1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 182 // that predication is preferred, and this lists all options. I.e., the 183 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 184 // and predicate the instructions accordingly. If tail-folding fails, there are 185 // different fallback strategies depending on these values: 186 namespace PreferPredicateTy { 187 enum Option { 188 ScalarEpilogue = 0, 189 PredicateElseScalarEpilogue, 190 PredicateOrDontVectorize 191 }; 192 } // namespace PreferPredicateTy 193 194 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 195 "prefer-predicate-over-epilogue", 196 cl::init(PreferPredicateTy::ScalarEpilogue), 197 cl::Hidden, 198 cl::desc("Tail-folding and predication preferences over creating a scalar " 199 "epilogue loop."), 200 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 201 "scalar-epilogue", 202 "Don't tail-predicate loops, create scalar epilogue"), 203 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 204 "predicate-else-scalar-epilogue", 205 "prefer tail-folding, create scalar epilogue if tail " 206 "folding fails."), 207 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 208 "predicate-dont-vectorize", 209 "prefers tail-folding, don't attempt vectorization if " 210 "tail-folding fails."))); 211 212 static cl::opt<bool> MaximizeBandwidth( 213 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 214 cl::desc("Maximize bandwidth when selecting vectorization factor which " 215 "will be determined by the smallest type in loop.")); 216 217 static cl::opt<bool> EnableInterleavedMemAccesses( 218 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 219 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 220 221 /// An interleave-group may need masking if it resides in a block that needs 222 /// predication, or in order to mask away gaps. 223 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 224 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 225 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 226 227 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 228 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 229 cl::desc("We don't interleave loops with a estimated constant trip count " 230 "below this number")); 231 232 static cl::opt<unsigned> ForceTargetNumScalarRegs( 233 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 234 cl::desc("A flag that overrides the target's number of scalar registers.")); 235 236 static cl::opt<unsigned> ForceTargetNumVectorRegs( 237 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 238 cl::desc("A flag that overrides the target's number of vector registers.")); 239 240 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 241 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 242 cl::desc("A flag that overrides the target's max interleave factor for " 243 "scalar loops.")); 244 245 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 246 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 247 cl::desc("A flag that overrides the target's max interleave factor for " 248 "vectorized loops.")); 249 250 static cl::opt<unsigned> ForceTargetInstructionCost( 251 "force-target-instruction-cost", cl::init(0), cl::Hidden, 252 cl::desc("A flag that overrides the target's expected cost for " 253 "an instruction to a single constant value. Mostly " 254 "useful for getting consistent testing.")); 255 256 static cl::opt<unsigned> SmallLoopCost( 257 "small-loop-cost", cl::init(20), cl::Hidden, 258 cl::desc( 259 "The cost of a loop that is considered 'small' by the interleaver.")); 260 261 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 262 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 263 cl::desc("Enable the use of the block frequency analysis to access PGO " 264 "heuristics minimizing code growth in cold regions and being more " 265 "aggressive in hot regions.")); 266 267 // Runtime interleave loops for load/store throughput. 268 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 269 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 270 cl::desc( 271 "Enable runtime interleaving until load/store ports are saturated")); 272 273 /// Interleave small loops with scalar reductions. 274 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 275 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 276 cl::desc("Enable interleaving for loops with small iteration counts that " 277 "contain scalar reductions to expose ILP.")); 278 279 /// The number of stores in a loop that are allowed to need predication. 280 static cl::opt<unsigned> NumberOfStoresToPredicate( 281 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 282 cl::desc("Max number of stores to be predicated behind an if.")); 283 284 static cl::opt<bool> EnableIndVarRegisterHeur( 285 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 286 cl::desc("Count the induction variable only once when interleaving")); 287 288 static cl::opt<bool> EnableCondStoresVectorization( 289 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 290 cl::desc("Enable if predication of stores during vectorization.")); 291 292 static cl::opt<unsigned> MaxNestedScalarReductionIC( 293 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 294 cl::desc("The maximum interleave count to use when interleaving a scalar " 295 "reduction in a nested loop.")); 296 297 static cl::opt<bool> 298 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 299 cl::Hidden, 300 cl::desc("Prefer in-loop vector reductions, " 301 "overriding the targets preference.")); 302 303 static cl::opt<bool> PreferPredicatedReductionSelect( 304 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 305 cl::desc( 306 "Prefer predicating a reduction operation over an after loop select.")); 307 308 cl::opt<bool> EnableVPlanNativePath( 309 "enable-vplan-native-path", cl::init(false), cl::Hidden, 310 cl::desc("Enable VPlan-native vectorization path with " 311 "support for outer loop vectorization.")); 312 313 // FIXME: Remove this switch once we have divergence analysis. Currently we 314 // assume divergent non-backedge branches when this switch is true. 315 cl::opt<bool> EnableVPlanPredication( 316 "enable-vplan-predication", cl::init(false), cl::Hidden, 317 cl::desc("Enable VPlan-native vectorization path predicator with " 318 "support for outer loop vectorization.")); 319 320 // This flag enables the stress testing of the VPlan H-CFG construction in the 321 // VPlan-native vectorization path. It must be used in conjuction with 322 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 323 // verification of the H-CFGs built. 324 static cl::opt<bool> VPlanBuildStressTest( 325 "vplan-build-stress-test", cl::init(false), cl::Hidden, 326 cl::desc( 327 "Build VPlan for every supported loop nest in the function and bail " 328 "out right after the build (stress test the VPlan H-CFG construction " 329 "in the VPlan-native vectorization path).")); 330 331 cl::opt<bool> llvm::EnableLoopInterleaving( 332 "interleave-loops", cl::init(true), cl::Hidden, 333 cl::desc("Enable loop interleaving in Loop vectorization passes")); 334 cl::opt<bool> llvm::EnableLoopVectorization( 335 "vectorize-loops", cl::init(true), cl::Hidden, 336 cl::desc("Run the Loop vectorization passes")); 337 338 /// A helper function that returns the type of loaded or stored value. 339 static Type *getMemInstValueType(Value *I) { 340 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 341 "Expected Load or Store instruction"); 342 if (auto *LI = dyn_cast<LoadInst>(I)) 343 return LI->getType(); 344 return cast<StoreInst>(I)->getValueOperand()->getType(); 345 } 346 347 /// A helper function that returns true if the given type is irregular. The 348 /// type is irregular if its allocated size doesn't equal the store size of an 349 /// element of the corresponding vector type at the given vectorization factor. 350 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) { 351 assert(!VF.isScalable() && "scalable vectors not yet supported."); 352 // Determine if an array of VF elements of type Ty is "bitcast compatible" 353 // with a <VF x Ty> vector. 354 if (VF.isVector()) { 355 auto *VectorTy = VectorType::get(Ty, VF); 356 return TypeSize::get(VF.getKnownMinValue() * 357 DL.getTypeAllocSize(Ty).getFixedValue(), 358 VF.isScalable()) != DL.getTypeStoreSize(VectorTy); 359 } 360 361 // If the vectorization factor is one, we just check if an array of type Ty 362 // requires padding between elements. 363 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 364 } 365 366 /// A helper function that returns the reciprocal of the block probability of 367 /// predicated blocks. If we return X, we are assuming the predicated block 368 /// will execute once for every X iterations of the loop header. 369 /// 370 /// TODO: We should use actual block probability here, if available. Currently, 371 /// we always assume predicated blocks have a 50% chance of executing. 372 static unsigned getReciprocalPredBlockProb() { return 2; } 373 374 /// A helper function that adds a 'fast' flag to floating-point operations. 375 static Value *addFastMathFlag(Value *V) { 376 if (isa<FPMathOperator>(V)) 377 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 378 return V; 379 } 380 381 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 382 if (isa<FPMathOperator>(V)) 383 cast<Instruction>(V)->setFastMathFlags(FMF); 384 return V; 385 } 386 387 /// A helper function that returns an integer or floating-point constant with 388 /// value C. 389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 390 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 391 : ConstantFP::get(Ty, C); 392 } 393 394 /// Returns "best known" trip count for the specified loop \p L as defined by 395 /// the following procedure: 396 /// 1) Returns exact trip count if it is known. 397 /// 2) Returns expected trip count according to profile data if any. 398 /// 3) Returns upper bound estimate if it is known. 399 /// 4) Returns None if all of the above failed. 400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 401 // Check if exact trip count is known. 402 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 403 return ExpectedTC; 404 405 // Check if there is an expected trip count available from profile data. 406 if (LoopVectorizeWithBlockFrequency) 407 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 408 return EstimatedTC; 409 410 // Check if upper bound estimate is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 412 return ExpectedTC; 413 414 return None; 415 } 416 417 namespace llvm { 418 419 /// InnerLoopVectorizer vectorizes loops which contain only one basic 420 /// block to a specified vectorization factor (VF). 421 /// This class performs the widening of scalars into vectors, or multiple 422 /// scalars. This class also implements the following features: 423 /// * It inserts an epilogue loop for handling loops that don't have iteration 424 /// counts that are known to be a multiple of the vectorization factor. 425 /// * It handles the code generation for reduction variables. 426 /// * Scalarization (implementation using scalars) of un-vectorizable 427 /// instructions. 428 /// InnerLoopVectorizer does not perform any vectorization-legality 429 /// checks, and relies on the caller to check for the different legality 430 /// aspects. The InnerLoopVectorizer relies on the 431 /// LoopVectorizationLegality class to provide information about the induction 432 /// and reduction variables that were found to a given vectorization factor. 433 class InnerLoopVectorizer { 434 public: 435 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 436 LoopInfo *LI, DominatorTree *DT, 437 const TargetLibraryInfo *TLI, 438 const TargetTransformInfo *TTI, AssumptionCache *AC, 439 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 440 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 441 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 442 ProfileSummaryInfo *PSI) 443 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 444 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 445 Builder(PSE.getSE()->getContext()), 446 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM), 447 BFI(BFI), PSI(PSI) { 448 // Query this against the original loop and save it here because the profile 449 // of the original loop header may change as the transformation happens. 450 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 451 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 452 } 453 454 virtual ~InnerLoopVectorizer() = default; 455 456 /// Create a new empty loop that will contain vectorized instructions later 457 /// on, while the old loop will be used as the scalar remainder. Control flow 458 /// is generated around the vectorized (and scalar epilogue) loops consisting 459 /// of various checks and bypasses. Return the pre-header block of the new 460 /// loop. 461 BasicBlock *createVectorizedLoopSkeleton(); 462 463 /// Widen a single instruction within the innermost loop. 464 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 465 VPTransformState &State); 466 467 /// Widen a single call instruction within the innermost loop. 468 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 469 VPTransformState &State); 470 471 /// Widen a single select instruction within the innermost loop. 472 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 473 bool InvariantCond, VPTransformState &State); 474 475 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 476 void fixVectorizedLoop(); 477 478 // Return true if any runtime check is added. 479 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 480 481 /// A type for vectorized values in the new loop. Each value from the 482 /// original loop, when vectorized, is represented by UF vector values in the 483 /// new unrolled loop, where UF is the unroll factor. 484 using VectorParts = SmallVector<Value *, 2>; 485 486 /// Vectorize a single GetElementPtrInst based on information gathered and 487 /// decisions taken during planning. 488 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 489 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 490 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 491 492 /// Vectorize a single PHINode in a block. This method handles the induction 493 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 494 /// arbitrary length vectors. 495 void widenPHIInstruction(Instruction *PN, unsigned UF, ElementCount VF); 496 497 /// A helper function to scalarize a single Instruction in the innermost loop. 498 /// Generates a sequence of scalar instances for each lane between \p MinLane 499 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 500 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 501 /// Instr's operands. 502 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 503 const VPIteration &Instance, bool IfPredicateInstr, 504 VPTransformState &State); 505 506 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 507 /// is provided, the integer induction variable will first be truncated to 508 /// the corresponding type. 509 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 510 511 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 512 /// vector or scalar value on-demand if one is not yet available. When 513 /// vectorizing a loop, we visit the definition of an instruction before its 514 /// uses. When visiting the definition, we either vectorize or scalarize the 515 /// instruction, creating an entry for it in the corresponding map. (In some 516 /// cases, such as induction variables, we will create both vector and scalar 517 /// entries.) Then, as we encounter uses of the definition, we derive values 518 /// for each scalar or vector use unless such a value is already available. 519 /// For example, if we scalarize a definition and one of its uses is vector, 520 /// we build the required vector on-demand with an insertelement sequence 521 /// when visiting the use. Otherwise, if the use is scalar, we can use the 522 /// existing scalar definition. 523 /// 524 /// Return a value in the new loop corresponding to \p V from the original 525 /// loop at unroll index \p Part. If the value has already been vectorized, 526 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 527 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 528 /// a new vector value on-demand by inserting the scalar values into a vector 529 /// with an insertelement sequence. If the value has been neither vectorized 530 /// nor scalarized, it must be loop invariant, so we simply broadcast the 531 /// value into a vector. 532 Value *getOrCreateVectorValue(Value *V, unsigned Part); 533 534 void setVectorValue(Value *Scalar, unsigned Part, Value *Vector) { 535 VectorLoopValueMap.setVectorValue(Scalar, Part, Vector); 536 } 537 538 /// Return a value in the new loop corresponding to \p V from the original 539 /// loop at unroll and vector indices \p Instance. If the value has been 540 /// vectorized but not scalarized, the necessary extractelement instruction 541 /// will be generated. 542 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 543 544 /// Construct the vector value of a scalarized value \p V one lane at a time. 545 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 546 547 /// Try to vectorize interleaved access group \p Group with the base address 548 /// given in \p Addr, optionally masking the vector operations if \p 549 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 550 /// values in the vectorized loop. 551 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 552 VPTransformState &State, VPValue *Addr, 553 ArrayRef<VPValue *> StoredValues, 554 VPValue *BlockInMask = nullptr); 555 556 /// Vectorize Load and Store instructions with the base address given in \p 557 /// Addr, optionally masking the vector operations if \p BlockInMask is 558 /// non-null. Use \p State to translate given VPValues to IR values in the 559 /// vectorized loop. 560 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 561 VPValue *Def, VPValue *Addr, 562 VPValue *StoredValue, VPValue *BlockInMask); 563 564 /// Set the debug location in the builder using the debug location in 565 /// the instruction. 566 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 567 568 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 569 void fixNonInductionPHIs(void); 570 571 protected: 572 friend class LoopVectorizationPlanner; 573 574 /// A small list of PHINodes. 575 using PhiVector = SmallVector<PHINode *, 4>; 576 577 /// A type for scalarized values in the new loop. Each value from the 578 /// original loop, when scalarized, is represented by UF x VF scalar values 579 /// in the new unrolled loop, where UF is the unroll factor and VF is the 580 /// vectorization factor. 581 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 582 583 /// Set up the values of the IVs correctly when exiting the vector loop. 584 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 585 Value *CountRoundDown, Value *EndValue, 586 BasicBlock *MiddleBlock); 587 588 /// Create a new induction variable inside L. 589 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 590 Value *Step, Instruction *DL); 591 592 /// Handle all cross-iteration phis in the header. 593 void fixCrossIterationPHIs(); 594 595 /// Fix a first-order recurrence. This is the second phase of vectorizing 596 /// this phi node. 597 void fixFirstOrderRecurrence(PHINode *Phi); 598 599 /// Fix a reduction cross-iteration phi. This is the second phase of 600 /// vectorizing this phi node. 601 void fixReduction(PHINode *Phi); 602 603 /// Clear NSW/NUW flags from reduction instructions if necessary. 604 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 605 606 /// The Loop exit block may have single value PHI nodes with some 607 /// incoming value. While vectorizing we only handled real values 608 /// that were defined inside the loop and we should have one value for 609 /// each predecessor of its parent basic block. See PR14725. 610 void fixLCSSAPHIs(); 611 612 /// Iteratively sink the scalarized operands of a predicated instruction into 613 /// the block that was created for it. 614 void sinkScalarOperands(Instruction *PredInst); 615 616 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 617 /// represented as. 618 void truncateToMinimalBitwidths(); 619 620 /// Create a broadcast instruction. This method generates a broadcast 621 /// instruction (shuffle) for loop invariant values and for the induction 622 /// value. If this is the induction variable then we extend it to N, N+1, ... 623 /// this is needed because each iteration in the loop corresponds to a SIMD 624 /// element. 625 virtual Value *getBroadcastInstrs(Value *V); 626 627 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 628 /// to each vector element of Val. The sequence starts at StartIndex. 629 /// \p Opcode is relevant for FP induction variable. 630 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 631 Instruction::BinaryOps Opcode = 632 Instruction::BinaryOpsEnd); 633 634 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 635 /// variable on which to base the steps, \p Step is the size of the step, and 636 /// \p EntryVal is the value from the original loop that maps to the steps. 637 /// Note that \p EntryVal doesn't have to be an induction variable - it 638 /// can also be a truncate instruction. 639 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 640 const InductionDescriptor &ID); 641 642 /// Create a vector induction phi node based on an existing scalar one. \p 643 /// EntryVal is the value from the original loop that maps to the vector phi 644 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 645 /// truncate instruction, instead of widening the original IV, we widen a 646 /// version of the IV truncated to \p EntryVal's type. 647 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 648 Value *Step, Instruction *EntryVal); 649 650 /// Returns true if an instruction \p I should be scalarized instead of 651 /// vectorized for the chosen vectorization factor. 652 bool shouldScalarizeInstruction(Instruction *I) const; 653 654 /// Returns true if we should generate a scalar version of \p IV. 655 bool needsScalarInduction(Instruction *IV) const; 656 657 /// If there is a cast involved in the induction variable \p ID, which should 658 /// be ignored in the vectorized loop body, this function records the 659 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 660 /// cast. We had already proved that the casted Phi is equal to the uncasted 661 /// Phi in the vectorized loop (under a runtime guard), and therefore 662 /// there is no need to vectorize the cast - the same value can be used in the 663 /// vector loop for both the Phi and the cast. 664 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 665 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 666 /// 667 /// \p EntryVal is the value from the original loop that maps to the vector 668 /// phi node and is used to distinguish what is the IV currently being 669 /// processed - original one (if \p EntryVal is a phi corresponding to the 670 /// original IV) or the "newly-created" one based on the proof mentioned above 671 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 672 /// latter case \p EntryVal is a TruncInst and we must not record anything for 673 /// that IV, but it's error-prone to expect callers of this routine to care 674 /// about that, hence this explicit parameter. 675 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 676 const Instruction *EntryVal, 677 Value *VectorLoopValue, 678 unsigned Part, 679 unsigned Lane = UINT_MAX); 680 681 /// Generate a shuffle sequence that will reverse the vector Vec. 682 virtual Value *reverseVector(Value *Vec); 683 684 /// Returns (and creates if needed) the original loop trip count. 685 Value *getOrCreateTripCount(Loop *NewLoop); 686 687 /// Returns (and creates if needed) the trip count of the widened loop. 688 Value *getOrCreateVectorTripCount(Loop *NewLoop); 689 690 /// Returns a bitcasted value to the requested vector type. 691 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 692 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 693 const DataLayout &DL); 694 695 /// Emit a bypass check to see if the vector trip count is zero, including if 696 /// it overflows. 697 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 698 699 /// Emit a bypass check to see if all of the SCEV assumptions we've 700 /// had to make are correct. 701 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 702 703 /// Emit bypass checks to check any memory assumptions we may have made. 704 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 705 706 /// Compute the transformed value of Index at offset StartValue using step 707 /// StepValue. 708 /// For integer induction, returns StartValue + Index * StepValue. 709 /// For pointer induction, returns StartValue[Index * StepValue]. 710 /// FIXME: The newly created binary instructions should contain nsw/nuw 711 /// flags, which can be found from the original scalar operations. 712 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 713 const DataLayout &DL, 714 const InductionDescriptor &ID) const; 715 716 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 717 /// vector loop preheader, middle block and scalar preheader. Also 718 /// allocate a loop object for the new vector loop and return it. 719 Loop *createVectorLoopSkeleton(StringRef Prefix); 720 721 /// Create new phi nodes for the induction variables to resume iteration count 722 /// in the scalar epilogue, from where the vectorized loop left off (given by 723 /// \p VectorTripCount). 724 void createInductionResumeValues(Loop *L, Value *VectorTripCount); 725 726 /// Complete the loop skeleton by adding debug MDs, creating appropriate 727 /// conditional branches in the middle block, preparing the builder and 728 /// running the verifier. Take in the vector loop \p L as argument, and return 729 /// the preheader of the completed vector loop. 730 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 731 732 /// Add additional metadata to \p To that was not present on \p Orig. 733 /// 734 /// Currently this is used to add the noalias annotations based on the 735 /// inserted memchecks. Use this for instructions that are *cloned* into the 736 /// vector loop. 737 void addNewMetadata(Instruction *To, const Instruction *Orig); 738 739 /// Add metadata from one instruction to another. 740 /// 741 /// This includes both the original MDs from \p From and additional ones (\see 742 /// addNewMetadata). Use this for *newly created* instructions in the vector 743 /// loop. 744 void addMetadata(Instruction *To, Instruction *From); 745 746 /// Similar to the previous function but it adds the metadata to a 747 /// vector of instructions. 748 void addMetadata(ArrayRef<Value *> To, Instruction *From); 749 750 /// The original loop. 751 Loop *OrigLoop; 752 753 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 754 /// dynamic knowledge to simplify SCEV expressions and converts them to a 755 /// more usable form. 756 PredicatedScalarEvolution &PSE; 757 758 /// Loop Info. 759 LoopInfo *LI; 760 761 /// Dominator Tree. 762 DominatorTree *DT; 763 764 /// Alias Analysis. 765 AAResults *AA; 766 767 /// Target Library Info. 768 const TargetLibraryInfo *TLI; 769 770 /// Target Transform Info. 771 const TargetTransformInfo *TTI; 772 773 /// Assumption Cache. 774 AssumptionCache *AC; 775 776 /// Interface to emit optimization remarks. 777 OptimizationRemarkEmitter *ORE; 778 779 /// LoopVersioning. It's only set up (non-null) if memchecks were 780 /// used. 781 /// 782 /// This is currently only used to add no-alias metadata based on the 783 /// memchecks. The actually versioning is performed manually. 784 std::unique_ptr<LoopVersioning> LVer; 785 786 /// The vectorization SIMD factor to use. Each vector will have this many 787 /// vector elements. 788 ElementCount VF; 789 790 /// The vectorization unroll factor to use. Each scalar is vectorized to this 791 /// many different vector instructions. 792 unsigned UF; 793 794 /// The builder that we use 795 IRBuilder<> Builder; 796 797 // --- Vectorization state --- 798 799 /// The vector-loop preheader. 800 BasicBlock *LoopVectorPreHeader; 801 802 /// The scalar-loop preheader. 803 BasicBlock *LoopScalarPreHeader; 804 805 /// Middle Block between the vector and the scalar. 806 BasicBlock *LoopMiddleBlock; 807 808 /// The ExitBlock of the scalar loop. 809 BasicBlock *LoopExitBlock; 810 811 /// The vector loop body. 812 BasicBlock *LoopVectorBody; 813 814 /// The scalar loop body. 815 BasicBlock *LoopScalarBody; 816 817 /// A list of all bypass blocks. The first block is the entry of the loop. 818 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 819 820 /// The new Induction variable which was added to the new block. 821 PHINode *Induction = nullptr; 822 823 /// The induction variable of the old basic block. 824 PHINode *OldInduction = nullptr; 825 826 /// Maps values from the original loop to their corresponding values in the 827 /// vectorized loop. A key value can map to either vector values, scalar 828 /// values or both kinds of values, depending on whether the key was 829 /// vectorized and scalarized. 830 VectorizerValueMap VectorLoopValueMap; 831 832 /// Store instructions that were predicated. 833 SmallVector<Instruction *, 4> PredicatedInstructions; 834 835 /// Trip count of the original loop. 836 Value *TripCount = nullptr; 837 838 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 839 Value *VectorTripCount = nullptr; 840 841 /// The legality analysis. 842 LoopVectorizationLegality *Legal; 843 844 /// The profitablity analysis. 845 LoopVectorizationCostModel *Cost; 846 847 // Record whether runtime checks are added. 848 bool AddedSafetyChecks = false; 849 850 // Holds the end values for each induction variable. We save the end values 851 // so we can later fix-up the external users of the induction variables. 852 DenseMap<PHINode *, Value *> IVEndValues; 853 854 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 855 // fixed up at the end of vector code generation. 856 SmallVector<PHINode *, 8> OrigPHIsToFix; 857 858 /// BFI and PSI are used to check for profile guided size optimizations. 859 BlockFrequencyInfo *BFI; 860 ProfileSummaryInfo *PSI; 861 862 // Whether this loop should be optimized for size based on profile guided size 863 // optimizatios. 864 bool OptForSizeBasedOnProfile; 865 }; 866 867 class InnerLoopUnroller : public InnerLoopVectorizer { 868 public: 869 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 870 LoopInfo *LI, DominatorTree *DT, 871 const TargetLibraryInfo *TLI, 872 const TargetTransformInfo *TTI, AssumptionCache *AC, 873 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 874 LoopVectorizationLegality *LVL, 875 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 876 ProfileSummaryInfo *PSI) 877 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 878 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 879 BFI, PSI) {} 880 881 private: 882 Value *getBroadcastInstrs(Value *V) override; 883 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 884 Instruction::BinaryOps Opcode = 885 Instruction::BinaryOpsEnd) override; 886 Value *reverseVector(Value *Vec) override; 887 }; 888 889 } // end namespace llvm 890 891 /// Look for a meaningful debug location on the instruction or it's 892 /// operands. 893 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 894 if (!I) 895 return I; 896 897 DebugLoc Empty; 898 if (I->getDebugLoc() != Empty) 899 return I; 900 901 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 902 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 903 if (OpInst->getDebugLoc() != Empty) 904 return OpInst; 905 } 906 907 return I; 908 } 909 910 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 911 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 912 const DILocation *DIL = Inst->getDebugLoc(); 913 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 914 !isa<DbgInfoIntrinsic>(Inst)) { 915 assert(!VF.isScalable() && "scalable vectors not yet supported."); 916 auto NewDIL = 917 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 918 if (NewDIL) 919 B.SetCurrentDebugLocation(NewDIL.getValue()); 920 else 921 LLVM_DEBUG(dbgs() 922 << "Failed to create new discriminator: " 923 << DIL->getFilename() << " Line: " << DIL->getLine()); 924 } 925 else 926 B.SetCurrentDebugLocation(DIL); 927 } else 928 B.SetCurrentDebugLocation(DebugLoc()); 929 } 930 931 /// Write a record \p DebugMsg about vectorization failure to the debug 932 /// output stream. If \p I is passed, it is an instruction that prevents 933 /// vectorization. 934 #ifndef NDEBUG 935 static void debugVectorizationFailure(const StringRef DebugMsg, 936 Instruction *I) { 937 dbgs() << "LV: Not vectorizing: " << DebugMsg; 938 if (I != nullptr) 939 dbgs() << " " << *I; 940 else 941 dbgs() << '.'; 942 dbgs() << '\n'; 943 } 944 #endif 945 946 /// Create an analysis remark that explains why vectorization failed 947 /// 948 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 949 /// RemarkName is the identifier for the remark. If \p I is passed it is an 950 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 951 /// the location of the remark. \return the remark object that can be 952 /// streamed to. 953 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 954 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 955 Value *CodeRegion = TheLoop->getHeader(); 956 DebugLoc DL = TheLoop->getStartLoc(); 957 958 if (I) { 959 CodeRegion = I->getParent(); 960 // If there is no debug location attached to the instruction, revert back to 961 // using the loop's. 962 if (I->getDebugLoc()) 963 DL = I->getDebugLoc(); 964 } 965 966 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 967 R << "loop not vectorized: "; 968 return R; 969 } 970 971 namespace llvm { 972 973 void reportVectorizationFailure(const StringRef DebugMsg, 974 const StringRef OREMsg, const StringRef ORETag, 975 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 976 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 977 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 978 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 979 ORETag, TheLoop, I) << OREMsg); 980 } 981 982 } // end namespace llvm 983 984 #ifndef NDEBUG 985 /// \return string containing a file name and a line # for the given loop. 986 static std::string getDebugLocString(const Loop *L) { 987 std::string Result; 988 if (L) { 989 raw_string_ostream OS(Result); 990 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 991 LoopDbgLoc.print(OS); 992 else 993 // Just print the module name. 994 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 995 OS.flush(); 996 } 997 return Result; 998 } 999 #endif 1000 1001 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1002 const Instruction *Orig) { 1003 // If the loop was versioned with memchecks, add the corresponding no-alias 1004 // metadata. 1005 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1006 LVer->annotateInstWithNoAlias(To, Orig); 1007 } 1008 1009 void InnerLoopVectorizer::addMetadata(Instruction *To, 1010 Instruction *From) { 1011 propagateMetadata(To, From); 1012 addNewMetadata(To, From); 1013 } 1014 1015 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1016 Instruction *From) { 1017 for (Value *V : To) { 1018 if (Instruction *I = dyn_cast<Instruction>(V)) 1019 addMetadata(I, From); 1020 } 1021 } 1022 1023 namespace llvm { 1024 1025 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1026 // lowered. 1027 enum ScalarEpilogueLowering { 1028 1029 // The default: allowing scalar epilogues. 1030 CM_ScalarEpilogueAllowed, 1031 1032 // Vectorization with OptForSize: don't allow epilogues. 1033 CM_ScalarEpilogueNotAllowedOptSize, 1034 1035 // A special case of vectorisation with OptForSize: loops with a very small 1036 // trip count are considered for vectorization under OptForSize, thereby 1037 // making sure the cost of their loop body is dominant, free of runtime 1038 // guards and scalar iteration overheads. 1039 CM_ScalarEpilogueNotAllowedLowTripLoop, 1040 1041 // Loop hint predicate indicating an epilogue is undesired. 1042 CM_ScalarEpilogueNotNeededUsePredicate 1043 }; 1044 1045 /// LoopVectorizationCostModel - estimates the expected speedups due to 1046 /// vectorization. 1047 /// In many cases vectorization is not profitable. This can happen because of 1048 /// a number of reasons. In this class we mainly attempt to predict the 1049 /// expected speedup/slowdowns due to the supported instruction set. We use the 1050 /// TargetTransformInfo to query the different backends for the cost of 1051 /// different operations. 1052 class LoopVectorizationCostModel { 1053 public: 1054 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1055 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1056 LoopVectorizationLegality *Legal, 1057 const TargetTransformInfo &TTI, 1058 const TargetLibraryInfo *TLI, DemandedBits *DB, 1059 AssumptionCache *AC, 1060 OptimizationRemarkEmitter *ORE, const Function *F, 1061 const LoopVectorizeHints *Hints, 1062 InterleavedAccessInfo &IAI) 1063 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1064 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1065 Hints(Hints), InterleaveInfo(IAI) {} 1066 1067 /// \return An upper bound for the vectorization factor, or None if 1068 /// vectorization and interleaving should be avoided up front. 1069 Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC); 1070 1071 /// \return True if runtime checks are required for vectorization, and false 1072 /// otherwise. 1073 bool runtimeChecksRequired(); 1074 1075 /// \return The most profitable vectorization factor and the cost of that VF. 1076 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1077 /// then this vectorization factor will be selected if vectorization is 1078 /// possible. 1079 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1080 1081 /// Setup cost-based decisions for user vectorization factor. 1082 void selectUserVectorizationFactor(ElementCount UserVF) { 1083 collectUniformsAndScalars(UserVF); 1084 collectInstsToScalarize(UserVF); 1085 } 1086 1087 /// \return The size (in bits) of the smallest and widest types in the code 1088 /// that needs to be vectorized. We ignore values that remain scalar such as 1089 /// 64 bit loop indices. 1090 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1091 1092 /// \return The desired interleave count. 1093 /// If interleave count has been specified by metadata it will be returned. 1094 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1095 /// are the selected vectorization factor and the cost of the selected VF. 1096 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1097 1098 /// Memory access instruction may be vectorized in more than one way. 1099 /// Form of instruction after vectorization depends on cost. 1100 /// This function takes cost-based decisions for Load/Store instructions 1101 /// and collects them in a map. This decisions map is used for building 1102 /// the lists of loop-uniform and loop-scalar instructions. 1103 /// The calculated cost is saved with widening decision in order to 1104 /// avoid redundant calculations. 1105 void setCostBasedWideningDecision(ElementCount VF); 1106 1107 /// A struct that represents some properties of the register usage 1108 /// of a loop. 1109 struct RegisterUsage { 1110 /// Holds the number of loop invariant values that are used in the loop. 1111 /// The key is ClassID of target-provided register class. 1112 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1113 /// Holds the maximum number of concurrent live intervals in the loop. 1114 /// The key is ClassID of target-provided register class. 1115 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1116 }; 1117 1118 /// \return Returns information about the register usages of the loop for the 1119 /// given vectorization factors. 1120 SmallVector<RegisterUsage, 8> 1121 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1122 1123 /// Collect values we want to ignore in the cost model. 1124 void collectValuesToIgnore(); 1125 1126 /// Split reductions into those that happen in the loop, and those that happen 1127 /// outside. In loop reductions are collected into InLoopReductionChains. 1128 void collectInLoopReductions(); 1129 1130 /// \returns The smallest bitwidth each instruction can be represented with. 1131 /// The vector equivalents of these instructions should be truncated to this 1132 /// type. 1133 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1134 return MinBWs; 1135 } 1136 1137 /// \returns True if it is more profitable to scalarize instruction \p I for 1138 /// vectorization factor \p VF. 1139 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1140 assert(VF.isVector() && 1141 "Profitable to scalarize relevant only for VF > 1."); 1142 1143 // Cost model is not run in the VPlan-native path - return conservative 1144 // result until this changes. 1145 if (EnableVPlanNativePath) 1146 return false; 1147 1148 auto Scalars = InstsToScalarize.find(VF); 1149 assert(Scalars != InstsToScalarize.end() && 1150 "VF not yet analyzed for scalarization profitability"); 1151 return Scalars->second.find(I) != Scalars->second.end(); 1152 } 1153 1154 /// Returns true if \p I is known to be uniform after vectorization. 1155 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1156 if (VF.isScalar()) 1157 return true; 1158 1159 // Cost model is not run in the VPlan-native path - return conservative 1160 // result until this changes. 1161 if (EnableVPlanNativePath) 1162 return false; 1163 1164 auto UniformsPerVF = Uniforms.find(VF); 1165 assert(UniformsPerVF != Uniforms.end() && 1166 "VF not yet analyzed for uniformity"); 1167 return UniformsPerVF->second.count(I); 1168 } 1169 1170 /// Returns true if \p I is known to be scalar after vectorization. 1171 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1172 if (VF.isScalar()) 1173 return true; 1174 1175 // Cost model is not run in the VPlan-native path - return conservative 1176 // result until this changes. 1177 if (EnableVPlanNativePath) 1178 return false; 1179 1180 auto ScalarsPerVF = Scalars.find(VF); 1181 assert(ScalarsPerVF != Scalars.end() && 1182 "Scalar values are not calculated for VF"); 1183 return ScalarsPerVF->second.count(I); 1184 } 1185 1186 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1187 /// for vectorization factor \p VF. 1188 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1189 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1190 !isProfitableToScalarize(I, VF) && 1191 !isScalarAfterVectorization(I, VF); 1192 } 1193 1194 /// Decision that was taken during cost calculation for memory instruction. 1195 enum InstWidening { 1196 CM_Unknown, 1197 CM_Widen, // For consecutive accesses with stride +1. 1198 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1199 CM_Interleave, 1200 CM_GatherScatter, 1201 CM_Scalarize 1202 }; 1203 1204 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1205 /// instruction \p I and vector width \p VF. 1206 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1207 unsigned Cost) { 1208 assert(VF.isVector() && "Expected VF >=2"); 1209 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1210 } 1211 1212 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1213 /// interleaving group \p Grp and vector width \p VF. 1214 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1215 ElementCount VF, InstWidening W, unsigned Cost) { 1216 assert(VF.isVector() && "Expected VF >=2"); 1217 /// Broadcast this decicion to all instructions inside the group. 1218 /// But the cost will be assigned to one instruction only. 1219 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1220 if (auto *I = Grp->getMember(i)) { 1221 if (Grp->getInsertPos() == I) 1222 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1223 else 1224 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1225 } 1226 } 1227 } 1228 1229 /// Return the cost model decision for the given instruction \p I and vector 1230 /// width \p VF. Return CM_Unknown if this instruction did not pass 1231 /// through the cost modeling. 1232 InstWidening getWideningDecision(Instruction *I, ElementCount VF) { 1233 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1234 assert(VF.isVector() && "Expected VF >=2"); 1235 1236 // Cost model is not run in the VPlan-native path - return conservative 1237 // result until this changes. 1238 if (EnableVPlanNativePath) 1239 return CM_GatherScatter; 1240 1241 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1242 auto Itr = WideningDecisions.find(InstOnVF); 1243 if (Itr == WideningDecisions.end()) 1244 return CM_Unknown; 1245 return Itr->second.first; 1246 } 1247 1248 /// Return the vectorization cost for the given instruction \p I and vector 1249 /// width \p VF. 1250 unsigned getWideningCost(Instruction *I, ElementCount VF) { 1251 assert(VF.isVector() && "Expected VF >=2"); 1252 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1253 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1254 "The cost is not calculated"); 1255 return WideningDecisions[InstOnVF].second; 1256 } 1257 1258 /// Return True if instruction \p I is an optimizable truncate whose operand 1259 /// is an induction variable. Such a truncate will be removed by adding a new 1260 /// induction variable with the destination type. 1261 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1262 // If the instruction is not a truncate, return false. 1263 auto *Trunc = dyn_cast<TruncInst>(I); 1264 if (!Trunc) 1265 return false; 1266 1267 // Get the source and destination types of the truncate. 1268 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1269 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1270 1271 // If the truncate is free for the given types, return false. Replacing a 1272 // free truncate with an induction variable would add an induction variable 1273 // update instruction to each iteration of the loop. We exclude from this 1274 // check the primary induction variable since it will need an update 1275 // instruction regardless. 1276 Value *Op = Trunc->getOperand(0); 1277 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1278 return false; 1279 1280 // If the truncated value is not an induction variable, return false. 1281 return Legal->isInductionPhi(Op); 1282 } 1283 1284 /// Collects the instructions to scalarize for each predicated instruction in 1285 /// the loop. 1286 void collectInstsToScalarize(ElementCount VF); 1287 1288 /// Collect Uniform and Scalar values for the given \p VF. 1289 /// The sets depend on CM decision for Load/Store instructions 1290 /// that may be vectorized as interleave, gather-scatter or scalarized. 1291 void collectUniformsAndScalars(ElementCount VF) { 1292 // Do the analysis once. 1293 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1294 return; 1295 setCostBasedWideningDecision(VF); 1296 collectLoopUniforms(VF); 1297 collectLoopScalars(VF); 1298 } 1299 1300 /// Returns true if the target machine supports masked store operation 1301 /// for the given \p DataType and kind of access to \p Ptr. 1302 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1303 return Legal->isConsecutivePtr(Ptr) && 1304 TTI.isLegalMaskedStore(DataType, Alignment); 1305 } 1306 1307 /// Returns true if the target machine supports masked load operation 1308 /// for the given \p DataType and kind of access to \p Ptr. 1309 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1310 return Legal->isConsecutivePtr(Ptr) && 1311 TTI.isLegalMaskedLoad(DataType, Alignment); 1312 } 1313 1314 /// Returns true if the target machine supports masked scatter operation 1315 /// for the given \p DataType. 1316 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1317 return TTI.isLegalMaskedScatter(DataType, Alignment); 1318 } 1319 1320 /// Returns true if the target machine supports masked gather operation 1321 /// for the given \p DataType. 1322 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1323 return TTI.isLegalMaskedGather(DataType, Alignment); 1324 } 1325 1326 /// Returns true if the target machine can represent \p V as a masked gather 1327 /// or scatter operation. 1328 bool isLegalGatherOrScatter(Value *V) { 1329 bool LI = isa<LoadInst>(V); 1330 bool SI = isa<StoreInst>(V); 1331 if (!LI && !SI) 1332 return false; 1333 auto *Ty = getMemInstValueType(V); 1334 Align Align = getLoadStoreAlignment(V); 1335 return (LI && isLegalMaskedGather(Ty, Align)) || 1336 (SI && isLegalMaskedScatter(Ty, Align)); 1337 } 1338 1339 /// Returns true if \p I is an instruction that will be scalarized with 1340 /// predication. Such instructions include conditional stores and 1341 /// instructions that may divide by zero. 1342 /// If a non-zero VF has been calculated, we check if I will be scalarized 1343 /// predication for that VF. 1344 bool isScalarWithPredication(Instruction *I, 1345 ElementCount VF = ElementCount::getFixed(1)); 1346 1347 // Returns true if \p I is an instruction that will be predicated either 1348 // through scalar predication or masked load/store or masked gather/scatter. 1349 // Superset of instructions that return true for isScalarWithPredication. 1350 bool isPredicatedInst(Instruction *I) { 1351 if (!blockNeedsPredication(I->getParent())) 1352 return false; 1353 // Loads and stores that need some form of masked operation are predicated 1354 // instructions. 1355 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1356 return Legal->isMaskRequired(I); 1357 return isScalarWithPredication(I); 1358 } 1359 1360 /// Returns true if \p I is a memory instruction with consecutive memory 1361 /// access that can be widened. 1362 bool 1363 memoryInstructionCanBeWidened(Instruction *I, 1364 ElementCount VF = ElementCount::getFixed(1)); 1365 1366 /// Returns true if \p I is a memory instruction in an interleaved-group 1367 /// of memory accesses that can be vectorized with wide vector loads/stores 1368 /// and shuffles. 1369 bool 1370 interleavedAccessCanBeWidened(Instruction *I, 1371 ElementCount VF = ElementCount::getFixed(1)); 1372 1373 /// Check if \p Instr belongs to any interleaved access group. 1374 bool isAccessInterleaved(Instruction *Instr) { 1375 return InterleaveInfo.isInterleaved(Instr); 1376 } 1377 1378 /// Get the interleaved access group that \p Instr belongs to. 1379 const InterleaveGroup<Instruction> * 1380 getInterleavedAccessGroup(Instruction *Instr) { 1381 return InterleaveInfo.getInterleaveGroup(Instr); 1382 } 1383 1384 /// Returns true if an interleaved group requires a scalar iteration 1385 /// to handle accesses with gaps, and there is nothing preventing us from 1386 /// creating a scalar epilogue. 1387 bool requiresScalarEpilogue() const { 1388 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1389 } 1390 1391 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1392 /// loop hint annotation. 1393 bool isScalarEpilogueAllowed() const { 1394 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1395 } 1396 1397 /// Returns true if all loop blocks should be masked to fold tail loop. 1398 bool foldTailByMasking() const { return FoldTailByMasking; } 1399 1400 bool blockNeedsPredication(BasicBlock *BB) { 1401 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1402 } 1403 1404 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1405 /// nodes to the chain of instructions representing the reductions. Uses a 1406 /// MapVector to ensure deterministic iteration order. 1407 using ReductionChainMap = 1408 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1409 1410 /// Return the chain of instructions representing an inloop reduction. 1411 const ReductionChainMap &getInLoopReductionChains() const { 1412 return InLoopReductionChains; 1413 } 1414 1415 /// Returns true if the Phi is part of an inloop reduction. 1416 bool isInLoopReduction(PHINode *Phi) const { 1417 return InLoopReductionChains.count(Phi); 1418 } 1419 1420 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1421 /// with factor VF. Return the cost of the instruction, including 1422 /// scalarization overhead if it's needed. 1423 unsigned getVectorIntrinsicCost(CallInst *CI, ElementCount VF); 1424 1425 /// Estimate cost of a call instruction CI if it were vectorized with factor 1426 /// VF. Return the cost of the instruction, including scalarization overhead 1427 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1428 /// scalarized - 1429 /// i.e. either vector version isn't available, or is too expensive. 1430 unsigned getVectorCallCost(CallInst *CI, ElementCount VF, 1431 bool &NeedToScalarize); 1432 1433 /// Invalidates decisions already taken by the cost model. 1434 void invalidateCostModelingDecisions() { 1435 WideningDecisions.clear(); 1436 Uniforms.clear(); 1437 Scalars.clear(); 1438 } 1439 1440 private: 1441 unsigned NumPredStores = 0; 1442 1443 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1444 /// than zero. One is returned if vectorization should best be avoided due 1445 /// to cost. 1446 ElementCount computeFeasibleMaxVF(unsigned ConstTripCount); 1447 1448 /// The vectorization cost is a combination of the cost itself and a boolean 1449 /// indicating whether any of the contributing operations will actually 1450 /// operate on 1451 /// vector values after type legalization in the backend. If this latter value 1452 /// is 1453 /// false, then all operations will be scalarized (i.e. no vectorization has 1454 /// actually taken place). 1455 using VectorizationCostTy = std::pair<unsigned, bool>; 1456 1457 /// Returns the expected execution cost. The unit of the cost does 1458 /// not matter because we use the 'cost' units to compare different 1459 /// vector widths. The cost that is returned is *not* normalized by 1460 /// the factor width. 1461 VectorizationCostTy expectedCost(ElementCount VF); 1462 1463 /// Returns the execution time cost of an instruction for a given vector 1464 /// width. Vector width of one means scalar. 1465 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1466 1467 /// The cost-computation logic from getInstructionCost which provides 1468 /// the vector type as an output parameter. 1469 unsigned getInstructionCost(Instruction *I, ElementCount VF, Type *&VectorTy); 1470 1471 /// Calculate vectorization cost of memory instruction \p I. 1472 unsigned getMemoryInstructionCost(Instruction *I, ElementCount VF); 1473 1474 /// The cost computation for scalarized memory instruction. 1475 unsigned getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1476 1477 /// The cost computation for interleaving group of memory instructions. 1478 unsigned getInterleaveGroupCost(Instruction *I, ElementCount VF); 1479 1480 /// The cost computation for Gather/Scatter instruction. 1481 unsigned getGatherScatterCost(Instruction *I, ElementCount VF); 1482 1483 /// The cost computation for widening instruction \p I with consecutive 1484 /// memory access. 1485 unsigned getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1486 1487 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1488 /// Load: scalar load + broadcast. 1489 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1490 /// element) 1491 unsigned getUniformMemOpCost(Instruction *I, ElementCount VF); 1492 1493 /// Estimate the overhead of scalarizing an instruction. This is a 1494 /// convenience wrapper for the type-based getScalarizationOverhead API. 1495 unsigned getScalarizationOverhead(Instruction *I, ElementCount VF); 1496 1497 /// Returns whether the instruction is a load or store and will be a emitted 1498 /// as a vector operation. 1499 bool isConsecutiveLoadOrStore(Instruction *I); 1500 1501 /// Returns true if an artificially high cost for emulated masked memrefs 1502 /// should be used. 1503 bool useEmulatedMaskMemRefHack(Instruction *I); 1504 1505 /// Map of scalar integer values to the smallest bitwidth they can be legally 1506 /// represented as. The vector equivalents of these values should be truncated 1507 /// to this type. 1508 MapVector<Instruction *, uint64_t> MinBWs; 1509 1510 /// A type representing the costs for instructions if they were to be 1511 /// scalarized rather than vectorized. The entries are Instruction-Cost 1512 /// pairs. 1513 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1514 1515 /// A set containing all BasicBlocks that are known to present after 1516 /// vectorization as a predicated block. 1517 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1518 1519 /// Records whether it is allowed to have the original scalar loop execute at 1520 /// least once. This may be needed as a fallback loop in case runtime 1521 /// aliasing/dependence checks fail, or to handle the tail/remainder 1522 /// iterations when the trip count is unknown or doesn't divide by the VF, 1523 /// or as a peel-loop to handle gaps in interleave-groups. 1524 /// Under optsize and when the trip count is very small we don't allow any 1525 /// iterations to execute in the scalar loop. 1526 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1527 1528 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1529 bool FoldTailByMasking = false; 1530 1531 /// A map holding scalar costs for different vectorization factors. The 1532 /// presence of a cost for an instruction in the mapping indicates that the 1533 /// instruction will be scalarized when vectorizing with the associated 1534 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1535 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1536 1537 /// Holds the instructions known to be uniform after vectorization. 1538 /// The data is collected per VF. 1539 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1540 1541 /// Holds the instructions known to be scalar after vectorization. 1542 /// The data is collected per VF. 1543 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1544 1545 /// Holds the instructions (address computations) that are forced to be 1546 /// scalarized. 1547 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1548 1549 /// PHINodes of the reductions that should be expanded in-loop along with 1550 /// their associated chains of reduction operations, in program order from top 1551 /// (PHI) to bottom 1552 ReductionChainMap InLoopReductionChains; 1553 1554 /// Returns the expected difference in cost from scalarizing the expression 1555 /// feeding a predicated instruction \p PredInst. The instructions to 1556 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1557 /// non-negative return value implies the expression will be scalarized. 1558 /// Currently, only single-use chains are considered for scalarization. 1559 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1560 ElementCount VF); 1561 1562 /// Collect the instructions that are uniform after vectorization. An 1563 /// instruction is uniform if we represent it with a single scalar value in 1564 /// the vectorized loop corresponding to each vector iteration. Examples of 1565 /// uniform instructions include pointer operands of consecutive or 1566 /// interleaved memory accesses. Note that although uniformity implies an 1567 /// instruction will be scalar, the reverse is not true. In general, a 1568 /// scalarized instruction will be represented by VF scalar values in the 1569 /// vectorized loop, each corresponding to an iteration of the original 1570 /// scalar loop. 1571 void collectLoopUniforms(ElementCount VF); 1572 1573 /// Collect the instructions that are scalar after vectorization. An 1574 /// instruction is scalar if it is known to be uniform or will be scalarized 1575 /// during vectorization. Non-uniform scalarized instructions will be 1576 /// represented by VF values in the vectorized loop, each corresponding to an 1577 /// iteration of the original scalar loop. 1578 void collectLoopScalars(ElementCount VF); 1579 1580 /// Keeps cost model vectorization decision and cost for instructions. 1581 /// Right now it is used for memory instructions only. 1582 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1583 std::pair<InstWidening, unsigned>>; 1584 1585 DecisionList WideningDecisions; 1586 1587 /// Returns true if \p V is expected to be vectorized and it needs to be 1588 /// extracted. 1589 bool needsExtract(Value *V, ElementCount VF) const { 1590 Instruction *I = dyn_cast<Instruction>(V); 1591 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1592 TheLoop->isLoopInvariant(I)) 1593 return false; 1594 1595 // Assume we can vectorize V (and hence we need extraction) if the 1596 // scalars are not computed yet. This can happen, because it is called 1597 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1598 // the scalars are collected. That should be a safe assumption in most 1599 // cases, because we check if the operands have vectorizable types 1600 // beforehand in LoopVectorizationLegality. 1601 return Scalars.find(VF) == Scalars.end() || 1602 !isScalarAfterVectorization(I, VF); 1603 }; 1604 1605 /// Returns a range containing only operands needing to be extracted. 1606 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1607 ElementCount VF) { 1608 return SmallVector<Value *, 4>(make_filter_range( 1609 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1610 } 1611 1612 public: 1613 /// The loop that we evaluate. 1614 Loop *TheLoop; 1615 1616 /// Predicated scalar evolution analysis. 1617 PredicatedScalarEvolution &PSE; 1618 1619 /// Loop Info analysis. 1620 LoopInfo *LI; 1621 1622 /// Vectorization legality. 1623 LoopVectorizationLegality *Legal; 1624 1625 /// Vector target information. 1626 const TargetTransformInfo &TTI; 1627 1628 /// Target Library Info. 1629 const TargetLibraryInfo *TLI; 1630 1631 /// Demanded bits analysis. 1632 DemandedBits *DB; 1633 1634 /// Assumption cache. 1635 AssumptionCache *AC; 1636 1637 /// Interface to emit optimization remarks. 1638 OptimizationRemarkEmitter *ORE; 1639 1640 const Function *TheFunction; 1641 1642 /// Loop Vectorize Hint. 1643 const LoopVectorizeHints *Hints; 1644 1645 /// The interleave access information contains groups of interleaved accesses 1646 /// with the same stride and close to each other. 1647 InterleavedAccessInfo &InterleaveInfo; 1648 1649 /// Values to ignore in the cost model. 1650 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1651 1652 /// Values to ignore in the cost model when VF > 1. 1653 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1654 }; 1655 1656 } // end namespace llvm 1657 1658 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1659 // vectorization. The loop needs to be annotated with #pragma omp simd 1660 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1661 // vector length information is not provided, vectorization is not considered 1662 // explicit. Interleave hints are not allowed either. These limitations will be 1663 // relaxed in the future. 1664 // Please, note that we are currently forced to abuse the pragma 'clang 1665 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1666 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1667 // provides *explicit vectorization hints* (LV can bypass legal checks and 1668 // assume that vectorization is legal). However, both hints are implemented 1669 // using the same metadata (llvm.loop.vectorize, processed by 1670 // LoopVectorizeHints). This will be fixed in the future when the native IR 1671 // representation for pragma 'omp simd' is introduced. 1672 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1673 OptimizationRemarkEmitter *ORE) { 1674 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 1675 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1676 1677 // Only outer loops with an explicit vectorization hint are supported. 1678 // Unannotated outer loops are ignored. 1679 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1680 return false; 1681 1682 Function *Fn = OuterLp->getHeader()->getParent(); 1683 if (!Hints.allowVectorization(Fn, OuterLp, 1684 true /*VectorizeOnlyWhenForced*/)) { 1685 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1686 return false; 1687 } 1688 1689 if (Hints.getInterleave() > 1) { 1690 // TODO: Interleave support is future work. 1691 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1692 "outer loops.\n"); 1693 Hints.emitRemarkWithHints(); 1694 return false; 1695 } 1696 1697 return true; 1698 } 1699 1700 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1701 OptimizationRemarkEmitter *ORE, 1702 SmallVectorImpl<Loop *> &V) { 1703 // Collect inner loops and outer loops without irreducible control flow. For 1704 // now, only collect outer loops that have explicit vectorization hints. If we 1705 // are stress testing the VPlan H-CFG construction, we collect the outermost 1706 // loop of every loop nest. 1707 if (L.isInnermost() || VPlanBuildStressTest || 1708 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1709 LoopBlocksRPO RPOT(&L); 1710 RPOT.perform(LI); 1711 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1712 V.push_back(&L); 1713 // TODO: Collect inner loops inside marked outer loops in case 1714 // vectorization fails for the outer loop. Do not invoke 1715 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1716 // already known to be reducible. We can use an inherited attribute for 1717 // that. 1718 return; 1719 } 1720 } 1721 for (Loop *InnerL : L) 1722 collectSupportedLoops(*InnerL, LI, ORE, V); 1723 } 1724 1725 namespace { 1726 1727 /// The LoopVectorize Pass. 1728 struct LoopVectorize : public FunctionPass { 1729 /// Pass identification, replacement for typeid 1730 static char ID; 1731 1732 LoopVectorizePass Impl; 1733 1734 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1735 bool VectorizeOnlyWhenForced = false) 1736 : FunctionPass(ID), 1737 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1738 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1739 } 1740 1741 bool runOnFunction(Function &F) override { 1742 if (skipFunction(F)) 1743 return false; 1744 1745 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1746 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1747 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1748 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1749 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1750 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1751 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1752 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1753 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1754 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1755 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1756 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1757 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1758 1759 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1760 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1761 1762 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1763 GetLAA, *ORE, PSI).MadeAnyChange; 1764 } 1765 1766 void getAnalysisUsage(AnalysisUsage &AU) const override { 1767 AU.addRequired<AssumptionCacheTracker>(); 1768 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1769 AU.addRequired<DominatorTreeWrapperPass>(); 1770 AU.addRequired<LoopInfoWrapperPass>(); 1771 AU.addRequired<ScalarEvolutionWrapperPass>(); 1772 AU.addRequired<TargetTransformInfoWrapperPass>(); 1773 AU.addRequired<AAResultsWrapperPass>(); 1774 AU.addRequired<LoopAccessLegacyAnalysis>(); 1775 AU.addRequired<DemandedBitsWrapperPass>(); 1776 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1777 AU.addRequired<InjectTLIMappingsLegacy>(); 1778 1779 // We currently do not preserve loopinfo/dominator analyses with outer loop 1780 // vectorization. Until this is addressed, mark these analyses as preserved 1781 // only for non-VPlan-native path. 1782 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1783 if (!EnableVPlanNativePath) { 1784 AU.addPreserved<LoopInfoWrapperPass>(); 1785 AU.addPreserved<DominatorTreeWrapperPass>(); 1786 } 1787 1788 AU.addPreserved<BasicAAWrapperPass>(); 1789 AU.addPreserved<GlobalsAAWrapperPass>(); 1790 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1791 } 1792 }; 1793 1794 } // end anonymous namespace 1795 1796 //===----------------------------------------------------------------------===// 1797 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1798 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1799 //===----------------------------------------------------------------------===// 1800 1801 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1802 // We need to place the broadcast of invariant variables outside the loop, 1803 // but only if it's proven safe to do so. Else, broadcast will be inside 1804 // vector loop body. 1805 Instruction *Instr = dyn_cast<Instruction>(V); 1806 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1807 (!Instr || 1808 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1809 // Place the code for broadcasting invariant variables in the new preheader. 1810 IRBuilder<>::InsertPointGuard Guard(Builder); 1811 if (SafeToHoist) 1812 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1813 1814 // Broadcast the scalar into all locations in the vector. 1815 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1816 1817 return Shuf; 1818 } 1819 1820 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1821 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1822 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1823 "Expected either an induction phi-node or a truncate of it!"); 1824 Value *Start = II.getStartValue(); 1825 1826 // Construct the initial value of the vector IV in the vector loop preheader 1827 auto CurrIP = Builder.saveIP(); 1828 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1829 if (isa<TruncInst>(EntryVal)) { 1830 assert(Start->getType()->isIntegerTy() && 1831 "Truncation requires an integer type"); 1832 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1833 Step = Builder.CreateTrunc(Step, TruncType); 1834 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1835 } 1836 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1837 Value *SteppedStart = 1838 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1839 1840 // We create vector phi nodes for both integer and floating-point induction 1841 // variables. Here, we determine the kind of arithmetic we will perform. 1842 Instruction::BinaryOps AddOp; 1843 Instruction::BinaryOps MulOp; 1844 if (Step->getType()->isIntegerTy()) { 1845 AddOp = Instruction::Add; 1846 MulOp = Instruction::Mul; 1847 } else { 1848 AddOp = II.getInductionOpcode(); 1849 MulOp = Instruction::FMul; 1850 } 1851 1852 // Multiply the vectorization factor by the step using integer or 1853 // floating-point arithmetic as appropriate. 1854 Value *ConstVF = 1855 getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue()); 1856 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1857 1858 // Create a vector splat to use in the induction update. 1859 // 1860 // FIXME: If the step is non-constant, we create the vector splat with 1861 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1862 // handle a constant vector splat. 1863 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1864 Value *SplatVF = isa<Constant>(Mul) 1865 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 1866 : Builder.CreateVectorSplat(VF, Mul); 1867 Builder.restoreIP(CurrIP); 1868 1869 // We may need to add the step a number of times, depending on the unroll 1870 // factor. The last of those goes into the PHI. 1871 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1872 &*LoopVectorBody->getFirstInsertionPt()); 1873 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1874 Instruction *LastInduction = VecInd; 1875 for (unsigned Part = 0; Part < UF; ++Part) { 1876 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1877 1878 if (isa<TruncInst>(EntryVal)) 1879 addMetadata(LastInduction, EntryVal); 1880 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1881 1882 LastInduction = cast<Instruction>(addFastMathFlag( 1883 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1884 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1885 } 1886 1887 // Move the last step to the end of the latch block. This ensures consistent 1888 // placement of all induction updates. 1889 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1890 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1891 auto *ICmp = cast<Instruction>(Br->getCondition()); 1892 LastInduction->moveBefore(ICmp); 1893 LastInduction->setName("vec.ind.next"); 1894 1895 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1896 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1897 } 1898 1899 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1900 return Cost->isScalarAfterVectorization(I, VF) || 1901 Cost->isProfitableToScalarize(I, VF); 1902 } 1903 1904 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1905 if (shouldScalarizeInstruction(IV)) 1906 return true; 1907 auto isScalarInst = [&](User *U) -> bool { 1908 auto *I = cast<Instruction>(U); 1909 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1910 }; 1911 return llvm::any_of(IV->users(), isScalarInst); 1912 } 1913 1914 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1915 const InductionDescriptor &ID, const Instruction *EntryVal, 1916 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1917 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1918 "Expected either an induction phi-node or a truncate of it!"); 1919 1920 // This induction variable is not the phi from the original loop but the 1921 // newly-created IV based on the proof that casted Phi is equal to the 1922 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1923 // re-uses the same InductionDescriptor that original IV uses but we don't 1924 // have to do any recording in this case - that is done when original IV is 1925 // processed. 1926 if (isa<TruncInst>(EntryVal)) 1927 return; 1928 1929 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1930 if (Casts.empty()) 1931 return; 1932 // Only the first Cast instruction in the Casts vector is of interest. 1933 // The rest of the Casts (if exist) have no uses outside the 1934 // induction update chain itself. 1935 Instruction *CastInst = *Casts.begin(); 1936 if (Lane < UINT_MAX) 1937 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1938 else 1939 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1940 } 1941 1942 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1943 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1944 "Primary induction variable must have an integer type"); 1945 1946 auto II = Legal->getInductionVars().find(IV); 1947 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1948 1949 auto ID = II->second; 1950 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1951 1952 // The value from the original loop to which we are mapping the new induction 1953 // variable. 1954 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1955 1956 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1957 1958 // Generate code for the induction step. Note that induction steps are 1959 // required to be loop-invariant 1960 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1961 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1962 "Induction step should be loop invariant"); 1963 if (PSE.getSE()->isSCEVable(IV->getType())) { 1964 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1965 return Exp.expandCodeFor(Step, Step->getType(), 1966 LoopVectorPreHeader->getTerminator()); 1967 } 1968 return cast<SCEVUnknown>(Step)->getValue(); 1969 }; 1970 1971 // The scalar value to broadcast. This is derived from the canonical 1972 // induction variable. If a truncation type is given, truncate the canonical 1973 // induction variable and step. Otherwise, derive these values from the 1974 // induction descriptor. 1975 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1976 Value *ScalarIV = Induction; 1977 if (IV != OldInduction) { 1978 ScalarIV = IV->getType()->isIntegerTy() 1979 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1980 : Builder.CreateCast(Instruction::SIToFP, Induction, 1981 IV->getType()); 1982 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1983 ScalarIV->setName("offset.idx"); 1984 } 1985 if (Trunc) { 1986 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1987 assert(Step->getType()->isIntegerTy() && 1988 "Truncation requires an integer step"); 1989 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1990 Step = Builder.CreateTrunc(Step, TruncType); 1991 } 1992 return ScalarIV; 1993 }; 1994 1995 // Create the vector values from the scalar IV, in the absence of creating a 1996 // vector IV. 1997 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1998 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1999 for (unsigned Part = 0; Part < UF; ++Part) { 2000 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2001 Value *EntryPart = 2002 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2003 ID.getInductionOpcode()); 2004 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2005 if (Trunc) 2006 addMetadata(EntryPart, Trunc); 2007 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 2008 } 2009 }; 2010 2011 // Now do the actual transformations, and start with creating the step value. 2012 Value *Step = CreateStepValue(ID.getStep()); 2013 if (VF.isZero() || VF.isScalar()) { 2014 Value *ScalarIV = CreateScalarIV(Step); 2015 CreateSplatIV(ScalarIV, Step); 2016 return; 2017 } 2018 2019 // Determine if we want a scalar version of the induction variable. This is 2020 // true if the induction variable itself is not widened, or if it has at 2021 // least one user in the loop that is not widened. 2022 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2023 if (!NeedsScalarIV) { 2024 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2025 return; 2026 } 2027 2028 // Try to create a new independent vector induction variable. If we can't 2029 // create the phi node, we will splat the scalar induction variable in each 2030 // loop iteration. 2031 if (!shouldScalarizeInstruction(EntryVal)) { 2032 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2033 Value *ScalarIV = CreateScalarIV(Step); 2034 // Create scalar steps that can be used by instructions we will later 2035 // scalarize. Note that the addition of the scalar steps will not increase 2036 // the number of instructions in the loop in the common case prior to 2037 // InstCombine. We will be trading one vector extract for each scalar step. 2038 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2039 return; 2040 } 2041 2042 // All IV users are scalar instructions, so only emit a scalar IV, not a 2043 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2044 // predicate used by the masked loads/stores. 2045 Value *ScalarIV = CreateScalarIV(Step); 2046 if (!Cost->isScalarEpilogueAllowed()) 2047 CreateSplatIV(ScalarIV, Step); 2048 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2049 } 2050 2051 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2052 Instruction::BinaryOps BinOp) { 2053 // Create and check the types. 2054 auto *ValVTy = cast<FixedVectorType>(Val->getType()); 2055 int VLen = ValVTy->getNumElements(); 2056 2057 Type *STy = Val->getType()->getScalarType(); 2058 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2059 "Induction Step must be an integer or FP"); 2060 assert(Step->getType() == STy && "Step has wrong type"); 2061 2062 SmallVector<Constant *, 8> Indices; 2063 2064 if (STy->isIntegerTy()) { 2065 // Create a vector of consecutive numbers from zero to VF. 2066 for (int i = 0; i < VLen; ++i) 2067 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2068 2069 // Add the consecutive indices to the vector value. 2070 Constant *Cv = ConstantVector::get(Indices); 2071 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2072 Step = Builder.CreateVectorSplat(VLen, Step); 2073 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2074 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2075 // which can be found from the original scalar operations. 2076 Step = Builder.CreateMul(Cv, Step); 2077 return Builder.CreateAdd(Val, Step, "induction"); 2078 } 2079 2080 // Floating point induction. 2081 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2082 "Binary Opcode should be specified for FP induction"); 2083 // Create a vector of consecutive numbers from zero to VF. 2084 for (int i = 0; i < VLen; ++i) 2085 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2086 2087 // Add the consecutive indices to the vector value. 2088 Constant *Cv = ConstantVector::get(Indices); 2089 2090 Step = Builder.CreateVectorSplat(VLen, Step); 2091 2092 // Floating point operations had to be 'fast' to enable the induction. 2093 FastMathFlags Flags; 2094 Flags.setFast(); 2095 2096 Value *MulOp = Builder.CreateFMul(Cv, Step); 2097 if (isa<Instruction>(MulOp)) 2098 // Have to check, MulOp may be a constant 2099 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2100 2101 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2102 if (isa<Instruction>(BOp)) 2103 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2104 return BOp; 2105 } 2106 2107 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2108 Instruction *EntryVal, 2109 const InductionDescriptor &ID) { 2110 // We shouldn't have to build scalar steps if we aren't vectorizing. 2111 assert(VF.isVector() && "VF should be greater than one"); 2112 assert(!VF.isScalable() && 2113 "the code below assumes a fixed number of elements at compile time"); 2114 // Get the value type and ensure it and the step have the same integer type. 2115 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2116 assert(ScalarIVTy == Step->getType() && 2117 "Val and Step should have the same type"); 2118 2119 // We build scalar steps for both integer and floating-point induction 2120 // variables. Here, we determine the kind of arithmetic we will perform. 2121 Instruction::BinaryOps AddOp; 2122 Instruction::BinaryOps MulOp; 2123 if (ScalarIVTy->isIntegerTy()) { 2124 AddOp = Instruction::Add; 2125 MulOp = Instruction::Mul; 2126 } else { 2127 AddOp = ID.getInductionOpcode(); 2128 MulOp = Instruction::FMul; 2129 } 2130 2131 // Determine the number of scalars we need to generate for each unroll 2132 // iteration. If EntryVal is uniform, we only need to generate the first 2133 // lane. Otherwise, we generate all VF values. 2134 unsigned Lanes = 2135 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) 2136 ? 1 2137 : VF.getKnownMinValue(); 2138 // Compute the scalar steps and save the results in VectorLoopValueMap. 2139 for (unsigned Part = 0; Part < UF; ++Part) { 2140 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2141 auto *StartIdx = getSignedIntOrFpConstant( 2142 ScalarIVTy, VF.getKnownMinValue() * Part + Lane); 2143 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2144 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2145 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2146 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2147 } 2148 } 2149 } 2150 2151 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2152 assert(V != Induction && "The new induction variable should not be used."); 2153 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2154 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2155 2156 // If we have a stride that is replaced by one, do it here. Defer this for 2157 // the VPlan-native path until we start running Legal checks in that path. 2158 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2159 V = ConstantInt::get(V->getType(), 1); 2160 2161 // If we have a vector mapped to this value, return it. 2162 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2163 return VectorLoopValueMap.getVectorValue(V, Part); 2164 2165 // If the value has not been vectorized, check if it has been scalarized 2166 // instead. If it has been scalarized, and we actually need the value in 2167 // vector form, we will construct the vector values on demand. 2168 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2169 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2170 2171 // If we've scalarized a value, that value should be an instruction. 2172 auto *I = cast<Instruction>(V); 2173 2174 // If we aren't vectorizing, we can just copy the scalar map values over to 2175 // the vector map. 2176 if (VF.isScalar()) { 2177 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2178 return ScalarValue; 2179 } 2180 2181 // Get the last scalar instruction we generated for V and Part. If the value 2182 // is known to be uniform after vectorization, this corresponds to lane zero 2183 // of the Part unroll iteration. Otherwise, the last instruction is the one 2184 // we created for the last vector lane of the Part unroll iteration. 2185 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2186 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) 2187 ? 0 2188 : VF.getKnownMinValue() - 1; 2189 auto *LastInst = cast<Instruction>( 2190 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2191 2192 // Set the insert point after the last scalarized instruction. This ensures 2193 // the insertelement sequence will directly follow the scalar definitions. 2194 auto OldIP = Builder.saveIP(); 2195 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2196 Builder.SetInsertPoint(&*NewIP); 2197 2198 // However, if we are vectorizing, we need to construct the vector values. 2199 // If the value is known to be uniform after vectorization, we can just 2200 // broadcast the scalar value corresponding to lane zero for each unroll 2201 // iteration. Otherwise, we construct the vector values using insertelement 2202 // instructions. Since the resulting vectors are stored in 2203 // VectorLoopValueMap, we will only generate the insertelements once. 2204 Value *VectorValue = nullptr; 2205 if (Cost->isUniformAfterVectorization(I, VF)) { 2206 VectorValue = getBroadcastInstrs(ScalarValue); 2207 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2208 } else { 2209 // Initialize packing with insertelements to start from undef. 2210 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2211 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2212 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2213 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 2214 packScalarIntoVectorValue(V, {Part, Lane}); 2215 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2216 } 2217 Builder.restoreIP(OldIP); 2218 return VectorValue; 2219 } 2220 2221 // If this scalar is unknown, assume that it is a constant or that it is 2222 // loop invariant. Broadcast V and save the value for future uses. 2223 Value *B = getBroadcastInstrs(V); 2224 VectorLoopValueMap.setVectorValue(V, Part, B); 2225 return B; 2226 } 2227 2228 Value * 2229 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2230 const VPIteration &Instance) { 2231 // If the value is not an instruction contained in the loop, it should 2232 // already be scalar. 2233 if (OrigLoop->isLoopInvariant(V)) 2234 return V; 2235 2236 assert(Instance.Lane > 0 2237 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2238 : true && "Uniform values only have lane zero"); 2239 2240 // If the value from the original loop has not been vectorized, it is 2241 // represented by UF x VF scalar values in the new loop. Return the requested 2242 // scalar value. 2243 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2244 return VectorLoopValueMap.getScalarValue(V, Instance); 2245 2246 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2247 // for the given unroll part. If this entry is not a vector type (i.e., the 2248 // vectorization factor is one), there is no need to generate an 2249 // extractelement instruction. 2250 auto *U = getOrCreateVectorValue(V, Instance.Part); 2251 if (!U->getType()->isVectorTy()) { 2252 assert(VF.isScalar() && "Value not scalarized has non-vector type"); 2253 return U; 2254 } 2255 2256 // Otherwise, the value from the original loop has been vectorized and is 2257 // represented by UF vector values. Extract and return the requested scalar 2258 // value from the appropriate vector lane. 2259 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2260 } 2261 2262 void InnerLoopVectorizer::packScalarIntoVectorValue( 2263 Value *V, const VPIteration &Instance) { 2264 assert(V != Induction && "The new induction variable should not be used."); 2265 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2266 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2267 2268 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2269 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2270 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2271 Builder.getInt32(Instance.Lane)); 2272 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2273 } 2274 2275 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2276 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2277 assert(!VF.isScalable() && "Cannot reverse scalable vectors"); 2278 SmallVector<int, 8> ShuffleMask; 2279 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 2280 ShuffleMask.push_back(VF.getKnownMinValue() - i - 1); 2281 2282 return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse"); 2283 } 2284 2285 // Return whether we allow using masked interleave-groups (for dealing with 2286 // strided loads/stores that reside in predicated blocks, or for dealing 2287 // with gaps). 2288 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2289 // If an override option has been passed in for interleaved accesses, use it. 2290 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2291 return EnableMaskedInterleavedMemAccesses; 2292 2293 return TTI.enableMaskedInterleavedAccessVectorization(); 2294 } 2295 2296 // Try to vectorize the interleave group that \p Instr belongs to. 2297 // 2298 // E.g. Translate following interleaved load group (factor = 3): 2299 // for (i = 0; i < N; i+=3) { 2300 // R = Pic[i]; // Member of index 0 2301 // G = Pic[i+1]; // Member of index 1 2302 // B = Pic[i+2]; // Member of index 2 2303 // ... // do something to R, G, B 2304 // } 2305 // To: 2306 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2307 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2308 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2309 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2310 // 2311 // Or translate following interleaved store group (factor = 3): 2312 // for (i = 0; i < N; i+=3) { 2313 // ... do something to R, G, B 2314 // Pic[i] = R; // Member of index 0 2315 // Pic[i+1] = G; // Member of index 1 2316 // Pic[i+2] = B; // Member of index 2 2317 // } 2318 // To: 2319 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2320 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2321 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2322 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2323 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2324 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2325 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2326 VPValue *Addr, ArrayRef<VPValue *> StoredValues, VPValue *BlockInMask) { 2327 Instruction *Instr = Group->getInsertPos(); 2328 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2329 2330 // Prepare for the vector type of the interleaved load/store. 2331 Type *ScalarTy = getMemInstValueType(Instr); 2332 unsigned InterleaveFactor = Group->getFactor(); 2333 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2334 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2335 2336 // Prepare for the new pointers. 2337 SmallVector<Value *, 2> AddrParts; 2338 unsigned Index = Group->getIndex(Instr); 2339 2340 // TODO: extend the masked interleaved-group support to reversed access. 2341 assert((!BlockInMask || !Group->isReverse()) && 2342 "Reversed masked interleave-group not supported."); 2343 2344 // If the group is reverse, adjust the index to refer to the last vector lane 2345 // instead of the first. We adjust the index from the first vector lane, 2346 // rather than directly getting the pointer for lane VF - 1, because the 2347 // pointer operand of the interleaved access is supposed to be uniform. For 2348 // uniform instructions, we're only required to generate a value for the 2349 // first vector lane in each unroll iteration. 2350 assert(!VF.isScalable() && 2351 "scalable vector reverse operation is not implemented"); 2352 if (Group->isReverse()) 2353 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2354 2355 for (unsigned Part = 0; Part < UF; Part++) { 2356 Value *AddrPart = State.get(Addr, {Part, 0}); 2357 setDebugLocFromInst(Builder, AddrPart); 2358 2359 // Notice current instruction could be any index. Need to adjust the address 2360 // to the member of index 0. 2361 // 2362 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2363 // b = A[i]; // Member of index 0 2364 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2365 // 2366 // E.g. A[i+1] = a; // Member of index 1 2367 // A[i] = b; // Member of index 0 2368 // A[i+2] = c; // Member of index 2 (Current instruction) 2369 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2370 2371 bool InBounds = false; 2372 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2373 InBounds = gep->isInBounds(); 2374 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2375 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2376 2377 // Cast to the vector pointer type. 2378 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2379 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2380 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2381 } 2382 2383 setDebugLocFromInst(Builder, Instr); 2384 Value *UndefVec = UndefValue::get(VecTy); 2385 2386 Value *MaskForGaps = nullptr; 2387 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2388 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2389 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2390 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2391 } 2392 2393 // Vectorize the interleaved load group. 2394 if (isa<LoadInst>(Instr)) { 2395 // For each unroll part, create a wide load for the group. 2396 SmallVector<Value *, 2> NewLoads; 2397 for (unsigned Part = 0; Part < UF; Part++) { 2398 Instruction *NewLoad; 2399 if (BlockInMask || MaskForGaps) { 2400 assert(useMaskedInterleavedAccesses(*TTI) && 2401 "masked interleaved groups are not allowed."); 2402 Value *GroupMask = MaskForGaps; 2403 if (BlockInMask) { 2404 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2405 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2406 Value *ShuffledMask = Builder.CreateShuffleVector( 2407 BlockInMaskPart, 2408 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2409 "interleaved.mask"); 2410 GroupMask = MaskForGaps 2411 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2412 MaskForGaps) 2413 : ShuffledMask; 2414 } 2415 NewLoad = 2416 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2417 GroupMask, UndefVec, "wide.masked.vec"); 2418 } 2419 else 2420 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2421 Group->getAlign(), "wide.vec"); 2422 Group->addMetadata(NewLoad); 2423 NewLoads.push_back(NewLoad); 2424 } 2425 2426 // For each member in the group, shuffle out the appropriate data from the 2427 // wide loads. 2428 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2429 Instruction *Member = Group->getMember(I); 2430 2431 // Skip the gaps in the group. 2432 if (!Member) 2433 continue; 2434 2435 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2436 auto StrideMask = 2437 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2438 for (unsigned Part = 0; Part < UF; Part++) { 2439 Value *StridedVec = Builder.CreateShuffleVector( 2440 NewLoads[Part], StrideMask, "strided.vec"); 2441 2442 // If this member has different type, cast the result type. 2443 if (Member->getType() != ScalarTy) { 2444 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2445 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2446 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2447 } 2448 2449 if (Group->isReverse()) 2450 StridedVec = reverseVector(StridedVec); 2451 2452 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2453 } 2454 } 2455 return; 2456 } 2457 2458 // The sub vector type for current instruction. 2459 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2460 auto *SubVT = VectorType::get(ScalarTy, VF); 2461 2462 // Vectorize the interleaved store group. 2463 for (unsigned Part = 0; Part < UF; Part++) { 2464 // Collect the stored vector from each member. 2465 SmallVector<Value *, 4> StoredVecs; 2466 for (unsigned i = 0; i < InterleaveFactor; i++) { 2467 // Interleaved store group doesn't allow a gap, so each index has a member 2468 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2469 2470 Value *StoredVec = State.get(StoredValues[i], Part); 2471 2472 if (Group->isReverse()) 2473 StoredVec = reverseVector(StoredVec); 2474 2475 // If this member has different type, cast it to a unified type. 2476 2477 if (StoredVec->getType() != SubVT) 2478 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2479 2480 StoredVecs.push_back(StoredVec); 2481 } 2482 2483 // Concatenate all vectors into a wide vector. 2484 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2485 2486 // Interleave the elements in the wide vector. 2487 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2488 Value *IVec = Builder.CreateShuffleVector( 2489 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2490 "interleaved.vec"); 2491 2492 Instruction *NewStoreInstr; 2493 if (BlockInMask) { 2494 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2495 Value *ShuffledMask = Builder.CreateShuffleVector( 2496 BlockInMaskPart, 2497 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2498 "interleaved.mask"); 2499 NewStoreInstr = Builder.CreateMaskedStore( 2500 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2501 } 2502 else 2503 NewStoreInstr = 2504 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2505 2506 Group->addMetadata(NewStoreInstr); 2507 } 2508 } 2509 2510 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2511 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2512 VPValue *StoredValue, VPValue *BlockInMask) { 2513 // Attempt to issue a wide load. 2514 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2515 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2516 2517 assert((LI || SI) && "Invalid Load/Store instruction"); 2518 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2519 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2520 2521 LoopVectorizationCostModel::InstWidening Decision = 2522 Cost->getWideningDecision(Instr, VF); 2523 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2524 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2525 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2526 "CM decision is not to widen the memory instruction"); 2527 2528 Type *ScalarDataTy = getMemInstValueType(Instr); 2529 2530 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2531 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2532 const Align Alignment = getLoadStoreAlignment(Instr); 2533 2534 // Determine if the pointer operand of the access is either consecutive or 2535 // reverse consecutive. 2536 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2537 bool ConsecutiveStride = 2538 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2539 bool CreateGatherScatter = 2540 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2541 2542 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2543 // gather/scatter. Otherwise Decision should have been to Scalarize. 2544 assert((ConsecutiveStride || CreateGatherScatter) && 2545 "The instruction should be scalarized"); 2546 (void)ConsecutiveStride; 2547 2548 VectorParts BlockInMaskParts(UF); 2549 bool isMaskRequired = BlockInMask; 2550 if (isMaskRequired) 2551 for (unsigned Part = 0; Part < UF; ++Part) 2552 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2553 2554 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2555 // Calculate the pointer for the specific unroll-part. 2556 GetElementPtrInst *PartPtr = nullptr; 2557 2558 bool InBounds = false; 2559 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2560 InBounds = gep->isInBounds(); 2561 2562 if (Reverse) { 2563 // If the address is consecutive but reversed, then the 2564 // wide store needs to start at the last vector element. 2565 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2566 ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue()))); 2567 PartPtr->setIsInBounds(InBounds); 2568 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2569 ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue()))); 2570 PartPtr->setIsInBounds(InBounds); 2571 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2572 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2573 } else { 2574 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2575 ScalarDataTy, Ptr, Builder.getInt32(Part * VF.getKnownMinValue()))); 2576 PartPtr->setIsInBounds(InBounds); 2577 } 2578 2579 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2580 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2581 }; 2582 2583 // Handle Stores: 2584 if (SI) { 2585 setDebugLocFromInst(Builder, SI); 2586 2587 for (unsigned Part = 0; Part < UF; ++Part) { 2588 Instruction *NewSI = nullptr; 2589 Value *StoredVal = State.get(StoredValue, Part); 2590 if (CreateGatherScatter) { 2591 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2592 Value *VectorGep = State.get(Addr, Part); 2593 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2594 MaskPart); 2595 } else { 2596 if (Reverse) { 2597 // If we store to reverse consecutive memory locations, then we need 2598 // to reverse the order of elements in the stored value. 2599 StoredVal = reverseVector(StoredVal); 2600 // We don't want to update the value in the map as it might be used in 2601 // another expression. So don't call resetVectorValue(StoredVal). 2602 } 2603 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2604 if (isMaskRequired) 2605 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2606 BlockInMaskParts[Part]); 2607 else 2608 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2609 } 2610 addMetadata(NewSI, SI); 2611 } 2612 return; 2613 } 2614 2615 // Handle loads. 2616 assert(LI && "Must have a load instruction"); 2617 setDebugLocFromInst(Builder, LI); 2618 for (unsigned Part = 0; Part < UF; ++Part) { 2619 Value *NewLI; 2620 if (CreateGatherScatter) { 2621 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2622 Value *VectorGep = State.get(Addr, Part); 2623 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2624 nullptr, "wide.masked.gather"); 2625 addMetadata(NewLI, LI); 2626 } else { 2627 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2628 if (isMaskRequired) 2629 NewLI = Builder.CreateMaskedLoad( 2630 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2631 "wide.masked.load"); 2632 else 2633 NewLI = 2634 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2635 2636 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2637 addMetadata(NewLI, LI); 2638 if (Reverse) 2639 NewLI = reverseVector(NewLI); 2640 } 2641 2642 State.set(Def, Instr, NewLI, Part); 2643 } 2644 } 2645 2646 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2647 const VPIteration &Instance, 2648 bool IfPredicateInstr, 2649 VPTransformState &State) { 2650 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2651 2652 setDebugLocFromInst(Builder, Instr); 2653 2654 // Does this instruction return a value ? 2655 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2656 2657 Instruction *Cloned = Instr->clone(); 2658 if (!IsVoidRetTy) 2659 Cloned->setName(Instr->getName() + ".cloned"); 2660 2661 // Replace the operands of the cloned instructions with their scalar 2662 // equivalents in the new loop. 2663 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2664 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 2665 auto InputInstance = Instance; 2666 if (!Operand || !OrigLoop->contains(Operand) || 2667 (Cost->isUniformAfterVectorization(Operand, State.VF))) 2668 InputInstance.Lane = 0; 2669 auto *NewOp = State.get(User.getOperand(op), InputInstance); 2670 Cloned->setOperand(op, NewOp); 2671 } 2672 addNewMetadata(Cloned, Instr); 2673 2674 // Place the cloned scalar in the new loop. 2675 Builder.Insert(Cloned); 2676 2677 // TODO: Set result for VPValue of VPReciplicateRecipe. This requires 2678 // representing scalar values in VPTransformState. Add the cloned scalar to 2679 // the scalar map entry. 2680 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2681 2682 // If we just cloned a new assumption, add it the assumption cache. 2683 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2684 if (II->getIntrinsicID() == Intrinsic::assume) 2685 AC->registerAssumption(II); 2686 2687 // End if-block. 2688 if (IfPredicateInstr) 2689 PredicatedInstructions.push_back(Cloned); 2690 } 2691 2692 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2693 Value *End, Value *Step, 2694 Instruction *DL) { 2695 BasicBlock *Header = L->getHeader(); 2696 BasicBlock *Latch = L->getLoopLatch(); 2697 // As we're just creating this loop, it's possible no latch exists 2698 // yet. If so, use the header as this will be a single block loop. 2699 if (!Latch) 2700 Latch = Header; 2701 2702 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2703 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2704 setDebugLocFromInst(Builder, OldInst); 2705 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2706 2707 Builder.SetInsertPoint(Latch->getTerminator()); 2708 setDebugLocFromInst(Builder, OldInst); 2709 2710 // Create i+1 and fill the PHINode. 2711 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2712 Induction->addIncoming(Start, L->getLoopPreheader()); 2713 Induction->addIncoming(Next, Latch); 2714 // Create the compare. 2715 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2716 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2717 2718 // Now we have two terminators. Remove the old one from the block. 2719 Latch->getTerminator()->eraseFromParent(); 2720 2721 return Induction; 2722 } 2723 2724 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2725 if (TripCount) 2726 return TripCount; 2727 2728 assert(L && "Create Trip Count for null loop."); 2729 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2730 // Find the loop boundaries. 2731 ScalarEvolution *SE = PSE.getSE(); 2732 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2733 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2734 "Invalid loop count"); 2735 2736 Type *IdxTy = Legal->getWidestInductionType(); 2737 assert(IdxTy && "No type for induction"); 2738 2739 // The exit count might have the type of i64 while the phi is i32. This can 2740 // happen if we have an induction variable that is sign extended before the 2741 // compare. The only way that we get a backedge taken count is that the 2742 // induction variable was signed and as such will not overflow. In such a case 2743 // truncation is legal. 2744 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2745 IdxTy->getPrimitiveSizeInBits()) 2746 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2747 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2748 2749 // Get the total trip count from the count by adding 1. 2750 const SCEV *ExitCount = SE->getAddExpr( 2751 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2752 2753 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2754 2755 // Expand the trip count and place the new instructions in the preheader. 2756 // Notice that the pre-header does not change, only the loop body. 2757 SCEVExpander Exp(*SE, DL, "induction"); 2758 2759 // Count holds the overall loop count (N). 2760 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2761 L->getLoopPreheader()->getTerminator()); 2762 2763 if (TripCount->getType()->isPointerTy()) 2764 TripCount = 2765 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2766 L->getLoopPreheader()->getTerminator()); 2767 2768 return TripCount; 2769 } 2770 2771 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2772 if (VectorTripCount) 2773 return VectorTripCount; 2774 2775 Value *TC = getOrCreateTripCount(L); 2776 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2777 2778 Type *Ty = TC->getType(); 2779 // This is where we can make the step a runtime constant. 2780 assert(!VF.isScalable() && "scalable vectorization is not supported yet"); 2781 Constant *Step = ConstantInt::get(Ty, VF.getKnownMinValue() * UF); 2782 2783 // If the tail is to be folded by masking, round the number of iterations N 2784 // up to a multiple of Step instead of rounding down. This is done by first 2785 // adding Step-1 and then rounding down. Note that it's ok if this addition 2786 // overflows: the vector induction variable will eventually wrap to zero given 2787 // that it starts at zero and its Step is a power of two; the loop will then 2788 // exit, with the last early-exit vector comparison also producing all-true. 2789 if (Cost->foldTailByMasking()) { 2790 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2791 "VF*UF must be a power of 2 when folding tail by masking"); 2792 TC = Builder.CreateAdd( 2793 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 2794 } 2795 2796 // Now we need to generate the expression for the part of the loop that the 2797 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2798 // iterations are not required for correctness, or N - Step, otherwise. Step 2799 // is equal to the vectorization factor (number of SIMD elements) times the 2800 // unroll factor (number of SIMD instructions). 2801 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2802 2803 // If there is a non-reversed interleaved group that may speculatively access 2804 // memory out-of-bounds, we need to ensure that there will be at least one 2805 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2806 // the trip count, we set the remainder to be equal to the step. If the step 2807 // does not evenly divide the trip count, no adjustment is necessary since 2808 // there will already be scalar iterations. Note that the minimum iterations 2809 // check ensures that N >= Step. 2810 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 2811 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2812 R = Builder.CreateSelect(IsZero, Step, R); 2813 } 2814 2815 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2816 2817 return VectorTripCount; 2818 } 2819 2820 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2821 const DataLayout &DL) { 2822 // Verify that V is a vector type with same number of elements as DstVTy. 2823 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2824 unsigned VF = DstFVTy->getNumElements(); 2825 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2826 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2827 Type *SrcElemTy = SrcVecTy->getElementType(); 2828 Type *DstElemTy = DstFVTy->getElementType(); 2829 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2830 "Vector elements must have same size"); 2831 2832 // Do a direct cast if element types are castable. 2833 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2834 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2835 } 2836 // V cannot be directly casted to desired vector type. 2837 // May happen when V is a floating point vector but DstVTy is a vector of 2838 // pointers or vice-versa. Handle this using a two-step bitcast using an 2839 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2840 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2841 "Only one type should be a pointer type"); 2842 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2843 "Only one type should be a floating point type"); 2844 Type *IntTy = 2845 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2846 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2847 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2848 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2849 } 2850 2851 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2852 BasicBlock *Bypass) { 2853 Value *Count = getOrCreateTripCount(L); 2854 // Reuse existing vector loop preheader for TC checks. 2855 // Note that new preheader block is generated for vector loop. 2856 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2857 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2858 2859 // Generate code to check if the loop's trip count is less than VF * UF, or 2860 // equal to it in case a scalar epilogue is required; this implies that the 2861 // vector trip count is zero. This check also covers the case where adding one 2862 // to the backedge-taken count overflowed leading to an incorrect trip count 2863 // of zero. In this case we will also jump to the scalar loop. 2864 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2865 : ICmpInst::ICMP_ULT; 2866 2867 // If tail is to be folded, vector loop takes care of all iterations. 2868 Value *CheckMinIters = Builder.getFalse(); 2869 if (!Cost->foldTailByMasking()) { 2870 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2871 CheckMinIters = Builder.CreateICmp( 2872 P, Count, 2873 ConstantInt::get(Count->getType(), VF.getKnownMinValue() * UF), 2874 "min.iters.check"); 2875 } 2876 // Create new preheader for vector loop. 2877 LoopVectorPreHeader = 2878 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2879 "vector.ph"); 2880 2881 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2882 DT->getNode(Bypass)->getIDom()) && 2883 "TC check is expected to dominate Bypass"); 2884 2885 // Update dominator for Bypass & LoopExit. 2886 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2887 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2888 2889 ReplaceInstWithInst( 2890 TCCheckBlock->getTerminator(), 2891 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2892 LoopBypassBlocks.push_back(TCCheckBlock); 2893 } 2894 2895 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2896 // Reuse existing vector loop preheader for SCEV checks. 2897 // Note that new preheader block is generated for vector loop. 2898 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2899 2900 // Generate the code to check that the SCEV assumptions that we made. 2901 // We want the new basic block to start at the first instruction in a 2902 // sequence of instructions that form a check. 2903 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2904 "scev.check"); 2905 Value *SCEVCheck = Exp.expandCodeForPredicate( 2906 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2907 2908 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2909 if (C->isZero()) 2910 return; 2911 2912 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 2913 (OptForSizeBasedOnProfile && 2914 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 2915 "Cannot SCEV check stride or overflow when optimizing for size"); 2916 2917 SCEVCheckBlock->setName("vector.scevcheck"); 2918 // Create new preheader for vector loop. 2919 LoopVectorPreHeader = 2920 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2921 nullptr, "vector.ph"); 2922 2923 // Update dominator only if this is first RT check. 2924 if (LoopBypassBlocks.empty()) { 2925 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2926 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2927 } 2928 2929 ReplaceInstWithInst( 2930 SCEVCheckBlock->getTerminator(), 2931 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2932 LoopBypassBlocks.push_back(SCEVCheckBlock); 2933 AddedSafetyChecks = true; 2934 } 2935 2936 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2937 // VPlan-native path does not do any analysis for runtime checks currently. 2938 if (EnableVPlanNativePath) 2939 return; 2940 2941 // Reuse existing vector loop preheader for runtime memory checks. 2942 // Note that new preheader block is generated for vector loop. 2943 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2944 2945 // Generate the code that checks in runtime if arrays overlap. We put the 2946 // checks into a separate block to make the more common case of few elements 2947 // faster. 2948 auto *LAI = Legal->getLAI(); 2949 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 2950 if (!RtPtrChecking.Need) 2951 return; 2952 2953 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 2954 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2955 "Cannot emit memory checks when optimizing for size, unless forced " 2956 "to vectorize."); 2957 ORE->emit([&]() { 2958 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2959 L->getStartLoc(), L->getHeader()) 2960 << "Code-size may be reduced by not forcing " 2961 "vectorization, or by source-code modifications " 2962 "eliminating the need for runtime checks " 2963 "(e.g., adding 'restrict')."; 2964 }); 2965 } 2966 2967 MemCheckBlock->setName("vector.memcheck"); 2968 // Create new preheader for vector loop. 2969 LoopVectorPreHeader = 2970 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2971 "vector.ph"); 2972 2973 auto *CondBranch = cast<BranchInst>( 2974 Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader)); 2975 ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch); 2976 LoopBypassBlocks.push_back(MemCheckBlock); 2977 AddedSafetyChecks = true; 2978 2979 // Update dominator only if this is first RT check. 2980 if (LoopBypassBlocks.empty()) { 2981 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2982 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2983 } 2984 2985 Instruction *FirstCheckInst; 2986 Instruction *MemRuntimeCheck; 2987 std::tie(FirstCheckInst, MemRuntimeCheck) = 2988 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 2989 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 2990 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 2991 "claimed checks are required"); 2992 CondBranch->setCondition(MemRuntimeCheck); 2993 2994 // We currently don't use LoopVersioning for the actual loop cloning but we 2995 // still use it to add the noalias metadata. 2996 LVer = std::make_unique<LoopVersioning>( 2997 *Legal->getLAI(), 2998 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 2999 DT, PSE.getSE()); 3000 LVer->prepareNoAliasMetadata(); 3001 } 3002 3003 Value *InnerLoopVectorizer::emitTransformedIndex( 3004 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3005 const InductionDescriptor &ID) const { 3006 3007 SCEVExpander Exp(*SE, DL, "induction"); 3008 auto Step = ID.getStep(); 3009 auto StartValue = ID.getStartValue(); 3010 assert(Index->getType() == Step->getType() && 3011 "Index type does not match StepValue type"); 3012 3013 // Note: the IR at this point is broken. We cannot use SE to create any new 3014 // SCEV and then expand it, hoping that SCEV's simplification will give us 3015 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3016 // lead to various SCEV crashes. So all we can do is to use builder and rely 3017 // on InstCombine for future simplifications. Here we handle some trivial 3018 // cases only. 3019 auto CreateAdd = [&B](Value *X, Value *Y) { 3020 assert(X->getType() == Y->getType() && "Types don't match!"); 3021 if (auto *CX = dyn_cast<ConstantInt>(X)) 3022 if (CX->isZero()) 3023 return Y; 3024 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3025 if (CY->isZero()) 3026 return X; 3027 return B.CreateAdd(X, Y); 3028 }; 3029 3030 auto CreateMul = [&B](Value *X, Value *Y) { 3031 assert(X->getType() == Y->getType() && "Types don't match!"); 3032 if (auto *CX = dyn_cast<ConstantInt>(X)) 3033 if (CX->isOne()) 3034 return Y; 3035 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3036 if (CY->isOne()) 3037 return X; 3038 return B.CreateMul(X, Y); 3039 }; 3040 3041 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3042 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3043 // the DomTree is not kept up-to-date for additional blocks generated in the 3044 // vector loop. By using the header as insertion point, we guarantee that the 3045 // expanded instructions dominate all their uses. 3046 auto GetInsertPoint = [this, &B]() { 3047 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3048 if (InsertBB != LoopVectorBody && 3049 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3050 return LoopVectorBody->getTerminator(); 3051 return &*B.GetInsertPoint(); 3052 }; 3053 switch (ID.getKind()) { 3054 case InductionDescriptor::IK_IntInduction: { 3055 assert(Index->getType() == StartValue->getType() && 3056 "Index type does not match StartValue type"); 3057 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3058 return B.CreateSub(StartValue, Index); 3059 auto *Offset = CreateMul( 3060 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3061 return CreateAdd(StartValue, Offset); 3062 } 3063 case InductionDescriptor::IK_PtrInduction: { 3064 assert(isa<SCEVConstant>(Step) && 3065 "Expected constant step for pointer induction"); 3066 return B.CreateGEP( 3067 StartValue->getType()->getPointerElementType(), StartValue, 3068 CreateMul(Index, 3069 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3070 } 3071 case InductionDescriptor::IK_FpInduction: { 3072 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3073 auto InductionBinOp = ID.getInductionBinOp(); 3074 assert(InductionBinOp && 3075 (InductionBinOp->getOpcode() == Instruction::FAdd || 3076 InductionBinOp->getOpcode() == Instruction::FSub) && 3077 "Original bin op should be defined for FP induction"); 3078 3079 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3080 3081 // Floating point operations had to be 'fast' to enable the induction. 3082 FastMathFlags Flags; 3083 Flags.setFast(); 3084 3085 Value *MulExp = B.CreateFMul(StepValue, Index); 3086 if (isa<Instruction>(MulExp)) 3087 // We have to check, the MulExp may be a constant. 3088 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 3089 3090 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3091 "induction"); 3092 if (isa<Instruction>(BOp)) 3093 cast<Instruction>(BOp)->setFastMathFlags(Flags); 3094 3095 return BOp; 3096 } 3097 case InductionDescriptor::IK_NoInduction: 3098 return nullptr; 3099 } 3100 llvm_unreachable("invalid enum"); 3101 } 3102 3103 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3104 LoopScalarBody = OrigLoop->getHeader(); 3105 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3106 LoopExitBlock = OrigLoop->getExitBlock(); 3107 assert(LoopExitBlock && "Must have an exit block"); 3108 assert(LoopVectorPreHeader && "Invalid loop structure"); 3109 3110 LoopMiddleBlock = 3111 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3112 LI, nullptr, Twine(Prefix) + "middle.block"); 3113 LoopScalarPreHeader = 3114 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3115 nullptr, Twine(Prefix) + "scalar.ph"); 3116 // We intentionally don't let SplitBlock to update LoopInfo since 3117 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3118 // LoopVectorBody is explicitly added to the correct place few lines later. 3119 LoopVectorBody = 3120 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3121 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3122 3123 // Update dominator for loop exit. 3124 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3125 3126 // Create and register the new vector loop. 3127 Loop *Lp = LI->AllocateLoop(); 3128 Loop *ParentLoop = OrigLoop->getParentLoop(); 3129 3130 // Insert the new loop into the loop nest and register the new basic blocks 3131 // before calling any utilities such as SCEV that require valid LoopInfo. 3132 if (ParentLoop) { 3133 ParentLoop->addChildLoop(Lp); 3134 } else { 3135 LI->addTopLevelLoop(Lp); 3136 } 3137 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3138 return Lp; 3139 } 3140 3141 void InnerLoopVectorizer::createInductionResumeValues(Loop *L, 3142 Value *VectorTripCount) { 3143 assert(VectorTripCount && L && "Expected valid arguments"); 3144 // We are going to resume the execution of the scalar loop. 3145 // Go over all of the induction variables that we found and fix the 3146 // PHIs that are left in the scalar version of the loop. 3147 // The starting values of PHI nodes depend on the counter of the last 3148 // iteration in the vectorized loop. 3149 // If we come from a bypass edge then we need to start from the original 3150 // start value. 3151 for (auto &InductionEntry : Legal->getInductionVars()) { 3152 PHINode *OrigPhi = InductionEntry.first; 3153 InductionDescriptor II = InductionEntry.second; 3154 3155 // Create phi nodes to merge from the backedge-taken check block. 3156 PHINode *BCResumeVal = 3157 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3158 LoopScalarPreHeader->getTerminator()); 3159 // Copy original phi DL over to the new one. 3160 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3161 Value *&EndValue = IVEndValues[OrigPhi]; 3162 if (OrigPhi == OldInduction) { 3163 // We know what the end value is. 3164 EndValue = VectorTripCount; 3165 } else { 3166 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3167 Type *StepType = II.getStep()->getType(); 3168 Instruction::CastOps CastOp = 3169 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3170 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3171 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3172 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3173 EndValue->setName("ind.end"); 3174 } 3175 3176 // The new PHI merges the original incoming value, in case of a bypass, 3177 // or the value at the end of the vectorized loop. 3178 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3179 3180 // Fix the scalar body counter (PHI node). 3181 // The old induction's phi node in the scalar body needs the truncated 3182 // value. 3183 for (BasicBlock *BB : LoopBypassBlocks) 3184 BCResumeVal->addIncoming(II.getStartValue(), BB); 3185 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3186 } 3187 } 3188 3189 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3190 MDNode *OrigLoopID) { 3191 assert(L && "Expected valid loop."); 3192 3193 // The trip counts should be cached by now. 3194 Value *Count = getOrCreateTripCount(L); 3195 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3196 3197 // We need the OrigLoop (scalar loop part) latch terminator to help 3198 // produce correct debug info for the middle block BB instructions. 3199 // The legality check stage guarantees that the loop will have a single 3200 // latch. 3201 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3202 "Scalar loop latch terminator isn't a branch"); 3203 BranchInst *ScalarLatchBr = 3204 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3205 3206 // Add a check in the middle block to see if we have completed 3207 // all of the iterations in the first vector loop. 3208 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3209 // If tail is to be folded, we know we don't need to run the remainder. 3210 Value *CmpN = Builder.getTrue(); 3211 if (!Cost->foldTailByMasking()) { 3212 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3213 VectorTripCount, "cmp.n", 3214 LoopMiddleBlock->getTerminator()); 3215 3216 // Here we use the same DebugLoc as the scalar loop latch branch instead 3217 // of the corresponding compare because they may have ended up with 3218 // different line numbers and we want to avoid awkward line stepping while 3219 // debugging. Eg. if the compare has got a line number inside the loop. 3220 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3221 } 3222 3223 BranchInst *BrInst = 3224 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3225 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3226 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3227 3228 // Get ready to start creating new instructions into the vectorized body. 3229 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3230 "Inconsistent vector loop preheader"); 3231 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3232 3233 Optional<MDNode *> VectorizedLoopID = 3234 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3235 LLVMLoopVectorizeFollowupVectorized}); 3236 if (VectorizedLoopID.hasValue()) { 3237 L->setLoopID(VectorizedLoopID.getValue()); 3238 3239 // Do not setAlreadyVectorized if loop attributes have been defined 3240 // explicitly. 3241 return LoopVectorPreHeader; 3242 } 3243 3244 // Keep all loop hints from the original loop on the vector loop (we'll 3245 // replace the vectorizer-specific hints below). 3246 if (MDNode *LID = OrigLoop->getLoopID()) 3247 L->setLoopID(LID); 3248 3249 LoopVectorizeHints Hints(L, true, *ORE); 3250 Hints.setAlreadyVectorized(); 3251 3252 #ifdef EXPENSIVE_CHECKS 3253 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3254 LI->verify(*DT); 3255 #endif 3256 3257 return LoopVectorPreHeader; 3258 } 3259 3260 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3261 /* 3262 In this function we generate a new loop. The new loop will contain 3263 the vectorized instructions while the old loop will continue to run the 3264 scalar remainder. 3265 3266 [ ] <-- loop iteration number check. 3267 / | 3268 / v 3269 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3270 | / | 3271 | / v 3272 || [ ] <-- vector pre header. 3273 |/ | 3274 | v 3275 | [ ] \ 3276 | [ ]_| <-- vector loop. 3277 | | 3278 | v 3279 | -[ ] <--- middle-block. 3280 | / | 3281 | / v 3282 -|- >[ ] <--- new preheader. 3283 | | 3284 | v 3285 | [ ] \ 3286 | [ ]_| <-- old scalar loop to handle remainder. 3287 \ | 3288 \ v 3289 >[ ] <-- exit block. 3290 ... 3291 */ 3292 3293 // Get the metadata of the original loop before it gets modified. 3294 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3295 3296 // Create an empty vector loop, and prepare basic blocks for the runtime 3297 // checks. 3298 Loop *Lp = createVectorLoopSkeleton(""); 3299 3300 // Now, compare the new count to zero. If it is zero skip the vector loop and 3301 // jump to the scalar loop. This check also covers the case where the 3302 // backedge-taken count is uint##_max: adding one to it will overflow leading 3303 // to an incorrect trip count of zero. In this (rare) case we will also jump 3304 // to the scalar loop. 3305 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3306 3307 // Generate the code to check any assumptions that we've made for SCEV 3308 // expressions. 3309 emitSCEVChecks(Lp, LoopScalarPreHeader); 3310 3311 // Generate the code that checks in runtime if arrays overlap. We put the 3312 // checks into a separate block to make the more common case of few elements 3313 // faster. 3314 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3315 3316 // Some loops have a single integer induction variable, while other loops 3317 // don't. One example is c++ iterators that often have multiple pointer 3318 // induction variables. In the code below we also support a case where we 3319 // don't have a single induction variable. 3320 // 3321 // We try to obtain an induction variable from the original loop as hard 3322 // as possible. However if we don't find one that: 3323 // - is an integer 3324 // - counts from zero, stepping by one 3325 // - is the size of the widest induction variable type 3326 // then we create a new one. 3327 OldInduction = Legal->getPrimaryInduction(); 3328 Type *IdxTy = Legal->getWidestInductionType(); 3329 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3330 // The loop step is equal to the vectorization factor (num of SIMD elements) 3331 // times the unroll factor (num of SIMD instructions). 3332 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3333 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 3334 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3335 Induction = 3336 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3337 getDebugLocFromInstOrOperands(OldInduction)); 3338 3339 // Emit phis for the new starting index of the scalar loop. 3340 createInductionResumeValues(Lp, CountRoundDown); 3341 3342 return completeLoopSkeleton(Lp, OrigLoopID); 3343 } 3344 3345 // Fix up external users of the induction variable. At this point, we are 3346 // in LCSSA form, with all external PHIs that use the IV having one input value, 3347 // coming from the remainder loop. We need those PHIs to also have a correct 3348 // value for the IV when arriving directly from the middle block. 3349 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3350 const InductionDescriptor &II, 3351 Value *CountRoundDown, Value *EndValue, 3352 BasicBlock *MiddleBlock) { 3353 // There are two kinds of external IV usages - those that use the value 3354 // computed in the last iteration (the PHI) and those that use the penultimate 3355 // value (the value that feeds into the phi from the loop latch). 3356 // We allow both, but they, obviously, have different values. 3357 3358 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3359 3360 DenseMap<Value *, Value *> MissingVals; 3361 3362 // An external user of the last iteration's value should see the value that 3363 // the remainder loop uses to initialize its own IV. 3364 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3365 for (User *U : PostInc->users()) { 3366 Instruction *UI = cast<Instruction>(U); 3367 if (!OrigLoop->contains(UI)) { 3368 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3369 MissingVals[UI] = EndValue; 3370 } 3371 } 3372 3373 // An external user of the penultimate value need to see EndValue - Step. 3374 // The simplest way to get this is to recompute it from the constituent SCEVs, 3375 // that is Start + (Step * (CRD - 1)). 3376 for (User *U : OrigPhi->users()) { 3377 auto *UI = cast<Instruction>(U); 3378 if (!OrigLoop->contains(UI)) { 3379 const DataLayout &DL = 3380 OrigLoop->getHeader()->getModule()->getDataLayout(); 3381 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3382 3383 IRBuilder<> B(MiddleBlock->getTerminator()); 3384 Value *CountMinusOne = B.CreateSub( 3385 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3386 Value *CMO = 3387 !II.getStep()->getType()->isIntegerTy() 3388 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3389 II.getStep()->getType()) 3390 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3391 CMO->setName("cast.cmo"); 3392 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3393 Escape->setName("ind.escape"); 3394 MissingVals[UI] = Escape; 3395 } 3396 } 3397 3398 for (auto &I : MissingVals) { 3399 PHINode *PHI = cast<PHINode>(I.first); 3400 // One corner case we have to handle is two IVs "chasing" each-other, 3401 // that is %IV2 = phi [...], [ %IV1, %latch ] 3402 // In this case, if IV1 has an external use, we need to avoid adding both 3403 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3404 // don't already have an incoming value for the middle block. 3405 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3406 PHI->addIncoming(I.second, MiddleBlock); 3407 } 3408 } 3409 3410 namespace { 3411 3412 struct CSEDenseMapInfo { 3413 static bool canHandle(const Instruction *I) { 3414 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3415 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3416 } 3417 3418 static inline Instruction *getEmptyKey() { 3419 return DenseMapInfo<Instruction *>::getEmptyKey(); 3420 } 3421 3422 static inline Instruction *getTombstoneKey() { 3423 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3424 } 3425 3426 static unsigned getHashValue(const Instruction *I) { 3427 assert(canHandle(I) && "Unknown instruction!"); 3428 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3429 I->value_op_end())); 3430 } 3431 3432 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3433 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3434 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3435 return LHS == RHS; 3436 return LHS->isIdenticalTo(RHS); 3437 } 3438 }; 3439 3440 } // end anonymous namespace 3441 3442 ///Perform cse of induction variable instructions. 3443 static void cse(BasicBlock *BB) { 3444 // Perform simple cse. 3445 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3446 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3447 Instruction *In = &*I++; 3448 3449 if (!CSEDenseMapInfo::canHandle(In)) 3450 continue; 3451 3452 // Check if we can replace this instruction with any of the 3453 // visited instructions. 3454 if (Instruction *V = CSEMap.lookup(In)) { 3455 In->replaceAllUsesWith(V); 3456 In->eraseFromParent(); 3457 continue; 3458 } 3459 3460 CSEMap[In] = In; 3461 } 3462 } 3463 3464 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3465 ElementCount VF, 3466 bool &NeedToScalarize) { 3467 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3468 Function *F = CI->getCalledFunction(); 3469 Type *ScalarRetTy = CI->getType(); 3470 SmallVector<Type *, 4> Tys, ScalarTys; 3471 for (auto &ArgOp : CI->arg_operands()) 3472 ScalarTys.push_back(ArgOp->getType()); 3473 3474 // Estimate cost of scalarized vector call. The source operands are assumed 3475 // to be vectors, so we need to extract individual elements from there, 3476 // execute VF scalar calls, and then gather the result into the vector return 3477 // value. 3478 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3479 TTI::TCK_RecipThroughput); 3480 if (VF.isScalar()) 3481 return ScalarCallCost; 3482 3483 // Compute corresponding vector type for return value and arguments. 3484 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3485 for (Type *ScalarTy : ScalarTys) 3486 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3487 3488 // Compute costs of unpacking argument values for the scalar calls and 3489 // packing the return values to a vector. 3490 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3491 3492 unsigned Cost = ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3493 3494 // If we can't emit a vector call for this function, then the currently found 3495 // cost is the cost we need to return. 3496 NeedToScalarize = true; 3497 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3498 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3499 3500 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3501 return Cost; 3502 3503 // If the corresponding vector cost is cheaper, return its cost. 3504 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3505 TTI::TCK_RecipThroughput); 3506 if (VectorCallCost < Cost) { 3507 NeedToScalarize = false; 3508 return VectorCallCost; 3509 } 3510 return Cost; 3511 } 3512 3513 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3514 ElementCount VF) { 3515 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3516 assert(ID && "Expected intrinsic call!"); 3517 3518 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3519 return TTI.getIntrinsicInstrCost(CostAttrs, 3520 TargetTransformInfo::TCK_RecipThroughput); 3521 } 3522 3523 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3524 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3525 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3526 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3527 } 3528 3529 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3530 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3531 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3532 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3533 } 3534 3535 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3536 // For every instruction `I` in MinBWs, truncate the operands, create a 3537 // truncated version of `I` and reextend its result. InstCombine runs 3538 // later and will remove any ext/trunc pairs. 3539 SmallPtrSet<Value *, 4> Erased; 3540 for (const auto &KV : Cost->getMinimalBitwidths()) { 3541 // If the value wasn't vectorized, we must maintain the original scalar 3542 // type. The absence of the value from VectorLoopValueMap indicates that it 3543 // wasn't vectorized. 3544 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3545 continue; 3546 for (unsigned Part = 0; Part < UF; ++Part) { 3547 Value *I = getOrCreateVectorValue(KV.first, Part); 3548 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3549 continue; 3550 Type *OriginalTy = I->getType(); 3551 Type *ScalarTruncatedTy = 3552 IntegerType::get(OriginalTy->getContext(), KV.second); 3553 auto *TruncatedTy = FixedVectorType::get( 3554 ScalarTruncatedTy, 3555 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3556 if (TruncatedTy == OriginalTy) 3557 continue; 3558 3559 IRBuilder<> B(cast<Instruction>(I)); 3560 auto ShrinkOperand = [&](Value *V) -> Value * { 3561 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3562 if (ZI->getSrcTy() == TruncatedTy) 3563 return ZI->getOperand(0); 3564 return B.CreateZExtOrTrunc(V, TruncatedTy); 3565 }; 3566 3567 // The actual instruction modification depends on the instruction type, 3568 // unfortunately. 3569 Value *NewI = nullptr; 3570 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3571 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3572 ShrinkOperand(BO->getOperand(1))); 3573 3574 // Any wrapping introduced by shrinking this operation shouldn't be 3575 // considered undefined behavior. So, we can't unconditionally copy 3576 // arithmetic wrapping flags to NewI. 3577 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3578 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3579 NewI = 3580 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3581 ShrinkOperand(CI->getOperand(1))); 3582 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3583 NewI = B.CreateSelect(SI->getCondition(), 3584 ShrinkOperand(SI->getTrueValue()), 3585 ShrinkOperand(SI->getFalseValue())); 3586 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3587 switch (CI->getOpcode()) { 3588 default: 3589 llvm_unreachable("Unhandled cast!"); 3590 case Instruction::Trunc: 3591 NewI = ShrinkOperand(CI->getOperand(0)); 3592 break; 3593 case Instruction::SExt: 3594 NewI = B.CreateSExtOrTrunc( 3595 CI->getOperand(0), 3596 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3597 break; 3598 case Instruction::ZExt: 3599 NewI = B.CreateZExtOrTrunc( 3600 CI->getOperand(0), 3601 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3602 break; 3603 } 3604 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3605 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3606 ->getNumElements(); 3607 auto *O0 = B.CreateZExtOrTrunc( 3608 SI->getOperand(0), 3609 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3610 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3611 ->getNumElements(); 3612 auto *O1 = B.CreateZExtOrTrunc( 3613 SI->getOperand(1), 3614 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3615 3616 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3617 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3618 // Don't do anything with the operands, just extend the result. 3619 continue; 3620 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3621 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3622 ->getNumElements(); 3623 auto *O0 = B.CreateZExtOrTrunc( 3624 IE->getOperand(0), 3625 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3626 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3627 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3628 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3629 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3630 ->getNumElements(); 3631 auto *O0 = B.CreateZExtOrTrunc( 3632 EE->getOperand(0), 3633 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3634 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3635 } else { 3636 // If we don't know what to do, be conservative and don't do anything. 3637 continue; 3638 } 3639 3640 // Lastly, extend the result. 3641 NewI->takeName(cast<Instruction>(I)); 3642 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3643 I->replaceAllUsesWith(Res); 3644 cast<Instruction>(I)->eraseFromParent(); 3645 Erased.insert(I); 3646 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3647 } 3648 } 3649 3650 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3651 for (const auto &KV : Cost->getMinimalBitwidths()) { 3652 // If the value wasn't vectorized, we must maintain the original scalar 3653 // type. The absence of the value from VectorLoopValueMap indicates that it 3654 // wasn't vectorized. 3655 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3656 continue; 3657 for (unsigned Part = 0; Part < UF; ++Part) { 3658 Value *I = getOrCreateVectorValue(KV.first, Part); 3659 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3660 if (Inst && Inst->use_empty()) { 3661 Value *NewI = Inst->getOperand(0); 3662 Inst->eraseFromParent(); 3663 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3664 } 3665 } 3666 } 3667 } 3668 3669 void InnerLoopVectorizer::fixVectorizedLoop() { 3670 // Insert truncates and extends for any truncated instructions as hints to 3671 // InstCombine. 3672 if (VF.isVector()) 3673 truncateToMinimalBitwidths(); 3674 3675 // Fix widened non-induction PHIs by setting up the PHI operands. 3676 if (OrigPHIsToFix.size()) { 3677 assert(EnableVPlanNativePath && 3678 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3679 fixNonInductionPHIs(); 3680 } 3681 3682 // At this point every instruction in the original loop is widened to a 3683 // vector form. Now we need to fix the recurrences in the loop. These PHI 3684 // nodes are currently empty because we did not want to introduce cycles. 3685 // This is the second stage of vectorizing recurrences. 3686 fixCrossIterationPHIs(); 3687 3688 // Forget the original basic block. 3689 PSE.getSE()->forgetLoop(OrigLoop); 3690 3691 // Fix-up external users of the induction variables. 3692 for (auto &Entry : Legal->getInductionVars()) 3693 fixupIVUsers(Entry.first, Entry.second, 3694 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3695 IVEndValues[Entry.first], LoopMiddleBlock); 3696 3697 fixLCSSAPHIs(); 3698 for (Instruction *PI : PredicatedInstructions) 3699 sinkScalarOperands(&*PI); 3700 3701 // Remove redundant induction instructions. 3702 cse(LoopVectorBody); 3703 3704 // Set/update profile weights for the vector and remainder loops as original 3705 // loop iterations are now distributed among them. Note that original loop 3706 // represented by LoopScalarBody becomes remainder loop after vectorization. 3707 // 3708 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3709 // end up getting slightly roughened result but that should be OK since 3710 // profile is not inherently precise anyway. Note also possible bypass of 3711 // vector code caused by legality checks is ignored, assigning all the weight 3712 // to the vector loop, optimistically. 3713 assert(!VF.isScalable() && 3714 "cannot use scalable ElementCount to determine unroll factor"); 3715 setProfileInfoAfterUnrolling( 3716 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 3717 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 3718 } 3719 3720 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3721 // In order to support recurrences we need to be able to vectorize Phi nodes. 3722 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3723 // stage #2: We now need to fix the recurrences by adding incoming edges to 3724 // the currently empty PHI nodes. At this point every instruction in the 3725 // original loop is widened to a vector form so we can use them to construct 3726 // the incoming edges. 3727 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3728 // Handle first-order recurrences and reductions that need to be fixed. 3729 if (Legal->isFirstOrderRecurrence(&Phi)) 3730 fixFirstOrderRecurrence(&Phi); 3731 else if (Legal->isReductionVariable(&Phi)) 3732 fixReduction(&Phi); 3733 } 3734 } 3735 3736 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3737 // This is the second phase of vectorizing first-order recurrences. An 3738 // overview of the transformation is described below. Suppose we have the 3739 // following loop. 3740 // 3741 // for (int i = 0; i < n; ++i) 3742 // b[i] = a[i] - a[i - 1]; 3743 // 3744 // There is a first-order recurrence on "a". For this loop, the shorthand 3745 // scalar IR looks like: 3746 // 3747 // scalar.ph: 3748 // s_init = a[-1] 3749 // br scalar.body 3750 // 3751 // scalar.body: 3752 // i = phi [0, scalar.ph], [i+1, scalar.body] 3753 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3754 // s2 = a[i] 3755 // b[i] = s2 - s1 3756 // br cond, scalar.body, ... 3757 // 3758 // In this example, s1 is a recurrence because it's value depends on the 3759 // previous iteration. In the first phase of vectorization, we created a 3760 // temporary value for s1. We now complete the vectorization and produce the 3761 // shorthand vector IR shown below (for VF = 4, UF = 1). 3762 // 3763 // vector.ph: 3764 // v_init = vector(..., ..., ..., a[-1]) 3765 // br vector.body 3766 // 3767 // vector.body 3768 // i = phi [0, vector.ph], [i+4, vector.body] 3769 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3770 // v2 = a[i, i+1, i+2, i+3]; 3771 // v3 = vector(v1(3), v2(0, 1, 2)) 3772 // b[i, i+1, i+2, i+3] = v2 - v3 3773 // br cond, vector.body, middle.block 3774 // 3775 // middle.block: 3776 // x = v2(3) 3777 // br scalar.ph 3778 // 3779 // scalar.ph: 3780 // s_init = phi [x, middle.block], [a[-1], otherwise] 3781 // br scalar.body 3782 // 3783 // After execution completes the vector loop, we extract the next value of 3784 // the recurrence (x) to use as the initial value in the scalar loop. 3785 3786 // Get the original loop preheader and single loop latch. 3787 auto *Preheader = OrigLoop->getLoopPreheader(); 3788 auto *Latch = OrigLoop->getLoopLatch(); 3789 3790 // Get the initial and previous values of the scalar recurrence. 3791 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3792 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3793 3794 // Create a vector from the initial value. 3795 auto *VectorInit = ScalarInit; 3796 if (VF.isVector()) { 3797 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3798 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 3799 VectorInit = Builder.CreateInsertElement( 3800 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3801 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 3802 } 3803 3804 // We constructed a temporary phi node in the first phase of vectorization. 3805 // This phi node will eventually be deleted. 3806 Builder.SetInsertPoint( 3807 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3808 3809 // Create a phi node for the new recurrence. The current value will either be 3810 // the initial value inserted into a vector or loop-varying vector value. 3811 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3812 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3813 3814 // Get the vectorized previous value of the last part UF - 1. It appears last 3815 // among all unrolled iterations, due to the order of their construction. 3816 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3817 3818 // Find and set the insertion point after the previous value if it is an 3819 // instruction. 3820 BasicBlock::iterator InsertPt; 3821 // Note that the previous value may have been constant-folded so it is not 3822 // guaranteed to be an instruction in the vector loop. 3823 // FIXME: Loop invariant values do not form recurrences. We should deal with 3824 // them earlier. 3825 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3826 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3827 else { 3828 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3829 if (isa<PHINode>(PreviousLastPart)) 3830 // If the previous value is a phi node, we should insert after all the phi 3831 // nodes in the block containing the PHI to avoid breaking basic block 3832 // verification. Note that the basic block may be different to 3833 // LoopVectorBody, in case we predicate the loop. 3834 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3835 else 3836 InsertPt = ++PreviousInst->getIterator(); 3837 } 3838 Builder.SetInsertPoint(&*InsertPt); 3839 3840 // We will construct a vector for the recurrence by combining the values for 3841 // the current and previous iterations. This is the required shuffle mask. 3842 assert(!VF.isScalable()); 3843 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 3844 ShuffleMask[0] = VF.getKnownMinValue() - 1; 3845 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 3846 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 3847 3848 // The vector from which to take the initial value for the current iteration 3849 // (actual or unrolled). Initially, this is the vector phi node. 3850 Value *Incoming = VecPhi; 3851 3852 // Shuffle the current and previous vector and update the vector parts. 3853 for (unsigned Part = 0; Part < UF; ++Part) { 3854 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3855 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3856 auto *Shuffle = 3857 VF.isVector() 3858 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 3859 : Incoming; 3860 PhiPart->replaceAllUsesWith(Shuffle); 3861 cast<Instruction>(PhiPart)->eraseFromParent(); 3862 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3863 Incoming = PreviousPart; 3864 } 3865 3866 // Fix the latch value of the new recurrence in the vector loop. 3867 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3868 3869 // Extract the last vector element in the middle block. This will be the 3870 // initial value for the recurrence when jumping to the scalar loop. 3871 auto *ExtractForScalar = Incoming; 3872 if (VF.isVector()) { 3873 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3874 ExtractForScalar = Builder.CreateExtractElement( 3875 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 3876 "vector.recur.extract"); 3877 } 3878 // Extract the second last element in the middle block if the 3879 // Phi is used outside the loop. We need to extract the phi itself 3880 // and not the last element (the phi update in the current iteration). This 3881 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3882 // when the scalar loop is not run at all. 3883 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3884 if (VF.isVector()) 3885 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3886 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 3887 "vector.recur.extract.for.phi"); 3888 // When loop is unrolled without vectorizing, initialize 3889 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3890 // `Incoming`. This is analogous to the vectorized case above: extracting the 3891 // second last element when VF > 1. 3892 else if (UF > 1) 3893 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3894 3895 // Fix the initial value of the original recurrence in the scalar loop. 3896 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3897 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3898 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3899 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3900 Start->addIncoming(Incoming, BB); 3901 } 3902 3903 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3904 Phi->setName("scalar.recur"); 3905 3906 // Finally, fix users of the recurrence outside the loop. The users will need 3907 // either the last value of the scalar recurrence or the last value of the 3908 // vector recurrence we extracted in the middle block. Since the loop is in 3909 // LCSSA form, we just need to find all the phi nodes for the original scalar 3910 // recurrence in the exit block, and then add an edge for the middle block. 3911 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3912 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3913 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3914 } 3915 } 3916 } 3917 3918 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3919 Constant *Zero = Builder.getInt32(0); 3920 3921 // Get it's reduction variable descriptor. 3922 assert(Legal->isReductionVariable(Phi) && 3923 "Unable to find the reduction variable"); 3924 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3925 3926 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3927 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3928 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3929 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3930 RdxDesc.getMinMaxRecurrenceKind(); 3931 setDebugLocFromInst(Builder, ReductionStartValue); 3932 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 3933 3934 // We need to generate a reduction vector from the incoming scalar. 3935 // To do so, we need to generate the 'identity' vector and override 3936 // one of the elements with the incoming scalar reduction. We need 3937 // to do it in the vector-loop preheader. 3938 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3939 3940 // This is the vector-clone of the value that leaves the loop. 3941 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3942 3943 // Find the reduction identity variable. Zero for addition, or, xor, 3944 // one for multiplication, -1 for And. 3945 Value *Identity; 3946 Value *VectorStart; 3947 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3948 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3949 // MinMax reduction have the start value as their identify. 3950 if (VF.isScalar() || IsInLoopReductionPhi) { 3951 VectorStart = Identity = ReductionStartValue; 3952 } else { 3953 VectorStart = Identity = 3954 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3955 } 3956 } else { 3957 // Handle other reduction kinds: 3958 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3959 RK, MinMaxKind, VecTy->getScalarType()); 3960 if (VF.isScalar() || IsInLoopReductionPhi) { 3961 Identity = Iden; 3962 // This vector is the Identity vector where the first element is the 3963 // incoming scalar reduction. 3964 VectorStart = ReductionStartValue; 3965 } else { 3966 Identity = ConstantVector::getSplat(VF, Iden); 3967 3968 // This vector is the Identity vector where the first element is the 3969 // incoming scalar reduction. 3970 VectorStart = 3971 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3972 } 3973 } 3974 3975 // Wrap flags are in general invalid after vectorization, clear them. 3976 clearReductionWrapFlags(RdxDesc); 3977 3978 // Fix the vector-loop phi. 3979 3980 // Reductions do not have to start at zero. They can start with 3981 // any loop invariant values. 3982 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3983 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3984 3985 for (unsigned Part = 0; Part < UF; ++Part) { 3986 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3987 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3988 // Make sure to add the reduction start value only to the 3989 // first unroll part. 3990 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3991 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3992 cast<PHINode>(VecRdxPhi) 3993 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3994 } 3995 3996 // Before each round, move the insertion point right between 3997 // the PHIs and the values we are going to write. 3998 // This allows us to write both PHINodes and the extractelement 3999 // instructions. 4000 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4001 4002 setDebugLocFromInst(Builder, LoopExitInst); 4003 4004 // If tail is folded by masking, the vector value to leave the loop should be 4005 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4006 // instead of the former. For an inloop reduction the reduction will already 4007 // be predicated, and does not need to be handled here. 4008 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4009 for (unsigned Part = 0; Part < UF; ++Part) { 4010 Value *VecLoopExitInst = 4011 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4012 Value *Sel = nullptr; 4013 for (User *U : VecLoopExitInst->users()) { 4014 if (isa<SelectInst>(U)) { 4015 assert(!Sel && "Reduction exit feeding two selects"); 4016 Sel = U; 4017 } else 4018 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4019 } 4020 assert(Sel && "Reduction exit feeds no select"); 4021 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 4022 4023 // If the target can create a predicated operator for the reduction at no 4024 // extra cost in the loop (for example a predicated vadd), it can be 4025 // cheaper for the select to remain in the loop than be sunk out of it, 4026 // and so use the select value for the phi instead of the old 4027 // LoopExitValue. 4028 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4029 if (PreferPredicatedReductionSelect || 4030 TTI->preferPredicatedReductionSelect( 4031 RdxDesc.getRecurrenceBinOp(), Phi->getType(), 4032 TargetTransformInfo::ReductionFlags())) { 4033 auto *VecRdxPhi = cast<PHINode>(getOrCreateVectorValue(Phi, Part)); 4034 VecRdxPhi->setIncomingValueForBlock( 4035 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4036 } 4037 } 4038 } 4039 4040 // If the vector reduction can be performed in a smaller type, we truncate 4041 // then extend the loop exit value to enable InstCombine to evaluate the 4042 // entire expression in the smaller type. 4043 if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) { 4044 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4045 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4046 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4047 Builder.SetInsertPoint( 4048 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4049 VectorParts RdxParts(UF); 4050 for (unsigned Part = 0; Part < UF; ++Part) { 4051 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4052 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4053 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4054 : Builder.CreateZExt(Trunc, VecTy); 4055 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4056 UI != RdxParts[Part]->user_end();) 4057 if (*UI != Trunc) { 4058 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4059 RdxParts[Part] = Extnd; 4060 } else { 4061 ++UI; 4062 } 4063 } 4064 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4065 for (unsigned Part = 0; Part < UF; ++Part) { 4066 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4067 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4068 } 4069 } 4070 4071 // Reduce all of the unrolled parts into a single vector. 4072 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4073 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4074 4075 // The middle block terminator has already been assigned a DebugLoc here (the 4076 // OrigLoop's single latch terminator). We want the whole middle block to 4077 // appear to execute on this line because: (a) it is all compiler generated, 4078 // (b) these instructions are always executed after evaluating the latch 4079 // conditional branch, and (c) other passes may add new predecessors which 4080 // terminate on this line. This is the easiest way to ensure we don't 4081 // accidentally cause an extra step back into the loop while debugging. 4082 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4083 for (unsigned Part = 1; Part < UF; ++Part) { 4084 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4085 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4086 // Floating point operations had to be 'fast' to enable the reduction. 4087 ReducedPartRdx = addFastMathFlag( 4088 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4089 ReducedPartRdx, "bin.rdx"), 4090 RdxDesc.getFastMathFlags()); 4091 else 4092 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 4093 RdxPart); 4094 } 4095 4096 // Create the reduction after the loop. Note that inloop reductions create the 4097 // target reduction in the loop using a Reduction recipe. 4098 if (VF.isVector() && !IsInLoopReductionPhi) { 4099 bool NoNaN = Legal->hasFunNoNaNAttr(); 4100 ReducedPartRdx = 4101 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4102 // If the reduction can be performed in a smaller type, we need to extend 4103 // the reduction to the wider type before we branch to the original loop. 4104 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4105 ReducedPartRdx = 4106 RdxDesc.isSigned() 4107 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4108 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4109 } 4110 4111 // Create a phi node that merges control-flow from the backedge-taken check 4112 // block and the middle block. 4113 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4114 LoopScalarPreHeader->getTerminator()); 4115 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4116 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4117 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4118 4119 // Now, we need to fix the users of the reduction variable 4120 // inside and outside of the scalar remainder loop. 4121 // We know that the loop is in LCSSA form. We need to update the 4122 // PHI nodes in the exit blocks. 4123 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4124 // All PHINodes need to have a single entry edge, or two if 4125 // we already fixed them. 4126 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4127 4128 // We found a reduction value exit-PHI. Update it with the 4129 // incoming bypass edge. 4130 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4131 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4132 } // end of the LCSSA phi scan. 4133 4134 // Fix the scalar loop reduction variable with the incoming reduction sum 4135 // from the vector body and from the backedge value. 4136 int IncomingEdgeBlockIdx = 4137 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4138 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4139 // Pick the other block. 4140 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4141 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4142 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4143 } 4144 4145 void InnerLoopVectorizer::clearReductionWrapFlags( 4146 RecurrenceDescriptor &RdxDesc) { 4147 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4148 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 4149 RK != RecurrenceDescriptor::RK_IntegerMult) 4150 return; 4151 4152 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4153 assert(LoopExitInstr && "null loop exit instruction"); 4154 SmallVector<Instruction *, 8> Worklist; 4155 SmallPtrSet<Instruction *, 8> Visited; 4156 Worklist.push_back(LoopExitInstr); 4157 Visited.insert(LoopExitInstr); 4158 4159 while (!Worklist.empty()) { 4160 Instruction *Cur = Worklist.pop_back_val(); 4161 if (isa<OverflowingBinaryOperator>(Cur)) 4162 for (unsigned Part = 0; Part < UF; ++Part) { 4163 Value *V = getOrCreateVectorValue(Cur, Part); 4164 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4165 } 4166 4167 for (User *U : Cur->users()) { 4168 Instruction *UI = cast<Instruction>(U); 4169 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4170 Visited.insert(UI).second) 4171 Worklist.push_back(UI); 4172 } 4173 } 4174 } 4175 4176 void InnerLoopVectorizer::fixLCSSAPHIs() { 4177 assert(!VF.isScalable() && "the code below assumes fixed width vectors"); 4178 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4179 if (LCSSAPhi.getNumIncomingValues() == 1) { 4180 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4181 // Non-instruction incoming values will have only one value. 4182 unsigned LastLane = 0; 4183 if (isa<Instruction>(IncomingValue)) 4184 LastLane = Cost->isUniformAfterVectorization( 4185 cast<Instruction>(IncomingValue), VF) 4186 ? 0 4187 : VF.getKnownMinValue() - 1; 4188 // Can be a loop invariant incoming value or the last scalar value to be 4189 // extracted from the vectorized loop. 4190 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4191 Value *lastIncomingValue = 4192 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 4193 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4194 } 4195 } 4196 } 4197 4198 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4199 // The basic block and loop containing the predicated instruction. 4200 auto *PredBB = PredInst->getParent(); 4201 auto *VectorLoop = LI->getLoopFor(PredBB); 4202 4203 // Initialize a worklist with the operands of the predicated instruction. 4204 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4205 4206 // Holds instructions that we need to analyze again. An instruction may be 4207 // reanalyzed if we don't yet know if we can sink it or not. 4208 SmallVector<Instruction *, 8> InstsToReanalyze; 4209 4210 // Returns true if a given use occurs in the predicated block. Phi nodes use 4211 // their operands in their corresponding predecessor blocks. 4212 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4213 auto *I = cast<Instruction>(U.getUser()); 4214 BasicBlock *BB = I->getParent(); 4215 if (auto *Phi = dyn_cast<PHINode>(I)) 4216 BB = Phi->getIncomingBlock( 4217 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4218 return BB == PredBB; 4219 }; 4220 4221 // Iteratively sink the scalarized operands of the predicated instruction 4222 // into the block we created for it. When an instruction is sunk, it's 4223 // operands are then added to the worklist. The algorithm ends after one pass 4224 // through the worklist doesn't sink a single instruction. 4225 bool Changed; 4226 do { 4227 // Add the instructions that need to be reanalyzed to the worklist, and 4228 // reset the changed indicator. 4229 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4230 InstsToReanalyze.clear(); 4231 Changed = false; 4232 4233 while (!Worklist.empty()) { 4234 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4235 4236 // We can't sink an instruction if it is a phi node, is already in the 4237 // predicated block, is not in the loop, or may have side effects. 4238 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4239 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4240 continue; 4241 4242 // It's legal to sink the instruction if all its uses occur in the 4243 // predicated block. Otherwise, there's nothing to do yet, and we may 4244 // need to reanalyze the instruction. 4245 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4246 InstsToReanalyze.push_back(I); 4247 continue; 4248 } 4249 4250 // Move the instruction to the beginning of the predicated block, and add 4251 // it's operands to the worklist. 4252 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4253 Worklist.insert(I->op_begin(), I->op_end()); 4254 4255 // The sinking may have enabled other instructions to be sunk, so we will 4256 // need to iterate. 4257 Changed = true; 4258 } 4259 } while (Changed); 4260 } 4261 4262 void InnerLoopVectorizer::fixNonInductionPHIs() { 4263 for (PHINode *OrigPhi : OrigPHIsToFix) { 4264 PHINode *NewPhi = 4265 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4266 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4267 4268 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4269 predecessors(OrigPhi->getParent())); 4270 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4271 predecessors(NewPhi->getParent())); 4272 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4273 "Scalar and Vector BB should have the same number of predecessors"); 4274 4275 // The insertion point in Builder may be invalidated by the time we get 4276 // here. Force the Builder insertion point to something valid so that we do 4277 // not run into issues during insertion point restore in 4278 // getOrCreateVectorValue calls below. 4279 Builder.SetInsertPoint(NewPhi); 4280 4281 // The predecessor order is preserved and we can rely on mapping between 4282 // scalar and vector block predecessors. 4283 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4284 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4285 4286 // When looking up the new scalar/vector values to fix up, use incoming 4287 // values from original phi. 4288 Value *ScIncV = 4289 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4290 4291 // Scalar incoming value may need a broadcast 4292 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4293 NewPhi->addIncoming(NewIncV, NewPredBB); 4294 } 4295 } 4296 } 4297 4298 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4299 VPUser &Operands, unsigned UF, 4300 ElementCount VF, bool IsPtrLoopInvariant, 4301 SmallBitVector &IsIndexLoopInvariant, 4302 VPTransformState &State) { 4303 // Construct a vector GEP by widening the operands of the scalar GEP as 4304 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4305 // results in a vector of pointers when at least one operand of the GEP 4306 // is vector-typed. Thus, to keep the representation compact, we only use 4307 // vector-typed operands for loop-varying values. 4308 4309 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4310 // If we are vectorizing, but the GEP has only loop-invariant operands, 4311 // the GEP we build (by only using vector-typed operands for 4312 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4313 // produce a vector of pointers, we need to either arbitrarily pick an 4314 // operand to broadcast, or broadcast a clone of the original GEP. 4315 // Here, we broadcast a clone of the original. 4316 // 4317 // TODO: If at some point we decide to scalarize instructions having 4318 // loop-invariant operands, this special case will no longer be 4319 // required. We would add the scalarization decision to 4320 // collectLoopScalars() and teach getVectorValue() to broadcast 4321 // the lane-zero scalar value. 4322 auto *Clone = Builder.Insert(GEP->clone()); 4323 for (unsigned Part = 0; Part < UF; ++Part) { 4324 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4325 State.set(VPDef, GEP, EntryPart, Part); 4326 addMetadata(EntryPart, GEP); 4327 } 4328 } else { 4329 // If the GEP has at least one loop-varying operand, we are sure to 4330 // produce a vector of pointers. But if we are only unrolling, we want 4331 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4332 // produce with the code below will be scalar (if VF == 1) or vector 4333 // (otherwise). Note that for the unroll-only case, we still maintain 4334 // values in the vector mapping with initVector, as we do for other 4335 // instructions. 4336 for (unsigned Part = 0; Part < UF; ++Part) { 4337 // The pointer operand of the new GEP. If it's loop-invariant, we 4338 // won't broadcast it. 4339 auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0}) 4340 : State.get(Operands.getOperand(0), Part); 4341 4342 // Collect all the indices for the new GEP. If any index is 4343 // loop-invariant, we won't broadcast it. 4344 SmallVector<Value *, 4> Indices; 4345 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4346 VPValue *Operand = Operands.getOperand(I); 4347 if (IsIndexLoopInvariant[I - 1]) 4348 Indices.push_back(State.get(Operand, {0, 0})); 4349 else 4350 Indices.push_back(State.get(Operand, Part)); 4351 } 4352 4353 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4354 // but it should be a vector, otherwise. 4355 auto *NewGEP = 4356 GEP->isInBounds() 4357 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4358 Indices) 4359 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4360 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4361 "NewGEP is not a pointer vector"); 4362 State.set(VPDef, GEP, NewGEP, Part); 4363 addMetadata(NewGEP, GEP); 4364 } 4365 } 4366 } 4367 4368 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4369 ElementCount VF) { 4370 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4371 PHINode *P = cast<PHINode>(PN); 4372 if (EnableVPlanNativePath) { 4373 // Currently we enter here in the VPlan-native path for non-induction 4374 // PHIs where all control flow is uniform. We simply widen these PHIs. 4375 // Create a vector phi with no operands - the vector phi operands will be 4376 // set at the end of vector code generation. 4377 Type *VecTy = 4378 (VF.isScalar()) ? PN->getType() : VectorType::get(PN->getType(), VF); 4379 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4380 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4381 OrigPHIsToFix.push_back(P); 4382 4383 return; 4384 } 4385 4386 assert(PN->getParent() == OrigLoop->getHeader() && 4387 "Non-header phis should have been handled elsewhere"); 4388 4389 // In order to support recurrences we need to be able to vectorize Phi nodes. 4390 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4391 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4392 // this value when we vectorize all of the instructions that use the PHI. 4393 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4394 for (unsigned Part = 0; Part < UF; ++Part) { 4395 // This is phase one of vectorizing PHIs. 4396 bool ScalarPHI = 4397 (VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4398 Type *VecTy = 4399 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), VF); 4400 Value *EntryPart = PHINode::Create( 4401 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4402 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4403 } 4404 return; 4405 } 4406 4407 setDebugLocFromInst(Builder, P); 4408 4409 // This PHINode must be an induction variable. 4410 // Make sure that we know about it. 4411 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4412 4413 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4414 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4415 4416 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4417 // which can be found from the original scalar operations. 4418 switch (II.getKind()) { 4419 case InductionDescriptor::IK_NoInduction: 4420 llvm_unreachable("Unknown induction"); 4421 case InductionDescriptor::IK_IntInduction: 4422 case InductionDescriptor::IK_FpInduction: 4423 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4424 case InductionDescriptor::IK_PtrInduction: { 4425 // Handle the pointer induction variable case. 4426 assert(P->getType()->isPointerTy() && "Unexpected type."); 4427 4428 if (Cost->isScalarAfterVectorization(P, VF)) { 4429 // This is the normalized GEP that starts counting at zero. 4430 Value *PtrInd = 4431 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4432 // Determine the number of scalars we need to generate for each unroll 4433 // iteration. If the instruction is uniform, we only need to generate the 4434 // first lane. Otherwise, we generate all VF values. 4435 unsigned Lanes = 4436 Cost->isUniformAfterVectorization(P, VF) ? 1 : VF.getKnownMinValue(); 4437 for (unsigned Part = 0; Part < UF; ++Part) { 4438 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4439 Constant *Idx = ConstantInt::get(PtrInd->getType(), 4440 Lane + Part * VF.getKnownMinValue()); 4441 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4442 Value *SclrGep = 4443 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4444 SclrGep->setName("next.gep"); 4445 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4446 } 4447 } 4448 return; 4449 } 4450 assert(isa<SCEVConstant>(II.getStep()) && 4451 "Induction step not a SCEV constant!"); 4452 Type *PhiType = II.getStep()->getType(); 4453 4454 // Build a pointer phi 4455 Value *ScalarStartValue = II.getStartValue(); 4456 Type *ScStValueType = ScalarStartValue->getType(); 4457 PHINode *NewPointerPhi = 4458 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4459 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4460 4461 // A pointer induction, performed by using a gep 4462 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4463 Instruction *InductionLoc = LoopLatch->getTerminator(); 4464 const SCEV *ScalarStep = II.getStep(); 4465 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4466 Value *ScalarStepValue = 4467 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4468 Value *InductionGEP = GetElementPtrInst::Create( 4469 ScStValueType->getPointerElementType(), NewPointerPhi, 4470 Builder.CreateMul( 4471 ScalarStepValue, 4472 ConstantInt::get(PhiType, VF.getKnownMinValue() * UF)), 4473 "ptr.ind", InductionLoc); 4474 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4475 4476 // Create UF many actual address geps that use the pointer 4477 // phi as base and a vectorized version of the step value 4478 // (<step*0, ..., step*N>) as offset. 4479 for (unsigned Part = 0; Part < UF; ++Part) { 4480 SmallVector<Constant *, 8> Indices; 4481 // Create a vector of consecutive numbers from zero to VF. 4482 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 4483 Indices.push_back( 4484 ConstantInt::get(PhiType, i + Part * VF.getKnownMinValue())); 4485 Constant *StartOffset = ConstantVector::get(Indices); 4486 4487 Value *GEP = Builder.CreateGEP( 4488 ScStValueType->getPointerElementType(), NewPointerPhi, 4489 Builder.CreateMul( 4490 StartOffset, 4491 Builder.CreateVectorSplat(VF.getKnownMinValue(), ScalarStepValue), 4492 "vector.gep")); 4493 VectorLoopValueMap.setVectorValue(P, Part, GEP); 4494 } 4495 } 4496 } 4497 } 4498 4499 /// A helper function for checking whether an integer division-related 4500 /// instruction may divide by zero (in which case it must be predicated if 4501 /// executed conditionally in the scalar code). 4502 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4503 /// Non-zero divisors that are non compile-time constants will not be 4504 /// converted into multiplication, so we will still end up scalarizing 4505 /// the division, but can do so w/o predication. 4506 static bool mayDivideByZero(Instruction &I) { 4507 assert((I.getOpcode() == Instruction::UDiv || 4508 I.getOpcode() == Instruction::SDiv || 4509 I.getOpcode() == Instruction::URem || 4510 I.getOpcode() == Instruction::SRem) && 4511 "Unexpected instruction"); 4512 Value *Divisor = I.getOperand(1); 4513 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4514 return !CInt || CInt->isZero(); 4515 } 4516 4517 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4518 VPUser &User, 4519 VPTransformState &State) { 4520 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4521 switch (I.getOpcode()) { 4522 case Instruction::Call: 4523 case Instruction::Br: 4524 case Instruction::PHI: 4525 case Instruction::GetElementPtr: 4526 case Instruction::Select: 4527 llvm_unreachable("This instruction is handled by a different recipe."); 4528 case Instruction::UDiv: 4529 case Instruction::SDiv: 4530 case Instruction::SRem: 4531 case Instruction::URem: 4532 case Instruction::Add: 4533 case Instruction::FAdd: 4534 case Instruction::Sub: 4535 case Instruction::FSub: 4536 case Instruction::FNeg: 4537 case Instruction::Mul: 4538 case Instruction::FMul: 4539 case Instruction::FDiv: 4540 case Instruction::FRem: 4541 case Instruction::Shl: 4542 case Instruction::LShr: 4543 case Instruction::AShr: 4544 case Instruction::And: 4545 case Instruction::Or: 4546 case Instruction::Xor: { 4547 // Just widen unops and binops. 4548 setDebugLocFromInst(Builder, &I); 4549 4550 for (unsigned Part = 0; Part < UF; ++Part) { 4551 SmallVector<Value *, 2> Ops; 4552 for (VPValue *VPOp : User.operands()) 4553 Ops.push_back(State.get(VPOp, Part)); 4554 4555 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4556 4557 if (auto *VecOp = dyn_cast<Instruction>(V)) 4558 VecOp->copyIRFlags(&I); 4559 4560 // Use this vector value for all users of the original instruction. 4561 State.set(Def, &I, V, Part); 4562 addMetadata(V, &I); 4563 } 4564 4565 break; 4566 } 4567 case Instruction::ICmp: 4568 case Instruction::FCmp: { 4569 // Widen compares. Generate vector compares. 4570 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4571 auto *Cmp = cast<CmpInst>(&I); 4572 setDebugLocFromInst(Builder, Cmp); 4573 for (unsigned Part = 0; Part < UF; ++Part) { 4574 Value *A = State.get(User.getOperand(0), Part); 4575 Value *B = State.get(User.getOperand(1), Part); 4576 Value *C = nullptr; 4577 if (FCmp) { 4578 // Propagate fast math flags. 4579 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4580 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4581 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4582 } else { 4583 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4584 } 4585 State.set(Def, &I, C, Part); 4586 addMetadata(C, &I); 4587 } 4588 4589 break; 4590 } 4591 4592 case Instruction::ZExt: 4593 case Instruction::SExt: 4594 case Instruction::FPToUI: 4595 case Instruction::FPToSI: 4596 case Instruction::FPExt: 4597 case Instruction::PtrToInt: 4598 case Instruction::IntToPtr: 4599 case Instruction::SIToFP: 4600 case Instruction::UIToFP: 4601 case Instruction::Trunc: 4602 case Instruction::FPTrunc: 4603 case Instruction::BitCast: { 4604 auto *CI = cast<CastInst>(&I); 4605 setDebugLocFromInst(Builder, CI); 4606 4607 /// Vectorize casts. 4608 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4609 Type *DestTy = 4610 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4611 4612 for (unsigned Part = 0; Part < UF; ++Part) { 4613 Value *A = State.get(User.getOperand(0), Part); 4614 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4615 State.set(Def, &I, Cast, Part); 4616 addMetadata(Cast, &I); 4617 } 4618 break; 4619 } 4620 default: 4621 // This instruction is not vectorized by simple widening. 4622 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4623 llvm_unreachable("Unhandled instruction!"); 4624 } // end of switch. 4625 } 4626 4627 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4628 VPUser &ArgOperands, 4629 VPTransformState &State) { 4630 assert(!isa<DbgInfoIntrinsic>(I) && 4631 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4632 setDebugLocFromInst(Builder, &I); 4633 4634 Module *M = I.getParent()->getParent()->getParent(); 4635 auto *CI = cast<CallInst>(&I); 4636 4637 SmallVector<Type *, 4> Tys; 4638 for (Value *ArgOperand : CI->arg_operands()) 4639 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4640 4641 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4642 4643 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4644 // version of the instruction. 4645 // Is it beneficial to perform intrinsic call compared to lib call? 4646 bool NeedToScalarize = false; 4647 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4648 bool UseVectorIntrinsic = 4649 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4650 assert((UseVectorIntrinsic || !NeedToScalarize) && 4651 "Instruction should be scalarized elsewhere."); 4652 4653 for (unsigned Part = 0; Part < UF; ++Part) { 4654 SmallVector<Value *, 4> Args; 4655 for (auto &I : enumerate(ArgOperands.operands())) { 4656 // Some intrinsics have a scalar argument - don't replace it with a 4657 // vector. 4658 Value *Arg; 4659 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4660 Arg = State.get(I.value(), Part); 4661 else 4662 Arg = State.get(I.value(), {0, 0}); 4663 Args.push_back(Arg); 4664 } 4665 4666 Function *VectorF; 4667 if (UseVectorIntrinsic) { 4668 // Use vector version of the intrinsic. 4669 Type *TysForDecl[] = {CI->getType()}; 4670 if (VF.isVector()) { 4671 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4672 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4673 } 4674 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4675 assert(VectorF && "Can't retrieve vector intrinsic."); 4676 } else { 4677 // Use vector version of the function call. 4678 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4679 #ifndef NDEBUG 4680 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4681 "Can't create vector function."); 4682 #endif 4683 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4684 } 4685 SmallVector<OperandBundleDef, 1> OpBundles; 4686 CI->getOperandBundlesAsDefs(OpBundles); 4687 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4688 4689 if (isa<FPMathOperator>(V)) 4690 V->copyFastMathFlags(CI); 4691 4692 State.set(Def, &I, V, Part); 4693 addMetadata(V, &I); 4694 } 4695 } 4696 4697 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 4698 VPUser &Operands, 4699 bool InvariantCond, 4700 VPTransformState &State) { 4701 setDebugLocFromInst(Builder, &I); 4702 4703 // The condition can be loop invariant but still defined inside the 4704 // loop. This means that we can't just use the original 'cond' value. 4705 // We have to take the 'vectorized' value and pick the first lane. 4706 // Instcombine will make this a no-op. 4707 auto *InvarCond = 4708 InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr; 4709 4710 for (unsigned Part = 0; Part < UF; ++Part) { 4711 Value *Cond = 4712 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4713 Value *Op0 = State.get(Operands.getOperand(1), Part); 4714 Value *Op1 = State.get(Operands.getOperand(2), Part); 4715 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4716 State.set(VPDef, &I, Sel, Part); 4717 addMetadata(Sel, &I); 4718 } 4719 } 4720 4721 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4722 // We should not collect Scalars more than once per VF. Right now, this 4723 // function is called from collectUniformsAndScalars(), which already does 4724 // this check. Collecting Scalars for VF=1 does not make any sense. 4725 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4726 "This function should not be visited twice for the same VF"); 4727 4728 SmallSetVector<Instruction *, 8> Worklist; 4729 4730 // These sets are used to seed the analysis with pointers used by memory 4731 // accesses that will remain scalar. 4732 SmallSetVector<Instruction *, 8> ScalarPtrs; 4733 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4734 auto *Latch = TheLoop->getLoopLatch(); 4735 4736 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4737 // The pointer operands of loads and stores will be scalar as long as the 4738 // memory access is not a gather or scatter operation. The value operand of a 4739 // store will remain scalar if the store is scalarized. 4740 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4741 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4742 assert(WideningDecision != CM_Unknown && 4743 "Widening decision should be ready at this moment"); 4744 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4745 if (Ptr == Store->getValueOperand()) 4746 return WideningDecision == CM_Scalarize; 4747 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4748 "Ptr is neither a value or pointer operand"); 4749 return WideningDecision != CM_GatherScatter; 4750 }; 4751 4752 // A helper that returns true if the given value is a bitcast or 4753 // getelementptr instruction contained in the loop. 4754 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4755 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4756 isa<GetElementPtrInst>(V)) && 4757 !TheLoop->isLoopInvariant(V); 4758 }; 4759 4760 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 4761 if (!isa<PHINode>(Ptr) || 4762 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 4763 return false; 4764 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 4765 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 4766 return false; 4767 return isScalarUse(MemAccess, Ptr); 4768 }; 4769 4770 // A helper that evaluates a memory access's use of a pointer. If the 4771 // pointer is actually the pointer induction of a loop, it is being 4772 // inserted into Worklist. If the use will be a scalar use, and the 4773 // pointer is only used by memory accesses, we place the pointer in 4774 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 4775 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4776 if (isScalarPtrInduction(MemAccess, Ptr)) { 4777 Worklist.insert(cast<Instruction>(Ptr)); 4778 Instruction *Update = cast<Instruction>( 4779 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 4780 Worklist.insert(Update); 4781 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 4782 << "\n"); 4783 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 4784 << "\n"); 4785 return; 4786 } 4787 // We only care about bitcast and getelementptr instructions contained in 4788 // the loop. 4789 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4790 return; 4791 4792 // If the pointer has already been identified as scalar (e.g., if it was 4793 // also identified as uniform), there's nothing to do. 4794 auto *I = cast<Instruction>(Ptr); 4795 if (Worklist.count(I)) 4796 return; 4797 4798 // If the use of the pointer will be a scalar use, and all users of the 4799 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4800 // place the pointer in PossibleNonScalarPtrs. 4801 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4802 return isa<LoadInst>(U) || isa<StoreInst>(U); 4803 })) 4804 ScalarPtrs.insert(I); 4805 else 4806 PossibleNonScalarPtrs.insert(I); 4807 }; 4808 4809 // We seed the scalars analysis with three classes of instructions: (1) 4810 // instructions marked uniform-after-vectorization and (2) bitcast, 4811 // getelementptr and (pointer) phi instructions used by memory accesses 4812 // requiring a scalar use. 4813 // 4814 // (1) Add to the worklist all instructions that have been identified as 4815 // uniform-after-vectorization. 4816 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4817 4818 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4819 // memory accesses requiring a scalar use. The pointer operands of loads and 4820 // stores will be scalar as long as the memory accesses is not a gather or 4821 // scatter operation. The value operand of a store will remain scalar if the 4822 // store is scalarized. 4823 for (auto *BB : TheLoop->blocks()) 4824 for (auto &I : *BB) { 4825 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4826 evaluatePtrUse(Load, Load->getPointerOperand()); 4827 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4828 evaluatePtrUse(Store, Store->getPointerOperand()); 4829 evaluatePtrUse(Store, Store->getValueOperand()); 4830 } 4831 } 4832 for (auto *I : ScalarPtrs) 4833 if (!PossibleNonScalarPtrs.count(I)) { 4834 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4835 Worklist.insert(I); 4836 } 4837 4838 // Insert the forced scalars. 4839 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4840 // induction variable when the PHI user is scalarized. 4841 auto ForcedScalar = ForcedScalars.find(VF); 4842 if (ForcedScalar != ForcedScalars.end()) 4843 for (auto *I : ForcedScalar->second) 4844 Worklist.insert(I); 4845 4846 // Expand the worklist by looking through any bitcasts and getelementptr 4847 // instructions we've already identified as scalar. This is similar to the 4848 // expansion step in collectLoopUniforms(); however, here we're only 4849 // expanding to include additional bitcasts and getelementptr instructions. 4850 unsigned Idx = 0; 4851 while (Idx != Worklist.size()) { 4852 Instruction *Dst = Worklist[Idx++]; 4853 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4854 continue; 4855 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4856 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4857 auto *J = cast<Instruction>(U); 4858 return !TheLoop->contains(J) || Worklist.count(J) || 4859 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4860 isScalarUse(J, Src)); 4861 })) { 4862 Worklist.insert(Src); 4863 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4864 } 4865 } 4866 4867 // An induction variable will remain scalar if all users of the induction 4868 // variable and induction variable update remain scalar. 4869 for (auto &Induction : Legal->getInductionVars()) { 4870 auto *Ind = Induction.first; 4871 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4872 4873 // If tail-folding is applied, the primary induction variable will be used 4874 // to feed a vector compare. 4875 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4876 continue; 4877 4878 // Determine if all users of the induction variable are scalar after 4879 // vectorization. 4880 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4881 auto *I = cast<Instruction>(U); 4882 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4883 }); 4884 if (!ScalarInd) 4885 continue; 4886 4887 // Determine if all users of the induction variable update instruction are 4888 // scalar after vectorization. 4889 auto ScalarIndUpdate = 4890 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4891 auto *I = cast<Instruction>(U); 4892 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4893 }); 4894 if (!ScalarIndUpdate) 4895 continue; 4896 4897 // The induction variable and its update instruction will remain scalar. 4898 Worklist.insert(Ind); 4899 Worklist.insert(IndUpdate); 4900 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4901 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4902 << "\n"); 4903 } 4904 4905 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4906 } 4907 4908 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, 4909 ElementCount VF) { 4910 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4911 if (!blockNeedsPredication(I->getParent())) 4912 return false; 4913 switch(I->getOpcode()) { 4914 default: 4915 break; 4916 case Instruction::Load: 4917 case Instruction::Store: { 4918 if (!Legal->isMaskRequired(I)) 4919 return false; 4920 auto *Ptr = getLoadStorePointerOperand(I); 4921 auto *Ty = getMemInstValueType(I); 4922 // We have already decided how to vectorize this instruction, get that 4923 // result. 4924 if (VF.isVector()) { 4925 InstWidening WideningDecision = getWideningDecision(I, VF); 4926 assert(WideningDecision != CM_Unknown && 4927 "Widening decision should be ready at this moment"); 4928 return WideningDecision == CM_Scalarize; 4929 } 4930 const Align Alignment = getLoadStoreAlignment(I); 4931 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4932 isLegalMaskedGather(Ty, Alignment)) 4933 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4934 isLegalMaskedScatter(Ty, Alignment)); 4935 } 4936 case Instruction::UDiv: 4937 case Instruction::SDiv: 4938 case Instruction::SRem: 4939 case Instruction::URem: 4940 return mayDivideByZero(*I); 4941 } 4942 return false; 4943 } 4944 4945 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4946 Instruction *I, ElementCount VF) { 4947 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4948 assert(getWideningDecision(I, VF) == CM_Unknown && 4949 "Decision should not be set yet."); 4950 auto *Group = getInterleavedAccessGroup(I); 4951 assert(Group && "Must have a group."); 4952 4953 // If the instruction's allocated size doesn't equal it's type size, it 4954 // requires padding and will be scalarized. 4955 auto &DL = I->getModule()->getDataLayout(); 4956 auto *ScalarTy = getMemInstValueType(I); 4957 if (hasIrregularType(ScalarTy, DL, VF)) 4958 return false; 4959 4960 // Check if masking is required. 4961 // A Group may need masking for one of two reasons: it resides in a block that 4962 // needs predication, or it was decided to use masking to deal with gaps. 4963 bool PredicatedAccessRequiresMasking = 4964 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4965 bool AccessWithGapsRequiresMasking = 4966 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4967 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4968 return true; 4969 4970 // If masked interleaving is required, we expect that the user/target had 4971 // enabled it, because otherwise it either wouldn't have been created or 4972 // it should have been invalidated by the CostModel. 4973 assert(useMaskedInterleavedAccesses(TTI) && 4974 "Masked interleave-groups for predicated accesses are not enabled."); 4975 4976 auto *Ty = getMemInstValueType(I); 4977 const Align Alignment = getLoadStoreAlignment(I); 4978 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4979 : TTI.isLegalMaskedStore(Ty, Alignment); 4980 } 4981 4982 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4983 Instruction *I, ElementCount VF) { 4984 // Get and ensure we have a valid memory instruction. 4985 LoadInst *LI = dyn_cast<LoadInst>(I); 4986 StoreInst *SI = dyn_cast<StoreInst>(I); 4987 assert((LI || SI) && "Invalid memory instruction"); 4988 4989 auto *Ptr = getLoadStorePointerOperand(I); 4990 4991 // In order to be widened, the pointer should be consecutive, first of all. 4992 if (!Legal->isConsecutivePtr(Ptr)) 4993 return false; 4994 4995 // If the instruction is a store located in a predicated block, it will be 4996 // scalarized. 4997 if (isScalarWithPredication(I)) 4998 return false; 4999 5000 // If the instruction's allocated size doesn't equal it's type size, it 5001 // requires padding and will be scalarized. 5002 auto &DL = I->getModule()->getDataLayout(); 5003 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5004 if (hasIrregularType(ScalarTy, DL, VF)) 5005 return false; 5006 5007 return true; 5008 } 5009 5010 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5011 // We should not collect Uniforms more than once per VF. Right now, 5012 // this function is called from collectUniformsAndScalars(), which 5013 // already does this check. Collecting Uniforms for VF=1 does not make any 5014 // sense. 5015 5016 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5017 "This function should not be visited twice for the same VF"); 5018 5019 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5020 // not analyze again. Uniforms.count(VF) will return 1. 5021 Uniforms[VF].clear(); 5022 5023 // We now know that the loop is vectorizable! 5024 // Collect instructions inside the loop that will remain uniform after 5025 // vectorization. 5026 5027 // Global values, params and instructions outside of current loop are out of 5028 // scope. 5029 auto isOutOfScope = [&](Value *V) -> bool { 5030 Instruction *I = dyn_cast<Instruction>(V); 5031 return (!I || !TheLoop->contains(I)); 5032 }; 5033 5034 SetVector<Instruction *> Worklist; 5035 BasicBlock *Latch = TheLoop->getLoopLatch(); 5036 5037 // Instructions that are scalar with predication must not be considered 5038 // uniform after vectorization, because that would create an erroneous 5039 // replicating region where only a single instance out of VF should be formed. 5040 // TODO: optimize such seldom cases if found important, see PR40816. 5041 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5042 if (isOutOfScope(I)) { 5043 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5044 << *I << "\n"); 5045 return; 5046 } 5047 if (isScalarWithPredication(I, VF)) { 5048 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5049 << *I << "\n"); 5050 return; 5051 } 5052 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5053 Worklist.insert(I); 5054 }; 5055 5056 // Start with the conditional branch. If the branch condition is an 5057 // instruction contained in the loop that is only used by the branch, it is 5058 // uniform. 5059 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5060 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5061 addToWorklistIfAllowed(Cmp); 5062 5063 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5064 // are pointers that are treated like consecutive pointers during 5065 // vectorization. The pointer operands of interleaved accesses are an 5066 // example. 5067 SmallSetVector<Value *, 8> ConsecutiveLikePtrs; 5068 5069 // Holds pointer operands of instructions that are possibly non-uniform. 5070 SmallPtrSet<Value *, 8> PossibleNonUniformPtrs; 5071 5072 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5073 InstWidening WideningDecision = getWideningDecision(I, VF); 5074 assert(WideningDecision != CM_Unknown && 5075 "Widening decision should be ready at this moment"); 5076 5077 // The address of a uniform mem op is itself uniform. We exclude stores 5078 // here as there's an assumption in the current code that all uses of 5079 // uniform instructions are uniform and, as noted below, uniform stores are 5080 // still handled via replication (i.e. aren't uniform after vectorization). 5081 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5082 assert(WideningDecision == CM_Scalarize); 5083 return true; 5084 } 5085 5086 return (WideningDecision == CM_Widen || 5087 WideningDecision == CM_Widen_Reverse || 5088 WideningDecision == CM_Interleave); 5089 }; 5090 5091 5092 // Returns true if Ptr is the pointer operand of a memory access instruction 5093 // I, and I is known to not require scalarization. 5094 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5095 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5096 }; 5097 5098 // Iterate over the instructions in the loop, and collect all 5099 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5100 // that a consecutive-like pointer operand will be scalarized, we collect it 5101 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5102 // getelementptr instruction can be used by both vectorized and scalarized 5103 // memory instructions. For example, if a loop loads and stores from the same 5104 // location, but the store is conditional, the store will be scalarized, and 5105 // the getelementptr won't remain uniform. 5106 for (auto *BB : TheLoop->blocks()) 5107 for (auto &I : *BB) { 5108 // If there's no pointer operand, there's nothing to do. 5109 auto *Ptr = getLoadStorePointerOperand(&I); 5110 if (!Ptr) 5111 continue; 5112 5113 // For now, avoid walking use lists in other functions. 5114 // TODO: Rewrite this algorithm from uses up. 5115 if (!isa<Instruction>(Ptr) && !isa<Argument>(Ptr)) 5116 continue; 5117 5118 // A uniform memory op is itself uniform. We exclude stores here as we 5119 // haven't yet added dedicated logic in the CLONE path and rely on 5120 // REPLICATE + DSE for correctness. 5121 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5122 addToWorklistIfAllowed(&I); 5123 5124 // True if all users of Ptr are memory accesses that have Ptr as their 5125 // pointer operand. Since loops are assumed to be in LCSSA form, this 5126 // disallows uses outside the loop as well. 5127 auto UsersAreMemAccesses = 5128 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5129 return getLoadStorePointerOperand(U) == Ptr; 5130 }); 5131 5132 // Ensure the memory instruction will not be scalarized or used by 5133 // gather/scatter, making its pointer operand non-uniform. If the pointer 5134 // operand is used by any instruction other than a memory access, we 5135 // conservatively assume the pointer operand may be non-uniform. 5136 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5137 PossibleNonUniformPtrs.insert(Ptr); 5138 5139 // If the memory instruction will be vectorized and its pointer operand 5140 // is consecutive-like, or interleaving - the pointer operand should 5141 // remain uniform. 5142 else 5143 ConsecutiveLikePtrs.insert(Ptr); 5144 } 5145 5146 // Add to the Worklist all consecutive and consecutive-like pointers that 5147 // aren't also identified as possibly non-uniform. 5148 for (auto *V : ConsecutiveLikePtrs) 5149 if (!PossibleNonUniformPtrs.count(V)) 5150 if (auto *I = dyn_cast<Instruction>(V)) 5151 addToWorklistIfAllowed(I); 5152 5153 // Expand Worklist in topological order: whenever a new instruction 5154 // is added , its users should be already inside Worklist. It ensures 5155 // a uniform instruction will only be used by uniform instructions. 5156 unsigned idx = 0; 5157 while (idx != Worklist.size()) { 5158 Instruction *I = Worklist[idx++]; 5159 5160 for (auto OV : I->operand_values()) { 5161 // isOutOfScope operands cannot be uniform instructions. 5162 if (isOutOfScope(OV)) 5163 continue; 5164 // First order recurrence Phi's should typically be considered 5165 // non-uniform. 5166 auto *OP = dyn_cast<PHINode>(OV); 5167 if (OP && Legal->isFirstOrderRecurrence(OP)) 5168 continue; 5169 // If all the users of the operand are uniform, then add the 5170 // operand into the uniform worklist. 5171 auto *OI = cast<Instruction>(OV); 5172 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5173 auto *J = cast<Instruction>(U); 5174 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5175 })) 5176 addToWorklistIfAllowed(OI); 5177 } 5178 } 5179 5180 // For an instruction to be added into Worklist above, all its users inside 5181 // the loop should also be in Worklist. However, this condition cannot be 5182 // true for phi nodes that form a cyclic dependence. We must process phi 5183 // nodes separately. An induction variable will remain uniform if all users 5184 // of the induction variable and induction variable update remain uniform. 5185 // The code below handles both pointer and non-pointer induction variables. 5186 for (auto &Induction : Legal->getInductionVars()) { 5187 auto *Ind = Induction.first; 5188 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5189 5190 // Determine if all users of the induction variable are uniform after 5191 // vectorization. 5192 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5193 auto *I = cast<Instruction>(U); 5194 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5195 isVectorizedMemAccessUse(I, Ind); 5196 }); 5197 if (!UniformInd) 5198 continue; 5199 5200 // Determine if all users of the induction variable update instruction are 5201 // uniform after vectorization. 5202 auto UniformIndUpdate = 5203 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5204 auto *I = cast<Instruction>(U); 5205 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5206 isVectorizedMemAccessUse(I, IndUpdate); 5207 }); 5208 if (!UniformIndUpdate) 5209 continue; 5210 5211 // The induction variable and its update instruction will remain uniform. 5212 addToWorklistIfAllowed(Ind); 5213 addToWorklistIfAllowed(IndUpdate); 5214 } 5215 5216 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5217 } 5218 5219 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5220 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5221 5222 if (Legal->getRuntimePointerChecking()->Need) { 5223 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5224 "runtime pointer checks needed. Enable vectorization of this " 5225 "loop with '#pragma clang loop vectorize(enable)' when " 5226 "compiling with -Os/-Oz", 5227 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5228 return true; 5229 } 5230 5231 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5232 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5233 "runtime SCEV checks needed. Enable vectorization of this " 5234 "loop with '#pragma clang loop vectorize(enable)' when " 5235 "compiling with -Os/-Oz", 5236 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5237 return true; 5238 } 5239 5240 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5241 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5242 reportVectorizationFailure("Runtime stride check for small trip count", 5243 "runtime stride == 1 checks needed. Enable vectorization of " 5244 "this loop without such check by compiling with -Os/-Oz", 5245 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5246 return true; 5247 } 5248 5249 return false; 5250 } 5251 5252 Optional<ElementCount> 5253 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5254 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5255 // TODO: It may by useful to do since it's still likely to be dynamically 5256 // uniform if the target can skip. 5257 reportVectorizationFailure( 5258 "Not inserting runtime ptr check for divergent target", 5259 "runtime pointer checks needed. Not enabled for divergent target", 5260 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5261 return None; 5262 } 5263 5264 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5265 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5266 if (TC == 1) { 5267 reportVectorizationFailure("Single iteration (non) loop", 5268 "loop trip count is one, irrelevant for vectorization", 5269 "SingleIterationLoop", ORE, TheLoop); 5270 return None; 5271 } 5272 5273 switch (ScalarEpilogueStatus) { 5274 case CM_ScalarEpilogueAllowed: 5275 return UserVF ? UserVF : computeFeasibleMaxVF(TC); 5276 case CM_ScalarEpilogueNotNeededUsePredicate: 5277 LLVM_DEBUG( 5278 dbgs() << "LV: vector predicate hint/switch found.\n" 5279 << "LV: Not allowing scalar epilogue, creating predicated " 5280 << "vector loop.\n"); 5281 break; 5282 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5283 // fallthrough as a special case of OptForSize 5284 case CM_ScalarEpilogueNotAllowedOptSize: 5285 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5286 LLVM_DEBUG( 5287 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5288 else 5289 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5290 << "count.\n"); 5291 5292 // Bail if runtime checks are required, which are not good when optimising 5293 // for size. 5294 if (runtimeChecksRequired()) 5295 return None; 5296 break; 5297 } 5298 5299 // Now try the tail folding 5300 5301 // Invalidate interleave groups that require an epilogue if we can't mask 5302 // the interleave-group. 5303 if (!useMaskedInterleavedAccesses(TTI)) { 5304 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5305 "No decisions should have been taken at this point"); 5306 // Note: There is no need to invalidate any cost modeling decisions here, as 5307 // non where taken so far. 5308 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5309 } 5310 5311 ElementCount MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC); 5312 assert(!MaxVF.isScalable() && 5313 "Scalable vectors do not yet support tail folding"); 5314 assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) && 5315 "MaxVF must be a power of 2"); 5316 unsigned MaxVFtimesIC = 5317 UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue(); 5318 if (TC > 0 && TC % MaxVFtimesIC == 0) { 5319 // Accept MaxVF if we do not have a tail. 5320 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5321 return MaxVF; 5322 } 5323 5324 // If we don't know the precise trip count, or if the trip count that we 5325 // found modulo the vectorization factor is not zero, try to fold the tail 5326 // by masking. 5327 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5328 if (Legal->prepareToFoldTailByMasking()) { 5329 FoldTailByMasking = true; 5330 return MaxVF; 5331 } 5332 5333 // If there was a tail-folding hint/switch, but we can't fold the tail by 5334 // masking, fallback to a vectorization with a scalar epilogue. 5335 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5336 if (PreferPredicateOverEpilogue == PreferPredicateTy::PredicateOrDontVectorize) { 5337 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5338 return None; 5339 } 5340 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5341 "scalar epilogue instead.\n"); 5342 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5343 return MaxVF; 5344 } 5345 5346 if (TC == 0) { 5347 reportVectorizationFailure( 5348 "Unable to calculate the loop count due to complex control flow", 5349 "unable to calculate the loop count due to complex control flow", 5350 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5351 return None; 5352 } 5353 5354 reportVectorizationFailure( 5355 "Cannot optimize for size and vectorize at the same time.", 5356 "cannot optimize for size and vectorize at the same time. " 5357 "Enable vectorization of this loop with '#pragma clang loop " 5358 "vectorize(enable)' when compiling with -Os/-Oz", 5359 "NoTailLoopWithOptForSize", ORE, TheLoop); 5360 return None; 5361 } 5362 5363 ElementCount 5364 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5365 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5366 unsigned SmallestType, WidestType; 5367 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5368 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5369 5370 // Get the maximum safe dependence distance in bits computed by LAA. 5371 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5372 // the memory accesses that is most restrictive (involved in the smallest 5373 // dependence distance). 5374 unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits(); 5375 5376 WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits); 5377 5378 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5379 // Note that both WidestRegister and WidestType may not be a powers of 2. 5380 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5381 5382 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5383 << " / " << WidestType << " bits.\n"); 5384 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5385 << WidestRegister << " bits.\n"); 5386 5387 assert(MaxVectorSize <= WidestRegister && 5388 "Did not expect to pack so many elements" 5389 " into one vector!"); 5390 if (MaxVectorSize == 0) { 5391 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5392 MaxVectorSize = 1; 5393 return ElementCount::getFixed(MaxVectorSize); 5394 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5395 isPowerOf2_32(ConstTripCount)) { 5396 // We need to clamp the VF to be the ConstTripCount. There is no point in 5397 // choosing a higher viable VF as done in the loop below. 5398 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5399 << ConstTripCount << "\n"); 5400 MaxVectorSize = ConstTripCount; 5401 return ElementCount::getFixed(MaxVectorSize); 5402 } 5403 5404 unsigned MaxVF = MaxVectorSize; 5405 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5406 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5407 // Collect all viable vectorization factors larger than the default MaxVF 5408 // (i.e. MaxVectorSize). 5409 SmallVector<ElementCount, 8> VFs; 5410 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5411 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5412 VFs.push_back(ElementCount::getFixed(VS)); 5413 5414 // For each VF calculate its register usage. 5415 auto RUs = calculateRegisterUsage(VFs); 5416 5417 // Select the largest VF which doesn't require more registers than existing 5418 // ones. 5419 for (int i = RUs.size() - 1; i >= 0; --i) { 5420 bool Selected = true; 5421 for (auto& pair : RUs[i].MaxLocalUsers) { 5422 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5423 if (pair.second > TargetNumRegisters) 5424 Selected = false; 5425 } 5426 if (Selected) { 5427 MaxVF = VFs[i].getKnownMinValue(); 5428 break; 5429 } 5430 } 5431 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5432 if (MaxVF < MinVF) { 5433 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5434 << ") with target's minimum: " << MinVF << '\n'); 5435 MaxVF = MinVF; 5436 } 5437 } 5438 } 5439 return ElementCount::getFixed(MaxVF); 5440 } 5441 5442 VectorizationFactor 5443 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 5444 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 5445 5446 float Cost = expectedCost(ElementCount::getFixed(1)).first; 5447 const float ScalarCost = Cost; 5448 unsigned Width = 1; 5449 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5450 5451 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5452 if (ForceVectorization && MaxVF.isVector()) { 5453 // Ignore scalar width, because the user explicitly wants vectorization. 5454 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5455 // evaluation. 5456 Cost = std::numeric_limits<float>::max(); 5457 } 5458 5459 for (unsigned i = 2; i <= MaxVF.getFixedValue(); i *= 2) { 5460 // Notice that the vector loop needs to be executed less times, so 5461 // we need to divide the cost of the vector loops by the width of 5462 // the vector elements. 5463 VectorizationCostTy C = expectedCost(ElementCount::getFixed(i)); 5464 float VectorCost = C.first / (float)i; 5465 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5466 << " costs: " << (int)VectorCost << ".\n"); 5467 if (!C.second && !ForceVectorization) { 5468 LLVM_DEBUG( 5469 dbgs() << "LV: Not considering vector loop of width " << i 5470 << " because it will not generate any vector instructions.\n"); 5471 continue; 5472 } 5473 if (VectorCost < Cost) { 5474 Cost = VectorCost; 5475 Width = i; 5476 } 5477 } 5478 5479 if (!EnableCondStoresVectorization && NumPredStores) { 5480 reportVectorizationFailure("There are conditional stores.", 5481 "store that is conditionally executed prevents vectorization", 5482 "ConditionalStore", ORE, TheLoop); 5483 Width = 1; 5484 Cost = ScalarCost; 5485 } 5486 5487 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5488 << "LV: Vectorization seems to be not beneficial, " 5489 << "but was forced by a user.\n"); 5490 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5491 VectorizationFactor Factor = {ElementCount::getFixed(Width), 5492 (unsigned)(Width * Cost)}; 5493 return Factor; 5494 } 5495 5496 std::pair<unsigned, unsigned> 5497 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5498 unsigned MinWidth = -1U; 5499 unsigned MaxWidth = 8; 5500 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5501 5502 // For each block. 5503 for (BasicBlock *BB : TheLoop->blocks()) { 5504 // For each instruction in the loop. 5505 for (Instruction &I : BB->instructionsWithoutDebug()) { 5506 Type *T = I.getType(); 5507 5508 // Skip ignored values. 5509 if (ValuesToIgnore.count(&I)) 5510 continue; 5511 5512 // Only examine Loads, Stores and PHINodes. 5513 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5514 continue; 5515 5516 // Examine PHI nodes that are reduction variables. Update the type to 5517 // account for the recurrence type. 5518 if (auto *PN = dyn_cast<PHINode>(&I)) { 5519 if (!Legal->isReductionVariable(PN)) 5520 continue; 5521 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5522 T = RdxDesc.getRecurrenceType(); 5523 } 5524 5525 // Examine the stored values. 5526 if (auto *ST = dyn_cast<StoreInst>(&I)) 5527 T = ST->getValueOperand()->getType(); 5528 5529 // Ignore loaded pointer types and stored pointer types that are not 5530 // vectorizable. 5531 // 5532 // FIXME: The check here attempts to predict whether a load or store will 5533 // be vectorized. We only know this for certain after a VF has 5534 // been selected. Here, we assume that if an access can be 5535 // vectorized, it will be. We should also look at extending this 5536 // optimization to non-pointer types. 5537 // 5538 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5539 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5540 continue; 5541 5542 MinWidth = std::min(MinWidth, 5543 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5544 MaxWidth = std::max(MaxWidth, 5545 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5546 } 5547 } 5548 5549 return {MinWidth, MaxWidth}; 5550 } 5551 5552 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5553 unsigned LoopCost) { 5554 // -- The interleave heuristics -- 5555 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5556 // There are many micro-architectural considerations that we can't predict 5557 // at this level. For example, frontend pressure (on decode or fetch) due to 5558 // code size, or the number and capabilities of the execution ports. 5559 // 5560 // We use the following heuristics to select the interleave count: 5561 // 1. If the code has reductions, then we interleave to break the cross 5562 // iteration dependency. 5563 // 2. If the loop is really small, then we interleave to reduce the loop 5564 // overhead. 5565 // 3. We don't interleave if we think that we will spill registers to memory 5566 // due to the increased register pressure. 5567 5568 if (!isScalarEpilogueAllowed()) 5569 return 1; 5570 5571 // We used the distance for the interleave count. 5572 if (Legal->getMaxSafeDepDistBytes() != -1U) 5573 return 1; 5574 5575 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5576 const bool HasReductions = !Legal->getReductionVars().empty(); 5577 // Do not interleave loops with a relatively small known or estimated trip 5578 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5579 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5580 // because with the above conditions interleaving can expose ILP and break 5581 // cross iteration dependences for reductions. 5582 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5583 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5584 return 1; 5585 5586 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5587 // We divide by these constants so assume that we have at least one 5588 // instruction that uses at least one register. 5589 for (auto& pair : R.MaxLocalUsers) { 5590 pair.second = std::max(pair.second, 1U); 5591 } 5592 5593 // We calculate the interleave count using the following formula. 5594 // Subtract the number of loop invariants from the number of available 5595 // registers. These registers are used by all of the interleaved instances. 5596 // Next, divide the remaining registers by the number of registers that is 5597 // required by the loop, in order to estimate how many parallel instances 5598 // fit without causing spills. All of this is rounded down if necessary to be 5599 // a power of two. We want power of two interleave count to simplify any 5600 // addressing operations or alignment considerations. 5601 // We also want power of two interleave counts to ensure that the induction 5602 // variable of the vector loop wraps to zero, when tail is folded by masking; 5603 // this currently happens when OptForSize, in which case IC is set to 1 above. 5604 unsigned IC = UINT_MAX; 5605 5606 for (auto& pair : R.MaxLocalUsers) { 5607 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5608 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5609 << " registers of " 5610 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5611 if (VF.isScalar()) { 5612 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5613 TargetNumRegisters = ForceTargetNumScalarRegs; 5614 } else { 5615 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5616 TargetNumRegisters = ForceTargetNumVectorRegs; 5617 } 5618 unsigned MaxLocalUsers = pair.second; 5619 unsigned LoopInvariantRegs = 0; 5620 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5621 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5622 5623 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5624 // Don't count the induction variable as interleaved. 5625 if (EnableIndVarRegisterHeur) { 5626 TmpIC = 5627 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5628 std::max(1U, (MaxLocalUsers - 1))); 5629 } 5630 5631 IC = std::min(IC, TmpIC); 5632 } 5633 5634 // Clamp the interleave ranges to reasonable counts. 5635 assert(!VF.isScalable() && "scalable vectors not yet supported."); 5636 unsigned MaxInterleaveCount = 5637 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5638 5639 // Check if the user has overridden the max. 5640 if (VF.isScalar()) { 5641 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5642 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5643 } else { 5644 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5645 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5646 } 5647 5648 // If trip count is known or estimated compile time constant, limit the 5649 // interleave count to be less than the trip count divided by VF, provided it 5650 // is at least 1. 5651 if (BestKnownTC) { 5652 MaxInterleaveCount = 5653 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5654 // Make sure MaxInterleaveCount is greater than 0. 5655 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5656 } 5657 5658 assert(MaxInterleaveCount > 0 && 5659 "Maximum interleave count must be greater than 0"); 5660 5661 // Clamp the calculated IC to be between the 1 and the max interleave count 5662 // that the target and trip count allows. 5663 if (IC > MaxInterleaveCount) 5664 IC = MaxInterleaveCount; 5665 else 5666 // Make sure IC is greater than 0. 5667 IC = std::max(1u, IC); 5668 5669 assert(IC > 0 && "Interleave count must be greater than 0."); 5670 5671 // If we did not calculate the cost for VF (because the user selected the VF) 5672 // then we calculate the cost of VF here. 5673 if (LoopCost == 0) 5674 LoopCost = expectedCost(VF).first; 5675 5676 assert(LoopCost && "Non-zero loop cost expected"); 5677 5678 // Interleave if we vectorized this loop and there is a reduction that could 5679 // benefit from interleaving. 5680 if (VF.isVector() && HasReductions) { 5681 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5682 return IC; 5683 } 5684 5685 // Note that if we've already vectorized the loop we will have done the 5686 // runtime check and so interleaving won't require further checks. 5687 bool InterleavingRequiresRuntimePointerCheck = 5688 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5689 5690 // We want to interleave small loops in order to reduce the loop overhead and 5691 // potentially expose ILP opportunities. 5692 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5693 << "LV: IC is " << IC << '\n' 5694 << "LV: VF is " << VF.getKnownMinValue() << '\n'); 5695 const bool AggressivelyInterleaveReductions = 5696 TTI.enableAggressiveInterleaving(HasReductions); 5697 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5698 // We assume that the cost overhead is 1 and we use the cost model 5699 // to estimate the cost of the loop and interleave until the cost of the 5700 // loop overhead is about 5% of the cost of the loop. 5701 unsigned SmallIC = 5702 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5703 5704 // Interleave until store/load ports (estimated by max interleave count) are 5705 // saturated. 5706 unsigned NumStores = Legal->getNumStores(); 5707 unsigned NumLoads = Legal->getNumLoads(); 5708 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5709 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5710 5711 // If we have a scalar reduction (vector reductions are already dealt with 5712 // by this point), we can increase the critical path length if the loop 5713 // we're interleaving is inside another loop. Limit, by default to 2, so the 5714 // critical path only gets increased by one reduction operation. 5715 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5716 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5717 SmallIC = std::min(SmallIC, F); 5718 StoresIC = std::min(StoresIC, F); 5719 LoadsIC = std::min(LoadsIC, F); 5720 } 5721 5722 if (EnableLoadStoreRuntimeInterleave && 5723 std::max(StoresIC, LoadsIC) > SmallIC) { 5724 LLVM_DEBUG( 5725 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5726 return std::max(StoresIC, LoadsIC); 5727 } 5728 5729 // If there are scalar reductions and TTI has enabled aggressive 5730 // interleaving for reductions, we will interleave to expose ILP. 5731 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5732 AggressivelyInterleaveReductions) { 5733 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5734 // Interleave no less than SmallIC but not as aggressive as the normal IC 5735 // to satisfy the rare situation when resources are too limited. 5736 return std::max(IC / 2, SmallIC); 5737 } else { 5738 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5739 return SmallIC; 5740 } 5741 } 5742 5743 // Interleave if this is a large loop (small loops are already dealt with by 5744 // this point) that could benefit from interleaving. 5745 if (AggressivelyInterleaveReductions) { 5746 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5747 return IC; 5748 } 5749 5750 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5751 return 1; 5752 } 5753 5754 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5755 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5756 // This function calculates the register usage by measuring the highest number 5757 // of values that are alive at a single location. Obviously, this is a very 5758 // rough estimation. We scan the loop in a topological order in order and 5759 // assign a number to each instruction. We use RPO to ensure that defs are 5760 // met before their users. We assume that each instruction that has in-loop 5761 // users starts an interval. We record every time that an in-loop value is 5762 // used, so we have a list of the first and last occurrences of each 5763 // instruction. Next, we transpose this data structure into a multi map that 5764 // holds the list of intervals that *end* at a specific location. This multi 5765 // map allows us to perform a linear search. We scan the instructions linearly 5766 // and record each time that a new interval starts, by placing it in a set. 5767 // If we find this value in the multi-map then we remove it from the set. 5768 // The max register usage is the maximum size of the set. 5769 // We also search for instructions that are defined outside the loop, but are 5770 // used inside the loop. We need this number separately from the max-interval 5771 // usage number because when we unroll, loop-invariant values do not take 5772 // more register. 5773 LoopBlocksDFS DFS(TheLoop); 5774 DFS.perform(LI); 5775 5776 RegisterUsage RU; 5777 5778 // Each 'key' in the map opens a new interval. The values 5779 // of the map are the index of the 'last seen' usage of the 5780 // instruction that is the key. 5781 using IntervalMap = DenseMap<Instruction *, unsigned>; 5782 5783 // Maps instruction to its index. 5784 SmallVector<Instruction *, 64> IdxToInstr; 5785 // Marks the end of each interval. 5786 IntervalMap EndPoint; 5787 // Saves the list of instruction indices that are used in the loop. 5788 SmallPtrSet<Instruction *, 8> Ends; 5789 // Saves the list of values that are used in the loop but are 5790 // defined outside the loop, such as arguments and constants. 5791 SmallPtrSet<Value *, 8> LoopInvariants; 5792 5793 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5794 for (Instruction &I : BB->instructionsWithoutDebug()) { 5795 IdxToInstr.push_back(&I); 5796 5797 // Save the end location of each USE. 5798 for (Value *U : I.operands()) { 5799 auto *Instr = dyn_cast<Instruction>(U); 5800 5801 // Ignore non-instruction values such as arguments, constants, etc. 5802 if (!Instr) 5803 continue; 5804 5805 // If this instruction is outside the loop then record it and continue. 5806 if (!TheLoop->contains(Instr)) { 5807 LoopInvariants.insert(Instr); 5808 continue; 5809 } 5810 5811 // Overwrite previous end points. 5812 EndPoint[Instr] = IdxToInstr.size(); 5813 Ends.insert(Instr); 5814 } 5815 } 5816 } 5817 5818 // Saves the list of intervals that end with the index in 'key'. 5819 using InstrList = SmallVector<Instruction *, 2>; 5820 DenseMap<unsigned, InstrList> TransposeEnds; 5821 5822 // Transpose the EndPoints to a list of values that end at each index. 5823 for (auto &Interval : EndPoint) 5824 TransposeEnds[Interval.second].push_back(Interval.first); 5825 5826 SmallPtrSet<Instruction *, 8> OpenIntervals; 5827 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5828 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5829 5830 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5831 5832 // A lambda that gets the register usage for the given type and VF. 5833 const auto &TTICapture = TTI; 5834 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 5835 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5836 return 0U; 5837 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 5838 }; 5839 5840 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5841 Instruction *I = IdxToInstr[i]; 5842 5843 // Remove all of the instructions that end at this location. 5844 InstrList &List = TransposeEnds[i]; 5845 for (Instruction *ToRemove : List) 5846 OpenIntervals.erase(ToRemove); 5847 5848 // Ignore instructions that are never used within the loop. 5849 if (!Ends.count(I)) 5850 continue; 5851 5852 // Skip ignored values. 5853 if (ValuesToIgnore.count(I)) 5854 continue; 5855 5856 // For each VF find the maximum usage of registers. 5857 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5858 // Count the number of live intervals. 5859 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5860 5861 if (VFs[j].isScalar()) { 5862 for (auto Inst : OpenIntervals) { 5863 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5864 if (RegUsage.find(ClassID) == RegUsage.end()) 5865 RegUsage[ClassID] = 1; 5866 else 5867 RegUsage[ClassID] += 1; 5868 } 5869 } else { 5870 collectUniformsAndScalars(VFs[j]); 5871 for (auto Inst : OpenIntervals) { 5872 // Skip ignored values for VF > 1. 5873 if (VecValuesToIgnore.count(Inst)) 5874 continue; 5875 if (isScalarAfterVectorization(Inst, VFs[j])) { 5876 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5877 if (RegUsage.find(ClassID) == RegUsage.end()) 5878 RegUsage[ClassID] = 1; 5879 else 5880 RegUsage[ClassID] += 1; 5881 } else { 5882 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5883 if (RegUsage.find(ClassID) == RegUsage.end()) 5884 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5885 else 5886 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5887 } 5888 } 5889 } 5890 5891 for (auto& pair : RegUsage) { 5892 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5893 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5894 else 5895 MaxUsages[j][pair.first] = pair.second; 5896 } 5897 } 5898 5899 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5900 << OpenIntervals.size() << '\n'); 5901 5902 // Add the current instruction to the list of open intervals. 5903 OpenIntervals.insert(I); 5904 } 5905 5906 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5907 SmallMapVector<unsigned, unsigned, 4> Invariant; 5908 5909 for (auto Inst : LoopInvariants) { 5910 unsigned Usage = 5911 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5912 unsigned ClassID = 5913 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 5914 if (Invariant.find(ClassID) == Invariant.end()) 5915 Invariant[ClassID] = Usage; 5916 else 5917 Invariant[ClassID] += Usage; 5918 } 5919 5920 LLVM_DEBUG({ 5921 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5922 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5923 << " item\n"; 5924 for (const auto &pair : MaxUsages[i]) { 5925 dbgs() << "LV(REG): RegisterClass: " 5926 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5927 << " registers\n"; 5928 } 5929 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5930 << " item\n"; 5931 for (const auto &pair : Invariant) { 5932 dbgs() << "LV(REG): RegisterClass: " 5933 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5934 << " registers\n"; 5935 } 5936 }); 5937 5938 RU.LoopInvariantRegs = Invariant; 5939 RU.MaxLocalUsers = MaxUsages[i]; 5940 RUs[i] = RU; 5941 } 5942 5943 return RUs; 5944 } 5945 5946 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5947 // TODO: Cost model for emulated masked load/store is completely 5948 // broken. This hack guides the cost model to use an artificially 5949 // high enough value to practically disable vectorization with such 5950 // operations, except where previously deployed legality hack allowed 5951 // using very low cost values. This is to avoid regressions coming simply 5952 // from moving "masked load/store" check from legality to cost model. 5953 // Masked Load/Gather emulation was previously never allowed. 5954 // Limited number of Masked Store/Scatter emulation was allowed. 5955 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5956 return isa<LoadInst>(I) || 5957 (isa<StoreInst>(I) && 5958 NumPredStores > NumberOfStoresToPredicate); 5959 } 5960 5961 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 5962 // If we aren't vectorizing the loop, or if we've already collected the 5963 // instructions to scalarize, there's nothing to do. Collection may already 5964 // have occurred if we have a user-selected VF and are now computing the 5965 // expected cost for interleaving. 5966 if (VF.isScalar() || VF.isZero() || 5967 InstsToScalarize.find(VF) != InstsToScalarize.end()) 5968 return; 5969 5970 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5971 // not profitable to scalarize any instructions, the presence of VF in the 5972 // map will indicate that we've analyzed it already. 5973 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5974 5975 // Find all the instructions that are scalar with predication in the loop and 5976 // determine if it would be better to not if-convert the blocks they are in. 5977 // If so, we also record the instructions to scalarize. 5978 for (BasicBlock *BB : TheLoop->blocks()) { 5979 if (!blockNeedsPredication(BB)) 5980 continue; 5981 for (Instruction &I : *BB) 5982 if (isScalarWithPredication(&I)) { 5983 ScalarCostsTy ScalarCosts; 5984 // Do not apply discount logic if hacked cost is needed 5985 // for emulated masked memrefs. 5986 if (!useEmulatedMaskMemRefHack(&I) && 5987 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5988 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5989 // Remember that BB will remain after vectorization. 5990 PredicatedBBsAfterVectorization.insert(BB); 5991 } 5992 } 5993 } 5994 5995 int LoopVectorizationCostModel::computePredInstDiscount( 5996 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5997 ElementCount VF) { 5998 assert(!isUniformAfterVectorization(PredInst, VF) && 5999 "Instruction marked uniform-after-vectorization will be predicated"); 6000 6001 // Initialize the discount to zero, meaning that the scalar version and the 6002 // vector version cost the same. 6003 int Discount = 0; 6004 6005 // Holds instructions to analyze. The instructions we visit are mapped in 6006 // ScalarCosts. Those instructions are the ones that would be scalarized if 6007 // we find that the scalar version costs less. 6008 SmallVector<Instruction *, 8> Worklist; 6009 6010 // Returns true if the given instruction can be scalarized. 6011 auto canBeScalarized = [&](Instruction *I) -> bool { 6012 // We only attempt to scalarize instructions forming a single-use chain 6013 // from the original predicated block that would otherwise be vectorized. 6014 // Although not strictly necessary, we give up on instructions we know will 6015 // already be scalar to avoid traversing chains that are unlikely to be 6016 // beneficial. 6017 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6018 isScalarAfterVectorization(I, VF)) 6019 return false; 6020 6021 // If the instruction is scalar with predication, it will be analyzed 6022 // separately. We ignore it within the context of PredInst. 6023 if (isScalarWithPredication(I)) 6024 return false; 6025 6026 // If any of the instruction's operands are uniform after vectorization, 6027 // the instruction cannot be scalarized. This prevents, for example, a 6028 // masked load from being scalarized. 6029 // 6030 // We assume we will only emit a value for lane zero of an instruction 6031 // marked uniform after vectorization, rather than VF identical values. 6032 // Thus, if we scalarize an instruction that uses a uniform, we would 6033 // create uses of values corresponding to the lanes we aren't emitting code 6034 // for. This behavior can be changed by allowing getScalarValue to clone 6035 // the lane zero values for uniforms rather than asserting. 6036 for (Use &U : I->operands()) 6037 if (auto *J = dyn_cast<Instruction>(U.get())) 6038 if (isUniformAfterVectorization(J, VF)) 6039 return false; 6040 6041 // Otherwise, we can scalarize the instruction. 6042 return true; 6043 }; 6044 6045 // Compute the expected cost discount from scalarizing the entire expression 6046 // feeding the predicated instruction. We currently only consider expressions 6047 // that are single-use instruction chains. 6048 Worklist.push_back(PredInst); 6049 while (!Worklist.empty()) { 6050 Instruction *I = Worklist.pop_back_val(); 6051 6052 // If we've already analyzed the instruction, there's nothing to do. 6053 if (ScalarCosts.find(I) != ScalarCosts.end()) 6054 continue; 6055 6056 // Compute the cost of the vector instruction. Note that this cost already 6057 // includes the scalarization overhead of the predicated instruction. 6058 unsigned VectorCost = getInstructionCost(I, VF).first; 6059 6060 // Compute the cost of the scalarized instruction. This cost is the cost of 6061 // the instruction as if it wasn't if-converted and instead remained in the 6062 // predicated block. We will scale this cost by block probability after 6063 // computing the scalarization overhead. 6064 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6065 unsigned ScalarCost = 6066 VF.getKnownMinValue() * 6067 getInstructionCost(I, ElementCount::getFixed(1)).first; 6068 6069 // Compute the scalarization overhead of needed insertelement instructions 6070 // and phi nodes. 6071 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6072 ScalarCost += TTI.getScalarizationOverhead( 6073 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6074 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6075 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6076 ScalarCost += 6077 VF.getKnownMinValue() * 6078 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6079 } 6080 6081 // Compute the scalarization overhead of needed extractelement 6082 // instructions. For each of the instruction's operands, if the operand can 6083 // be scalarized, add it to the worklist; otherwise, account for the 6084 // overhead. 6085 for (Use &U : I->operands()) 6086 if (auto *J = dyn_cast<Instruction>(U.get())) { 6087 assert(VectorType::isValidElementType(J->getType()) && 6088 "Instruction has non-scalar type"); 6089 if (canBeScalarized(J)) 6090 Worklist.push_back(J); 6091 else if (needsExtract(J, VF)) { 6092 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6093 ScalarCost += TTI.getScalarizationOverhead( 6094 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6095 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6096 } 6097 } 6098 6099 // Scale the total scalar cost by block probability. 6100 ScalarCost /= getReciprocalPredBlockProb(); 6101 6102 // Compute the discount. A non-negative discount means the vector version 6103 // of the instruction costs more, and scalarizing would be beneficial. 6104 Discount += VectorCost - ScalarCost; 6105 ScalarCosts[I] = ScalarCost; 6106 } 6107 6108 return Discount; 6109 } 6110 6111 LoopVectorizationCostModel::VectorizationCostTy 6112 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6113 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6114 VectorizationCostTy Cost; 6115 6116 // For each block. 6117 for (BasicBlock *BB : TheLoop->blocks()) { 6118 VectorizationCostTy BlockCost; 6119 6120 // For each instruction in the old loop. 6121 for (Instruction &I : BB->instructionsWithoutDebug()) { 6122 // Skip ignored values. 6123 if (ValuesToIgnore.count(&I) || 6124 (VF.isVector() && VecValuesToIgnore.count(&I))) 6125 continue; 6126 6127 VectorizationCostTy C = getInstructionCost(&I, VF); 6128 6129 // Check if we should override the cost. 6130 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6131 C.first = ForceTargetInstructionCost; 6132 6133 BlockCost.first += C.first; 6134 BlockCost.second |= C.second; 6135 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6136 << " for VF " << VF << " For instruction: " << I 6137 << '\n'); 6138 } 6139 6140 // If we are vectorizing a predicated block, it will have been 6141 // if-converted. This means that the block's instructions (aside from 6142 // stores and instructions that may divide by zero) will now be 6143 // unconditionally executed. For the scalar case, we may not always execute 6144 // the predicated block. Thus, scale the block's cost by the probability of 6145 // executing it. 6146 if (VF.isScalar() && blockNeedsPredication(BB)) 6147 BlockCost.first /= getReciprocalPredBlockProb(); 6148 6149 Cost.first += BlockCost.first; 6150 Cost.second |= BlockCost.second; 6151 } 6152 6153 return Cost; 6154 } 6155 6156 /// Gets Address Access SCEV after verifying that the access pattern 6157 /// is loop invariant except the induction variable dependence. 6158 /// 6159 /// This SCEV can be sent to the Target in order to estimate the address 6160 /// calculation cost. 6161 static const SCEV *getAddressAccessSCEV( 6162 Value *Ptr, 6163 LoopVectorizationLegality *Legal, 6164 PredicatedScalarEvolution &PSE, 6165 const Loop *TheLoop) { 6166 6167 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6168 if (!Gep) 6169 return nullptr; 6170 6171 // We are looking for a gep with all loop invariant indices except for one 6172 // which should be an induction variable. 6173 auto SE = PSE.getSE(); 6174 unsigned NumOperands = Gep->getNumOperands(); 6175 for (unsigned i = 1; i < NumOperands; ++i) { 6176 Value *Opd = Gep->getOperand(i); 6177 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6178 !Legal->isInductionVariable(Opd)) 6179 return nullptr; 6180 } 6181 6182 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6183 return PSE.getSCEV(Ptr); 6184 } 6185 6186 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6187 return Legal->hasStride(I->getOperand(0)) || 6188 Legal->hasStride(I->getOperand(1)); 6189 } 6190 6191 unsigned 6192 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6193 ElementCount VF) { 6194 assert(VF.isVector() && 6195 "Scalarization cost of instruction implies vectorization."); 6196 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6197 Type *ValTy = getMemInstValueType(I); 6198 auto SE = PSE.getSE(); 6199 6200 unsigned AS = getLoadStoreAddressSpace(I); 6201 Value *Ptr = getLoadStorePointerOperand(I); 6202 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6203 6204 // Figure out whether the access is strided and get the stride value 6205 // if it's known in compile time 6206 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6207 6208 // Get the cost of the scalar memory instruction and address computation. 6209 unsigned Cost = 6210 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6211 6212 // Don't pass *I here, since it is scalar but will actually be part of a 6213 // vectorized loop where the user of it is a vectorized instruction. 6214 const Align Alignment = getLoadStoreAlignment(I); 6215 Cost += VF.getKnownMinValue() * 6216 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6217 AS, TTI::TCK_RecipThroughput); 6218 6219 // Get the overhead of the extractelement and insertelement instructions 6220 // we might create due to scalarization. 6221 Cost += getScalarizationOverhead(I, VF); 6222 6223 // If we have a predicated store, it may not be executed for each vector 6224 // lane. Scale the cost by the probability of executing the predicated 6225 // block. 6226 if (isPredicatedInst(I)) { 6227 Cost /= getReciprocalPredBlockProb(); 6228 6229 if (useEmulatedMaskMemRefHack(I)) 6230 // Artificially setting to a high enough value to practically disable 6231 // vectorization with such operations. 6232 Cost = 3000000; 6233 } 6234 6235 return Cost; 6236 } 6237 6238 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6239 ElementCount VF) { 6240 Type *ValTy = getMemInstValueType(I); 6241 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6242 Value *Ptr = getLoadStorePointerOperand(I); 6243 unsigned AS = getLoadStoreAddressSpace(I); 6244 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6245 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6246 6247 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6248 "Stride should be 1 or -1 for consecutive memory access"); 6249 const Align Alignment = getLoadStoreAlignment(I); 6250 unsigned Cost = 0; 6251 if (Legal->isMaskRequired(I)) 6252 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6253 CostKind); 6254 else 6255 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6256 CostKind, I); 6257 6258 bool Reverse = ConsecutiveStride < 0; 6259 if (Reverse) 6260 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6261 return Cost; 6262 } 6263 6264 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6265 ElementCount VF) { 6266 assert(Legal->isUniformMemOp(*I)); 6267 6268 Type *ValTy = getMemInstValueType(I); 6269 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6270 const Align Alignment = getLoadStoreAlignment(I); 6271 unsigned AS = getLoadStoreAddressSpace(I); 6272 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6273 if (isa<LoadInst>(I)) { 6274 return TTI.getAddressComputationCost(ValTy) + 6275 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6276 CostKind) + 6277 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6278 } 6279 StoreInst *SI = cast<StoreInst>(I); 6280 6281 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6282 return TTI.getAddressComputationCost(ValTy) + 6283 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6284 CostKind) + 6285 (isLoopInvariantStoreValue 6286 ? 0 6287 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6288 VF.getKnownMinValue() - 1)); 6289 } 6290 6291 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6292 ElementCount VF) { 6293 Type *ValTy = getMemInstValueType(I); 6294 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6295 const Align Alignment = getLoadStoreAlignment(I); 6296 const Value *Ptr = getLoadStorePointerOperand(I); 6297 6298 return TTI.getAddressComputationCost(VectorTy) + 6299 TTI.getGatherScatterOpCost( 6300 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6301 TargetTransformInfo::TCK_RecipThroughput, I); 6302 } 6303 6304 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6305 ElementCount VF) { 6306 Type *ValTy = getMemInstValueType(I); 6307 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6308 unsigned AS = getLoadStoreAddressSpace(I); 6309 6310 auto Group = getInterleavedAccessGroup(I); 6311 assert(Group && "Fail to get an interleaved access group."); 6312 6313 unsigned InterleaveFactor = Group->getFactor(); 6314 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6315 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6316 6317 // Holds the indices of existing members in an interleaved load group. 6318 // An interleaved store group doesn't need this as it doesn't allow gaps. 6319 SmallVector<unsigned, 4> Indices; 6320 if (isa<LoadInst>(I)) { 6321 for (unsigned i = 0; i < InterleaveFactor; i++) 6322 if (Group->getMember(i)) 6323 Indices.push_back(i); 6324 } 6325 6326 // Calculate the cost of the whole interleaved group. 6327 bool UseMaskForGaps = 6328 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6329 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6330 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6331 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6332 6333 if (Group->isReverse()) { 6334 // TODO: Add support for reversed masked interleaved access. 6335 assert(!Legal->isMaskRequired(I) && 6336 "Reverse masked interleaved access not supported."); 6337 Cost += Group->getNumMembers() * 6338 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6339 } 6340 return Cost; 6341 } 6342 6343 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6344 ElementCount VF) { 6345 // Calculate scalar cost only. Vectorization cost should be ready at this 6346 // moment. 6347 if (VF.isScalar()) { 6348 Type *ValTy = getMemInstValueType(I); 6349 const Align Alignment = getLoadStoreAlignment(I); 6350 unsigned AS = getLoadStoreAddressSpace(I); 6351 6352 return TTI.getAddressComputationCost(ValTy) + 6353 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6354 TTI::TCK_RecipThroughput, I); 6355 } 6356 return getWideningCost(I, VF); 6357 } 6358 6359 LoopVectorizationCostModel::VectorizationCostTy 6360 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6361 ElementCount VF) { 6362 assert(!VF.isScalable() && 6363 "the cost model is not yet implemented for scalable vectorization"); 6364 // If we know that this instruction will remain uniform, check the cost of 6365 // the scalar version. 6366 if (isUniformAfterVectorization(I, VF)) 6367 VF = ElementCount::getFixed(1); 6368 6369 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6370 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6371 6372 // Forced scalars do not have any scalarization overhead. 6373 auto ForcedScalar = ForcedScalars.find(VF); 6374 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6375 auto InstSet = ForcedScalar->second; 6376 if (InstSet.count(I)) 6377 return VectorizationCostTy( 6378 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6379 VF.getKnownMinValue()), 6380 false); 6381 } 6382 6383 Type *VectorTy; 6384 unsigned C = getInstructionCost(I, VF, VectorTy); 6385 6386 bool TypeNotScalarized = 6387 VF.isVector() && VectorTy->isVectorTy() && 6388 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 6389 return VectorizationCostTy(C, TypeNotScalarized); 6390 } 6391 6392 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6393 ElementCount VF) { 6394 6395 assert(!VF.isScalable() && 6396 "cannot compute scalarization overhead for scalable vectorization"); 6397 if (VF.isScalar()) 6398 return 0; 6399 6400 unsigned Cost = 0; 6401 Type *RetTy = ToVectorTy(I->getType(), VF); 6402 if (!RetTy->isVoidTy() && 6403 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6404 Cost += TTI.getScalarizationOverhead( 6405 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 6406 true, false); 6407 6408 // Some targets keep addresses scalar. 6409 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6410 return Cost; 6411 6412 // Some targets support efficient element stores. 6413 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6414 return Cost; 6415 6416 // Collect operands to consider. 6417 CallInst *CI = dyn_cast<CallInst>(I); 6418 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6419 6420 // Skip operands that do not require extraction/scalarization and do not incur 6421 // any overhead. 6422 return Cost + TTI.getOperandsScalarizationOverhead( 6423 filterExtractingOperands(Ops, VF), VF.getKnownMinValue()); 6424 } 6425 6426 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6427 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6428 if (VF.isScalar()) 6429 return; 6430 NumPredStores = 0; 6431 for (BasicBlock *BB : TheLoop->blocks()) { 6432 // For each instruction in the old loop. 6433 for (Instruction &I : *BB) { 6434 Value *Ptr = getLoadStorePointerOperand(&I); 6435 if (!Ptr) 6436 continue; 6437 6438 // TODO: We should generate better code and update the cost model for 6439 // predicated uniform stores. Today they are treated as any other 6440 // predicated store (see added test cases in 6441 // invariant-store-vectorization.ll). 6442 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6443 NumPredStores++; 6444 6445 if (Legal->isUniformMemOp(I)) { 6446 // TODO: Avoid replicating loads and stores instead of 6447 // relying on instcombine to remove them. 6448 // Load: Scalar load + broadcast 6449 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6450 unsigned Cost = getUniformMemOpCost(&I, VF); 6451 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6452 continue; 6453 } 6454 6455 // We assume that widening is the best solution when possible. 6456 if (memoryInstructionCanBeWidened(&I, VF)) { 6457 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6458 int ConsecutiveStride = 6459 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6460 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6461 "Expected consecutive stride."); 6462 InstWidening Decision = 6463 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6464 setWideningDecision(&I, VF, Decision, Cost); 6465 continue; 6466 } 6467 6468 // Choose between Interleaving, Gather/Scatter or Scalarization. 6469 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6470 unsigned NumAccesses = 1; 6471 if (isAccessInterleaved(&I)) { 6472 auto Group = getInterleavedAccessGroup(&I); 6473 assert(Group && "Fail to get an interleaved access group."); 6474 6475 // Make one decision for the whole group. 6476 if (getWideningDecision(&I, VF) != CM_Unknown) 6477 continue; 6478 6479 NumAccesses = Group->getNumMembers(); 6480 if (interleavedAccessCanBeWidened(&I, VF)) 6481 InterleaveCost = getInterleaveGroupCost(&I, VF); 6482 } 6483 6484 unsigned GatherScatterCost = 6485 isLegalGatherOrScatter(&I) 6486 ? getGatherScatterCost(&I, VF) * NumAccesses 6487 : std::numeric_limits<unsigned>::max(); 6488 6489 unsigned ScalarizationCost = 6490 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6491 6492 // Choose better solution for the current VF, 6493 // write down this decision and use it during vectorization. 6494 unsigned Cost; 6495 InstWidening Decision; 6496 if (InterleaveCost <= GatherScatterCost && 6497 InterleaveCost < ScalarizationCost) { 6498 Decision = CM_Interleave; 6499 Cost = InterleaveCost; 6500 } else if (GatherScatterCost < ScalarizationCost) { 6501 Decision = CM_GatherScatter; 6502 Cost = GatherScatterCost; 6503 } else { 6504 Decision = CM_Scalarize; 6505 Cost = ScalarizationCost; 6506 } 6507 // If the instructions belongs to an interleave group, the whole group 6508 // receives the same decision. The whole group receives the cost, but 6509 // the cost will actually be assigned to one instruction. 6510 if (auto Group = getInterleavedAccessGroup(&I)) 6511 setWideningDecision(Group, VF, Decision, Cost); 6512 else 6513 setWideningDecision(&I, VF, Decision, Cost); 6514 } 6515 } 6516 6517 // Make sure that any load of address and any other address computation 6518 // remains scalar unless there is gather/scatter support. This avoids 6519 // inevitable extracts into address registers, and also has the benefit of 6520 // activating LSR more, since that pass can't optimize vectorized 6521 // addresses. 6522 if (TTI.prefersVectorizedAddressing()) 6523 return; 6524 6525 // Start with all scalar pointer uses. 6526 SmallPtrSet<Instruction *, 8> AddrDefs; 6527 for (BasicBlock *BB : TheLoop->blocks()) 6528 for (Instruction &I : *BB) { 6529 Instruction *PtrDef = 6530 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6531 if (PtrDef && TheLoop->contains(PtrDef) && 6532 getWideningDecision(&I, VF) != CM_GatherScatter) 6533 AddrDefs.insert(PtrDef); 6534 } 6535 6536 // Add all instructions used to generate the addresses. 6537 SmallVector<Instruction *, 4> Worklist; 6538 for (auto *I : AddrDefs) 6539 Worklist.push_back(I); 6540 while (!Worklist.empty()) { 6541 Instruction *I = Worklist.pop_back_val(); 6542 for (auto &Op : I->operands()) 6543 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6544 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6545 AddrDefs.insert(InstOp).second) 6546 Worklist.push_back(InstOp); 6547 } 6548 6549 for (auto *I : AddrDefs) { 6550 if (isa<LoadInst>(I)) { 6551 // Setting the desired widening decision should ideally be handled in 6552 // by cost functions, but since this involves the task of finding out 6553 // if the loaded register is involved in an address computation, it is 6554 // instead changed here when we know this is the case. 6555 InstWidening Decision = getWideningDecision(I, VF); 6556 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6557 // Scalarize a widened load of address. 6558 setWideningDecision( 6559 I, VF, CM_Scalarize, 6560 (VF.getKnownMinValue() * 6561 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6562 else if (auto Group = getInterleavedAccessGroup(I)) { 6563 // Scalarize an interleave group of address loads. 6564 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6565 if (Instruction *Member = Group->getMember(I)) 6566 setWideningDecision( 6567 Member, VF, CM_Scalarize, 6568 (VF.getKnownMinValue() * 6569 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6570 } 6571 } 6572 } else 6573 // Make sure I gets scalarized and a cost estimate without 6574 // scalarization overhead. 6575 ForcedScalars[VF].insert(I); 6576 } 6577 } 6578 6579 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6580 ElementCount VF, 6581 Type *&VectorTy) { 6582 Type *RetTy = I->getType(); 6583 if (canTruncateToMinimalBitwidth(I, VF)) 6584 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6585 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6586 auto SE = PSE.getSE(); 6587 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6588 6589 // TODO: We need to estimate the cost of intrinsic calls. 6590 switch (I->getOpcode()) { 6591 case Instruction::GetElementPtr: 6592 // We mark this instruction as zero-cost because the cost of GEPs in 6593 // vectorized code depends on whether the corresponding memory instruction 6594 // is scalarized or not. Therefore, we handle GEPs with the memory 6595 // instruction cost. 6596 return 0; 6597 case Instruction::Br: { 6598 // In cases of scalarized and predicated instructions, there will be VF 6599 // predicated blocks in the vectorized loop. Each branch around these 6600 // blocks requires also an extract of its vector compare i1 element. 6601 bool ScalarPredicatedBB = false; 6602 BranchInst *BI = cast<BranchInst>(I); 6603 if (VF.isVector() && BI->isConditional() && 6604 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6605 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6606 ScalarPredicatedBB = true; 6607 6608 if (ScalarPredicatedBB) { 6609 // Return cost for branches around scalarized and predicated blocks. 6610 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6611 auto *Vec_i1Ty = 6612 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6613 return (TTI.getScalarizationOverhead( 6614 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 6615 false, true) + 6616 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 6617 VF.getKnownMinValue())); 6618 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6619 // The back-edge branch will remain, as will all scalar branches. 6620 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6621 else 6622 // This branch will be eliminated by if-conversion. 6623 return 0; 6624 // Note: We currently assume zero cost for an unconditional branch inside 6625 // a predicated block since it will become a fall-through, although we 6626 // may decide in the future to call TTI for all branches. 6627 } 6628 case Instruction::PHI: { 6629 auto *Phi = cast<PHINode>(I); 6630 6631 // First-order recurrences are replaced by vector shuffles inside the loop. 6632 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6633 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 6634 return TTI.getShuffleCost( 6635 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 6636 VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 6637 6638 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6639 // converted into select instructions. We require N - 1 selects per phi 6640 // node, where N is the number of incoming values. 6641 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 6642 return (Phi->getNumIncomingValues() - 1) * 6643 TTI.getCmpSelInstrCost( 6644 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6645 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6646 CmpInst::BAD_ICMP_PREDICATE, CostKind); 6647 6648 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6649 } 6650 case Instruction::UDiv: 6651 case Instruction::SDiv: 6652 case Instruction::URem: 6653 case Instruction::SRem: 6654 // If we have a predicated instruction, it may not be executed for each 6655 // vector lane. Get the scalarization cost and scale this amount by the 6656 // probability of executing the predicated block. If the instruction is not 6657 // predicated, we fall through to the next case. 6658 if (VF.isVector() && isScalarWithPredication(I)) { 6659 unsigned Cost = 0; 6660 6661 // These instructions have a non-void type, so account for the phi nodes 6662 // that we will create. This cost is likely to be zero. The phi node 6663 // cost, if any, should be scaled by the block probability because it 6664 // models a copy at the end of each predicated block. 6665 Cost += VF.getKnownMinValue() * 6666 TTI.getCFInstrCost(Instruction::PHI, CostKind); 6667 6668 // The cost of the non-predicated instruction. 6669 Cost += VF.getKnownMinValue() * 6670 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6671 6672 // The cost of insertelement and extractelement instructions needed for 6673 // scalarization. 6674 Cost += getScalarizationOverhead(I, VF); 6675 6676 // Scale the cost by the probability of executing the predicated blocks. 6677 // This assumes the predicated block for each vector lane is equally 6678 // likely. 6679 return Cost / getReciprocalPredBlockProb(); 6680 } 6681 LLVM_FALLTHROUGH; 6682 case Instruction::Add: 6683 case Instruction::FAdd: 6684 case Instruction::Sub: 6685 case Instruction::FSub: 6686 case Instruction::Mul: 6687 case Instruction::FMul: 6688 case Instruction::FDiv: 6689 case Instruction::FRem: 6690 case Instruction::Shl: 6691 case Instruction::LShr: 6692 case Instruction::AShr: 6693 case Instruction::And: 6694 case Instruction::Or: 6695 case Instruction::Xor: { 6696 // Since we will replace the stride by 1 the multiplication should go away. 6697 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6698 return 0; 6699 // Certain instructions can be cheaper to vectorize if they have a constant 6700 // second vector operand. One example of this are shifts on x86. 6701 Value *Op2 = I->getOperand(1); 6702 TargetTransformInfo::OperandValueProperties Op2VP; 6703 TargetTransformInfo::OperandValueKind Op2VK = 6704 TTI.getOperandInfo(Op2, Op2VP); 6705 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6706 Op2VK = TargetTransformInfo::OK_UniformValue; 6707 6708 SmallVector<const Value *, 4> Operands(I->operand_values()); 6709 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6710 return N * TTI.getArithmeticInstrCost( 6711 I->getOpcode(), VectorTy, CostKind, 6712 TargetTransformInfo::OK_AnyValue, 6713 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6714 } 6715 case Instruction::FNeg: { 6716 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 6717 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6718 return N * TTI.getArithmeticInstrCost( 6719 I->getOpcode(), VectorTy, CostKind, 6720 TargetTransformInfo::OK_AnyValue, 6721 TargetTransformInfo::OK_AnyValue, 6722 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6723 I->getOperand(0), I); 6724 } 6725 case Instruction::Select: { 6726 SelectInst *SI = cast<SelectInst>(I); 6727 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6728 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6729 Type *CondTy = SI->getCondition()->getType(); 6730 if (!ScalarCond) { 6731 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 6732 CondTy = VectorType::get(CondTy, VF); 6733 } 6734 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6735 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 6736 } 6737 case Instruction::ICmp: 6738 case Instruction::FCmp: { 6739 Type *ValTy = I->getOperand(0)->getType(); 6740 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6741 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6742 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6743 VectorTy = ToVectorTy(ValTy, VF); 6744 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 6745 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 6746 } 6747 case Instruction::Store: 6748 case Instruction::Load: { 6749 ElementCount Width = VF; 6750 if (Width.isVector()) { 6751 InstWidening Decision = getWideningDecision(I, Width); 6752 assert(Decision != CM_Unknown && 6753 "CM decision should be taken at this point"); 6754 if (Decision == CM_Scalarize) 6755 Width = ElementCount::getFixed(1); 6756 } 6757 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6758 return getMemoryInstructionCost(I, VF); 6759 } 6760 case Instruction::ZExt: 6761 case Instruction::SExt: 6762 case Instruction::FPToUI: 6763 case Instruction::FPToSI: 6764 case Instruction::FPExt: 6765 case Instruction::PtrToInt: 6766 case Instruction::IntToPtr: 6767 case Instruction::SIToFP: 6768 case Instruction::UIToFP: 6769 case Instruction::Trunc: 6770 case Instruction::FPTrunc: 6771 case Instruction::BitCast: { 6772 // Computes the CastContextHint from a Load/Store instruction. 6773 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 6774 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6775 "Expected a load or a store!"); 6776 6777 if (VF.isScalar() || !TheLoop->contains(I)) 6778 return TTI::CastContextHint::Normal; 6779 6780 switch (getWideningDecision(I, VF)) { 6781 case LoopVectorizationCostModel::CM_GatherScatter: 6782 return TTI::CastContextHint::GatherScatter; 6783 case LoopVectorizationCostModel::CM_Interleave: 6784 return TTI::CastContextHint::Interleave; 6785 case LoopVectorizationCostModel::CM_Scalarize: 6786 case LoopVectorizationCostModel::CM_Widen: 6787 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 6788 : TTI::CastContextHint::Normal; 6789 case LoopVectorizationCostModel::CM_Widen_Reverse: 6790 return TTI::CastContextHint::Reversed; 6791 case LoopVectorizationCostModel::CM_Unknown: 6792 llvm_unreachable("Instr did not go through cost modelling?"); 6793 } 6794 6795 llvm_unreachable("Unhandled case!"); 6796 }; 6797 6798 unsigned Opcode = I->getOpcode(); 6799 TTI::CastContextHint CCH = TTI::CastContextHint::None; 6800 // For Trunc, the context is the only user, which must be a StoreInst. 6801 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 6802 if (I->hasOneUse()) 6803 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 6804 CCH = ComputeCCH(Store); 6805 } 6806 // For Z/Sext, the context is the operand, which must be a LoadInst. 6807 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 6808 Opcode == Instruction::FPExt) { 6809 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 6810 CCH = ComputeCCH(Load); 6811 } 6812 6813 // We optimize the truncation of induction variables having constant 6814 // integer steps. The cost of these truncations is the same as the scalar 6815 // operation. 6816 if (isOptimizableIVTruncate(I, VF)) { 6817 auto *Trunc = cast<TruncInst>(I); 6818 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6819 Trunc->getSrcTy(), CCH, CostKind, Trunc); 6820 } 6821 6822 Type *SrcScalarTy = I->getOperand(0)->getType(); 6823 Type *SrcVecTy = 6824 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6825 if (canTruncateToMinimalBitwidth(I, VF)) { 6826 // This cast is going to be shrunk. This may remove the cast or it might 6827 // turn it into slightly different cast. For example, if MinBW == 16, 6828 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6829 // 6830 // Calculate the modified src and dest types. 6831 Type *MinVecTy = VectorTy; 6832 if (Opcode == Instruction::Trunc) { 6833 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6834 VectorTy = 6835 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6836 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 6837 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6838 VectorTy = 6839 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6840 } 6841 } 6842 6843 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 6844 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 6845 return N * 6846 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 6847 } 6848 case Instruction::Call: { 6849 bool NeedToScalarize; 6850 CallInst *CI = cast<CallInst>(I); 6851 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6852 if (getVectorIntrinsicIDForCall(CI, TLI)) 6853 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6854 return CallCost; 6855 } 6856 default: 6857 // The cost of executing VF copies of the scalar instruction. This opcode 6858 // is unknown. Assume that it is the same as 'mul'. 6859 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 6860 Instruction::Mul, VectorTy, CostKind) + 6861 getScalarizationOverhead(I, VF); 6862 } // end of switch. 6863 } 6864 6865 char LoopVectorize::ID = 0; 6866 6867 static const char lv_name[] = "Loop Vectorization"; 6868 6869 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6870 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6871 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6872 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6873 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6874 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6875 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6876 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6877 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6878 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6879 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6880 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6881 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6882 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6883 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6884 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6885 6886 namespace llvm { 6887 6888 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6889 6890 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6891 bool VectorizeOnlyWhenForced) { 6892 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6893 } 6894 6895 } // end namespace llvm 6896 6897 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6898 // Check if the pointer operand of a load or store instruction is 6899 // consecutive. 6900 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6901 return Legal->isConsecutivePtr(Ptr); 6902 return false; 6903 } 6904 6905 void LoopVectorizationCostModel::collectValuesToIgnore() { 6906 // Ignore ephemeral values. 6907 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6908 6909 // Ignore type-promoting instructions we identified during reduction 6910 // detection. 6911 for (auto &Reduction : Legal->getReductionVars()) { 6912 RecurrenceDescriptor &RedDes = Reduction.second; 6913 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6914 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6915 } 6916 // Ignore type-casting instructions we identified during induction 6917 // detection. 6918 for (auto &Induction : Legal->getInductionVars()) { 6919 InductionDescriptor &IndDes = Induction.second; 6920 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6921 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6922 } 6923 } 6924 6925 void LoopVectorizationCostModel::collectInLoopReductions() { 6926 for (auto &Reduction : Legal->getReductionVars()) { 6927 PHINode *Phi = Reduction.first; 6928 RecurrenceDescriptor &RdxDesc = Reduction.second; 6929 6930 // We don't collect reductions that are type promoted (yet). 6931 if (RdxDesc.getRecurrenceType() != Phi->getType()) 6932 continue; 6933 6934 // If the target would prefer this reduction to happen "in-loop", then we 6935 // want to record it as such. 6936 unsigned Opcode = RdxDesc.getRecurrenceBinOp(); 6937 if (!PreferInLoopReductions && 6938 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 6939 TargetTransformInfo::ReductionFlags())) 6940 continue; 6941 6942 // Check that we can correctly put the reductions into the loop, by 6943 // finding the chain of operations that leads from the phi to the loop 6944 // exit value. 6945 SmallVector<Instruction *, 4> ReductionOperations = 6946 RdxDesc.getReductionOpChain(Phi, TheLoop); 6947 bool InLoop = !ReductionOperations.empty(); 6948 if (InLoop) 6949 InLoopReductionChains[Phi] = ReductionOperations; 6950 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 6951 << " reduction for phi: " << *Phi << "\n"); 6952 } 6953 } 6954 6955 // TODO: we could return a pair of values that specify the max VF and 6956 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6957 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6958 // doesn't have a cost model that can choose which plan to execute if 6959 // more than one is generated. 6960 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6961 LoopVectorizationCostModel &CM) { 6962 unsigned WidestType; 6963 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6964 return WidestVectorRegBits / WidestType; 6965 } 6966 6967 VectorizationFactor 6968 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 6969 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 6970 ElementCount VF = UserVF; 6971 // Outer loop handling: They may require CFG and instruction level 6972 // transformations before even evaluating whether vectorization is profitable. 6973 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6974 // the vectorization pipeline. 6975 if (!OrigLoop->isInnermost()) { 6976 // If the user doesn't provide a vectorization factor, determine a 6977 // reasonable one. 6978 if (UserVF.isZero()) { 6979 VF = ElementCount::getFixed( 6980 determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM)); 6981 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6982 6983 // Make sure we have a VF > 1 for stress testing. 6984 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 6985 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6986 << "overriding computed VF.\n"); 6987 VF = ElementCount::getFixed(4); 6988 } 6989 } 6990 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6991 assert(isPowerOf2_32(VF.getKnownMinValue()) && 6992 "VF needs to be a power of two"); 6993 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 6994 << "VF " << VF << " to build VPlans.\n"); 6995 buildVPlans(VF, VF); 6996 6997 // For VPlan build stress testing, we bail out after VPlan construction. 6998 if (VPlanBuildStressTest) 6999 return VectorizationFactor::Disabled(); 7000 7001 return {VF, 0 /*Cost*/}; 7002 } 7003 7004 LLVM_DEBUG( 7005 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7006 "VPlan-native path.\n"); 7007 return VectorizationFactor::Disabled(); 7008 } 7009 7010 Optional<VectorizationFactor> 7011 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7012 assert(!UserVF.isScalable() && "scalable vectorization not yet handled"); 7013 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7014 Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 7015 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 7016 return None; 7017 7018 // Invalidate interleave groups if all blocks of loop will be predicated. 7019 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7020 !useMaskedInterleavedAccesses(*TTI)) { 7021 LLVM_DEBUG( 7022 dbgs() 7023 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7024 "which requires masked-interleaved support.\n"); 7025 if (CM.InterleaveInfo.invalidateGroups()) 7026 // Invalidating interleave groups also requires invalidating all decisions 7027 // based on them, which includes widening decisions and uniform and scalar 7028 // values. 7029 CM.invalidateCostModelingDecisions(); 7030 } 7031 7032 if (!UserVF.isZero()) { 7033 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7034 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7035 "VF needs to be a power of two"); 7036 // Collect the instructions (and their associated costs) that will be more 7037 // profitable to scalarize. 7038 CM.selectUserVectorizationFactor(UserVF); 7039 CM.collectInLoopReductions(); 7040 buildVPlansWithVPRecipes(UserVF, UserVF); 7041 LLVM_DEBUG(printPlans(dbgs())); 7042 return {{UserVF, 0}}; 7043 } 7044 7045 ElementCount MaxVF = MaybeMaxVF.getValue(); 7046 assert(MaxVF.isNonZero() && "MaxVF is zero."); 7047 7048 for (ElementCount VF = ElementCount::getFixed(1); 7049 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7050 // Collect Uniform and Scalar instructions after vectorization with VF. 7051 CM.collectUniformsAndScalars(VF); 7052 7053 // Collect the instructions (and their associated costs) that will be more 7054 // profitable to scalarize. 7055 if (VF.isVector()) 7056 CM.collectInstsToScalarize(VF); 7057 } 7058 7059 CM.collectInLoopReductions(); 7060 7061 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 7062 LLVM_DEBUG(printPlans(dbgs())); 7063 if (MaxVF.isScalar()) 7064 return VectorizationFactor::Disabled(); 7065 7066 // Select the optimal vectorization factor. 7067 return CM.selectVectorizationFactor(MaxVF); 7068 } 7069 7070 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7071 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7072 << '\n'); 7073 BestVF = VF; 7074 BestUF = UF; 7075 7076 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7077 return !Plan->hasVF(VF); 7078 }); 7079 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7080 } 7081 7082 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7083 DominatorTree *DT) { 7084 // Perform the actual loop transformation. 7085 7086 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7087 VPCallbackILV CallbackILV(ILV); 7088 7089 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7090 7091 VPTransformState State{*BestVF, BestUF, LI, 7092 DT, ILV.Builder, ILV.VectorLoopValueMap, 7093 &ILV, CallbackILV}; 7094 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7095 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7096 State.CanonicalIV = ILV.Induction; 7097 7098 //===------------------------------------------------===// 7099 // 7100 // Notice: any optimization or new instruction that go 7101 // into the code below should also be implemented in 7102 // the cost-model. 7103 // 7104 //===------------------------------------------------===// 7105 7106 // 2. Copy and widen instructions from the old loop into the new loop. 7107 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7108 VPlans.front()->execute(&State); 7109 7110 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7111 // predication, updating analyses. 7112 ILV.fixVectorizedLoop(); 7113 } 7114 7115 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7116 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7117 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7118 7119 // We create new control-flow for the vectorized loop, so the original 7120 // condition will be dead after vectorization if it's only used by the 7121 // branch. 7122 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7123 if (Cmp && Cmp->hasOneUse()) { 7124 DeadInstructions.insert(Cmp); 7125 7126 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7127 for (Value *Op : Cmp->operands()) { 7128 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7129 DeadInstructions.insert(cast<Instruction>(Op)); 7130 } 7131 } 7132 7133 // We create new "steps" for induction variable updates to which the original 7134 // induction variables map. An original update instruction will be dead if 7135 // all its users except the induction variable are dead. 7136 for (auto &Induction : Legal->getInductionVars()) { 7137 PHINode *Ind = Induction.first; 7138 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7139 7140 // If the tail is to be folded by masking, the primary induction variable, 7141 // if exists, isn't dead: it will be used for masking. Don't kill it. 7142 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7143 continue; 7144 7145 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7146 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7147 })) 7148 DeadInstructions.insert(IndUpdate); 7149 7150 // We record as "Dead" also the type-casting instructions we had identified 7151 // during induction analysis. We don't need any handling for them in the 7152 // vectorized loop because we have proven that, under a proper runtime 7153 // test guarding the vectorized loop, the value of the phi, and the casted 7154 // value of the phi, are the same. The last instruction in this casting chain 7155 // will get its scalar/vector/widened def from the scalar/vector/widened def 7156 // of the respective phi node. Any other casts in the induction def-use chain 7157 // have no other uses outside the phi update chain, and will be ignored. 7158 InductionDescriptor &IndDes = Induction.second; 7159 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7160 DeadInstructions.insert(Casts.begin(), Casts.end()); 7161 } 7162 } 7163 7164 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7165 7166 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7167 7168 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7169 Instruction::BinaryOps BinOp) { 7170 // When unrolling and the VF is 1, we only need to add a simple scalar. 7171 Type *Ty = Val->getType(); 7172 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7173 7174 if (Ty->isFloatingPointTy()) { 7175 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7176 7177 // Floating point operations had to be 'fast' to enable the unrolling. 7178 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7179 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7180 } 7181 Constant *C = ConstantInt::get(Ty, StartIdx); 7182 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7183 } 7184 7185 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7186 SmallVector<Metadata *, 4> MDs; 7187 // Reserve first location for self reference to the LoopID metadata node. 7188 MDs.push_back(nullptr); 7189 bool IsUnrollMetadata = false; 7190 MDNode *LoopID = L->getLoopID(); 7191 if (LoopID) { 7192 // First find existing loop unrolling disable metadata. 7193 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7194 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7195 if (MD) { 7196 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7197 IsUnrollMetadata = 7198 S && S->getString().startswith("llvm.loop.unroll.disable"); 7199 } 7200 MDs.push_back(LoopID->getOperand(i)); 7201 } 7202 } 7203 7204 if (!IsUnrollMetadata) { 7205 // Add runtime unroll disable metadata. 7206 LLVMContext &Context = L->getHeader()->getContext(); 7207 SmallVector<Metadata *, 1> DisableOperands; 7208 DisableOperands.push_back( 7209 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7210 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7211 MDs.push_back(DisableNode); 7212 MDNode *NewLoopID = MDNode::get(Context, MDs); 7213 // Set operand 0 to refer to the loop id itself. 7214 NewLoopID->replaceOperandWith(0, NewLoopID); 7215 L->setLoopID(NewLoopID); 7216 } 7217 } 7218 7219 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7220 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7221 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7222 bool PredicateAtRangeStart = Predicate(Range.Start); 7223 7224 for (ElementCount TmpVF = Range.Start * 2; 7225 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 7226 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7227 Range.End = TmpVF; 7228 break; 7229 } 7230 7231 return PredicateAtRangeStart; 7232 } 7233 7234 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7235 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7236 /// of VF's starting at a given VF and extending it as much as possible. Each 7237 /// vectorization decision can potentially shorten this sub-range during 7238 /// buildVPlan(). 7239 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 7240 ElementCount MaxVF) { 7241 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7242 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7243 VFRange SubRange = {VF, MaxVFPlusOne}; 7244 VPlans.push_back(buildVPlan(SubRange)); 7245 VF = SubRange.End; 7246 } 7247 } 7248 7249 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 7250 VPlanPtr &Plan) { 7251 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7252 7253 // Look for cached value. 7254 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7255 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7256 if (ECEntryIt != EdgeMaskCache.end()) 7257 return ECEntryIt->second; 7258 7259 VPValue *SrcMask = createBlockInMask(Src, Plan); 7260 7261 // The terminator has to be a branch inst! 7262 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7263 assert(BI && "Unexpected terminator found"); 7264 7265 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 7266 return EdgeMaskCache[Edge] = SrcMask; 7267 7268 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 7269 assert(EdgeMask && "No Edge Mask found for condition"); 7270 7271 if (BI->getSuccessor(0) != Dst) 7272 EdgeMask = Builder.createNot(EdgeMask); 7273 7274 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7275 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7276 7277 return EdgeMaskCache[Edge] = EdgeMask; 7278 } 7279 7280 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 7281 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7282 7283 // Look for cached value. 7284 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7285 if (BCEntryIt != BlockMaskCache.end()) 7286 return BCEntryIt->second; 7287 7288 // All-one mask is modelled as no-mask following the convention for masked 7289 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7290 VPValue *BlockMask = nullptr; 7291 7292 if (OrigLoop->getHeader() == BB) { 7293 if (!CM.blockNeedsPredication(BB)) 7294 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 7295 7296 // Create the block in mask as the first non-phi instruction in the block. 7297 VPBuilder::InsertPointGuard Guard(Builder); 7298 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 7299 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 7300 7301 // Introduce the early-exit compare IV <= BTC to form header block mask. 7302 // This is used instead of IV < TC because TC may wrap, unlike BTC. 7303 // Start by constructing the desired canonical IV. 7304 VPValue *IV = nullptr; 7305 if (Legal->getPrimaryInduction()) 7306 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 7307 else { 7308 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 7309 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 7310 IV = IVRecipe->getVPValue(); 7311 } 7312 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 7313 bool TailFolded = !CM.isScalarEpilogueAllowed(); 7314 7315 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 7316 // While ActiveLaneMask is a binary op that consumes the loop tripcount 7317 // as a second argument, we only pass the IV here and extract the 7318 // tripcount from the transform state where codegen of the VP instructions 7319 // happen. 7320 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 7321 } else { 7322 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 7323 } 7324 return BlockMaskCache[BB] = BlockMask; 7325 } 7326 7327 // This is the block mask. We OR all incoming edges. 7328 for (auto *Predecessor : predecessors(BB)) { 7329 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7330 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7331 return BlockMaskCache[BB] = EdgeMask; 7332 7333 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7334 BlockMask = EdgeMask; 7335 continue; 7336 } 7337 7338 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7339 } 7340 7341 return BlockMaskCache[BB] = BlockMask; 7342 } 7343 7344 VPWidenMemoryInstructionRecipe * 7345 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 7346 VPlanPtr &Plan) { 7347 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7348 "Must be called with either a load or store"); 7349 7350 auto willWiden = [&](ElementCount VF) -> bool { 7351 assert(!VF.isScalable() && "unexpected scalable ElementCount"); 7352 if (VF.isScalar()) 7353 return false; 7354 LoopVectorizationCostModel::InstWidening Decision = 7355 CM.getWideningDecision(I, VF); 7356 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7357 "CM decision should be taken at this point."); 7358 if (Decision == LoopVectorizationCostModel::CM_Interleave) 7359 return true; 7360 if (CM.isScalarAfterVectorization(I, VF) || 7361 CM.isProfitableToScalarize(I, VF)) 7362 return false; 7363 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7364 }; 7365 7366 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7367 return nullptr; 7368 7369 VPValue *Mask = nullptr; 7370 if (Legal->isMaskRequired(I)) 7371 Mask = createBlockInMask(I->getParent(), Plan); 7372 7373 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 7374 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 7375 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 7376 7377 StoreInst *Store = cast<StoreInst>(I); 7378 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 7379 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 7380 } 7381 7382 VPWidenIntOrFpInductionRecipe * 7383 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 7384 // Check if this is an integer or fp induction. If so, build the recipe that 7385 // produces its scalar and vector values. 7386 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 7387 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7388 II.getKind() == InductionDescriptor::IK_FpInduction) 7389 return new VPWidenIntOrFpInductionRecipe(Phi); 7390 7391 return nullptr; 7392 } 7393 7394 VPWidenIntOrFpInductionRecipe * 7395 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 7396 VFRange &Range) const { 7397 // Optimize the special case where the source is a constant integer 7398 // induction variable. Notice that we can only optimize the 'trunc' case 7399 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7400 // (c) other casts depend on pointer size. 7401 7402 // Determine whether \p K is a truncation based on an induction variable that 7403 // can be optimized. 7404 auto isOptimizableIVTruncate = 7405 [&](Instruction *K) -> std::function<bool(ElementCount)> { 7406 return [=](ElementCount VF) -> bool { 7407 return CM.isOptimizableIVTruncate(K, VF); 7408 }; 7409 }; 7410 7411 if (LoopVectorizationPlanner::getDecisionAndClampRange( 7412 isOptimizableIVTruncate(I), Range)) 7413 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7414 I); 7415 return nullptr; 7416 } 7417 7418 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 7419 // We know that all PHIs in non-header blocks are converted into selects, so 7420 // we don't have to worry about the insertion order and we can just use the 7421 // builder. At this point we generate the predication tree. There may be 7422 // duplications since this is a simple recursive scan, but future 7423 // optimizations will clean it up. 7424 7425 SmallVector<VPValue *, 2> Operands; 7426 unsigned NumIncoming = Phi->getNumIncomingValues(); 7427 for (unsigned In = 0; In < NumIncoming; In++) { 7428 VPValue *EdgeMask = 7429 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7430 assert((EdgeMask || NumIncoming == 1) && 7431 "Multiple predecessors with one having a full mask"); 7432 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 7433 if (EdgeMask) 7434 Operands.push_back(EdgeMask); 7435 } 7436 return new VPBlendRecipe(Phi, Operands); 7437 } 7438 7439 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 7440 VPlan &Plan) const { 7441 7442 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7443 [this, CI](ElementCount VF) { 7444 return CM.isScalarWithPredication(CI, VF); 7445 }, 7446 Range); 7447 7448 if (IsPredicated) 7449 return nullptr; 7450 7451 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7452 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7453 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 7454 ID == Intrinsic::pseudoprobe)) 7455 return nullptr; 7456 7457 auto willWiden = [&](ElementCount VF) -> bool { 7458 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7459 // The following case may be scalarized depending on the VF. 7460 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7461 // version of the instruction. 7462 // Is it beneficial to perform intrinsic call compared to lib call? 7463 bool NeedToScalarize = false; 7464 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 7465 bool UseVectorIntrinsic = 7466 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 7467 return UseVectorIntrinsic || !NeedToScalarize; 7468 }; 7469 7470 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7471 return nullptr; 7472 7473 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 7474 } 7475 7476 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 7477 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 7478 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 7479 // Instruction should be widened, unless it is scalar after vectorization, 7480 // scalarization is profitable or it is predicated. 7481 auto WillScalarize = [this, I](ElementCount VF) -> bool { 7482 return CM.isScalarAfterVectorization(I, VF) || 7483 CM.isProfitableToScalarize(I, VF) || 7484 CM.isScalarWithPredication(I, VF); 7485 }; 7486 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 7487 Range); 7488 } 7489 7490 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 7491 auto IsVectorizableOpcode = [](unsigned Opcode) { 7492 switch (Opcode) { 7493 case Instruction::Add: 7494 case Instruction::And: 7495 case Instruction::AShr: 7496 case Instruction::BitCast: 7497 case Instruction::FAdd: 7498 case Instruction::FCmp: 7499 case Instruction::FDiv: 7500 case Instruction::FMul: 7501 case Instruction::FNeg: 7502 case Instruction::FPExt: 7503 case Instruction::FPToSI: 7504 case Instruction::FPToUI: 7505 case Instruction::FPTrunc: 7506 case Instruction::FRem: 7507 case Instruction::FSub: 7508 case Instruction::ICmp: 7509 case Instruction::IntToPtr: 7510 case Instruction::LShr: 7511 case Instruction::Mul: 7512 case Instruction::Or: 7513 case Instruction::PtrToInt: 7514 case Instruction::SDiv: 7515 case Instruction::Select: 7516 case Instruction::SExt: 7517 case Instruction::Shl: 7518 case Instruction::SIToFP: 7519 case Instruction::SRem: 7520 case Instruction::Sub: 7521 case Instruction::Trunc: 7522 case Instruction::UDiv: 7523 case Instruction::UIToFP: 7524 case Instruction::URem: 7525 case Instruction::Xor: 7526 case Instruction::ZExt: 7527 return true; 7528 } 7529 return false; 7530 }; 7531 7532 if (!IsVectorizableOpcode(I->getOpcode())) 7533 return nullptr; 7534 7535 // Success: widen this instruction. 7536 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7537 } 7538 7539 VPBasicBlock *VPRecipeBuilder::handleReplication( 7540 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7541 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7542 VPlanPtr &Plan) { 7543 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7544 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 7545 Range); 7546 7547 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7548 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 7549 Range); 7550 7551 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 7552 IsUniform, IsPredicated); 7553 setRecipe(I, Recipe); 7554 Plan->addVPValue(I, Recipe); 7555 7556 // Find if I uses a predicated instruction. If so, it will use its scalar 7557 // value. Avoid hoisting the insert-element which packs the scalar value into 7558 // a vector value, as that happens iff all users use the vector value. 7559 for (auto &Op : I->operands()) 7560 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7561 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7562 PredInst2Recipe[PredInst]->setAlsoPack(false); 7563 7564 // Finalize the recipe for Instr, first if it is not predicated. 7565 if (!IsPredicated) { 7566 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7567 VPBB->appendRecipe(Recipe); 7568 return VPBB; 7569 } 7570 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7571 assert(VPBB->getSuccessors().empty() && 7572 "VPBB has successors when handling predicated replication."); 7573 // Record predicated instructions for above packing optimizations. 7574 PredInst2Recipe[I] = Recipe; 7575 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7576 VPBlockUtils::insertBlockAfter(Region, VPBB); 7577 auto *RegSucc = new VPBasicBlock(); 7578 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7579 return RegSucc; 7580 } 7581 7582 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7583 VPRecipeBase *PredRecipe, 7584 VPlanPtr &Plan) { 7585 // Instructions marked for predication are replicated and placed under an 7586 // if-then construct to prevent side-effects. 7587 7588 // Generate recipes to compute the block mask for this region. 7589 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7590 7591 // Build the triangular if-then region. 7592 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7593 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7594 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7595 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7596 auto *PHIRecipe = Instr->getType()->isVoidTy() 7597 ? nullptr 7598 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 7599 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7600 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7601 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7602 7603 // Note: first set Entry as region entry and then connect successors starting 7604 // from it in order, to propagate the "parent" of each VPBasicBlock. 7605 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7606 VPBlockUtils::connectBlocks(Pred, Exit); 7607 7608 return Region; 7609 } 7610 7611 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7612 VFRange &Range, 7613 VPlanPtr &Plan) { 7614 // First, check for specific widening recipes that deal with calls, memory 7615 // operations, inductions and Phi nodes. 7616 if (auto *CI = dyn_cast<CallInst>(Instr)) 7617 return tryToWidenCall(CI, Range, *Plan); 7618 7619 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7620 return tryToWidenMemory(Instr, Range, Plan); 7621 7622 VPRecipeBase *Recipe; 7623 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7624 if (Phi->getParent() != OrigLoop->getHeader()) 7625 return tryToBlend(Phi, Plan); 7626 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7627 return Recipe; 7628 return new VPWidenPHIRecipe(Phi); 7629 } 7630 7631 if (isa<TruncInst>(Instr) && 7632 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7633 return Recipe; 7634 7635 if (!shouldWiden(Instr, Range)) 7636 return nullptr; 7637 7638 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7639 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 7640 OrigLoop); 7641 7642 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7643 bool InvariantCond = 7644 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7645 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 7646 InvariantCond); 7647 } 7648 7649 return tryToWiden(Instr, *Plan); 7650 } 7651 7652 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 7653 ElementCount MaxVF) { 7654 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7655 7656 // Collect instructions from the original loop that will become trivially dead 7657 // in the vectorized loop. We don't need to vectorize these instructions. For 7658 // example, original induction update instructions can become dead because we 7659 // separately emit induction "steps" when generating code for the new loop. 7660 // Similarly, we create a new latch condition when setting up the structure 7661 // of the new loop, so the old one can become dead. 7662 SmallPtrSet<Instruction *, 4> DeadInstructions; 7663 collectTriviallyDeadInstructions(DeadInstructions); 7664 7665 // Add assume instructions we need to drop to DeadInstructions, to prevent 7666 // them from being added to the VPlan. 7667 // TODO: We only need to drop assumes in blocks that get flattend. If the 7668 // control flow is preserved, we should keep them. 7669 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7670 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7671 7672 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7673 // Dead instructions do not need sinking. Remove them from SinkAfter. 7674 for (Instruction *I : DeadInstructions) 7675 SinkAfter.erase(I); 7676 7677 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7678 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7679 VFRange SubRange = {VF, MaxVFPlusOne}; 7680 VPlans.push_back( 7681 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 7682 VF = SubRange.End; 7683 } 7684 } 7685 7686 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7687 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 7688 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7689 7690 // Hold a mapping from predicated instructions to their recipes, in order to 7691 // fix their AlsoPack behavior if a user is determined to replicate and use a 7692 // scalar instead of vector value. 7693 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7694 7695 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7696 7697 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7698 7699 // --------------------------------------------------------------------------- 7700 // Pre-construction: record ingredients whose recipes we'll need to further 7701 // process after constructing the initial VPlan. 7702 // --------------------------------------------------------------------------- 7703 7704 // Mark instructions we'll need to sink later and their targets as 7705 // ingredients whose recipe we'll need to record. 7706 for (auto &Entry : SinkAfter) { 7707 RecipeBuilder.recordRecipeOf(Entry.first); 7708 RecipeBuilder.recordRecipeOf(Entry.second); 7709 } 7710 for (auto &Reduction : CM.getInLoopReductionChains()) { 7711 PHINode *Phi = Reduction.first; 7712 RecurrenceDescriptor::RecurrenceKind Kind = 7713 Legal->getReductionVars()[Phi].getRecurrenceKind(); 7714 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 7715 7716 RecipeBuilder.recordRecipeOf(Phi); 7717 for (auto &R : ReductionOperations) { 7718 RecipeBuilder.recordRecipeOf(R); 7719 // For min/max reducitons, where we have a pair of icmp/select, we also 7720 // need to record the ICmp recipe, so it can be removed later. 7721 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7722 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7723 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 7724 } 7725 } 7726 } 7727 7728 // For each interleave group which is relevant for this (possibly trimmed) 7729 // Range, add it to the set of groups to be later applied to the VPlan and add 7730 // placeholders for its members' Recipes which we'll be replacing with a 7731 // single VPInterleaveRecipe. 7732 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7733 auto applyIG = [IG, this](ElementCount VF) -> bool { 7734 return (VF.isVector() && // Query is illegal for VF == 1 7735 CM.getWideningDecision(IG->getInsertPos(), VF) == 7736 LoopVectorizationCostModel::CM_Interleave); 7737 }; 7738 if (!getDecisionAndClampRange(applyIG, Range)) 7739 continue; 7740 InterleaveGroups.insert(IG); 7741 for (unsigned i = 0; i < IG->getFactor(); i++) 7742 if (Instruction *Member = IG->getMember(i)) 7743 RecipeBuilder.recordRecipeOf(Member); 7744 }; 7745 7746 // --------------------------------------------------------------------------- 7747 // Build initial VPlan: Scan the body of the loop in a topological order to 7748 // visit each basic block after having visited its predecessor basic blocks. 7749 // --------------------------------------------------------------------------- 7750 7751 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7752 auto Plan = std::make_unique<VPlan>(); 7753 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7754 Plan->setEntry(VPBB); 7755 7756 // Scan the body of the loop in a topological order to visit each basic block 7757 // after having visited its predecessor basic blocks. 7758 LoopBlocksDFS DFS(OrigLoop); 7759 DFS.perform(LI); 7760 7761 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7762 // Relevant instructions from basic block BB will be grouped into VPRecipe 7763 // ingredients and fill a new VPBasicBlock. 7764 unsigned VPBBsForBB = 0; 7765 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7766 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7767 VPBB = FirstVPBBForBB; 7768 Builder.setInsertPoint(VPBB); 7769 7770 // Introduce each ingredient into VPlan. 7771 // TODO: Model and preserve debug instrinsics in VPlan. 7772 for (Instruction &I : BB->instructionsWithoutDebug()) { 7773 Instruction *Instr = &I; 7774 7775 // First filter out irrelevant instructions, to ensure no recipes are 7776 // built for them. 7777 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 7778 continue; 7779 7780 if (auto Recipe = 7781 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7782 // Check if the recipe can be converted to a VPValue. We need the extra 7783 // down-casting step until VPRecipeBase inherits from VPValue. 7784 VPValue *MaybeVPValue = Recipe->toVPValue(); 7785 if (!Instr->getType()->isVoidTy() && MaybeVPValue) 7786 Plan->addVPValue(Instr, MaybeVPValue); 7787 7788 RecipeBuilder.setRecipe(Instr, Recipe); 7789 VPBB->appendRecipe(Recipe); 7790 continue; 7791 } 7792 7793 // Otherwise, if all widening options failed, Instruction is to be 7794 // replicated. This may create a successor for VPBB. 7795 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7796 Instr, Range, VPBB, PredInst2Recipe, Plan); 7797 if (NextVPBB != VPBB) { 7798 VPBB = NextVPBB; 7799 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7800 : ""); 7801 } 7802 } 7803 } 7804 7805 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7806 // may also be empty, such as the last one VPBB, reflecting original 7807 // basic-blocks with no recipes. 7808 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7809 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7810 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7811 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7812 delete PreEntry; 7813 7814 // --------------------------------------------------------------------------- 7815 // Transform initial VPlan: Apply previously taken decisions, in order, to 7816 // bring the VPlan to its final state. 7817 // --------------------------------------------------------------------------- 7818 7819 // Apply Sink-After legal constraints. 7820 for (auto &Entry : SinkAfter) { 7821 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7822 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7823 Sink->moveAfter(Target); 7824 } 7825 7826 // Interleave memory: for each Interleave Group we marked earlier as relevant 7827 // for this VPlan, replace the Recipes widening its memory instructions with a 7828 // single VPInterleaveRecipe at its insertion point. 7829 for (auto IG : InterleaveGroups) { 7830 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7831 RecipeBuilder.getRecipe(IG->getInsertPos())); 7832 SmallVector<VPValue *, 4> StoredValues; 7833 for (unsigned i = 0; i < IG->getFactor(); ++i) 7834 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 7835 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 7836 7837 (new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 7838 Recipe->getMask())) 7839 ->insertBefore(Recipe); 7840 7841 for (unsigned i = 0; i < IG->getFactor(); ++i) 7842 if (Instruction *Member = IG->getMember(i)) { 7843 if (!Member->getType()->isVoidTy()) { 7844 VPValue *OriginalV = Plan->getVPValue(Member); 7845 Plan->removeVPValueFor(Member); 7846 OriginalV->replaceAllUsesWith(Plan->getOrAddVPValue(Member)); 7847 } 7848 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7849 } 7850 } 7851 7852 // Adjust the recipes for any inloop reductions. 7853 if (Range.Start.isVector()) 7854 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 7855 7856 // Finally, if tail is folded by masking, introduce selects between the phi 7857 // and the live-out instruction of each reduction, at the end of the latch. 7858 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 7859 Builder.setInsertPoint(VPBB); 7860 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7861 for (auto &Reduction : Legal->getReductionVars()) { 7862 if (CM.isInLoopReduction(Reduction.first)) 7863 continue; 7864 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 7865 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 7866 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7867 } 7868 } 7869 7870 std::string PlanName; 7871 raw_string_ostream RSO(PlanName); 7872 ElementCount VF = Range.Start; 7873 Plan->addVF(VF); 7874 RSO << "Initial VPlan for VF={" << VF; 7875 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 7876 Plan->addVF(VF); 7877 RSO << "," << VF; 7878 } 7879 RSO << "},UF>=1"; 7880 RSO.flush(); 7881 Plan->setName(PlanName); 7882 7883 return Plan; 7884 } 7885 7886 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7887 // Outer loop handling: They may require CFG and instruction level 7888 // transformations before even evaluating whether vectorization is profitable. 7889 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7890 // the vectorization pipeline. 7891 assert(!OrigLoop->isInnermost()); 7892 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7893 7894 // Create new empty VPlan 7895 auto Plan = std::make_unique<VPlan>(); 7896 7897 // Build hierarchical CFG 7898 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7899 HCFGBuilder.buildHierarchicalCFG(); 7900 7901 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 7902 VF *= 2) 7903 Plan->addVF(VF); 7904 7905 if (EnableVPlanPredication) { 7906 VPlanPredicator VPP(*Plan); 7907 VPP.predicate(); 7908 7909 // Avoid running transformation to recipes until masked code generation in 7910 // VPlan-native path is in place. 7911 return Plan; 7912 } 7913 7914 SmallPtrSet<Instruction *, 1> DeadInstructions; 7915 VPlanTransforms::VPInstructionsToVPRecipes( 7916 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7917 return Plan; 7918 } 7919 7920 // Adjust the recipes for any inloop reductions. The chain of instructions 7921 // leading from the loop exit instr to the phi need to be converted to 7922 // reductions, with one operand being vector and the other being the scalar 7923 // reduction chain. 7924 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 7925 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 7926 for (auto &Reduction : CM.getInLoopReductionChains()) { 7927 PHINode *Phi = Reduction.first; 7928 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 7929 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 7930 7931 // ReductionOperations are orders top-down from the phi's use to the 7932 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 7933 // which of the two operands will remain scalar and which will be reduced. 7934 // For minmax the chain will be the select instructions. 7935 Instruction *Chain = Phi; 7936 for (Instruction *R : ReductionOperations) { 7937 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 7938 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc.getRecurrenceKind(); 7939 7940 VPValue *ChainOp = Plan->getVPValue(Chain); 7941 unsigned FirstOpId; 7942 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7943 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7944 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 7945 "Expected to replace a VPWidenSelectSC"); 7946 FirstOpId = 1; 7947 } else { 7948 assert(isa<VPWidenRecipe>(WidenRecipe) && 7949 "Expected to replace a VPWidenSC"); 7950 FirstOpId = 0; 7951 } 7952 unsigned VecOpId = 7953 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 7954 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 7955 7956 auto *CondOp = CM.foldTailByMasking() 7957 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 7958 : nullptr; 7959 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 7960 &RdxDesc, R, ChainOp, VecOp, CondOp, Legal->hasFunNoNaNAttr(), TTI); 7961 WidenRecipe->toVPValue()->replaceAllUsesWith(RedRecipe); 7962 Plan->removeVPValueFor(R); 7963 Plan->addVPValue(R, RedRecipe); 7964 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 7965 WidenRecipe->eraseFromParent(); 7966 7967 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 7968 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 7969 VPRecipeBase *CompareRecipe = 7970 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 7971 assert(isa<VPWidenRecipe>(CompareRecipe) && 7972 "Expected to replace a VPWidenSC"); 7973 assert(CompareRecipe->toVPValue()->getNumUsers() == 0 && 7974 "Expected no remaining users"); 7975 CompareRecipe->eraseFromParent(); 7976 } 7977 Chain = R; 7978 } 7979 } 7980 } 7981 7982 Value* LoopVectorizationPlanner::VPCallbackILV:: 7983 getOrCreateVectorValues(Value *V, unsigned Part) { 7984 return ILV.getOrCreateVectorValue(V, Part); 7985 } 7986 7987 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7988 Value *V, const VPIteration &Instance) { 7989 return ILV.getOrCreateScalarValue(V, Instance); 7990 } 7991 7992 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 7993 VPSlotTracker &SlotTracker) const { 7994 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7995 IG->getInsertPos()->printAsOperand(O, false); 7996 O << ", "; 7997 getAddr()->printAsOperand(O, SlotTracker); 7998 VPValue *Mask = getMask(); 7999 if (Mask) { 8000 O << ", "; 8001 Mask->printAsOperand(O, SlotTracker); 8002 } 8003 for (unsigned i = 0; i < IG->getFactor(); ++i) 8004 if (Instruction *I = IG->getMember(i)) 8005 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 8006 } 8007 8008 void VPWidenCallRecipe::execute(VPTransformState &State) { 8009 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 8010 *this, State); 8011 } 8012 8013 void VPWidenSelectRecipe::execute(VPTransformState &State) { 8014 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 8015 this, *this, InvariantCond, State); 8016 } 8017 8018 void VPWidenRecipe::execute(VPTransformState &State) { 8019 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 8020 } 8021 8022 void VPWidenGEPRecipe::execute(VPTransformState &State) { 8023 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 8024 *this, State.UF, State.VF, IsPtrLoopInvariant, 8025 IsIndexLoopInvariant, State); 8026 } 8027 8028 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8029 assert(!State.Instance && "Int or FP induction being replicated."); 8030 State.ILV->widenIntOrFpInduction(IV, Trunc); 8031 } 8032 8033 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8034 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8035 } 8036 8037 void VPBlendRecipe::execute(VPTransformState &State) { 8038 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8039 // We know that all PHIs in non-header blocks are converted into 8040 // selects, so we don't have to worry about the insertion order and we 8041 // can just use the builder. 8042 // At this point we generate the predication tree. There may be 8043 // duplications since this is a simple recursive scan, but future 8044 // optimizations will clean it up. 8045 8046 unsigned NumIncoming = getNumIncomingValues(); 8047 8048 // Generate a sequence of selects of the form: 8049 // SELECT(Mask3, In3, 8050 // SELECT(Mask2, In2, 8051 // SELECT(Mask1, In1, 8052 // In0))) 8053 // Note that Mask0 is never used: lanes for which no path reaches this phi and 8054 // are essentially undef are taken from In0. 8055 InnerLoopVectorizer::VectorParts Entry(State.UF); 8056 for (unsigned In = 0; In < NumIncoming; ++In) { 8057 for (unsigned Part = 0; Part < State.UF; ++Part) { 8058 // We might have single edge PHIs (blocks) - use an identity 8059 // 'select' for the first PHI operand. 8060 Value *In0 = State.get(getIncomingValue(In), Part); 8061 if (In == 0) 8062 Entry[Part] = In0; // Initialize with the first incoming value. 8063 else { 8064 // Select between the current value and the previous incoming edge 8065 // based on the incoming mask. 8066 Value *Cond = State.get(getMask(In), Part); 8067 Entry[Part] = 8068 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8069 } 8070 } 8071 } 8072 for (unsigned Part = 0; Part < State.UF; ++Part) 8073 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8074 } 8075 8076 void VPInterleaveRecipe::execute(VPTransformState &State) { 8077 assert(!State.Instance && "Interleave group being replicated."); 8078 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getStoredValues(), 8079 getMask()); 8080 } 8081 8082 void VPReductionRecipe::execute(VPTransformState &State) { 8083 assert(!State.Instance && "Reduction being replicated."); 8084 for (unsigned Part = 0; Part < State.UF; ++Part) { 8085 RecurrenceDescriptor::RecurrenceKind Kind = RdxDesc->getRecurrenceKind(); 8086 Value *NewVecOp = State.get(getVecOp(), Part); 8087 if (VPValue *Cond = getCondOp()) { 8088 Value *NewCond = State.get(Cond, Part); 8089 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 8090 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 8091 Kind, RdxDesc->getMinMaxRecurrenceKind(), VecTy->getElementType()); 8092 Constant *IdenVec = 8093 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 8094 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 8095 NewVecOp = Select; 8096 } 8097 Value *NewRed = 8098 createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp, NoNaN); 8099 Value *PrevInChain = State.get(getChainOp(), Part); 8100 Value *NextInChain; 8101 if (Kind == RecurrenceDescriptor::RK_IntegerMinMax || 8102 Kind == RecurrenceDescriptor::RK_FloatMinMax) { 8103 NextInChain = 8104 createMinMaxOp(State.Builder, RdxDesc->getMinMaxRecurrenceKind(), 8105 NewRed, PrevInChain); 8106 } else { 8107 NextInChain = State.Builder.CreateBinOp( 8108 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 8109 PrevInChain); 8110 } 8111 State.set(this, getUnderlyingInstr(), NextInChain, Part); 8112 } 8113 } 8114 8115 void VPReplicateRecipe::execute(VPTransformState &State) { 8116 if (State.Instance) { // Generate a single instance. 8117 State.ILV->scalarizeInstruction(getUnderlyingInstr(), *this, 8118 *State.Instance, IsPredicated, State); 8119 // Insert scalar instance packing it into a vector. 8120 if (AlsoPack && State.VF.isVector()) { 8121 // If we're constructing lane 0, initialize to start from undef. 8122 if (State.Instance->Lane == 0) { 8123 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 8124 Value *Undef = UndefValue::get( 8125 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 8126 State.ValueMap.setVectorValue(getUnderlyingInstr(), 8127 State.Instance->Part, Undef); 8128 } 8129 State.ILV->packScalarIntoVectorValue(getUnderlyingInstr(), 8130 *State.Instance); 8131 } 8132 return; 8133 } 8134 8135 // Generate scalar instances for all VF lanes of all UF parts, unless the 8136 // instruction is uniform inwhich case generate only the first lane for each 8137 // of the UF parts. 8138 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 8139 for (unsigned Part = 0; Part < State.UF; ++Part) 8140 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8141 State.ILV->scalarizeInstruction(getUnderlyingInstr(), *this, {Part, Lane}, 8142 IsPredicated, State); 8143 } 8144 8145 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8146 assert(State.Instance && "Branch on Mask works only on single instance."); 8147 8148 unsigned Part = State.Instance->Part; 8149 unsigned Lane = State.Instance->Lane; 8150 8151 Value *ConditionBit = nullptr; 8152 VPValue *BlockInMask = getMask(); 8153 if (BlockInMask) { 8154 ConditionBit = State.get(BlockInMask, Part); 8155 if (ConditionBit->getType()->isVectorTy()) 8156 ConditionBit = State.Builder.CreateExtractElement( 8157 ConditionBit, State.Builder.getInt32(Lane)); 8158 } else // Block in mask is all-one. 8159 ConditionBit = State.Builder.getTrue(); 8160 8161 // Replace the temporary unreachable terminator with a new conditional branch, 8162 // whose two destinations will be set later when they are created. 8163 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8164 assert(isa<UnreachableInst>(CurrentTerminator) && 8165 "Expected to replace unreachable terminator with conditional branch."); 8166 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8167 CondBr->setSuccessor(0, nullptr); 8168 ReplaceInstWithInst(CurrentTerminator, CondBr); 8169 } 8170 8171 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8172 assert(State.Instance && "Predicated instruction PHI works per instance."); 8173 Instruction *ScalarPredInst = 8174 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 8175 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8176 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8177 assert(PredicatingBB && "Predicated block has no single predecessor."); 8178 8179 // By current pack/unpack logic we need to generate only a single phi node: if 8180 // a vector value for the predicated instruction exists at this point it means 8181 // the instruction has vector users only, and a phi for the vector value is 8182 // needed. In this case the recipe of the predicated instruction is marked to 8183 // also do that packing, thereby "hoisting" the insert-element sequence. 8184 // Otherwise, a phi node for the scalar value is needed. 8185 unsigned Part = State.Instance->Part; 8186 Instruction *PredInst = 8187 cast<Instruction>(getOperand(0)->getUnderlyingValue()); 8188 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8189 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8190 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8191 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8192 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8193 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8194 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8195 } else { 8196 Type *PredInstType = PredInst->getType(); 8197 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8198 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8199 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8200 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8201 } 8202 } 8203 8204 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8205 Instruction *Instr = getUnderlyingInstr(); 8206 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 8207 State.ILV->vectorizeMemoryInstruction(Instr, State, 8208 StoredValue ? nullptr : this, getAddr(), 8209 StoredValue, getMask()); 8210 } 8211 8212 // Determine how to lower the scalar epilogue, which depends on 1) optimising 8213 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 8214 // predication, and 4) a TTI hook that analyses whether the loop is suitable 8215 // for predication. 8216 static ScalarEpilogueLowering getScalarEpilogueLowering( 8217 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 8218 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 8219 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 8220 LoopVectorizationLegality &LVL) { 8221 // 1) OptSize takes precedence over all other options, i.e. if this is set, 8222 // don't look at hints or options, and don't request a scalar epilogue. 8223 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 8224 // LoopAccessInfo (due to code dependency and not being able to reliably get 8225 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 8226 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 8227 // versioning when the vectorization is forced, unlike hasOptSize. So revert 8228 // back to the old way and vectorize with versioning when forced. See D81345.) 8229 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 8230 PGSOQueryType::IRPass) && 8231 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 8232 return CM_ScalarEpilogueNotAllowedOptSize; 8233 8234 bool PredicateOptDisabled = PreferPredicateOverEpilogue.getNumOccurrences() && 8235 !PreferPredicateOverEpilogue; 8236 8237 // 2) Next, if disabling predication is requested on the command line, honour 8238 // this and request a scalar epilogue. 8239 if (PredicateOptDisabled) 8240 return CM_ScalarEpilogueAllowed; 8241 8242 // 3) and 4) look if enabling predication is requested on the command line, 8243 // with a loop hint, or if the TTI hook indicates this is profitable, request 8244 // predication. 8245 if (PreferPredicateOverEpilogue || 8246 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 8247 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 8248 LVL.getLAI()) && 8249 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 8250 return CM_ScalarEpilogueNotNeededUsePredicate; 8251 8252 return CM_ScalarEpilogueAllowed; 8253 } 8254 8255 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V, 8256 unsigned Part) { 8257 set(Def, V, Part); 8258 ILV->setVectorValue(IRDef, Part, V); 8259 } 8260 8261 // Process the loop in the VPlan-native vectorization path. This path builds 8262 // VPlan upfront in the vectorization pipeline, which allows to apply 8263 // VPlan-to-VPlan transformations from the very beginning without modifying the 8264 // input LLVM IR. 8265 static bool processLoopInVPlanNativePath( 8266 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 8267 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 8268 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 8269 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 8270 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 8271 8272 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 8273 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 8274 return false; 8275 } 8276 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 8277 Function *F = L->getHeader()->getParent(); 8278 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 8279 8280 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8281 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 8282 8283 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 8284 &Hints, IAI); 8285 // Use the planner for outer loop vectorization. 8286 // TODO: CM is not used at this point inside the planner. Turn CM into an 8287 // optional argument if we don't need it in the future. 8288 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 8289 8290 // Get user vectorization factor. 8291 const unsigned UserVF = Hints.getWidth(); 8292 8293 // Plan how to best vectorize, return the best VF and its cost. 8294 const VectorizationFactor VF = 8295 LVP.planInVPlanNativePath(ElementCount::getFixed(UserVF)); 8296 8297 // If we are stress testing VPlan builds, do not attempt to generate vector 8298 // code. Masked vector code generation support will follow soon. 8299 // Also, do not attempt to vectorize if no vector code will be produced. 8300 if (VPlanBuildStressTest || EnableVPlanPredication || 8301 VectorizationFactor::Disabled() == VF) 8302 return false; 8303 8304 LVP.setBestPlan(VF.Width, 1); 8305 8306 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 8307 &CM, BFI, PSI); 8308 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 8309 << L->getHeader()->getParent()->getName() << "\"\n"); 8310 LVP.executePlan(LB, DT); 8311 8312 // Mark the loop as already vectorized to avoid vectorizing again. 8313 Hints.setAlreadyVectorized(); 8314 8315 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8316 return true; 8317 } 8318 8319 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 8320 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 8321 !EnableLoopInterleaving), 8322 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 8323 !EnableLoopVectorization) {} 8324 8325 bool LoopVectorizePass::processLoop(Loop *L) { 8326 assert((EnableVPlanNativePath || L->isInnermost()) && 8327 "VPlan-native path is not enabled. Only process inner loops."); 8328 8329 #ifndef NDEBUG 8330 const std::string DebugLocStr = getDebugLocString(L); 8331 #endif /* NDEBUG */ 8332 8333 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8334 << L->getHeader()->getParent()->getName() << "\" from " 8335 << DebugLocStr << "\n"); 8336 8337 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 8338 8339 LLVM_DEBUG( 8340 dbgs() << "LV: Loop hints:" 8341 << " force=" 8342 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8343 ? "disabled" 8344 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8345 ? "enabled" 8346 : "?")) 8347 << " width=" << Hints.getWidth() 8348 << " unroll=" << Hints.getInterleave() << "\n"); 8349 8350 // Function containing loop 8351 Function *F = L->getHeader()->getParent(); 8352 8353 // Looking at the diagnostic output is the only way to determine if a loop 8354 // was vectorized (other than looking at the IR or machine code), so it 8355 // is important to generate an optimization remark for each loop. Most of 8356 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8357 // generated as OptimizationRemark and OptimizationRemarkMissed are 8358 // less verbose reporting vectorized loops and unvectorized loops that may 8359 // benefit from vectorization, respectively. 8360 8361 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 8362 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8363 return false; 8364 } 8365 8366 PredicatedScalarEvolution PSE(*SE, *L); 8367 8368 // Check if it is legal to vectorize the loop. 8369 LoopVectorizationRequirements Requirements(*ORE); 8370 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 8371 &Requirements, &Hints, DB, AC, BFI, PSI); 8372 if (!LVL.canVectorize(EnableVPlanNativePath)) { 8373 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8374 Hints.emitRemarkWithHints(); 8375 return false; 8376 } 8377 8378 // Check the function attributes and profiles to find out if this function 8379 // should be optimized for size. 8380 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 8381 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 8382 8383 // Entrance to the VPlan-native vectorization path. Outer loops are processed 8384 // here. They may require CFG and instruction level transformations before 8385 // even evaluating whether vectorization is profitable. Since we cannot modify 8386 // the incoming IR, we need to build VPlan upfront in the vectorization 8387 // pipeline. 8388 if (!L->isInnermost()) 8389 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 8390 ORE, BFI, PSI, Hints); 8391 8392 assert(L->isInnermost() && "Inner loop expected."); 8393 8394 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8395 // count by optimizing for size, to minimize overheads. 8396 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 8397 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 8398 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8399 << "This loop is worth vectorizing only if no scalar " 8400 << "iteration overheads are incurred."); 8401 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8402 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8403 else { 8404 LLVM_DEBUG(dbgs() << "\n"); 8405 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 8406 } 8407 } 8408 8409 // Check the function attributes to see if implicit floats are allowed. 8410 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8411 // an integer loop and the vector instructions selected are purely integer 8412 // vector instructions? 8413 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8414 reportVectorizationFailure( 8415 "Can't vectorize when the NoImplicitFloat attribute is used", 8416 "loop not vectorized due to NoImplicitFloat attribute", 8417 "NoImplicitFloat", ORE, L); 8418 Hints.emitRemarkWithHints(); 8419 return false; 8420 } 8421 8422 // Check if the target supports potentially unsafe FP vectorization. 8423 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8424 // for the target we're vectorizing for, to make sure none of the 8425 // additional fp-math flags can help. 8426 if (Hints.isPotentiallyUnsafe() && 8427 TTI->isFPVectorizationPotentiallyUnsafe()) { 8428 reportVectorizationFailure( 8429 "Potentially unsafe FP op prevents vectorization", 8430 "loop not vectorized due to unsafe FP support.", 8431 "UnsafeFP", ORE, L); 8432 Hints.emitRemarkWithHints(); 8433 return false; 8434 } 8435 8436 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 8437 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 8438 8439 // If an override option has been passed in for interleaved accesses, use it. 8440 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 8441 UseInterleaved = EnableInterleavedMemAccesses; 8442 8443 // Analyze interleaved memory accesses. 8444 if (UseInterleaved) { 8445 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 8446 } 8447 8448 // Use the cost model. 8449 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 8450 F, &Hints, IAI); 8451 CM.collectValuesToIgnore(); 8452 8453 // Use the planner for vectorization. 8454 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 8455 8456 // Get user vectorization factor and interleave count. 8457 unsigned UserVF = Hints.getWidth(); 8458 unsigned UserIC = Hints.getInterleave(); 8459 8460 // Plan how to best vectorize, return the best VF and its cost. 8461 Optional<VectorizationFactor> MaybeVF = 8462 LVP.plan(ElementCount::getFixed(UserVF), UserIC); 8463 8464 VectorizationFactor VF = VectorizationFactor::Disabled(); 8465 unsigned IC = 1; 8466 8467 if (MaybeVF) { 8468 VF = *MaybeVF; 8469 // Select the interleave count. 8470 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 8471 } 8472 8473 // Identify the diagnostic messages that should be produced. 8474 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8475 bool VectorizeLoop = true, InterleaveLoop = true; 8476 if (Requirements.doesNotMeet(F, L, Hints)) { 8477 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8478 "requirements.\n"); 8479 Hints.emitRemarkWithHints(); 8480 return false; 8481 } 8482 8483 if (VF.Width.isScalar()) { 8484 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8485 VecDiagMsg = std::make_pair( 8486 "VectorizationNotBeneficial", 8487 "the cost-model indicates that vectorization is not beneficial"); 8488 VectorizeLoop = false; 8489 } 8490 8491 if (!MaybeVF && UserIC > 1) { 8492 // Tell the user interleaving was avoided up-front, despite being explicitly 8493 // requested. 8494 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 8495 "interleaving should be avoided up front\n"); 8496 IntDiagMsg = std::make_pair( 8497 "InterleavingAvoided", 8498 "Ignoring UserIC, because interleaving was avoided up front"); 8499 InterleaveLoop = false; 8500 } else if (IC == 1 && UserIC <= 1) { 8501 // Tell the user interleaving is not beneficial. 8502 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8503 IntDiagMsg = std::make_pair( 8504 "InterleavingNotBeneficial", 8505 "the cost-model indicates that interleaving is not beneficial"); 8506 InterleaveLoop = false; 8507 if (UserIC == 1) { 8508 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8509 IntDiagMsg.second += 8510 " and is explicitly disabled or interleave count is set to 1"; 8511 } 8512 } else if (IC > 1 && UserIC == 1) { 8513 // Tell the user interleaving is beneficial, but it explicitly disabled. 8514 LLVM_DEBUG( 8515 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 8516 IntDiagMsg = std::make_pair( 8517 "InterleavingBeneficialButDisabled", 8518 "the cost-model indicates that interleaving is beneficial " 8519 "but is explicitly disabled or interleave count is set to 1"); 8520 InterleaveLoop = false; 8521 } 8522 8523 // Override IC if user provided an interleave count. 8524 IC = UserIC > 0 ? UserIC : IC; 8525 8526 // Emit diagnostic messages, if any. 8527 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8528 if (!VectorizeLoop && !InterleaveLoop) { 8529 // Do not vectorize or interleaving the loop. 8530 ORE->emit([&]() { 8531 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8532 L->getStartLoc(), L->getHeader()) 8533 << VecDiagMsg.second; 8534 }); 8535 ORE->emit([&]() { 8536 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8537 L->getStartLoc(), L->getHeader()) 8538 << IntDiagMsg.second; 8539 }); 8540 return false; 8541 } else if (!VectorizeLoop && InterleaveLoop) { 8542 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8543 ORE->emit([&]() { 8544 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8545 L->getStartLoc(), L->getHeader()) 8546 << VecDiagMsg.second; 8547 }); 8548 } else if (VectorizeLoop && !InterleaveLoop) { 8549 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 8550 << ") in " << DebugLocStr << '\n'); 8551 ORE->emit([&]() { 8552 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8553 L->getStartLoc(), L->getHeader()) 8554 << IntDiagMsg.second; 8555 }); 8556 } else if (VectorizeLoop && InterleaveLoop) { 8557 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 8558 << ") in " << DebugLocStr << '\n'); 8559 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8560 } 8561 8562 LVP.setBestPlan(VF.Width, IC); 8563 8564 using namespace ore; 8565 bool DisableRuntimeUnroll = false; 8566 MDNode *OrigLoopID = L->getLoopID(); 8567 8568 if (!VectorizeLoop) { 8569 assert(IC > 1 && "interleave count should not be 1 or 0"); 8570 // If we decided that it is not legal to vectorize the loop, then 8571 // interleave it. 8572 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 8573 BFI, PSI); 8574 LVP.executePlan(Unroller, DT); 8575 8576 ORE->emit([&]() { 8577 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8578 L->getHeader()) 8579 << "interleaved loop (interleaved count: " 8580 << NV("InterleaveCount", IC) << ")"; 8581 }); 8582 } else { 8583 // If we decided that it is *legal* to vectorize the loop, then do it. 8584 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8585 &LVL, &CM, BFI, PSI); 8586 LVP.executePlan(LB, DT); 8587 ++LoopsVectorized; 8588 8589 // Add metadata to disable runtime unrolling a scalar loop when there are 8590 // no runtime checks about strides and memory. A scalar loop that is 8591 // rarely used is not worth unrolling. 8592 if (!LB.areSafetyChecksAdded()) 8593 DisableRuntimeUnroll = true; 8594 8595 // Report the vectorization decision. 8596 ORE->emit([&]() { 8597 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8598 L->getHeader()) 8599 << "vectorized loop (vectorization width: " 8600 << NV("VectorizationFactor", VF.Width) 8601 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8602 }); 8603 } 8604 8605 Optional<MDNode *> RemainderLoopID = 8606 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 8607 LLVMLoopVectorizeFollowupEpilogue}); 8608 if (RemainderLoopID.hasValue()) { 8609 L->setLoopID(RemainderLoopID.getValue()); 8610 } else { 8611 if (DisableRuntimeUnroll) 8612 AddRuntimeUnrollDisableMetaData(L); 8613 8614 // Mark the loop as already vectorized to avoid vectorizing again. 8615 Hints.setAlreadyVectorized(); 8616 } 8617 8618 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 8619 return true; 8620 } 8621 8622 LoopVectorizeResult LoopVectorizePass::runImpl( 8623 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8624 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8625 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 8626 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8627 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 8628 SE = &SE_; 8629 LI = &LI_; 8630 TTI = &TTI_; 8631 DT = &DT_; 8632 BFI = &BFI_; 8633 TLI = TLI_; 8634 AA = &AA_; 8635 AC = &AC_; 8636 GetLAA = &GetLAA_; 8637 DB = &DB_; 8638 ORE = &ORE_; 8639 PSI = PSI_; 8640 8641 // Don't attempt if 8642 // 1. the target claims to have no vector registers, and 8643 // 2. interleaving won't help ILP. 8644 // 8645 // The second condition is necessary because, even if the target has no 8646 // vector registers, loop vectorization may still enable scalar 8647 // interleaving. 8648 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8649 TTI->getMaxInterleaveFactor(1) < 2) 8650 return LoopVectorizeResult(false, false); 8651 8652 bool Changed = false, CFGChanged = false; 8653 8654 // The vectorizer requires loops to be in simplified form. 8655 // Since simplification may add new inner loops, it has to run before the 8656 // legality and profitability checks. This means running the loop vectorizer 8657 // will simplify all loops, regardless of whether anything end up being 8658 // vectorized. 8659 for (auto &L : *LI) 8660 Changed |= CFGChanged |= 8661 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8662 8663 // Build up a worklist of inner-loops to vectorize. This is necessary as 8664 // the act of vectorizing or partially unrolling a loop creates new loops 8665 // and can invalidate iterators across the loops. 8666 SmallVector<Loop *, 8> Worklist; 8667 8668 for (Loop *L : *LI) 8669 collectSupportedLoops(*L, LI, ORE, Worklist); 8670 8671 LoopsAnalyzed += Worklist.size(); 8672 8673 // Now walk the identified inner loops. 8674 while (!Worklist.empty()) { 8675 Loop *L = Worklist.pop_back_val(); 8676 8677 // For the inner loops we actually process, form LCSSA to simplify the 8678 // transform. 8679 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8680 8681 Changed |= CFGChanged |= processLoop(L); 8682 } 8683 8684 // Process each loop nest in the function. 8685 return LoopVectorizeResult(Changed, CFGChanged); 8686 } 8687 8688 PreservedAnalyses LoopVectorizePass::run(Function &F, 8689 FunctionAnalysisManager &AM) { 8690 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8691 auto &LI = AM.getResult<LoopAnalysis>(F); 8692 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8693 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8694 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8695 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8696 auto &AA = AM.getResult<AAManager>(F); 8697 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8698 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8699 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8700 MemorySSA *MSSA = EnableMSSALoopDependency 8701 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8702 : nullptr; 8703 8704 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8705 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8706 [&](Loop &L) -> const LoopAccessInfo & { 8707 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 8708 TLI, TTI, nullptr, MSSA}; 8709 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8710 }; 8711 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 8712 ProfileSummaryInfo *PSI = 8713 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8714 LoopVectorizeResult Result = 8715 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8716 if (!Result.MadeAnyChange) 8717 return PreservedAnalyses::all(); 8718 PreservedAnalyses PA; 8719 8720 // We currently do not preserve loopinfo/dominator analyses with outer loop 8721 // vectorization. Until this is addressed, mark these analyses as preserved 8722 // only for non-VPlan-native path. 8723 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8724 if (!EnableVPlanNativePath) { 8725 PA.preserve<LoopAnalysis>(); 8726 PA.preserve<DominatorTreeAnalysis>(); 8727 } 8728 PA.preserve<BasicAA>(); 8729 PA.preserve<GlobalsAA>(); 8730 if (!Result.MadeCFGChange) 8731 PA.preserveSet<CFGAnalyses>(); 8732 return PA; 8733 } 8734