixedVF;
5309     }
5310 
5311     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5312       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5313                         << " is ignored because scalable vectors are not "
5314                            "available.\n");
5315       ORE->emit([&]() {
5316         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5317                                           TheLoop->getStartLoc(),
5318                                           TheLoop->getHeader())
5319                << "User-specified vectorization factor "
5320                << ore::NV("UserVectorizationFactor", UserVF)
5321                << " is ignored because the target does not support scalable "
5322                   "vectors. The compiler will pick a more suitable value.";
5323       });
5324     } else {
5325       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5326                         << " is unsafe. Ignoring scalable UserVF.\n");
5327       ORE->emit([&]() {
5328         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5329                                           TheLoop->getStartLoc(),
5330                                           TheLoop->getHeader())
5331                << "User-specified vectorization factor "
5332                << ore::NV("UserVectorizationFactor", UserVF)
5333                << " is unsafe. Ignoring the hint to let the compiler pick a "
5334                   "more suitable value.";
5335       });
5336     }
5337   }
5338 
5339   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5340                     << " / " << WidestType << " bits.\n");
5341 
5342   FixedScalableVFPair Result(ElementCount::getFixed(1),
5343                              ElementCount::getScalable(0));
5344   if (auto MaxVF =
5345           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5346                                   MaxSafeFixedVF, FoldTailByMasking))
5347     Result.FixedVF = MaxVF;
5348 
5349   if (auto MaxVF =
5350           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
5351                                   MaxSafeScalableVF, FoldTailByMasking))
5352     if (MaxVF.isScalable()) {
5353       Result.ScalableVF = MaxVF;
5354       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5355                         << "\n");
5356     }
5357 
5358   return Result;
5359 }
5360 
5361 FixedScalableVFPair
5362 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5363   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5364     // TODO: It may by useful to do since it's still likely to be dynamically
5365     // uniform if the target can skip.
5366     reportVectorizationFailure(
5367         "Not inserting runtime ptr check for divergent target",
5368         "runtime pointer checks needed. Not enabled for divergent target",
5369         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5370     return FixedScalableVFPair::getNone();
5371   }
5372 
5373   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5374   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5375   if (TC == 1) {
5376     reportVectorizationFailure("Single iteration (non) loop",
5377         "loop trip count is one, irrelevant for vectorization",
5378         "SingleIterationLoop", ORE, TheLoop);
5379     return FixedScalableVFPair::getNone();
5380   }
5381 
5382   switch (ScalarEpilogueStatus) {
5383   case CM_ScalarEpilogueAllowed:
5384     return computeFeasibleMaxVF(TC, UserVF, false);
5385   case CM_ScalarEpilogueNotAllowedUsePredicate:
5386     LLVM_FALLTHROUGH;
5387   case CM_ScalarEpilogueNotNeededUsePredicate:
5388     LLVM_DEBUG(
5389         dbgs() << "LV: vector predicate hint/switch found.\n"
5390                << "LV: Not allowing scalar epilogue, creating predicated "
5391                << "vector loop.\n");
5392     break;
5393   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5394     // fallthrough as a special case of OptForSize
5395   case CM_ScalarEpilogueNotAllowedOptSize:
5396     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5397       LLVM_DEBUG(
5398           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5399     else
5400       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5401                         << "count.\n");
5402 
5403     // Bail if runtime checks are required, which are not good when optimising
5404     // for size.
5405     if (runtimeChecksRequired())
5406       return FixedScalableVFPair::getNone();
5407 
5408     break;
5409   }
5410 
5411   // The only loops we can vectorize without a scalar epilogue, are loops with
5412   // a bottom-test and a single exiting block. We'd have to handle the fact
5413   // that not every instruction executes on the last iteration.  This will
5414   // require a lane mask which varies through the vector loop body.  (TODO)
5415   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5416     // If there was a tail-folding hint/switch, but we can't fold the tail by
5417     // masking, fallback to a vectorization with a scalar epilogue.
5418     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5419       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5420                            "scalar epilogue instead.\n");
5421       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5422       return computeFeasibleMaxVF(TC, UserVF, false);
5423     }
5424     return FixedScalableVFPair::getNone();
5425   }
5426 
5427   // Now try the tail folding
5428 
5429   // Invalidate interleave groups that require an epilogue if we can't mask
5430   // the interleave-group.
5431   if (!useMaskedInterleavedAccesses(TTI)) {
5432     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5433            "No decisions should have been taken at this point");
5434     // Note: There is no need to invalidate any cost modeling decisions here, as
5435     // non where taken so far.
5436     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5437   }
5438 
5439   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5440   // Avoid tail folding if the trip count is known to be a multiple of any VF
5441   // we chose.
5442   // FIXME: The condition below pessimises the case for fixed-width vectors,
5443   // when scalable VFs are also candidates for vectorization.
5444   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5445     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5446     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5447            "MaxFixedVF must be a power of 2");
5448     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5449                                    : MaxFixedVF.getFixedValue();
5450     ScalarEvolution *SE = PSE.getSE();
5451     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5452     const SCEV *ExitCount = SE->getAddExpr(
5453         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5454     const SCEV *Rem = SE->getURemExpr(
5455         SE->applyLoopGuards(ExitCount, TheLoop),
5456         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5457     if (Rem->isZero()) {
5458       // Accept MaxFixedVF if we do not have a tail.
5459       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5460       return MaxFactors;
5461     }
5462   }
5463 
5464   // For scalable vectors don't use tail folding for low trip counts or
5465   // optimizing for code size. We only permit this if the user has explicitly
5466   // requested it.
5467   if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate &&
5468       ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate &&
5469       MaxFactors.ScalableVF.isVector())
5470     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5471 
5472   // If we don't know the precise trip count, or if the trip count that we
5473   // found modulo the vectorization factor is not zero, try to fold the tail
5474   // by masking.
5475   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5476   if (Legal->prepareToFoldTailByMasking()) {
5477     FoldTailByMasking = true;
5478     return MaxFactors;
5479   }
5480 
5481   // If there was a tail-folding hint/switch, but we can't fold the tail by
5482   // masking, fallback to a vectorization with a scalar epilogue.
5483   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5484     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5485                          "scalar epilogue instead.\n");
5486     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5487     return MaxFactors;
5488   }
5489 
5490   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5491     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5492     return FixedScalableVFPair::getNone();
5493   }
5494 
5495   if (TC == 0) {
5496     reportVectorizationFailure(
5497         "Unable to calculate the loop count due to complex control flow",
5498         "unable to calculate the loop count due to complex control flow",
5499         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5500     return FixedScalableVFPair::getNone();
5501   }
5502 
5503   reportVectorizationFailure(
5504       "Cannot optimize for size and vectorize at the same time.",
5505       "cannot optimize for size and vectorize at the same time. "
5506       "Enable vectorization of this loop with '#pragma clang loop "
5507       "vectorize(enable)' when compiling with -Os/-Oz",
5508       "NoTailLoopWithOptForSize", ORE, TheLoop);
5509   return FixedScalableVFPair::getNone();
5510 }
5511 
5512 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5513     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5514     const ElementCount &MaxSafeVF, bool FoldTailByMasking) {
5515   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5516   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5517       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5518                            : TargetTransformInfo::RGK_FixedWidthVector);
5519 
5520   // Convenience function to return the minimum of two ElementCounts.
5521   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5522     assert((LHS.isScalable() == RHS.isScalable()) &&
5523            "Scalable flags must match");
5524     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5525   };
5526 
5527   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5528   // Note that both WidestRegister and WidestType may not be a powers of 2.
5529   auto MaxVectorElementCount = ElementCount::get(
5530       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5531       ComputeScalableMaxVF);
5532   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5533   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5534                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5535 
5536   if (!MaxVectorElementCount) {
5537     LLVM_DEBUG(dbgs() << "LV: The target has no "
5538                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5539                       << " vector registers.\n");
5540     return ElementCount::getFixed(1);
5541   }
5542 
5543   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5544   if (ConstTripCount &&
5545       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5546       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5547     // If loop trip count (TC) is known at compile time there is no point in
5548     // choosing VF greater than TC (as done in the loop below). Select maximum
5549     // power of two which doesn't exceed TC.
5550     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5551     // when the TC is less than or equal to the known number of lanes.
5552     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5553     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5554                          "exceeding the constant trip count: "
5555                       << ClampedConstTripCount << "\n");
5556     return ElementCount::getFixed(ClampedConstTripCount);
5557   }
5558 
5559   ElementCount MaxVF = MaxVectorElementCount;
5560   if (TTI.shouldMaximizeVectorBandwidth() ||
5561       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5562     auto MaxVectorElementCountMaxBW = ElementCount::get(
5563         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5564         ComputeScalableMaxVF);
5565     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5566 
5567     // Collect all viable vectorization factors larger than the default MaxVF
5568     // (i.e. MaxVectorElementCount).
5569     SmallVector<ElementCount, 8> VFs;
5570     for (ElementCount VS = MaxVectorElementCount * 2;
5571          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5572       VFs.push_back(VS);
5573 
5574     // For each VF calculate its register usage.
5575     auto RUs = calculateRegisterUsage(VFs);
5576 
5577     // Select the largest VF which doesn't require more registers than existing
5578     // ones.
5579     for (int i = RUs.size() - 1; i >= 0; --i) {
5580       bool Selected = true;
5581       for (auto &pair : RUs[i].MaxLocalUsers) {
5582         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5583         if (pair.second > TargetNumRegisters)
5584           Selected = false;
5585       }
5586       if (Selected) {
5587         MaxVF = VFs[i];
5588         break;
5589       }
5590     }
5591     if (ElementCount MinVF =
5592             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5593       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5594         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5595                           << ") with target's minimum: " << MinVF << '\n');
5596         MaxVF = MinVF;
5597       }
5598     }
5599   }
5600   return MaxVF;
5601 }
5602 
5603 bool LoopVectorizationCostModel::isMoreProfitable(
5604     const VectorizationFactor &A, const VectorizationFactor &B) const {
5605   InstructionCost CostA = A.Cost;
5606   InstructionCost CostB = B.Cost;
5607 
5608   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5609 
5610   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5611       MaxTripCount) {
5612     // If we are folding the tail and the trip count is a known (possibly small)
5613     // constant, the trip count will be rounded up to an integer number of
5614     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5615     // which we compare directly. When not folding the tail, the total cost will
5616     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5617     // approximated with the per-lane cost below instead of using the tripcount
5618     // as here.
5619     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5620     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5621     return RTCostA < RTCostB;
5622   }
5623 
5624   // Improve estimate for the vector width if it is scalable.
5625   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5626   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5627   if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) {
5628     if (A.Width.isScalable())
5629       EstimatedWidthA *= VScale.getValue();
5630     if (B.Width.isScalable())
5631       EstimatedWidthB *= VScale.getValue();
5632   }
5633 
5634   // Assume vscale may be larger than 1 (or the value being tuned for),
5635   // so that scalable vectorization is slightly favorable over fixed-width
5636   // vectorization.
5637   if (A.Width.isScalable() && !B.Width.isScalable())
5638     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5639 
5640   // To avoid the need for FP division:
5641   //      (CostA / A.Width) < (CostB / B.Width)
5642   // <=>  (CostA * B.Width) < (CostB * A.Width)
5643   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5644 }
5645 
5646 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5647     const ElementCountSet &VFCandidates) {
5648   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5649   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5650   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5651   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5652          "Expected Scalar VF to be a candidate");
5653 
5654   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
5655   VectorizationFactor ChosenFactor = ScalarCost;
5656 
5657   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5658   if (ForceVectorization && VFCandidates.size() > 1) {
5659     // Ignore scalar width, because the user explicitly wants vectorization.
5660     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5661     // evaluation.
5662     ChosenFactor.Cost = InstructionCost::getMax();
5663   }
5664 
5665   SmallVector<InstructionVFPair> InvalidCosts;
5666   for (const auto &i : VFCandidates) {
5667     // The cost for scalar VF=1 is already calculated, so ignore it.
5668     if (i.isScalar())
5669       continue;
5670 
5671     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5672     VectorizationFactor Candidate(i, C.first);
5673 
5674 #ifndef NDEBUG
5675     unsigned AssumedMinimumVscale = 1;
5676     if (Optional<unsigned> VScale = TTI.getVScaleForTuning())
5677       AssumedMinimumVscale = VScale.getValue();
5678     unsigned Width =
5679         Candidate.Width.isScalable()
5680             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5681             : Candidate.Width.getFixedValue();
5682     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5683                       << " costs: " << (Candidate.Cost / Width));
5684     if (i.isScalable())
5685       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5686                         << AssumedMinimumVscale << ")");
5687     LLVM_DEBUG(dbgs() << ".\n");
5688 #endif
5689 
5690     if (!C.second && !ForceVectorization) {
5691       LLVM_DEBUG(
5692           dbgs() << "LV: Not considering vector loop of width " << i
5693                  << " because it will not generate any vector instructions.\n");
5694       continue;
5695     }
5696 
5697     // If profitable add it to ProfitableVF list.
5698     if (isMoreProfitable(Candidate, ScalarCost))
5699       ProfitableVFs.push_back(Candidate);
5700 
5701     if (isMoreProfitable(Candidate, ChosenFactor))
5702       ChosenFactor = Candidate;
5703   }
5704 
5705   // Emit a report of VFs with invalid costs in the loop.
5706   if (!InvalidCosts.empty()) {
5707     // Group the remarks per instruction, keeping the instruction order from
5708     // InvalidCosts.
5709     std::map<Instruction *, unsigned> Numbering;
5710     unsigned I = 0;
5711     for (auto &Pair : InvalidCosts)
5712       if (!Numbering.count(Pair.first))
5713         Numbering[Pair.first] = I++;
5714 
5715     // Sort the list, first on instruction(number) then on VF.
5716     llvm::sort(InvalidCosts,
5717                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5718                  if (Numbering[A.first] != Numbering[B.first])
5719                    return Numbering[A.first] < Numbering[B.first];
5720                  ElementCountComparator ECC;
5721                  return ECC(A.second, B.second);
5722                });
5723 
5724     // For a list of ordered instruction-vf pairs:
5725     //   [(load, vf1), (load, vf2), (store, vf1)]
5726     // Group the instructions together to emit separate remarks for:
5727     //   load  (vf1, vf2)
5728     //   store (vf1)
5729     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5730     auto Subset = ArrayRef<InstructionVFPair>();
5731     do {
5732       if (Subset.empty())
5733         Subset = Tail.take_front(1);
5734 
5735       Instruction *I = Subset.front().first;
5736 
5737       // If the next instruction is different, or if there are no other pairs,
5738       // emit a remark for the collated subset. e.g.
5739       //   [(load, vf1), (load, vf2))]
5740       // to emit:
5741       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5742       if (Subset == Tail || Tail[Subset.size()].first != I) {
5743         std::string OutString;
5744         raw_string_ostream OS(OutString);
5745         assert(!Subset.empty() && "Unexpected empty range");
5746         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5747         for (auto &Pair : Subset)
5748           OS << (Pair.second == Subset.front().second ? "" : ", ")
5749              << Pair.second;
5750         OS << "):";
5751         if (auto *CI = dyn_cast<CallInst>(I))
5752           OS << " call to " << CI->getCalledFunction()->getName();
5753         else
5754           OS << " " << I->getOpcodeName();
5755         OS.flush();
5756         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5757         Tail = Tail.drop_front(Subset.size());
5758         Subset = {};
5759       } else
5760         // Grow the subset by one element
5761         Subset = Tail.take_front(Subset.size() + 1);
5762     } while (!Tail.empty());
5763   }
5764 
5765   if (!EnableCondStoresVectorization && NumPredStores) {
5766     reportVectorizationFailure("There are conditional stores.",
5767         "store that is conditionally executed prevents vectorization",
5768         "ConditionalStore", ORE, TheLoop);
5769     ChosenFactor = ScalarCost;
5770   }
5771 
5772   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5773                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
5774              << "LV: Vectorization seems to be not beneficial, "
5775              << "but was forced by a user.\n");
5776   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5777   return ChosenFactor;
5778 }
5779 
5780 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5781     const Loop &L, ElementCount VF) const {
5782   // Cross iteration phis such as reductions need special handling and are
5783   // currently unsupported.
5784   if (any_of(L.getHeader()->phis(),
5785              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5786     return false;
5787 
5788   // Phis with uses outside of the loop require special handling and are
5789   // currently unsupported.
5790   for (auto &Entry : Legal->getInductionVars()) {
5791     // Look for uses of the value of the induction at the last iteration.
5792     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5793     for (User *U : PostInc->users())
5794       if (!L.contains(cast<Instruction>(U)))
5795         return false;
5796     // Look for uses of penultimate value of the induction.
5797     for (User *U : Entry.first->users())
5798       if (!L.contains(cast<Instruction>(U)))
5799         return false;
5800   }
5801 
5802   // Induction variables that are widened require special handling that is
5803   // currently not supported.
5804   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5805         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5806                  this->isProfitableToScalarize(Entry.first, VF));
5807       }))
5808     return false;
5809 
5810   // Epilogue vectorization code has not been auditted to ensure it handles
5811   // non-latch exits properly.  It may be fine, but it needs auditted and
5812   // tested.
5813   if (L.getExitingBlock() != L.getLoopLatch())
5814     return false;
5815 
5816   return true;
5817 }
5818 
5819 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5820     const ElementCount VF) const {
5821   // FIXME: We need a much better cost-model to take different parameters such
5822   // as register pressure, code size increase and cost of extra branches into
5823   // account. For now we apply a very crude heuristic and only consider loops
5824   // with vectorization factors larger than a certain value.
5825   // We also consider epilogue vectorization unprofitable for targets that don't
5826   // consider interleaving beneficial (eg. MVE).
5827   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5828     return false;
5829   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
5830     return true;
5831   return false;
5832 }
5833 
5834 VectorizationFactor
5835 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5836     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5837   VectorizationFactor Result = VectorizationFactor::Disabled();
5838   if (!EnableEpilogueVectorization) {
5839     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5840     return Result;
5841   }
5842 
5843   if (!isScalarEpilogueAllowed()) {
5844     LLVM_DEBUG(
5845         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5846                   "allowed.\n";);
5847     return Result;
5848   }
5849 
5850   // Not really a cost consideration, but check for unsupported cases here to
5851   // simplify the logic.
5852   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5853     LLVM_DEBUG(
5854         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5855                   "not a supported candidate.\n";);
5856     return Result;
5857   }
5858 
5859   if (EpilogueVectorizationForceVF > 1) {
5860     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5861     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5862     if (LVP.hasPlanWithVF(ForcedEC))
5863       return {ForcedEC, 0};
5864     else {
5865       LLVM_DEBUG(
5866           dbgs()
5867               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5868       return Result;
5869     }
5870   }
5871 
5872   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5873       TheLoop->getHeader()->getParent()->hasMinSize()) {
5874     LLVM_DEBUG(
5875         dbgs()
5876             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5877     return Result;
5878   }
5879 
5880   auto FixedMainLoopVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5881   if (MainLoopVF.isScalable())
5882     LLVM_DEBUG(
5883         dbgs() << "LEV: Epilogue vectorization using scalable vectors not "
5884                   "yet supported. Converting to fixed-width (VF="
5885                << FixedMainLoopVF << ") instead\n");
5886 
5887   if (!isEpilogueVectorizationProfitable(FixedMainLoopVF)) {
5888     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5889                          "this loop\n");
5890     return Result;
5891   }
5892 
5893   for (auto &NextVF : ProfitableVFs)
5894     if (ElementCount::isKnownLT(NextVF.Width, FixedMainLoopVF) &&
5895         (Result.Width.getFixedValue() == 1 ||
5896          isMoreProfitable(NextVF, Result)) &&
5897         LVP.hasPlanWithVF(NextVF.Width))
5898       Result = NextVF;
5899 
5900   if (Result != VectorizationFactor::Disabled())
5901     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5902                       << Result.Width.getFixedValue() << "\n";);
5903   return Result;
5904 }
5905 
5906 std::pair<unsigned, unsigned>
5907 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5908   unsigned MinWidth = -1U;
5909   unsigned MaxWidth = 8;
5910   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5911   // For in-loop reductions, no element types are added to ElementTypesInLoop
5912   // if there are no loads/stores in the loop. In this case, check through the
5913   // reduction variables to determine the maximum width.
5914   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5915     // Reset MaxWidth so that we can find the smallest type used by recurrences
5916     // in the loop.
5917     MaxWidth = -1U;
5918     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5919       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5920       // When finding the min width used by the recurrence we need to account
5921       // for casts on the input operands of the recurrence.
5922       MaxWidth = std::min<unsigned>(
5923           MaxWidth, std::min<unsigned>(
5924                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5925                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5926     }
5927   } else {
5928     for (Type *T : ElementTypesInLoop) {
5929       MinWidth = std::min<unsigned>(
5930           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5931       MaxWidth = std::max<unsigned>(
5932           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5933     }
5934   }
5935   return {MinWidth, MaxWidth};
5936 }
5937 
5938 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5939   ElementTypesInLoop.clear();
5940   // For each block.
5941   for (BasicBlock *BB : TheLoop->blocks()) {
5942     // For each instruction in the loop.
5943     for (Instruction &I : BB->instructionsWithoutDebug()) {
5944       Type *T = I.getType();
5945 
5946       // Skip ignored values.
5947       if (ValuesToIgnore.count(&I))
5948         continue;
5949 
5950       // Only examine Loads, Stores and PHINodes.
5951       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5952         continue;
5953 
5954       // Examine PHI nodes that are reduction variables. Update the type to
5955       // account for the recurrence type.
5956       if (auto *PN = dyn_cast<PHINode>(&I)) {
5957         if (!Legal->isReductionVariable(PN))
5958           continue;
5959         const RecurrenceDescriptor &RdxDesc =
5960             Legal->getReductionVars().find(PN)->second;
5961         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5962             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5963                                       RdxDesc.getRecurrenceType(),
5964                                       TargetTransformInfo::ReductionFlags()))
5965           continue;
5966         T = RdxDesc.getRecurrenceType();
5967       }
5968 
5969       // Examine the stored values.
5970       if (auto *ST = dyn_cast<StoreInst>(&I))
5971         T = ST->getValueOperand()->getType();
5972 
5973       assert(T->isSized() &&
5974              "Expected the load/store/recurrence type to be sized");
5975 
5976       ElementTypesInLoop.insert(T);
5977     }
5978   }
5979 }
5980 
5981 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5982                                                            unsigned LoopCost) {
5983   // -- The interleave heuristics --
5984   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5985   // There are many micro-architectural considerations that we can't predict
5986   // at this level. For example, frontend pressure (on decode or fetch) due to
5987   // code size, or the number and capabilities of the execution ports.
5988   //
5989   // We use the following heuristics to select the interleave count:
5990   // 1. If the code has reductions, then we interleave to break the cross
5991   // iteration dependency.
5992   // 2. If the loop is really small, then we interleave to reduce the loop
5993   // overhead.
5994   // 3. We don't interleave if we think that we will spill registers to memory
5995   // due to the increased register pressure.
5996 
5997   if (!isScalarEpilogueAllowed())
5998     return 1;
5999 
6000   // We used the distance for the interleave count.
6001   if (Legal->getMaxSafeDepDistBytes() != -1U)
6002     return 1;
6003 
6004   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6005   const bool HasReductions = !Legal->getReductionVars().empty();
6006   // Do not interleave loops with a relatively small known or estimated trip
6007   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6008   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6009   // because with the above conditions interleaving can expose ILP and break
6010   // cross iteration dependences for reductions.
6011   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6012       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6013     return 1;
6014 
6015   RegisterUsage R = calculateRegisterUsage({VF})[0];
6016   // We divide by these constants so assume that we have at least one
6017   // instruction that uses at least one register.
6018   for (auto& pair : R.MaxLocalUsers) {
6019     pair.second = std::max(pair.second, 1U);
6020   }
6021 
6022   // We calculate the interleave count using the following formula.
6023   // Subtract the number of loop invariants from the number of available
6024   // registers. These registers are used by all of the interleaved instances.
6025   // Next, divide the remaining registers by the number of registers that is
6026   // required by the loop, in order to estimate how many parallel instances
6027   // fit without causing spills. All of this is rounded down if necessary to be
6028   // a power of two. We want power of two interleave count to simplify any
6029   // addressing operations or alignment considerations.
6030   // We also want power of two interleave counts to ensure that the induction
6031   // variable of the vector loop wraps to zero, when tail is folded by masking;
6032   // this currently happens when OptForSize, in which case IC is set to 1 above.
6033   unsigned IC = UINT_MAX;
6034 
6035   for (auto& pair : R.MaxLocalUsers) {
6036     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6037     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6038                       << " registers of "
6039                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6040     if (VF.isScalar()) {
6041       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6042         TargetNumRegisters = ForceTargetNumScalarRegs;
6043     } else {
6044       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6045         TargetNumRegisters = ForceTargetNumVectorRegs;
6046     }
6047     unsigned MaxLocalUsers = pair.second;
6048     unsigned LoopInvariantRegs = 0;
6049     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6050       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6051 
6052     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6053     // Don't count the induction variable as interleaved.
6054     if (EnableIndVarRegisterHeur) {
6055       TmpIC =
6056           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6057                         std::max(1U, (MaxLocalUsers - 1)));
6058     }
6059 
6060     IC = std::min(IC, TmpIC);
6061   }
6062 
6063   // Clamp the interleave ranges to reasonable counts.
6064   unsigned MaxInterleaveCount =
6065       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6066 
6067   // Check if the user has overridden the max.
6068   if (VF.isScalar()) {
6069     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6070       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6071   } else {
6072     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6073       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6074   }
6075 
6076   // If trip count is known or estimated compile time constant, limit the
6077   // interleave count to be less than the trip count divided by VF, provided it
6078   // is at least 1.
6079   //
6080   // For scalable vectors we can't know if interleaving is beneficial. It may
6081   // not be beneficial for small loops if none of the lanes in the second vector
6082   // iterations is enabled. However, for larger loops, there is likely to be a
6083   // similar benefit as for fixed-width vectors. For now, we choose to leave
6084   // the InterleaveCount as if vscale is '1', although if some information about
6085   // the vector is known (e.g. min vector size), we can make a better decision.
6086   if (BestKnownTC) {
6087     MaxInterleaveCount =
6088         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6089     // Make sure MaxInterleaveCount is greater than 0.
6090     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6091   }
6092 
6093   assert(MaxInterleaveCount > 0 &&
6094          "Maximum interleave count must be greater than 0");
6095 
6096   // Clamp the calculated IC to be between the 1 and the max interleave count
6097   // that the target and trip count allows.
6098   if (IC > MaxInterleaveCount)
6099     IC = MaxInterleaveCount;
6100   else
6101     // Make sure IC is greater than 0.
6102     IC = std::max(1u, IC);
6103 
6104   assert(IC > 0 && "Interleave count must be greater than 0.");
6105 
6106   // If we did not calculate the cost for VF (because the user selected the VF)
6107   // then we calculate the cost of VF here.
6108   if (LoopCost == 0) {
6109     InstructionCost C = expectedCost(VF).first;
6110     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6111     LoopCost = *C.getValue();
6112   }
6113 
6114   assert(LoopCost && "Non-zero loop cost expected");
6115 
6116   // Interleave if we vectorized this loop and there is a reduction that could
6117   // benefit from interleaving.
6118   if (VF.isVector() && HasReductions) {
6119     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6120     return IC;
6121   }
6122 
6123   // Note that if we've already vectorized the loop we will have done the
6124   // runtime check and so interleaving won't require further checks.
6125   bool InterleavingRequiresRuntimePointerCheck =
6126       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6127 
6128   // We want to interleave small loops in order to reduce the loop overhead and
6129   // potentially expose ILP opportunities.
6130   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6131                     << "LV: IC is " << IC << '\n'
6132                     << "LV: VF is " << VF << '\n');
6133   const bool AggressivelyInterleaveReductions =
6134       TTI.enableAggressiveInterleaving(HasReductions);
6135   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6136     // We assume that the cost overhead is 1 and we use the cost model
6137     // to estimate the cost of the loop and interleave until the cost of the
6138     // loop overhead is about 5% of the cost of the loop.
6139     unsigned SmallIC =
6140         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6141 
6142     // Interleave until store/load ports (estimated by max interleave count) are
6143     // saturated.
6144     unsigned NumStores = Legal->getNumStores();
6145     unsigned NumLoads = Legal->getNumLoads();
6146     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6147     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6148 
6149     // There is little point in interleaving for reductions containing selects
6150     // and compares when VF=1 since it may just create more overhead than it's
6151     // worth for loops with small trip counts. This is because we still have to
6152     // do the final reduction after the loop.
6153     bool HasSelectCmpReductions =
6154         HasReductions &&
6155         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6156           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6157           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6158               RdxDesc.getRecurrenceKind());
6159         });
6160     if (HasSelectCmpReductions) {
6161       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6162       return 1;
6163     }
6164 
6165     // If we have a scalar reduction (vector reductions are already dealt with
6166     // by this point), we can increase the critical path length if the loop
6167     // we're interleaving is inside another loop. For tree-wise reductions
6168     // set the limit to 2, and for ordered reductions it's best to disable
6169     // interleaving entirely.
6170     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6171       bool HasOrderedReductions =
6172           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6173             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6174             return RdxDesc.isOrdered();
6175           });
6176       if (HasOrderedReductions) {
6177         LLVM_DEBUG(
6178             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6179         return 1;
6180       }
6181 
6182       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6183       SmallIC = std::min(SmallIC, F);
6184       StoresIC = std::min(StoresIC, F);
6185       LoadsIC = std::min(LoadsIC, F);
6186     }
6187 
6188     if (EnableLoadStoreRuntimeInterleave &&
6189         std::max(StoresIC, LoadsIC) > SmallIC) {
6190       LLVM_DEBUG(
6191           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6192       return std::max(StoresIC, LoadsIC);
6193     }
6194 
6195     // If there are scalar reductions and TTI has enabled aggressive
6196     // interleaving for reductions, we will interleave to expose ILP.
6197     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6198         AggressivelyInterleaveReductions) {
6199       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6200       // Interleave no less than SmallIC but not as aggressive as the normal IC
6201       // to satisfy the rare situation when resources are too limited.
6202       return std::max(IC / 2, SmallIC);
6203     } else {
6204       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6205       return SmallIC;
6206     }
6207   }
6208 
6209   // Interleave if this is a large loop (small loops are already dealt with by
6210   // this point) that could benefit from interleaving.
6211   if (AggressivelyInterleaveReductions) {
6212     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6213     return IC;
6214   }
6215 
6216   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6217   return 1;
6218 }
6219 
6220 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6221 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6222   // This function calculates the register usage by measuring the highest number
6223   // of values that are alive at a single location. Obviously, this is a very
6224   // rough estimation. We scan the loop in a topological order in order and
6225   // assign a number to each instruction. We use RPO to ensure that defs are
6226   // met before their users. We assume that each instruction that has in-loop
6227   // users starts an interval. We record every time that an in-loop value is
6228   // used, so we have a list of the first and last occurrences of each
6229   // instruction. Next, we transpose this data structure into a multi map that
6230   // holds the list of intervals that *end* at a specific location. This multi
6231   // map allows us to perform a linear search. We scan the instructions linearly
6232   // and record each time that a new interval starts, by placing it in a set.
6233   // If we find this value in the multi-map then we remove it from the set.
6234   // The max register usage is the maximum size of the set.
6235   // We also search for instructions that are defined outside the loop, but are
6236   // used inside the loop. We need this number separately from the max-interval
6237   // usage number because when we unroll, loop-invariant values do not take
6238   // more register.
6239   LoopBlocksDFS DFS(TheLoop);
6240   DFS.perform(LI);
6241 
6242   RegisterUsage RU;
6243 
6244   // Each 'key' in the map opens a new interval. The values
6245   // of the map are the index of the 'last seen' usage of the
6246   // instruction that is the key.
6247   using IntervalMap = DenseMap<Instruction *, unsigned>;
6248 
6249   // Maps instruction to its index.
6250   SmallVector<Instruction *, 64> IdxToInstr;
6251   // Marks the end of each interval.
6252   IntervalMap EndPoint;
6253   // Saves the list of instruction indices that are used in the loop.
6254   SmallPtrSet<Instruction *, 8> Ends;
6255   // Saves the list of values that are used in the loop but are
6256   // defined outside the loop, such as arguments and constants.
6257   SmallPtrSet<Value *, 8> LoopInvariants;
6258 
6259   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6260     for (Instruction &I : BB->instructionsWithoutDebug()) {
6261       IdxToInstr.push_back(&I);
6262 
6263       // Save the end location of each USE.
6264       for (Value *U : I.operands()) {
6265         auto *Instr = dyn_cast<Instruction>(U);
6266 
6267         // Ignore non-instruction values such as arguments, constants, etc.
6268         if (!Instr)
6269           continue;
6270 
6271         // If this instruction is outside the loop then record it and continue.
6272         if (!TheLoop->contains(Instr)) {
6273           LoopInvariants.insert(Instr);
6274           continue;
6275         }
6276 
6277         // Overwrite previous end points.
6278         EndPoint[Instr] = IdxToInstr.size();
6279         Ends.insert(Instr);
6280       }
6281     }
6282   }
6283 
6284   // Saves the list of intervals that end with the index in 'key'.
6285   using InstrList = SmallVector<Instruction *, 2>;
6286   DenseMap<unsigned, InstrList> TransposeEnds;
6287 
6288   // Transpose the EndPoints to a list of values that end at each index.
6289   for (auto &Interval : EndPoint)
6290     TransposeEnds[Interval.second].push_back(Interval.first);
6291 
6292   SmallPtrSet<Instruction *, 8> OpenIntervals;
6293   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6294   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6295 
6296   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6297 
6298   // A lambda that gets the register usage for the given type and VF.
6299   const auto &TTICapture = TTI;
6300   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6301     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6302       return 0;
6303     InstructionCost::CostType RegUsage =
6304         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6305     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6306            "Nonsensical values for register usage.");
6307     return RegUsage;
6308   };
6309 
6310   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6311     Instruction *I = IdxToInstr[i];
6312 
6313     // Remove all of the instructions that end at this location.
6314     InstrList &List = TransposeEnds[i];
6315     for (Instruction *ToRemove : List)
6316       OpenIntervals.erase(ToRemove);
6317 
6318     // Ignore instructions that are never used within the loop.
6319     if (!Ends.count(I))
6320       continue;
6321 
6322     // Skip ignored values.
6323     if (ValuesToIgnore.count(I))
6324       continue;
6325 
6326     // For each VF find the maximum usage of registers.
6327     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6328       // Count the number of live intervals.
6329       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6330 
6331       if (VFs[j].isScalar()) {
6332         for (auto Inst : OpenIntervals) {
6333           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6334           if (RegUsage.find(ClassID) == RegUsage.end())
6335             RegUsage[ClassID] = 1;
6336           else
6337             RegUsage[ClassID] += 1;
6338         }
6339       } else {
6340         collectUniformsAndScalars(VFs[j]);
6341         for (auto Inst : OpenIntervals) {
6342           // Skip ignored values for VF > 1.
6343           if (VecValuesToIgnore.count(Inst))
6344             continue;
6345           if (isScalarAfterVectorization(Inst, VFs[j])) {
6346             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6347             if (RegUsage.find(ClassID) == RegUsage.end())
6348               RegUsage[ClassID] = 1;
6349             else
6350               RegUsage[ClassID] += 1;
6351           } else {
6352             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6353             if (RegUsage.find(ClassID) == RegUsage.end())
6354               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6355             else
6356               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6357           }
6358         }
6359       }
6360 
6361       for (auto& pair : RegUsage) {
6362         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6363           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6364         else
6365           MaxUsages[j][pair.first] = pair.second;
6366       }
6367     }
6368 
6369     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6370                       << OpenIntervals.size() << '\n');
6371 
6372     // Add the current instruction to the list of open intervals.
6373     OpenIntervals.insert(I);
6374   }
6375 
6376   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6377     SmallMapVector<unsigned, unsigned, 4> Invariant;
6378 
6379     for (auto Inst : LoopInvariants) {
6380       unsigned Usage =
6381           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6382       unsigned ClassID =
6383           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6384       if (Invariant.find(ClassID) == Invariant.end())
6385         Invariant[ClassID] = Usage;
6386       else
6387         Invariant[ClassID] += Usage;
6388     }
6389 
6390     LLVM_DEBUG({
6391       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6392       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6393              << " item\n";
6394       for (const auto &pair : MaxUsages[i]) {
6395         dbgs() << "LV(REG): RegisterClass: "
6396                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6397                << " registers\n";
6398       }
6399       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6400              << " item\n";
6401       for (const auto &pair : Invariant) {
6402         dbgs() << "LV(REG): RegisterClass: "
6403                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6404                << " registers\n";
6405       }
6406     });
6407 
6408     RU.LoopInvariantRegs = Invariant;
6409     RU.MaxLocalUsers = MaxUsages[i];
6410     RUs[i] = RU;
6411   }
6412 
6413   return RUs;
6414 }
6415 
6416 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6417                                                            ElementCount VF) {
6418   // TODO: Cost model for emulated masked load/store is completely
6419   // broken. This hack guides the cost model to use an artificially
6420   // high enough value to practically disable vectorization with such
6421   // operations, except where previously deployed legality hack allowed
6422   // using very low cost values. This is to avoid regressions coming simply
6423   // from moving "masked load/store" check from legality to cost model.
6424   // Masked Load/Gather emulation was previously never allowed.
6425   // Limited number of Masked Store/Scatter emulation was allowed.
6426   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6427   return isa<LoadInst>(I) ||
6428          (isa<StoreInst>(I) &&
6429           NumPredStores > NumberOfStoresToPredicate);
6430 }
6431 
6432 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6433   // If we aren't vectorizing the loop, or if we've already collected the
6434   // instructions to scalarize, there's nothing to do. Collection may already
6435   // have occurred if we have a user-selected VF and are now computing the
6436   // expected cost for interleaving.
6437   if (VF.isScalar() || VF.isZero() ||
6438       InstsToScalarize.find(VF) != InstsToScalarize.end())
6439     return;
6440 
6441   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6442   // not profitable to scalarize any instructions, the presence of VF in the
6443   // map will indicate that we've analyzed it already.
6444   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6445 
6446   // Find all the instructions that are scalar with predication in the loop and
6447   // determine if it would be better to not if-convert the blocks they are in.
6448   // If so, we also record the instructions to scalarize.
6449   for (BasicBlock *BB : TheLoop->blocks()) {
6450     if (!blockNeedsPredicationForAnyReason(BB))
6451       continue;
6452     for (Instruction &I : *BB)
6453       if (isScalarWithPredication(&I, VF)) {
6454         ScalarCostsTy ScalarCosts;
6455         // Do not apply discount if scalable, because that would lead to
6456         // invalid scalarization costs.
6457         // Do not apply discount logic if hacked cost is needed
6458         // for emulated masked memrefs.
6459         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6460             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6461           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6462         // Remember that BB will remain after vectorization.
6463         PredicatedBBsAfterVectorization.insert(BB);
6464       }
6465   }
6466 }
6467 
6468 int LoopVectorizationCostModel::computePredInstDiscount(
6469     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6470   assert(!isUniformAfterVectorization(PredInst, VF) &&
6471          "Instruction marked uniform-after-vectorization will be predicated");
6472 
6473   // Initialize the discount to zero, meaning that the scalar version and the
6474   // vector version cost the same.
6475   InstructionCost Discount = 0;
6476 
6477   // Holds instructions to analyze. The instructions we visit are mapped in
6478   // ScalarCosts. Those instructions are the ones that would be scalarized if
6479   // we find that the scalar version costs less.
6480   SmallVector<Instruction *, 8> Worklist;
6481 
6482   // Returns true if the given instruction can be scalarized.
6483   auto canBeScalarized = [&](Instruction *I) -> bool {
6484     // We only attempt to scalarize instructions forming a single-use chain
6485     // from the original predicated block that would otherwise be vectorized.
6486     // Although not strictly necessary, we give up on instructions we know will
6487     // already be scalar to avoid traversing chains that are unlikely to be
6488     // beneficial.
6489     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6490         isScalarAfterVectorization(I, VF))
6491       return false;
6492 
6493     // If the instruction is scalar with predication, it will be analyzed
6494     // separately. We ignore it within the context of PredInst.
6495     if (isScalarWithPredication(I, VF))
6496       return false;
6497 
6498     // If any of the instruction's operands are uniform after vectorization,
6499     // the instruction cannot be scalarized. This prevents, for example, a
6500     // masked load from being scalarized.
6501     //
6502     // We assume we will only emit a value for lane zero of an instruction
6503     // marked uniform after vectorization, rather than VF identical values.
6504     // Thus, if we scalarize an instruction that uses a uniform, we would
6505     // create uses of values corresponding to the lanes we aren't emitting code
6506     // for. This behavior can be changed by allowing getScalarValue to clone
6507     // the lane zero values for uniforms rather than asserting.
6508     for (Use &U : I->operands())
6509       if (auto *J = dyn_cast<Instruction>(U.get()))
6510         if (isUniformAfterVectorization(J, VF))
6511           return false;
6512 
6513     // Otherwise, we can scalarize the instruction.
6514     return true;
6515   };
6516 
6517   // Compute the expected cost discount from scalarizing the entire expression
6518   // feeding the predicated instruction. We currently only consider expressions
6519   // that are single-use instruction chains.
6520   Worklist.push_back(PredInst);
6521   while (!Worklist.empty()) {
6522     Instruction *I = Worklist.pop_back_val();
6523 
6524     // If we've already analyzed the instruction, there's nothing to do.
6525     if (ScalarCosts.find(I) != ScalarCosts.end())
6526       continue;
6527 
6528     // Compute the cost of the vector instruction. Note that this cost already
6529     // includes the scalarization overhead of the predicated instruction.
6530     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6531 
6532     // Compute the cost of the scalarized instruction. This cost is the cost of
6533     // the instruction as if it wasn't if-converted and instead remained in the
6534     // predicated block. We will scale this cost by block probability after
6535     // computing the scalarization overhead.
6536     InstructionCost ScalarCost =
6537         VF.getFixedValue() *
6538         getInstructionCost(I, ElementCount::getFixed(1)).first;
6539 
6540     // Compute the scalarization overhead of needed insertelement instructions
6541     // and phi nodes.
6542     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6543       ScalarCost += TTI.getScalarizationOverhead(
6544           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6545           APInt::getAllOnes(VF.getFixedValue()), true, false);
6546       ScalarCost +=
6547           VF.getFixedValue() *
6548           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6549     }
6550 
6551     // Compute the scalarization overhead of needed extractelement
6552     // instructions. For each of the instruction's operands, if the operand can
6553     // be scalarized, add it to the worklist; otherwise, account for the
6554     // overhead.
6555     for (Use &U : I->operands())
6556       if (auto *J = dyn_cast<Instruction>(U.get())) {
6557         assert(VectorType::isValidElementType(J->getType()) &&
6558                "Instruction has non-scalar type");
6559         if (canBeScalarized(J))
6560           Worklist.push_back(J);
6561         else if (needsExtract(J, VF)) {
6562           ScalarCost += TTI.getScalarizationOverhead(
6563               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6564               APInt::getAllOnes(VF.getFixedValue()), false, true);
6565         }
6566       }
6567 
6568     // Scale the total scalar cost by block probability.
6569     ScalarCost /= getReciprocalPredBlockProb();
6570 
6571     // Compute the discount. A non-negative discount means the vector version
6572     // of the instruction costs more, and scalarizing would be beneficial.
6573     Discount += VectorCost - ScalarCost;
6574     ScalarCosts[I] = ScalarCost;
6575   }
6576 
6577   return *Discount.getValue();
6578 }
6579 
6580 LoopVectorizationCostModel::VectorizationCostTy
6581 LoopVectorizationCostModel::expectedCost(
6582     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6583   VectorizationCostTy Cost;
6584 
6585   // For each block.
6586   for (BasicBlock *BB : TheLoop->blocks()) {
6587     VectorizationCostTy BlockCost;
6588 
6589     // For each instruction in the old loop.
6590     for (Instruction &I : BB->instructionsWithoutDebug()) {
6591       // Skip ignored values.
6592       if (ValuesToIgnore.count(&I) ||
6593           (VF.isVector() && VecValuesToIgnore.count(&I)))
6594         continue;
6595 
6596       VectorizationCostTy C = getInstructionCost(&I, VF);
6597 
6598       // Check if we should override the cost.
6599       if (C.first.isValid() &&
6600           ForceTargetInstructionCost.getNumOccurrences() > 0)
6601         C.first = InstructionCost(ForceTargetInstructionCost);
6602 
6603       // Keep a list of instructions with invalid costs.
6604       if (Invalid && !C.first.isValid())
6605         Invalid->emplace_back(&I, VF);
6606 
6607       BlockCost.first += C.first;
6608       BlockCost.second |= C.second;
6609       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6610                         << " for VF " << VF << " For instruction: " << I
6611                         << '\n');
6612     }
6613 
6614     // If we are vectorizing a predicated block, it will have been
6615     // if-converted. This means that the block's instructions (aside from
6616     // stores and instructions that may divide by zero) will now be
6617     // unconditionally executed. For the scalar case, we may not always execute
6618     // the predicated block, if it is an if-else block. Thus, scale the block's
6619     // cost by the probability of executing it. blockNeedsPredication from
6620     // Legal is used so as to not include all blocks in tail folded loops.
6621     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6622       BlockCost.first /= getReciprocalPredBlockProb();
6623 
6624     Cost.first += BlockCost.first;
6625     Cost.second |= BlockCost.second;
6626   }
6627 
6628   return Cost;
6629 }
6630 
6631 /// Gets Address Access SCEV after verifying that the access pattern
6632 /// is loop invariant except the induction variable dependence.
6633 ///
6634 /// This SCEV can be sent to the Target in order to estimate the address
6635 /// calculation cost.
6636 static const SCEV *getAddressAccessSCEV(
6637               Value *Ptr,
6638               LoopVectorizationLegality *Legal,
6639               PredicatedScalarEvolution &PSE,
6640               const Loop *TheLoop) {
6641 
6642   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6643   if (!Gep)
6644     return nullptr;
6645 
6646   // We are looking for a gep with all loop invariant indices except for one
6647   // which should be an induction variable.
6648   auto SE = PSE.getSE();
6649   unsigned NumOperands = Gep->getNumOperands();
6650   for (unsigned i = 1; i < NumOperands; ++i) {
6651     Value *Opd = Gep->getOperand(i);
6652     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6653         !Legal->isInductionVariable(Opd))
6654       return nullptr;
6655   }
6656 
6657   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6658   return PSE.getSCEV(Ptr);
6659 }
6660 
6661 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6662   return Legal->hasStride(I->getOperand(0)) ||
6663          Legal->hasStride(I->getOperand(1));
6664 }
6665 
6666 InstructionCost
6667 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6668                                                         ElementCount VF) {
6669   assert(VF.isVector() &&
6670          "Scalarization cost of instruction implies vectorization.");
6671   if (VF.isScalable())
6672     return InstructionCost::getInvalid();
6673 
6674   Type *ValTy = getLoadStoreType(I);
6675   auto SE = PSE.getSE();
6676 
6677   unsigned AS = getLoadStoreAddressSpace(I);
6678   Value *Ptr = getLoadStorePointerOperand(I);
6679   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6680   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6681   //       that it is being called from this specific place.
6682 
6683   // Figure out whether the access is strided and get the stride value
6684   // if it's known in compile time
6685   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6686 
6687   // Get the cost of the scalar memory instruction and address computation.
6688   InstructionCost Cost =
6689       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6690 
6691   // Don't pass *I here, since it is scalar but will actually be part of a
6692   // vectorized loop where the user of it is a vectorized instruction.
6693   const Align Alignment = getLoadStoreAlignment(I);
6694   Cost += VF.getKnownMinValue() *
6695           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6696                               AS, TTI::TCK_RecipThroughput);
6697 
6698   // Get the overhead of the extractelement and insertelement instructions
6699   // we might create due to scalarization.
6700   Cost += getScalarizationOverhead(I, VF);
6701 
6702   // If we have a predicated load/store, it will need extra i1 extracts and
6703   // conditional branches, but may not be executed for each vector lane. Scale
6704   // the cost by the probability of executing the predicated block.
6705   if (isPredicatedInst(I, VF)) {
6706     Cost /= getReciprocalPredBlockProb();
6707 
6708     // Add the cost of an i1 extract and a branch
6709     auto *Vec_i1Ty =
6710         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6711     Cost += TTI.getScalarizationOverhead(
6712         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6713         /*Insert=*/false, /*Extract=*/true);
6714     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6715 
6716     if (useEmulatedMaskMemRefHack(I, VF))
6717       // Artificially setting to a high enough value to practically disable
6718       // vectorization with such operations.
6719       Cost = 3000000;
6720   }
6721 
6722   return Cost;
6723 }
6724 
6725 InstructionCost
6726 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6727                                                     ElementCount VF) {
6728   Type *ValTy = getLoadStoreType(I);
6729   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6730   Value *Ptr = getLoadStorePointerOperand(I);
6731   unsigned AS = getLoadStoreAddressSpace(I);
6732   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6733   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6734 
6735   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6736          "Stride should be 1 or -1 for consecutive memory access");
6737   const Align Alignment = getLoadStoreAlignment(I);
6738   InstructionCost Cost = 0;
6739   if (Legal->isMaskRequired(I))
6740     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6741                                       CostKind);
6742   else
6743     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6744                                 CostKind, I);
6745 
6746   bool Reverse = ConsecutiveStride < 0;
6747   if (Reverse)
6748     Cost +=
6749         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6750   return Cost;
6751 }
6752 
6753 InstructionCost
6754 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6755                                                 ElementCount VF) {
6756   assert(Legal->isUniformMemOp(*I));
6757 
6758   Type *ValTy = getLoadStoreType(I);
6759   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6760   const Align Alignment = getLoadStoreAlignment(I);
6761   unsigned AS = getLoadStoreAddressSpace(I);
6762   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6763   if (isa<LoadInst>(I)) {
6764     return TTI.getAddressComputationCost(ValTy) +
6765            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6766                                CostKind) +
6767            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6768   }
6769   StoreInst *SI = cast<StoreInst>(I);
6770 
6771   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6772   return TTI.getAddressComputationCost(ValTy) +
6773          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6774                              CostKind) +
6775          (isLoopInvariantStoreValue
6776               ? 0
6777               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6778                                        VF.getKnownMinValue() - 1));
6779 }
6780 
6781 InstructionCost
6782 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6783                                                  ElementCount VF) {
6784   Type *ValTy = getLoadStoreType(I);
6785   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6786   const Align Alignment = getLoadStoreAlignment(I);
6787   const Value *Ptr = getLoadStorePointerOperand(I);
6788 
6789   return TTI.getAddressComputationCost(VectorTy) +
6790          TTI.getGatherScatterOpCost(
6791              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6792              TargetTransformInfo::TCK_RecipThroughput, I);
6793 }
6794 
6795 InstructionCost
6796 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6797                                                    ElementCount VF) {
6798   // TODO: Once we have support for interleaving with scalable vectors
6799   // we can calculate the cost properly here.
6800   if (VF.isScalable())
6801     return InstructionCost::getInvalid();
6802 
6803   Type *ValTy = getLoadStoreType(I);
6804   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6805   unsigned AS = getLoadStoreAddressSpace(I);
6806 
6807   auto Group = getInterleavedAccessGroup(I);
6808   assert(Group && "Fail to get an interleaved access group.");
6809 
6810   unsigned InterleaveFactor = Group->getFactor();
6811   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6812 
6813   // Holds the indices of existing members in the interleaved group.
6814   SmallVector<unsigned, 4> Indices;
6815   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6816     if (Group->getMember(IF))
6817       Indices.push_back(IF);
6818 
6819   // Calculate the cost of the whole interleaved group.
6820   bool UseMaskForGaps =
6821       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6822       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6823   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6824       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6825       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6826 
6827   if (Group->isReverse()) {
6828     // TODO: Add support for reversed masked interleaved access.
6829     assert(!Legal->isMaskRequired(I) &&
6830            "Reverse masked interleaved access not supported.");
6831     Cost +=
6832         Group->getNumMembers() *
6833         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6834   }
6835   return Cost;
6836 }
6837 
6838 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6839     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6840   using namespace llvm::PatternMatch;
6841   // Early exit for no inloop reductions
6842   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6843     return None;
6844   auto *VectorTy = cast<VectorType>(Ty);
6845 
6846   // We are looking for a pattern of, and finding the minimal acceptable cost:
6847   //  reduce(mul(ext(A), ext(B))) or
6848   //  reduce(mul(A, B)) or
6849   //  reduce(ext(A)) or
6850   //  reduce(A).
6851   // The basic idea is that we walk down the tree to do that, finding the root
6852   // reduction instruction in InLoopReductionImmediateChains. From there we find
6853   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6854   // of the components. If the reduction cost is lower then we return it for the
6855   // reduction instruction and 0 for the other instructions in the pattern. If
6856   // it is not we return an invalid cost specifying the orignal cost method
6857   // should be used.
6858   Instruction *RetI = I;
6859   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6860     if (!RetI->hasOneUser())
6861       return None;
6862     RetI = RetI->user_back();
6863   }
6864   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6865       RetI->user_back()->getOpcode() == Instruction::Add) {
6866     if (!RetI->hasOneUser())
6867       return None;
6868     RetI = RetI->user_back();
6869   }
6870 
6871   // Test if the found instruction is a reduction, and if not return an invalid
6872   // cost specifying the parent to use the original cost modelling.
6873   if (!InLoopReductionImmediateChains.count(RetI))
6874     return None;
6875 
6876   // Find the reduction this chain is a part of and calculate the basic cost of
6877   // the reduction on its own.
6878   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6879   Instruction *ReductionPhi = LastChain;
6880   while (!isa<PHINode>(ReductionPhi))
6881     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6882 
6883   const RecurrenceDescriptor &RdxDesc =
6884       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6885 
6886   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6887       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6888 
6889   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6890   // normal fmul instruction to the cost of the fadd reduction.
6891   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6892     BaseCost +=
6893         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6894 
6895   // If we're using ordered reductions then we can just return the base cost
6896   // here, since getArithmeticReductionCost calculates the full ordered
6897   // reduction cost when FP reassociation is not allowed.
6898   if (useOrderedReductions(RdxDesc))
6899     return BaseCost;
6900 
6901   // Get the operand that was not the reduction chain and match it to one of the
6902   // patterns, returning the better cost if it is found.
6903   Instruction *RedOp = RetI->getOperand(1) == LastChain
6904                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6905                            : dyn_cast<Instruction>(RetI->getOperand(1));
6906 
6907   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6908 
6909   Instruction *Op0, *Op1;
6910   if (RedOp &&
6911       match(RedOp,
6912             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6913       match(Op0, m_ZExtOrSExt(m_Value())) &&
6914       Op0->getOpcode() == Op1->getOpcode() &&
6915       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6916       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6917       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6918 
6919     // Matched reduce(ext(mul(ext(A), ext(B)))
6920     // Note that the extend opcodes need to all match, or if A==B they will have
6921     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6922     // which is equally fine.
6923     bool IsUnsigned = isa<ZExtInst>(Op0);
6924     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6925     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6926 
6927     InstructionCost ExtCost =
6928         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6929                              TTI::CastContextHint::None, CostKind, Op0);
6930     InstructionCost MulCost =
6931         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6932     InstructionCost Ext2Cost =
6933         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6934                              TTI::CastContextHint::None, CostKind, RedOp);
6935 
6936     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6937         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6938         CostKind);
6939 
6940     if (RedCost.isValid() &&
6941         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6942       return I == RetI ? RedCost : 0;
6943   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6944              !TheLoop->isLoopInvariant(RedOp)) {
6945     // Matched reduce(ext(A))
6946     bool IsUnsigned = isa<ZExtInst>(RedOp);
6947     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6948     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6949         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6950         CostKind);
6951 
6952     InstructionCost ExtCost =
6953         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6954                              TTI::CastContextHint::None, CostKind, RedOp);
6955     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6956       return I == RetI ? RedCost : 0;
6957   } else if (RedOp &&
6958              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6959     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6960         Op0->getOpcode() == Op1->getOpcode() &&
6961         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6962       bool IsUnsigned = isa<ZExtInst>(Op0);
6963       Type *Op0Ty = Op0->getOperand(0)->getType();
6964       Type *Op1Ty = Op1->getOperand(0)->getType();
6965       Type *LargestOpTy =
6966           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6967                                                                     : Op0Ty;
6968       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6969 
6970       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6971       // different sizes. We take the largest type as the ext to reduce, and add
6972       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6973       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6974           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6975           TTI::CastContextHint::None, CostKind, Op0);
6976       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6977           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6978           TTI::CastContextHint::None, CostKind, Op1);
6979       InstructionCost MulCost =
6980           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6981 
6982       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6983           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6984           CostKind);
6985       InstructionCost ExtraExtCost = 0;
6986       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6987         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6988         ExtraExtCost = TTI.getCastInstrCost(
6989             ExtraExtOp->getOpcode(), ExtType,
6990             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6991             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6992       }
6993 
6994       if (RedCost.isValid() &&
6995           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6996         return I == RetI ? RedCost : 0;
6997     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6998       // Matched reduce(mul())
6999       InstructionCost MulCost =
7000           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7001 
7002       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7003           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7004           CostKind);
7005 
7006       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7007         return I == RetI ? RedCost : 0;
7008     }
7009   }
7010 
7011   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7012 }
7013 
7014 InstructionCost
7015 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7016                                                      ElementCount VF) {
7017   // Calculate scalar cost only. Vectorization cost should be ready at this
7018   // moment.
7019   if (VF.isScalar()) {
7020     Type *ValTy = getLoadStoreType(I);
7021     const Align Alignment = getLoadStoreAlignment(I);
7022     unsigned AS = getLoadStoreAddressSpace(I);
7023 
7024     return TTI.getAddressComputationCost(ValTy) +
7025            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7026                                TTI::TCK_RecipThroughput, I);
7027   }
7028   return getWideningCost(I, VF);
7029 }
7030 
7031 LoopVectorizationCostModel::VectorizationCostTy
7032 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7033                                                ElementCount VF) {
7034   // If we know that this instruction will remain uniform, check the cost of
7035   // the scalar version.
7036   if (isUniformAfterVectorization(I, VF))
7037     VF = ElementCount::getFixed(1);
7038 
7039   if (VF.isVector() && isProfitableToScalarize(I, VF))
7040     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7041 
7042   // Forced scalars do not have any scalarization overhead.
7043   auto ForcedScalar = ForcedScalars.find(VF);
7044   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7045     auto InstSet = ForcedScalar->second;
7046     if (InstSet.count(I))
7047       return VectorizationCostTy(
7048           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7049            VF.getKnownMinValue()),
7050           false);
7051   }
7052 
7053   Type *VectorTy;
7054   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7055 
7056   bool TypeNotScalarized = false;
7057   if (VF.isVector() && VectorTy->isVectorTy()) {
7058     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
7059     if (NumParts)
7060       TypeNotScalarized = NumParts < VF.getKnownMinValue();
7061     else
7062       C = InstructionCost::getInvalid();
7063   }
7064   return VectorizationCostTy(C, TypeNotScalarized);
7065 }
7066 
7067 InstructionCost
7068 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7069                                                      ElementCount VF) const {
7070 
7071   // There is no mechanism yet to create a scalable scalarization loop,
7072   // so this is currently Invalid.
7073   if (VF.isScalable())
7074     return InstructionCost::getInvalid();
7075 
7076   if (VF.isScalar())
7077     return 0;
7078 
7079   InstructionCost Cost = 0;
7080   Type *RetTy = ToVectorTy(I->getType(), VF);
7081   if (!RetTy->isVoidTy() &&
7082       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7083     Cost += TTI.getScalarizationOverhead(
7084         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7085         false);
7086 
7087   // Some targets keep addresses scalar.
7088   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7089     return Cost;
7090 
7091   // Some targets support efficient element stores.
7092   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7093     return Cost;
7094 
7095   // Collect operands to consider.
7096   CallInst *CI = dyn_cast<CallInst>(I);
7097   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7098 
7099   // Skip operands that do not require extraction/scalarization and do not incur
7100   // any overhead.
7101   SmallVector<Type *> Tys;
7102   for (auto *V : filterExtractingOperands(Ops, VF))
7103     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7104   return Cost + TTI.getOperandsScalarizationOverhead(
7105                     filterExtractingOperands(Ops, VF), Tys);
7106 }
7107 
7108 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7109   if (VF.isScalar())
7110     return;
7111   NumPredStores = 0;
7112   for (BasicBlock *BB : TheLoop->blocks()) {
7113     // For each instruction in the old loop.
7114     for (Instruction &I : *BB) {
7115       Value *Ptr =  getLoadStorePointerOperand(&I);
7116       if (!Ptr)
7117         continue;
7118 
7119       // TODO: We should generate better code and update the cost model for
7120       // predicated uniform stores. Today they are treated as any other
7121       // predicated store (see added test cases in
7122       // invariant-store-vectorization.ll).
7123       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
7124         NumPredStores++;
7125 
7126       if (Legal->isUniformMemOp(I)) {
7127         // TODO: Avoid replicating loads and stores instead of
7128         // relying on instcombine to remove them.
7129         // Load: Scalar load + broadcast
7130         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7131         InstructionCost Cost;
7132         if (isa<StoreInst>(&I) && VF.isScalable() &&
7133             isLegalGatherOrScatter(&I, VF)) {
7134           Cost = getGatherScatterCost(&I, VF);
7135           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7136         } else {
7137           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7138                  "Cannot yet scalarize uniform stores");
7139           Cost = getUniformMemOpCost(&I, VF);
7140           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7141         }
7142         continue;
7143       }
7144 
7145       // We assume that widening is the best solution when possible.
7146       if (memoryInstructionCanBeWidened(&I, VF)) {
7147         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7148         int ConsecutiveStride = Legal->isConsecutivePtr(
7149             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7150         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7151                "Expected consecutive stride.");
7152         InstWidening Decision =
7153             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7154         setWideningDecision(&I, VF, Decision, Cost);
7155         continue;
7156       }
7157 
7158       // Choose between Interleaving, Gather/Scatter or Scalarization.
7159       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7160       unsigned NumAccesses = 1;
7161       if (isAccessInterleaved(&I)) {
7162         auto Group = getInterleavedAccessGroup(&I);
7163         assert(Group && "Fail to get an interleaved access group.");
7164 
7165         // Make one decision for the whole group.
7166         if (getWideningDecision(&I, VF) != CM_Unknown)
7167           continue;
7168 
7169         NumAccesses = Group->getNumMembers();
7170         if (interleavedAccessCanBeWidened(&I, VF))
7171           InterleaveCost = getInterleaveGroupCost(&I, VF);
7172       }
7173 
7174       InstructionCost GatherScatterCost =
7175           isLegalGatherOrScatter(&I, VF)
7176               ? getGatherScatterCost(&I, VF) * NumAccesses
7177               : InstructionCost::getInvalid();
7178 
7179       InstructionCost ScalarizationCost =
7180           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7181 
7182       // Choose better solution for the current VF,
7183       // write down this decision and use it during vectorization.
7184       InstructionCost Cost;
7185       InstWidening Decision;
7186       if (InterleaveCost <= GatherScatterCost &&
7187           InterleaveCost < ScalarizationCost) {
7188         Decision = CM_Interleave;
7189         Cost = InterleaveCost;
7190       } else if (GatherScatterCost < ScalarizationCost) {
7191         Decision = CM_GatherScatter;
7192         Cost = GatherScatterCost;
7193       } else {
7194         Decision = CM_Scalarize;
7195         Cost = ScalarizationCost;
7196       }
7197       // If the instructions belongs to an interleave group, the whole group
7198       // receives the same decision. The whole group receives the cost, but
7199       // the cost will actually be assigned to one instruction.
7200       if (auto Group = getInterleavedAccessGroup(&I))
7201         setWideningDecision(Group, VF, Decision, Cost);
7202       else
7203         setWideningDecision(&I, VF, Decision, Cost);
7204     }
7205   }
7206 
7207   // Make sure that any load of address and any other address computation
7208   // remains scalar unless there is gather/scatter support. This avoids
7209   // inevitable extracts into address registers, and also has the benefit of
7210   // activating LSR more, since that pass can't optimize vectorized
7211   // addresses.
7212   if (TTI.prefersVectorizedAddressing())
7213     return;
7214 
7215   // Start with all scalar pointer uses.
7216   SmallPtrSet<Instruction *, 8> AddrDefs;
7217   for (BasicBlock *BB : TheLoop->blocks())
7218     for (Instruction &I : *BB) {
7219       Instruction *PtrDef =
7220         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7221       if (PtrDef && TheLoop->contains(PtrDef) &&
7222           getWideningDecision(&I, VF) != CM_GatherScatter)
7223         AddrDefs.insert(PtrDef);
7224     }
7225 
7226   // Add all instructions used to generate the addresses.
7227   SmallVector<Instruction *, 4> Worklist;
7228   append_range(Worklist, AddrDefs);
7229   while (!Worklist.empty()) {
7230     Instruction *I = Worklist.pop_back_val();
7231     for (auto &Op : I->operands())
7232       if (auto *InstOp = dyn_cast<Instruction>(Op))
7233         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7234             AddrDefs.insert(InstOp).second)
7235           Worklist.push_back(InstOp);
7236   }
7237 
7238   for (auto *I : AddrDefs) {
7239     if (isa<LoadInst>(I)) {
7240       // Setting the desired widening decision should ideally be handled in
7241       // by cost functions, but since this involves the task of finding out
7242       // if the loaded register is involved in an address computation, it is
7243       // instead changed here when we know this is the case.
7244       InstWidening Decision = getWideningDecision(I, VF);
7245       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7246         // Scalarize a widened load of address.
7247         setWideningDecision(
7248             I, VF, CM_Scalarize,
7249             (VF.getKnownMinValue() *
7250              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7251       else if (auto Group = getInterleavedAccessGroup(I)) {
7252         // Scalarize an interleave group of address loads.
7253         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7254           if (Instruction *Member = Group->getMember(I))
7255             setWideningDecision(
7256                 Member, VF, CM_Scalarize,
7257                 (VF.getKnownMinValue() *
7258                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7259         }
7260       }
7261     } else
7262       // Make sure I gets scalarized and a cost estimate without
7263       // scalarization overhead.
7264       ForcedScalars[VF].insert(I);
7265   }
7266 }
7267 
7268 InstructionCost
7269 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7270                                                Type *&VectorTy) {
7271   Type *RetTy = I->getType();
7272   if (canTruncateToMinimalBitwidth(I, VF))
7273     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7274   auto SE = PSE.getSE();
7275   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7276 
7277   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7278                                                 ElementCount VF) -> bool {
7279     if (VF.isScalar())
7280       return true;
7281 
7282     auto Scalarized = InstsToScalarize.find(VF);
7283     assert(Scalarized != InstsToScalarize.end() &&
7284            "VF not yet analyzed for scalarization profitability");
7285     return !Scalarized->second.count(I) &&
7286            llvm::all_of(I->users(), [&](User *U) {
7287              auto *UI = cast<Instruction>(U);
7288              return !Scalarized->second.count(UI);
7289            });
7290   };
7291   (void) hasSingleCopyAfterVectorization;
7292 
7293   if (isScalarAfterVectorization(I, VF)) {
7294     // With the exception of GEPs and PHIs, after scalarization there should
7295     // only be one copy of the instruction generated in the loop. This is
7296     // because the VF is either 1, or any instructions that need scalarizing
7297     // have already been dealt with by the the time we get here. As a result,
7298     // it means we don't have to multiply the instruction cost by VF.
7299     assert(I->getOpcode() == Instruction::GetElementPtr ||
7300            I->getOpcode() == Instruction::PHI ||
7301            (I->getOpcode() == Instruction::BitCast &&
7302             I->getType()->isPointerTy()) ||
7303            hasSingleCopyAfterVectorization(I, VF));
7304     VectorTy = RetTy;
7305   } else
7306     VectorTy = ToVectorTy(RetTy, VF);
7307 
7308   // TODO: We need to estimate the cost of intrinsic calls.
7309   switch (I->getOpcode()) {
7310   case Instruction::GetElementPtr:
7311     // We mark this instruction as zero-cost because the cost of GEPs in
7312     // vectorized code depends on whether the corresponding memory instruction
7313     // is scalarized or not. Therefore, we handle GEPs with the memory
7314     // instruction cost.
7315     return 0;
7316   case Instruction::Br: {
7317     // In cases of scalarized and predicated instructions, there will be VF
7318     // predicated blocks in the vectorized loop. Each branch around these
7319     // blocks requires also an extract of its vector compare i1 element.
7320     bool ScalarPredicatedBB = false;
7321     BranchInst *BI = cast<BranchInst>(I);
7322     if (VF.isVector() && BI->isConditional() &&
7323         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7324          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7325       ScalarPredicatedBB = true;
7326 
7327     if (ScalarPredicatedBB) {
7328       // Not possible to scalarize scalable vector with predicated instructions.
7329       if (VF.isScalable())
7330         return InstructionCost::getInvalid();
7331       // Return cost for branches around scalarized and predicated blocks.
7332       auto *Vec_i1Ty =
7333           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7334       return (
7335           TTI.getScalarizationOverhead(
7336               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7337           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7338     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7339       // The back-edge branch will remain, as will all scalar branches.
7340       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7341     else
7342       // This branch will be eliminated by if-conversion.
7343       return 0;
7344     // Note: We currently assume zero cost for an unconditional branch inside
7345     // a predicated block since it will become a fall-through, although we
7346     // may decide in the future to call TTI for all branches.
7347   }
7348   case Instruction::PHI: {
7349     auto *Phi = cast<PHINode>(I);
7350 
7351     // First-order recurrences are replaced by vector shuffles inside the loop.
7352     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7353     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7354       return TTI.getShuffleCost(
7355           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7356           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7357 
7358     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7359     // converted into select instructions. We require N - 1 selects per phi
7360     // node, where N is the number of incoming values.
7361     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7362       return (Phi->getNumIncomingValues() - 1) *
7363              TTI.getCmpSelInstrCost(
7364                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7365                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7366                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7367 
7368     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7369   }
7370   case Instruction::UDiv:
7371   case Instruction::SDiv:
7372   case Instruction::URem:
7373   case Instruction::SRem:
7374     // If we have a predicated instruction, it may not be executed for each
7375     // vector lane. Get the scalarization cost and scale this amount by the
7376     // probability of executing the predicated block. If the instruction is not
7377     // predicated, we fall through to the next case.
7378     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7379       InstructionCost Cost = 0;
7380 
7381       // These instructions have a non-void type, so account for the phi nodes
7382       // that we will create. This cost is likely to be zero. The phi node
7383       // cost, if any, should be scaled by the block probability because it
7384       // models a copy at the end of each predicated block.
7385       Cost += VF.getKnownMinValue() *
7386               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7387 
7388       // The cost of the non-predicated instruction.
7389       Cost += VF.getKnownMinValue() *
7390               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7391 
7392       // The cost of insertelement and extractelement instructions needed for
7393       // scalarization.
7394       Cost += getScalarizationOverhead(I, VF);
7395 
7396       // Scale the cost by the probability of executing the predicated blocks.
7397       // This assumes the predicated block for each vector lane is equally
7398       // likely.
7399       return Cost / getReciprocalPredBlockProb();
7400     }
7401     LLVM_FALLTHROUGH;
7402   case Instruction::Add:
7403   case Instruction::FAdd:
7404   case Instruction::Sub:
7405   case Instruction::FSub:
7406   case Instruction::Mul:
7407   case Instruction::FMul:
7408   case Instruction::FDiv:
7409   case Instruction::FRem:
7410   case Instruction::Shl:
7411   case Instruction::LShr:
7412   case Instruction::AShr:
7413   case Instruction::And:
7414   case Instruction::Or:
7415   case Instruction::Xor: {
7416     // Since we will replace the stride by 1 the multiplication should go away.
7417     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7418       return 0;
7419 
7420     // Detect reduction patterns
7421     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7422       return *RedCost;
7423 
7424     // Certain instructions can be cheaper to vectorize if they have a constant
7425     // second vector operand. One example of this are shifts on x86.
7426     Value *Op2 = I->getOperand(1);
7427     TargetTransformInfo::OperandValueProperties Op2VP;
7428     TargetTransformInfo::OperandValueKind Op2VK =
7429         TTI.getOperandInfo(Op2, Op2VP);
7430     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7431       Op2VK = TargetTransformInfo::OK_UniformValue;
7432 
7433     SmallVector<const Value *, 4> Operands(I->operand_values());
7434     return TTI.getArithmeticInstrCost(
7435         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7436         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7437   }
7438   case Instruction::FNeg: {
7439     return TTI.getArithmeticInstrCost(
7440         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7441         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7442         TargetTransformInfo::OP_None, I->getOperand(0), I);
7443   }
7444   case Instruction::Select: {
7445     SelectInst *SI = cast<SelectInst>(I);
7446     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7447     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7448 
7449     const Value *Op0, *Op1;
7450     using namespace llvm::PatternMatch;
7451     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7452                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7453       // select x, y, false --> x & y
7454       // select x, true, y --> x | y
7455       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7456       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7457       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7458       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7459       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7460               Op1->getType()->getScalarSizeInBits() == 1);
7461 
7462       SmallVector<const Value *, 2> Operands{Op0, Op1};
7463       return TTI.getArithmeticInstrCost(
7464           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7465           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7466     }
7467 
7468     Type *CondTy = SI->getCondition()->getType();
7469     if (!ScalarCond)
7470       CondTy = VectorType::get(CondTy, VF);
7471 
7472     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7473     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7474       Pred = Cmp->getPredicate();
7475     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7476                                   CostKind, I);
7477   }
7478   case Instruction::ICmp:
7479   case Instruction::FCmp: {
7480     Type *ValTy = I->getOperand(0)->getType();
7481     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7482     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7483       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7484     VectorTy = ToVectorTy(ValTy, VF);
7485     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7486                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7487                                   I);
7488   }
7489   case Instruction::Store:
7490   case Instruction::Load: {
7491     ElementCount Width = VF;
7492     if (Width.isVector()) {
7493       InstWidening Decision = getWideningDecision(I, Width);
7494       assert(Decision != CM_Unknown &&
7495              "CM decision should be taken at this point");
7496       if (Decision == CM_Scalarize)
7497         Width = ElementCount::getFixed(1);
7498     }
7499     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7500     return getMemoryInstructionCost(I, VF);
7501   }
7502   case Instruction::BitCast:
7503     if (I->getType()->isPointerTy())
7504       return 0;
7505     LLVM_FALLTHROUGH;
7506   case Instruction::ZExt:
7507   case Instruction::SExt:
7508   case Instruction::FPToUI:
7509   case Instruction::FPToSI:
7510   case Instruction::FPExt:
7511   case Instruction::PtrToInt:
7512   case Instruction::IntToPtr:
7513   case Instruction::SIToFP:
7514   case Instruction::UIToFP:
7515   case Instruction::Trunc:
7516   case Instruction::FPTrunc: {
7517     // Computes the CastContextHint from a Load/Store instruction.
7518     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7519       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7520              "Expected a load or a store!");
7521 
7522       if (VF.isScalar() || !TheLoop->contains(I))
7523         return TTI::CastContextHint::Normal;
7524 
7525       switch (getWideningDecision(I, VF)) {
7526       case LoopVectorizationCostModel::CM_GatherScatter:
7527         return TTI::CastContextHint::GatherScatter;
7528       case LoopVectorizationCostModel::CM_Interleave:
7529         return TTI::CastContextHint::Interleave;
7530       case LoopVectorizationCostModel::CM_Scalarize:
7531       case LoopVectorizationCostModel::CM_Widen:
7532         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7533                                         : TTI::CastContextHint::Normal;
7534       case LoopVectorizationCostModel::CM_Widen_Reverse:
7535         return TTI::CastContextHint::Reversed;
7536       case LoopVectorizationCostModel::CM_Unknown:
7537         llvm_unreachable("Instr did not go through cost modelling?");
7538       }
7539 
7540       llvm_unreachable("Unhandled case!");
7541     };
7542 
7543     unsigned Opcode = I->getOpcode();
7544     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7545     // For Trunc, the context is the only user, which must be a StoreInst.
7546     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7547       if (I->hasOneUse())
7548         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7549           CCH = ComputeCCH(Store);
7550     }
7551     // For Z/Sext, the context is the operand, which must be a LoadInst.
7552     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7553              Opcode == Instruction::FPExt) {
7554       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7555         CCH = ComputeCCH(Load);
7556     }
7557 
7558     // We optimize the truncation of induction variables having constant
7559     // integer steps. The cost of these truncations is the same as the scalar
7560     // operation.
7561     if (isOptimizableIVTruncate(I, VF)) {
7562       auto *Trunc = cast<TruncInst>(I);
7563       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7564                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7565     }
7566 
7567     // Detect reduction patterns
7568     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7569       return *RedCost;
7570 
7571     Type *SrcScalarTy = I->getOperand(0)->getType();
7572     Type *SrcVecTy =
7573         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7574     if (canTruncateToMinimalBitwidth(I, VF)) {
7575       // This cast is going to be shrunk. This may remove the cast or it might
7576       // turn it into slightly different cast. For example, if MinBW == 16,
7577       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7578       //
7579       // Calculate the modified src and dest types.
7580       Type *MinVecTy = VectorTy;
7581       if (Opcode == Instruction::Trunc) {
7582         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7583         VectorTy =
7584             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7585       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7586         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7587         VectorTy =
7588             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7589       }
7590     }
7591 
7592     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7593   }
7594   case Instruction::Call: {
7595     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7596       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7597         return *RedCost;
7598     bool NeedToScalarize;
7599     CallInst *CI = cast<CallInst>(I);
7600     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7601     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7602       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7603       return std::min(CallCost, IntrinsicCost);
7604     }
7605     return CallCost;
7606   }
7607   case Instruction::ExtractValue:
7608     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7609   case Instruction::Alloca:
7610     // We cannot easily widen alloca to a scalable alloca, as
7611     // the result would need to be a vector of pointers.
7612     if (VF.isScalable())
7613       return InstructionCost::getInvalid();
7614     LLVM_FALLTHROUGH;
7615   default:
7616     // This opcode is unknown. Assume that it is the same as 'mul'.
7617     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7618   } // end of switch.
7619 }
7620 
7621 char LoopVectorize::ID = 0;
7622 
7623 static const char lv_name[] = "Loop Vectorization";
7624 
7625 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7626 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7627 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7628 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7629 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7630 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7631 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7632 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7633 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7634 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7635 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7636 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7637 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7638 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7639 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7640 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7641 
7642 namespace llvm {
7643 
7644 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7645 
7646 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7647                               bool VectorizeOnlyWhenForced) {
7648   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7649 }
7650 
7651 } // end namespace llvm
7652 
7653 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7654   // Check if the pointer operand of a load or store instruction is
7655   // consecutive.
7656   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7657     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7658   return false;
7659 }
7660 
7661 void LoopVectorizationCostModel::collectValuesToIgnore() {
7662   // Ignore ephemeral values.
7663   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7664 
7665   // Ignore type-promoting instructions we identified during reduction
7666   // detection.
7667   for (auto &Reduction : Legal->getReductionVars()) {
7668     const RecurrenceDescriptor &RedDes = Reduction.second;
7669     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7670     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7671   }
7672   // Ignore type-casting instructions we identified during induction
7673   // detection.
7674   for (auto &Induction : Legal->getInductionVars()) {
7675     const InductionDescriptor &IndDes = Induction.second;
7676     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7677     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7678   }
7679 }
7680 
7681 void LoopVectorizationCostModel::collectInLoopReductions() {
7682   for (auto &Reduction : Legal->getReductionVars()) {
7683     PHINode *Phi = Reduction.first;
7684     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7685 
7686     // We don't collect reductions that are type promoted (yet).
7687     if (RdxDesc.getRecurrenceType() != Phi->getType())
7688       continue;
7689 
7690     // If the target would prefer this reduction to happen "in-loop", then we
7691     // want to record it as such.
7692     unsigned Opcode = RdxDesc.getOpcode();
7693     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7694         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7695                                    TargetTransformInfo::ReductionFlags()))
7696       continue;
7697 
7698     // Check that we can correctly put the reductions into the loop, by
7699     // finding the chain of operations that leads from the phi to the loop
7700     // exit value.
7701     SmallVector<Instruction *, 4> ReductionOperations =
7702         RdxDesc.getReductionOpChain(Phi, TheLoop);
7703     bool InLoop = !ReductionOperations.empty();
7704     if (InLoop) {
7705       InLoopReductionChains[Phi] = ReductionOperations;
7706       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7707       Instruction *LastChain = Phi;
7708       for (auto *I : ReductionOperations) {
7709         InLoopReductionImmediateChains[I] = LastChain;
7710         LastChain = I;
7711       }
7712     }
7713     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7714                       << " reduction for phi: " << *Phi << "\n");
7715   }
7716 }
7717 
7718 // TODO: we could return a pair of values that specify the max VF and
7719 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7720 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7721 // doesn't have a cost model that can choose which plan to execute if
7722 // more than one is generated.
7723 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7724                                  LoopVectorizationCostModel &CM) {
7725   unsigned WidestType;
7726   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7727   return WidestVectorRegBits / WidestType;
7728 }
7729 
7730 VectorizationFactor
7731 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7732   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7733   ElementCount VF = UserVF;
7734   // Outer loop handling: They may require CFG and instruction level
7735   // transformations before even evaluating whether vectorization is profitable.
7736   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7737   // the vectorization pipeline.
7738   if (!OrigLoop->isInnermost()) {
7739     // If the user doesn't provide a vectorization factor, determine a
7740     // reasonable one.
7741     if (UserVF.isZero()) {
7742       VF = ElementCount::getFixed(determineVPlanVF(
7743           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7744               .getFixedSize(),
7745           CM));
7746       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7747 
7748       // Make sure we have a VF > 1 for stress testing.
7749       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7750         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7751                           << "overriding computed VF.\n");
7752         VF = ElementCount::getFixed(4);
7753       }
7754     }
7755     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7756     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7757            "VF needs to be a power of two");
7758     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7759                       << "VF " << VF << " to build VPlans.\n");
7760     buildVPlans(VF, VF);
7761 
7762     // For VPlan build stress testing, we bail out after VPlan construction.
7763     if (VPlanBuildStressTest)
7764       return VectorizationFactor::Disabled();
7765 
7766     return {VF, 0 /*Cost*/};
7767   }
7768 
7769   LLVM_DEBUG(
7770       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7771                 "VPlan-native path.\n");
7772   return VectorizationFactor::Disabled();
7773 }
7774 
7775 Optional<VectorizationFactor>
7776 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7777   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7778   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7779   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7780     return None;
7781 
7782   // Invalidate interleave groups if all blocks of loop will be predicated.
7783   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7784       !useMaskedInterleavedAccesses(*TTI)) {
7785     LLVM_DEBUG(
7786         dbgs()
7787         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7788            "which requires masked-interleaved support.\n");
7789     if (CM.InterleaveInfo.invalidateGroups())
7790       // Invalidating interleave groups also requires invalidating all decisions
7791       // based on them, which includes widening decisions and uniform and scalar
7792       // values.
7793       CM.invalidateCostModelingDecisions();
7794   }
7795 
7796   ElementCount MaxUserVF =
7797       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7798   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7799   if (!UserVF.isZero() && UserVFIsLegal) {
7800     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7801            "VF needs to be a power of two");
7802     // Collect the instructions (and their associated costs) that will be more
7803     // profitable to scalarize.
7804     if (CM.selectUserVectorizationFactor(UserVF)) {
7805       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7806       CM.collectInLoopReductions();
7807       buildVPlansWithVPRecipes(UserVF, UserVF);
7808       LLVM_DEBUG(printPlans(dbgs()));
7809       return {{UserVF, 0}};
7810     } else
7811       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7812                               "InvalidCost", ORE, OrigLoop);
7813   }
7814 
7815   // Populate the set of Vectorization Factor Candidates.
7816   ElementCountSet VFCandidates;
7817   for (auto VF = ElementCount::getFixed(1);
7818        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7819     VFCandidates.insert(VF);
7820   for (auto VF = ElementCount::getScalable(1);
7821        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7822     VFCandidates.insert(VF);
7823 
7824   for (const auto &VF : VFCandidates) {
7825     // Collect Uniform and Scalar instructions after vectorization with VF.
7826     CM.collectUniformsAndScalars(VF);
7827 
7828     // Collect the instructions (and their associated costs) that will be more
7829     // profitable to scalarize.
7830     if (VF.isVector())
7831       CM.collectInstsToScalarize(VF);
7832   }
7833 
7834   CM.collectInLoopReductions();
7835   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7836   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7837 
7838   LLVM_DEBUG(printPlans(dbgs()));
7839   if (!MaxFactors.hasVector())
7840     return VectorizationFactor::Disabled();
7841 
7842   // Select the optimal vectorization factor.
7843   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
7844 
7845   // Check if it is profitable to vectorize with runtime checks.
7846   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
7847   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
7848     bool PragmaThresholdReached =
7849         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
7850     bool ThresholdReached =
7851         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
7852     if ((ThresholdReached && !Hints.allowReordering()) ||
7853         PragmaThresholdReached) {
7854       ORE->emit([&]() {
7855         return OptimizationRemarkAnalysisAliasing(
7856                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
7857                    OrigLoop->getHeader())
7858                << "loop not vectorized: cannot prove it is safe to reorder "
7859                   "memory operations";
7860       });
7861       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
7862       Hints.emitRemarkWithHints();
7863       return VectorizationFactor::Disabled();
7864     }
7865   }
7866   return SelectedVF;
7867 }
7868 
7869 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7870   assert(count_if(VPlans,
7871                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7872              1 &&
7873          "Best VF has not a single VPlan.");
7874 
7875   for (const VPlanPtr &Plan : VPlans) {
7876     if (Plan->hasVF(VF))
7877       return *Plan.get();
7878   }
7879   llvm_unreachable("No plan found!");
7880 }
7881 
7882 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7883   SmallVector<Metadata *, 4> MDs;
7884   // Reserve first location for self reference to the LoopID metadata node.
7885   MDs.push_back(nullptr);
7886   bool IsUnrollMetadata = false;
7887   MDNode *LoopID = L->getLoopID();
7888   if (LoopID) {
7889     // First find existing loop unrolling disable metadata.
7890     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7891       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7892       if (MD) {
7893         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7894         IsUnrollMetadata =
7895             S && S->getString().startswith("llvm.loop.unroll.disable");
7896       }
7897       MDs.push_back(LoopID->getOperand(i));
7898     }
7899   }
7900 
7901   if (!IsUnrollMetadata) {
7902     // Add runtime unroll disable metadata.
7903     LLVMContext &Context = L->getHeader()->getContext();
7904     SmallVector<Metadata *, 1> DisableOperands;
7905     DisableOperands.push_back(
7906         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7907     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7908     MDs.push_back(DisableNode);
7909     MDNode *NewLoopID = MDNode::get(Context, MDs);
7910     // Set operand 0 to refer to the loop id itself.
7911     NewLoopID->replaceOperandWith(0, NewLoopID);
7912     L->setLoopID(NewLoopID);
7913   }
7914 }
7915 
7916 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7917                                            VPlan &BestVPlan,
7918                                            InnerLoopVectorizer &ILV,
7919                                            DominatorTree *DT) {
7920   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7921                     << '\n');
7922 
7923   // Perform the actual loop transformation.
7924 
7925   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7926   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7927   Value *CanonicalIVStartValue;
7928   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7929       ILV.createVectorizedLoopSkeleton();
7930   ILV.collectPoisonGeneratingRecipes(State);
7931 
7932   ILV.printDebugTracesAtStart();
7933 
7934   //===------------------------------------------------===//
7935   //
7936   // Notice: any optimization or new instruction that go
7937   // into the code below should also be implemented in
7938   // the cost-model.
7939   //
7940   //===------------------------------------------------===//
7941 
7942   // 2. Copy and widen instructions from the old loop into the new loop.
7943   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7944                              ILV.getOrCreateVectorTripCount(nullptr),
7945                              CanonicalIVStartValue, State);
7946   BestVPlan.execute(&State);
7947 
7948   // Keep all loop hints from the original loop on the vector loop (we'll
7949   // replace the vectorizer-specific hints below).
7950   MDNode *OrigLoopID = OrigLoop->getLoopID();
7951 
7952   Optional<MDNode *> VectorizedLoopID =
7953       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7954                                       LLVMLoopVectorizeFollowupVectorized});
7955 
7956   Loop *L = LI->getLoopFor(State.CFG.PrevBB);
7957   if (VectorizedLoopID.hasValue())
7958     L->setLoopID(VectorizedLoopID.getValue());
7959   else {
7960     // Keep all loop hints from the original loop on the vector loop (we'll
7961     // replace the vectorizer-specific hints below).
7962     if (MDNode *LID = OrigLoop->getLoopID())
7963       L->setLoopID(LID);
7964 
7965     LoopVectorizeHints Hints(L, true, *ORE);
7966     Hints.setAlreadyVectorized();
7967   }
7968   // Disable runtime unrolling when vectorizing the epilogue loop.
7969   if (CanonicalIVStartValue)
7970     AddRuntimeUnrollDisableMetaData(L);
7971 
7972   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7973   //    predication, updating analyses.
7974   ILV.fixVectorizedLoop(State);
7975 
7976   ILV.printDebugTracesAtEnd();
7977 }
7978 
7979 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7980 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7981   for (const auto &Plan : VPlans)
7982     if (PrintVPlansInDotFormat)
7983       Plan->printDOT(O);
7984     else
7985       Plan->print(O);
7986 }
7987 #endif
7988 
7989 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7990     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7991 
7992   // We create new control-flow for the vectorized loop, so the original exit
7993   // conditions will be dead after vectorization if it's only used by the
7994   // terminator
7995   SmallVector<BasicBlock*> ExitingBlocks;
7996   OrigLoop->getExitingBlocks(ExitingBlocks);
7997   for (auto *BB : ExitingBlocks) {
7998     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
7999     if (!Cmp || !Cmp->hasOneUse())
8000       continue;
8001 
8002     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8003     if (!DeadInstructions.insert(Cmp).second)
8004       continue;
8005 
8006     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8007     // TODO: can recurse through operands in general
8008     for (Value *Op : Cmp->operands()) {
8009       if (isa<TruncInst>(Op) && Op->hasOneUse())
8010           DeadInstructions.insert(cast<Instruction>(Op));
8011     }
8012   }
8013 
8014   // We create new "steps" for induction variable updates to which the original
8015   // induction variables map. An original update instruction will be dead if
8016   // all its users except the induction variable are dead.
8017   auto *Latch = OrigLoop->getLoopLatch();
8018   for (auto &Induction : Legal->getInductionVars()) {
8019     PHINode *Ind = Induction.first;
8020     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8021 
8022     // If the tail is to be folded by masking, the primary induction variable,
8023     // if exists, isn't dead: it will be used for masking. Don't kill it.
8024     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8025       continue;
8026 
8027     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8028           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8029         }))
8030       DeadInstructions.insert(IndUpdate);
8031   }
8032 }
8033 
8034 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8035 
8036 //===--------------------------------------------------------------------===//
8037 // EpilogueVectorizerMainLoop
8038 //===--------------------------------------------------------------------===//
8039 
8040 /// This function is partially responsible for generating the control flow
8041 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8042 std::pair<BasicBlock *, Value *>
8043 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8044   MDNode *OrigLoopID = OrigLoop->getLoopID();
8045   Loop *Lp = createVectorLoopSkeleton("");
8046 
8047   // Generate the code to check the minimum iteration count of the vector
8048   // epilogue (see below).
8049   EPI.EpilogueIterationCountCheck =
8050       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8051   EPI.EpilogueIterationCountCheck->setName("iter.check");
8052 
8053   // Generate the code to check any assumptions that we've made for SCEV
8054   // expressions.
8055   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8056 
8057   // Generate the code that checks at runtime if arrays overlap. We put the
8058   // checks into a separate block to make the more common case of few elements
8059   // faster.
8060   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8061 
8062   // Generate the iteration count check for the main loop, *after* the check
8063   // for the epilogue loop, so that the path-length is shorter for the case
8064   // that goes directly through the vector epilogue. The longer-path length for
8065   // the main loop is compensated for, by the gain from vectorizing the larger
8066   // trip count. Note: the branch will get updated later on when we vectorize
8067   // the epilogue.
8068   EPI.MainLoopIterationCountCheck =
8069       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8070 
8071   // Generate the induction variable.
8072   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8073   EPI.VectorTripCount = CountRoundDown;
8074   createHeaderBranch(Lp);
8075 
8076   // Skip induction resume value creation here because they will be created in
8077   // the second pass. If we created them here, they wouldn't be used anyway,
8078   // because the vplan in the second pass still contains the inductions from the
8079   // original loop.
8080 
8081   return {completeLoopSkeleton(Lp, OrigLoopID), nullptr};
8082 }
8083 
8084 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8085   LLVM_DEBUG({
8086     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8087            << "Main Loop VF:" << EPI.MainLoopVF
8088            << ", Main Loop UF:" << EPI.MainLoopUF
8089            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8090            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8091   });
8092 }
8093 
8094 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8095   DEBUG_WITH_TYPE(VerboseDebug, {
8096     dbgs() << "intermediate fn:\n"
8097            << *OrigLoop->getHeader()->getParent() << "\n";
8098   });
8099 }
8100 
8101 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8102     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8103   assert(L && "Expected valid Loop.");
8104   assert(Bypass && "Expected valid bypass basic block.");
8105   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8106   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8107   Value *Count = getOrCreateTripCount(L);
8108   // Reuse existing vector loop preheader for TC checks.
8109   // Note that new preheader block is generated for vector loop.
8110   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8111   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8112 
8113   // Generate code to check if the loop's trip count is less than VF * UF of the
8114   // main vector loop.
8115   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8116       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8117 
8118   Value *CheckMinIters = Builder.CreateICmp(
8119       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
8120       "min.iters.check");
8121 
8122   if (!ForEpilogue)
8123     TCCheckBlock->setName("vector.main.loop.iter.check");
8124 
8125   // Create new preheader for vector loop.
8126   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8127                                    DT, LI, nullptr, "vector.ph");
8128 
8129   if (ForEpilogue) {
8130     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8131                                  DT->getNode(Bypass)->getIDom()) &&
8132            "TC check is expected to dominate Bypass");
8133 
8134     // Update dominator for Bypass & LoopExit.
8135     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8136     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8137       // For loops with multiple exits, there's no edge from the middle block
8138       // to exit blocks (as the epilogue must run) and thus no need to update
8139       // the immediate dominator of the exit blocks.
8140       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8141 
8142     LoopBypassBlocks.push_back(TCCheckBlock);
8143 
8144     // Save the trip count so we don't have to regenerate it in the
8145     // vec.epilog.iter.check. This is safe to do because the trip count
8146     // generated here dominates the vector epilog iter check.
8147     EPI.TripCount = Count;
8148   }
8149 
8150   ReplaceInstWithInst(
8151       TCCheckBlock->getTerminator(),
8152       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8153 
8154   return TCCheckBlock;
8155 }
8156 
8157 //===--------------------------------------------------------------------===//
8158 // EpilogueVectorizerEpilogueLoop
8159 //===--------------------------------------------------------------------===//
8160 
8161 /// This function is partially responsible for generating the control flow
8162 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8163 std::pair<BasicBlock *, Value *>
8164 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8165   MDNode *OrigLoopID = OrigLoop->getLoopID();
8166   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8167 
8168   // Now, compare the remaining count and if there aren't enough iterations to
8169   // execute the vectorized epilogue skip to the scalar part.
8170   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8171   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8172   LoopVectorPreHeader =
8173       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8174                  LI, nullptr, "vec.epilog.ph");
8175   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8176                                           VecEpilogueIterationCountCheck);
8177 
8178   // Adjust the control flow taking the state info from the main loop
8179   // vectorization into account.
8180   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8181          "expected this to be saved from the previous pass.");
8182   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8183       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8184 
8185   DT->changeImmediateDominator(LoopVectorPreHeader,
8186                                EPI.MainLoopIterationCountCheck);
8187 
8188   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8189       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8190 
8191   if (EPI.SCEVSafetyCheck)
8192     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8193         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8194   if (EPI.MemSafetyCheck)
8195     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8196         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8197 
8198   DT->changeImmediateDominator(
8199       VecEpilogueIterationCountCheck,
8200       VecEpilogueIterationCountCheck->getSinglePredecessor());
8201 
8202   DT->changeImmediateDominator(LoopScalarPreHeader,
8203                                EPI.EpilogueIterationCountCheck);
8204   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8205     // If there is an epilogue which must run, there's no edge from the
8206     // middle block to exit blocks  and thus no need to update the immediate
8207     // dominator of the exit blocks.
8208     DT->changeImmediateDominator(LoopExitBlock,
8209                                  EPI.EpilogueIterationCountCheck);
8210 
8211   // Keep track of bypass blocks, as they feed start values to the induction
8212   // phis in the scalar loop preheader.
8213   if (EPI.SCEVSafetyCheck)
8214     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8215   if (EPI.MemSafetyCheck)
8216     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8217   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8218 
8219   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
8220   // merge control-flow from the latch block and the middle block. Update the
8221   // incoming values here and move the Phi into the preheader.
8222   SmallVector<PHINode *, 4> PhisInBlock;
8223   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
8224     PhisInBlock.push_back(&Phi);
8225 
8226   for (PHINode *Phi : PhisInBlock) {
8227     Phi->replaceIncomingBlockWith(
8228         VecEpilogueIterationCountCheck->getSinglePredecessor(),
8229         VecEpilogueIterationCountCheck);
8230     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
8231     if (EPI.SCEVSafetyCheck)
8232       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
8233     if (EPI.MemSafetyCheck)
8234       Phi->removeIncomingValue(EPI.MemSafetyCheck);
8235     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
8236   }
8237 
8238   // Generate a resume induction for the vector epilogue and put it in the
8239   // vector epilogue preheader
8240   Type *IdxTy = Legal->getWidestInductionType();
8241   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8242                                          LoopVectorPreHeader->getFirstNonPHI());
8243   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8244   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8245                            EPI.MainLoopIterationCountCheck);
8246 
8247   // Generate the induction variable.
8248   createHeaderBranch(Lp);
8249 
8250   // Generate induction resume values. These variables save the new starting
8251   // indexes for the scalar loop. They are used to test if there are any tail
8252   // iterations left once the vector loop has completed.
8253   // Note that when the vectorized epilogue is skipped due to iteration count
8254   // check, then the resume value for the induction variable comes from
8255   // the trip count of the main vector loop, hence passing the AdditionalBypass
8256   // argument.
8257   createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck,
8258                                    EPI.VectorTripCount} /* AdditionalBypass */);
8259 
8260   return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal};
8261 }
8262 
8263 BasicBlock *
8264 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8265     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8266 
8267   assert(EPI.TripCount &&
8268          "Expected trip count to have been safed in the first pass.");
8269   assert(
8270       (!isa<Instruction>(EPI.TripCount) ||
8271        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8272       "saved trip count does not dominate insertion point.");
8273   Value *TC = EPI.TripCount;
8274   IRBuilder<> Builder(Insert->getTerminator());
8275   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8276 
8277   // Generate code to check if the loop's trip count is less than VF * UF of the
8278   // vector epilogue loop.
8279   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8280       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8281 
8282   Value *CheckMinIters =
8283       Builder.CreateICmp(P, Count,
8284                          createStepForVF(Builder, Count->getType(),
8285                                          EPI.EpilogueVF, EPI.EpilogueUF),
8286                          "min.epilog.iters.check");
8287 
8288   ReplaceInstWithInst(
8289       Insert->getTerminator(),
8290       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8291 
8292   LoopBypassBlocks.push_back(Insert);
8293   return Insert;
8294 }
8295 
8296 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8297   LLVM_DEBUG({
8298     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8299            << "Epilogue Loop VF:" << EPI.EpilogueVF
8300            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8301   });
8302 }
8303 
8304 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8305   DEBUG_WITH_TYPE(VerboseDebug, {
8306     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
8307   });
8308 }
8309 
8310 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8311     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8312   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8313   bool PredicateAtRangeStart = Predicate(Range.Start);
8314 
8315   for (ElementCount TmpVF = Range.Start * 2;
8316        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8317     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8318       Range.End = TmpVF;
8319       break;
8320     }
8321 
8322   return PredicateAtRangeStart;
8323 }
8324 
8325 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8326 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8327 /// of VF's starting at a given VF and extending it as much as possible. Each
8328 /// vectorization decision can potentially shorten this sub-range during
8329 /// buildVPlan().
8330 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8331                                            ElementCount MaxVF) {
8332   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8333   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8334     VFRange SubRange = {VF, MaxVFPlusOne};
8335     VPlans.push_back(buildVPlan(SubRange));
8336     VF = SubRange.End;
8337   }
8338 }
8339 
8340 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8341                                          VPlanPtr &Plan) {
8342   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8343 
8344   // Look for cached value.
8345   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8346   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8347   if (ECEntryIt != EdgeMaskCache.end())
8348     return ECEntryIt->second;
8349 
8350   VPValue *SrcMask = createBlockInMask(Src, Plan);
8351 
8352   // The terminator has to be a branch inst!
8353   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8354   assert(BI && "Unexpected terminator found");
8355 
8356   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8357     return EdgeMaskCache[Edge] = SrcMask;
8358 
8359   // If source is an exiting block, we know the exit edge is dynamically dead
8360   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8361   // adding uses of an otherwise potentially dead instruction.
8362   if (OrigLoop->isLoopExiting(Src))
8363     return EdgeMaskCache[Edge] = SrcMask;
8364 
8365   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8366   assert(EdgeMask && "No Edge Mask found for condition");
8367 
8368   if (BI->getSuccessor(0) != Dst)
8369     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8370 
8371   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8372     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8373     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8374     // The select version does not introduce new UB if SrcMask is false and
8375     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8376     VPValue *False = Plan->getOrAddVPValue(
8377         ConstantInt::getFalse(BI->getCondition()->getType()));
8378     EdgeMask =
8379         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8380   }
8381 
8382   return EdgeMaskCache[Edge] = EdgeMask;
8383 }
8384 
8385 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8386   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8387 
8388   // Look for cached value.
8389   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8390   if (BCEntryIt != BlockMaskCache.end())
8391     return BCEntryIt->second;
8392 
8393   // All-one mask is modelled as no-mask following the convention for masked
8394   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8395   VPValue *BlockMask = nullptr;
8396 
8397   if (OrigLoop->getHeader() == BB) {
8398     if (!CM.blockNeedsPredicationForAnyReason(BB))
8399       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8400 
8401     // Introduce the early-exit compare IV <= BTC to form header block mask.
8402     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8403     // constructing the desired canonical IV in the header block as its first
8404     // non-phi instructions.
8405     assert(CM.foldTailByMasking() && "must fold the tail");
8406     VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock();
8407     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8408     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8409     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8410 
8411     VPBuilder::InsertPointGuard Guard(Builder);
8412     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8413     if (CM.TTI.emitGetActiveLaneMask()) {
8414       VPValue *TC = Plan->getOrCreateTripCount();
8415       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC});
8416     } else {
8417       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8418       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8419     }
8420     return BlockMaskCache[BB] = BlockMask;
8421   }
8422 
8423   // This is the block mask. We OR all incoming edges.
8424   for (auto *Predecessor : predecessors(BB)) {
8425     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8426     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8427       return BlockMaskCache[BB] = EdgeMask;
8428 
8429     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8430       BlockMask = EdgeMask;
8431       continue;
8432     }
8433 
8434     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8435   }
8436 
8437   return BlockMaskCache[BB] = BlockMask;
8438 }
8439 
8440 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8441                                                 ArrayRef<VPValue *> Operands,
8442                                                 VFRange &Range,
8443                                                 VPlanPtr &Plan) {
8444   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8445          "Must be called with either a load or store");
8446 
8447   auto willWiden = [&](ElementCount VF) -> bool {
8448     if (VF.isScalar())
8449       return false;
8450     LoopVectorizationCostModel::InstWidening Decision =
8451         CM.getWideningDecision(I, VF);
8452     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8453            "CM decision should be taken at this point.");
8454     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8455       return true;
8456     if (CM.isScalarAfterVectorization(I, VF) ||
8457         CM.isProfitableToScalarize(I, VF))
8458       return false;
8459     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8460   };
8461 
8462   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8463     return nullptr;
8464 
8465   VPValue *Mask = nullptr;
8466   if (Legal->isMaskRequired(I))
8467     Mask = createBlockInMask(I->getParent(), Plan);
8468 
8469   // Determine if the pointer operand of the access is either consecutive or
8470   // reverse consecutive.
8471   LoopVectorizationCostModel::InstWidening Decision =
8472       CM.getWideningDecision(I, Range.Start);
8473   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8474   bool Consecutive =
8475       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8476 
8477   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8478     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8479                                               Consecutive, Reverse);
8480 
8481   StoreInst *Store = cast<StoreInst>(I);
8482   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8483                                             Mask, Consecutive, Reverse);
8484 }
8485 
8486 static VPWidenIntOrFpInductionRecipe *
8487 createWidenInductionRecipe(PHINode *Phi, Instruction *PhiOrTrunc,
8488                            VPValue *Start, const InductionDescriptor &IndDesc,
8489                            LoopVectorizationCostModel &CM, Loop &OrigLoop,
8490                            VFRange &Range) {
8491   // Returns true if an instruction \p I should be scalarized instead of
8492   // vectorized for the chosen vectorization factor.
8493   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8494     return CM.isScalarAfterVectorization(I, VF) ||
8495            CM.isProfitableToScalarize(I, VF);
8496   };
8497 
8498   bool NeedsScalarIV = LoopVectorizationPlanner::getDecisionAndClampRange(
8499       [&](ElementCount VF) {
8500         // Returns true if we should generate a scalar version of \p IV.
8501         if (ShouldScalarizeInstruction(PhiOrTrunc, VF))
8502           return true;
8503         auto isScalarInst = [&](User *U) -> bool {
8504           auto *I = cast<Instruction>(U);
8505           return OrigLoop.contains(I) && ShouldScalarizeInstruction(I, VF);
8506         };
8507         return any_of(PhiOrTrunc->users(), isScalarInst);
8508       },
8509       Range);
8510   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8511       [&](ElementCount VF) {
8512         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8513       },
8514       Range);
8515   assert(IndDesc.getStartValue() ==
8516          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8517   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8518     return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, TruncI,
8519                                              NeedsScalarIV, !NeedsScalarIVOnly);
8520   }
8521   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8522   return new VPWidenIntOrFpInductionRecipe(Phi, Start, IndDesc, NeedsScalarIV,
8523                                            !NeedsScalarIVOnly);
8524 }
8525 
8526 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionPHI(
8527     PHINode *Phi, ArrayRef<VPValue *> Operands, VFRange &Range) const {
8528 
8529   // Check if this is an integer or fp induction. If so, build the recipe that
8530   // produces its scalar and vector values.
8531   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8532     return createWidenInductionRecipe(Phi, Phi, Operands[0], *II, CM, *OrigLoop,
8533                                       Range);
8534 
8535   return nullptr;
8536 }
8537 
8538 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8539     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8540     VPlan &Plan) const {
8541   // Optimize the special case where the source is a constant integer
8542   // induction variable. Notice that we can only optimize the 'trunc' case
8543   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8544   // (c) other casts depend on pointer size.
8545 
8546   // Determine whether \p K is a truncation based on an induction variable that
8547   // can be optimized.
8548   auto isOptimizableIVTruncate =
8549       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8550     return [=](ElementCount VF) -> bool {
8551       return CM.isOptimizableIVTruncate(K, VF);
8552     };
8553   };
8554 
8555   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8556           isOptimizableIVTruncate(I), Range)) {
8557 
8558     auto *Phi = cast<PHINode>(I->getOperand(0));
8559     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8560     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8561     return createWidenInductionRecipe(Phi, I, Start, II, CM, *OrigLoop, Range);
8562   }
8563   return nullptr;
8564 }
8565 
8566 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8567                                                 ArrayRef<VPValue *> Operands,
8568                                                 VPlanPtr &Plan) {
8569   // If all incoming values are equal, the incoming VPValue can be used directly
8570   // instead of creating a new VPBlendRecipe.
8571   VPValue *FirstIncoming = Operands[0];
8572   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8573         return FirstIncoming == Inc;
8574       })) {
8575     return Operands[0];
8576   }
8577 
8578   // We know that all PHIs in non-header blocks are converted into selects, so
8579   // we don't have to worry about the insertion order and we can just use the
8580   // builder. At this point we generate the predication tree. There may be
8581   // duplications since this is a simple recursive scan, but future
8582   // optimizations will clean it up.
8583   SmallVector<VPValue *, 2> OperandsWithMask;
8584   unsigned NumIncoming = Phi->getNumIncomingValues();
8585 
8586   for (unsigned In = 0; In < NumIncoming; In++) {
8587     VPValue *EdgeMask =
8588       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8589     assert((EdgeMask || NumIncoming == 1) &&
8590            "Multiple predecessors with one having a full mask");
8591     OperandsWithMask.push_back(Operands[In]);
8592     if (EdgeMask)
8593       OperandsWithMask.push_back(EdgeMask);
8594   }
8595   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8596 }
8597 
8598 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8599                                                    ArrayRef<VPValue *> Operands,
8600                                                    VFRange &Range) const {
8601 
8602   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8603       [this, CI](ElementCount VF) {
8604         return CM.isScalarWithPredication(CI, VF);
8605       },
8606       Range);
8607 
8608   if (IsPredicated)
8609     return nullptr;
8610 
8611   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8612   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8613              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8614              ID == Intrinsic::pseudoprobe ||
8615              ID == Intrinsic::experimental_noalias_scope_decl))
8616     return nullptr;
8617 
8618   auto willWiden = [&](ElementCount VF) -> bool {
8619     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8620     // The following case may be scalarized depending on the VF.
8621     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8622     // version of the instruction.
8623     // Is it beneficial to perform intrinsic call compared to lib call?
8624     bool NeedToScalarize = false;
8625     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8626     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8627     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8628     return UseVectorIntrinsic || !NeedToScalarize;
8629   };
8630 
8631   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8632     return nullptr;
8633 
8634   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8635   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8636 }
8637 
8638 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8639   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8640          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8641   // Instruction should be widened, unless it is scalar after vectorization,
8642   // scalarization is profitable or it is predicated.
8643   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8644     return CM.isScalarAfterVectorization(I, VF) ||
8645            CM.isProfitableToScalarize(I, VF) ||
8646            CM.isScalarWithPredication(I, VF);
8647   };
8648   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8649                                                              Range);
8650 }
8651 
8652 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8653                                            ArrayRef<VPValue *> Operands) const {
8654   auto IsVectorizableOpcode = [](unsigned Opcode) {
8655     switch (Opcode) {
8656     case Instruction::Add:
8657     case Instruction::And:
8658     case Instruction::AShr:
8659     case Instruction::BitCast:
8660     case Instruction::FAdd:
8661     case Instruction::FCmp:
8662     case Instruction::FDiv:
8663     case Instruction::FMul:
8664     case Instruction::FNeg:
8665     case Instruction::FPExt:
8666     case Instruction::FPToSI:
8667     case Instruction::FPToUI:
8668     case Instruction::FPTrunc:
8669     case Instruction::FRem:
8670     case Instruction::FSub:
8671     case Instruction::ICmp:
8672     case Instruction::IntToPtr:
8673     case Instruction::LShr:
8674     case Instruction::Mul:
8675     case Instruction::Or:
8676     case Instruction::PtrToInt:
8677     case Instruction::SDiv:
8678     case Instruction::Select:
8679     case Instruction::SExt:
8680     case Instruction::Shl:
8681     case Instruction::SIToFP:
8682     case Instruction::SRem:
8683     case Instruction::Sub:
8684     case Instruction::Trunc:
8685     case Instruction::UDiv:
8686     case Instruction::UIToFP:
8687     case Instruction::URem:
8688     case Instruction::Xor:
8689     case Instruction::ZExt:
8690       return true;
8691     }
8692     return false;
8693   };
8694 
8695   if (!IsVectorizableOpcode(I->getOpcode()))
8696     return nullptr;
8697 
8698   // Success: widen this instruction.
8699   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8700 }
8701 
8702 void VPRecipeBuilder::fixHeaderPhis() {
8703   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8704   for (VPHeaderPHIRecipe *R : PhisToFix) {
8705     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8706     VPRecipeBase *IncR =
8707         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8708     R->addOperand(IncR->getVPSingleValue());
8709   }
8710 }
8711 
8712 VPBasicBlock *VPRecipeBuilder::handleReplication(
8713     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8714     VPlanPtr &Plan) {
8715   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8716       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8717       Range);
8718 
8719   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8720       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8721       Range);
8722 
8723   // Even if the instruction is not marked as uniform, there are certain
8724   // intrinsic calls that can be effectively treated as such, so we check for
8725   // them here. Conservatively, we only do this for scalable vectors, since
8726   // for fixed-width VFs we can always fall back on full scalarization.
8727   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8728     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8729     case Intrinsic::assume:
8730     case Intrinsic::lifetime_start:
8731     case Intrinsic::lifetime_end:
8732       // For scalable vectors if one of the operands is variant then we still
8733       // want to mark as uniform, which will generate one instruction for just
8734       // the first lane of the vector. We can't scalarize the call in the same
8735       // way as for fixed-width vectors because we don't know how many lanes
8736       // there are.
8737       //
8738       // The reasons for doing it this way for scalable vectors are:
8739       //   1. For the assume intrinsic generating the instruction for the first
8740       //      lane is still be better than not generating any at all. For
8741       //      example, the input may be a splat across all lanes.
8742       //   2. For the lifetime start/end intrinsics the pointer operand only
8743       //      does anything useful when the input comes from a stack object,
8744       //      which suggests it should always be uniform. For non-stack objects
8745       //      the effect is to poison the object, which still allows us to
8746       //      remove the call.
8747       IsUniform = true;
8748       break;
8749     default:
8750       break;
8751     }
8752   }
8753 
8754   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8755                                        IsUniform, IsPredicated);
8756   setRecipe(I, Recipe);
8757   Plan->addVPValue(I, Recipe);
8758 
8759   // Find if I uses a predicated instruction. If so, it will use its scalar
8760   // value. Avoid hoisting the insert-element which packs the scalar value into
8761   // a vector value, as that happens iff all users use the vector value.
8762   for (VPValue *Op : Recipe->operands()) {
8763     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8764     if (!PredR)
8765       continue;
8766     auto *RepR =
8767         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8768     assert(RepR->isPredicated() &&
8769            "expected Replicate recipe to be predicated");
8770     RepR->setAlsoPack(false);
8771   }
8772 
8773   // Finalize the recipe for Instr, first if it is not predicated.
8774   if (!IsPredicated) {
8775     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8776     VPBB->appendRecipe(Recipe);
8777     return VPBB;
8778   }
8779   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8780 
8781   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8782   assert(SingleSucc && "VPBB must have a single successor when handling "
8783                        "predicated replication.");
8784   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8785   // Record predicated instructions for above packing optimizations.
8786   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8787   VPBlockUtils::insertBlockAfter(Region, VPBB);
8788   auto *RegSucc = new VPBasicBlock();
8789   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8790   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8791   return RegSucc;
8792 }
8793 
8794 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
8795                                                       VPRecipeBase *PredRecipe,
8796                                                       VPlanPtr &Plan) {
8797   // Instructions marked for predication are replicated and placed under an
8798   // if-then construct to prevent side-effects.
8799 
8800   // Generate recipes to compute the block mask for this region.
8801   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8802 
8803   // Build the triangular if-then region.
8804   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8805   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8806   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8807   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8808   auto *PHIRecipe = Instr->getType()->isVoidTy()
8809                         ? nullptr
8810                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
8811   if (PHIRecipe) {
8812     Plan->removeVPValueFor(Instr);
8813     Plan->addVPValue(Instr, PHIRecipe);
8814   }
8815   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8816   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8817   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
8818 
8819   // Note: first set Entry as region entry and then connect successors starting
8820   // from it in order, to propagate the "parent" of each VPBasicBlock.
8821   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
8822   VPBlockUtils::connectBlocks(Pred, Exit);
8823 
8824   return Region;
8825 }
8826 
8827 VPRecipeOrVPValueTy
8828 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8829                                         ArrayRef<VPValue *> Operands,
8830                                         VFRange &Range, VPlanPtr &Plan) {
8831   // First, check for specific widening recipes that deal with calls, memory
8832   // operations, inductions and Phi nodes.
8833   if (auto *CI = dyn_cast<CallInst>(Instr))
8834     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8835 
8836   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8837     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8838 
8839   VPRecipeBase *Recipe;
8840   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8841     if (Phi->getParent() != OrigLoop->getHeader())
8842       return tryToBlend(Phi, Operands, Plan);
8843     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, Range)))
8844       return toVPRecipeResult(Recipe);
8845 
8846     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8847     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
8848       VPValue *StartV = Operands[0];
8849       if (Legal->isReductionVariable(Phi)) {
8850         const RecurrenceDescriptor &RdxDesc =
8851             Legal->getReductionVars().find(Phi)->second;
8852         assert(RdxDesc.getRecurrenceStartValue() ==
8853                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8854         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8855                                              CM.isInLoopReduction(Phi),
8856                                              CM.useOrderedReductions(RdxDesc));
8857       } else {
8858         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8859       }
8860 
8861       // Record the incoming value from the backedge, so we can add the incoming
8862       // value from the backedge after all recipes have been created.
8863       recordRecipeOf(cast<Instruction>(
8864           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8865       PhisToFix.push_back(PhiRecipe);
8866     } else {
8867       // TODO: record backedge value for remaining pointer induction phis.
8868       assert(Phi->getType()->isPointerTy() &&
8869              "only pointer phis should be handled here");
8870       assert(Legal->getInductionVars().count(Phi) &&
8871              "Not an induction variable");
8872       InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8873       VPValue *Start = Plan->getOrAddVPValue(II.getStartValue());
8874       PhiRecipe = new VPWidenPHIRecipe(Phi, Start);
8875     }
8876 
8877     return toVPRecipeResult(PhiRecipe);
8878   }
8879 
8880   if (isa<TruncInst>(Instr) &&
8881       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8882                                                Range, *Plan)))
8883     return toVPRecipeResult(Recipe);
8884 
8885   if (!shouldWiden(Instr, Range))
8886     return nullptr;
8887 
8888   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8889     return toVPRecipeResult(new VPWidenGEPRecipe(
8890         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8891 
8892   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8893     bool InvariantCond =
8894         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8895     return toVPRecipeResult(new VPWidenSelectRecipe(
8896         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8897   }
8898 
8899   return toVPRecipeResult(tryToWiden(Instr, Operands));
8900 }
8901 
8902 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8903                                                         ElementCount MaxVF) {
8904   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8905 
8906   // Collect instructions from the original loop that will become trivially dead
8907   // in the vectorized loop. We don't need to vectorize these instructions. For
8908   // example, original induction update instructions can become dead because we
8909   // separately emit induction "steps" when generating code for the new loop.
8910   // Similarly, we create a new latch condition when setting up the structure
8911   // of the new loop, so the old one can become dead.
8912   SmallPtrSet<Instruction *, 4> DeadInstructions;
8913   collectTriviallyDeadInstructions(DeadInstructions);
8914 
8915   // Add assume instructions we need to drop to DeadInstructions, to prevent
8916   // them from being added to the VPlan.
8917   // TODO: We only need to drop assumes in blocks that get flattend. If the
8918   // control flow is preserved, we should keep them.
8919   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8920   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8921 
8922   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8923   // Dead instructions do not need sinking. Remove them from SinkAfter.
8924   for (Instruction *I : DeadInstructions)
8925     SinkAfter.erase(I);
8926 
8927   // Cannot sink instructions after dead instructions (there won't be any
8928   // recipes for them). Instead, find the first non-dead previous instruction.
8929   for (auto &P : Legal->getSinkAfter()) {
8930     Instruction *SinkTarget = P.second;
8931     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8932     (void)FirstInst;
8933     while (DeadInstructions.contains(SinkTarget)) {
8934       assert(
8935           SinkTarget != FirstInst &&
8936           "Must find a live instruction (at least the one feeding the "
8937           "first-order recurrence PHI) before reaching beginning of the block");
8938       SinkTarget = SinkTarget->getPrevNode();
8939       assert(SinkTarget != P.first &&
8940              "sink source equals target, no sinking required");
8941     }
8942     P.second = SinkTarget;
8943   }
8944 
8945   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8946   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8947     VFRange SubRange = {VF, MaxVFPlusOne};
8948     VPlans.push_back(
8949         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8950     VF = SubRange.End;
8951   }
8952 }
8953 
8954 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a
8955 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a
8956 // BranchOnCount VPInstruction to the latch.
8957 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8958                                   bool HasNUW, bool IsVPlanNative) {
8959   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8960   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8961 
8962   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8963   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8964   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8965   if (IsVPlanNative)
8966     Header = cast<VPBasicBlock>(Header->getSingleSuccessor());
8967   Header->insert(CanonicalIVPHI, Header->begin());
8968 
8969   auto *CanonicalIVIncrement =
8970       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8971                                : VPInstruction::CanonicalIVIncrement,
8972                         {CanonicalIVPHI}, DL);
8973   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8974 
8975   VPBasicBlock *EB = TopRegion->getExitBasicBlock();
8976   if (IsVPlanNative) {
8977     EB = cast<VPBasicBlock>(EB->getSinglePredecessor());
8978     EB->setCondBit(nullptr);
8979   }
8980   EB->appendRecipe(CanonicalIVIncrement);
8981 
8982   auto *BranchOnCount =
8983       new VPInstruction(VPInstruction::BranchOnCount,
8984                         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8985   EB->appendRecipe(BranchOnCount);
8986 }
8987 
8988 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8989     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8990     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8991 
8992   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8993 
8994   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8995 
8996   // ---------------------------------------------------------------------------
8997   // Pre-construction: record ingredients whose recipes we'll need to further
8998   // process after constructing the initial VPlan.
8999   // ---------------------------------------------------------------------------
9000 
9001   // Mark instructions we'll need to sink later and their targets as
9002   // ingredients whose recipe we'll need to record.
9003   for (auto &Entry : SinkAfter) {
9004     RecipeBuilder.recordRecipeOf(Entry.first);
9005     RecipeBuilder.recordRecipeOf(Entry.second);
9006   }
9007   for (auto &Reduction : CM.getInLoopReductionChains()) {
9008     PHINode *Phi = Reduction.first;
9009     RecurKind Kind =
9010         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
9011     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9012 
9013     RecipeBuilder.recordRecipeOf(Phi);
9014     for (auto &R : ReductionOperations) {
9015       RecipeBuilder.recordRecipeOf(R);
9016       // For min/max reducitons, where we have a pair of icmp/select, we also
9017       // need to record the ICmp recipe, so it can be removed later.
9018       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9019              "Only min/max recurrences allowed for inloop reductions");
9020       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9021         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9022     }
9023   }
9024 
9025   // For each interleave group which is relevant for this (possibly trimmed)
9026   // Range, add it to the set of groups to be later applied to the VPlan and add
9027   // placeholders for its members' Recipes which we'll be replacing with a
9028   // single VPInterleaveRecipe.
9029   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9030     auto applyIG = [IG, this](ElementCount VF) -> bool {
9031       return (VF.isVector() && // Query is illegal for VF == 1
9032               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9033                   LoopVectorizationCostModel::CM_Interleave);
9034     };
9035     if (!getDecisionAndClampRange(applyIG, Range))
9036       continue;
9037     InterleaveGroups.insert(IG);
9038     for (unsigned i = 0; i < IG->getFactor(); i++)
9039       if (Instruction *Member = IG->getMember(i))
9040         RecipeBuilder.recordRecipeOf(Member);
9041   };
9042 
9043   // ---------------------------------------------------------------------------
9044   // Build initial VPlan: Scan the body of the loop in a topological order to
9045   // visit each basic block after having visited its predecessor basic blocks.
9046   // ---------------------------------------------------------------------------
9047 
9048   // Create initial VPlan skeleton, with separate header and latch blocks.
9049   VPBasicBlock *HeaderVPBB = new VPBasicBlock();
9050   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
9051   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
9052   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
9053   auto Plan = std::make_unique<VPlan>(TopRegion);
9054 
9055   Instruction *DLInst =
9056       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
9057   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
9058                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
9059                         !CM.foldTailByMasking(), false);
9060 
9061   // Scan the body of the loop in a topological order to visit each basic block
9062   // after having visited its predecessor basic blocks.
9063   LoopBlocksDFS DFS(OrigLoop);
9064   DFS.perform(LI);
9065 
9066   VPBasicBlock *VPBB = HeaderVPBB;
9067   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
9068   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9069     // Relevant instructions from basic block BB will be grouped into VPRecipe
9070     // ingredients and fill a new VPBasicBlock.
9071     unsigned VPBBsForBB = 0;
9072     VPBB->setName(BB->getName());
9073     Builder.setInsertPoint(VPBB);
9074 
9075     // Introduce each ingredient into VPlan.
9076     // TODO: Model and preserve debug instrinsics in VPlan.
9077     for (Instruction &I : BB->instructionsWithoutDebug()) {
9078       Instruction *Instr = &I;
9079 
9080       // First filter out irrelevant instructions, to ensure no recipes are
9081       // built for them.
9082       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9083         continue;
9084 
9085       SmallVector<VPValue *, 4> Operands;
9086       auto *Phi = dyn_cast<PHINode>(Instr);
9087       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9088         Operands.push_back(Plan->getOrAddVPValue(
9089             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9090       } else {
9091         auto OpRange = Plan->mapToVPValues(Instr->operands());
9092         Operands = {OpRange.begin(), OpRange.end()};
9093       }
9094       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9095               Instr, Operands, Range, Plan)) {
9096         // If Instr can be simplified to an existing VPValue, use it.
9097         if (RecipeOrValue.is<VPValue *>()) {
9098           auto *VPV = RecipeOrValue.get<VPValue *>();
9099           Plan->addVPValue(Instr, VPV);
9100           // If the re-used value is a recipe, register the recipe for the
9101           // instruction, in case the recipe for Instr needs to be recorded.
9102           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9103             RecipeBuilder.setRecipe(Instr, R);
9104           continue;
9105         }
9106         // Otherwise, add the new recipe.
9107         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9108         for (auto *Def : Recipe->definedValues()) {
9109           auto *UV = Def->getUnderlyingValue();
9110           Plan->addVPValue(UV, Def);
9111         }
9112 
9113         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
9114             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
9115           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
9116           // of the header block. That can happen for truncates of induction
9117           // variables. Those recipes are moved to the phi section of the header
9118           // block after applying SinkAfter, which relies on the original
9119           // position of the trunc.
9120           assert(isa<TruncInst>(Instr));
9121           InductionsToMove.push_back(
9122               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
9123         }
9124         RecipeBuilder.setRecipe(Instr, Recipe);
9125         VPBB->appendRecipe(Recipe);
9126         continue;
9127       }
9128 
9129       // Otherwise, if all widening options failed, Instruction is to be
9130       // replicated. This may create a successor for VPBB.
9131       VPBasicBlock *NextVPBB =
9132           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9133       if (NextVPBB != VPBB) {
9134         VPBB = NextVPBB;
9135         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9136                                     : "");
9137       }
9138     }
9139 
9140     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
9141     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
9142   }
9143 
9144   // Fold the last, empty block into its predecessor.
9145   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
9146   assert(VPBB && "expected to fold last (empty) block");
9147   // After here, VPBB should not be used.
9148   VPBB = nullptr;
9149 
9150   assert(isa<VPRegionBlock>(Plan->getEntry()) &&
9151          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
9152          "entry block must be set to a VPRegionBlock having a non-empty entry "
9153          "VPBasicBlock");
9154   RecipeBuilder.fixHeaderPhis();
9155 
9156   // ---------------------------------------------------------------------------
9157   // Transform initial VPlan: Apply previously taken decisions, in order, to
9158   // bring the VPlan to its final state.
9159   // ---------------------------------------------------------------------------
9160 
9161   // Apply Sink-After legal constraints.
9162   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9163     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9164     if (Region && Region->isReplicator()) {
9165       assert(Region->getNumSuccessors() == 1 &&
9166              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9167       assert(R->getParent()->size() == 1 &&
9168              "A recipe in an original replicator region must be the only "
9169              "recipe in its block");
9170       return Region;
9171     }
9172     return nullptr;
9173   };
9174   for (auto &Entry : SinkAfter) {
9175     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9176     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9177 
9178     auto *TargetRegion = GetReplicateRegion(Target);
9179     auto *SinkRegion = GetReplicateRegion(Sink);
9180     if (!SinkRegion) {
9181       // If the sink source is not a replicate region, sink the recipe directly.
9182       if (TargetRegion) {
9183         // The target is in a replication region, make sure to move Sink to
9184         // the block after it, not into the replication region itself.
9185         VPBasicBlock *NextBlock =
9186             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9187         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9188       } else
9189         Sink->moveAfter(Target);
9190       continue;
9191     }
9192 
9193     // The sink source is in a replicate region. Unhook the region from the CFG.
9194     auto *SinkPred = SinkRegion->getSinglePredecessor();
9195     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9196     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9197     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9198     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9199 
9200     if (TargetRegion) {
9201       // The target recipe is also in a replicate region, move the sink region
9202       // after the target region.
9203       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9204       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9205       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9206       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9207     } else {
9208       // The sink source is in a replicate region, we need to move the whole
9209       // replicate region, which should only contain a single recipe in the
9210       // main block.
9211       auto *SplitBlock =
9212           Target->getParent()->splitAt(std::next(Target->getIterator()));
9213 
9214       auto *SplitPred = SplitBlock->getSinglePredecessor();
9215 
9216       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9217       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9218       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9219     }
9220   }
9221 
9222   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
9223   VPlanTransforms::removeRedundantInductionCasts(*Plan);
9224 
9225   // Now that sink-after is done, move induction recipes for optimized truncates
9226   // to the phi section of the header block.
9227   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
9228     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
9229 
9230   // Adjust the recipes for any inloop reductions.
9231   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan,
9232                              RecipeBuilder, Range.Start);
9233 
9234   // Introduce a recipe to combine the incoming and previous values of a
9235   // first-order recurrence.
9236   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9237     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9238     if (!RecurPhi)
9239       continue;
9240 
9241     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9242     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
9243     auto *Region = GetReplicateRegion(PrevRecipe);
9244     if (Region)
9245       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
9246     if (Region || PrevRecipe->isPhi())
9247       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
9248     else
9249       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
9250 
9251     auto *RecurSplice = cast<VPInstruction>(
9252         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9253                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9254 
9255     RecurPhi->replaceAllUsesWith(RecurSplice);
9256     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9257     // all users.
9258     RecurSplice->setOperand(0, RecurPhi);
9259   }
9260 
9261   // Interleave memory: for each Interleave Group we marked earlier as relevant
9262   // for this VPlan, replace the Recipes widening its memory instructions with a
9263   // single VPInterleaveRecipe at its insertion point.
9264   for (auto IG : InterleaveGroups) {
9265     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9266         RecipeBuilder.getRecipe(IG->getInsertPos()));
9267     SmallVector<VPValue *, 4> StoredValues;
9268     for (unsigned i = 0; i < IG->getFactor(); ++i)
9269       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9270         auto *StoreR =
9271             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9272         StoredValues.push_back(StoreR->getStoredValue());
9273       }
9274 
9275     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9276                                         Recipe->getMask());
9277     VPIG->insertBefore(Recipe);
9278     unsigned J = 0;
9279     for (unsigned i = 0; i < IG->getFactor(); ++i)
9280       if (Instruction *Member = IG->getMember(i)) {
9281         if (!Member->getType()->isVoidTy()) {
9282           VPValue *OriginalV = Plan->getVPValue(Member);
9283           Plan->removeVPValueFor(Member);
9284           Plan->addVPValue(Member, VPIG->getVPValue(J));
9285           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9286           J++;
9287         }
9288         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9289       }
9290   }
9291 
9292   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9293   // in ways that accessing values using original IR values is incorrect.
9294   Plan->disableValue2VPValue();
9295 
9296   VPlanTransforms::sinkScalarOperands(*Plan);
9297   VPlanTransforms::mergeReplicateRegions(*Plan);
9298 
9299   std::string PlanName;
9300   raw_string_ostream RSO(PlanName);
9301   ElementCount VF = Range.Start;
9302   Plan->addVF(VF);
9303   RSO << "Initial VPlan for VF={" << VF;
9304   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9305     Plan->addVF(VF);
9306     RSO << "," << VF;
9307   }
9308   RSO << "},UF>=1";
9309   RSO.flush();
9310   Plan->setName(PlanName);
9311 
9312   // Fold Exit block into its predecessor if possible.
9313   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9314   // VPBasicBlock as exit.
9315   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit());
9316 
9317   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9318   return Plan;
9319 }
9320 
9321 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9322   // Outer loop handling: They may require CFG and instruction level
9323   // transformations before even evaluating whether vectorization is profitable.
9324   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9325   // the vectorization pipeline.
9326   assert(!OrigLoop->isInnermost());
9327   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9328 
9329   // Create new empty VPlan
9330   auto Plan = std::make_unique<VPlan>();
9331 
9332   // Build hierarchical CFG
9333   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9334   HCFGBuilder.buildHierarchicalCFG();
9335 
9336   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9337        VF *= 2)
9338     Plan->addVF(VF);
9339 
9340   if (EnableVPlanPredication) {
9341     VPlanPredicator VPP(*Plan);
9342     VPP.predicate();
9343 
9344     // Avoid running transformation to recipes until masked code generation in
9345     // VPlan-native path is in place.
9346     return Plan;
9347   }
9348 
9349   SmallPtrSet<Instruction *, 1> DeadInstructions;
9350   VPlanTransforms::VPInstructionsToVPRecipes(
9351       OrigLoop, Plan,
9352       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9353       DeadInstructions, *PSE.getSE());
9354 
9355   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9356                         true, true);
9357   return Plan;
9358 }
9359 
9360 // Adjust the recipes for reductions. For in-loop reductions the chain of
9361 // instructions leading from the loop exit instr to the phi need to be converted
9362 // to reductions, with one operand being vector and the other being the scalar
9363 // reduction chain. For other reductions, a select is introduced between the phi
9364 // and live-out recipes when folding the tail.
9365 void LoopVectorizationPlanner::adjustRecipesForReductions(
9366     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9367     ElementCount MinVF) {
9368   for (auto &Reduction : CM.getInLoopReductionChains()) {
9369     PHINode *Phi = Reduction.first;
9370     const RecurrenceDescriptor &RdxDesc =
9371         Legal->getReductionVars().find(Phi)->second;
9372     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9373 
9374     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9375       continue;
9376 
9377     // ReductionOperations are orders top-down from the phi's use to the
9378     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9379     // which of the two operands will remain scalar and which will be reduced.
9380     // For minmax the chain will be the select instructions.
9381     Instruction *Chain = Phi;
9382     for (Instruction *R : ReductionOperations) {
9383       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9384       RecurKind Kind = RdxDesc.getRecurrenceKind();
9385 
9386       VPValue *ChainOp = Plan->getVPValue(Chain);
9387       unsigned FirstOpId;
9388       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9389              "Only min/max recurrences allowed for inloop reductions");
9390       // Recognize a call to the llvm.fmuladd intrinsic.
9391       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9392       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9393              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9394       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9395         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9396                "Expected to replace a VPWidenSelectSC");
9397         FirstOpId = 1;
9398       } else {
9399         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9400                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9401                "Expected to replace a VPWidenSC");
9402         FirstOpId = 0;
9403       }
9404       unsigned VecOpId =
9405           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9406       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9407 
9408       auto *CondOp = CM.foldTailByMasking()
9409                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9410                          : nullptr;
9411 
9412       if (IsFMulAdd) {
9413         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9414         // need to create an fmul recipe to use as the vector operand for the
9415         // fadd reduction.
9416         VPInstruction *FMulRecipe = new VPInstruction(
9417             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9418         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9419         WidenRecipe->getParent()->insert(FMulRecipe,
9420                                          WidenRecipe->getIterator());
9421         VecOp = FMulRecipe;
9422       }
9423       VPReductionRecipe *RedRecipe =
9424           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9425       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9426       Plan->removeVPValueFor(R);
9427       Plan->addVPValue(R, RedRecipe);
9428       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9429       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9430       WidenRecipe->eraseFromParent();
9431 
9432       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9433         VPRecipeBase *CompareRecipe =
9434             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9435         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9436                "Expected to replace a VPWidenSC");
9437         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9438                "Expected no remaining users");
9439         CompareRecipe->eraseFromParent();
9440       }
9441       Chain = R;
9442     }
9443   }
9444 
9445   // If tail is folded by masking, introduce selects between the phi
9446   // and the live-out instruction of each reduction, at the beginning of the
9447   // dedicated latch block.
9448   if (CM.foldTailByMasking()) {
9449     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9450     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9451       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9452       if (!PhiR || PhiR->isInLoop())
9453         continue;
9454       VPValue *Cond =
9455           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9456       VPValue *Red = PhiR->getBackedgeValue();
9457       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9458              "reduction recipe must be defined before latch");
9459       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9460     }
9461   }
9462 }
9463 
9464 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9465 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9466                                VPSlotTracker &SlotTracker) const {
9467   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9468   IG->getInsertPos()->printAsOperand(O, false);
9469   O << ", ";
9470   getAddr()->printAsOperand(O, SlotTracker);
9471   VPValue *Mask = getMask();
9472   if (Mask) {
9473     O << ", ";
9474     Mask->printAsOperand(O, SlotTracker);
9475   }
9476 
9477   unsigned OpIdx = 0;
9478   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9479     if (!IG->getMember(i))
9480       continue;
9481     if (getNumStoreOperands() > 0) {
9482       O << "\n" << Indent << "  store ";
9483       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9484       O << " to index " << i;
9485     } else {
9486       O << "\n" << Indent << "  ";
9487       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9488       O << " = load from index " << i;
9489     }
9490     ++OpIdx;
9491   }
9492 }
9493 #endif
9494 
9495 void VPWidenCallRecipe::execute(VPTransformState &State) {
9496   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9497                                   *this, State);
9498 }
9499 
9500 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9501   auto &I = *cast<SelectInst>(getUnderlyingInstr());
9502   State.ILV->setDebugLocFromInst(&I);
9503 
9504   // The condition can be loop invariant  but still defined inside the
9505   // loop. This means that we can't just use the original 'cond' value.
9506   // We have to take the 'vectorized' value and pick the first lane.
9507   // Instcombine will make this a no-op.
9508   auto *InvarCond =
9509       InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr;
9510 
9511   for (unsigned Part = 0; Part < State.UF; ++Part) {
9512     Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part);
9513     Value *Op0 = State.get(getOperand(1), Part);
9514     Value *Op1 = State.get(getOperand(2), Part);
9515     Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1);
9516     State.set(this, Sel, Part);
9517     State.ILV->addMetadata(Sel, &I);
9518   }
9519 }
9520 
9521 void VPWidenRecipe::execute(VPTransformState &State) {
9522   auto &I = *cast<Instruction>(getUnderlyingValue());
9523   auto &Builder = State.Builder;
9524   switch (I.getOpcode()) {
9525   case Instruction::Call:
9526   case Instruction::Br:
9527   case Instruction::PHI:
9528   case Instruction::GetElementPtr:
9529   case Instruction::Select:
9530     llvm_unreachable("This instruction is handled by a different recipe.");
9531   case Instruction::UDiv:
9532   case Instruction::SDiv:
9533   case Instruction::SRem:
9534   case Instruction::URem:
9535   case Instruction::Add:
9536   case Instruction::FAdd:
9537   case Instruction::Sub:
9538   case Instruction::FSub:
9539   case Instruction::FNeg:
9540   case Instruction::Mul:
9541   case Instruction::FMul:
9542   case Instruction::FDiv:
9543   case Instruction::FRem:
9544   case Instruction::Shl:
9545   case Instruction::LShr:
9546   case Instruction::AShr:
9547   case Instruction::And:
9548   case Instruction::Or:
9549   case Instruction::Xor: {
9550     // Just widen unops and binops.
9551     State.ILV->setDebugLocFromInst(&I);
9552 
9553     for (unsigned Part = 0; Part < State.UF; ++Part) {
9554       SmallVector<Value *, 2> Ops;
9555       for (VPValue *VPOp : operands())
9556         Ops.push_back(State.get(VPOp, Part));
9557 
9558       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
9559 
9560       if (auto *VecOp = dyn_cast<Instruction>(V)) {
9561         VecOp->copyIRFlags(&I);
9562 
9563         // If the instruction is vectorized and was in a basic block that needed
9564         // predication, we can't propagate poison-generating flags (nuw/nsw,
9565         // exact, etc.). The control flow has been linearized and the
9566         // instruction is no longer guarded by the predicate, which could make
9567         // the flag properties to no longer hold.
9568         if (State.MayGeneratePoisonRecipes.contains(this))
9569           VecOp->dropPoisonGeneratingFlags();
9570       }
9571 
9572       // Use this vector value for all users of the original instruction.
9573       State.set(this, V, Part);
9574       State.ILV->addMetadata(V, &I);
9575     }
9576 
9577     break;
9578   }
9579   case Instruction::ICmp:
9580   case Instruction::FCmp: {
9581     // Widen compares. Generate vector compares.
9582     bool FCmp = (I.getOpcode() == Instruction::FCmp);
9583     auto *Cmp = cast<CmpInst>(&I);
9584     State.ILV->setDebugLocFromInst(Cmp);
9585     for (unsigned Part = 0; Part < State.UF; ++Part) {
9586       Value *A = State.get(getOperand(0), Part);
9587       Value *B = State.get(getOperand(1), Part);
9588       Value *C = nullptr;
9589       if (FCmp) {
9590         // Propagate fast math flags.
9591         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9592         Builder.setFastMathFlags(Cmp->getFastMathFlags());
9593         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
9594       } else {
9595         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
9596       }
9597       State.set(this, C, Part);
9598       State.ILV->addMetadata(C, &I);
9599     }
9600 
9601     break;
9602   }
9603 
9604   case Instruction::ZExt:
9605   case Instruction::SExt:
9606   case Instruction::FPToUI:
9607   case Instruction::FPToSI:
9608   case Instruction::FPExt:
9609   case Instruction::PtrToInt:
9610   case Instruction::IntToPtr:
9611   case Instruction::SIToFP:
9612   case Instruction::UIToFP:
9613   case Instruction::Trunc:
9614   case Instruction::FPTrunc:
9615   case Instruction::BitCast: {
9616     auto *CI = cast<CastInst>(&I);
9617     State.ILV->setDebugLocFromInst(CI);
9618 
9619     /// Vectorize casts.
9620     Type *DestTy = (State.VF.isScalar())
9621                        ? CI->getType()
9622                        : VectorType::get(CI->getType(), State.VF);
9623 
9624     for (unsigned Part = 0; Part < State.UF; ++Part) {
9625       Value *A = State.get(getOperand(0), Part);
9626       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
9627       State.set(this, Cast, Part);
9628       State.ILV->addMetadata(Cast, &I);
9629     }
9630     break;
9631   }
9632   default:
9633     // This instruction is not vectorized by simple widening.
9634     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
9635     llvm_unreachable("Unhandled instruction!");
9636   } // end of switch.
9637 }
9638 
9639 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9640   auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr());
9641   // Construct a vector GEP by widening the operands of the scalar GEP as
9642   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
9643   // results in a vector of pointers when at least one operand of the GEP
9644   // is vector-typed. Thus, to keep the representation compact, we only use
9645   // vector-typed operands for loop-varying values.
9646 
9647   if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
9648     // If we are vectorizing, but the GEP has only loop-invariant operands,
9649     // the GEP we build (by only using vector-typed operands for
9650     // loop-varying values) would be a scalar pointer. Thus, to ensure we
9651     // produce a vector of pointers, we need to either arbitrarily pick an
9652     // operand to broadcast, or broadcast a clone of the original GEP.
9653     // Here, we broadcast a clone of the original.
9654     //
9655     // TODO: If at some point we decide to scalarize instructions having
9656     //       loop-invariant operands, this special case will no longer be
9657     //       required. We would add the scalarization decision to
9658     //       collectLoopScalars() and teach getVectorValue() to broadcast
9659     //       the lane-zero scalar value.
9660     auto *Clone = State.Builder.Insert(GEP->clone());
9661     for (unsigned Part = 0; Part < State.UF; ++Part) {
9662       Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone);
9663       State.set(this, EntryPart, Part);
9664       State.ILV->addMetadata(EntryPart, GEP);
9665     }
9666   } else {
9667     // If the GEP has at least one loop-varying operand, we are sure to
9668     // produce a vector of pointers. But if we are only unrolling, we want
9669     // to produce a scalar GEP for each unroll part. Thus, the GEP we
9670     // produce with the code below will be scalar (if VF == 1) or vector
9671     // (otherwise). Note that for the unroll-only case, we still maintain
9672     // values in the vector mapping with initVector, as we do for other
9673     // instructions.
9674     for (unsigned Part = 0; Part < State.UF; ++Part) {
9675       // The pointer operand of the new GEP. If it's loop-invariant, we
9676       // won't broadcast it.
9677       auto *Ptr = IsPtrLoopInvariant
9678                       ? State.get(getOperand(0), VPIteration(0, 0))
9679                       : State.get(getOperand(0), Part);
9680 
9681       // Collect all the indices for the new GEP. If any index is
9682       // loop-invariant, we won't broadcast it.
9683       SmallVector<Value *, 4> Indices;
9684       for (unsigned I = 1, E = getNumOperands(); I < E; I++) {
9685         VPValue *Operand = getOperand(I);
9686         if (IsIndexLoopInvariant[I - 1])
9687           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
9688         else
9689           Indices.push_back(State.get(Operand, Part));
9690       }
9691 
9692       // If the GEP instruction is vectorized and was in a basic block that
9693       // needed predication, we can't propagate the poison-generating 'inbounds'
9694       // flag. The control flow has been linearized and the GEP is no longer
9695       // guarded by the predicate, which could make the 'inbounds' properties to
9696       // no longer hold.
9697       bool IsInBounds =
9698           GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0;
9699 
9700       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
9701       // but it should be a vector, otherwise.
9702       auto *NewGEP = IsInBounds
9703                          ? State.Builder.CreateInBoundsGEP(
9704                                GEP->getSourceElementType(), Ptr, Indices)
9705                          : State.Builder.CreateGEP(GEP->getSourceElementType(),
9706                                                    Ptr, Indices);
9707       assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
9708              "NewGEP is not a pointer vector");
9709       State.set(this, NewGEP, Part);
9710       State.ILV->addMetadata(NewGEP, GEP);
9711     }
9712   }
9713 }
9714 
9715 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9716   assert(!State.Instance && "Int or FP induction being replicated.");
9717   auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9718   State.ILV->widenIntOrFpInduction(IV, this, State, CanonicalIV);
9719 }
9720 
9721 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9722   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9723                                  State);
9724 }
9725 
9726 void VPBlendRecipe::execute(VPTransformState &State) {
9727   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9728   // We know that all PHIs in non-header blocks are converted into
9729   // selects, so we don't have to worry about the insertion order and we
9730   // can just use the builder.
9731   // At this point we generate the predication tree. There may be
9732   // duplications since this is a simple recursive scan, but future
9733   // optimizations will clean it up.
9734 
9735   unsigned NumIncoming = getNumIncomingValues();
9736 
9737   // Generate a sequence of selects of the form:
9738   // SELECT(Mask3, In3,
9739   //        SELECT(Mask2, In2,
9740   //               SELECT(Mask1, In1,
9741   //                      In0)))
9742   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9743   // are essentially undef are taken from In0.
9744   InnerLoopVectorizer::VectorParts Entry(State.UF);
9745   for (unsigned In = 0; In < NumIncoming; ++In) {
9746     for (unsigned Part = 0; Part < State.UF; ++Part) {
9747       // We might have single edge PHIs (blocks) - use an identity
9748       // 'select' for the first PHI operand.
9749       Value *In0 = State.get(getIncomingValue(In), Part);
9750       if (In == 0)
9751         Entry[Part] = In0; // Initialize with the first incoming value.
9752       else {
9753         // Select between the current value and the previous incoming edge
9754         // based on the incoming mask.
9755         Value *Cond = State.get(getMask(In), Part);
9756         Entry[Part] =
9757             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9758       }
9759     }
9760   }
9761   for (unsigned Part = 0; Part < State.UF; ++Part)
9762     State.set(this, Entry[Part], Part);
9763 }
9764 
9765 void VPInterleaveRecipe::execute(VPTransformState &State) {
9766   assert(!State.Instance && "Interleave group being replicated.");
9767   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9768                                       getStoredValues(), getMask());
9769 }
9770 
9771 void VPReductionRecipe::execute(VPTransformState &State) {
9772   assert(!State.Instance && "Reduction being replicated.");
9773   Value *PrevInChain = State.get(getChainOp(), 0);
9774   RecurKind Kind = RdxDesc->getRecurrenceKind();
9775   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9776   // Propagate the fast-math flags carried by the underlying instruction.
9777   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9778   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9779   for (unsigned Part = 0; Part < State.UF; ++Part) {
9780     Value *NewVecOp = State.get(getVecOp(), Part);
9781     if (VPValue *Cond = getCondOp()) {
9782       Value *NewCond = State.get(Cond, Part);
9783       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9784       Value *Iden = RdxDesc->getRecurrenceIdentity(
9785           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9786       Value *IdenVec =
9787           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9788       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9789       NewVecOp = Select;
9790     }
9791     Value *NewRed;
9792     Value *NextInChain;
9793     if (IsOrdered) {
9794       if (State.VF.isVector())
9795         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9796                                         PrevInChain);
9797       else
9798         NewRed = State.Builder.CreateBinOp(
9799             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9800             NewVecOp);
9801       PrevInChain = NewRed;
9802     } else {
9803       PrevInChain = State.get(getChainOp(), Part);
9804       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9805     }
9806     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9807       NextInChain =
9808           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9809                          NewRed, PrevInChain);
9810     } else if (IsOrdered)
9811       NextInChain = NewRed;
9812     else
9813       NextInChain = State.Builder.CreateBinOp(
9814           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9815           PrevInChain);
9816     State.set(this, NextInChain, Part);
9817   }
9818 }
9819 
9820 void VPReplicateRecipe::execute(VPTransformState &State) {
9821   if (State.Instance) { // Generate a single instance.
9822     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9823     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9824                                     IsPredicated, State);
9825     // Insert scalar instance packing it into a vector.
9826     if (AlsoPack && State.VF.isVector()) {
9827       // If we're constructing lane 0, initialize to start from poison.
9828       if (State.Instance->Lane.isFirstLane()) {
9829         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9830         Value *Poison = PoisonValue::get(
9831             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9832         State.set(this, Poison, State.Instance->Part);
9833       }
9834       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9835     }
9836     return;
9837   }
9838 
9839   // Generate scalar instances for all VF lanes of all UF parts, unless the
9840   // instruction is uniform inwhich case generate only the first lane for each
9841   // of the UF parts.
9842   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9843   assert((!State.VF.isScalable() || IsUniform) &&
9844          "Can't scalarize a scalable vector");
9845   for (unsigned Part = 0; Part < State.UF; ++Part)
9846     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9847       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9848                                       VPIteration(Part, Lane), IsPredicated,
9849                                       State);
9850 }
9851 
9852 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9853   assert(State.Instance && "Branch on Mask works only on single instance.");
9854 
9855   unsigned Part = State.Instance->Part;
9856   unsigned Lane = State.Instance->Lane.getKnownLane();
9857 
9858   Value *ConditionBit = nullptr;
9859   VPValue *BlockInMask = getMask();
9860   if (BlockInMask) {
9861     ConditionBit = State.get(BlockInMask, Part);
9862     if (ConditionBit->getType()->isVectorTy())
9863       ConditionBit = State.Builder.CreateExtractElement(
9864           ConditionBit, State.Builder.getInt32(Lane));
9865   } else // Block in mask is all-one.
9866     ConditionBit = State.Builder.getTrue();
9867 
9868   // Replace the temporary unreachable terminator with a new conditional branch,
9869   // whose two destinations will be set later when they are created.
9870   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9871   assert(isa<UnreachableInst>(CurrentTerminator) &&
9872          "Expected to replace unreachable terminator with conditional branch.");
9873   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9874   CondBr->setSuccessor(0, nullptr);
9875   ReplaceInstWithInst(CurrentTerminator, CondBr);
9876 }
9877 
9878 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9879   assert(State.Instance && "Predicated instruction PHI works per instance.");
9880   Instruction *ScalarPredInst =
9881       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9882   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9883   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9884   assert(PredicatingBB && "Predicated block has no single predecessor.");
9885   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9886          "operand must be VPReplicateRecipe");
9887 
9888   // By current pack/unpack logic we need to generate only a single phi node: if
9889   // a vector value for the predicated instruction exists at this point it means
9890   // the instruction has vector users only, and a phi for the vector value is
9891   // needed. In this case the recipe of the predicated instruction is marked to
9892   // also do that packing, thereby "hoisting" the insert-element sequence.
9893   // Otherwise, a phi node for the scalar value is needed.
9894   unsigned Part = State.Instance->Part;
9895   if (State.hasVectorValue(getOperand(0), Part)) {
9896     Value *VectorValue = State.get(getOperand(0), Part);
9897     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9898     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9899     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9900     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9901     if (State.hasVectorValue(this, Part))
9902       State.reset(this, VPhi, Part);
9903     else
9904       State.set(this, VPhi, Part);
9905     // NOTE: Currently we need to update the value of the operand, so the next
9906     // predicated iteration inserts its generated value in the correct vector.
9907     State.reset(getOperand(0), VPhi, Part);
9908   } else {
9909     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9910     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9911     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9912                      PredicatingBB);
9913     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9914     if (State.hasScalarValue(this, *State.Instance))
9915       State.reset(this, Phi, *State.Instance);
9916     else
9917       State.set(this, Phi, *State.Instance);
9918     // NOTE: Currently we need to update the value of the operand, so the next
9919     // predicated iteration inserts its generated value in the correct vector.
9920     State.reset(getOperand(0), Phi, *State.Instance);
9921   }
9922 }
9923 
9924 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9925   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9926 
9927   // Attempt to issue a wide load.
9928   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9929   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9930 
9931   assert((LI || SI) && "Invalid Load/Store instruction");
9932   assert((!SI || StoredValue) && "No stored value provided for widened store");
9933   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9934 
9935   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9936 
9937   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9938   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9939   bool CreateGatherScatter = !Consecutive;
9940 
9941   auto &Builder = State.Builder;
9942   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9943   bool isMaskRequired = getMask();
9944   if (isMaskRequired)
9945     for (unsigned Part = 0; Part < State.UF; ++Part)
9946       BlockInMaskParts[Part] = State.get(getMask(), Part);
9947 
9948   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9949     // Calculate the pointer for the specific unroll-part.
9950     GetElementPtrInst *PartPtr = nullptr;
9951 
9952     bool InBounds = false;
9953     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9954       InBounds = gep->isInBounds();
9955     if (Reverse) {
9956       // If the address is consecutive but reversed, then the
9957       // wide store needs to start at the last vector element.
9958       // RunTimeVF =  VScale * VF.getKnownMinValue()
9959       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9960       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9961       // NumElt = -Part * RunTimeVF
9962       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9963       // LastLane = 1 - RunTimeVF
9964       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9965       PartPtr =
9966           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9967       PartPtr->setIsInBounds(InBounds);
9968       PartPtr = cast<GetElementPtrInst>(
9969           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9970       PartPtr->setIsInBounds(InBounds);
9971       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9972         BlockInMaskParts[Part] =
9973             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9974     } else {
9975       Value *Increment =
9976           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
9977       PartPtr = cast<GetElementPtrInst>(
9978           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
9979       PartPtr->setIsInBounds(InBounds);
9980     }
9981 
9982     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
9983     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
9984   };
9985 
9986   // Handle Stores:
9987   if (SI) {
9988     State.ILV->setDebugLocFromInst(SI);
9989 
9990     for (unsigned Part = 0; Part < State.UF; ++Part) {
9991       Instruction *NewSI = nullptr;
9992       Value *StoredVal = State.get(StoredValue, Part);
9993       if (CreateGatherScatter) {
9994         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9995         Value *VectorGep = State.get(getAddr(), Part);
9996         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
9997                                             MaskPart);
9998       } else {
9999         if (Reverse) {
10000           // If we store to reverse consecutive memory locations, then we need
10001           // to reverse the order of elements in the stored value.
10002           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
10003           // We don't want to update the value in the map as it might be used in
10004           // another expression. So don't call resetVectorValue(StoredVal).
10005         }
10006         auto *VecPtr =
10007             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10008         if (isMaskRequired)
10009           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
10010                                             BlockInMaskParts[Part]);
10011         else
10012           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
10013       }
10014       State.ILV->addMetadata(NewSI, SI);
10015     }
10016     return;
10017   }
10018 
10019   // Handle loads.
10020   assert(LI && "Must have a load instruction");
10021   State.ILV->setDebugLocFromInst(LI);
10022   for (unsigned Part = 0; Part < State.UF; ++Part) {
10023     Value *NewLI;
10024     if (CreateGatherScatter) {
10025       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
10026       Value *VectorGep = State.get(getAddr(), Part);
10027       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
10028                                          nullptr, "wide.masked.gather");
10029       State.ILV->addMetadata(NewLI, LI);
10030     } else {
10031       auto *VecPtr =
10032           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
10033       if (isMaskRequired)
10034         NewLI = Builder.CreateMaskedLoad(
10035             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
10036             PoisonValue::get(DataTy), "wide.masked.load");
10037       else
10038         NewLI =
10039             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
10040 
10041       // Add metadata to the load, but setVectorValue to the reverse shuffle.
10042       State.ILV->addMetadata(NewLI, LI);
10043       if (Reverse)
10044         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
10045     }
10046 
10047     State.set(this, NewLI, Part);
10048   }
10049 }
10050 
10051 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10052 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10053 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10054 // for predication.
10055 static ScalarEpilogueLowering getScalarEpilogueLowering(
10056     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10057     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10058     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10059     LoopVectorizationLegality &LVL) {
10060   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10061   // don't look at hints or options, and don't request a scalar epilogue.
10062   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10063   // LoopAccessInfo (due to code dependency and not being able to reliably get
10064   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10065   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10066   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10067   // back to the old way and vectorize with versioning when forced. See D81345.)
10068   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10069                                                       PGSOQueryType::IRPass) &&
10070                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10071     return CM_ScalarEpilogueNotAllowedOptSize;
10072 
10073   // 2) If set, obey the directives
10074   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10075     switch (PreferPredicateOverEpilogue) {
10076     case PreferPredicateTy::ScalarEpilogue:
10077       return CM_ScalarEpilogueAllowed;
10078     case PreferPredicateTy::PredicateElseScalarEpilogue:
10079       return CM_ScalarEpilogueNotNeededUsePredicate;
10080     case PreferPredicateTy::PredicateOrDontVectorize:
10081       return CM_ScalarEpilogueNotAllowedUsePredicate;
10082     };
10083   }
10084 
10085   // 3) If set, obey the hints
10086   switch (Hints.getPredicate()) {
10087   case LoopVectorizeHints::FK_Enabled:
10088     return CM_ScalarEpilogueNotNeededUsePredicate;
10089   case LoopVectorizeHints::FK_Disabled:
10090     return CM_ScalarEpilogueAllowed;
10091   };
10092 
10093   // 4) if the TTI hook indicates this is profitable, request predication.
10094   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10095                                        LVL.getLAI()))
10096     return CM_ScalarEpilogueNotNeededUsePredicate;
10097 
10098   return CM_ScalarEpilogueAllowed;
10099 }
10100 
10101 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10102   // If Values have been set for this Def return the one relevant for \p Part.
10103   if (hasVectorValue(Def, Part))
10104     return Data.PerPartOutput[Def][Part];
10105 
10106   if (!hasScalarValue(Def, {Part, 0})) {
10107     Value *IRV = Def->getLiveInIRValue();
10108     Value *B = ILV->getBroadcastInstrs(IRV);
10109     set(Def, B, Part);
10110     return B;
10111   }
10112 
10113   Value *ScalarValue = get(Def, {Part, 0});
10114   // If we aren't vectorizing, we can just copy the scalar map values over
10115   // to the vector map.
10116   if (VF.isScalar()) {
10117     set(Def, ScalarValue, Part);
10118     return ScalarValue;
10119   }
10120 
10121   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10122   bool IsUniform = RepR && RepR->isUniform();
10123 
10124   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10125   // Check if there is a scalar value for the selected lane.
10126   if (!hasScalarValue(Def, {Part, LastLane})) {
10127     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10128     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
10129            "unexpected recipe found to be invariant");
10130     IsUniform = true;
10131     LastLane = 0;
10132   }
10133 
10134   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10135   // Set the insert point after the last scalarized instruction or after the
10136   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10137   // will directly follow the scalar definitions.
10138   auto OldIP = Builder.saveIP();
10139   auto NewIP =
10140       isa<PHINode>(LastInst)
10141           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10142           : std::next(BasicBlock::iterator(LastInst));
10143   Builder.SetInsertPoint(&*NewIP);
10144 
10145   // However, if we are vectorizing, we need to construct the vector values.
10146   // If the value is known to be uniform after vectorization, we can just
10147   // broadcast the scalar value corresponding to lane zero for each unroll
10148   // iteration. Otherwise, we construct the vector values using
10149   // insertelement instructions. Since the resulting vectors are stored in
10150   // State, we will only generate the insertelements once.
10151   Value *VectorValue = nullptr;
10152   if (IsUniform) {
10153     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10154     set(Def, VectorValue, Part);
10155   } else {
10156     // Initialize packing with insertelements to start from undef.
10157     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10158     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10159     set(Def, Undef, Part);
10160     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10161       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10162     VectorValue = get(Def, Part);
10163   }
10164   Builder.restoreIP(OldIP);
10165   return VectorValue;
10166 }
10167 
10168 // Process the loop in the VPlan-native vectorization path. This path builds
10169 // VPlan upfront in the vectorization pipeline, which allows to apply
10170 // VPlan-to-VPlan transformations from the very beginning without modifying the
10171 // input LLVM IR.
10172 static bool processLoopInVPlanNativePath(
10173     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10174     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10175     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10176     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10177     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10178     LoopVectorizationRequirements &Requirements) {
10179 
10180   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10181     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10182     return false;
10183   }
10184   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10185   Function *F = L->getHeader()->getParent();
10186   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10187 
10188   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10189       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10190 
10191   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10192                                 &Hints, IAI);
10193   // Use the planner for outer loop vectorization.
10194   // TODO: CM is not used at this point inside the planner. Turn CM into an
10195   // optional argument if we don't need it in the future.
10196   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10197                                Requirements, ORE);
10198 
10199   // Get user vectorization factor.
10200   ElementCount UserVF = Hints.getWidth();
10201 
10202   CM.collectElementTypesForWidening();
10203 
10204   // Plan how to best vectorize, return the best VF and its cost.
10205   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10206 
10207   // If we are stress testing VPlan builds, do not attempt to generate vector
10208   // code. Masked vector code generation support will follow soon.
10209   // Also, do not attempt to vectorize if no vector code will be produced.
10210   if (VPlanBuildStressTest || EnableVPlanPredication ||
10211       VectorizationFactor::Disabled() == VF)
10212     return false;
10213 
10214   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10215 
10216   {
10217     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10218                              F->getParent()->getDataLayout());
10219     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10220                            &CM, BFI, PSI, Checks);
10221     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10222                       << L->getHeader()->getParent()->getName() << "\"\n");
10223     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10224   }
10225 
10226   // Mark the loop as already vectorized to avoid vectorizing again.
10227   Hints.setAlreadyVectorized();
10228   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10229   return true;
10230 }
10231 
10232 // Emit a remark if there are stores to floats that required a floating point
10233 // extension. If the vectorized loop was generated with floating point there
10234 // will be a performance penalty from the conversion overhead and the change in
10235 // the vector width.
10236 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10237   SmallVector<Instruction *, 4> Worklist;
10238   for (BasicBlock *BB : L->getBlocks()) {
10239     for (Instruction &Inst : *BB) {
10240       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10241         if (S->getValueOperand()->getType()->isFloatTy())
10242           Worklist.push_back(S);
10243       }
10244     }
10245   }
10246 
10247   // Traverse the floating point stores upwards searching, for floating point
10248   // conversions.
10249   SmallPtrSet<const Instruction *, 4> Visited;
10250   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10251   while (!Worklist.empty()) {
10252     auto *I = Worklist.pop_back_val();
10253     if (!L->contains(I))
10254       continue;
10255     if (!Visited.insert(I).second)
10256       continue;
10257 
10258     // Emit a remark if the floating point store required a floating
10259     // point conversion.
10260     // TODO: More work could be done to identify the root cause such as a
10261     // constant or a function return type and point the user to it.
10262     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10263       ORE->emit([&]() {
10264         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10265                                           I->getDebugLoc(), L->getHeader())
10266                << "floating point conversion changes vector width. "
10267                << "Mixed floating point precision requires an up/down "
10268                << "cast that will negatively impact performance.";
10269       });
10270 
10271     for (Use &Op : I->operands())
10272       if (auto *OpI = dyn_cast<Instruction>(Op))
10273         Worklist.push_back(OpI);
10274   }
10275 }
10276 
10277 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10278     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10279                                !EnableLoopInterleaving),
10280       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10281                               !EnableLoopVectorization) {}
10282 
10283 bool LoopVectorizePass::processLoop(Loop *L) {
10284   assert((EnableVPlanNativePath || L->isInnermost()) &&
10285          "VPlan-native path is not enabled. Only process inner loops.");
10286 
10287 #ifndef NDEBUG
10288   const std::string DebugLocStr = getDebugLocString(L);
10289 #endif /* NDEBUG */
10290 
10291   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10292                     << L->getHeader()->getParent()->getName() << "\" from "
10293                     << DebugLocStr << "\n");
10294 
10295   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10296 
10297   LLVM_DEBUG(
10298       dbgs() << "LV: Loop hints:"
10299              << " force="
10300              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10301                      ? "disabled"
10302                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10303                             ? "enabled"
10304                             : "?"))
10305              << " width=" << Hints.getWidth()
10306              << " interleave=" << Hints.getInterleave() << "\n");
10307 
10308   // Function containing loop
10309   Function *F = L->getHeader()->getParent();
10310 
10311   // Looking at the diagnostic output is the only way to determine if a loop
10312   // was vectorized (other than looking at the IR or machine code), so it
10313   // is important to generate an optimization remark for each loop. Most of
10314   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10315   // generated as OptimizationRemark and OptimizationRemarkMissed are
10316   // less verbose reporting vectorized loops and unvectorized loops that may
10317   // benefit from vectorization, respectively.
10318 
10319   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10320     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10321     return false;
10322   }
10323 
10324   PredicatedScalarEvolution PSE(*SE, *L);
10325 
10326   // Check if it is legal to vectorize the loop.
10327   LoopVectorizationRequirements Requirements;
10328   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10329                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10330   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10331     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10332     Hints.emitRemarkWithHints();
10333     return false;
10334   }
10335 
10336   // Check the function attributes and profiles to find out if this function
10337   // should be optimized for size.
10338   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10339       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10340 
10341   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10342   // here. They may require CFG and instruction level transformations before
10343   // even evaluating whether vectorization is profitable. Since we cannot modify
10344   // the incoming IR, we need to build VPlan upfront in the vectorization
10345   // pipeline.
10346   if (!L->isInnermost())
10347     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10348                                         ORE, BFI, PSI, Hints, Requirements);
10349 
10350   assert(L->isInnermost() && "Inner loop expected.");
10351 
10352   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10353   // count by optimizing for size, to minimize overheads.
10354   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10355   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10356     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10357                       << "This loop is worth vectorizing only if no scalar "
10358                       << "iteration overheads are incurred.");
10359     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10360       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10361     else {
10362       LLVM_DEBUG(dbgs() << "\n");
10363       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10364     }
10365   }
10366 
10367   // Check the function attributes to see if implicit floats are allowed.
10368   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10369   // an integer loop and the vector instructions selected are purely integer
10370   // vector instructions?
10371   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10372     reportVectorizationFailure(
10373         "Can't vectorize when the NoImplicitFloat attribute is used",
10374         "loop not vectorized due to NoImplicitFloat attribute",
10375         "NoImplicitFloat", ORE, L);
10376     Hints.emitRemarkWithHints();
10377     return false;
10378   }
10379 
10380   // Check if the target supports potentially unsafe FP vectorization.
10381   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10382   // for the target we're vectorizing for, to make sure none of the
10383   // additional fp-math flags can help.
10384   if (Hints.isPotentiallyUnsafe() &&
10385       TTI->isFPVectorizationPotentiallyUnsafe()) {
10386     reportVectorizationFailure(
10387         "Potentially unsafe FP op prevents vectorization",
10388         "loop not vectorized due to unsafe FP support.",
10389         "UnsafeFP", ORE, L);
10390     Hints.emitRemarkWithHints();
10391     return false;
10392   }
10393 
10394   bool AllowOrderedReductions;
10395   // If the flag is set, use that instead and override the TTI behaviour.
10396   if (ForceOrderedReductions.getNumOccurrences() > 0)
10397     AllowOrderedReductions = ForceOrderedReductions;
10398   else
10399     AllowOrderedReductions = TTI->enableOrderedReductions();
10400   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10401     ORE->emit([&]() {
10402       auto *ExactFPMathInst = Requirements.getExactFPInst();
10403       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10404                                                  ExactFPMathInst->getDebugLoc(),
10405                                                  ExactFPMathInst->getParent())
10406              << "loop not vectorized: cannot prove it is safe to reorder "
10407                 "floating-point operations";
10408     });
10409     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10410                          "reorder floating-point operations\n");
10411     Hints.emitRemarkWithHints();
10412     return false;
10413   }
10414 
10415   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10416   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10417 
10418   // If an override option has been passed in for interleaved accesses, use it.
10419   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10420     UseInterleaved = EnableInterleavedMemAccesses;
10421 
10422   // Analyze interleaved memory accesses.
10423   if (UseInterleaved) {
10424     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10425   }
10426 
10427   // Use the cost model.
10428   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10429                                 F, &Hints, IAI);
10430   CM.collectValuesToIgnore();
10431   CM.collectElementTypesForWidening();
10432 
10433   // Use the planner for vectorization.
10434   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10435                                Requirements, ORE);
10436 
10437   // Get user vectorization factor and interleave count.
10438   ElementCount UserVF = Hints.getWidth();
10439   unsigned UserIC = Hints.getInterleave();
10440 
10441   // Plan how to best vectorize, return the best VF and its cost.
10442   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10443 
10444   VectorizationFactor VF = VectorizationFactor::Disabled();
10445   unsigned IC = 1;
10446 
10447   if (MaybeVF) {
10448     VF = *MaybeVF;
10449     // Select the interleave count.
10450     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10451   }
10452 
10453   // Identify the diagnostic messages that should be produced.
10454   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10455   bool VectorizeLoop = true, InterleaveLoop = true;
10456   if (VF.Width.isScalar()) {
10457     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10458     VecDiagMsg = std::make_pair(
10459         "VectorizationNotBeneficial",
10460         "the cost-model indicates that vectorization is not beneficial");
10461     VectorizeLoop = false;
10462   }
10463 
10464   if (!MaybeVF && UserIC > 1) {
10465     // Tell the user interleaving was avoided up-front, despite being explicitly
10466     // requested.
10467     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10468                          "interleaving should be avoided up front\n");
10469     IntDiagMsg = std::make_pair(
10470         "InterleavingAvoided",
10471         "Ignoring UserIC, because interleaving was avoided up front");
10472     InterleaveLoop = false;
10473   } else if (IC == 1 && UserIC <= 1) {
10474     // Tell the user interleaving is not beneficial.
10475     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10476     IntDiagMsg = std::make_pair(
10477         "InterleavingNotBeneficial",
10478         "the cost-model indicates that interleaving is not beneficial");
10479     InterleaveLoop = false;
10480     if (UserIC == 1) {
10481       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10482       IntDiagMsg.second +=
10483           " and is explicitly disabled or interleave count is set to 1";
10484     }
10485   } else if (IC > 1 && UserIC == 1) {
10486     // Tell the user interleaving is beneficial, but it explicitly disabled.
10487     LLVM_DEBUG(
10488         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10489     IntDiagMsg = std::make_pair(
10490         "InterleavingBeneficialButDisabled",
10491         "the cost-model indicates that interleaving is beneficial "
10492         "but is explicitly disabled or interleave count is set to 1");
10493     InterleaveLoop = false;
10494   }
10495 
10496   // Override IC if user provided an interleave count.
10497   IC = UserIC > 0 ? UserIC : IC;
10498 
10499   // Emit diagnostic messages, if any.
10500   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10501   if (!VectorizeLoop && !InterleaveLoop) {
10502     // Do not vectorize or interleaving the loop.
10503     ORE->emit([&]() {
10504       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10505                                       L->getStartLoc(), L->getHeader())
10506              << VecDiagMsg.second;
10507     });
10508     ORE->emit([&]() {
10509       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10510                                       L->getStartLoc(), L->getHeader())
10511              << IntDiagMsg.second;
10512     });
10513     return false;
10514   } else if (!VectorizeLoop && InterleaveLoop) {
10515     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10516     ORE->emit([&]() {
10517       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10518                                         L->getStartLoc(), L->getHeader())
10519              << VecDiagMsg.second;
10520     });
10521   } else if (VectorizeLoop && !InterleaveLoop) {
10522     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10523                       << ") in " << DebugLocStr << '\n');
10524     ORE->emit([&]() {
10525       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10526                                         L->getStartLoc(), L->getHeader())
10527              << IntDiagMsg.second;
10528     });
10529   } else if (VectorizeLoop && InterleaveLoop) {
10530     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10531                       << ") in " << DebugLocStr << '\n');
10532     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10533   }
10534 
10535   bool DisableRuntimeUnroll = false;
10536   MDNode *OrigLoopID = L->getLoopID();
10537   {
10538     // Optimistically generate runtime checks. Drop them if they turn out to not
10539     // be profitable. Limit the scope of Checks, so the cleanup happens
10540     // immediately after vector codegeneration is done.
10541     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10542                              F->getParent()->getDataLayout());
10543     if (!VF.Width.isScalar() || IC > 1)
10544       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10545 
10546     using namespace ore;
10547     if (!VectorizeLoop) {
10548       assert(IC > 1 && "interleave count should not be 1 or 0");
10549       // If we decided that it is not legal to vectorize the loop, then
10550       // interleave it.
10551       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10552                                  &CM, BFI, PSI, Checks);
10553 
10554       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10555       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10556 
10557       ORE->emit([&]() {
10558         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10559                                   L->getHeader())
10560                << "interleaved loop (interleaved count: "
10561                << NV("InterleaveCount", IC) << ")";
10562       });
10563     } else {
10564       // If we decided that it is *legal* to vectorize the loop, then do it.
10565 
10566       // Consider vectorizing the epilogue too if it's profitable.
10567       VectorizationFactor EpilogueVF =
10568           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10569       if (EpilogueVF.Width.isVector()) {
10570 
10571         // The first pass vectorizes the main loop and creates a scalar epilogue
10572         // to be vectorized by executing the plan (potentially with a different
10573         // factor) again shortly afterwards.
10574         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10575         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10576                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10577 
10578         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10579         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10580                         DT);
10581         ++LoopsVectorized;
10582 
10583         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10584         formLCSSARecursively(*L, *DT, LI, SE);
10585 
10586         // Second pass vectorizes the epilogue and adjusts the control flow
10587         // edges from the first pass.
10588         EPI.MainLoopVF = EPI.EpilogueVF;
10589         EPI.MainLoopUF = EPI.EpilogueUF;
10590         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10591                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10592                                                  Checks);
10593 
10594         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10595 
10596         // Ensure that the start values for any VPReductionPHIRecipes are
10597         // updated before vectorising the epilogue loop.
10598         VPBasicBlock *Header = BestEpiPlan.getEntry()->getEntryBasicBlock();
10599         for (VPRecipeBase &R : Header->phis()) {
10600           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10601             if (auto *Resume = MainILV.getReductionResumeValue(
10602                     ReductionPhi->getRecurrenceDescriptor())) {
10603               VPValue *StartVal = new VPValue(Resume);
10604               BestEpiPlan.addExternalDef(StartVal);
10605               ReductionPhi->setOperand(0, StartVal);
10606             }
10607           }
10608         }
10609 
10610         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10611                         DT);
10612         ++LoopsEpilogueVectorized;
10613 
10614         if (!MainILV.areSafetyChecksAdded())
10615           DisableRuntimeUnroll = true;
10616       } else {
10617         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10618                                &LVL, &CM, BFI, PSI, Checks);
10619 
10620         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10621         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10622         ++LoopsVectorized;
10623 
10624         // Add metadata to disable runtime unrolling a scalar loop when there
10625         // are no runtime checks about strides and memory. A scalar loop that is
10626         // rarely used is not worth unrolling.
10627         if (!LB.areSafetyChecksAdded())
10628           DisableRuntimeUnroll = true;
10629       }
10630       // Report the vectorization decision.
10631       ORE->emit([&]() {
10632         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10633                                   L->getHeader())
10634                << "vectorized loop (vectorization width: "
10635                << NV("VectorizationFactor", VF.Width)
10636                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10637       });
10638     }
10639 
10640     if (ORE->allowExtraAnalysis(LV_NAME))
10641       checkMixedPrecision(L, ORE);
10642   }
10643 
10644   Optional<MDNode *> RemainderLoopID =
10645       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10646                                       LLVMLoopVectorizeFollowupEpilogue});
10647   if (RemainderLoopID.hasValue()) {
10648     L->setLoopID(RemainderLoopID.getValue());
10649   } else {
10650     if (DisableRuntimeUnroll)
10651       AddRuntimeUnrollDisableMetaData(L);
10652 
10653     // Mark the loop as already vectorized to avoid vectorizing again.
10654     Hints.setAlreadyVectorized();
10655   }
10656 
10657   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10658   return true;
10659 }
10660 
10661 LoopVectorizeResult LoopVectorizePass::runImpl(
10662     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10663     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10664     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10665     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10666     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10667   SE = &SE_;
10668   LI = &LI_;
10669   TTI = &TTI_;
10670   DT = &DT_;
10671   BFI = &BFI_;
10672   TLI = TLI_;
10673   AA = &AA_;
10674   AC = &AC_;
10675   GetLAA = &GetLAA_;
10676   DB = &DB_;
10677   ORE = &ORE_;
10678   PSI = PSI_;
10679 
10680   // Don't attempt if
10681   // 1. the target claims to have no vector registers, and
10682   // 2. interleaving won't help ILP.
10683   //
10684   // The second condition is necessary because, even if the target has no
10685   // vector registers, loop vectorization may still enable scalar
10686   // interleaving.
10687   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10688       TTI->getMaxInterleaveFactor(1) < 2)
10689     return LoopVectorizeResult(false, false);
10690 
10691   bool Changed = false, CFGChanged = false;
10692 
10693   // The vectorizer requires loops to be in simplified form.
10694   // Since simplification may add new inner loops, it has to run before the
10695   // legality and profitability checks. This means running the loop vectorizer
10696   // will simplify all loops, regardless of whether anything end up being
10697   // vectorized.
10698   for (auto &L : *LI)
10699     Changed |= CFGChanged |=
10700         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10701 
10702   // Build up a worklist of inner-loops to vectorize. This is necessary as
10703   // the act of vectorizing or partially unrolling a loop creates new loops
10704   // and can invalidate iterators across the loops.
10705   SmallVector<Loop *, 8> Worklist;
10706 
10707   for (Loop *L : *LI)
10708     collectSupportedLoops(*L, LI, ORE, Worklist);
10709 
10710   LoopsAnalyzed += Worklist.size();
10711 
10712   // Now walk the identified inner loops.
10713   while (!Worklist.empty()) {
10714     Loop *L = Worklist.pop_back_val();
10715 
10716     // For the inner loops we actually process, form LCSSA to simplify the
10717     // transform.
10718     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10719 
10720     Changed |= CFGChanged |= processLoop(L);
10721   }
10722 
10723   // Process each loop nest in the function.
10724   return LoopVectorizeResult(Changed, CFGChanged);
10725 }
10726 
10727 PreservedAnalyses LoopVectorizePass::run(Function &F,
10728                                          FunctionAnalysisManager &AM) {
10729     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10730     auto &LI = AM.getResult<LoopAnalysis>(F);
10731     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10732     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10733     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10734     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10735     auto &AA = AM.getResult<AAManager>(F);
10736     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10737     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10738     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10739 
10740     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10741     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10742         [&](Loop &L) -> const LoopAccessInfo & {
10743       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10744                                         TLI, TTI, nullptr, nullptr, nullptr};
10745       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10746     };
10747     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10748     ProfileSummaryInfo *PSI =
10749         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10750     LoopVectorizeResult Result =
10751         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10752     if (!Result.MadeAnyChange)
10753       return PreservedAnalyses::all();
10754     PreservedAnalyses PA;
10755 
10756     // We currently do not preserve loopinfo/dominator analyses with outer loop
10757     // vectorization. Until this is addressed, mark these analyses as preserved
10758     // only for non-VPlan-native path.
10759     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10760     if (!EnableVPlanNativePath) {
10761       PA.preserve<LoopAnalysis>();
10762       PA.preserve<DominatorTreeAnalysis>();
10763     }
10764 
10765     if (Result.MadeCFGChange) {
10766       // Making CFG changes likely means a loop got vectorized. Indicate that
10767       // extra simplification passes should be run.
10768       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10769       // be run if runtime checks have been added.
10770       AM.getResult<ShouldRunExtraVectorPasses>(F);
10771       PA.preserve<ShouldRunExtraVectorPasses>();
10772     } else {
10773       PA.preserveSet<CFGAnalyses>();
10774     }
10775     return PA;
10776 }
10777 
10778 void LoopVectorizePass::printPipeline(
10779     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10780   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10781       OS, MapClassName2PassName);
10782 
10783   OS << "<";
10784   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10785   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10786   OS << ">";
10787 }
10788