1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 AnalysisKey ShouldRunExtraVectorPasses::Key; 432 433 /// InnerLoopVectorizer vectorizes loops which contain only one basic 434 /// block to a specified vectorization factor (VF). 435 /// This class performs the widening of scalars into vectors, or multiple 436 /// scalars. This class also implements the following features: 437 /// * It inserts an epilogue loop for handling loops that don't have iteration 438 /// counts that are known to be a multiple of the vectorization factor. 439 /// * It handles the code generation for reduction variables. 440 /// * Scalarization (implementation using scalars) of un-vectorizable 441 /// instructions. 442 /// InnerLoopVectorizer does not perform any vectorization-legality 443 /// checks, and relies on the caller to check for the different legality 444 /// aspects. The InnerLoopVectorizer relies on the 445 /// LoopVectorizationLegality class to provide information about the induction 446 /// and reduction variables that were found to a given vectorization factor. 447 class InnerLoopVectorizer { 448 public: 449 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 450 LoopInfo *LI, DominatorTree *DT, 451 const TargetLibraryInfo *TLI, 452 const TargetTransformInfo *TTI, AssumptionCache *AC, 453 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 454 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 455 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 456 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 457 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 458 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 459 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 460 PSI(PSI), RTChecks(RTChecks) { 461 // Query this against the original loop and save it here because the profile 462 // of the original loop header may change as the transformation happens. 463 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 464 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 465 } 466 467 virtual ~InnerLoopVectorizer() = default; 468 469 /// Create a new empty loop that will contain vectorized instructions later 470 /// on, while the old loop will be used as the scalar remainder. Control flow 471 /// is generated around the vectorized (and scalar epilogue) loops consisting 472 /// of various checks and bypasses. Return the pre-header block of the new 473 /// loop and the start value for the canonical induction, if it is != 0. The 474 /// latter is the case when vectorizing the epilogue loop. In the case of 475 /// epilogue vectorization, this function is overriden to handle the more 476 /// complex control flow around the loops. 477 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 478 479 /// Widen a single call instruction within the innermost loop. 480 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 481 VPTransformState &State); 482 483 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 484 void fixVectorizedLoop(VPTransformState &State); 485 486 // Return true if any runtime check is added. 487 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 488 489 /// A type for vectorized values in the new loop. Each value from the 490 /// original loop, when vectorized, is represented by UF vector values in the 491 /// new unrolled loop, where UF is the unroll factor. 492 using VectorParts = SmallVector<Value *, 2>; 493 494 /// Vectorize a single first-order recurrence or pointer induction PHINode in 495 /// a block. This method handles the induction variable canonicalization. It 496 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 497 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 498 VPTransformState &State); 499 500 /// A helper function to scalarize a single Instruction in the innermost loop. 501 /// Generates a sequence of scalar instances for each lane between \p MinLane 502 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 503 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 504 /// Instr's operands. 505 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 506 const VPIteration &Instance, bool IfPredicateInstr, 507 VPTransformState &State); 508 509 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 510 /// is provided, the integer induction variable will first be truncated to 511 /// the corresponding type. \p CanonicalIV is the scalar value generated for 512 /// the canonical induction variable. 513 void widenIntOrFpInduction(PHINode *IV, const InductionDescriptor &ID, 514 Value *Start, TruncInst *Trunc, VPValue *Def, 515 VPTransformState &State, Value *CanonicalIV); 516 517 /// Construct the vector value of a scalarized value \p V one lane at a time. 518 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 519 VPTransformState &State); 520 521 /// Try to vectorize interleaved access group \p Group with the base address 522 /// given in \p Addr, optionally masking the vector operations if \p 523 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 524 /// values in the vectorized loop. 525 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 526 ArrayRef<VPValue *> VPDefs, 527 VPTransformState &State, VPValue *Addr, 528 ArrayRef<VPValue *> StoredValues, 529 VPValue *BlockInMask = nullptr); 530 531 /// Set the debug location in the builder \p Ptr using the debug location in 532 /// \p V. If \p Ptr is None then it uses the class member's Builder. 533 void setDebugLocFromInst(const Value *V, 534 Optional<IRBuilder<> *> CustomBuilder = None); 535 536 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 537 void fixNonInductionPHIs(VPTransformState &State); 538 539 /// Returns true if the reordering of FP operations is not allowed, but we are 540 /// able to vectorize with strict in-order reductions for the given RdxDesc. 541 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 542 543 /// Create a broadcast instruction. This method generates a broadcast 544 /// instruction (shuffle) for loop invariant values and for the induction 545 /// value. If this is the induction variable then we extend it to N, N+1, ... 546 /// this is needed because each iteration in the loop corresponds to a SIMD 547 /// element. 548 virtual Value *getBroadcastInstrs(Value *V); 549 550 /// Add metadata from one instruction to another. 551 /// 552 /// This includes both the original MDs from \p From and additional ones (\see 553 /// addNewMetadata). Use this for *newly created* instructions in the vector 554 /// loop. 555 void addMetadata(Instruction *To, Instruction *From); 556 557 /// Similar to the previous function but it adds the metadata to a 558 /// vector of instructions. 559 void addMetadata(ArrayRef<Value *> To, Instruction *From); 560 561 protected: 562 friend class LoopVectorizationPlanner; 563 564 /// A small list of PHINodes. 565 using PhiVector = SmallVector<PHINode *, 4>; 566 567 /// A type for scalarized values in the new loop. Each value from the 568 /// original loop, when scalarized, is represented by UF x VF scalar values 569 /// in the new unrolled loop, where UF is the unroll factor and VF is the 570 /// vectorization factor. 571 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 572 573 /// Set up the values of the IVs correctly when exiting the vector loop. 574 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 575 Value *CountRoundDown, Value *EndValue, 576 BasicBlock *MiddleBlock); 577 578 /// Introduce a conditional branch (on true, condition to be set later) at the 579 /// end of the header=latch connecting it to itself (across the backedge) and 580 /// to the exit block of \p L. 581 void createHeaderBranch(Loop *L); 582 583 /// Handle all cross-iteration phis in the header. 584 void fixCrossIterationPHIs(VPTransformState &State); 585 586 /// Create the exit value of first order recurrences in the middle block and 587 /// update their users. 588 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 589 VPTransformState &State); 590 591 /// Create code for the loop exit value of the reduction. 592 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 593 594 /// Clear NSW/NUW flags from reduction instructions if necessary. 595 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 596 VPTransformState &State); 597 598 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 599 /// means we need to add the appropriate incoming value from the middle 600 /// block as exiting edges from the scalar epilogue loop (if present) are 601 /// already in place, and we exit the vector loop exclusively to the middle 602 /// block. 603 void fixLCSSAPHIs(VPTransformState &State); 604 605 /// Iteratively sink the scalarized operands of a predicated instruction into 606 /// the block that was created for it. 607 void sinkScalarOperands(Instruction *PredInst); 608 609 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 610 /// represented as. 611 void truncateToMinimalBitwidths(VPTransformState &State); 612 613 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 614 /// variable on which to base the steps, \p Step is the size of the step, and 615 /// \p EntryVal is the value from the original loop that maps to the steps. 616 /// Note that \p EntryVal doesn't have to be an induction variable - it 617 /// can also be a truncate instruction. 618 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 619 const InductionDescriptor &ID, VPValue *Def, 620 VPTransformState &State); 621 622 /// Create a vector induction phi node based on an existing scalar one. \p 623 /// EntryVal is the value from the original loop that maps to the vector phi 624 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 625 /// truncate instruction, instead of widening the original IV, we widen a 626 /// version of the IV truncated to \p EntryVal's type. 627 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 628 Value *Step, Value *Start, 629 Instruction *EntryVal, VPValue *Def, 630 VPTransformState &State); 631 632 /// Returns true if an instruction \p I should be scalarized instead of 633 /// vectorized for the chosen vectorization factor. 634 bool shouldScalarizeInstruction(Instruction *I) const; 635 636 /// Returns true if we should generate a scalar version of \p IV. 637 bool needsScalarInduction(Instruction *IV) const; 638 639 /// Returns (and creates if needed) the original loop trip count. 640 Value *getOrCreateTripCount(Loop *NewLoop); 641 642 /// Returns (and creates if needed) the trip count of the widened loop. 643 Value *getOrCreateVectorTripCount(Loop *NewLoop); 644 645 /// Returns a bitcasted value to the requested vector type. 646 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 647 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 648 const DataLayout &DL); 649 650 /// Emit a bypass check to see if the vector trip count is zero, including if 651 /// it overflows. 652 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 653 654 /// Emit a bypass check to see if all of the SCEV assumptions we've 655 /// had to make are correct. Returns the block containing the checks or 656 /// nullptr if no checks have been added. 657 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 658 659 /// Emit bypass checks to check any memory assumptions we may have made. 660 /// Returns the block containing the checks or nullptr if no checks have been 661 /// added. 662 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 663 664 /// Compute the transformed value of Index at offset StartValue using step 665 /// StepValue. 666 /// For integer induction, returns StartValue + Index * StepValue. 667 /// For pointer induction, returns StartValue[Index * StepValue]. 668 /// FIXME: The newly created binary instructions should contain nsw/nuw 669 /// flags, which can be found from the original scalar operations. 670 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 671 const DataLayout &DL, 672 const InductionDescriptor &ID, 673 BasicBlock *VectorHeader) const; 674 675 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 676 /// vector loop preheader, middle block and scalar preheader. Also 677 /// allocate a loop object for the new vector loop and return it. 678 Loop *createVectorLoopSkeleton(StringRef Prefix); 679 680 /// Create new phi nodes for the induction variables to resume iteration count 681 /// in the scalar epilogue, from where the vectorized loop left off. 682 /// In cases where the loop skeleton is more complicated (eg. epilogue 683 /// vectorization) and the resume values can come from an additional bypass 684 /// block, the \p AdditionalBypass pair provides information about the bypass 685 /// block and the end value on the edge from bypass to this loop. 686 void createInductionResumeValues( 687 Loop *L, 688 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 689 690 /// Complete the loop skeleton by adding debug MDs, creating appropriate 691 /// conditional branches in the middle block, preparing the builder and 692 /// running the verifier. Take in the vector loop \p L as argument, and return 693 /// the preheader of the completed vector loop. 694 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 695 696 /// Add additional metadata to \p To that was not present on \p Orig. 697 /// 698 /// Currently this is used to add the noalias annotations based on the 699 /// inserted memchecks. Use this for instructions that are *cloned* into the 700 /// vector loop. 701 void addNewMetadata(Instruction *To, const Instruction *Orig); 702 703 /// Collect poison-generating recipes that may generate a poison value that is 704 /// used after vectorization, even when their operands are not poison. Those 705 /// recipes meet the following conditions: 706 /// * Contribute to the address computation of a recipe generating a widen 707 /// memory load/store (VPWidenMemoryInstructionRecipe or 708 /// VPInterleaveRecipe). 709 /// * Such a widen memory load/store has at least one underlying Instruction 710 /// that is in a basic block that needs predication and after vectorization 711 /// the generated instruction won't be predicated. 712 void collectPoisonGeneratingRecipes(VPTransformState &State); 713 714 /// Allow subclasses to override and print debug traces before/after vplan 715 /// execution, when trace information is requested. 716 virtual void printDebugTracesAtStart(){}; 717 virtual void printDebugTracesAtEnd(){}; 718 719 /// The original loop. 720 Loop *OrigLoop; 721 722 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 723 /// dynamic knowledge to simplify SCEV expressions and converts them to a 724 /// more usable form. 725 PredicatedScalarEvolution &PSE; 726 727 /// Loop Info. 728 LoopInfo *LI; 729 730 /// Dominator Tree. 731 DominatorTree *DT; 732 733 /// Alias Analysis. 734 AAResults *AA; 735 736 /// Target Library Info. 737 const TargetLibraryInfo *TLI; 738 739 /// Target Transform Info. 740 const TargetTransformInfo *TTI; 741 742 /// Assumption Cache. 743 AssumptionCache *AC; 744 745 /// Interface to emit optimization remarks. 746 OptimizationRemarkEmitter *ORE; 747 748 /// LoopVersioning. It's only set up (non-null) if memchecks were 749 /// used. 750 /// 751 /// This is currently only used to add no-alias metadata based on the 752 /// memchecks. The actually versioning is performed manually. 753 std::unique_ptr<LoopVersioning> LVer; 754 755 /// The vectorization SIMD factor to use. Each vector will have this many 756 /// vector elements. 757 ElementCount VF; 758 759 /// The vectorization unroll factor to use. Each scalar is vectorized to this 760 /// many different vector instructions. 761 unsigned UF; 762 763 /// The builder that we use 764 IRBuilder<> Builder; 765 766 // --- Vectorization state --- 767 768 /// The vector-loop preheader. 769 BasicBlock *LoopVectorPreHeader; 770 771 /// The scalar-loop preheader. 772 BasicBlock *LoopScalarPreHeader; 773 774 /// Middle Block between the vector and the scalar. 775 BasicBlock *LoopMiddleBlock; 776 777 /// The unique ExitBlock of the scalar loop if one exists. Note that 778 /// there can be multiple exiting edges reaching this block. 779 BasicBlock *LoopExitBlock; 780 781 /// The vector loop body. 782 BasicBlock *LoopVectorBody; 783 784 /// The scalar loop body. 785 BasicBlock *LoopScalarBody; 786 787 /// A list of all bypass blocks. The first block is the entry of the loop. 788 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 789 790 /// Store instructions that were predicated. 791 SmallVector<Instruction *, 4> PredicatedInstructions; 792 793 /// Trip count of the original loop. 794 Value *TripCount = nullptr; 795 796 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 797 Value *VectorTripCount = nullptr; 798 799 /// The legality analysis. 800 LoopVectorizationLegality *Legal; 801 802 /// The profitablity analysis. 803 LoopVectorizationCostModel *Cost; 804 805 // Record whether runtime checks are added. 806 bool AddedSafetyChecks = false; 807 808 // Holds the end values for each induction variable. We save the end values 809 // so we can later fix-up the external users of the induction variables. 810 DenseMap<PHINode *, Value *> IVEndValues; 811 812 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 813 // fixed up at the end of vector code generation. 814 SmallVector<PHINode *, 8> OrigPHIsToFix; 815 816 /// BFI and PSI are used to check for profile guided size optimizations. 817 BlockFrequencyInfo *BFI; 818 ProfileSummaryInfo *PSI; 819 820 // Whether this loop should be optimized for size based on profile guided size 821 // optimizatios. 822 bool OptForSizeBasedOnProfile; 823 824 /// Structure to hold information about generated runtime checks, responsible 825 /// for cleaning the checks, if vectorization turns out unprofitable. 826 GeneratedRTChecks &RTChecks; 827 }; 828 829 class InnerLoopUnroller : public InnerLoopVectorizer { 830 public: 831 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 832 LoopInfo *LI, DominatorTree *DT, 833 const TargetLibraryInfo *TLI, 834 const TargetTransformInfo *TTI, AssumptionCache *AC, 835 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 836 LoopVectorizationLegality *LVL, 837 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 838 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 839 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 840 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 841 BFI, PSI, Check) {} 842 843 private: 844 Value *getBroadcastInstrs(Value *V) override; 845 }; 846 847 /// Encapsulate information regarding vectorization of a loop and its epilogue. 848 /// This information is meant to be updated and used across two stages of 849 /// epilogue vectorization. 850 struct EpilogueLoopVectorizationInfo { 851 ElementCount MainLoopVF = ElementCount::getFixed(0); 852 unsigned MainLoopUF = 0; 853 ElementCount EpilogueVF = ElementCount::getFixed(0); 854 unsigned EpilogueUF = 0; 855 BasicBlock *MainLoopIterationCountCheck = nullptr; 856 BasicBlock *EpilogueIterationCountCheck = nullptr; 857 BasicBlock *SCEVSafetyCheck = nullptr; 858 BasicBlock *MemSafetyCheck = nullptr; 859 Value *TripCount = nullptr; 860 Value *VectorTripCount = nullptr; 861 862 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 863 ElementCount EVF, unsigned EUF) 864 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 865 assert(EUF == 1 && 866 "A high UF for the epilogue loop is likely not beneficial."); 867 } 868 }; 869 870 /// An extension of the inner loop vectorizer that creates a skeleton for a 871 /// vectorized loop that has its epilogue (residual) also vectorized. 872 /// The idea is to run the vplan on a given loop twice, firstly to setup the 873 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 874 /// from the first step and vectorize the epilogue. This is achieved by 875 /// deriving two concrete strategy classes from this base class and invoking 876 /// them in succession from the loop vectorizer planner. 877 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 878 public: 879 InnerLoopAndEpilogueVectorizer( 880 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 881 DominatorTree *DT, const TargetLibraryInfo *TLI, 882 const TargetTransformInfo *TTI, AssumptionCache *AC, 883 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 884 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 885 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 886 GeneratedRTChecks &Checks) 887 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 888 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 889 Checks), 890 EPI(EPI) {} 891 892 // Override this function to handle the more complex control flow around the 893 // three loops. 894 std::pair<BasicBlock *, Value *> 895 createVectorizedLoopSkeleton() final override { 896 return createEpilogueVectorizedLoopSkeleton(); 897 } 898 899 /// The interface for creating a vectorized skeleton using one of two 900 /// different strategies, each corresponding to one execution of the vplan 901 /// as described above. 902 virtual std::pair<BasicBlock *, Value *> 903 createEpilogueVectorizedLoopSkeleton() = 0; 904 905 /// Holds and updates state information required to vectorize the main loop 906 /// and its epilogue in two separate passes. This setup helps us avoid 907 /// regenerating and recomputing runtime safety checks. It also helps us to 908 /// shorten the iteration-count-check path length for the cases where the 909 /// iteration count of the loop is so small that the main vector loop is 910 /// completely skipped. 911 EpilogueLoopVectorizationInfo &EPI; 912 }; 913 914 /// A specialized derived class of inner loop vectorizer that performs 915 /// vectorization of *main* loops in the process of vectorizing loops and their 916 /// epilogues. 917 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 918 public: 919 EpilogueVectorizerMainLoop( 920 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 921 DominatorTree *DT, const TargetLibraryInfo *TLI, 922 const TargetTransformInfo *TTI, AssumptionCache *AC, 923 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 924 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 925 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 926 GeneratedRTChecks &Check) 927 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 928 EPI, LVL, CM, BFI, PSI, Check) {} 929 /// Implements the interface for creating a vectorized skeleton using the 930 /// *main loop* strategy (ie the first pass of vplan execution). 931 std::pair<BasicBlock *, Value *> 932 createEpilogueVectorizedLoopSkeleton() final override; 933 934 protected: 935 /// Emits an iteration count bypass check once for the main loop (when \p 936 /// ForEpilogue is false) and once for the epilogue loop (when \p 937 /// ForEpilogue is true). 938 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 939 bool ForEpilogue); 940 void printDebugTracesAtStart() override; 941 void printDebugTracesAtEnd() override; 942 }; 943 944 // A specialized derived class of inner loop vectorizer that performs 945 // vectorization of *epilogue* loops in the process of vectorizing loops and 946 // their epilogues. 947 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 948 public: 949 EpilogueVectorizerEpilogueLoop( 950 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 951 DominatorTree *DT, const TargetLibraryInfo *TLI, 952 const TargetTransformInfo *TTI, AssumptionCache *AC, 953 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 954 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 955 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 956 GeneratedRTChecks &Checks) 957 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 958 EPI, LVL, CM, BFI, PSI, Checks) {} 959 /// Implements the interface for creating a vectorized skeleton using the 960 /// *epilogue loop* strategy (ie the second pass of vplan execution). 961 std::pair<BasicBlock *, Value *> 962 createEpilogueVectorizedLoopSkeleton() final override; 963 964 protected: 965 /// Emits an iteration count bypass check after the main vector loop has 966 /// finished to see if there are any iterations left to execute by either 967 /// the vector epilogue or the scalar epilogue. 968 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 969 BasicBlock *Bypass, 970 BasicBlock *Insert); 971 void printDebugTracesAtStart() override; 972 void printDebugTracesAtEnd() override; 973 }; 974 } // end namespace llvm 975 976 /// Look for a meaningful debug location on the instruction or it's 977 /// operands. 978 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 979 if (!I) 980 return I; 981 982 DebugLoc Empty; 983 if (I->getDebugLoc() != Empty) 984 return I; 985 986 for (Use &Op : I->operands()) { 987 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 988 if (OpInst->getDebugLoc() != Empty) 989 return OpInst; 990 } 991 992 return I; 993 } 994 995 void InnerLoopVectorizer::setDebugLocFromInst( 996 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 997 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 998 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 999 const DILocation *DIL = Inst->getDebugLoc(); 1000 1001 // When a FSDiscriminator is enabled, we don't need to add the multiply 1002 // factors to the discriminators. 1003 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1004 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1005 // FIXME: For scalable vectors, assume vscale=1. 1006 auto NewDIL = 1007 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1008 if (NewDIL) 1009 B->SetCurrentDebugLocation(NewDIL.getValue()); 1010 else 1011 LLVM_DEBUG(dbgs() 1012 << "Failed to create new discriminator: " 1013 << DIL->getFilename() << " Line: " << DIL->getLine()); 1014 } else 1015 B->SetCurrentDebugLocation(DIL); 1016 } else 1017 B->SetCurrentDebugLocation(DebugLoc()); 1018 } 1019 1020 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1021 /// is passed, the message relates to that particular instruction. 1022 #ifndef NDEBUG 1023 static void debugVectorizationMessage(const StringRef Prefix, 1024 const StringRef DebugMsg, 1025 Instruction *I) { 1026 dbgs() << "LV: " << Prefix << DebugMsg; 1027 if (I != nullptr) 1028 dbgs() << " " << *I; 1029 else 1030 dbgs() << '.'; 1031 dbgs() << '\n'; 1032 } 1033 #endif 1034 1035 /// Create an analysis remark that explains why vectorization failed 1036 /// 1037 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1038 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1039 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1040 /// the location of the remark. \return the remark object that can be 1041 /// streamed to. 1042 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1043 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1044 Value *CodeRegion = TheLoop->getHeader(); 1045 DebugLoc DL = TheLoop->getStartLoc(); 1046 1047 if (I) { 1048 CodeRegion = I->getParent(); 1049 // If there is no debug location attached to the instruction, revert back to 1050 // using the loop's. 1051 if (I->getDebugLoc()) 1052 DL = I->getDebugLoc(); 1053 } 1054 1055 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1056 } 1057 1058 namespace llvm { 1059 1060 /// Return a value for Step multiplied by VF. 1061 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF, 1062 int64_t Step) { 1063 assert(Ty->isIntegerTy() && "Expected an integer step"); 1064 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 1065 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1066 } 1067 1068 /// Return the runtime value for VF. 1069 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1070 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1071 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1072 } 1073 1074 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) { 1075 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1076 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1077 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1078 return B.CreateUIToFP(RuntimeVF, FTy); 1079 } 1080 1081 void reportVectorizationFailure(const StringRef DebugMsg, 1082 const StringRef OREMsg, const StringRef ORETag, 1083 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1084 Instruction *I) { 1085 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1086 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1087 ORE->emit( 1088 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1089 << "loop not vectorized: " << OREMsg); 1090 } 1091 1092 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1093 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1094 Instruction *I) { 1095 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1096 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1097 ORE->emit( 1098 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1099 << Msg); 1100 } 1101 1102 } // end namespace llvm 1103 1104 #ifndef NDEBUG 1105 /// \return string containing a file name and a line # for the given loop. 1106 static std::string getDebugLocString(const Loop *L) { 1107 std::string Result; 1108 if (L) { 1109 raw_string_ostream OS(Result); 1110 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1111 LoopDbgLoc.print(OS); 1112 else 1113 // Just print the module name. 1114 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1115 OS.flush(); 1116 } 1117 return Result; 1118 } 1119 #endif 1120 1121 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1122 const Instruction *Orig) { 1123 // If the loop was versioned with memchecks, add the corresponding no-alias 1124 // metadata. 1125 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1126 LVer->annotateInstWithNoAlias(To, Orig); 1127 } 1128 1129 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1130 VPTransformState &State) { 1131 1132 // Collect recipes in the backward slice of `Root` that may generate a poison 1133 // value that is used after vectorization. 1134 SmallPtrSet<VPRecipeBase *, 16> Visited; 1135 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1136 SmallVector<VPRecipeBase *, 16> Worklist; 1137 Worklist.push_back(Root); 1138 1139 // Traverse the backward slice of Root through its use-def chain. 1140 while (!Worklist.empty()) { 1141 VPRecipeBase *CurRec = Worklist.back(); 1142 Worklist.pop_back(); 1143 1144 if (!Visited.insert(CurRec).second) 1145 continue; 1146 1147 // Prune search if we find another recipe generating a widen memory 1148 // instruction. Widen memory instructions involved in address computation 1149 // will lead to gather/scatter instructions, which don't need to be 1150 // handled. 1151 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1152 isa<VPInterleaveRecipe>(CurRec) || 1153 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1154 continue; 1155 1156 // This recipe contributes to the address computation of a widen 1157 // load/store. Collect recipe if its underlying instruction has 1158 // poison-generating flags. 1159 Instruction *Instr = CurRec->getUnderlyingInstr(); 1160 if (Instr && Instr->hasPoisonGeneratingFlags()) 1161 State.MayGeneratePoisonRecipes.insert(CurRec); 1162 1163 // Add new definitions to the worklist. 1164 for (VPValue *operand : CurRec->operands()) 1165 if (VPDef *OpDef = operand->getDef()) 1166 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1167 } 1168 }); 1169 1170 // Traverse all the recipes in the VPlan and collect the poison-generating 1171 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1172 // VPInterleaveRecipe. 1173 auto Iter = depth_first( 1174 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1175 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1176 for (VPRecipeBase &Recipe : *VPBB) { 1177 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1178 Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr(); 1179 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1180 if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr && 1181 Legal->blockNeedsPredication(UnderlyingInstr->getParent())) 1182 collectPoisonGeneratingInstrsInBackwardSlice( 1183 cast<VPRecipeBase>(AddrDef)); 1184 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1185 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1186 if (AddrDef) { 1187 // Check if any member of the interleave group needs predication. 1188 const InterleaveGroup<Instruction> *InterGroup = 1189 InterleaveRec->getInterleaveGroup(); 1190 bool NeedPredication = false; 1191 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1192 I < NumMembers; ++I) { 1193 Instruction *Member = InterGroup->getMember(I); 1194 if (Member) 1195 NeedPredication |= 1196 Legal->blockNeedsPredication(Member->getParent()); 1197 } 1198 1199 if (NeedPredication) 1200 collectPoisonGeneratingInstrsInBackwardSlice( 1201 cast<VPRecipeBase>(AddrDef)); 1202 } 1203 } 1204 } 1205 } 1206 } 1207 1208 void InnerLoopVectorizer::addMetadata(Instruction *To, 1209 Instruction *From) { 1210 propagateMetadata(To, From); 1211 addNewMetadata(To, From); 1212 } 1213 1214 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1215 Instruction *From) { 1216 for (Value *V : To) { 1217 if (Instruction *I = dyn_cast<Instruction>(V)) 1218 addMetadata(I, From); 1219 } 1220 } 1221 1222 namespace llvm { 1223 1224 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1225 // lowered. 1226 enum ScalarEpilogueLowering { 1227 1228 // The default: allowing scalar epilogues. 1229 CM_ScalarEpilogueAllowed, 1230 1231 // Vectorization with OptForSize: don't allow epilogues. 1232 CM_ScalarEpilogueNotAllowedOptSize, 1233 1234 // A special case of vectorisation with OptForSize: loops with a very small 1235 // trip count are considered for vectorization under OptForSize, thereby 1236 // making sure the cost of their loop body is dominant, free of runtime 1237 // guards and scalar iteration overheads. 1238 CM_ScalarEpilogueNotAllowedLowTripLoop, 1239 1240 // Loop hint predicate indicating an epilogue is undesired. 1241 CM_ScalarEpilogueNotNeededUsePredicate, 1242 1243 // Directive indicating we must either tail fold or not vectorize 1244 CM_ScalarEpilogueNotAllowedUsePredicate 1245 }; 1246 1247 /// ElementCountComparator creates a total ordering for ElementCount 1248 /// for the purposes of using it in a set structure. 1249 struct ElementCountComparator { 1250 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1251 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1252 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1253 } 1254 }; 1255 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1256 1257 /// LoopVectorizationCostModel - estimates the expected speedups due to 1258 /// vectorization. 1259 /// In many cases vectorization is not profitable. This can happen because of 1260 /// a number of reasons. In this class we mainly attempt to predict the 1261 /// expected speedup/slowdowns due to the supported instruction set. We use the 1262 /// TargetTransformInfo to query the different backends for the cost of 1263 /// different operations. 1264 class LoopVectorizationCostModel { 1265 public: 1266 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1267 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1268 LoopVectorizationLegality *Legal, 1269 const TargetTransformInfo &TTI, 1270 const TargetLibraryInfo *TLI, DemandedBits *DB, 1271 AssumptionCache *AC, 1272 OptimizationRemarkEmitter *ORE, const Function *F, 1273 const LoopVectorizeHints *Hints, 1274 InterleavedAccessInfo &IAI) 1275 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1276 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1277 Hints(Hints), InterleaveInfo(IAI) {} 1278 1279 /// \return An upper bound for the vectorization factors (both fixed and 1280 /// scalable). If the factors are 0, vectorization and interleaving should be 1281 /// avoided up front. 1282 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1283 1284 /// \return True if runtime checks are required for vectorization, and false 1285 /// otherwise. 1286 bool runtimeChecksRequired(); 1287 1288 /// \return The most profitable vectorization factor and the cost of that VF. 1289 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1290 /// then this vectorization factor will be selected if vectorization is 1291 /// possible. 1292 VectorizationFactor 1293 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1294 1295 VectorizationFactor 1296 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1297 const LoopVectorizationPlanner &LVP); 1298 1299 /// Setup cost-based decisions for user vectorization factor. 1300 /// \return true if the UserVF is a feasible VF to be chosen. 1301 bool selectUserVectorizationFactor(ElementCount UserVF) { 1302 collectUniformsAndScalars(UserVF); 1303 collectInstsToScalarize(UserVF); 1304 return expectedCost(UserVF).first.isValid(); 1305 } 1306 1307 /// \return The size (in bits) of the smallest and widest types in the code 1308 /// that needs to be vectorized. We ignore values that remain scalar such as 1309 /// 64 bit loop indices. 1310 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1311 1312 /// \return The desired interleave count. 1313 /// If interleave count has been specified by metadata it will be returned. 1314 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1315 /// are the selected vectorization factor and the cost of the selected VF. 1316 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1317 1318 /// Memory access instruction may be vectorized in more than one way. 1319 /// Form of instruction after vectorization depends on cost. 1320 /// This function takes cost-based decisions for Load/Store instructions 1321 /// and collects them in a map. This decisions map is used for building 1322 /// the lists of loop-uniform and loop-scalar instructions. 1323 /// The calculated cost is saved with widening decision in order to 1324 /// avoid redundant calculations. 1325 void setCostBasedWideningDecision(ElementCount VF); 1326 1327 /// A struct that represents some properties of the register usage 1328 /// of a loop. 1329 struct RegisterUsage { 1330 /// Holds the number of loop invariant values that are used in the loop. 1331 /// The key is ClassID of target-provided register class. 1332 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1333 /// Holds the maximum number of concurrent live intervals in the loop. 1334 /// The key is ClassID of target-provided register class. 1335 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1336 }; 1337 1338 /// \return Returns information about the register usages of the loop for the 1339 /// given vectorization factors. 1340 SmallVector<RegisterUsage, 8> 1341 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1342 1343 /// Collect values we want to ignore in the cost model. 1344 void collectValuesToIgnore(); 1345 1346 /// Collect all element types in the loop for which widening is needed. 1347 void collectElementTypesForWidening(); 1348 1349 /// Split reductions into those that happen in the loop, and those that happen 1350 /// outside. In loop reductions are collected into InLoopReductionChains. 1351 void collectInLoopReductions(); 1352 1353 /// Returns true if we should use strict in-order reductions for the given 1354 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1355 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1356 /// of FP operations. 1357 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1358 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1359 } 1360 1361 /// \returns The smallest bitwidth each instruction can be represented with. 1362 /// The vector equivalents of these instructions should be truncated to this 1363 /// type. 1364 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1365 return MinBWs; 1366 } 1367 1368 /// \returns True if it is more profitable to scalarize instruction \p I for 1369 /// vectorization factor \p VF. 1370 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1371 assert(VF.isVector() && 1372 "Profitable to scalarize relevant only for VF > 1."); 1373 1374 // Cost model is not run in the VPlan-native path - return conservative 1375 // result until this changes. 1376 if (EnableVPlanNativePath) 1377 return false; 1378 1379 auto Scalars = InstsToScalarize.find(VF); 1380 assert(Scalars != InstsToScalarize.end() && 1381 "VF not yet analyzed for scalarization profitability"); 1382 return Scalars->second.find(I) != Scalars->second.end(); 1383 } 1384 1385 /// Returns true if \p I is known to be uniform after vectorization. 1386 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1387 if (VF.isScalar()) 1388 return true; 1389 1390 // Cost model is not run in the VPlan-native path - return conservative 1391 // result until this changes. 1392 if (EnableVPlanNativePath) 1393 return false; 1394 1395 auto UniformsPerVF = Uniforms.find(VF); 1396 assert(UniformsPerVF != Uniforms.end() && 1397 "VF not yet analyzed for uniformity"); 1398 return UniformsPerVF->second.count(I); 1399 } 1400 1401 /// Returns true if \p I is known to be scalar after vectorization. 1402 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1403 if (VF.isScalar()) 1404 return true; 1405 1406 // Cost model is not run in the VPlan-native path - return conservative 1407 // result until this changes. 1408 if (EnableVPlanNativePath) 1409 return false; 1410 1411 auto ScalarsPerVF = Scalars.find(VF); 1412 assert(ScalarsPerVF != Scalars.end() && 1413 "Scalar values are not calculated for VF"); 1414 return ScalarsPerVF->second.count(I); 1415 } 1416 1417 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1418 /// for vectorization factor \p VF. 1419 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1420 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1421 !isProfitableToScalarize(I, VF) && 1422 !isScalarAfterVectorization(I, VF); 1423 } 1424 1425 /// Decision that was taken during cost calculation for memory instruction. 1426 enum InstWidening { 1427 CM_Unknown, 1428 CM_Widen, // For consecutive accesses with stride +1. 1429 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1430 CM_Interleave, 1431 CM_GatherScatter, 1432 CM_Scalarize 1433 }; 1434 1435 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1436 /// instruction \p I and vector width \p VF. 1437 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1438 InstructionCost Cost) { 1439 assert(VF.isVector() && "Expected VF >=2"); 1440 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1441 } 1442 1443 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1444 /// interleaving group \p Grp and vector width \p VF. 1445 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1446 ElementCount VF, InstWidening W, 1447 InstructionCost Cost) { 1448 assert(VF.isVector() && "Expected VF >=2"); 1449 /// Broadcast this decicion to all instructions inside the group. 1450 /// But the cost will be assigned to one instruction only. 1451 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1452 if (auto *I = Grp->getMember(i)) { 1453 if (Grp->getInsertPos() == I) 1454 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1455 else 1456 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1457 } 1458 } 1459 } 1460 1461 /// Return the cost model decision for the given instruction \p I and vector 1462 /// width \p VF. Return CM_Unknown if this instruction did not pass 1463 /// through the cost modeling. 1464 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1465 assert(VF.isVector() && "Expected VF to be a vector VF"); 1466 // Cost model is not run in the VPlan-native path - return conservative 1467 // result until this changes. 1468 if (EnableVPlanNativePath) 1469 return CM_GatherScatter; 1470 1471 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1472 auto Itr = WideningDecisions.find(InstOnVF); 1473 if (Itr == WideningDecisions.end()) 1474 return CM_Unknown; 1475 return Itr->second.first; 1476 } 1477 1478 /// Return the vectorization cost for the given instruction \p I and vector 1479 /// width \p VF. 1480 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1481 assert(VF.isVector() && "Expected VF >=2"); 1482 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1483 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1484 "The cost is not calculated"); 1485 return WideningDecisions[InstOnVF].second; 1486 } 1487 1488 /// Return True if instruction \p I is an optimizable truncate whose operand 1489 /// is an induction variable. Such a truncate will be removed by adding a new 1490 /// induction variable with the destination type. 1491 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1492 // If the instruction is not a truncate, return false. 1493 auto *Trunc = dyn_cast<TruncInst>(I); 1494 if (!Trunc) 1495 return false; 1496 1497 // Get the source and destination types of the truncate. 1498 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1499 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1500 1501 // If the truncate is free for the given types, return false. Replacing a 1502 // free truncate with an induction variable would add an induction variable 1503 // update instruction to each iteration of the loop. We exclude from this 1504 // check the primary induction variable since it will need an update 1505 // instruction regardless. 1506 Value *Op = Trunc->getOperand(0); 1507 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1508 return false; 1509 1510 // If the truncated value is not an induction variable, return false. 1511 return Legal->isInductionPhi(Op); 1512 } 1513 1514 /// Collects the instructions to scalarize for each predicated instruction in 1515 /// the loop. 1516 void collectInstsToScalarize(ElementCount VF); 1517 1518 /// Collect Uniform and Scalar values for the given \p VF. 1519 /// The sets depend on CM decision for Load/Store instructions 1520 /// that may be vectorized as interleave, gather-scatter or scalarized. 1521 void collectUniformsAndScalars(ElementCount VF) { 1522 // Do the analysis once. 1523 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1524 return; 1525 setCostBasedWideningDecision(VF); 1526 collectLoopUniforms(VF); 1527 collectLoopScalars(VF); 1528 } 1529 1530 /// Returns true if the target machine supports masked store operation 1531 /// for the given \p DataType and kind of access to \p Ptr. 1532 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1533 return Legal->isConsecutivePtr(DataType, Ptr) && 1534 TTI.isLegalMaskedStore(DataType, Alignment); 1535 } 1536 1537 /// Returns true if the target machine supports masked load operation 1538 /// for the given \p DataType and kind of access to \p Ptr. 1539 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1540 return Legal->isConsecutivePtr(DataType, Ptr) && 1541 TTI.isLegalMaskedLoad(DataType, Alignment); 1542 } 1543 1544 /// Returns true if the target machine can represent \p V as a masked gather 1545 /// or scatter operation. 1546 bool isLegalGatherOrScatter(Value *V, 1547 ElementCount VF = ElementCount::getFixed(1)) { 1548 bool LI = isa<LoadInst>(V); 1549 bool SI = isa<StoreInst>(V); 1550 if (!LI && !SI) 1551 return false; 1552 auto *Ty = getLoadStoreType(V); 1553 Align Align = getLoadStoreAlignment(V); 1554 if (VF.isVector()) 1555 Ty = VectorType::get(Ty, VF); 1556 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1557 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1558 } 1559 1560 /// Returns true if the target machine supports all of the reduction 1561 /// variables found for the given VF. 1562 bool canVectorizeReductions(ElementCount VF) const { 1563 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1564 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1565 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1566 })); 1567 } 1568 1569 /// Returns true if \p I is an instruction that will be scalarized with 1570 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1571 /// instructions include conditional stores and instructions that may divide 1572 /// by zero. 1573 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1574 1575 // Returns true if \p I is an instruction that will be predicated either 1576 // through scalar predication or masked load/store or masked gather/scatter. 1577 // \p VF is the vectorization factor that will be used to vectorize \p I. 1578 // Superset of instructions that return true for isScalarWithPredication. 1579 bool isPredicatedInst(Instruction *I, ElementCount VF, 1580 bool IsKnownUniform = false) { 1581 // When we know the load is uniform and the original scalar loop was not 1582 // predicated we don't need to mark it as a predicated instruction. Any 1583 // vectorised blocks created when tail-folding are something artificial we 1584 // have introduced and we know there is always at least one active lane. 1585 // That's why we call Legal->blockNeedsPredication here because it doesn't 1586 // query tail-folding. 1587 if (IsKnownUniform && isa<LoadInst>(I) && 1588 !Legal->blockNeedsPredication(I->getParent())) 1589 return false; 1590 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1591 return false; 1592 // Loads and stores that need some form of masked operation are predicated 1593 // instructions. 1594 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1595 return Legal->isMaskRequired(I); 1596 return isScalarWithPredication(I, VF); 1597 } 1598 1599 /// Returns true if \p I is a memory instruction with consecutive memory 1600 /// access that can be widened. 1601 bool 1602 memoryInstructionCanBeWidened(Instruction *I, 1603 ElementCount VF = ElementCount::getFixed(1)); 1604 1605 /// Returns true if \p I is a memory instruction in an interleaved-group 1606 /// of memory accesses that can be vectorized with wide vector loads/stores 1607 /// and shuffles. 1608 bool 1609 interleavedAccessCanBeWidened(Instruction *I, 1610 ElementCount VF = ElementCount::getFixed(1)); 1611 1612 /// Check if \p Instr belongs to any interleaved access group. 1613 bool isAccessInterleaved(Instruction *Instr) { 1614 return InterleaveInfo.isInterleaved(Instr); 1615 } 1616 1617 /// Get the interleaved access group that \p Instr belongs to. 1618 const InterleaveGroup<Instruction> * 1619 getInterleavedAccessGroup(Instruction *Instr) { 1620 return InterleaveInfo.getInterleaveGroup(Instr); 1621 } 1622 1623 /// Returns true if we're required to use a scalar epilogue for at least 1624 /// the final iteration of the original loop. 1625 bool requiresScalarEpilogue(ElementCount VF) const { 1626 if (!isScalarEpilogueAllowed()) 1627 return false; 1628 // If we might exit from anywhere but the latch, must run the exiting 1629 // iteration in scalar form. 1630 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1631 return true; 1632 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1633 } 1634 1635 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1636 /// loop hint annotation. 1637 bool isScalarEpilogueAllowed() const { 1638 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1639 } 1640 1641 /// Returns true if all loop blocks should be masked to fold tail loop. 1642 bool foldTailByMasking() const { return FoldTailByMasking; } 1643 1644 /// Returns true if the instructions in this block requires predication 1645 /// for any reason, e.g. because tail folding now requires a predicate 1646 /// or because the block in the original loop was predicated. 1647 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1648 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1649 } 1650 1651 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1652 /// nodes to the chain of instructions representing the reductions. Uses a 1653 /// MapVector to ensure deterministic iteration order. 1654 using ReductionChainMap = 1655 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1656 1657 /// Return the chain of instructions representing an inloop reduction. 1658 const ReductionChainMap &getInLoopReductionChains() const { 1659 return InLoopReductionChains; 1660 } 1661 1662 /// Returns true if the Phi is part of an inloop reduction. 1663 bool isInLoopReduction(PHINode *Phi) const { 1664 return InLoopReductionChains.count(Phi); 1665 } 1666 1667 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1668 /// with factor VF. Return the cost of the instruction, including 1669 /// scalarization overhead if it's needed. 1670 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1671 1672 /// Estimate cost of a call instruction CI if it were vectorized with factor 1673 /// VF. Return the cost of the instruction, including scalarization overhead 1674 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1675 /// scalarized - 1676 /// i.e. either vector version isn't available, or is too expensive. 1677 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1678 bool &NeedToScalarize) const; 1679 1680 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1681 /// that of B. 1682 bool isMoreProfitable(const VectorizationFactor &A, 1683 const VectorizationFactor &B) const; 1684 1685 /// Invalidates decisions already taken by the cost model. 1686 void invalidateCostModelingDecisions() { 1687 WideningDecisions.clear(); 1688 Uniforms.clear(); 1689 Scalars.clear(); 1690 } 1691 1692 private: 1693 unsigned NumPredStores = 0; 1694 1695 /// \return An upper bound for the vectorization factors for both 1696 /// fixed and scalable vectorization, where the minimum-known number of 1697 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1698 /// disabled or unsupported, then the scalable part will be equal to 1699 /// ElementCount::getScalable(0). 1700 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1701 ElementCount UserVF, 1702 bool FoldTailByMasking); 1703 1704 /// \return the maximized element count based on the targets vector 1705 /// registers and the loop trip-count, but limited to a maximum safe VF. 1706 /// This is a helper function of computeFeasibleMaxVF. 1707 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1708 /// issue that occurred on one of the buildbots which cannot be reproduced 1709 /// without having access to the properietary compiler (see comments on 1710 /// D98509). The issue is currently under investigation and this workaround 1711 /// will be removed as soon as possible. 1712 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1713 unsigned SmallestType, 1714 unsigned WidestType, 1715 const ElementCount &MaxSafeVF, 1716 bool FoldTailByMasking); 1717 1718 /// \return the maximum legal scalable VF, based on the safe max number 1719 /// of elements. 1720 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1721 1722 /// The vectorization cost is a combination of the cost itself and a boolean 1723 /// indicating whether any of the contributing operations will actually 1724 /// operate on vector values after type legalization in the backend. If this 1725 /// latter value is false, then all operations will be scalarized (i.e. no 1726 /// vectorization has actually taken place). 1727 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1728 1729 /// Returns the expected execution cost. The unit of the cost does 1730 /// not matter because we use the 'cost' units to compare different 1731 /// vector widths. The cost that is returned is *not* normalized by 1732 /// the factor width. If \p Invalid is not nullptr, this function 1733 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1734 /// each instruction that has an Invalid cost for the given VF. 1735 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1736 VectorizationCostTy 1737 expectedCost(ElementCount VF, 1738 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1739 1740 /// Returns the execution time cost of an instruction for a given vector 1741 /// width. Vector width of one means scalar. 1742 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1743 1744 /// The cost-computation logic from getInstructionCost which provides 1745 /// the vector type as an output parameter. 1746 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1747 Type *&VectorTy); 1748 1749 /// Return the cost of instructions in an inloop reduction pattern, if I is 1750 /// part of that pattern. 1751 Optional<InstructionCost> 1752 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1753 TTI::TargetCostKind CostKind); 1754 1755 /// Calculate vectorization cost of memory instruction \p I. 1756 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1757 1758 /// The cost computation for scalarized memory instruction. 1759 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1760 1761 /// The cost computation for interleaving group of memory instructions. 1762 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1763 1764 /// The cost computation for Gather/Scatter instruction. 1765 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1766 1767 /// The cost computation for widening instruction \p I with consecutive 1768 /// memory access. 1769 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1770 1771 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1772 /// Load: scalar load + broadcast. 1773 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1774 /// element) 1775 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1776 1777 /// Estimate the overhead of scalarizing an instruction. This is a 1778 /// convenience wrapper for the type-based getScalarizationOverhead API. 1779 InstructionCost getScalarizationOverhead(Instruction *I, 1780 ElementCount VF) const; 1781 1782 /// Returns whether the instruction is a load or store and will be a emitted 1783 /// as a vector operation. 1784 bool isConsecutiveLoadOrStore(Instruction *I); 1785 1786 /// Returns true if an artificially high cost for emulated masked memrefs 1787 /// should be used. 1788 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1789 1790 /// Map of scalar integer values to the smallest bitwidth they can be legally 1791 /// represented as. The vector equivalents of these values should be truncated 1792 /// to this type. 1793 MapVector<Instruction *, uint64_t> MinBWs; 1794 1795 /// A type representing the costs for instructions if they were to be 1796 /// scalarized rather than vectorized. The entries are Instruction-Cost 1797 /// pairs. 1798 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1799 1800 /// A set containing all BasicBlocks that are known to present after 1801 /// vectorization as a predicated block. 1802 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1803 1804 /// Records whether it is allowed to have the original scalar loop execute at 1805 /// least once. This may be needed as a fallback loop in case runtime 1806 /// aliasing/dependence checks fail, or to handle the tail/remainder 1807 /// iterations when the trip count is unknown or doesn't divide by the VF, 1808 /// or as a peel-loop to handle gaps in interleave-groups. 1809 /// Under optsize and when the trip count is very small we don't allow any 1810 /// iterations to execute in the scalar loop. 1811 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1812 1813 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1814 bool FoldTailByMasking = false; 1815 1816 /// A map holding scalar costs for different vectorization factors. The 1817 /// presence of a cost for an instruction in the mapping indicates that the 1818 /// instruction will be scalarized when vectorizing with the associated 1819 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1820 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1821 1822 /// Holds the instructions known to be uniform after vectorization. 1823 /// The data is collected per VF. 1824 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1825 1826 /// Holds the instructions known to be scalar after vectorization. 1827 /// The data is collected per VF. 1828 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1829 1830 /// Holds the instructions (address computations) that are forced to be 1831 /// scalarized. 1832 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1833 1834 /// PHINodes of the reductions that should be expanded in-loop along with 1835 /// their associated chains of reduction operations, in program order from top 1836 /// (PHI) to bottom 1837 ReductionChainMap InLoopReductionChains; 1838 1839 /// A Map of inloop reduction operations and their immediate chain operand. 1840 /// FIXME: This can be removed once reductions can be costed correctly in 1841 /// vplan. This was added to allow quick lookup to the inloop operations, 1842 /// without having to loop through InLoopReductionChains. 1843 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1844 1845 /// Returns the expected difference in cost from scalarizing the expression 1846 /// feeding a predicated instruction \p PredInst. The instructions to 1847 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1848 /// non-negative return value implies the expression will be scalarized. 1849 /// Currently, only single-use chains are considered for scalarization. 1850 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1851 ElementCount VF); 1852 1853 /// Collect the instructions that are uniform after vectorization. An 1854 /// instruction is uniform if we represent it with a single scalar value in 1855 /// the vectorized loop corresponding to each vector iteration. Examples of 1856 /// uniform instructions include pointer operands of consecutive or 1857 /// interleaved memory accesses. Note that although uniformity implies an 1858 /// instruction will be scalar, the reverse is not true. In general, a 1859 /// scalarized instruction will be represented by VF scalar values in the 1860 /// vectorized loop, each corresponding to an iteration of the original 1861 /// scalar loop. 1862 void collectLoopUniforms(ElementCount VF); 1863 1864 /// Collect the instructions that are scalar after vectorization. An 1865 /// instruction is scalar if it is known to be uniform or will be scalarized 1866 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1867 /// to the list if they are used by a load/store instruction that is marked as 1868 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1869 /// VF values in the vectorized loop, each corresponding to an iteration of 1870 /// the original scalar loop. 1871 void collectLoopScalars(ElementCount VF); 1872 1873 /// Keeps cost model vectorization decision and cost for instructions. 1874 /// Right now it is used for memory instructions only. 1875 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1876 std::pair<InstWidening, InstructionCost>>; 1877 1878 DecisionList WideningDecisions; 1879 1880 /// Returns true if \p V is expected to be vectorized and it needs to be 1881 /// extracted. 1882 bool needsExtract(Value *V, ElementCount VF) const { 1883 Instruction *I = dyn_cast<Instruction>(V); 1884 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1885 TheLoop->isLoopInvariant(I)) 1886 return false; 1887 1888 // Assume we can vectorize V (and hence we need extraction) if the 1889 // scalars are not computed yet. This can happen, because it is called 1890 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1891 // the scalars are collected. That should be a safe assumption in most 1892 // cases, because we check if the operands have vectorizable types 1893 // beforehand in LoopVectorizationLegality. 1894 return Scalars.find(VF) == Scalars.end() || 1895 !isScalarAfterVectorization(I, VF); 1896 }; 1897 1898 /// Returns a range containing only operands needing to be extracted. 1899 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1900 ElementCount VF) const { 1901 return SmallVector<Value *, 4>(make_filter_range( 1902 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1903 } 1904 1905 /// Determines if we have the infrastructure to vectorize loop \p L and its 1906 /// epilogue, assuming the main loop is vectorized by \p VF. 1907 bool isCandidateForEpilogueVectorization(const Loop &L, 1908 const ElementCount VF) const; 1909 1910 /// Returns true if epilogue vectorization is considered profitable, and 1911 /// false otherwise. 1912 /// \p VF is the vectorization factor chosen for the original loop. 1913 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1914 1915 public: 1916 /// The loop that we evaluate. 1917 Loop *TheLoop; 1918 1919 /// Predicated scalar evolution analysis. 1920 PredicatedScalarEvolution &PSE; 1921 1922 /// Loop Info analysis. 1923 LoopInfo *LI; 1924 1925 /// Vectorization legality. 1926 LoopVectorizationLegality *Legal; 1927 1928 /// Vector target information. 1929 const TargetTransformInfo &TTI; 1930 1931 /// Target Library Info. 1932 const TargetLibraryInfo *TLI; 1933 1934 /// Demanded bits analysis. 1935 DemandedBits *DB; 1936 1937 /// Assumption cache. 1938 AssumptionCache *AC; 1939 1940 /// Interface to emit optimization remarks. 1941 OptimizationRemarkEmitter *ORE; 1942 1943 const Function *TheFunction; 1944 1945 /// Loop Vectorize Hint. 1946 const LoopVectorizeHints *Hints; 1947 1948 /// The interleave access information contains groups of interleaved accesses 1949 /// with the same stride and close to each other. 1950 InterleavedAccessInfo &InterleaveInfo; 1951 1952 /// Values to ignore in the cost model. 1953 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1954 1955 /// Values to ignore in the cost model when VF > 1. 1956 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1957 1958 /// All element types found in the loop. 1959 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1960 1961 /// Profitable vector factors. 1962 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1963 }; 1964 } // end namespace llvm 1965 1966 /// Helper struct to manage generating runtime checks for vectorization. 1967 /// 1968 /// The runtime checks are created up-front in temporary blocks to allow better 1969 /// estimating the cost and un-linked from the existing IR. After deciding to 1970 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1971 /// temporary blocks are completely removed. 1972 class GeneratedRTChecks { 1973 /// Basic block which contains the generated SCEV checks, if any. 1974 BasicBlock *SCEVCheckBlock = nullptr; 1975 1976 /// The value representing the result of the generated SCEV checks. If it is 1977 /// nullptr, either no SCEV checks have been generated or they have been used. 1978 Value *SCEVCheckCond = nullptr; 1979 1980 /// Basic block which contains the generated memory runtime checks, if any. 1981 BasicBlock *MemCheckBlock = nullptr; 1982 1983 /// The value representing the result of the generated memory runtime checks. 1984 /// If it is nullptr, either no memory runtime checks have been generated or 1985 /// they have been used. 1986 Value *MemRuntimeCheckCond = nullptr; 1987 1988 DominatorTree *DT; 1989 LoopInfo *LI; 1990 1991 SCEVExpander SCEVExp; 1992 SCEVExpander MemCheckExp; 1993 1994 public: 1995 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1996 const DataLayout &DL) 1997 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1998 MemCheckExp(SE, DL, "scev.check") {} 1999 2000 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 2001 /// accurately estimate the cost of the runtime checks. The blocks are 2002 /// un-linked from the IR and is added back during vector code generation. If 2003 /// there is no vector code generation, the check blocks are removed 2004 /// completely. 2005 void Create(Loop *L, const LoopAccessInfo &LAI, 2006 const SCEVUnionPredicate &UnionPred) { 2007 2008 BasicBlock *LoopHeader = L->getHeader(); 2009 BasicBlock *Preheader = L->getLoopPreheader(); 2010 2011 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 2012 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 2013 // may be used by SCEVExpander. The blocks will be un-linked from their 2014 // predecessors and removed from LI & DT at the end of the function. 2015 if (!UnionPred.isAlwaysTrue()) { 2016 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 2017 nullptr, "vector.scevcheck"); 2018 2019 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 2020 &UnionPred, SCEVCheckBlock->getTerminator()); 2021 } 2022 2023 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 2024 if (RtPtrChecking.Need) { 2025 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 2026 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 2027 "vector.memcheck"); 2028 2029 MemRuntimeCheckCond = 2030 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 2031 RtPtrChecking.getChecks(), MemCheckExp); 2032 assert(MemRuntimeCheckCond && 2033 "no RT checks generated although RtPtrChecking " 2034 "claimed checks are required"); 2035 } 2036 2037 if (!MemCheckBlock && !SCEVCheckBlock) 2038 return; 2039 2040 // Unhook the temporary block with the checks, update various places 2041 // accordingly. 2042 if (SCEVCheckBlock) 2043 SCEVCheckBlock->replaceAllUsesWith(Preheader); 2044 if (MemCheckBlock) 2045 MemCheckBlock->replaceAllUsesWith(Preheader); 2046 2047 if (SCEVCheckBlock) { 2048 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2049 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2050 Preheader->getTerminator()->eraseFromParent(); 2051 } 2052 if (MemCheckBlock) { 2053 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2054 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2055 Preheader->getTerminator()->eraseFromParent(); 2056 } 2057 2058 DT->changeImmediateDominator(LoopHeader, Preheader); 2059 if (MemCheckBlock) { 2060 DT->eraseNode(MemCheckBlock); 2061 LI->removeBlock(MemCheckBlock); 2062 } 2063 if (SCEVCheckBlock) { 2064 DT->eraseNode(SCEVCheckBlock); 2065 LI->removeBlock(SCEVCheckBlock); 2066 } 2067 } 2068 2069 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2070 /// unused. 2071 ~GeneratedRTChecks() { 2072 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2073 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2074 if (!SCEVCheckCond) 2075 SCEVCleaner.markResultUsed(); 2076 2077 if (!MemRuntimeCheckCond) 2078 MemCheckCleaner.markResultUsed(); 2079 2080 if (MemRuntimeCheckCond) { 2081 auto &SE = *MemCheckExp.getSE(); 2082 // Memory runtime check generation creates compares that use expanded 2083 // values. Remove them before running the SCEVExpanderCleaners. 2084 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2085 if (MemCheckExp.isInsertedInstruction(&I)) 2086 continue; 2087 SE.forgetValue(&I); 2088 I.eraseFromParent(); 2089 } 2090 } 2091 MemCheckCleaner.cleanup(); 2092 SCEVCleaner.cleanup(); 2093 2094 if (SCEVCheckCond) 2095 SCEVCheckBlock->eraseFromParent(); 2096 if (MemRuntimeCheckCond) 2097 MemCheckBlock->eraseFromParent(); 2098 } 2099 2100 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2101 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2102 /// depending on the generated condition. 2103 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2104 BasicBlock *LoopVectorPreHeader, 2105 BasicBlock *LoopExitBlock) { 2106 if (!SCEVCheckCond) 2107 return nullptr; 2108 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2109 if (C->isZero()) 2110 return nullptr; 2111 2112 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2113 2114 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2115 // Create new preheader for vector loop. 2116 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2117 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2118 2119 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2120 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2121 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2122 SCEVCheckBlock); 2123 2124 DT->addNewBlock(SCEVCheckBlock, Pred); 2125 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2126 2127 ReplaceInstWithInst( 2128 SCEVCheckBlock->getTerminator(), 2129 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2130 // Mark the check as used, to prevent it from being removed during cleanup. 2131 SCEVCheckCond = nullptr; 2132 return SCEVCheckBlock; 2133 } 2134 2135 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2136 /// the branches to branch to the vector preheader or \p Bypass, depending on 2137 /// the generated condition. 2138 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2139 BasicBlock *LoopVectorPreHeader) { 2140 // Check if we generated code that checks in runtime if arrays overlap. 2141 if (!MemRuntimeCheckCond) 2142 return nullptr; 2143 2144 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2145 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2146 MemCheckBlock); 2147 2148 DT->addNewBlock(MemCheckBlock, Pred); 2149 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2150 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2151 2152 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2153 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2154 2155 ReplaceInstWithInst( 2156 MemCheckBlock->getTerminator(), 2157 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2158 MemCheckBlock->getTerminator()->setDebugLoc( 2159 Pred->getTerminator()->getDebugLoc()); 2160 2161 // Mark the check as used, to prevent it from being removed during cleanup. 2162 MemRuntimeCheckCond = nullptr; 2163 return MemCheckBlock; 2164 } 2165 }; 2166 2167 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2168 // vectorization. The loop needs to be annotated with #pragma omp simd 2169 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2170 // vector length information is not provided, vectorization is not considered 2171 // explicit. Interleave hints are not allowed either. These limitations will be 2172 // relaxed in the future. 2173 // Please, note that we are currently forced to abuse the pragma 'clang 2174 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2175 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2176 // provides *explicit vectorization hints* (LV can bypass legal checks and 2177 // assume that vectorization is legal). However, both hints are implemented 2178 // using the same metadata (llvm.loop.vectorize, processed by 2179 // LoopVectorizeHints). This will be fixed in the future when the native IR 2180 // representation for pragma 'omp simd' is introduced. 2181 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2182 OptimizationRemarkEmitter *ORE) { 2183 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2184 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2185 2186 // Only outer loops with an explicit vectorization hint are supported. 2187 // Unannotated outer loops are ignored. 2188 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2189 return false; 2190 2191 Function *Fn = OuterLp->getHeader()->getParent(); 2192 if (!Hints.allowVectorization(Fn, OuterLp, 2193 true /*VectorizeOnlyWhenForced*/)) { 2194 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2195 return false; 2196 } 2197 2198 if (Hints.getInterleave() > 1) { 2199 // TODO: Interleave support is future work. 2200 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2201 "outer loops.\n"); 2202 Hints.emitRemarkWithHints(); 2203 return false; 2204 } 2205 2206 return true; 2207 } 2208 2209 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2210 OptimizationRemarkEmitter *ORE, 2211 SmallVectorImpl<Loop *> &V) { 2212 // Collect inner loops and outer loops without irreducible control flow. For 2213 // now, only collect outer loops that have explicit vectorization hints. If we 2214 // are stress testing the VPlan H-CFG construction, we collect the outermost 2215 // loop of every loop nest. 2216 if (L.isInnermost() || VPlanBuildStressTest || 2217 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2218 LoopBlocksRPO RPOT(&L); 2219 RPOT.perform(LI); 2220 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2221 V.push_back(&L); 2222 // TODO: Collect inner loops inside marked outer loops in case 2223 // vectorization fails for the outer loop. Do not invoke 2224 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2225 // already known to be reducible. We can use an inherited attribute for 2226 // that. 2227 return; 2228 } 2229 } 2230 for (Loop *InnerL : L) 2231 collectSupportedLoops(*InnerL, LI, ORE, V); 2232 } 2233 2234 namespace { 2235 2236 /// The LoopVectorize Pass. 2237 struct LoopVectorize : public FunctionPass { 2238 /// Pass identification, replacement for typeid 2239 static char ID; 2240 2241 LoopVectorizePass Impl; 2242 2243 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2244 bool VectorizeOnlyWhenForced = false) 2245 : FunctionPass(ID), 2246 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2247 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2248 } 2249 2250 bool runOnFunction(Function &F) override { 2251 if (skipFunction(F)) 2252 return false; 2253 2254 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2255 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2256 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2257 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2258 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2259 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2260 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2261 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2262 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2263 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2264 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2265 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2266 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2267 2268 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2269 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2270 2271 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2272 GetLAA, *ORE, PSI).MadeAnyChange; 2273 } 2274 2275 void getAnalysisUsage(AnalysisUsage &AU) const override { 2276 AU.addRequired<AssumptionCacheTracker>(); 2277 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2278 AU.addRequired<DominatorTreeWrapperPass>(); 2279 AU.addRequired<LoopInfoWrapperPass>(); 2280 AU.addRequired<ScalarEvolutionWrapperPass>(); 2281 AU.addRequired<TargetTransformInfoWrapperPass>(); 2282 AU.addRequired<AAResultsWrapperPass>(); 2283 AU.addRequired<LoopAccessLegacyAnalysis>(); 2284 AU.addRequired<DemandedBitsWrapperPass>(); 2285 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2286 AU.addRequired<InjectTLIMappingsLegacy>(); 2287 2288 // We currently do not preserve loopinfo/dominator analyses with outer loop 2289 // vectorization. Until this is addressed, mark these analyses as preserved 2290 // only for non-VPlan-native path. 2291 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2292 if (!EnableVPlanNativePath) { 2293 AU.addPreserved<LoopInfoWrapperPass>(); 2294 AU.addPreserved<DominatorTreeWrapperPass>(); 2295 } 2296 2297 AU.addPreserved<BasicAAWrapperPass>(); 2298 AU.addPreserved<GlobalsAAWrapperPass>(); 2299 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2300 } 2301 }; 2302 2303 } // end anonymous namespace 2304 2305 //===----------------------------------------------------------------------===// 2306 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2307 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2308 //===----------------------------------------------------------------------===// 2309 2310 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2311 // We need to place the broadcast of invariant variables outside the loop, 2312 // but only if it's proven safe to do so. Else, broadcast will be inside 2313 // vector loop body. 2314 Instruction *Instr = dyn_cast<Instruction>(V); 2315 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2316 (!Instr || 2317 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2318 // Place the code for broadcasting invariant variables in the new preheader. 2319 IRBuilder<>::InsertPointGuard Guard(Builder); 2320 if (SafeToHoist) 2321 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2322 2323 // Broadcast the scalar into all locations in the vector. 2324 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2325 2326 return Shuf; 2327 } 2328 2329 /// This function adds 2330 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2331 /// to each vector element of Val. The sequence starts at StartIndex. 2332 /// \p Opcode is relevant for FP induction variable. 2333 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2334 Instruction::BinaryOps BinOp, ElementCount VF, 2335 IRBuilder<> &Builder) { 2336 assert(VF.isVector() && "only vector VFs are supported"); 2337 2338 // Create and check the types. 2339 auto *ValVTy = cast<VectorType>(Val->getType()); 2340 ElementCount VLen = ValVTy->getElementCount(); 2341 2342 Type *STy = Val->getType()->getScalarType(); 2343 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2344 "Induction Step must be an integer or FP"); 2345 assert(Step->getType() == STy && "Step has wrong type"); 2346 2347 SmallVector<Constant *, 8> Indices; 2348 2349 // Create a vector of consecutive numbers from zero to VF. 2350 VectorType *InitVecValVTy = ValVTy; 2351 Type *InitVecValSTy = STy; 2352 if (STy->isFloatingPointTy()) { 2353 InitVecValSTy = 2354 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2355 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2356 } 2357 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2358 2359 // Splat the StartIdx 2360 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2361 2362 if (STy->isIntegerTy()) { 2363 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2364 Step = Builder.CreateVectorSplat(VLen, Step); 2365 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2366 // FIXME: The newly created binary instructions should contain nsw/nuw 2367 // flags, which can be found from the original scalar operations. 2368 Step = Builder.CreateMul(InitVec, Step); 2369 return Builder.CreateAdd(Val, Step, "induction"); 2370 } 2371 2372 // Floating point induction. 2373 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2374 "Binary Opcode should be specified for FP induction"); 2375 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2376 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2377 2378 Step = Builder.CreateVectorSplat(VLen, Step); 2379 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2380 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2381 } 2382 2383 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2384 const InductionDescriptor &II, Value *Step, Value *Start, 2385 Instruction *EntryVal, VPValue *Def, VPTransformState &State) { 2386 IRBuilder<> &Builder = State.Builder; 2387 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2388 "Expected either an induction phi-node or a truncate of it!"); 2389 2390 // Construct the initial value of the vector IV in the vector loop preheader 2391 auto CurrIP = Builder.saveIP(); 2392 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2393 if (isa<TruncInst>(EntryVal)) { 2394 assert(Start->getType()->isIntegerTy() && 2395 "Truncation requires an integer type"); 2396 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2397 Step = Builder.CreateTrunc(Step, TruncType); 2398 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2399 } 2400 2401 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 2402 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 2403 Value *SteppedStart = getStepVector( 2404 SplatStart, Zero, Step, II.getInductionOpcode(), State.VF, State.Builder); 2405 2406 // We create vector phi nodes for both integer and floating-point induction 2407 // variables. Here, we determine the kind of arithmetic we will perform. 2408 Instruction::BinaryOps AddOp; 2409 Instruction::BinaryOps MulOp; 2410 if (Step->getType()->isIntegerTy()) { 2411 AddOp = Instruction::Add; 2412 MulOp = Instruction::Mul; 2413 } else { 2414 AddOp = II.getInductionOpcode(); 2415 MulOp = Instruction::FMul; 2416 } 2417 2418 // Multiply the vectorization factor by the step using integer or 2419 // floating-point arithmetic as appropriate. 2420 Type *StepType = Step->getType(); 2421 Value *RuntimeVF; 2422 if (Step->getType()->isFloatingPointTy()) 2423 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 2424 else 2425 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 2426 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2427 2428 // Create a vector splat to use in the induction update. 2429 // 2430 // FIXME: If the step is non-constant, we create the vector splat with 2431 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2432 // handle a constant vector splat. 2433 Value *SplatVF = isa<Constant>(Mul) 2434 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 2435 : Builder.CreateVectorSplat(State.VF, Mul); 2436 Builder.restoreIP(CurrIP); 2437 2438 // We may need to add the step a number of times, depending on the unroll 2439 // factor. The last of those goes into the PHI. 2440 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2441 &*LoopVectorBody->getFirstInsertionPt()); 2442 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2443 Instruction *LastInduction = VecInd; 2444 for (unsigned Part = 0; Part < UF; ++Part) { 2445 State.set(Def, LastInduction, Part); 2446 2447 if (isa<TruncInst>(EntryVal)) 2448 addMetadata(LastInduction, EntryVal); 2449 2450 LastInduction = cast<Instruction>( 2451 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2452 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2453 } 2454 2455 // Move the last step to the end of the latch block. This ensures consistent 2456 // placement of all induction updates. 2457 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2458 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2459 LastInduction->moveBefore(Br); 2460 LastInduction->setName("vec.ind.next"); 2461 2462 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2463 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2464 } 2465 2466 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2467 return Cost->isScalarAfterVectorization(I, VF) || 2468 Cost->isProfitableToScalarize(I, VF); 2469 } 2470 2471 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2472 if (shouldScalarizeInstruction(IV)) 2473 return true; 2474 auto isScalarInst = [&](User *U) -> bool { 2475 auto *I = cast<Instruction>(U); 2476 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2477 }; 2478 return llvm::any_of(IV->users(), isScalarInst); 2479 } 2480 2481 /// Returns true if \p ID starts at 0 and has a step of 1. 2482 static bool isCanonicalID(const InductionDescriptor &ID) { 2483 if (!ID.getConstIntStepValue() || !ID.getConstIntStepValue()->isOne()) 2484 return false; 2485 auto *StartC = dyn_cast<ConstantInt>(ID.getStartValue()); 2486 return StartC && StartC->isZero(); 2487 } 2488 2489 void InnerLoopVectorizer::widenIntOrFpInduction( 2490 PHINode *IV, const InductionDescriptor &ID, Value *Start, TruncInst *Trunc, 2491 VPValue *Def, VPTransformState &State, Value *CanonicalIV) { 2492 IRBuilder<> &Builder = State.Builder; 2493 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2494 assert(!State.VF.isZero() && "VF must be non-zero"); 2495 2496 // The value from the original loop to which we are mapping the new induction 2497 // variable. 2498 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2499 2500 auto &DL = EntryVal->getModule()->getDataLayout(); 2501 2502 // Generate code for the induction step. Note that induction steps are 2503 // required to be loop-invariant 2504 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2505 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2506 "Induction step should be loop invariant"); 2507 if (PSE.getSE()->isSCEVable(IV->getType())) { 2508 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2509 return Exp.expandCodeFor(Step, Step->getType(), 2510 State.CFG.VectorPreHeader->getTerminator()); 2511 } 2512 return cast<SCEVUnknown>(Step)->getValue(); 2513 }; 2514 2515 // The scalar value to broadcast. This is derived from the canonical 2516 // induction variable. If a truncation type is given, truncate the canonical 2517 // induction variable and step. Otherwise, derive these values from the 2518 // induction descriptor. 2519 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2520 Value *ScalarIV = CanonicalIV; 2521 Type *NeededType = IV->getType(); 2522 if (!isCanonicalID(ID) || ScalarIV->getType() != NeededType) { 2523 ScalarIV = 2524 NeededType->isIntegerTy() 2525 ? Builder.CreateSExtOrTrunc(ScalarIV, NeededType) 2526 : Builder.CreateCast(Instruction::SIToFP, ScalarIV, NeededType); 2527 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID, 2528 State.CFG.PrevBB); 2529 ScalarIV->setName("offset.idx"); 2530 } 2531 if (Trunc) { 2532 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2533 assert(Step->getType()->isIntegerTy() && 2534 "Truncation requires an integer step"); 2535 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2536 Step = Builder.CreateTrunc(Step, TruncType); 2537 } 2538 return ScalarIV; 2539 }; 2540 2541 // Create the vector values from the scalar IV, in the absence of creating a 2542 // vector IV. 2543 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2544 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2545 for (unsigned Part = 0; Part < UF; ++Part) { 2546 Value *StartIdx; 2547 if (Step->getType()->isFloatingPointTy()) 2548 StartIdx = 2549 getRuntimeVFAsFloat(Builder, Step->getType(), State.VF * Part); 2550 else 2551 StartIdx = getRuntimeVF(Builder, Step->getType(), State.VF * Part); 2552 2553 Value *EntryPart = 2554 getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode(), 2555 State.VF, State.Builder); 2556 State.set(Def, EntryPart, Part); 2557 if (Trunc) 2558 addMetadata(EntryPart, Trunc); 2559 } 2560 }; 2561 2562 // Fast-math-flags propagate from the original induction instruction. 2563 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2564 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2565 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2566 2567 // Now do the actual transformations, and start with creating the step value. 2568 Value *Step = CreateStepValue(ID.getStep()); 2569 if (State.VF.isScalar()) { 2570 Value *ScalarIV = CreateScalarIV(Step); 2571 Type *ScalarTy = IntegerType::get(ScalarIV->getContext(), 2572 Step->getType()->getScalarSizeInBits()); 2573 2574 Instruction::BinaryOps IncOp = ID.getInductionOpcode(); 2575 if (IncOp == Instruction::BinaryOpsEnd) 2576 IncOp = Instruction::Add; 2577 for (unsigned Part = 0; Part < UF; ++Part) { 2578 Value *StartIdx = ConstantInt::get(ScalarTy, Part); 2579 Instruction::BinaryOps MulOp = Instruction::Mul; 2580 if (Step->getType()->isFloatingPointTy()) { 2581 StartIdx = Builder.CreateUIToFP(StartIdx, Step->getType()); 2582 MulOp = Instruction::FMul; 2583 } 2584 2585 Value *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2586 Value *EntryPart = Builder.CreateBinOp(IncOp, ScalarIV, Mul, "induction"); 2587 State.set(Def, EntryPart, Part); 2588 if (Trunc) { 2589 assert(!Step->getType()->isFloatingPointTy() && 2590 "fp inductions shouldn't be truncated"); 2591 addMetadata(EntryPart, Trunc); 2592 } 2593 } 2594 return; 2595 } 2596 2597 // Determine if we want a scalar version of the induction variable. This is 2598 // true if the induction variable itself is not widened, or if it has at 2599 // least one user in the loop that is not widened. 2600 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2601 if (!NeedsScalarIV) { 2602 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State); 2603 return; 2604 } 2605 2606 // Try to create a new independent vector induction variable. If we can't 2607 // create the phi node, we will splat the scalar induction variable in each 2608 // loop iteration. 2609 if (!shouldScalarizeInstruction(EntryVal)) { 2610 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, State); 2611 Value *ScalarIV = CreateScalarIV(Step); 2612 // Create scalar steps that can be used by instructions we will later 2613 // scalarize. Note that the addition of the scalar steps will not increase 2614 // the number of instructions in the loop in the common case prior to 2615 // InstCombine. We will be trading one vector extract for each scalar step. 2616 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State); 2617 return; 2618 } 2619 2620 // All IV users are scalar instructions, so only emit a scalar IV, not a 2621 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2622 // predicate used by the masked loads/stores. 2623 Value *ScalarIV = CreateScalarIV(Step); 2624 if (!Cost->isScalarEpilogueAllowed()) 2625 CreateSplatIV(ScalarIV, Step); 2626 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, State); 2627 } 2628 2629 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2630 Instruction *EntryVal, 2631 const InductionDescriptor &ID, 2632 VPValue *Def, 2633 VPTransformState &State) { 2634 IRBuilder<> &Builder = State.Builder; 2635 // We shouldn't have to build scalar steps if we aren't vectorizing. 2636 assert(State.VF.isVector() && "VF should be greater than one"); 2637 // Get the value type and ensure it and the step have the same integer type. 2638 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2639 assert(ScalarIVTy == Step->getType() && 2640 "Val and Step should have the same type"); 2641 2642 // We build scalar steps for both integer and floating-point induction 2643 // variables. Here, we determine the kind of arithmetic we will perform. 2644 Instruction::BinaryOps AddOp; 2645 Instruction::BinaryOps MulOp; 2646 if (ScalarIVTy->isIntegerTy()) { 2647 AddOp = Instruction::Add; 2648 MulOp = Instruction::Mul; 2649 } else { 2650 AddOp = ID.getInductionOpcode(); 2651 MulOp = Instruction::FMul; 2652 } 2653 2654 // Determine the number of scalars we need to generate for each unroll 2655 // iteration. If EntryVal is uniform, we only need to generate the first 2656 // lane. Otherwise, we generate all VF values. 2657 bool IsUniform = 2658 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), State.VF); 2659 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 2660 // Compute the scalar steps and save the results in State. 2661 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2662 ScalarIVTy->getScalarSizeInBits()); 2663 Type *VecIVTy = nullptr; 2664 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2665 if (!IsUniform && State.VF.isScalable()) { 2666 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2667 UnitStepVec = 2668 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2669 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2670 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2671 } 2672 2673 for (unsigned Part = 0; Part < State.UF; ++Part) { 2674 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2675 2676 if (!IsUniform && State.VF.isScalable()) { 2677 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2678 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2679 if (ScalarIVTy->isFloatingPointTy()) 2680 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2681 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2682 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2683 State.set(Def, Add, Part); 2684 // It's useful to record the lane values too for the known minimum number 2685 // of elements so we do those below. This improves the code quality when 2686 // trying to extract the first element, for example. 2687 } 2688 2689 if (ScalarIVTy->isFloatingPointTy()) 2690 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2691 2692 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2693 Value *StartIdx = Builder.CreateBinOp( 2694 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2695 // The step returned by `createStepForVF` is a runtime-evaluated value 2696 // when VF is scalable. Otherwise, it should be folded into a Constant. 2697 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2698 "Expected StartIdx to be folded to a constant when VF is not " 2699 "scalable"); 2700 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2701 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2702 State.set(Def, Add, VPIteration(Part, Lane)); 2703 } 2704 } 2705 } 2706 2707 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2708 const VPIteration &Instance, 2709 VPTransformState &State) { 2710 Value *ScalarInst = State.get(Def, Instance); 2711 Value *VectorValue = State.get(Def, Instance.Part); 2712 VectorValue = Builder.CreateInsertElement( 2713 VectorValue, ScalarInst, 2714 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2715 State.set(Def, VectorValue, Instance.Part); 2716 } 2717 2718 // Return whether we allow using masked interleave-groups (for dealing with 2719 // strided loads/stores that reside in predicated blocks, or for dealing 2720 // with gaps). 2721 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2722 // If an override option has been passed in for interleaved accesses, use it. 2723 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2724 return EnableMaskedInterleavedMemAccesses; 2725 2726 return TTI.enableMaskedInterleavedAccessVectorization(); 2727 } 2728 2729 // Try to vectorize the interleave group that \p Instr belongs to. 2730 // 2731 // E.g. Translate following interleaved load group (factor = 3): 2732 // for (i = 0; i < N; i+=3) { 2733 // R = Pic[i]; // Member of index 0 2734 // G = Pic[i+1]; // Member of index 1 2735 // B = Pic[i+2]; // Member of index 2 2736 // ... // do something to R, G, B 2737 // } 2738 // To: 2739 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2740 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2741 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2742 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2743 // 2744 // Or translate following interleaved store group (factor = 3): 2745 // for (i = 0; i < N; i+=3) { 2746 // ... do something to R, G, B 2747 // Pic[i] = R; // Member of index 0 2748 // Pic[i+1] = G; // Member of index 1 2749 // Pic[i+2] = B; // Member of index 2 2750 // } 2751 // To: 2752 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2753 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2754 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2755 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2756 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2757 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2758 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2759 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2760 VPValue *BlockInMask) { 2761 Instruction *Instr = Group->getInsertPos(); 2762 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2763 2764 // Prepare for the vector type of the interleaved load/store. 2765 Type *ScalarTy = getLoadStoreType(Instr); 2766 unsigned InterleaveFactor = Group->getFactor(); 2767 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2768 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2769 2770 // Prepare for the new pointers. 2771 SmallVector<Value *, 2> AddrParts; 2772 unsigned Index = Group->getIndex(Instr); 2773 2774 // TODO: extend the masked interleaved-group support to reversed access. 2775 assert((!BlockInMask || !Group->isReverse()) && 2776 "Reversed masked interleave-group not supported."); 2777 2778 // If the group is reverse, adjust the index to refer to the last vector lane 2779 // instead of the first. We adjust the index from the first vector lane, 2780 // rather than directly getting the pointer for lane VF - 1, because the 2781 // pointer operand of the interleaved access is supposed to be uniform. For 2782 // uniform instructions, we're only required to generate a value for the 2783 // first vector lane in each unroll iteration. 2784 if (Group->isReverse()) 2785 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2786 2787 for (unsigned Part = 0; Part < UF; Part++) { 2788 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2789 setDebugLocFromInst(AddrPart); 2790 2791 // Notice current instruction could be any index. Need to adjust the address 2792 // to the member of index 0. 2793 // 2794 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2795 // b = A[i]; // Member of index 0 2796 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2797 // 2798 // E.g. A[i+1] = a; // Member of index 1 2799 // A[i] = b; // Member of index 0 2800 // A[i+2] = c; // Member of index 2 (Current instruction) 2801 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2802 2803 bool InBounds = false; 2804 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2805 InBounds = gep->isInBounds(); 2806 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2807 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2808 2809 // Cast to the vector pointer type. 2810 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2811 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2812 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2813 } 2814 2815 setDebugLocFromInst(Instr); 2816 Value *PoisonVec = PoisonValue::get(VecTy); 2817 2818 Value *MaskForGaps = nullptr; 2819 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2820 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2821 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2822 } 2823 2824 // Vectorize the interleaved load group. 2825 if (isa<LoadInst>(Instr)) { 2826 // For each unroll part, create a wide load for the group. 2827 SmallVector<Value *, 2> NewLoads; 2828 for (unsigned Part = 0; Part < UF; Part++) { 2829 Instruction *NewLoad; 2830 if (BlockInMask || MaskForGaps) { 2831 assert(useMaskedInterleavedAccesses(*TTI) && 2832 "masked interleaved groups are not allowed."); 2833 Value *GroupMask = MaskForGaps; 2834 if (BlockInMask) { 2835 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2836 Value *ShuffledMask = Builder.CreateShuffleVector( 2837 BlockInMaskPart, 2838 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2839 "interleaved.mask"); 2840 GroupMask = MaskForGaps 2841 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2842 MaskForGaps) 2843 : ShuffledMask; 2844 } 2845 NewLoad = 2846 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2847 GroupMask, PoisonVec, "wide.masked.vec"); 2848 } 2849 else 2850 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2851 Group->getAlign(), "wide.vec"); 2852 Group->addMetadata(NewLoad); 2853 NewLoads.push_back(NewLoad); 2854 } 2855 2856 // For each member in the group, shuffle out the appropriate data from the 2857 // wide loads. 2858 unsigned J = 0; 2859 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2860 Instruction *Member = Group->getMember(I); 2861 2862 // Skip the gaps in the group. 2863 if (!Member) 2864 continue; 2865 2866 auto StrideMask = 2867 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2868 for (unsigned Part = 0; Part < UF; Part++) { 2869 Value *StridedVec = Builder.CreateShuffleVector( 2870 NewLoads[Part], StrideMask, "strided.vec"); 2871 2872 // If this member has different type, cast the result type. 2873 if (Member->getType() != ScalarTy) { 2874 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2875 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2876 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2877 } 2878 2879 if (Group->isReverse()) 2880 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2881 2882 State.set(VPDefs[J], StridedVec, Part); 2883 } 2884 ++J; 2885 } 2886 return; 2887 } 2888 2889 // The sub vector type for current instruction. 2890 auto *SubVT = VectorType::get(ScalarTy, VF); 2891 2892 // Vectorize the interleaved store group. 2893 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2894 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2895 "masked interleaved groups are not allowed."); 2896 assert((!MaskForGaps || !VF.isScalable()) && 2897 "masking gaps for scalable vectors is not yet supported."); 2898 for (unsigned Part = 0; Part < UF; Part++) { 2899 // Collect the stored vector from each member. 2900 SmallVector<Value *, 4> StoredVecs; 2901 for (unsigned i = 0; i < InterleaveFactor; i++) { 2902 assert((Group->getMember(i) || MaskForGaps) && 2903 "Fail to get a member from an interleaved store group"); 2904 Instruction *Member = Group->getMember(i); 2905 2906 // Skip the gaps in the group. 2907 if (!Member) { 2908 Value *Undef = PoisonValue::get(SubVT); 2909 StoredVecs.push_back(Undef); 2910 continue; 2911 } 2912 2913 Value *StoredVec = State.get(StoredValues[i], Part); 2914 2915 if (Group->isReverse()) 2916 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2917 2918 // If this member has different type, cast it to a unified type. 2919 2920 if (StoredVec->getType() != SubVT) 2921 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2922 2923 StoredVecs.push_back(StoredVec); 2924 } 2925 2926 // Concatenate all vectors into a wide vector. 2927 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2928 2929 // Interleave the elements in the wide vector. 2930 Value *IVec = Builder.CreateShuffleVector( 2931 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2932 "interleaved.vec"); 2933 2934 Instruction *NewStoreInstr; 2935 if (BlockInMask || MaskForGaps) { 2936 Value *GroupMask = MaskForGaps; 2937 if (BlockInMask) { 2938 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2939 Value *ShuffledMask = Builder.CreateShuffleVector( 2940 BlockInMaskPart, 2941 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2942 "interleaved.mask"); 2943 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2944 ShuffledMask, MaskForGaps) 2945 : ShuffledMask; 2946 } 2947 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2948 Group->getAlign(), GroupMask); 2949 } else 2950 NewStoreInstr = 2951 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2952 2953 Group->addMetadata(NewStoreInstr); 2954 } 2955 } 2956 2957 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2958 VPReplicateRecipe *RepRecipe, 2959 const VPIteration &Instance, 2960 bool IfPredicateInstr, 2961 VPTransformState &State) { 2962 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2963 2964 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2965 // the first lane and part. 2966 if (isa<NoAliasScopeDeclInst>(Instr)) 2967 if (!Instance.isFirstIteration()) 2968 return; 2969 2970 setDebugLocFromInst(Instr); 2971 2972 // Does this instruction return a value ? 2973 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2974 2975 Instruction *Cloned = Instr->clone(); 2976 if (!IsVoidRetTy) 2977 Cloned->setName(Instr->getName() + ".cloned"); 2978 2979 // If the scalarized instruction contributes to the address computation of a 2980 // widen masked load/store which was in a basic block that needed predication 2981 // and is not predicated after vectorization, we can't propagate 2982 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2983 // instruction could feed a poison value to the base address of the widen 2984 // load/store. 2985 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2986 Cloned->dropPoisonGeneratingFlags(); 2987 2988 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2989 Builder.GetInsertPoint()); 2990 // Replace the operands of the cloned instructions with their scalar 2991 // equivalents in the new loop. 2992 for (auto &I : enumerate(RepRecipe->operands())) { 2993 auto InputInstance = Instance; 2994 VPValue *Operand = I.value(); 2995 if (State.Plan->isUniformAfterVectorization(Operand)) 2996 InputInstance.Lane = VPLane::getFirstLane(); 2997 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2998 } 2999 addNewMetadata(Cloned, Instr); 3000 3001 // Place the cloned scalar in the new loop. 3002 Builder.Insert(Cloned); 3003 3004 State.set(RepRecipe, Cloned, Instance); 3005 3006 // If we just cloned a new assumption, add it the assumption cache. 3007 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3008 AC->registerAssumption(II); 3009 3010 // End if-block. 3011 if (IfPredicateInstr) 3012 PredicatedInstructions.push_back(Cloned); 3013 } 3014 3015 void InnerLoopVectorizer::createHeaderBranch(Loop *L) { 3016 BasicBlock *Header = L->getHeader(); 3017 assert(!L->getLoopLatch() && "loop should not have a latch at this point"); 3018 3019 IRBuilder<> B(Header->getTerminator()); 3020 Instruction *OldInst = 3021 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 3022 setDebugLocFromInst(OldInst, &B); 3023 3024 // Connect the header to the exit and header blocks and replace the old 3025 // terminator. 3026 B.CreateCondBr(B.getTrue(), L->getUniqueExitBlock(), Header); 3027 3028 // Now we have two terminators. Remove the old one from the block. 3029 Header->getTerminator()->eraseFromParent(); 3030 } 3031 3032 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3033 if (TripCount) 3034 return TripCount; 3035 3036 assert(L && "Create Trip Count for null loop."); 3037 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3038 // Find the loop boundaries. 3039 ScalarEvolution *SE = PSE.getSE(); 3040 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3041 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3042 "Invalid loop count"); 3043 3044 Type *IdxTy = Legal->getWidestInductionType(); 3045 assert(IdxTy && "No type for induction"); 3046 3047 // The exit count might have the type of i64 while the phi is i32. This can 3048 // happen if we have an induction variable that is sign extended before the 3049 // compare. The only way that we get a backedge taken count is that the 3050 // induction variable was signed and as such will not overflow. In such a case 3051 // truncation is legal. 3052 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3053 IdxTy->getPrimitiveSizeInBits()) 3054 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3055 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3056 3057 // Get the total trip count from the count by adding 1. 3058 const SCEV *ExitCount = SE->getAddExpr( 3059 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3060 3061 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3062 3063 // Expand the trip count and place the new instructions in the preheader. 3064 // Notice that the pre-header does not change, only the loop body. 3065 SCEVExpander Exp(*SE, DL, "induction"); 3066 3067 // Count holds the overall loop count (N). 3068 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3069 L->getLoopPreheader()->getTerminator()); 3070 3071 if (TripCount->getType()->isPointerTy()) 3072 TripCount = 3073 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3074 L->getLoopPreheader()->getTerminator()); 3075 3076 return TripCount; 3077 } 3078 3079 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3080 if (VectorTripCount) 3081 return VectorTripCount; 3082 3083 Value *TC = getOrCreateTripCount(L); 3084 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3085 3086 Type *Ty = TC->getType(); 3087 // This is where we can make the step a runtime constant. 3088 Value *Step = createStepForVF(Builder, Ty, VF, UF); 3089 3090 // If the tail is to be folded by masking, round the number of iterations N 3091 // up to a multiple of Step instead of rounding down. This is done by first 3092 // adding Step-1 and then rounding down. Note that it's ok if this addition 3093 // overflows: the vector induction variable will eventually wrap to zero given 3094 // that it starts at zero and its Step is a power of two; the loop will then 3095 // exit, with the last early-exit vector comparison also producing all-true. 3096 if (Cost->foldTailByMasking()) { 3097 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3098 "VF*UF must be a power of 2 when folding tail by masking"); 3099 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 3100 TC = Builder.CreateAdd( 3101 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 3102 } 3103 3104 // Now we need to generate the expression for the part of the loop that the 3105 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3106 // iterations are not required for correctness, or N - Step, otherwise. Step 3107 // is equal to the vectorization factor (number of SIMD elements) times the 3108 // unroll factor (number of SIMD instructions). 3109 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3110 3111 // There are cases where we *must* run at least one iteration in the remainder 3112 // loop. See the cost model for when this can happen. If the step evenly 3113 // divides the trip count, we set the remainder to be equal to the step. If 3114 // the step does not evenly divide the trip count, no adjustment is necessary 3115 // since there will already be scalar iterations. Note that the minimum 3116 // iterations check ensures that N >= Step. 3117 if (Cost->requiresScalarEpilogue(VF)) { 3118 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3119 R = Builder.CreateSelect(IsZero, Step, R); 3120 } 3121 3122 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3123 3124 return VectorTripCount; 3125 } 3126 3127 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3128 const DataLayout &DL) { 3129 // Verify that V is a vector type with same number of elements as DstVTy. 3130 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3131 unsigned VF = DstFVTy->getNumElements(); 3132 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3133 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3134 Type *SrcElemTy = SrcVecTy->getElementType(); 3135 Type *DstElemTy = DstFVTy->getElementType(); 3136 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3137 "Vector elements must have same size"); 3138 3139 // Do a direct cast if element types are castable. 3140 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3141 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3142 } 3143 // V cannot be directly casted to desired vector type. 3144 // May happen when V is a floating point vector but DstVTy is a vector of 3145 // pointers or vice-versa. Handle this using a two-step bitcast using an 3146 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3147 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3148 "Only one type should be a pointer type"); 3149 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3150 "Only one type should be a floating point type"); 3151 Type *IntTy = 3152 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3153 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3154 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3155 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3156 } 3157 3158 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3159 BasicBlock *Bypass) { 3160 Value *Count = getOrCreateTripCount(L); 3161 // Reuse existing vector loop preheader for TC checks. 3162 // Note that new preheader block is generated for vector loop. 3163 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3164 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3165 3166 // Generate code to check if the loop's trip count is less than VF * UF, or 3167 // equal to it in case a scalar epilogue is required; this implies that the 3168 // vector trip count is zero. This check also covers the case where adding one 3169 // to the backedge-taken count overflowed leading to an incorrect trip count 3170 // of zero. In this case we will also jump to the scalar loop. 3171 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3172 : ICmpInst::ICMP_ULT; 3173 3174 // If tail is to be folded, vector loop takes care of all iterations. 3175 Value *CheckMinIters = Builder.getFalse(); 3176 if (!Cost->foldTailByMasking()) { 3177 Value *Step = createStepForVF(Builder, Count->getType(), VF, UF); 3178 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3179 } 3180 // Create new preheader for vector loop. 3181 LoopVectorPreHeader = 3182 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3183 "vector.ph"); 3184 3185 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3186 DT->getNode(Bypass)->getIDom()) && 3187 "TC check is expected to dominate Bypass"); 3188 3189 // Update dominator for Bypass & LoopExit (if needed). 3190 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3191 if (!Cost->requiresScalarEpilogue(VF)) 3192 // If there is an epilogue which must run, there's no edge from the 3193 // middle block to exit blocks and thus no need to update the immediate 3194 // dominator of the exit blocks. 3195 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3196 3197 ReplaceInstWithInst( 3198 TCCheckBlock->getTerminator(), 3199 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3200 LoopBypassBlocks.push_back(TCCheckBlock); 3201 } 3202 3203 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3204 3205 BasicBlock *const SCEVCheckBlock = 3206 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3207 if (!SCEVCheckBlock) 3208 return nullptr; 3209 3210 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3211 (OptForSizeBasedOnProfile && 3212 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3213 "Cannot SCEV check stride or overflow when optimizing for size"); 3214 3215 3216 // Update dominator only if this is first RT check. 3217 if (LoopBypassBlocks.empty()) { 3218 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3219 if (!Cost->requiresScalarEpilogue(VF)) 3220 // If there is an epilogue which must run, there's no edge from the 3221 // middle block to exit blocks and thus no need to update the immediate 3222 // dominator of the exit blocks. 3223 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3224 } 3225 3226 LoopBypassBlocks.push_back(SCEVCheckBlock); 3227 AddedSafetyChecks = true; 3228 return SCEVCheckBlock; 3229 } 3230 3231 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3232 BasicBlock *Bypass) { 3233 // VPlan-native path does not do any analysis for runtime checks currently. 3234 if (EnableVPlanNativePath) 3235 return nullptr; 3236 3237 BasicBlock *const MemCheckBlock = 3238 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3239 3240 // Check if we generated code that checks in runtime if arrays overlap. We put 3241 // the checks into a separate block to make the more common case of few 3242 // elements faster. 3243 if (!MemCheckBlock) 3244 return nullptr; 3245 3246 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3247 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3248 "Cannot emit memory checks when optimizing for size, unless forced " 3249 "to vectorize."); 3250 ORE->emit([&]() { 3251 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3252 L->getStartLoc(), L->getHeader()) 3253 << "Code-size may be reduced by not forcing " 3254 "vectorization, or by source-code modifications " 3255 "eliminating the need for runtime checks " 3256 "(e.g., adding 'restrict')."; 3257 }); 3258 } 3259 3260 LoopBypassBlocks.push_back(MemCheckBlock); 3261 3262 AddedSafetyChecks = true; 3263 3264 // We currently don't use LoopVersioning for the actual loop cloning but we 3265 // still use it to add the noalias metadata. 3266 LVer = std::make_unique<LoopVersioning>( 3267 *Legal->getLAI(), 3268 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3269 DT, PSE.getSE()); 3270 LVer->prepareNoAliasMetadata(); 3271 return MemCheckBlock; 3272 } 3273 3274 Value *InnerLoopVectorizer::emitTransformedIndex( 3275 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3276 const InductionDescriptor &ID, BasicBlock *VectorHeader) const { 3277 3278 SCEVExpander Exp(*SE, DL, "induction"); 3279 auto Step = ID.getStep(); 3280 auto StartValue = ID.getStartValue(); 3281 assert(Index->getType()->getScalarType() == Step->getType() && 3282 "Index scalar type does not match StepValue type"); 3283 3284 // Note: the IR at this point is broken. We cannot use SE to create any new 3285 // SCEV and then expand it, hoping that SCEV's simplification will give us 3286 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3287 // lead to various SCEV crashes. So all we can do is to use builder and rely 3288 // on InstCombine for future simplifications. Here we handle some trivial 3289 // cases only. 3290 auto CreateAdd = [&B](Value *X, Value *Y) { 3291 assert(X->getType() == Y->getType() && "Types don't match!"); 3292 if (auto *CX = dyn_cast<ConstantInt>(X)) 3293 if (CX->isZero()) 3294 return Y; 3295 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3296 if (CY->isZero()) 3297 return X; 3298 return B.CreateAdd(X, Y); 3299 }; 3300 3301 // We allow X to be a vector type, in which case Y will potentially be 3302 // splatted into a vector with the same element count. 3303 auto CreateMul = [&B](Value *X, Value *Y) { 3304 assert(X->getType()->getScalarType() == Y->getType() && 3305 "Types don't match!"); 3306 if (auto *CX = dyn_cast<ConstantInt>(X)) 3307 if (CX->isOne()) 3308 return Y; 3309 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3310 if (CY->isOne()) 3311 return X; 3312 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3313 if (XVTy && !isa<VectorType>(Y->getType())) 3314 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3315 return B.CreateMul(X, Y); 3316 }; 3317 3318 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3319 // loop, choose the end of the vector loop header (=VectorHeader), because 3320 // the DomTree is not kept up-to-date for additional blocks generated in the 3321 // vector loop. By using the header as insertion point, we guarantee that the 3322 // expanded instructions dominate all their uses. 3323 auto GetInsertPoint = [this, &B, VectorHeader]() { 3324 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3325 if (InsertBB != LoopVectorBody && 3326 LI->getLoopFor(VectorHeader) == LI->getLoopFor(InsertBB)) 3327 return VectorHeader->getTerminator(); 3328 return &*B.GetInsertPoint(); 3329 }; 3330 3331 switch (ID.getKind()) { 3332 case InductionDescriptor::IK_IntInduction: { 3333 assert(!isa<VectorType>(Index->getType()) && 3334 "Vector indices not supported for integer inductions yet"); 3335 assert(Index->getType() == StartValue->getType() && 3336 "Index type does not match StartValue type"); 3337 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3338 return B.CreateSub(StartValue, Index); 3339 auto *Offset = CreateMul( 3340 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3341 return CreateAdd(StartValue, Offset); 3342 } 3343 case InductionDescriptor::IK_PtrInduction: { 3344 assert(isa<SCEVConstant>(Step) && 3345 "Expected constant step for pointer induction"); 3346 return B.CreateGEP( 3347 ID.getElementType(), StartValue, 3348 CreateMul(Index, 3349 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3350 GetInsertPoint()))); 3351 } 3352 case InductionDescriptor::IK_FpInduction: { 3353 assert(!isa<VectorType>(Index->getType()) && 3354 "Vector indices not supported for FP inductions yet"); 3355 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3356 auto InductionBinOp = ID.getInductionBinOp(); 3357 assert(InductionBinOp && 3358 (InductionBinOp->getOpcode() == Instruction::FAdd || 3359 InductionBinOp->getOpcode() == Instruction::FSub) && 3360 "Original bin op should be defined for FP induction"); 3361 3362 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3363 Value *MulExp = B.CreateFMul(StepValue, Index); 3364 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3365 "induction"); 3366 } 3367 case InductionDescriptor::IK_NoInduction: 3368 return nullptr; 3369 } 3370 llvm_unreachable("invalid enum"); 3371 } 3372 3373 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3374 LoopScalarBody = OrigLoop->getHeader(); 3375 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3376 assert(LoopVectorPreHeader && "Invalid loop structure"); 3377 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3378 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3379 "multiple exit loop without required epilogue?"); 3380 3381 LoopMiddleBlock = 3382 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3383 LI, nullptr, Twine(Prefix) + "middle.block"); 3384 LoopScalarPreHeader = 3385 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3386 nullptr, Twine(Prefix) + "scalar.ph"); 3387 3388 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3389 3390 // Set up the middle block terminator. Two cases: 3391 // 1) If we know that we must execute the scalar epilogue, emit an 3392 // unconditional branch. 3393 // 2) Otherwise, we must have a single unique exit block (due to how we 3394 // implement the multiple exit case). In this case, set up a conditonal 3395 // branch from the middle block to the loop scalar preheader, and the 3396 // exit block. completeLoopSkeleton will update the condition to use an 3397 // iteration check, if required to decide whether to execute the remainder. 3398 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3399 BranchInst::Create(LoopScalarPreHeader) : 3400 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3401 Builder.getTrue()); 3402 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3403 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3404 3405 // We intentionally don't let SplitBlock to update LoopInfo since 3406 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3407 // LoopVectorBody is explicitly added to the correct place few lines later. 3408 LoopVectorBody = 3409 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3410 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3411 3412 // Update dominator for loop exit. 3413 if (!Cost->requiresScalarEpilogue(VF)) 3414 // If there is an epilogue which must run, there's no edge from the 3415 // middle block to exit blocks and thus no need to update the immediate 3416 // dominator of the exit blocks. 3417 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3418 3419 // Create and register the new vector loop. 3420 Loop *Lp = LI->AllocateLoop(); 3421 Loop *ParentLoop = OrigLoop->getParentLoop(); 3422 3423 // Insert the new loop into the loop nest and register the new basic blocks 3424 // before calling any utilities such as SCEV that require valid LoopInfo. 3425 if (ParentLoop) { 3426 ParentLoop->addChildLoop(Lp); 3427 } else { 3428 LI->addTopLevelLoop(Lp); 3429 } 3430 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3431 return Lp; 3432 } 3433 3434 void InnerLoopVectorizer::createInductionResumeValues( 3435 Loop *L, std::pair<BasicBlock *, Value *> AdditionalBypass) { 3436 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3437 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3438 "Inconsistent information about additional bypass."); 3439 3440 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3441 assert(VectorTripCount && L && "Expected valid arguments"); 3442 // We are going to resume the execution of the scalar loop. 3443 // Go over all of the induction variables that we found and fix the 3444 // PHIs that are left in the scalar version of the loop. 3445 // The starting values of PHI nodes depend on the counter of the last 3446 // iteration in the vectorized loop. 3447 // If we come from a bypass edge then we need to start from the original 3448 // start value. 3449 Instruction *OldInduction = Legal->getPrimaryInduction(); 3450 for (auto &InductionEntry : Legal->getInductionVars()) { 3451 PHINode *OrigPhi = InductionEntry.first; 3452 InductionDescriptor II = InductionEntry.second; 3453 3454 // Create phi nodes to merge from the backedge-taken check block. 3455 PHINode *BCResumeVal = 3456 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3457 LoopScalarPreHeader->getTerminator()); 3458 // Copy original phi DL over to the new one. 3459 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3460 Value *&EndValue = IVEndValues[OrigPhi]; 3461 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3462 if (OrigPhi == OldInduction) { 3463 // We know what the end value is. 3464 EndValue = VectorTripCount; 3465 } else { 3466 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3467 3468 // Fast-math-flags propagate from the original induction instruction. 3469 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3470 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3471 3472 Type *StepType = II.getStep()->getType(); 3473 Instruction::CastOps CastOp = 3474 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3475 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3476 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3477 EndValue = 3478 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3479 EndValue->setName("ind.end"); 3480 3481 // Compute the end value for the additional bypass (if applicable). 3482 if (AdditionalBypass.first) { 3483 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3484 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3485 StepType, true); 3486 CRD = 3487 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3488 EndValueFromAdditionalBypass = 3489 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II, LoopVectorBody); 3490 EndValueFromAdditionalBypass->setName("ind.end"); 3491 } 3492 } 3493 // The new PHI merges the original incoming value, in case of a bypass, 3494 // or the value at the end of the vectorized loop. 3495 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3496 3497 // Fix the scalar body counter (PHI node). 3498 // The old induction's phi node in the scalar body needs the truncated 3499 // value. 3500 for (BasicBlock *BB : LoopBypassBlocks) 3501 BCResumeVal->addIncoming(II.getStartValue(), BB); 3502 3503 if (AdditionalBypass.first) 3504 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3505 EndValueFromAdditionalBypass); 3506 3507 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3508 } 3509 } 3510 3511 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3512 MDNode *OrigLoopID) { 3513 assert(L && "Expected valid loop."); 3514 3515 // The trip counts should be cached by now. 3516 Value *Count = getOrCreateTripCount(L); 3517 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3518 3519 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3520 3521 // Add a check in the middle block to see if we have completed 3522 // all of the iterations in the first vector loop. Three cases: 3523 // 1) If we require a scalar epilogue, there is no conditional branch as 3524 // we unconditionally branch to the scalar preheader. Do nothing. 3525 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3526 // Thus if tail is to be folded, we know we don't need to run the 3527 // remainder and we can use the previous value for the condition (true). 3528 // 3) Otherwise, construct a runtime check. 3529 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3530 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3531 Count, VectorTripCount, "cmp.n", 3532 LoopMiddleBlock->getTerminator()); 3533 3534 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3535 // of the corresponding compare because they may have ended up with 3536 // different line numbers and we want to avoid awkward line stepping while 3537 // debugging. Eg. if the compare has got a line number inside the loop. 3538 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3539 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3540 } 3541 3542 // Get ready to start creating new instructions into the vectorized body. 3543 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3544 "Inconsistent vector loop preheader"); 3545 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3546 3547 #ifdef EXPENSIVE_CHECKS 3548 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3549 LI->verify(*DT); 3550 #endif 3551 3552 return LoopVectorPreHeader; 3553 } 3554 3555 std::pair<BasicBlock *, Value *> 3556 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3557 /* 3558 In this function we generate a new loop. The new loop will contain 3559 the vectorized instructions while the old loop will continue to run the 3560 scalar remainder. 3561 3562 [ ] <-- loop iteration number check. 3563 / | 3564 / v 3565 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3566 | / | 3567 | / v 3568 || [ ] <-- vector pre header. 3569 |/ | 3570 | v 3571 | [ ] \ 3572 | [ ]_| <-- vector loop. 3573 | | 3574 | v 3575 \ -[ ] <--- middle-block. 3576 \/ | 3577 /\ v 3578 | ->[ ] <--- new preheader. 3579 | | 3580 (opt) v <-- edge from middle to exit iff epilogue is not required. 3581 | [ ] \ 3582 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3583 \ | 3584 \ v 3585 >[ ] <-- exit block(s). 3586 ... 3587 */ 3588 3589 // Get the metadata of the original loop before it gets modified. 3590 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3591 3592 // Workaround! Compute the trip count of the original loop and cache it 3593 // before we start modifying the CFG. This code has a systemic problem 3594 // wherein it tries to run analysis over partially constructed IR; this is 3595 // wrong, and not simply for SCEV. The trip count of the original loop 3596 // simply happens to be prone to hitting this in practice. In theory, we 3597 // can hit the same issue for any SCEV, or ValueTracking query done during 3598 // mutation. See PR49900. 3599 getOrCreateTripCount(OrigLoop); 3600 3601 // Create an empty vector loop, and prepare basic blocks for the runtime 3602 // checks. 3603 Loop *Lp = createVectorLoopSkeleton(""); 3604 3605 // Now, compare the new count to zero. If it is zero skip the vector loop and 3606 // jump to the scalar loop. This check also covers the case where the 3607 // backedge-taken count is uint##_max: adding one to it will overflow leading 3608 // to an incorrect trip count of zero. In this (rare) case we will also jump 3609 // to the scalar loop. 3610 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3611 3612 // Generate the code to check any assumptions that we've made for SCEV 3613 // expressions. 3614 emitSCEVChecks(Lp, LoopScalarPreHeader); 3615 3616 // Generate the code that checks in runtime if arrays overlap. We put the 3617 // checks into a separate block to make the more common case of few elements 3618 // faster. 3619 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3620 3621 createHeaderBranch(Lp); 3622 3623 // Emit phis for the new starting index of the scalar loop. 3624 createInductionResumeValues(Lp); 3625 3626 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 3627 } 3628 3629 // Fix up external users of the induction variable. At this point, we are 3630 // in LCSSA form, with all external PHIs that use the IV having one input value, 3631 // coming from the remainder loop. We need those PHIs to also have a correct 3632 // value for the IV when arriving directly from the middle block. 3633 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3634 const InductionDescriptor &II, 3635 Value *CountRoundDown, Value *EndValue, 3636 BasicBlock *MiddleBlock) { 3637 // There are two kinds of external IV usages - those that use the value 3638 // computed in the last iteration (the PHI) and those that use the penultimate 3639 // value (the value that feeds into the phi from the loop latch). 3640 // We allow both, but they, obviously, have different values. 3641 3642 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3643 3644 DenseMap<Value *, Value *> MissingVals; 3645 3646 // An external user of the last iteration's value should see the value that 3647 // the remainder loop uses to initialize its own IV. 3648 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3649 for (User *U : PostInc->users()) { 3650 Instruction *UI = cast<Instruction>(U); 3651 if (!OrigLoop->contains(UI)) { 3652 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3653 MissingVals[UI] = EndValue; 3654 } 3655 } 3656 3657 // An external user of the penultimate value need to see EndValue - Step. 3658 // The simplest way to get this is to recompute it from the constituent SCEVs, 3659 // that is Start + (Step * (CRD - 1)). 3660 for (User *U : OrigPhi->users()) { 3661 auto *UI = cast<Instruction>(U); 3662 if (!OrigLoop->contains(UI)) { 3663 const DataLayout &DL = 3664 OrigLoop->getHeader()->getModule()->getDataLayout(); 3665 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3666 3667 IRBuilder<> B(MiddleBlock->getTerminator()); 3668 3669 // Fast-math-flags propagate from the original induction instruction. 3670 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3671 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3672 3673 Value *CountMinusOne = B.CreateSub( 3674 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3675 Value *CMO = 3676 !II.getStep()->getType()->isIntegerTy() 3677 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3678 II.getStep()->getType()) 3679 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3680 CMO->setName("cast.cmo"); 3681 Value *Escape = 3682 emitTransformedIndex(B, CMO, PSE.getSE(), DL, II, LoopVectorBody); 3683 Escape->setName("ind.escape"); 3684 MissingVals[UI] = Escape; 3685 } 3686 } 3687 3688 for (auto &I : MissingVals) { 3689 PHINode *PHI = cast<PHINode>(I.first); 3690 // One corner case we have to handle is two IVs "chasing" each-other, 3691 // that is %IV2 = phi [...], [ %IV1, %latch ] 3692 // In this case, if IV1 has an external use, we need to avoid adding both 3693 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3694 // don't already have an incoming value for the middle block. 3695 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3696 PHI->addIncoming(I.second, MiddleBlock); 3697 } 3698 } 3699 3700 namespace { 3701 3702 struct CSEDenseMapInfo { 3703 static bool canHandle(const Instruction *I) { 3704 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3705 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3706 } 3707 3708 static inline Instruction *getEmptyKey() { 3709 return DenseMapInfo<Instruction *>::getEmptyKey(); 3710 } 3711 3712 static inline Instruction *getTombstoneKey() { 3713 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3714 } 3715 3716 static unsigned getHashValue(const Instruction *I) { 3717 assert(canHandle(I) && "Unknown instruction!"); 3718 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3719 I->value_op_end())); 3720 } 3721 3722 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3723 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3724 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3725 return LHS == RHS; 3726 return LHS->isIdenticalTo(RHS); 3727 } 3728 }; 3729 3730 } // end anonymous namespace 3731 3732 ///Perform cse of induction variable instructions. 3733 static void cse(BasicBlock *BB) { 3734 // Perform simple cse. 3735 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3736 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3737 if (!CSEDenseMapInfo::canHandle(&In)) 3738 continue; 3739 3740 // Check if we can replace this instruction with any of the 3741 // visited instructions. 3742 if (Instruction *V = CSEMap.lookup(&In)) { 3743 In.replaceAllUsesWith(V); 3744 In.eraseFromParent(); 3745 continue; 3746 } 3747 3748 CSEMap[&In] = &In; 3749 } 3750 } 3751 3752 InstructionCost 3753 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3754 bool &NeedToScalarize) const { 3755 Function *F = CI->getCalledFunction(); 3756 Type *ScalarRetTy = CI->getType(); 3757 SmallVector<Type *, 4> Tys, ScalarTys; 3758 for (auto &ArgOp : CI->args()) 3759 ScalarTys.push_back(ArgOp->getType()); 3760 3761 // Estimate cost of scalarized vector call. The source operands are assumed 3762 // to be vectors, so we need to extract individual elements from there, 3763 // execute VF scalar calls, and then gather the result into the vector return 3764 // value. 3765 InstructionCost ScalarCallCost = 3766 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3767 if (VF.isScalar()) 3768 return ScalarCallCost; 3769 3770 // Compute corresponding vector type for return value and arguments. 3771 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3772 for (Type *ScalarTy : ScalarTys) 3773 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3774 3775 // Compute costs of unpacking argument values for the scalar calls and 3776 // packing the return values to a vector. 3777 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3778 3779 InstructionCost Cost = 3780 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3781 3782 // If we can't emit a vector call for this function, then the currently found 3783 // cost is the cost we need to return. 3784 NeedToScalarize = true; 3785 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3786 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3787 3788 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3789 return Cost; 3790 3791 // If the corresponding vector cost is cheaper, return its cost. 3792 InstructionCost VectorCallCost = 3793 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3794 if (VectorCallCost < Cost) { 3795 NeedToScalarize = false; 3796 Cost = VectorCallCost; 3797 } 3798 return Cost; 3799 } 3800 3801 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3802 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3803 return Elt; 3804 return VectorType::get(Elt, VF); 3805 } 3806 3807 InstructionCost 3808 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3809 ElementCount VF) const { 3810 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3811 assert(ID && "Expected intrinsic call!"); 3812 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3813 FastMathFlags FMF; 3814 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3815 FMF = FPMO->getFastMathFlags(); 3816 3817 SmallVector<const Value *> Arguments(CI->args()); 3818 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3819 SmallVector<Type *> ParamTys; 3820 std::transform(FTy->param_begin(), FTy->param_end(), 3821 std::back_inserter(ParamTys), 3822 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3823 3824 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3825 dyn_cast<IntrinsicInst>(CI)); 3826 return TTI.getIntrinsicInstrCost(CostAttrs, 3827 TargetTransformInfo::TCK_RecipThroughput); 3828 } 3829 3830 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3831 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3832 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3833 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3834 } 3835 3836 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3837 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3838 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3839 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3840 } 3841 3842 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3843 // For every instruction `I` in MinBWs, truncate the operands, create a 3844 // truncated version of `I` and reextend its result. InstCombine runs 3845 // later and will remove any ext/trunc pairs. 3846 SmallPtrSet<Value *, 4> Erased; 3847 for (const auto &KV : Cost->getMinimalBitwidths()) { 3848 // If the value wasn't vectorized, we must maintain the original scalar 3849 // type. The absence of the value from State indicates that it 3850 // wasn't vectorized. 3851 // FIXME: Should not rely on getVPValue at this point. 3852 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3853 if (!State.hasAnyVectorValue(Def)) 3854 continue; 3855 for (unsigned Part = 0; Part < UF; ++Part) { 3856 Value *I = State.get(Def, Part); 3857 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3858 continue; 3859 Type *OriginalTy = I->getType(); 3860 Type *ScalarTruncatedTy = 3861 IntegerType::get(OriginalTy->getContext(), KV.second); 3862 auto *TruncatedTy = VectorType::get( 3863 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3864 if (TruncatedTy == OriginalTy) 3865 continue; 3866 3867 IRBuilder<> B(cast<Instruction>(I)); 3868 auto ShrinkOperand = [&](Value *V) -> Value * { 3869 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3870 if (ZI->getSrcTy() == TruncatedTy) 3871 return ZI->getOperand(0); 3872 return B.CreateZExtOrTrunc(V, TruncatedTy); 3873 }; 3874 3875 // The actual instruction modification depends on the instruction type, 3876 // unfortunately. 3877 Value *NewI = nullptr; 3878 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3879 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3880 ShrinkOperand(BO->getOperand(1))); 3881 3882 // Any wrapping introduced by shrinking this operation shouldn't be 3883 // considered undefined behavior. So, we can't unconditionally copy 3884 // arithmetic wrapping flags to NewI. 3885 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3886 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3887 NewI = 3888 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3889 ShrinkOperand(CI->getOperand(1))); 3890 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3891 NewI = B.CreateSelect(SI->getCondition(), 3892 ShrinkOperand(SI->getTrueValue()), 3893 ShrinkOperand(SI->getFalseValue())); 3894 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3895 switch (CI->getOpcode()) { 3896 default: 3897 llvm_unreachable("Unhandled cast!"); 3898 case Instruction::Trunc: 3899 NewI = ShrinkOperand(CI->getOperand(0)); 3900 break; 3901 case Instruction::SExt: 3902 NewI = B.CreateSExtOrTrunc( 3903 CI->getOperand(0), 3904 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3905 break; 3906 case Instruction::ZExt: 3907 NewI = B.CreateZExtOrTrunc( 3908 CI->getOperand(0), 3909 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3910 break; 3911 } 3912 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3913 auto Elements0 = 3914 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3915 auto *O0 = B.CreateZExtOrTrunc( 3916 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3917 auto Elements1 = 3918 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3919 auto *O1 = B.CreateZExtOrTrunc( 3920 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3921 3922 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3923 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3924 // Don't do anything with the operands, just extend the result. 3925 continue; 3926 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3927 auto Elements = 3928 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3929 auto *O0 = B.CreateZExtOrTrunc( 3930 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3931 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3932 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3933 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3934 auto Elements = 3935 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3936 auto *O0 = B.CreateZExtOrTrunc( 3937 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3938 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3939 } else { 3940 // If we don't know what to do, be conservative and don't do anything. 3941 continue; 3942 } 3943 3944 // Lastly, extend the result. 3945 NewI->takeName(cast<Instruction>(I)); 3946 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3947 I->replaceAllUsesWith(Res); 3948 cast<Instruction>(I)->eraseFromParent(); 3949 Erased.insert(I); 3950 State.reset(Def, Res, Part); 3951 } 3952 } 3953 3954 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3955 for (const auto &KV : Cost->getMinimalBitwidths()) { 3956 // If the value wasn't vectorized, we must maintain the original scalar 3957 // type. The absence of the value from State indicates that it 3958 // wasn't vectorized. 3959 // FIXME: Should not rely on getVPValue at this point. 3960 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3961 if (!State.hasAnyVectorValue(Def)) 3962 continue; 3963 for (unsigned Part = 0; Part < UF; ++Part) { 3964 Value *I = State.get(Def, Part); 3965 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3966 if (Inst && Inst->use_empty()) { 3967 Value *NewI = Inst->getOperand(0); 3968 Inst->eraseFromParent(); 3969 State.reset(Def, NewI, Part); 3970 } 3971 } 3972 } 3973 } 3974 3975 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3976 // Insert truncates and extends for any truncated instructions as hints to 3977 // InstCombine. 3978 if (VF.isVector()) 3979 truncateToMinimalBitwidths(State); 3980 3981 // Fix widened non-induction PHIs by setting up the PHI operands. 3982 if (OrigPHIsToFix.size()) { 3983 assert(EnableVPlanNativePath && 3984 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3985 fixNonInductionPHIs(State); 3986 } 3987 3988 // At this point every instruction in the original loop is widened to a 3989 // vector form. Now we need to fix the recurrences in the loop. These PHI 3990 // nodes are currently empty because we did not want to introduce cycles. 3991 // This is the second stage of vectorizing recurrences. 3992 fixCrossIterationPHIs(State); 3993 3994 // Forget the original basic block. 3995 PSE.getSE()->forgetLoop(OrigLoop); 3996 3997 // If we inserted an edge from the middle block to the unique exit block, 3998 // update uses outside the loop (phis) to account for the newly inserted 3999 // edge. 4000 if (!Cost->requiresScalarEpilogue(VF)) { 4001 // Fix-up external users of the induction variables. 4002 for (auto &Entry : Legal->getInductionVars()) 4003 fixupIVUsers(Entry.first, Entry.second, 4004 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4005 IVEndValues[Entry.first], LoopMiddleBlock); 4006 4007 fixLCSSAPHIs(State); 4008 } 4009 4010 for (Instruction *PI : PredicatedInstructions) 4011 sinkScalarOperands(&*PI); 4012 4013 // Remove redundant induction instructions. 4014 cse(LoopVectorBody); 4015 4016 // Set/update profile weights for the vector and remainder loops as original 4017 // loop iterations are now distributed among them. Note that original loop 4018 // represented by LoopScalarBody becomes remainder loop after vectorization. 4019 // 4020 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4021 // end up getting slightly roughened result but that should be OK since 4022 // profile is not inherently precise anyway. Note also possible bypass of 4023 // vector code caused by legality checks is ignored, assigning all the weight 4024 // to the vector loop, optimistically. 4025 // 4026 // For scalable vectorization we can't know at compile time how many iterations 4027 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4028 // vscale of '1'. 4029 setProfileInfoAfterUnrolling( 4030 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4031 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4032 } 4033 4034 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4035 // In order to support recurrences we need to be able to vectorize Phi nodes. 4036 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4037 // stage #2: We now need to fix the recurrences by adding incoming edges to 4038 // the currently empty PHI nodes. At this point every instruction in the 4039 // original loop is widened to a vector form so we can use them to construct 4040 // the incoming edges. 4041 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4042 for (VPRecipeBase &R : Header->phis()) { 4043 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 4044 fixReduction(ReductionPhi, State); 4045 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 4046 fixFirstOrderRecurrence(FOR, State); 4047 } 4048 } 4049 4050 void InnerLoopVectorizer::fixFirstOrderRecurrence( 4051 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 4052 // This is the second phase of vectorizing first-order recurrences. An 4053 // overview of the transformation is described below. Suppose we have the 4054 // following loop. 4055 // 4056 // for (int i = 0; i < n; ++i) 4057 // b[i] = a[i] - a[i - 1]; 4058 // 4059 // There is a first-order recurrence on "a". For this loop, the shorthand 4060 // scalar IR looks like: 4061 // 4062 // scalar.ph: 4063 // s_init = a[-1] 4064 // br scalar.body 4065 // 4066 // scalar.body: 4067 // i = phi [0, scalar.ph], [i+1, scalar.body] 4068 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4069 // s2 = a[i] 4070 // b[i] = s2 - s1 4071 // br cond, scalar.body, ... 4072 // 4073 // In this example, s1 is a recurrence because it's value depends on the 4074 // previous iteration. In the first phase of vectorization, we created a 4075 // vector phi v1 for s1. We now complete the vectorization and produce the 4076 // shorthand vector IR shown below (for VF = 4, UF = 1). 4077 // 4078 // vector.ph: 4079 // v_init = vector(..., ..., ..., a[-1]) 4080 // br vector.body 4081 // 4082 // vector.body 4083 // i = phi [0, vector.ph], [i+4, vector.body] 4084 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4085 // v2 = a[i, i+1, i+2, i+3]; 4086 // v3 = vector(v1(3), v2(0, 1, 2)) 4087 // b[i, i+1, i+2, i+3] = v2 - v3 4088 // br cond, vector.body, middle.block 4089 // 4090 // middle.block: 4091 // x = v2(3) 4092 // br scalar.ph 4093 // 4094 // scalar.ph: 4095 // s_init = phi [x, middle.block], [a[-1], otherwise] 4096 // br scalar.body 4097 // 4098 // After execution completes the vector loop, we extract the next value of 4099 // the recurrence (x) to use as the initial value in the scalar loop. 4100 4101 // Extract the last vector element in the middle block. This will be the 4102 // initial value for the recurrence when jumping to the scalar loop. 4103 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4104 Value *Incoming = State.get(PreviousDef, UF - 1); 4105 auto *ExtractForScalar = Incoming; 4106 auto *IdxTy = Builder.getInt32Ty(); 4107 if (VF.isVector()) { 4108 auto *One = ConstantInt::get(IdxTy, 1); 4109 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4110 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4111 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4112 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4113 "vector.recur.extract"); 4114 } 4115 // Extract the second last element in the middle block if the 4116 // Phi is used outside the loop. We need to extract the phi itself 4117 // and not the last element (the phi update in the current iteration). This 4118 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4119 // when the scalar loop is not run at all. 4120 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4121 if (VF.isVector()) { 4122 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4123 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4124 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4125 Incoming, Idx, "vector.recur.extract.for.phi"); 4126 } else if (UF > 1) 4127 // When loop is unrolled without vectorizing, initialize 4128 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4129 // of `Incoming`. This is analogous to the vectorized case above: extracting 4130 // the second last element when VF > 1. 4131 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4132 4133 // Fix the initial value of the original recurrence in the scalar loop. 4134 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4135 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4136 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4137 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4138 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4139 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4140 Start->addIncoming(Incoming, BB); 4141 } 4142 4143 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4144 Phi->setName("scalar.recur"); 4145 4146 // Finally, fix users of the recurrence outside the loop. The users will need 4147 // either the last value of the scalar recurrence or the last value of the 4148 // vector recurrence we extracted in the middle block. Since the loop is in 4149 // LCSSA form, we just need to find all the phi nodes for the original scalar 4150 // recurrence in the exit block, and then add an edge for the middle block. 4151 // Note that LCSSA does not imply single entry when the original scalar loop 4152 // had multiple exiting edges (as we always run the last iteration in the 4153 // scalar epilogue); in that case, there is no edge from middle to exit and 4154 // and thus no phis which needed updated. 4155 if (!Cost->requiresScalarEpilogue(VF)) 4156 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4157 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 4158 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4159 } 4160 4161 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4162 VPTransformState &State) { 4163 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4164 // Get it's reduction variable descriptor. 4165 assert(Legal->isReductionVariable(OrigPhi) && 4166 "Unable to find the reduction variable"); 4167 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4168 4169 RecurKind RK = RdxDesc.getRecurrenceKind(); 4170 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4171 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4172 setDebugLocFromInst(ReductionStartValue); 4173 4174 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4175 // This is the vector-clone of the value that leaves the loop. 4176 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4177 4178 // Wrap flags are in general invalid after vectorization, clear them. 4179 clearReductionWrapFlags(RdxDesc, State); 4180 4181 // Before each round, move the insertion point right between 4182 // the PHIs and the values we are going to write. 4183 // This allows us to write both PHINodes and the extractelement 4184 // instructions. 4185 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4186 4187 setDebugLocFromInst(LoopExitInst); 4188 4189 Type *PhiTy = OrigPhi->getType(); 4190 // If tail is folded by masking, the vector value to leave the loop should be 4191 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4192 // instead of the former. For an inloop reduction the reduction will already 4193 // be predicated, and does not need to be handled here. 4194 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4195 for (unsigned Part = 0; Part < UF; ++Part) { 4196 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4197 Value *Sel = nullptr; 4198 for (User *U : VecLoopExitInst->users()) { 4199 if (isa<SelectInst>(U)) { 4200 assert(!Sel && "Reduction exit feeding two selects"); 4201 Sel = U; 4202 } else 4203 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4204 } 4205 assert(Sel && "Reduction exit feeds no select"); 4206 State.reset(LoopExitInstDef, Sel, Part); 4207 4208 // If the target can create a predicated operator for the reduction at no 4209 // extra cost in the loop (for example a predicated vadd), it can be 4210 // cheaper for the select to remain in the loop than be sunk out of it, 4211 // and so use the select value for the phi instead of the old 4212 // LoopExitValue. 4213 if (PreferPredicatedReductionSelect || 4214 TTI->preferPredicatedReductionSelect( 4215 RdxDesc.getOpcode(), PhiTy, 4216 TargetTransformInfo::ReductionFlags())) { 4217 auto *VecRdxPhi = 4218 cast<PHINode>(State.get(PhiR, Part)); 4219 VecRdxPhi->setIncomingValueForBlock( 4220 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4221 } 4222 } 4223 } 4224 4225 // If the vector reduction can be performed in a smaller type, we truncate 4226 // then extend the loop exit value to enable InstCombine to evaluate the 4227 // entire expression in the smaller type. 4228 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4229 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4230 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4231 Builder.SetInsertPoint( 4232 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4233 VectorParts RdxParts(UF); 4234 for (unsigned Part = 0; Part < UF; ++Part) { 4235 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4236 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4237 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4238 : Builder.CreateZExt(Trunc, VecTy); 4239 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 4240 if (U != Trunc) { 4241 U->replaceUsesOfWith(RdxParts[Part], Extnd); 4242 RdxParts[Part] = Extnd; 4243 } 4244 } 4245 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4246 for (unsigned Part = 0; Part < UF; ++Part) { 4247 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4248 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4249 } 4250 } 4251 4252 // Reduce all of the unrolled parts into a single vector. 4253 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4254 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4255 4256 // The middle block terminator has already been assigned a DebugLoc here (the 4257 // OrigLoop's single latch terminator). We want the whole middle block to 4258 // appear to execute on this line because: (a) it is all compiler generated, 4259 // (b) these instructions are always executed after evaluating the latch 4260 // conditional branch, and (c) other passes may add new predecessors which 4261 // terminate on this line. This is the easiest way to ensure we don't 4262 // accidentally cause an extra step back into the loop while debugging. 4263 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4264 if (PhiR->isOrdered()) 4265 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4266 else { 4267 // Floating-point operations should have some FMF to enable the reduction. 4268 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4269 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4270 for (unsigned Part = 1; Part < UF; ++Part) { 4271 Value *RdxPart = State.get(LoopExitInstDef, Part); 4272 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4273 ReducedPartRdx = Builder.CreateBinOp( 4274 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4275 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4276 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4277 ReducedPartRdx, RdxPart); 4278 else 4279 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4280 } 4281 } 4282 4283 // Create the reduction after the loop. Note that inloop reductions create the 4284 // target reduction in the loop using a Reduction recipe. 4285 if (VF.isVector() && !PhiR->isInLoop()) { 4286 ReducedPartRdx = 4287 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4288 // If the reduction can be performed in a smaller type, we need to extend 4289 // the reduction to the wider type before we branch to the original loop. 4290 if (PhiTy != RdxDesc.getRecurrenceType()) 4291 ReducedPartRdx = RdxDesc.isSigned() 4292 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4293 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4294 } 4295 4296 // Create a phi node that merges control-flow from the backedge-taken check 4297 // block and the middle block. 4298 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4299 LoopScalarPreHeader->getTerminator()); 4300 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4301 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4302 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4303 4304 // Now, we need to fix the users of the reduction variable 4305 // inside and outside of the scalar remainder loop. 4306 4307 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4308 // in the exit blocks. See comment on analogous loop in 4309 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4310 if (!Cost->requiresScalarEpilogue(VF)) 4311 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4312 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4313 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4314 4315 // Fix the scalar loop reduction variable with the incoming reduction sum 4316 // from the vector body and from the backedge value. 4317 int IncomingEdgeBlockIdx = 4318 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4319 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4320 // Pick the other block. 4321 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4322 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4323 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4324 } 4325 4326 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4327 VPTransformState &State) { 4328 RecurKind RK = RdxDesc.getRecurrenceKind(); 4329 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4330 return; 4331 4332 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4333 assert(LoopExitInstr && "null loop exit instruction"); 4334 SmallVector<Instruction *, 8> Worklist; 4335 SmallPtrSet<Instruction *, 8> Visited; 4336 Worklist.push_back(LoopExitInstr); 4337 Visited.insert(LoopExitInstr); 4338 4339 while (!Worklist.empty()) { 4340 Instruction *Cur = Worklist.pop_back_val(); 4341 if (isa<OverflowingBinaryOperator>(Cur)) 4342 for (unsigned Part = 0; Part < UF; ++Part) { 4343 // FIXME: Should not rely on getVPValue at this point. 4344 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4345 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4346 } 4347 4348 for (User *U : Cur->users()) { 4349 Instruction *UI = cast<Instruction>(U); 4350 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4351 Visited.insert(UI).second) 4352 Worklist.push_back(UI); 4353 } 4354 } 4355 } 4356 4357 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4358 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4359 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4360 // Some phis were already hand updated by the reduction and recurrence 4361 // code above, leave them alone. 4362 continue; 4363 4364 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4365 // Non-instruction incoming values will have only one value. 4366 4367 VPLane Lane = VPLane::getFirstLane(); 4368 if (isa<Instruction>(IncomingValue) && 4369 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4370 VF)) 4371 Lane = VPLane::getLastLaneForVF(VF); 4372 4373 // Can be a loop invariant incoming value or the last scalar value to be 4374 // extracted from the vectorized loop. 4375 // FIXME: Should not rely on getVPValue at this point. 4376 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4377 Value *lastIncomingValue = 4378 OrigLoop->isLoopInvariant(IncomingValue) 4379 ? IncomingValue 4380 : State.get(State.Plan->getVPValue(IncomingValue, true), 4381 VPIteration(UF - 1, Lane)); 4382 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4383 } 4384 } 4385 4386 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4387 // The basic block and loop containing the predicated instruction. 4388 auto *PredBB = PredInst->getParent(); 4389 auto *VectorLoop = LI->getLoopFor(PredBB); 4390 4391 // Initialize a worklist with the operands of the predicated instruction. 4392 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4393 4394 // Holds instructions that we need to analyze again. An instruction may be 4395 // reanalyzed if we don't yet know if we can sink it or not. 4396 SmallVector<Instruction *, 8> InstsToReanalyze; 4397 4398 // Returns true if a given use occurs in the predicated block. Phi nodes use 4399 // their operands in their corresponding predecessor blocks. 4400 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4401 auto *I = cast<Instruction>(U.getUser()); 4402 BasicBlock *BB = I->getParent(); 4403 if (auto *Phi = dyn_cast<PHINode>(I)) 4404 BB = Phi->getIncomingBlock( 4405 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4406 return BB == PredBB; 4407 }; 4408 4409 // Iteratively sink the scalarized operands of the predicated instruction 4410 // into the block we created for it. When an instruction is sunk, it's 4411 // operands are then added to the worklist. The algorithm ends after one pass 4412 // through the worklist doesn't sink a single instruction. 4413 bool Changed; 4414 do { 4415 // Add the instructions that need to be reanalyzed to the worklist, and 4416 // reset the changed indicator. 4417 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4418 InstsToReanalyze.clear(); 4419 Changed = false; 4420 4421 while (!Worklist.empty()) { 4422 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4423 4424 // We can't sink an instruction if it is a phi node, is not in the loop, 4425 // or may have side effects. 4426 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4427 I->mayHaveSideEffects()) 4428 continue; 4429 4430 // If the instruction is already in PredBB, check if we can sink its 4431 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4432 // sinking the scalar instruction I, hence it appears in PredBB; but it 4433 // may have failed to sink I's operands (recursively), which we try 4434 // (again) here. 4435 if (I->getParent() == PredBB) { 4436 Worklist.insert(I->op_begin(), I->op_end()); 4437 continue; 4438 } 4439 4440 // It's legal to sink the instruction if all its uses occur in the 4441 // predicated block. Otherwise, there's nothing to do yet, and we may 4442 // need to reanalyze the instruction. 4443 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4444 InstsToReanalyze.push_back(I); 4445 continue; 4446 } 4447 4448 // Move the instruction to the beginning of the predicated block, and add 4449 // it's operands to the worklist. 4450 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4451 Worklist.insert(I->op_begin(), I->op_end()); 4452 4453 // The sinking may have enabled other instructions to be sunk, so we will 4454 // need to iterate. 4455 Changed = true; 4456 } 4457 } while (Changed); 4458 } 4459 4460 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4461 for (PHINode *OrigPhi : OrigPHIsToFix) { 4462 VPWidenPHIRecipe *VPPhi = 4463 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4464 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4465 // Make sure the builder has a valid insert point. 4466 Builder.SetInsertPoint(NewPhi); 4467 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4468 VPValue *Inc = VPPhi->getIncomingValue(i); 4469 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4470 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4471 } 4472 } 4473 } 4474 4475 bool InnerLoopVectorizer::useOrderedReductions( 4476 const RecurrenceDescriptor &RdxDesc) { 4477 return Cost->useOrderedReductions(RdxDesc); 4478 } 4479 4480 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4481 VPWidenPHIRecipe *PhiR, 4482 VPTransformState &State) { 4483 PHINode *P = cast<PHINode>(PN); 4484 if (EnableVPlanNativePath) { 4485 // Currently we enter here in the VPlan-native path for non-induction 4486 // PHIs where all control flow is uniform. We simply widen these PHIs. 4487 // Create a vector phi with no operands - the vector phi operands will be 4488 // set at the end of vector code generation. 4489 Type *VecTy = (State.VF.isScalar()) 4490 ? PN->getType() 4491 : VectorType::get(PN->getType(), State.VF); 4492 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4493 State.set(PhiR, VecPhi, 0); 4494 OrigPHIsToFix.push_back(P); 4495 4496 return; 4497 } 4498 4499 assert(PN->getParent() == OrigLoop->getHeader() && 4500 "Non-header phis should have been handled elsewhere"); 4501 4502 // In order to support recurrences we need to be able to vectorize Phi nodes. 4503 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4504 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4505 // this value when we vectorize all of the instructions that use the PHI. 4506 4507 assert(!Legal->isReductionVariable(P) && 4508 "reductions should be handled elsewhere"); 4509 4510 setDebugLocFromInst(P); 4511 4512 // This PHINode must be an induction variable. 4513 // Make sure that we know about it. 4514 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4515 4516 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4517 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4518 4519 auto *IVR = PhiR->getParent()->getPlan()->getCanonicalIV(); 4520 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 4521 4522 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4523 // which can be found from the original scalar operations. 4524 switch (II.getKind()) { 4525 case InductionDescriptor::IK_NoInduction: 4526 llvm_unreachable("Unknown induction"); 4527 case InductionDescriptor::IK_IntInduction: 4528 case InductionDescriptor::IK_FpInduction: 4529 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4530 case InductionDescriptor::IK_PtrInduction: { 4531 // Handle the pointer induction variable case. 4532 assert(P->getType()->isPointerTy() && "Unexpected type."); 4533 4534 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4535 // This is the normalized GEP that starts counting at zero. 4536 Value *PtrInd = 4537 Builder.CreateSExtOrTrunc(CanonicalIV, II.getStep()->getType()); 4538 // Determine the number of scalars we need to generate for each unroll 4539 // iteration. If the instruction is uniform, we only need to generate the 4540 // first lane. Otherwise, we generate all VF values. 4541 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4542 assert((IsUniform || !State.VF.isScalable()) && 4543 "Cannot scalarize a scalable VF"); 4544 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 4545 4546 for (unsigned Part = 0; Part < UF; ++Part) { 4547 Value *PartStart = 4548 createStepForVF(Builder, PtrInd->getType(), VF, Part); 4549 4550 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4551 Value *Idx = Builder.CreateAdd( 4552 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4553 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4554 Value *SclrGep = emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), 4555 DL, II, State.CFG.PrevBB); 4556 SclrGep->setName("next.gep"); 4557 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4558 } 4559 } 4560 return; 4561 } 4562 assert(isa<SCEVConstant>(II.getStep()) && 4563 "Induction step not a SCEV constant!"); 4564 Type *PhiType = II.getStep()->getType(); 4565 4566 // Build a pointer phi 4567 Value *ScalarStartValue = PhiR->getStartValue()->getLiveInIRValue(); 4568 Type *ScStValueType = ScalarStartValue->getType(); 4569 PHINode *NewPointerPhi = 4570 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 4571 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4572 4573 // A pointer induction, performed by using a gep 4574 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4575 Instruction *InductionLoc = LoopLatch->getTerminator(); 4576 const SCEV *ScalarStep = II.getStep(); 4577 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4578 Value *ScalarStepValue = 4579 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4580 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4581 Value *NumUnrolledElems = 4582 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4583 Value *InductionGEP = GetElementPtrInst::Create( 4584 II.getElementType(), NewPointerPhi, 4585 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4586 InductionLoc); 4587 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4588 4589 // Create UF many actual address geps that use the pointer 4590 // phi as base and a vectorized version of the step value 4591 // (<step*0, ..., step*N>) as offset. 4592 for (unsigned Part = 0; Part < State.UF; ++Part) { 4593 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4594 Value *StartOffsetScalar = 4595 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4596 Value *StartOffset = 4597 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4598 // Create a vector of consecutive numbers from zero to VF. 4599 StartOffset = 4600 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4601 4602 Value *GEP = Builder.CreateGEP( 4603 II.getElementType(), NewPointerPhi, 4604 Builder.CreateMul( 4605 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4606 "vector.gep")); 4607 State.set(PhiR, GEP, Part); 4608 } 4609 } 4610 } 4611 } 4612 4613 /// A helper function for checking whether an integer division-related 4614 /// instruction may divide by zero (in which case it must be predicated if 4615 /// executed conditionally in the scalar code). 4616 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4617 /// Non-zero divisors that are non compile-time constants will not be 4618 /// converted into multiplication, so we will still end up scalarizing 4619 /// the division, but can do so w/o predication. 4620 static bool mayDivideByZero(Instruction &I) { 4621 assert((I.getOpcode() == Instruction::UDiv || 4622 I.getOpcode() == Instruction::SDiv || 4623 I.getOpcode() == Instruction::URem || 4624 I.getOpcode() == Instruction::SRem) && 4625 "Unexpected instruction"); 4626 Value *Divisor = I.getOperand(1); 4627 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4628 return !CInt || CInt->isZero(); 4629 } 4630 4631 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4632 VPUser &ArgOperands, 4633 VPTransformState &State) { 4634 assert(!isa<DbgInfoIntrinsic>(I) && 4635 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4636 setDebugLocFromInst(&I); 4637 4638 Module *M = I.getParent()->getParent()->getParent(); 4639 auto *CI = cast<CallInst>(&I); 4640 4641 SmallVector<Type *, 4> Tys; 4642 for (Value *ArgOperand : CI->args()) 4643 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4644 4645 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4646 4647 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4648 // version of the instruction. 4649 // Is it beneficial to perform intrinsic call compared to lib call? 4650 bool NeedToScalarize = false; 4651 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4652 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4653 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4654 assert((UseVectorIntrinsic || !NeedToScalarize) && 4655 "Instruction should be scalarized elsewhere."); 4656 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4657 "Either the intrinsic cost or vector call cost must be valid"); 4658 4659 for (unsigned Part = 0; Part < UF; ++Part) { 4660 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4661 SmallVector<Value *, 4> Args; 4662 for (auto &I : enumerate(ArgOperands.operands())) { 4663 // Some intrinsics have a scalar argument - don't replace it with a 4664 // vector. 4665 Value *Arg; 4666 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4667 Arg = State.get(I.value(), Part); 4668 else { 4669 Arg = State.get(I.value(), VPIteration(0, 0)); 4670 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4671 TysForDecl.push_back(Arg->getType()); 4672 } 4673 Args.push_back(Arg); 4674 } 4675 4676 Function *VectorF; 4677 if (UseVectorIntrinsic) { 4678 // Use vector version of the intrinsic. 4679 if (VF.isVector()) 4680 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4681 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4682 assert(VectorF && "Can't retrieve vector intrinsic."); 4683 } else { 4684 // Use vector version of the function call. 4685 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4686 #ifndef NDEBUG 4687 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4688 "Can't create vector function."); 4689 #endif 4690 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4691 } 4692 SmallVector<OperandBundleDef, 1> OpBundles; 4693 CI->getOperandBundlesAsDefs(OpBundles); 4694 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4695 4696 if (isa<FPMathOperator>(V)) 4697 V->copyFastMathFlags(CI); 4698 4699 State.set(Def, V, Part); 4700 addMetadata(V, &I); 4701 } 4702 } 4703 4704 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4705 // We should not collect Scalars more than once per VF. Right now, this 4706 // function is called from collectUniformsAndScalars(), which already does 4707 // this check. Collecting Scalars for VF=1 does not make any sense. 4708 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4709 "This function should not be visited twice for the same VF"); 4710 4711 SmallSetVector<Instruction *, 8> Worklist; 4712 4713 // These sets are used to seed the analysis with pointers used by memory 4714 // accesses that will remain scalar. 4715 SmallSetVector<Instruction *, 8> ScalarPtrs; 4716 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4717 auto *Latch = TheLoop->getLoopLatch(); 4718 4719 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4720 // The pointer operands of loads and stores will be scalar as long as the 4721 // memory access is not a gather or scatter operation. The value operand of a 4722 // store will remain scalar if the store is scalarized. 4723 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4724 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4725 assert(WideningDecision != CM_Unknown && 4726 "Widening decision should be ready at this moment"); 4727 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4728 if (Ptr == Store->getValueOperand()) 4729 return WideningDecision == CM_Scalarize; 4730 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4731 "Ptr is neither a value or pointer operand"); 4732 return WideningDecision != CM_GatherScatter; 4733 }; 4734 4735 // A helper that returns true if the given value is a bitcast or 4736 // getelementptr instruction contained in the loop. 4737 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4738 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4739 isa<GetElementPtrInst>(V)) && 4740 !TheLoop->isLoopInvariant(V); 4741 }; 4742 4743 // A helper that evaluates a memory access's use of a pointer. If the use will 4744 // be a scalar use and the pointer is only used by memory accesses, we place 4745 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4746 // PossibleNonScalarPtrs. 4747 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4748 // We only care about bitcast and getelementptr instructions contained in 4749 // the loop. 4750 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4751 return; 4752 4753 // If the pointer has already been identified as scalar (e.g., if it was 4754 // also identified as uniform), there's nothing to do. 4755 auto *I = cast<Instruction>(Ptr); 4756 if (Worklist.count(I)) 4757 return; 4758 4759 // If the use of the pointer will be a scalar use, and all users of the 4760 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4761 // place the pointer in PossibleNonScalarPtrs. 4762 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4763 return isa<LoadInst>(U) || isa<StoreInst>(U); 4764 })) 4765 ScalarPtrs.insert(I); 4766 else 4767 PossibleNonScalarPtrs.insert(I); 4768 }; 4769 4770 // We seed the scalars analysis with three classes of instructions: (1) 4771 // instructions marked uniform-after-vectorization and (2) bitcast, 4772 // getelementptr and (pointer) phi instructions used by memory accesses 4773 // requiring a scalar use. 4774 // 4775 // (1) Add to the worklist all instructions that have been identified as 4776 // uniform-after-vectorization. 4777 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4778 4779 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4780 // memory accesses requiring a scalar use. The pointer operands of loads and 4781 // stores will be scalar as long as the memory accesses is not a gather or 4782 // scatter operation. The value operand of a store will remain scalar if the 4783 // store is scalarized. 4784 for (auto *BB : TheLoop->blocks()) 4785 for (auto &I : *BB) { 4786 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4787 evaluatePtrUse(Load, Load->getPointerOperand()); 4788 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4789 evaluatePtrUse(Store, Store->getPointerOperand()); 4790 evaluatePtrUse(Store, Store->getValueOperand()); 4791 } 4792 } 4793 for (auto *I : ScalarPtrs) 4794 if (!PossibleNonScalarPtrs.count(I)) { 4795 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4796 Worklist.insert(I); 4797 } 4798 4799 // Insert the forced scalars. 4800 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4801 // induction variable when the PHI user is scalarized. 4802 auto ForcedScalar = ForcedScalars.find(VF); 4803 if (ForcedScalar != ForcedScalars.end()) 4804 for (auto *I : ForcedScalar->second) 4805 Worklist.insert(I); 4806 4807 // Expand the worklist by looking through any bitcasts and getelementptr 4808 // instructions we've already identified as scalar. This is similar to the 4809 // expansion step in collectLoopUniforms(); however, here we're only 4810 // expanding to include additional bitcasts and getelementptr instructions. 4811 unsigned Idx = 0; 4812 while (Idx != Worklist.size()) { 4813 Instruction *Dst = Worklist[Idx++]; 4814 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4815 continue; 4816 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4817 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4818 auto *J = cast<Instruction>(U); 4819 return !TheLoop->contains(J) || Worklist.count(J) || 4820 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4821 isScalarUse(J, Src)); 4822 })) { 4823 Worklist.insert(Src); 4824 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4825 } 4826 } 4827 4828 // An induction variable will remain scalar if all users of the induction 4829 // variable and induction variable update remain scalar. 4830 for (auto &Induction : Legal->getInductionVars()) { 4831 auto *Ind = Induction.first; 4832 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4833 4834 // If tail-folding is applied, the primary induction variable will be used 4835 // to feed a vector compare. 4836 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4837 continue; 4838 4839 // Returns true if \p Indvar is a pointer induction that is used directly by 4840 // load/store instruction \p I. 4841 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4842 Instruction *I) { 4843 return Induction.second.getKind() == 4844 InductionDescriptor::IK_PtrInduction && 4845 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4846 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4847 }; 4848 4849 // Determine if all users of the induction variable are scalar after 4850 // vectorization. 4851 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4852 auto *I = cast<Instruction>(U); 4853 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4854 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4855 }); 4856 if (!ScalarInd) 4857 continue; 4858 4859 // Determine if all users of the induction variable update instruction are 4860 // scalar after vectorization. 4861 auto ScalarIndUpdate = 4862 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4863 auto *I = cast<Instruction>(U); 4864 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4865 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4866 }); 4867 if (!ScalarIndUpdate) 4868 continue; 4869 4870 // The induction variable and its update instruction will remain scalar. 4871 Worklist.insert(Ind); 4872 Worklist.insert(IndUpdate); 4873 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4874 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4875 << "\n"); 4876 } 4877 4878 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4879 } 4880 4881 bool LoopVectorizationCostModel::isScalarWithPredication( 4882 Instruction *I, ElementCount VF) const { 4883 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4884 return false; 4885 switch(I->getOpcode()) { 4886 default: 4887 break; 4888 case Instruction::Load: 4889 case Instruction::Store: { 4890 if (!Legal->isMaskRequired(I)) 4891 return false; 4892 auto *Ptr = getLoadStorePointerOperand(I); 4893 auto *Ty = getLoadStoreType(I); 4894 Type *VTy = Ty; 4895 if (VF.isVector()) 4896 VTy = VectorType::get(Ty, VF); 4897 const Align Alignment = getLoadStoreAlignment(I); 4898 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4899 TTI.isLegalMaskedGather(VTy, Alignment)) 4900 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4901 TTI.isLegalMaskedScatter(VTy, Alignment)); 4902 } 4903 case Instruction::UDiv: 4904 case Instruction::SDiv: 4905 case Instruction::SRem: 4906 case Instruction::URem: 4907 return mayDivideByZero(*I); 4908 } 4909 return false; 4910 } 4911 4912 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4913 Instruction *I, ElementCount VF) { 4914 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4915 assert(getWideningDecision(I, VF) == CM_Unknown && 4916 "Decision should not be set yet."); 4917 auto *Group = getInterleavedAccessGroup(I); 4918 assert(Group && "Must have a group."); 4919 4920 // If the instruction's allocated size doesn't equal it's type size, it 4921 // requires padding and will be scalarized. 4922 auto &DL = I->getModule()->getDataLayout(); 4923 auto *ScalarTy = getLoadStoreType(I); 4924 if (hasIrregularType(ScalarTy, DL)) 4925 return false; 4926 4927 // Check if masking is required. 4928 // A Group may need masking for one of two reasons: it resides in a block that 4929 // needs predication, or it was decided to use masking to deal with gaps 4930 // (either a gap at the end of a load-access that may result in a speculative 4931 // load, or any gaps in a store-access). 4932 bool PredicatedAccessRequiresMasking = 4933 blockNeedsPredicationForAnyReason(I->getParent()) && 4934 Legal->isMaskRequired(I); 4935 bool LoadAccessWithGapsRequiresEpilogMasking = 4936 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4937 !isScalarEpilogueAllowed(); 4938 bool StoreAccessWithGapsRequiresMasking = 4939 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4940 if (!PredicatedAccessRequiresMasking && 4941 !LoadAccessWithGapsRequiresEpilogMasking && 4942 !StoreAccessWithGapsRequiresMasking) 4943 return true; 4944 4945 // If masked interleaving is required, we expect that the user/target had 4946 // enabled it, because otherwise it either wouldn't have been created or 4947 // it should have been invalidated by the CostModel. 4948 assert(useMaskedInterleavedAccesses(TTI) && 4949 "Masked interleave-groups for predicated accesses are not enabled."); 4950 4951 if (Group->isReverse()) 4952 return false; 4953 4954 auto *Ty = getLoadStoreType(I); 4955 const Align Alignment = getLoadStoreAlignment(I); 4956 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4957 : TTI.isLegalMaskedStore(Ty, Alignment); 4958 } 4959 4960 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4961 Instruction *I, ElementCount VF) { 4962 // Get and ensure we have a valid memory instruction. 4963 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4964 4965 auto *Ptr = getLoadStorePointerOperand(I); 4966 auto *ScalarTy = getLoadStoreType(I); 4967 4968 // In order to be widened, the pointer should be consecutive, first of all. 4969 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4970 return false; 4971 4972 // If the instruction is a store located in a predicated block, it will be 4973 // scalarized. 4974 if (isScalarWithPredication(I, VF)) 4975 return false; 4976 4977 // If the instruction's allocated size doesn't equal it's type size, it 4978 // requires padding and will be scalarized. 4979 auto &DL = I->getModule()->getDataLayout(); 4980 if (hasIrregularType(ScalarTy, DL)) 4981 return false; 4982 4983 return true; 4984 } 4985 4986 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4987 // We should not collect Uniforms more than once per VF. Right now, 4988 // this function is called from collectUniformsAndScalars(), which 4989 // already does this check. Collecting Uniforms for VF=1 does not make any 4990 // sense. 4991 4992 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4993 "This function should not be visited twice for the same VF"); 4994 4995 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4996 // not analyze again. Uniforms.count(VF) will return 1. 4997 Uniforms[VF].clear(); 4998 4999 // We now know that the loop is vectorizable! 5000 // Collect instructions inside the loop that will remain uniform after 5001 // vectorization. 5002 5003 // Global values, params and instructions outside of current loop are out of 5004 // scope. 5005 auto isOutOfScope = [&](Value *V) -> bool { 5006 Instruction *I = dyn_cast<Instruction>(V); 5007 return (!I || !TheLoop->contains(I)); 5008 }; 5009 5010 // Worklist containing uniform instructions demanding lane 0. 5011 SetVector<Instruction *> Worklist; 5012 BasicBlock *Latch = TheLoop->getLoopLatch(); 5013 5014 // Add uniform instructions demanding lane 0 to the worklist. Instructions 5015 // that are scalar with predication must not be considered uniform after 5016 // vectorization, because that would create an erroneous replicating region 5017 // where only a single instance out of VF should be formed. 5018 // TODO: optimize such seldom cases if found important, see PR40816. 5019 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5020 if (isOutOfScope(I)) { 5021 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5022 << *I << "\n"); 5023 return; 5024 } 5025 if (isScalarWithPredication(I, VF)) { 5026 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5027 << *I << "\n"); 5028 return; 5029 } 5030 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5031 Worklist.insert(I); 5032 }; 5033 5034 // Start with the conditional branch. If the branch condition is an 5035 // instruction contained in the loop that is only used by the branch, it is 5036 // uniform. 5037 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5038 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5039 addToWorklistIfAllowed(Cmp); 5040 5041 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5042 InstWidening WideningDecision = getWideningDecision(I, VF); 5043 assert(WideningDecision != CM_Unknown && 5044 "Widening decision should be ready at this moment"); 5045 5046 // A uniform memory op is itself uniform. We exclude uniform stores 5047 // here as they demand the last lane, not the first one. 5048 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5049 assert(WideningDecision == CM_Scalarize); 5050 return true; 5051 } 5052 5053 return (WideningDecision == CM_Widen || 5054 WideningDecision == CM_Widen_Reverse || 5055 WideningDecision == CM_Interleave); 5056 }; 5057 5058 5059 // Returns true if Ptr is the pointer operand of a memory access instruction 5060 // I, and I is known to not require scalarization. 5061 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5062 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5063 }; 5064 5065 // Holds a list of values which are known to have at least one uniform use. 5066 // Note that there may be other uses which aren't uniform. A "uniform use" 5067 // here is something which only demands lane 0 of the unrolled iterations; 5068 // it does not imply that all lanes produce the same value (e.g. this is not 5069 // the usual meaning of uniform) 5070 SetVector<Value *> HasUniformUse; 5071 5072 // Scan the loop for instructions which are either a) known to have only 5073 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5074 for (auto *BB : TheLoop->blocks()) 5075 for (auto &I : *BB) { 5076 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5077 switch (II->getIntrinsicID()) { 5078 case Intrinsic::sideeffect: 5079 case Intrinsic::experimental_noalias_scope_decl: 5080 case Intrinsic::assume: 5081 case Intrinsic::lifetime_start: 5082 case Intrinsic::lifetime_end: 5083 if (TheLoop->hasLoopInvariantOperands(&I)) 5084 addToWorklistIfAllowed(&I); 5085 break; 5086 default: 5087 break; 5088 } 5089 } 5090 5091 // ExtractValue instructions must be uniform, because the operands are 5092 // known to be loop-invariant. 5093 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5094 assert(isOutOfScope(EVI->getAggregateOperand()) && 5095 "Expected aggregate value to be loop invariant"); 5096 addToWorklistIfAllowed(EVI); 5097 continue; 5098 } 5099 5100 // If there's no pointer operand, there's nothing to do. 5101 auto *Ptr = getLoadStorePointerOperand(&I); 5102 if (!Ptr) 5103 continue; 5104 5105 // A uniform memory op is itself uniform. We exclude uniform stores 5106 // here as they demand the last lane, not the first one. 5107 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5108 addToWorklistIfAllowed(&I); 5109 5110 if (isUniformDecision(&I, VF)) { 5111 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5112 HasUniformUse.insert(Ptr); 5113 } 5114 } 5115 5116 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5117 // demanding) users. Since loops are assumed to be in LCSSA form, this 5118 // disallows uses outside the loop as well. 5119 for (auto *V : HasUniformUse) { 5120 if (isOutOfScope(V)) 5121 continue; 5122 auto *I = cast<Instruction>(V); 5123 auto UsersAreMemAccesses = 5124 llvm::all_of(I->users(), [&](User *U) -> bool { 5125 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5126 }); 5127 if (UsersAreMemAccesses) 5128 addToWorklistIfAllowed(I); 5129 } 5130 5131 // Expand Worklist in topological order: whenever a new instruction 5132 // is added , its users should be already inside Worklist. It ensures 5133 // a uniform instruction will only be used by uniform instructions. 5134 unsigned idx = 0; 5135 while (idx != Worklist.size()) { 5136 Instruction *I = Worklist[idx++]; 5137 5138 for (auto OV : I->operand_values()) { 5139 // isOutOfScope operands cannot be uniform instructions. 5140 if (isOutOfScope(OV)) 5141 continue; 5142 // First order recurrence Phi's should typically be considered 5143 // non-uniform. 5144 auto *OP = dyn_cast<PHINode>(OV); 5145 if (OP && Legal->isFirstOrderRecurrence(OP)) 5146 continue; 5147 // If all the users of the operand are uniform, then add the 5148 // operand into the uniform worklist. 5149 auto *OI = cast<Instruction>(OV); 5150 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5151 auto *J = cast<Instruction>(U); 5152 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5153 })) 5154 addToWorklistIfAllowed(OI); 5155 } 5156 } 5157 5158 // For an instruction to be added into Worklist above, all its users inside 5159 // the loop should also be in Worklist. However, this condition cannot be 5160 // true for phi nodes that form a cyclic dependence. We must process phi 5161 // nodes separately. An induction variable will remain uniform if all users 5162 // of the induction variable and induction variable update remain uniform. 5163 // The code below handles both pointer and non-pointer induction variables. 5164 for (auto &Induction : Legal->getInductionVars()) { 5165 auto *Ind = Induction.first; 5166 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5167 5168 // Determine if all users of the induction variable are uniform after 5169 // vectorization. 5170 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5171 auto *I = cast<Instruction>(U); 5172 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5173 isVectorizedMemAccessUse(I, Ind); 5174 }); 5175 if (!UniformInd) 5176 continue; 5177 5178 // Determine if all users of the induction variable update instruction are 5179 // uniform after vectorization. 5180 auto UniformIndUpdate = 5181 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5182 auto *I = cast<Instruction>(U); 5183 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5184 isVectorizedMemAccessUse(I, IndUpdate); 5185 }); 5186 if (!UniformIndUpdate) 5187 continue; 5188 5189 // The induction variable and its update instruction will remain uniform. 5190 addToWorklistIfAllowed(Ind); 5191 addToWorklistIfAllowed(IndUpdate); 5192 } 5193 5194 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5195 } 5196 5197 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5198 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5199 5200 if (Legal->getRuntimePointerChecking()->Need) { 5201 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5202 "runtime pointer checks needed. Enable vectorization of this " 5203 "loop with '#pragma clang loop vectorize(enable)' when " 5204 "compiling with -Os/-Oz", 5205 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5206 return true; 5207 } 5208 5209 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5210 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5211 "runtime SCEV checks needed. Enable vectorization of this " 5212 "loop with '#pragma clang loop vectorize(enable)' when " 5213 "compiling with -Os/-Oz", 5214 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5215 return true; 5216 } 5217 5218 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5219 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5220 reportVectorizationFailure("Runtime stride check for small trip count", 5221 "runtime stride == 1 checks needed. Enable vectorization of " 5222 "this loop without such check by compiling with -Os/-Oz", 5223 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5224 return true; 5225 } 5226 5227 return false; 5228 } 5229 5230 ElementCount 5231 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5232 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5233 return ElementCount::getScalable(0); 5234 5235 if (Hints->isScalableVectorizationDisabled()) { 5236 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5237 "ScalableVectorizationDisabled", ORE, TheLoop); 5238 return ElementCount::getScalable(0); 5239 } 5240 5241 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5242 5243 auto MaxScalableVF = ElementCount::getScalable( 5244 std::numeric_limits<ElementCount::ScalarTy>::max()); 5245 5246 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5247 // FIXME: While for scalable vectors this is currently sufficient, this should 5248 // be replaced by a more detailed mechanism that filters out specific VFs, 5249 // instead of invalidating vectorization for a whole set of VFs based on the 5250 // MaxVF. 5251 5252 // Disable scalable vectorization if the loop contains unsupported reductions. 5253 if (!canVectorizeReductions(MaxScalableVF)) { 5254 reportVectorizationInfo( 5255 "Scalable vectorization not supported for the reduction " 5256 "operations found in this loop.", 5257 "ScalableVFUnfeasible", ORE, TheLoop); 5258 return ElementCount::getScalable(0); 5259 } 5260 5261 // Disable scalable vectorization if the loop contains any instructions 5262 // with element types not supported for scalable vectors. 5263 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5264 return !Ty->isVoidTy() && 5265 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5266 })) { 5267 reportVectorizationInfo("Scalable vectorization is not supported " 5268 "for all element types found in this loop.", 5269 "ScalableVFUnfeasible", ORE, TheLoop); 5270 return ElementCount::getScalable(0); 5271 } 5272 5273 if (Legal->isSafeForAnyVectorWidth()) 5274 return MaxScalableVF; 5275 5276 // Limit MaxScalableVF by the maximum safe dependence distance. 5277 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5278 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 5279 MaxVScale = 5280 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 5281 MaxScalableVF = ElementCount::getScalable( 5282 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5283 if (!MaxScalableVF) 5284 reportVectorizationInfo( 5285 "Max legal vector width too small, scalable vectorization " 5286 "unfeasible.", 5287 "ScalableVFUnfeasible", ORE, TheLoop); 5288 5289 return MaxScalableVF; 5290 } 5291 5292 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 5293 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 5294 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5295 unsigned SmallestType, WidestType; 5296 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5297 5298 // Get the maximum safe dependence distance in bits computed by LAA. 5299 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5300 // the memory accesses that is most restrictive (involved in the smallest 5301 // dependence distance). 5302 unsigned MaxSafeElements = 5303 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5304 5305 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5306 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5307 5308 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5309 << ".\n"); 5310 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5311 << ".\n"); 5312 5313 // First analyze the UserVF, fall back if the UserVF should be ignored. 5314 if (UserVF) { 5315 auto MaxSafeUserVF = 5316 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5317 5318 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5319 // If `VF=vscale x N` is safe, then so is `VF=N` 5320 if (UserVF.isScalable()) 5321 return FixedScalableVFPair( 5322 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5323 else 5324 return UserVF; 5325 } 5326 5327 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5328 5329 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5330 // is better to ignore the hint and let the compiler choose a suitable VF. 5331 if (!UserVF.isScalable()) { 5332 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5333 << " is unsafe, clamping to max safe VF=" 5334 << MaxSafeFixedVF << ".\n"); 5335 ORE->emit([&]() { 5336 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5337 TheLoop->getStartLoc(), 5338 TheLoop->getHeader()) 5339 << "User-specified vectorization factor " 5340 << ore::NV("UserVectorizationFactor", UserVF) 5341 << " is unsafe, clamping to maximum safe vectorization factor " 5342 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5343 }); 5344 return MaxSafeFixedVF; 5345 } 5346 5347 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5348 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5349 << " is ignored because scalable vectors are not " 5350 "available.\n"); 5351 ORE->emit([&]() { 5352 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5353 TheLoop->getStartLoc(), 5354 TheLoop->getHeader()) 5355 << "User-specified vectorization factor " 5356 << ore::NV("UserVectorizationFactor", UserVF) 5357 << " is ignored because the target does not support scalable " 5358 "vectors. The compiler will pick a more suitable value."; 5359 }); 5360 } else { 5361 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5362 << " is unsafe. Ignoring scalable UserVF.\n"); 5363 ORE->emit([&]() { 5364 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5365 TheLoop->getStartLoc(), 5366 TheLoop->getHeader()) 5367 << "User-specified vectorization factor " 5368 << ore::NV("UserVectorizationFactor", UserVF) 5369 << " is unsafe. Ignoring the hint to let the compiler pick a " 5370 "more suitable value."; 5371 }); 5372 } 5373 } 5374 5375 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5376 << " / " << WidestType << " bits.\n"); 5377 5378 FixedScalableVFPair Result(ElementCount::getFixed(1), 5379 ElementCount::getScalable(0)); 5380 if (auto MaxVF = 5381 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5382 MaxSafeFixedVF, FoldTailByMasking)) 5383 Result.FixedVF = MaxVF; 5384 5385 if (auto MaxVF = 5386 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5387 MaxSafeScalableVF, FoldTailByMasking)) 5388 if (MaxVF.isScalable()) { 5389 Result.ScalableVF = MaxVF; 5390 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5391 << "\n"); 5392 } 5393 5394 return Result; 5395 } 5396 5397 FixedScalableVFPair 5398 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5399 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5400 // TODO: It may by useful to do since it's still likely to be dynamically 5401 // uniform if the target can skip. 5402 reportVectorizationFailure( 5403 "Not inserting runtime ptr check for divergent target", 5404 "runtime pointer checks needed. Not enabled for divergent target", 5405 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5406 return FixedScalableVFPair::getNone(); 5407 } 5408 5409 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5410 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5411 if (TC == 1) { 5412 reportVectorizationFailure("Single iteration (non) loop", 5413 "loop trip count is one, irrelevant for vectorization", 5414 "SingleIterationLoop", ORE, TheLoop); 5415 return FixedScalableVFPair::getNone(); 5416 } 5417 5418 switch (ScalarEpilogueStatus) { 5419 case CM_ScalarEpilogueAllowed: 5420 return computeFeasibleMaxVF(TC, UserVF, false); 5421 case CM_ScalarEpilogueNotAllowedUsePredicate: 5422 LLVM_FALLTHROUGH; 5423 case CM_ScalarEpilogueNotNeededUsePredicate: 5424 LLVM_DEBUG( 5425 dbgs() << "LV: vector predicate hint/switch found.\n" 5426 << "LV: Not allowing scalar epilogue, creating predicated " 5427 << "vector loop.\n"); 5428 break; 5429 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5430 // fallthrough as a special case of OptForSize 5431 case CM_ScalarEpilogueNotAllowedOptSize: 5432 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5433 LLVM_DEBUG( 5434 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5435 else 5436 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5437 << "count.\n"); 5438 5439 // Bail if runtime checks are required, which are not good when optimising 5440 // for size. 5441 if (runtimeChecksRequired()) 5442 return FixedScalableVFPair::getNone(); 5443 5444 break; 5445 } 5446 5447 // The only loops we can vectorize without a scalar epilogue, are loops with 5448 // a bottom-test and a single exiting block. We'd have to handle the fact 5449 // that not every instruction executes on the last iteration. This will 5450 // require a lane mask which varies through the vector loop body. (TODO) 5451 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5452 // If there was a tail-folding hint/switch, but we can't fold the tail by 5453 // masking, fallback to a vectorization with a scalar epilogue. 5454 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5455 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5456 "scalar epilogue instead.\n"); 5457 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5458 return computeFeasibleMaxVF(TC, UserVF, false); 5459 } 5460 return FixedScalableVFPair::getNone(); 5461 } 5462 5463 // Now try the tail folding 5464 5465 // Invalidate interleave groups that require an epilogue if we can't mask 5466 // the interleave-group. 5467 if (!useMaskedInterleavedAccesses(TTI)) { 5468 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5469 "No decisions should have been taken at this point"); 5470 // Note: There is no need to invalidate any cost modeling decisions here, as 5471 // non where taken so far. 5472 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5473 } 5474 5475 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5476 // Avoid tail folding if the trip count is known to be a multiple of any VF 5477 // we chose. 5478 // FIXME: The condition below pessimises the case for fixed-width vectors, 5479 // when scalable VFs are also candidates for vectorization. 5480 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5481 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5482 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5483 "MaxFixedVF must be a power of 2"); 5484 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5485 : MaxFixedVF.getFixedValue(); 5486 ScalarEvolution *SE = PSE.getSE(); 5487 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5488 const SCEV *ExitCount = SE->getAddExpr( 5489 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5490 const SCEV *Rem = SE->getURemExpr( 5491 SE->applyLoopGuards(ExitCount, TheLoop), 5492 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5493 if (Rem->isZero()) { 5494 // Accept MaxFixedVF if we do not have a tail. 5495 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5496 return MaxFactors; 5497 } 5498 } 5499 5500 // For scalable vectors don't use tail folding for low trip counts or 5501 // optimizing for code size. We only permit this if the user has explicitly 5502 // requested it. 5503 if (ScalarEpilogueStatus != CM_ScalarEpilogueNotNeededUsePredicate && 5504 ScalarEpilogueStatus != CM_ScalarEpilogueNotAllowedUsePredicate && 5505 MaxFactors.ScalableVF.isVector()) 5506 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5507 5508 // If we don't know the precise trip count, or if the trip count that we 5509 // found modulo the vectorization factor is not zero, try to fold the tail 5510 // by masking. 5511 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5512 if (Legal->prepareToFoldTailByMasking()) { 5513 FoldTailByMasking = true; 5514 return MaxFactors; 5515 } 5516 5517 // If there was a tail-folding hint/switch, but we can't fold the tail by 5518 // masking, fallback to a vectorization with a scalar epilogue. 5519 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5520 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5521 "scalar epilogue instead.\n"); 5522 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5523 return MaxFactors; 5524 } 5525 5526 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5527 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5528 return FixedScalableVFPair::getNone(); 5529 } 5530 5531 if (TC == 0) { 5532 reportVectorizationFailure( 5533 "Unable to calculate the loop count due to complex control flow", 5534 "unable to calculate the loop count due to complex control flow", 5535 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5536 return FixedScalableVFPair::getNone(); 5537 } 5538 5539 reportVectorizationFailure( 5540 "Cannot optimize for size and vectorize at the same time.", 5541 "cannot optimize for size and vectorize at the same time. " 5542 "Enable vectorization of this loop with '#pragma clang loop " 5543 "vectorize(enable)' when compiling with -Os/-Oz", 5544 "NoTailLoopWithOptForSize", ORE, TheLoop); 5545 return FixedScalableVFPair::getNone(); 5546 } 5547 5548 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5549 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5550 const ElementCount &MaxSafeVF, bool FoldTailByMasking) { 5551 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5552 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5553 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5554 : TargetTransformInfo::RGK_FixedWidthVector); 5555 5556 // Convenience function to return the minimum of two ElementCounts. 5557 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5558 assert((LHS.isScalable() == RHS.isScalable()) && 5559 "Scalable flags must match"); 5560 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5561 }; 5562 5563 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5564 // Note that both WidestRegister and WidestType may not be a powers of 2. 5565 auto MaxVectorElementCount = ElementCount::get( 5566 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5567 ComputeScalableMaxVF); 5568 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5569 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5570 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5571 5572 if (!MaxVectorElementCount) { 5573 LLVM_DEBUG(dbgs() << "LV: The target has no " 5574 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5575 << " vector registers.\n"); 5576 return ElementCount::getFixed(1); 5577 } 5578 5579 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5580 if (ConstTripCount && 5581 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5582 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5583 // If loop trip count (TC) is known at compile time there is no point in 5584 // choosing VF greater than TC (as done in the loop below). Select maximum 5585 // power of two which doesn't exceed TC. 5586 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5587 // when the TC is less than or equal to the known number of lanes. 5588 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5589 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5590 "exceeding the constant trip count: " 5591 << ClampedConstTripCount << "\n"); 5592 return ElementCount::getFixed(ClampedConstTripCount); 5593 } 5594 5595 ElementCount MaxVF = MaxVectorElementCount; 5596 if (TTI.shouldMaximizeVectorBandwidth() || 5597 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5598 auto MaxVectorElementCountMaxBW = ElementCount::get( 5599 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5600 ComputeScalableMaxVF); 5601 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5602 5603 // Collect all viable vectorization factors larger than the default MaxVF 5604 // (i.e. MaxVectorElementCount). 5605 SmallVector<ElementCount, 8> VFs; 5606 for (ElementCount VS = MaxVectorElementCount * 2; 5607 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5608 VFs.push_back(VS); 5609 5610 // For each VF calculate its register usage. 5611 auto RUs = calculateRegisterUsage(VFs); 5612 5613 // Select the largest VF which doesn't require more registers than existing 5614 // ones. 5615 for (int i = RUs.size() - 1; i >= 0; --i) { 5616 bool Selected = true; 5617 for (auto &pair : RUs[i].MaxLocalUsers) { 5618 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5619 if (pair.second > TargetNumRegisters) 5620 Selected = false; 5621 } 5622 if (Selected) { 5623 MaxVF = VFs[i]; 5624 break; 5625 } 5626 } 5627 if (ElementCount MinVF = 5628 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5629 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5630 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5631 << ") with target's minimum: " << MinVF << '\n'); 5632 MaxVF = MinVF; 5633 } 5634 } 5635 } 5636 return MaxVF; 5637 } 5638 5639 bool LoopVectorizationCostModel::isMoreProfitable( 5640 const VectorizationFactor &A, const VectorizationFactor &B) const { 5641 InstructionCost CostA = A.Cost; 5642 InstructionCost CostB = B.Cost; 5643 5644 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5645 5646 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5647 MaxTripCount) { 5648 // If we are folding the tail and the trip count is a known (possibly small) 5649 // constant, the trip count will be rounded up to an integer number of 5650 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5651 // which we compare directly. When not folding the tail, the total cost will 5652 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5653 // approximated with the per-lane cost below instead of using the tripcount 5654 // as here. 5655 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5656 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5657 return RTCostA < RTCostB; 5658 } 5659 5660 // Improve estimate for the vector width if it is scalable. 5661 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5662 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5663 if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) { 5664 if (A.Width.isScalable()) 5665 EstimatedWidthA *= VScale.getValue(); 5666 if (B.Width.isScalable()) 5667 EstimatedWidthB *= VScale.getValue(); 5668 } 5669 5670 // Assume vscale may be larger than 1 (or the value being tuned for), 5671 // so that scalable vectorization is slightly favorable over fixed-width 5672 // vectorization. 5673 if (A.Width.isScalable() && !B.Width.isScalable()) 5674 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5675 5676 // To avoid the need for FP division: 5677 // (CostA / A.Width) < (CostB / B.Width) 5678 // <=> (CostA * B.Width) < (CostB * A.Width) 5679 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5680 } 5681 5682 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5683 const ElementCountSet &VFCandidates) { 5684 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5685 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5686 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5687 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5688 "Expected Scalar VF to be a candidate"); 5689 5690 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5691 VectorizationFactor ChosenFactor = ScalarCost; 5692 5693 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5694 if (ForceVectorization && VFCandidates.size() > 1) { 5695 // Ignore scalar width, because the user explicitly wants vectorization. 5696 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5697 // evaluation. 5698 ChosenFactor.Cost = InstructionCost::getMax(); 5699 } 5700 5701 SmallVector<InstructionVFPair> InvalidCosts; 5702 for (const auto &i : VFCandidates) { 5703 // The cost for scalar VF=1 is already calculated, so ignore it. 5704 if (i.isScalar()) 5705 continue; 5706 5707 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5708 VectorizationFactor Candidate(i, C.first); 5709 5710 #ifndef NDEBUG 5711 unsigned AssumedMinimumVscale = 1; 5712 if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) 5713 AssumedMinimumVscale = VScale.getValue(); 5714 unsigned Width = 5715 Candidate.Width.isScalable() 5716 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5717 : Candidate.Width.getFixedValue(); 5718 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5719 << " costs: " << (Candidate.Cost / Width)); 5720 if (i.isScalable()) 5721 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5722 << AssumedMinimumVscale << ")"); 5723 LLVM_DEBUG(dbgs() << ".\n"); 5724 #endif 5725 5726 if (!C.second && !ForceVectorization) { 5727 LLVM_DEBUG( 5728 dbgs() << "LV: Not considering vector loop of width " << i 5729 << " because it will not generate any vector instructions.\n"); 5730 continue; 5731 } 5732 5733 // If profitable add it to ProfitableVF list. 5734 if (isMoreProfitable(Candidate, ScalarCost)) 5735 ProfitableVFs.push_back(Candidate); 5736 5737 if (isMoreProfitable(Candidate, ChosenFactor)) 5738 ChosenFactor = Candidate; 5739 } 5740 5741 // Emit a report of VFs with invalid costs in the loop. 5742 if (!InvalidCosts.empty()) { 5743 // Group the remarks per instruction, keeping the instruction order from 5744 // InvalidCosts. 5745 std::map<Instruction *, unsigned> Numbering; 5746 unsigned I = 0; 5747 for (auto &Pair : InvalidCosts) 5748 if (!Numbering.count(Pair.first)) 5749 Numbering[Pair.first] = I++; 5750 5751 // Sort the list, first on instruction(number) then on VF. 5752 llvm::sort(InvalidCosts, 5753 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5754 if (Numbering[A.first] != Numbering[B.first]) 5755 return Numbering[A.first] < Numbering[B.first]; 5756 ElementCountComparator ECC; 5757 return ECC(A.second, B.second); 5758 }); 5759 5760 // For a list of ordered instruction-vf pairs: 5761 // [(load, vf1), (load, vf2), (store, vf1)] 5762 // Group the instructions together to emit separate remarks for: 5763 // load (vf1, vf2) 5764 // store (vf1) 5765 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5766 auto Subset = ArrayRef<InstructionVFPair>(); 5767 do { 5768 if (Subset.empty()) 5769 Subset = Tail.take_front(1); 5770 5771 Instruction *I = Subset.front().first; 5772 5773 // If the next instruction is different, or if there are no other pairs, 5774 // emit a remark for the collated subset. e.g. 5775 // [(load, vf1), (load, vf2))] 5776 // to emit: 5777 // remark: invalid costs for 'load' at VF=(vf, vf2) 5778 if (Subset == Tail || Tail[Subset.size()].first != I) { 5779 std::string OutString; 5780 raw_string_ostream OS(OutString); 5781 assert(!Subset.empty() && "Unexpected empty range"); 5782 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5783 for (auto &Pair : Subset) 5784 OS << (Pair.second == Subset.front().second ? "" : ", ") 5785 << Pair.second; 5786 OS << "):"; 5787 if (auto *CI = dyn_cast<CallInst>(I)) 5788 OS << " call to " << CI->getCalledFunction()->getName(); 5789 else 5790 OS << " " << I->getOpcodeName(); 5791 OS.flush(); 5792 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5793 Tail = Tail.drop_front(Subset.size()); 5794 Subset = {}; 5795 } else 5796 // Grow the subset by one element 5797 Subset = Tail.take_front(Subset.size() + 1); 5798 } while (!Tail.empty()); 5799 } 5800 5801 if (!EnableCondStoresVectorization && NumPredStores) { 5802 reportVectorizationFailure("There are conditional stores.", 5803 "store that is conditionally executed prevents vectorization", 5804 "ConditionalStore", ORE, TheLoop); 5805 ChosenFactor = ScalarCost; 5806 } 5807 5808 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5809 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5810 << "LV: Vectorization seems to be not beneficial, " 5811 << "but was forced by a user.\n"); 5812 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5813 return ChosenFactor; 5814 } 5815 5816 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5817 const Loop &L, ElementCount VF) const { 5818 // Cross iteration phis such as reductions need special handling and are 5819 // currently unsupported. 5820 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 5821 return Legal->isFirstOrderRecurrence(&Phi) || 5822 Legal->isReductionVariable(&Phi); 5823 })) 5824 return false; 5825 5826 // Phis with uses outside of the loop require special handling and are 5827 // currently unsupported. 5828 for (auto &Entry : Legal->getInductionVars()) { 5829 // Look for uses of the value of the induction at the last iteration. 5830 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5831 for (User *U : PostInc->users()) 5832 if (!L.contains(cast<Instruction>(U))) 5833 return false; 5834 // Look for uses of penultimate value of the induction. 5835 for (User *U : Entry.first->users()) 5836 if (!L.contains(cast<Instruction>(U))) 5837 return false; 5838 } 5839 5840 // Induction variables that are widened require special handling that is 5841 // currently not supported. 5842 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5843 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5844 this->isProfitableToScalarize(Entry.first, VF)); 5845 })) 5846 return false; 5847 5848 // Epilogue vectorization code has not been auditted to ensure it handles 5849 // non-latch exits properly. It may be fine, but it needs auditted and 5850 // tested. 5851 if (L.getExitingBlock() != L.getLoopLatch()) 5852 return false; 5853 5854 return true; 5855 } 5856 5857 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5858 const ElementCount VF) const { 5859 // FIXME: We need a much better cost-model to take different parameters such 5860 // as register pressure, code size increase and cost of extra branches into 5861 // account. For now we apply a very crude heuristic and only consider loops 5862 // with vectorization factors larger than a certain value. 5863 // We also consider epilogue vectorization unprofitable for targets that don't 5864 // consider interleaving beneficial (eg. MVE). 5865 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5866 return false; 5867 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 5868 return true; 5869 return false; 5870 } 5871 5872 VectorizationFactor 5873 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5874 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5875 VectorizationFactor Result = VectorizationFactor::Disabled(); 5876 if (!EnableEpilogueVectorization) { 5877 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5878 return Result; 5879 } 5880 5881 if (!isScalarEpilogueAllowed()) { 5882 LLVM_DEBUG( 5883 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5884 "allowed.\n";); 5885 return Result; 5886 } 5887 5888 // Not really a cost consideration, but check for unsupported cases here to 5889 // simplify the logic. 5890 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5891 LLVM_DEBUG( 5892 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5893 "not a supported candidate.\n";); 5894 return Result; 5895 } 5896 5897 if (EpilogueVectorizationForceVF > 1) { 5898 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5899 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5900 if (LVP.hasPlanWithVF(ForcedEC)) 5901 return {ForcedEC, 0}; 5902 else { 5903 LLVM_DEBUG( 5904 dbgs() 5905 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5906 return Result; 5907 } 5908 } 5909 5910 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5911 TheLoop->getHeader()->getParent()->hasMinSize()) { 5912 LLVM_DEBUG( 5913 dbgs() 5914 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5915 return Result; 5916 } 5917 5918 auto FixedMainLoopVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5919 if (MainLoopVF.isScalable()) 5920 LLVM_DEBUG( 5921 dbgs() << "LEV: Epilogue vectorization using scalable vectors not " 5922 "yet supported. Converting to fixed-width (VF=" 5923 << FixedMainLoopVF << ") instead\n"); 5924 5925 if (!isEpilogueVectorizationProfitable(FixedMainLoopVF)) { 5926 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5927 "this loop\n"); 5928 return Result; 5929 } 5930 5931 for (auto &NextVF : ProfitableVFs) 5932 if (ElementCount::isKnownLT(NextVF.Width, FixedMainLoopVF) && 5933 (Result.Width.getFixedValue() == 1 || 5934 isMoreProfitable(NextVF, Result)) && 5935 LVP.hasPlanWithVF(NextVF.Width)) 5936 Result = NextVF; 5937 5938 if (Result != VectorizationFactor::Disabled()) 5939 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5940 << Result.Width.getFixedValue() << "\n";); 5941 return Result; 5942 } 5943 5944 std::pair<unsigned, unsigned> 5945 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5946 unsigned MinWidth = -1U; 5947 unsigned MaxWidth = 8; 5948 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5949 // For in-loop reductions, no element types are added to ElementTypesInLoop 5950 // if there are no loads/stores in the loop. In this case, check through the 5951 // reduction variables to determine the maximum width. 5952 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5953 // Reset MaxWidth so that we can find the smallest type used by recurrences 5954 // in the loop. 5955 MaxWidth = -1U; 5956 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5957 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5958 // When finding the min width used by the recurrence we need to account 5959 // for casts on the input operands of the recurrence. 5960 MaxWidth = std::min<unsigned>( 5961 MaxWidth, std::min<unsigned>( 5962 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5963 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5964 } 5965 } else { 5966 for (Type *T : ElementTypesInLoop) { 5967 MinWidth = std::min<unsigned>( 5968 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5969 MaxWidth = std::max<unsigned>( 5970 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5971 } 5972 } 5973 return {MinWidth, MaxWidth}; 5974 } 5975 5976 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5977 ElementTypesInLoop.clear(); 5978 // For each block. 5979 for (BasicBlock *BB : TheLoop->blocks()) { 5980 // For each instruction in the loop. 5981 for (Instruction &I : BB->instructionsWithoutDebug()) { 5982 Type *T = I.getType(); 5983 5984 // Skip ignored values. 5985 if (ValuesToIgnore.count(&I)) 5986 continue; 5987 5988 // Only examine Loads, Stores and PHINodes. 5989 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5990 continue; 5991 5992 // Examine PHI nodes that are reduction variables. Update the type to 5993 // account for the recurrence type. 5994 if (auto *PN = dyn_cast<PHINode>(&I)) { 5995 if (!Legal->isReductionVariable(PN)) 5996 continue; 5997 const RecurrenceDescriptor &RdxDesc = 5998 Legal->getReductionVars().find(PN)->second; 5999 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6000 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6001 RdxDesc.getRecurrenceType(), 6002 TargetTransformInfo::ReductionFlags())) 6003 continue; 6004 T = RdxDesc.getRecurrenceType(); 6005 } 6006 6007 // Examine the stored values. 6008 if (auto *ST = dyn_cast<StoreInst>(&I)) 6009 T = ST->getValueOperand()->getType(); 6010 6011 assert(T->isSized() && 6012 "Expected the load/store/recurrence type to be sized"); 6013 6014 ElementTypesInLoop.insert(T); 6015 } 6016 } 6017 } 6018 6019 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6020 unsigned LoopCost) { 6021 // -- The interleave heuristics -- 6022 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6023 // There are many micro-architectural considerations that we can't predict 6024 // at this level. For example, frontend pressure (on decode or fetch) due to 6025 // code size, or the number and capabilities of the execution ports. 6026 // 6027 // We use the following heuristics to select the interleave count: 6028 // 1. If the code has reductions, then we interleave to break the cross 6029 // iteration dependency. 6030 // 2. If the loop is really small, then we interleave to reduce the loop 6031 // overhead. 6032 // 3. We don't interleave if we think that we will spill registers to memory 6033 // due to the increased register pressure. 6034 6035 if (!isScalarEpilogueAllowed()) 6036 return 1; 6037 6038 // We used the distance for the interleave count. 6039 if (Legal->getMaxSafeDepDistBytes() != -1U) 6040 return 1; 6041 6042 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6043 const bool HasReductions = !Legal->getReductionVars().empty(); 6044 // Do not interleave loops with a relatively small known or estimated trip 6045 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6046 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6047 // because with the above conditions interleaving can expose ILP and break 6048 // cross iteration dependences for reductions. 6049 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6050 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6051 return 1; 6052 6053 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6054 // We divide by these constants so assume that we have at least one 6055 // instruction that uses at least one register. 6056 for (auto& pair : R.MaxLocalUsers) { 6057 pair.second = std::max(pair.second, 1U); 6058 } 6059 6060 // We calculate the interleave count using the following formula. 6061 // Subtract the number of loop invariants from the number of available 6062 // registers. These registers are used by all of the interleaved instances. 6063 // Next, divide the remaining registers by the number of registers that is 6064 // required by the loop, in order to estimate how many parallel instances 6065 // fit without causing spills. All of this is rounded down if necessary to be 6066 // a power of two. We want power of two interleave count to simplify any 6067 // addressing operations or alignment considerations. 6068 // We also want power of two interleave counts to ensure that the induction 6069 // variable of the vector loop wraps to zero, when tail is folded by masking; 6070 // this currently happens when OptForSize, in which case IC is set to 1 above. 6071 unsigned IC = UINT_MAX; 6072 6073 for (auto& pair : R.MaxLocalUsers) { 6074 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6075 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6076 << " registers of " 6077 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6078 if (VF.isScalar()) { 6079 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6080 TargetNumRegisters = ForceTargetNumScalarRegs; 6081 } else { 6082 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6083 TargetNumRegisters = ForceTargetNumVectorRegs; 6084 } 6085 unsigned MaxLocalUsers = pair.second; 6086 unsigned LoopInvariantRegs = 0; 6087 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6088 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6089 6090 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6091 // Don't count the induction variable as interleaved. 6092 if (EnableIndVarRegisterHeur) { 6093 TmpIC = 6094 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6095 std::max(1U, (MaxLocalUsers - 1))); 6096 } 6097 6098 IC = std::min(IC, TmpIC); 6099 } 6100 6101 // Clamp the interleave ranges to reasonable counts. 6102 unsigned MaxInterleaveCount = 6103 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6104 6105 // Check if the user has overridden the max. 6106 if (VF.isScalar()) { 6107 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6108 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6109 } else { 6110 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6111 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6112 } 6113 6114 // If trip count is known or estimated compile time constant, limit the 6115 // interleave count to be less than the trip count divided by VF, provided it 6116 // is at least 1. 6117 // 6118 // For scalable vectors we can't know if interleaving is beneficial. It may 6119 // not be beneficial for small loops if none of the lanes in the second vector 6120 // iterations is enabled. However, for larger loops, there is likely to be a 6121 // similar benefit as for fixed-width vectors. For now, we choose to leave 6122 // the InterleaveCount as if vscale is '1', although if some information about 6123 // the vector is known (e.g. min vector size), we can make a better decision. 6124 if (BestKnownTC) { 6125 MaxInterleaveCount = 6126 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6127 // Make sure MaxInterleaveCount is greater than 0. 6128 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6129 } 6130 6131 assert(MaxInterleaveCount > 0 && 6132 "Maximum interleave count must be greater than 0"); 6133 6134 // Clamp the calculated IC to be between the 1 and the max interleave count 6135 // that the target and trip count allows. 6136 if (IC > MaxInterleaveCount) 6137 IC = MaxInterleaveCount; 6138 else 6139 // Make sure IC is greater than 0. 6140 IC = std::max(1u, IC); 6141 6142 assert(IC > 0 && "Interleave count must be greater than 0."); 6143 6144 // If we did not calculate the cost for VF (because the user selected the VF) 6145 // then we calculate the cost of VF here. 6146 if (LoopCost == 0) { 6147 InstructionCost C = expectedCost(VF).first; 6148 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6149 LoopCost = *C.getValue(); 6150 } 6151 6152 assert(LoopCost && "Non-zero loop cost expected"); 6153 6154 // Interleave if we vectorized this loop and there is a reduction that could 6155 // benefit from interleaving. 6156 if (VF.isVector() && HasReductions) { 6157 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6158 return IC; 6159 } 6160 6161 // Note that if we've already vectorized the loop we will have done the 6162 // runtime check and so interleaving won't require further checks. 6163 bool InterleavingRequiresRuntimePointerCheck = 6164 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6165 6166 // We want to interleave small loops in order to reduce the loop overhead and 6167 // potentially expose ILP opportunities. 6168 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6169 << "LV: IC is " << IC << '\n' 6170 << "LV: VF is " << VF << '\n'); 6171 const bool AggressivelyInterleaveReductions = 6172 TTI.enableAggressiveInterleaving(HasReductions); 6173 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6174 // We assume that the cost overhead is 1 and we use the cost model 6175 // to estimate the cost of the loop and interleave until the cost of the 6176 // loop overhead is about 5% of the cost of the loop. 6177 unsigned SmallIC = 6178 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6179 6180 // Interleave until store/load ports (estimated by max interleave count) are 6181 // saturated. 6182 unsigned NumStores = Legal->getNumStores(); 6183 unsigned NumLoads = Legal->getNumLoads(); 6184 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6185 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6186 6187 // There is little point in interleaving for reductions containing selects 6188 // and compares when VF=1 since it may just create more overhead than it's 6189 // worth for loops with small trip counts. This is because we still have to 6190 // do the final reduction after the loop. 6191 bool HasSelectCmpReductions = 6192 HasReductions && 6193 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6194 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6195 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6196 RdxDesc.getRecurrenceKind()); 6197 }); 6198 if (HasSelectCmpReductions) { 6199 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6200 return 1; 6201 } 6202 6203 // If we have a scalar reduction (vector reductions are already dealt with 6204 // by this point), we can increase the critical path length if the loop 6205 // we're interleaving is inside another loop. For tree-wise reductions 6206 // set the limit to 2, and for ordered reductions it's best to disable 6207 // interleaving entirely. 6208 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6209 bool HasOrderedReductions = 6210 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6211 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6212 return RdxDesc.isOrdered(); 6213 }); 6214 if (HasOrderedReductions) { 6215 LLVM_DEBUG( 6216 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6217 return 1; 6218 } 6219 6220 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6221 SmallIC = std::min(SmallIC, F); 6222 StoresIC = std::min(StoresIC, F); 6223 LoadsIC = std::min(LoadsIC, F); 6224 } 6225 6226 if (EnableLoadStoreRuntimeInterleave && 6227 std::max(StoresIC, LoadsIC) > SmallIC) { 6228 LLVM_DEBUG( 6229 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6230 return std::max(StoresIC, LoadsIC); 6231 } 6232 6233 // If there are scalar reductions and TTI has enabled aggressive 6234 // interleaving for reductions, we will interleave to expose ILP. 6235 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6236 AggressivelyInterleaveReductions) { 6237 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6238 // Interleave no less than SmallIC but not as aggressive as the normal IC 6239 // to satisfy the rare situation when resources are too limited. 6240 return std::max(IC / 2, SmallIC); 6241 } else { 6242 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6243 return SmallIC; 6244 } 6245 } 6246 6247 // Interleave if this is a large loop (small loops are already dealt with by 6248 // this point) that could benefit from interleaving. 6249 if (AggressivelyInterleaveReductions) { 6250 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6251 return IC; 6252 } 6253 6254 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6255 return 1; 6256 } 6257 6258 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6259 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6260 // This function calculates the register usage by measuring the highest number 6261 // of values that are alive at a single location. Obviously, this is a very 6262 // rough estimation. We scan the loop in a topological order in order and 6263 // assign a number to each instruction. We use RPO to ensure that defs are 6264 // met before their users. We assume that each instruction that has in-loop 6265 // users starts an interval. We record every time that an in-loop value is 6266 // used, so we have a list of the first and last occurrences of each 6267 // instruction. Next, we transpose this data structure into a multi map that 6268 // holds the list of intervals that *end* at a specific location. This multi 6269 // map allows us to perform a linear search. We scan the instructions linearly 6270 // and record each time that a new interval starts, by placing it in a set. 6271 // If we find this value in the multi-map then we remove it from the set. 6272 // The max register usage is the maximum size of the set. 6273 // We also search for instructions that are defined outside the loop, but are 6274 // used inside the loop. We need this number separately from the max-interval 6275 // usage number because when we unroll, loop-invariant values do not take 6276 // more register. 6277 LoopBlocksDFS DFS(TheLoop); 6278 DFS.perform(LI); 6279 6280 RegisterUsage RU; 6281 6282 // Each 'key' in the map opens a new interval. The values 6283 // of the map are the index of the 'last seen' usage of the 6284 // instruction that is the key. 6285 using IntervalMap = DenseMap<Instruction *, unsigned>; 6286 6287 // Maps instruction to its index. 6288 SmallVector<Instruction *, 64> IdxToInstr; 6289 // Marks the end of each interval. 6290 IntervalMap EndPoint; 6291 // Saves the list of instruction indices that are used in the loop. 6292 SmallPtrSet<Instruction *, 8> Ends; 6293 // Saves the list of values that are used in the loop but are 6294 // defined outside the loop, such as arguments and constants. 6295 SmallPtrSet<Value *, 8> LoopInvariants; 6296 6297 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6298 for (Instruction &I : BB->instructionsWithoutDebug()) { 6299 IdxToInstr.push_back(&I); 6300 6301 // Save the end location of each USE. 6302 for (Value *U : I.operands()) { 6303 auto *Instr = dyn_cast<Instruction>(U); 6304 6305 // Ignore non-instruction values such as arguments, constants, etc. 6306 if (!Instr) 6307 continue; 6308 6309 // If this instruction is outside the loop then record it and continue. 6310 if (!TheLoop->contains(Instr)) { 6311 LoopInvariants.insert(Instr); 6312 continue; 6313 } 6314 6315 // Overwrite previous end points. 6316 EndPoint[Instr] = IdxToInstr.size(); 6317 Ends.insert(Instr); 6318 } 6319 } 6320 } 6321 6322 // Saves the list of intervals that end with the index in 'key'. 6323 using InstrList = SmallVector<Instruction *, 2>; 6324 DenseMap<unsigned, InstrList> TransposeEnds; 6325 6326 // Transpose the EndPoints to a list of values that end at each index. 6327 for (auto &Interval : EndPoint) 6328 TransposeEnds[Interval.second].push_back(Interval.first); 6329 6330 SmallPtrSet<Instruction *, 8> OpenIntervals; 6331 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6332 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6333 6334 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6335 6336 // A lambda that gets the register usage for the given type and VF. 6337 const auto &TTICapture = TTI; 6338 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6339 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6340 return 0; 6341 InstructionCost::CostType RegUsage = 6342 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6343 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6344 "Nonsensical values for register usage."); 6345 return RegUsage; 6346 }; 6347 6348 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6349 Instruction *I = IdxToInstr[i]; 6350 6351 // Remove all of the instructions that end at this location. 6352 InstrList &List = TransposeEnds[i]; 6353 for (Instruction *ToRemove : List) 6354 OpenIntervals.erase(ToRemove); 6355 6356 // Ignore instructions that are never used within the loop. 6357 if (!Ends.count(I)) 6358 continue; 6359 6360 // Skip ignored values. 6361 if (ValuesToIgnore.count(I)) 6362 continue; 6363 6364 // For each VF find the maximum usage of registers. 6365 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6366 // Count the number of live intervals. 6367 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6368 6369 if (VFs[j].isScalar()) { 6370 for (auto Inst : OpenIntervals) { 6371 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6372 if (RegUsage.find(ClassID) == RegUsage.end()) 6373 RegUsage[ClassID] = 1; 6374 else 6375 RegUsage[ClassID] += 1; 6376 } 6377 } else { 6378 collectUniformsAndScalars(VFs[j]); 6379 for (auto Inst : OpenIntervals) { 6380 // Skip ignored values for VF > 1. 6381 if (VecValuesToIgnore.count(Inst)) 6382 continue; 6383 if (isScalarAfterVectorization(Inst, VFs[j])) { 6384 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6385 if (RegUsage.find(ClassID) == RegUsage.end()) 6386 RegUsage[ClassID] = 1; 6387 else 6388 RegUsage[ClassID] += 1; 6389 } else { 6390 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6391 if (RegUsage.find(ClassID) == RegUsage.end()) 6392 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6393 else 6394 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6395 } 6396 } 6397 } 6398 6399 for (auto& pair : RegUsage) { 6400 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6401 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6402 else 6403 MaxUsages[j][pair.first] = pair.second; 6404 } 6405 } 6406 6407 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6408 << OpenIntervals.size() << '\n'); 6409 6410 // Add the current instruction to the list of open intervals. 6411 OpenIntervals.insert(I); 6412 } 6413 6414 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6415 SmallMapVector<unsigned, unsigned, 4> Invariant; 6416 6417 for (auto Inst : LoopInvariants) { 6418 unsigned Usage = 6419 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6420 unsigned ClassID = 6421 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6422 if (Invariant.find(ClassID) == Invariant.end()) 6423 Invariant[ClassID] = Usage; 6424 else 6425 Invariant[ClassID] += Usage; 6426 } 6427 6428 LLVM_DEBUG({ 6429 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6430 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6431 << " item\n"; 6432 for (const auto &pair : MaxUsages[i]) { 6433 dbgs() << "LV(REG): RegisterClass: " 6434 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6435 << " registers\n"; 6436 } 6437 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6438 << " item\n"; 6439 for (const auto &pair : Invariant) { 6440 dbgs() << "LV(REG): RegisterClass: " 6441 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6442 << " registers\n"; 6443 } 6444 }); 6445 6446 RU.LoopInvariantRegs = Invariant; 6447 RU.MaxLocalUsers = MaxUsages[i]; 6448 RUs[i] = RU; 6449 } 6450 6451 return RUs; 6452 } 6453 6454 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6455 ElementCount VF) { 6456 // TODO: Cost model for emulated masked load/store is completely 6457 // broken. This hack guides the cost model to use an artificially 6458 // high enough value to practically disable vectorization with such 6459 // operations, except where previously deployed legality hack allowed 6460 // using very low cost values. This is to avoid regressions coming simply 6461 // from moving "masked load/store" check from legality to cost model. 6462 // Masked Load/Gather emulation was previously never allowed. 6463 // Limited number of Masked Store/Scatter emulation was allowed. 6464 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6465 return isa<LoadInst>(I) || 6466 (isa<StoreInst>(I) && 6467 NumPredStores > NumberOfStoresToPredicate); 6468 } 6469 6470 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6471 // If we aren't vectorizing the loop, or if we've already collected the 6472 // instructions to scalarize, there's nothing to do. Collection may already 6473 // have occurred if we have a user-selected VF and are now computing the 6474 // expected cost for interleaving. 6475 if (VF.isScalar() || VF.isZero() || 6476 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6477 return; 6478 6479 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6480 // not profitable to scalarize any instructions, the presence of VF in the 6481 // map will indicate that we've analyzed it already. 6482 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6483 6484 // Find all the instructions that are scalar with predication in the loop and 6485 // determine if it would be better to not if-convert the blocks they are in. 6486 // If so, we also record the instructions to scalarize. 6487 for (BasicBlock *BB : TheLoop->blocks()) { 6488 if (!blockNeedsPredicationForAnyReason(BB)) 6489 continue; 6490 for (Instruction &I : *BB) 6491 if (isScalarWithPredication(&I, VF)) { 6492 ScalarCostsTy ScalarCosts; 6493 // Do not apply discount if scalable, because that would lead to 6494 // invalid scalarization costs. 6495 // Do not apply discount logic if hacked cost is needed 6496 // for emulated masked memrefs. 6497 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6498 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6499 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6500 // Remember that BB will remain after vectorization. 6501 PredicatedBBsAfterVectorization.insert(BB); 6502 } 6503 } 6504 } 6505 6506 int LoopVectorizationCostModel::computePredInstDiscount( 6507 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6508 assert(!isUniformAfterVectorization(PredInst, VF) && 6509 "Instruction marked uniform-after-vectorization will be predicated"); 6510 6511 // Initialize the discount to zero, meaning that the scalar version and the 6512 // vector version cost the same. 6513 InstructionCost Discount = 0; 6514 6515 // Holds instructions to analyze. The instructions we visit are mapped in 6516 // ScalarCosts. Those instructions are the ones that would be scalarized if 6517 // we find that the scalar version costs less. 6518 SmallVector<Instruction *, 8> Worklist; 6519 6520 // Returns true if the given instruction can be scalarized. 6521 auto canBeScalarized = [&](Instruction *I) -> bool { 6522 // We only attempt to scalarize instructions forming a single-use chain 6523 // from the original predicated block that would otherwise be vectorized. 6524 // Although not strictly necessary, we give up on instructions we know will 6525 // already be scalar to avoid traversing chains that are unlikely to be 6526 // beneficial. 6527 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6528 isScalarAfterVectorization(I, VF)) 6529 return false; 6530 6531 // If the instruction is scalar with predication, it will be analyzed 6532 // separately. We ignore it within the context of PredInst. 6533 if (isScalarWithPredication(I, VF)) 6534 return false; 6535 6536 // If any of the instruction's operands are uniform after vectorization, 6537 // the instruction cannot be scalarized. This prevents, for example, a 6538 // masked load from being scalarized. 6539 // 6540 // We assume we will only emit a value for lane zero of an instruction 6541 // marked uniform after vectorization, rather than VF identical values. 6542 // Thus, if we scalarize an instruction that uses a uniform, we would 6543 // create uses of values corresponding to the lanes we aren't emitting code 6544 // for. This behavior can be changed by allowing getScalarValue to clone 6545 // the lane zero values for uniforms rather than asserting. 6546 for (Use &U : I->operands()) 6547 if (auto *J = dyn_cast<Instruction>(U.get())) 6548 if (isUniformAfterVectorization(J, VF)) 6549 return false; 6550 6551 // Otherwise, we can scalarize the instruction. 6552 return true; 6553 }; 6554 6555 // Compute the expected cost discount from scalarizing the entire expression 6556 // feeding the predicated instruction. We currently only consider expressions 6557 // that are single-use instruction chains. 6558 Worklist.push_back(PredInst); 6559 while (!Worklist.empty()) { 6560 Instruction *I = Worklist.pop_back_val(); 6561 6562 // If we've already analyzed the instruction, there's nothing to do. 6563 if (ScalarCosts.find(I) != ScalarCosts.end()) 6564 continue; 6565 6566 // Compute the cost of the vector instruction. Note that this cost already 6567 // includes the scalarization overhead of the predicated instruction. 6568 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6569 6570 // Compute the cost of the scalarized instruction. This cost is the cost of 6571 // the instruction as if it wasn't if-converted and instead remained in the 6572 // predicated block. We will scale this cost by block probability after 6573 // computing the scalarization overhead. 6574 InstructionCost ScalarCost = 6575 VF.getFixedValue() * 6576 getInstructionCost(I, ElementCount::getFixed(1)).first; 6577 6578 // Compute the scalarization overhead of needed insertelement instructions 6579 // and phi nodes. 6580 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6581 ScalarCost += TTI.getScalarizationOverhead( 6582 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6583 APInt::getAllOnes(VF.getFixedValue()), true, false); 6584 ScalarCost += 6585 VF.getFixedValue() * 6586 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6587 } 6588 6589 // Compute the scalarization overhead of needed extractelement 6590 // instructions. For each of the instruction's operands, if the operand can 6591 // be scalarized, add it to the worklist; otherwise, account for the 6592 // overhead. 6593 for (Use &U : I->operands()) 6594 if (auto *J = dyn_cast<Instruction>(U.get())) { 6595 assert(VectorType::isValidElementType(J->getType()) && 6596 "Instruction has non-scalar type"); 6597 if (canBeScalarized(J)) 6598 Worklist.push_back(J); 6599 else if (needsExtract(J, VF)) { 6600 ScalarCost += TTI.getScalarizationOverhead( 6601 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6602 APInt::getAllOnes(VF.getFixedValue()), false, true); 6603 } 6604 } 6605 6606 // Scale the total scalar cost by block probability. 6607 ScalarCost /= getReciprocalPredBlockProb(); 6608 6609 // Compute the discount. A non-negative discount means the vector version 6610 // of the instruction costs more, and scalarizing would be beneficial. 6611 Discount += VectorCost - ScalarCost; 6612 ScalarCosts[I] = ScalarCost; 6613 } 6614 6615 return *Discount.getValue(); 6616 } 6617 6618 LoopVectorizationCostModel::VectorizationCostTy 6619 LoopVectorizationCostModel::expectedCost( 6620 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6621 VectorizationCostTy Cost; 6622 6623 // For each block. 6624 for (BasicBlock *BB : TheLoop->blocks()) { 6625 VectorizationCostTy BlockCost; 6626 6627 // For each instruction in the old loop. 6628 for (Instruction &I : BB->instructionsWithoutDebug()) { 6629 // Skip ignored values. 6630 if (ValuesToIgnore.count(&I) || 6631 (VF.isVector() && VecValuesToIgnore.count(&I))) 6632 continue; 6633 6634 VectorizationCostTy C = getInstructionCost(&I, VF); 6635 6636 // Check if we should override the cost. 6637 if (C.first.isValid() && 6638 ForceTargetInstructionCost.getNumOccurrences() > 0) 6639 C.first = InstructionCost(ForceTargetInstructionCost); 6640 6641 // Keep a list of instructions with invalid costs. 6642 if (Invalid && !C.first.isValid()) 6643 Invalid->emplace_back(&I, VF); 6644 6645 BlockCost.first += C.first; 6646 BlockCost.second |= C.second; 6647 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6648 << " for VF " << VF << " For instruction: " << I 6649 << '\n'); 6650 } 6651 6652 // If we are vectorizing a predicated block, it will have been 6653 // if-converted. This means that the block's instructions (aside from 6654 // stores and instructions that may divide by zero) will now be 6655 // unconditionally executed. For the scalar case, we may not always execute 6656 // the predicated block, if it is an if-else block. Thus, scale the block's 6657 // cost by the probability of executing it. blockNeedsPredication from 6658 // Legal is used so as to not include all blocks in tail folded loops. 6659 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6660 BlockCost.first /= getReciprocalPredBlockProb(); 6661 6662 Cost.first += BlockCost.first; 6663 Cost.second |= BlockCost.second; 6664 } 6665 6666 return Cost; 6667 } 6668 6669 /// Gets Address Access SCEV after verifying that the access pattern 6670 /// is loop invariant except the induction variable dependence. 6671 /// 6672 /// This SCEV can be sent to the Target in order to estimate the address 6673 /// calculation cost. 6674 static const SCEV *getAddressAccessSCEV( 6675 Value *Ptr, 6676 LoopVectorizationLegality *Legal, 6677 PredicatedScalarEvolution &PSE, 6678 const Loop *TheLoop) { 6679 6680 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6681 if (!Gep) 6682 return nullptr; 6683 6684 // We are looking for a gep with all loop invariant indices except for one 6685 // which should be an induction variable. 6686 auto SE = PSE.getSE(); 6687 unsigned NumOperands = Gep->getNumOperands(); 6688 for (unsigned i = 1; i < NumOperands; ++i) { 6689 Value *Opd = Gep->getOperand(i); 6690 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6691 !Legal->isInductionVariable(Opd)) 6692 return nullptr; 6693 } 6694 6695 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6696 return PSE.getSCEV(Ptr); 6697 } 6698 6699 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6700 return Legal->hasStride(I->getOperand(0)) || 6701 Legal->hasStride(I->getOperand(1)); 6702 } 6703 6704 InstructionCost 6705 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6706 ElementCount VF) { 6707 assert(VF.isVector() && 6708 "Scalarization cost of instruction implies vectorization."); 6709 if (VF.isScalable()) 6710 return InstructionCost::getInvalid(); 6711 6712 Type *ValTy = getLoadStoreType(I); 6713 auto SE = PSE.getSE(); 6714 6715 unsigned AS = getLoadStoreAddressSpace(I); 6716 Value *Ptr = getLoadStorePointerOperand(I); 6717 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6718 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6719 // that it is being called from this specific place. 6720 6721 // Figure out whether the access is strided and get the stride value 6722 // if it's known in compile time 6723 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6724 6725 // Get the cost of the scalar memory instruction and address computation. 6726 InstructionCost Cost = 6727 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6728 6729 // Don't pass *I here, since it is scalar but will actually be part of a 6730 // vectorized loop where the user of it is a vectorized instruction. 6731 const Align Alignment = getLoadStoreAlignment(I); 6732 Cost += VF.getKnownMinValue() * 6733 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6734 AS, TTI::TCK_RecipThroughput); 6735 6736 // Get the overhead of the extractelement and insertelement instructions 6737 // we might create due to scalarization. 6738 Cost += getScalarizationOverhead(I, VF); 6739 6740 // If we have a predicated load/store, it will need extra i1 extracts and 6741 // conditional branches, but may not be executed for each vector lane. Scale 6742 // the cost by the probability of executing the predicated block. 6743 if (isPredicatedInst(I, VF)) { 6744 Cost /= getReciprocalPredBlockProb(); 6745 6746 // Add the cost of an i1 extract and a branch 6747 auto *Vec_i1Ty = 6748 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6749 Cost += TTI.getScalarizationOverhead( 6750 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6751 /*Insert=*/false, /*Extract=*/true); 6752 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6753 6754 if (useEmulatedMaskMemRefHack(I, VF)) 6755 // Artificially setting to a high enough value to practically disable 6756 // vectorization with such operations. 6757 Cost = 3000000; 6758 } 6759 6760 return Cost; 6761 } 6762 6763 InstructionCost 6764 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6765 ElementCount VF) { 6766 Type *ValTy = getLoadStoreType(I); 6767 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6768 Value *Ptr = getLoadStorePointerOperand(I); 6769 unsigned AS = getLoadStoreAddressSpace(I); 6770 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6771 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6772 6773 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6774 "Stride should be 1 or -1 for consecutive memory access"); 6775 const Align Alignment = getLoadStoreAlignment(I); 6776 InstructionCost Cost = 0; 6777 if (Legal->isMaskRequired(I)) 6778 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6779 CostKind); 6780 else 6781 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6782 CostKind, I); 6783 6784 bool Reverse = ConsecutiveStride < 0; 6785 if (Reverse) 6786 Cost += 6787 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6788 return Cost; 6789 } 6790 6791 InstructionCost 6792 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6793 ElementCount VF) { 6794 assert(Legal->isUniformMemOp(*I)); 6795 6796 Type *ValTy = getLoadStoreType(I); 6797 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6798 const Align Alignment = getLoadStoreAlignment(I); 6799 unsigned AS = getLoadStoreAddressSpace(I); 6800 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6801 if (isa<LoadInst>(I)) { 6802 return TTI.getAddressComputationCost(ValTy) + 6803 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6804 CostKind) + 6805 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6806 } 6807 StoreInst *SI = cast<StoreInst>(I); 6808 6809 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6810 return TTI.getAddressComputationCost(ValTy) + 6811 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6812 CostKind) + 6813 (isLoopInvariantStoreValue 6814 ? 0 6815 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6816 VF.getKnownMinValue() - 1)); 6817 } 6818 6819 InstructionCost 6820 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6821 ElementCount VF) { 6822 Type *ValTy = getLoadStoreType(I); 6823 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6824 const Align Alignment = getLoadStoreAlignment(I); 6825 const Value *Ptr = getLoadStorePointerOperand(I); 6826 6827 return TTI.getAddressComputationCost(VectorTy) + 6828 TTI.getGatherScatterOpCost( 6829 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6830 TargetTransformInfo::TCK_RecipThroughput, I); 6831 } 6832 6833 InstructionCost 6834 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6835 ElementCount VF) { 6836 // TODO: Once we have support for interleaving with scalable vectors 6837 // we can calculate the cost properly here. 6838 if (VF.isScalable()) 6839 return InstructionCost::getInvalid(); 6840 6841 Type *ValTy = getLoadStoreType(I); 6842 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6843 unsigned AS = getLoadStoreAddressSpace(I); 6844 6845 auto Group = getInterleavedAccessGroup(I); 6846 assert(Group && "Fail to get an interleaved access group."); 6847 6848 unsigned InterleaveFactor = Group->getFactor(); 6849 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6850 6851 // Holds the indices of existing members in the interleaved group. 6852 SmallVector<unsigned, 4> Indices; 6853 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6854 if (Group->getMember(IF)) 6855 Indices.push_back(IF); 6856 6857 // Calculate the cost of the whole interleaved group. 6858 bool UseMaskForGaps = 6859 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6860 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6861 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6862 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6863 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6864 6865 if (Group->isReverse()) { 6866 // TODO: Add support for reversed masked interleaved access. 6867 assert(!Legal->isMaskRequired(I) && 6868 "Reverse masked interleaved access not supported."); 6869 Cost += 6870 Group->getNumMembers() * 6871 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6872 } 6873 return Cost; 6874 } 6875 6876 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6877 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6878 using namespace llvm::PatternMatch; 6879 // Early exit for no inloop reductions 6880 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6881 return None; 6882 auto *VectorTy = cast<VectorType>(Ty); 6883 6884 // We are looking for a pattern of, and finding the minimal acceptable cost: 6885 // reduce(mul(ext(A), ext(B))) or 6886 // reduce(mul(A, B)) or 6887 // reduce(ext(A)) or 6888 // reduce(A). 6889 // The basic idea is that we walk down the tree to do that, finding the root 6890 // reduction instruction in InLoopReductionImmediateChains. From there we find 6891 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6892 // of the components. If the reduction cost is lower then we return it for the 6893 // reduction instruction and 0 for the other instructions in the pattern. If 6894 // it is not we return an invalid cost specifying the orignal cost method 6895 // should be used. 6896 Instruction *RetI = I; 6897 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6898 if (!RetI->hasOneUser()) 6899 return None; 6900 RetI = RetI->user_back(); 6901 } 6902 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6903 RetI->user_back()->getOpcode() == Instruction::Add) { 6904 if (!RetI->hasOneUser()) 6905 return None; 6906 RetI = RetI->user_back(); 6907 } 6908 6909 // Test if the found instruction is a reduction, and if not return an invalid 6910 // cost specifying the parent to use the original cost modelling. 6911 if (!InLoopReductionImmediateChains.count(RetI)) 6912 return None; 6913 6914 // Find the reduction this chain is a part of and calculate the basic cost of 6915 // the reduction on its own. 6916 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6917 Instruction *ReductionPhi = LastChain; 6918 while (!isa<PHINode>(ReductionPhi)) 6919 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6920 6921 const RecurrenceDescriptor &RdxDesc = 6922 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6923 6924 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6925 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6926 6927 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6928 // normal fmul instruction to the cost of the fadd reduction. 6929 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6930 BaseCost += 6931 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6932 6933 // If we're using ordered reductions then we can just return the base cost 6934 // here, since getArithmeticReductionCost calculates the full ordered 6935 // reduction cost when FP reassociation is not allowed. 6936 if (useOrderedReductions(RdxDesc)) 6937 return BaseCost; 6938 6939 // Get the operand that was not the reduction chain and match it to one of the 6940 // patterns, returning the better cost if it is found. 6941 Instruction *RedOp = RetI->getOperand(1) == LastChain 6942 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6943 : dyn_cast<Instruction>(RetI->getOperand(1)); 6944 6945 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6946 6947 Instruction *Op0, *Op1; 6948 if (RedOp && 6949 match(RedOp, 6950 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6951 match(Op0, m_ZExtOrSExt(m_Value())) && 6952 Op0->getOpcode() == Op1->getOpcode() && 6953 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6954 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6955 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6956 6957 // Matched reduce(ext(mul(ext(A), ext(B))) 6958 // Note that the extend opcodes need to all match, or if A==B they will have 6959 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6960 // which is equally fine. 6961 bool IsUnsigned = isa<ZExtInst>(Op0); 6962 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6963 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6964 6965 InstructionCost ExtCost = 6966 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6967 TTI::CastContextHint::None, CostKind, Op0); 6968 InstructionCost MulCost = 6969 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6970 InstructionCost Ext2Cost = 6971 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6972 TTI::CastContextHint::None, CostKind, RedOp); 6973 6974 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6975 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6976 CostKind); 6977 6978 if (RedCost.isValid() && 6979 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6980 return I == RetI ? RedCost : 0; 6981 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6982 !TheLoop->isLoopInvariant(RedOp)) { 6983 // Matched reduce(ext(A)) 6984 bool IsUnsigned = isa<ZExtInst>(RedOp); 6985 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6986 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6987 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6988 CostKind); 6989 6990 InstructionCost ExtCost = 6991 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6992 TTI::CastContextHint::None, CostKind, RedOp); 6993 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6994 return I == RetI ? RedCost : 0; 6995 } else if (RedOp && 6996 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6997 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6998 Op0->getOpcode() == Op1->getOpcode() && 6999 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7000 bool IsUnsigned = isa<ZExtInst>(Op0); 7001 Type *Op0Ty = Op0->getOperand(0)->getType(); 7002 Type *Op1Ty = Op1->getOperand(0)->getType(); 7003 Type *LargestOpTy = 7004 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 7005 : Op0Ty; 7006 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 7007 7008 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 7009 // different sizes. We take the largest type as the ext to reduce, and add 7010 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 7011 InstructionCost ExtCost0 = TTI.getCastInstrCost( 7012 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 7013 TTI::CastContextHint::None, CostKind, Op0); 7014 InstructionCost ExtCost1 = TTI.getCastInstrCost( 7015 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 7016 TTI::CastContextHint::None, CostKind, Op1); 7017 InstructionCost MulCost = 7018 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7019 7020 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7021 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7022 CostKind); 7023 InstructionCost ExtraExtCost = 0; 7024 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 7025 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 7026 ExtraExtCost = TTI.getCastInstrCost( 7027 ExtraExtOp->getOpcode(), ExtType, 7028 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 7029 TTI::CastContextHint::None, CostKind, ExtraExtOp); 7030 } 7031 7032 if (RedCost.isValid() && 7033 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 7034 return I == RetI ? RedCost : 0; 7035 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7036 // Matched reduce(mul()) 7037 InstructionCost MulCost = 7038 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7039 7040 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7041 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7042 CostKind); 7043 7044 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7045 return I == RetI ? RedCost : 0; 7046 } 7047 } 7048 7049 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7050 } 7051 7052 InstructionCost 7053 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7054 ElementCount VF) { 7055 // Calculate scalar cost only. Vectorization cost should be ready at this 7056 // moment. 7057 if (VF.isScalar()) { 7058 Type *ValTy = getLoadStoreType(I); 7059 const Align Alignment = getLoadStoreAlignment(I); 7060 unsigned AS = getLoadStoreAddressSpace(I); 7061 7062 return TTI.getAddressComputationCost(ValTy) + 7063 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7064 TTI::TCK_RecipThroughput, I); 7065 } 7066 return getWideningCost(I, VF); 7067 } 7068 7069 LoopVectorizationCostModel::VectorizationCostTy 7070 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7071 ElementCount VF) { 7072 // If we know that this instruction will remain uniform, check the cost of 7073 // the scalar version. 7074 if (isUniformAfterVectorization(I, VF)) 7075 VF = ElementCount::getFixed(1); 7076 7077 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7078 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7079 7080 // Forced scalars do not have any scalarization overhead. 7081 auto ForcedScalar = ForcedScalars.find(VF); 7082 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7083 auto InstSet = ForcedScalar->second; 7084 if (InstSet.count(I)) 7085 return VectorizationCostTy( 7086 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7087 VF.getKnownMinValue()), 7088 false); 7089 } 7090 7091 Type *VectorTy; 7092 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7093 7094 bool TypeNotScalarized = false; 7095 if (VF.isVector() && VectorTy->isVectorTy()) { 7096 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 7097 if (NumParts) 7098 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 7099 else 7100 C = InstructionCost::getInvalid(); 7101 } 7102 return VectorizationCostTy(C, TypeNotScalarized); 7103 } 7104 7105 InstructionCost 7106 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7107 ElementCount VF) const { 7108 7109 // There is no mechanism yet to create a scalable scalarization loop, 7110 // so this is currently Invalid. 7111 if (VF.isScalable()) 7112 return InstructionCost::getInvalid(); 7113 7114 if (VF.isScalar()) 7115 return 0; 7116 7117 InstructionCost Cost = 0; 7118 Type *RetTy = ToVectorTy(I->getType(), VF); 7119 if (!RetTy->isVoidTy() && 7120 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7121 Cost += TTI.getScalarizationOverhead( 7122 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7123 false); 7124 7125 // Some targets keep addresses scalar. 7126 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7127 return Cost; 7128 7129 // Some targets support efficient element stores. 7130 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7131 return Cost; 7132 7133 // Collect operands to consider. 7134 CallInst *CI = dyn_cast<CallInst>(I); 7135 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7136 7137 // Skip operands that do not require extraction/scalarization and do not incur 7138 // any overhead. 7139 SmallVector<Type *> Tys; 7140 for (auto *V : filterExtractingOperands(Ops, VF)) 7141 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7142 return Cost + TTI.getOperandsScalarizationOverhead( 7143 filterExtractingOperands(Ops, VF), Tys); 7144 } 7145 7146 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7147 if (VF.isScalar()) 7148 return; 7149 NumPredStores = 0; 7150 for (BasicBlock *BB : TheLoop->blocks()) { 7151 // For each instruction in the old loop. 7152 for (Instruction &I : *BB) { 7153 Value *Ptr = getLoadStorePointerOperand(&I); 7154 if (!Ptr) 7155 continue; 7156 7157 // TODO: We should generate better code and update the cost model for 7158 // predicated uniform stores. Today they are treated as any other 7159 // predicated store (see added test cases in 7160 // invariant-store-vectorization.ll). 7161 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 7162 NumPredStores++; 7163 7164 if (Legal->isUniformMemOp(I)) { 7165 // TODO: Avoid replicating loads and stores instead of 7166 // relying on instcombine to remove them. 7167 // Load: Scalar load + broadcast 7168 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7169 InstructionCost Cost; 7170 if (isa<StoreInst>(&I) && VF.isScalable() && 7171 isLegalGatherOrScatter(&I, VF)) { 7172 Cost = getGatherScatterCost(&I, VF); 7173 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7174 } else { 7175 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7176 "Cannot yet scalarize uniform stores"); 7177 Cost = getUniformMemOpCost(&I, VF); 7178 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7179 } 7180 continue; 7181 } 7182 7183 // We assume that widening is the best solution when possible. 7184 if (memoryInstructionCanBeWidened(&I, VF)) { 7185 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7186 int ConsecutiveStride = Legal->isConsecutivePtr( 7187 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7188 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7189 "Expected consecutive stride."); 7190 InstWidening Decision = 7191 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7192 setWideningDecision(&I, VF, Decision, Cost); 7193 continue; 7194 } 7195 7196 // Choose between Interleaving, Gather/Scatter or Scalarization. 7197 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7198 unsigned NumAccesses = 1; 7199 if (isAccessInterleaved(&I)) { 7200 auto Group = getInterleavedAccessGroup(&I); 7201 assert(Group && "Fail to get an interleaved access group."); 7202 7203 // Make one decision for the whole group. 7204 if (getWideningDecision(&I, VF) != CM_Unknown) 7205 continue; 7206 7207 NumAccesses = Group->getNumMembers(); 7208 if (interleavedAccessCanBeWidened(&I, VF)) 7209 InterleaveCost = getInterleaveGroupCost(&I, VF); 7210 } 7211 7212 InstructionCost GatherScatterCost = 7213 isLegalGatherOrScatter(&I, VF) 7214 ? getGatherScatterCost(&I, VF) * NumAccesses 7215 : InstructionCost::getInvalid(); 7216 7217 InstructionCost ScalarizationCost = 7218 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7219 7220 // Choose better solution for the current VF, 7221 // write down this decision and use it during vectorization. 7222 InstructionCost Cost; 7223 InstWidening Decision; 7224 if (InterleaveCost <= GatherScatterCost && 7225 InterleaveCost < ScalarizationCost) { 7226 Decision = CM_Interleave; 7227 Cost = InterleaveCost; 7228 } else if (GatherScatterCost < ScalarizationCost) { 7229 Decision = CM_GatherScatter; 7230 Cost = GatherScatterCost; 7231 } else { 7232 Decision = CM_Scalarize; 7233 Cost = ScalarizationCost; 7234 } 7235 // If the instructions belongs to an interleave group, the whole group 7236 // receives the same decision. The whole group receives the cost, but 7237 // the cost will actually be assigned to one instruction. 7238 if (auto Group = getInterleavedAccessGroup(&I)) 7239 setWideningDecision(Group, VF, Decision, Cost); 7240 else 7241 setWideningDecision(&I, VF, Decision, Cost); 7242 } 7243 } 7244 7245 // Make sure that any load of address and any other address computation 7246 // remains scalar unless there is gather/scatter support. This avoids 7247 // inevitable extracts into address registers, and also has the benefit of 7248 // activating LSR more, since that pass can't optimize vectorized 7249 // addresses. 7250 if (TTI.prefersVectorizedAddressing()) 7251 return; 7252 7253 // Start with all scalar pointer uses. 7254 SmallPtrSet<Instruction *, 8> AddrDefs; 7255 for (BasicBlock *BB : TheLoop->blocks()) 7256 for (Instruction &I : *BB) { 7257 Instruction *PtrDef = 7258 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7259 if (PtrDef && TheLoop->contains(PtrDef) && 7260 getWideningDecision(&I, VF) != CM_GatherScatter) 7261 AddrDefs.insert(PtrDef); 7262 } 7263 7264 // Add all instructions used to generate the addresses. 7265 SmallVector<Instruction *, 4> Worklist; 7266 append_range(Worklist, AddrDefs); 7267 while (!Worklist.empty()) { 7268 Instruction *I = Worklist.pop_back_val(); 7269 for (auto &Op : I->operands()) 7270 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7271 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7272 AddrDefs.insert(InstOp).second) 7273 Worklist.push_back(InstOp); 7274 } 7275 7276 for (auto *I : AddrDefs) { 7277 if (isa<LoadInst>(I)) { 7278 // Setting the desired widening decision should ideally be handled in 7279 // by cost functions, but since this involves the task of finding out 7280 // if the loaded register is involved in an address computation, it is 7281 // instead changed here when we know this is the case. 7282 InstWidening Decision = getWideningDecision(I, VF); 7283 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7284 // Scalarize a widened load of address. 7285 setWideningDecision( 7286 I, VF, CM_Scalarize, 7287 (VF.getKnownMinValue() * 7288 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7289 else if (auto Group = getInterleavedAccessGroup(I)) { 7290 // Scalarize an interleave group of address loads. 7291 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7292 if (Instruction *Member = Group->getMember(I)) 7293 setWideningDecision( 7294 Member, VF, CM_Scalarize, 7295 (VF.getKnownMinValue() * 7296 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7297 } 7298 } 7299 } else 7300 // Make sure I gets scalarized and a cost estimate without 7301 // scalarization overhead. 7302 ForcedScalars[VF].insert(I); 7303 } 7304 } 7305 7306 InstructionCost 7307 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7308 Type *&VectorTy) { 7309 Type *RetTy = I->getType(); 7310 if (canTruncateToMinimalBitwidth(I, VF)) 7311 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7312 auto SE = PSE.getSE(); 7313 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7314 7315 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7316 ElementCount VF) -> bool { 7317 if (VF.isScalar()) 7318 return true; 7319 7320 auto Scalarized = InstsToScalarize.find(VF); 7321 assert(Scalarized != InstsToScalarize.end() && 7322 "VF not yet analyzed for scalarization profitability"); 7323 return !Scalarized->second.count(I) && 7324 llvm::all_of(I->users(), [&](User *U) { 7325 auto *UI = cast<Instruction>(U); 7326 return !Scalarized->second.count(UI); 7327 }); 7328 }; 7329 (void) hasSingleCopyAfterVectorization; 7330 7331 if (isScalarAfterVectorization(I, VF)) { 7332 // With the exception of GEPs and PHIs, after scalarization there should 7333 // only be one copy of the instruction generated in the loop. This is 7334 // because the VF is either 1, or any instructions that need scalarizing 7335 // have already been dealt with by the the time we get here. As a result, 7336 // it means we don't have to multiply the instruction cost by VF. 7337 assert(I->getOpcode() == Instruction::GetElementPtr || 7338 I->getOpcode() == Instruction::PHI || 7339 (I->getOpcode() == Instruction::BitCast && 7340 I->getType()->isPointerTy()) || 7341 hasSingleCopyAfterVectorization(I, VF)); 7342 VectorTy = RetTy; 7343 } else 7344 VectorTy = ToVectorTy(RetTy, VF); 7345 7346 // TODO: We need to estimate the cost of intrinsic calls. 7347 switch (I->getOpcode()) { 7348 case Instruction::GetElementPtr: 7349 // We mark this instruction as zero-cost because the cost of GEPs in 7350 // vectorized code depends on whether the corresponding memory instruction 7351 // is scalarized or not. Therefore, we handle GEPs with the memory 7352 // instruction cost. 7353 return 0; 7354 case Instruction::Br: { 7355 // In cases of scalarized and predicated instructions, there will be VF 7356 // predicated blocks in the vectorized loop. Each branch around these 7357 // blocks requires also an extract of its vector compare i1 element. 7358 bool ScalarPredicatedBB = false; 7359 BranchInst *BI = cast<BranchInst>(I); 7360 if (VF.isVector() && BI->isConditional() && 7361 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7362 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7363 ScalarPredicatedBB = true; 7364 7365 if (ScalarPredicatedBB) { 7366 // Not possible to scalarize scalable vector with predicated instructions. 7367 if (VF.isScalable()) 7368 return InstructionCost::getInvalid(); 7369 // Return cost for branches around scalarized and predicated blocks. 7370 auto *Vec_i1Ty = 7371 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7372 return ( 7373 TTI.getScalarizationOverhead( 7374 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7375 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7376 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7377 // The back-edge branch will remain, as will all scalar branches. 7378 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7379 else 7380 // This branch will be eliminated by if-conversion. 7381 return 0; 7382 // Note: We currently assume zero cost for an unconditional branch inside 7383 // a predicated block since it will become a fall-through, although we 7384 // may decide in the future to call TTI for all branches. 7385 } 7386 case Instruction::PHI: { 7387 auto *Phi = cast<PHINode>(I); 7388 7389 // First-order recurrences are replaced by vector shuffles inside the loop. 7390 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7391 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7392 return TTI.getShuffleCost( 7393 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7394 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7395 7396 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7397 // converted into select instructions. We require N - 1 selects per phi 7398 // node, where N is the number of incoming values. 7399 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7400 return (Phi->getNumIncomingValues() - 1) * 7401 TTI.getCmpSelInstrCost( 7402 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7403 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7404 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7405 7406 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7407 } 7408 case Instruction::UDiv: 7409 case Instruction::SDiv: 7410 case Instruction::URem: 7411 case Instruction::SRem: 7412 // If we have a predicated instruction, it may not be executed for each 7413 // vector lane. Get the scalarization cost and scale this amount by the 7414 // probability of executing the predicated block. If the instruction is not 7415 // predicated, we fall through to the next case. 7416 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7417 InstructionCost Cost = 0; 7418 7419 // These instructions have a non-void type, so account for the phi nodes 7420 // that we will create. This cost is likely to be zero. The phi node 7421 // cost, if any, should be scaled by the block probability because it 7422 // models a copy at the end of each predicated block. 7423 Cost += VF.getKnownMinValue() * 7424 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7425 7426 // The cost of the non-predicated instruction. 7427 Cost += VF.getKnownMinValue() * 7428 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7429 7430 // The cost of insertelement and extractelement instructions needed for 7431 // scalarization. 7432 Cost += getScalarizationOverhead(I, VF); 7433 7434 // Scale the cost by the probability of executing the predicated blocks. 7435 // This assumes the predicated block for each vector lane is equally 7436 // likely. 7437 return Cost / getReciprocalPredBlockProb(); 7438 } 7439 LLVM_FALLTHROUGH; 7440 case Instruction::Add: 7441 case Instruction::FAdd: 7442 case Instruction::Sub: 7443 case Instruction::FSub: 7444 case Instruction::Mul: 7445 case Instruction::FMul: 7446 case Instruction::FDiv: 7447 case Instruction::FRem: 7448 case Instruction::Shl: 7449 case Instruction::LShr: 7450 case Instruction::AShr: 7451 case Instruction::And: 7452 case Instruction::Or: 7453 case Instruction::Xor: { 7454 // Since we will replace the stride by 1 the multiplication should go away. 7455 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7456 return 0; 7457 7458 // Detect reduction patterns 7459 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7460 return *RedCost; 7461 7462 // Certain instructions can be cheaper to vectorize if they have a constant 7463 // second vector operand. One example of this are shifts on x86. 7464 Value *Op2 = I->getOperand(1); 7465 TargetTransformInfo::OperandValueProperties Op2VP; 7466 TargetTransformInfo::OperandValueKind Op2VK = 7467 TTI.getOperandInfo(Op2, Op2VP); 7468 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7469 Op2VK = TargetTransformInfo::OK_UniformValue; 7470 7471 SmallVector<const Value *, 4> Operands(I->operand_values()); 7472 return TTI.getArithmeticInstrCost( 7473 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7474 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7475 } 7476 case Instruction::FNeg: { 7477 return TTI.getArithmeticInstrCost( 7478 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7479 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7480 TargetTransformInfo::OP_None, I->getOperand(0), I); 7481 } 7482 case Instruction::Select: { 7483 SelectInst *SI = cast<SelectInst>(I); 7484 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7485 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7486 7487 const Value *Op0, *Op1; 7488 using namespace llvm::PatternMatch; 7489 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7490 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7491 // select x, y, false --> x & y 7492 // select x, true, y --> x | y 7493 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7494 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7495 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7496 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7497 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7498 Op1->getType()->getScalarSizeInBits() == 1); 7499 7500 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7501 return TTI.getArithmeticInstrCost( 7502 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7503 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7504 } 7505 7506 Type *CondTy = SI->getCondition()->getType(); 7507 if (!ScalarCond) 7508 CondTy = VectorType::get(CondTy, VF); 7509 7510 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7511 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7512 Pred = Cmp->getPredicate(); 7513 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7514 CostKind, I); 7515 } 7516 case Instruction::ICmp: 7517 case Instruction::FCmp: { 7518 Type *ValTy = I->getOperand(0)->getType(); 7519 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7520 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7521 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7522 VectorTy = ToVectorTy(ValTy, VF); 7523 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7524 cast<CmpInst>(I)->getPredicate(), CostKind, 7525 I); 7526 } 7527 case Instruction::Store: 7528 case Instruction::Load: { 7529 ElementCount Width = VF; 7530 if (Width.isVector()) { 7531 InstWidening Decision = getWideningDecision(I, Width); 7532 assert(Decision != CM_Unknown && 7533 "CM decision should be taken at this point"); 7534 if (Decision == CM_Scalarize) 7535 Width = ElementCount::getFixed(1); 7536 } 7537 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7538 return getMemoryInstructionCost(I, VF); 7539 } 7540 case Instruction::BitCast: 7541 if (I->getType()->isPointerTy()) 7542 return 0; 7543 LLVM_FALLTHROUGH; 7544 case Instruction::ZExt: 7545 case Instruction::SExt: 7546 case Instruction::FPToUI: 7547 case Instruction::FPToSI: 7548 case Instruction::FPExt: 7549 case Instruction::PtrToInt: 7550 case Instruction::IntToPtr: 7551 case Instruction::SIToFP: 7552 case Instruction::UIToFP: 7553 case Instruction::Trunc: 7554 case Instruction::FPTrunc: { 7555 // Computes the CastContextHint from a Load/Store instruction. 7556 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7557 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7558 "Expected a load or a store!"); 7559 7560 if (VF.isScalar() || !TheLoop->contains(I)) 7561 return TTI::CastContextHint::Normal; 7562 7563 switch (getWideningDecision(I, VF)) { 7564 case LoopVectorizationCostModel::CM_GatherScatter: 7565 return TTI::CastContextHint::GatherScatter; 7566 case LoopVectorizationCostModel::CM_Interleave: 7567 return TTI::CastContextHint::Interleave; 7568 case LoopVectorizationCostModel::CM_Scalarize: 7569 case LoopVectorizationCostModel::CM_Widen: 7570 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7571 : TTI::CastContextHint::Normal; 7572 case LoopVectorizationCostModel::CM_Widen_Reverse: 7573 return TTI::CastContextHint::Reversed; 7574 case LoopVectorizationCostModel::CM_Unknown: 7575 llvm_unreachable("Instr did not go through cost modelling?"); 7576 } 7577 7578 llvm_unreachable("Unhandled case!"); 7579 }; 7580 7581 unsigned Opcode = I->getOpcode(); 7582 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7583 // For Trunc, the context is the only user, which must be a StoreInst. 7584 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7585 if (I->hasOneUse()) 7586 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7587 CCH = ComputeCCH(Store); 7588 } 7589 // For Z/Sext, the context is the operand, which must be a LoadInst. 7590 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7591 Opcode == Instruction::FPExt) { 7592 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7593 CCH = ComputeCCH(Load); 7594 } 7595 7596 // We optimize the truncation of induction variables having constant 7597 // integer steps. The cost of these truncations is the same as the scalar 7598 // operation. 7599 if (isOptimizableIVTruncate(I, VF)) { 7600 auto *Trunc = cast<TruncInst>(I); 7601 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7602 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7603 } 7604 7605 // Detect reduction patterns 7606 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7607 return *RedCost; 7608 7609 Type *SrcScalarTy = I->getOperand(0)->getType(); 7610 Type *SrcVecTy = 7611 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7612 if (canTruncateToMinimalBitwidth(I, VF)) { 7613 // This cast is going to be shrunk. This may remove the cast or it might 7614 // turn it into slightly different cast. For example, if MinBW == 16, 7615 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7616 // 7617 // Calculate the modified src and dest types. 7618 Type *MinVecTy = VectorTy; 7619 if (Opcode == Instruction::Trunc) { 7620 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7621 VectorTy = 7622 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7623 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7624 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7625 VectorTy = 7626 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7627 } 7628 } 7629 7630 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7631 } 7632 case Instruction::Call: { 7633 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7634 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7635 return *RedCost; 7636 bool NeedToScalarize; 7637 CallInst *CI = cast<CallInst>(I); 7638 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7639 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7640 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7641 return std::min(CallCost, IntrinsicCost); 7642 } 7643 return CallCost; 7644 } 7645 case Instruction::ExtractValue: 7646 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7647 case Instruction::Alloca: 7648 // We cannot easily widen alloca to a scalable alloca, as 7649 // the result would need to be a vector of pointers. 7650 if (VF.isScalable()) 7651 return InstructionCost::getInvalid(); 7652 LLVM_FALLTHROUGH; 7653 default: 7654 // This opcode is unknown. Assume that it is the same as 'mul'. 7655 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7656 } // end of switch. 7657 } 7658 7659 char LoopVectorize::ID = 0; 7660 7661 static const char lv_name[] = "Loop Vectorization"; 7662 7663 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7664 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7665 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7666 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7667 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7668 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7669 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7670 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7671 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7672 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7673 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7674 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7675 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7676 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7677 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7678 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7679 7680 namespace llvm { 7681 7682 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7683 7684 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7685 bool VectorizeOnlyWhenForced) { 7686 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7687 } 7688 7689 } // end namespace llvm 7690 7691 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7692 // Check if the pointer operand of a load or store instruction is 7693 // consecutive. 7694 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7695 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7696 return false; 7697 } 7698 7699 void LoopVectorizationCostModel::collectValuesToIgnore() { 7700 // Ignore ephemeral values. 7701 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7702 7703 // Ignore type-promoting instructions we identified during reduction 7704 // detection. 7705 for (auto &Reduction : Legal->getReductionVars()) { 7706 const RecurrenceDescriptor &RedDes = Reduction.second; 7707 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7708 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7709 } 7710 // Ignore type-casting instructions we identified during induction 7711 // detection. 7712 for (auto &Induction : Legal->getInductionVars()) { 7713 const InductionDescriptor &IndDes = Induction.second; 7714 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7715 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7716 } 7717 } 7718 7719 void LoopVectorizationCostModel::collectInLoopReductions() { 7720 for (auto &Reduction : Legal->getReductionVars()) { 7721 PHINode *Phi = Reduction.first; 7722 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7723 7724 // We don't collect reductions that are type promoted (yet). 7725 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7726 continue; 7727 7728 // If the target would prefer this reduction to happen "in-loop", then we 7729 // want to record it as such. 7730 unsigned Opcode = RdxDesc.getOpcode(); 7731 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7732 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7733 TargetTransformInfo::ReductionFlags())) 7734 continue; 7735 7736 // Check that we can correctly put the reductions into the loop, by 7737 // finding the chain of operations that leads from the phi to the loop 7738 // exit value. 7739 SmallVector<Instruction *, 4> ReductionOperations = 7740 RdxDesc.getReductionOpChain(Phi, TheLoop); 7741 bool InLoop = !ReductionOperations.empty(); 7742 if (InLoop) { 7743 InLoopReductionChains[Phi] = ReductionOperations; 7744 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7745 Instruction *LastChain = Phi; 7746 for (auto *I : ReductionOperations) { 7747 InLoopReductionImmediateChains[I] = LastChain; 7748 LastChain = I; 7749 } 7750 } 7751 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7752 << " reduction for phi: " << *Phi << "\n"); 7753 } 7754 } 7755 7756 // TODO: we could return a pair of values that specify the max VF and 7757 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7758 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7759 // doesn't have a cost model that can choose which plan to execute if 7760 // more than one is generated. 7761 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7762 LoopVectorizationCostModel &CM) { 7763 unsigned WidestType; 7764 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7765 return WidestVectorRegBits / WidestType; 7766 } 7767 7768 VectorizationFactor 7769 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7770 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7771 ElementCount VF = UserVF; 7772 // Outer loop handling: They may require CFG and instruction level 7773 // transformations before even evaluating whether vectorization is profitable. 7774 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7775 // the vectorization pipeline. 7776 if (!OrigLoop->isInnermost()) { 7777 // If the user doesn't provide a vectorization factor, determine a 7778 // reasonable one. 7779 if (UserVF.isZero()) { 7780 VF = ElementCount::getFixed(determineVPlanVF( 7781 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7782 .getFixedSize(), 7783 CM)); 7784 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7785 7786 // Make sure we have a VF > 1 for stress testing. 7787 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7788 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7789 << "overriding computed VF.\n"); 7790 VF = ElementCount::getFixed(4); 7791 } 7792 } 7793 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7794 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7795 "VF needs to be a power of two"); 7796 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7797 << "VF " << VF << " to build VPlans.\n"); 7798 buildVPlans(VF, VF); 7799 7800 // For VPlan build stress testing, we bail out after VPlan construction. 7801 if (VPlanBuildStressTest) 7802 return VectorizationFactor::Disabled(); 7803 7804 return {VF, 0 /*Cost*/}; 7805 } 7806 7807 LLVM_DEBUG( 7808 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7809 "VPlan-native path.\n"); 7810 return VectorizationFactor::Disabled(); 7811 } 7812 7813 Optional<VectorizationFactor> 7814 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7815 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7816 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7817 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7818 return None; 7819 7820 // Invalidate interleave groups if all blocks of loop will be predicated. 7821 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7822 !useMaskedInterleavedAccesses(*TTI)) { 7823 LLVM_DEBUG( 7824 dbgs() 7825 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7826 "which requires masked-interleaved support.\n"); 7827 if (CM.InterleaveInfo.invalidateGroups()) 7828 // Invalidating interleave groups also requires invalidating all decisions 7829 // based on them, which includes widening decisions and uniform and scalar 7830 // values. 7831 CM.invalidateCostModelingDecisions(); 7832 } 7833 7834 ElementCount MaxUserVF = 7835 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7836 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7837 if (!UserVF.isZero() && UserVFIsLegal) { 7838 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7839 "VF needs to be a power of two"); 7840 // Collect the instructions (and their associated costs) that will be more 7841 // profitable to scalarize. 7842 if (CM.selectUserVectorizationFactor(UserVF)) { 7843 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7844 CM.collectInLoopReductions(); 7845 buildVPlansWithVPRecipes(UserVF, UserVF); 7846 LLVM_DEBUG(printPlans(dbgs())); 7847 return {{UserVF, 0}}; 7848 } else 7849 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7850 "InvalidCost", ORE, OrigLoop); 7851 } 7852 7853 // Populate the set of Vectorization Factor Candidates. 7854 ElementCountSet VFCandidates; 7855 for (auto VF = ElementCount::getFixed(1); 7856 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7857 VFCandidates.insert(VF); 7858 for (auto VF = ElementCount::getScalable(1); 7859 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7860 VFCandidates.insert(VF); 7861 7862 for (const auto &VF : VFCandidates) { 7863 // Collect Uniform and Scalar instructions after vectorization with VF. 7864 CM.collectUniformsAndScalars(VF); 7865 7866 // Collect the instructions (and their associated costs) that will be more 7867 // profitable to scalarize. 7868 if (VF.isVector()) 7869 CM.collectInstsToScalarize(VF); 7870 } 7871 7872 CM.collectInLoopReductions(); 7873 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7874 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7875 7876 LLVM_DEBUG(printPlans(dbgs())); 7877 if (!MaxFactors.hasVector()) 7878 return VectorizationFactor::Disabled(); 7879 7880 // Select the optimal vectorization factor. 7881 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 7882 7883 // Check if it is profitable to vectorize with runtime checks. 7884 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7885 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 7886 bool PragmaThresholdReached = 7887 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7888 bool ThresholdReached = 7889 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 7890 if ((ThresholdReached && !Hints.allowReordering()) || 7891 PragmaThresholdReached) { 7892 ORE->emit([&]() { 7893 return OptimizationRemarkAnalysisAliasing( 7894 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 7895 OrigLoop->getHeader()) 7896 << "loop not vectorized: cannot prove it is safe to reorder " 7897 "memory operations"; 7898 }); 7899 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 7900 Hints.emitRemarkWithHints(); 7901 return VectorizationFactor::Disabled(); 7902 } 7903 } 7904 return SelectedVF; 7905 } 7906 7907 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7908 assert(count_if(VPlans, 7909 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7910 1 && 7911 "Best VF has not a single VPlan."); 7912 7913 for (const VPlanPtr &Plan : VPlans) { 7914 if (Plan->hasVF(VF)) 7915 return *Plan.get(); 7916 } 7917 llvm_unreachable("No plan found!"); 7918 } 7919 7920 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7921 VPlan &BestVPlan, 7922 InnerLoopVectorizer &ILV, 7923 DominatorTree *DT) { 7924 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7925 << '\n'); 7926 7927 // Perform the actual loop transformation. 7928 7929 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7930 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7931 Value *CanonicalIVStartValue; 7932 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7933 ILV.createVectorizedLoopSkeleton(); 7934 ILV.collectPoisonGeneratingRecipes(State); 7935 7936 ILV.printDebugTracesAtStart(); 7937 7938 //===------------------------------------------------===// 7939 // 7940 // Notice: any optimization or new instruction that go 7941 // into the code below should also be implemented in 7942 // the cost-model. 7943 // 7944 //===------------------------------------------------===// 7945 7946 // 2. Copy and widen instructions from the old loop into the new loop. 7947 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7948 ILV.getOrCreateVectorTripCount(nullptr), 7949 CanonicalIVStartValue, State); 7950 BestVPlan.execute(&State); 7951 7952 // Keep all loop hints from the original loop on the vector loop (we'll 7953 // replace the vectorizer-specific hints below). 7954 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7955 7956 Optional<MDNode *> VectorizedLoopID = 7957 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7958 LLVMLoopVectorizeFollowupVectorized}); 7959 7960 Loop *L = LI->getLoopFor(State.CFG.PrevBB); 7961 if (VectorizedLoopID.hasValue()) 7962 L->setLoopID(VectorizedLoopID.getValue()); 7963 else { 7964 // Keep all loop hints from the original loop on the vector loop (we'll 7965 // replace the vectorizer-specific hints below). 7966 if (MDNode *LID = OrigLoop->getLoopID()) 7967 L->setLoopID(LID); 7968 7969 LoopVectorizeHints Hints(L, true, *ORE); 7970 Hints.setAlreadyVectorized(); 7971 } 7972 7973 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7974 // predication, updating analyses. 7975 ILV.fixVectorizedLoop(State); 7976 7977 ILV.printDebugTracesAtEnd(); 7978 } 7979 7980 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7981 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7982 for (const auto &Plan : VPlans) 7983 if (PrintVPlansInDotFormat) 7984 Plan->printDOT(O); 7985 else 7986 Plan->print(O); 7987 } 7988 #endif 7989 7990 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7991 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7992 7993 // We create new control-flow for the vectorized loop, so the original exit 7994 // conditions will be dead after vectorization if it's only used by the 7995 // terminator 7996 SmallVector<BasicBlock*> ExitingBlocks; 7997 OrigLoop->getExitingBlocks(ExitingBlocks); 7998 for (auto *BB : ExitingBlocks) { 7999 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8000 if (!Cmp || !Cmp->hasOneUse()) 8001 continue; 8002 8003 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8004 if (!DeadInstructions.insert(Cmp).second) 8005 continue; 8006 8007 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8008 // TODO: can recurse through operands in general 8009 for (Value *Op : Cmp->operands()) { 8010 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8011 DeadInstructions.insert(cast<Instruction>(Op)); 8012 } 8013 } 8014 8015 // We create new "steps" for induction variable updates to which the original 8016 // induction variables map. An original update instruction will be dead if 8017 // all its users except the induction variable are dead. 8018 auto *Latch = OrigLoop->getLoopLatch(); 8019 for (auto &Induction : Legal->getInductionVars()) { 8020 PHINode *Ind = Induction.first; 8021 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8022 8023 // If the tail is to be folded by masking, the primary induction variable, 8024 // if exists, isn't dead: it will be used for masking. Don't kill it. 8025 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8026 continue; 8027 8028 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8029 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8030 })) 8031 DeadInstructions.insert(IndUpdate); 8032 } 8033 } 8034 8035 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8036 8037 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8038 SmallVector<Metadata *, 4> MDs; 8039 // Reserve first location for self reference to the LoopID metadata node. 8040 MDs.push_back(nullptr); 8041 bool IsUnrollMetadata = false; 8042 MDNode *LoopID = L->getLoopID(); 8043 if (LoopID) { 8044 // First find existing loop unrolling disable metadata. 8045 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8046 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8047 if (MD) { 8048 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8049 IsUnrollMetadata = 8050 S && S->getString().startswith("llvm.loop.unroll.disable"); 8051 } 8052 MDs.push_back(LoopID->getOperand(i)); 8053 } 8054 } 8055 8056 if (!IsUnrollMetadata) { 8057 // Add runtime unroll disable metadata. 8058 LLVMContext &Context = L->getHeader()->getContext(); 8059 SmallVector<Metadata *, 1> DisableOperands; 8060 DisableOperands.push_back( 8061 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8062 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8063 MDs.push_back(DisableNode); 8064 MDNode *NewLoopID = MDNode::get(Context, MDs); 8065 // Set operand 0 to refer to the loop id itself. 8066 NewLoopID->replaceOperandWith(0, NewLoopID); 8067 L->setLoopID(NewLoopID); 8068 } 8069 } 8070 8071 //===--------------------------------------------------------------------===// 8072 // EpilogueVectorizerMainLoop 8073 //===--------------------------------------------------------------------===// 8074 8075 /// This function is partially responsible for generating the control flow 8076 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8077 std::pair<BasicBlock *, Value *> 8078 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8079 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8080 Loop *Lp = createVectorLoopSkeleton(""); 8081 8082 // Generate the code to check the minimum iteration count of the vector 8083 // epilogue (see below). 8084 EPI.EpilogueIterationCountCheck = 8085 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8086 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8087 8088 // Generate the code to check any assumptions that we've made for SCEV 8089 // expressions. 8090 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8091 8092 // Generate the code that checks at runtime if arrays overlap. We put the 8093 // checks into a separate block to make the more common case of few elements 8094 // faster. 8095 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8096 8097 // Generate the iteration count check for the main loop, *after* the check 8098 // for the epilogue loop, so that the path-length is shorter for the case 8099 // that goes directly through the vector epilogue. The longer-path length for 8100 // the main loop is compensated for, by the gain from vectorizing the larger 8101 // trip count. Note: the branch will get updated later on when we vectorize 8102 // the epilogue. 8103 EPI.MainLoopIterationCountCheck = 8104 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8105 8106 // Generate the induction variable. 8107 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8108 EPI.VectorTripCount = CountRoundDown; 8109 createHeaderBranch(Lp); 8110 8111 // Skip induction resume value creation here because they will be created in 8112 // the second pass. If we created them here, they wouldn't be used anyway, 8113 // because the vplan in the second pass still contains the inductions from the 8114 // original loop. 8115 8116 return {completeLoopSkeleton(Lp, OrigLoopID), nullptr}; 8117 } 8118 8119 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8120 LLVM_DEBUG({ 8121 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8122 << "Main Loop VF:" << EPI.MainLoopVF 8123 << ", Main Loop UF:" << EPI.MainLoopUF 8124 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8125 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8126 }); 8127 } 8128 8129 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8130 DEBUG_WITH_TYPE(VerboseDebug, { 8131 dbgs() << "intermediate fn:\n" 8132 << *OrigLoop->getHeader()->getParent() << "\n"; 8133 }); 8134 } 8135 8136 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8137 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8138 assert(L && "Expected valid Loop."); 8139 assert(Bypass && "Expected valid bypass basic block."); 8140 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8141 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8142 Value *Count = getOrCreateTripCount(L); 8143 // Reuse existing vector loop preheader for TC checks. 8144 // Note that new preheader block is generated for vector loop. 8145 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8146 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8147 8148 // Generate code to check if the loop's trip count is less than VF * UF of the 8149 // main vector loop. 8150 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8151 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8152 8153 Value *CheckMinIters = Builder.CreateICmp( 8154 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 8155 "min.iters.check"); 8156 8157 if (!ForEpilogue) 8158 TCCheckBlock->setName("vector.main.loop.iter.check"); 8159 8160 // Create new preheader for vector loop. 8161 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8162 DT, LI, nullptr, "vector.ph"); 8163 8164 if (ForEpilogue) { 8165 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8166 DT->getNode(Bypass)->getIDom()) && 8167 "TC check is expected to dominate Bypass"); 8168 8169 // Update dominator for Bypass & LoopExit. 8170 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8171 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8172 // For loops with multiple exits, there's no edge from the middle block 8173 // to exit blocks (as the epilogue must run) and thus no need to update 8174 // the immediate dominator of the exit blocks. 8175 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8176 8177 LoopBypassBlocks.push_back(TCCheckBlock); 8178 8179 // Save the trip count so we don't have to regenerate it in the 8180 // vec.epilog.iter.check. This is safe to do because the trip count 8181 // generated here dominates the vector epilog iter check. 8182 EPI.TripCount = Count; 8183 } 8184 8185 ReplaceInstWithInst( 8186 TCCheckBlock->getTerminator(), 8187 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8188 8189 return TCCheckBlock; 8190 } 8191 8192 //===--------------------------------------------------------------------===// 8193 // EpilogueVectorizerEpilogueLoop 8194 //===--------------------------------------------------------------------===// 8195 8196 /// This function is partially responsible for generating the control flow 8197 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8198 std::pair<BasicBlock *, Value *> 8199 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8200 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8201 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8202 8203 // Now, compare the remaining count and if there aren't enough iterations to 8204 // execute the vectorized epilogue skip to the scalar part. 8205 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8206 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8207 LoopVectorPreHeader = 8208 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8209 LI, nullptr, "vec.epilog.ph"); 8210 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8211 VecEpilogueIterationCountCheck); 8212 8213 // Adjust the control flow taking the state info from the main loop 8214 // vectorization into account. 8215 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8216 "expected this to be saved from the previous pass."); 8217 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8218 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8219 8220 DT->changeImmediateDominator(LoopVectorPreHeader, 8221 EPI.MainLoopIterationCountCheck); 8222 8223 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8224 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8225 8226 if (EPI.SCEVSafetyCheck) 8227 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8228 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8229 if (EPI.MemSafetyCheck) 8230 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8231 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8232 8233 DT->changeImmediateDominator( 8234 VecEpilogueIterationCountCheck, 8235 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8236 8237 DT->changeImmediateDominator(LoopScalarPreHeader, 8238 EPI.EpilogueIterationCountCheck); 8239 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8240 // If there is an epilogue which must run, there's no edge from the 8241 // middle block to exit blocks and thus no need to update the immediate 8242 // dominator of the exit blocks. 8243 DT->changeImmediateDominator(LoopExitBlock, 8244 EPI.EpilogueIterationCountCheck); 8245 8246 // Keep track of bypass blocks, as they feed start values to the induction 8247 // phis in the scalar loop preheader. 8248 if (EPI.SCEVSafetyCheck) 8249 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8250 if (EPI.MemSafetyCheck) 8251 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8252 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8253 8254 // Generate a resume induction for the vector epilogue and put it in the 8255 // vector epilogue preheader 8256 Type *IdxTy = Legal->getWidestInductionType(); 8257 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8258 LoopVectorPreHeader->getFirstNonPHI()); 8259 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8260 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8261 EPI.MainLoopIterationCountCheck); 8262 8263 // Generate the induction variable. 8264 createHeaderBranch(Lp); 8265 8266 // Generate induction resume values. These variables save the new starting 8267 // indexes for the scalar loop. They are used to test if there are any tail 8268 // iterations left once the vector loop has completed. 8269 // Note that when the vectorized epilogue is skipped due to iteration count 8270 // check, then the resume value for the induction variable comes from 8271 // the trip count of the main vector loop, hence passing the AdditionalBypass 8272 // argument. 8273 createInductionResumeValues(Lp, {VecEpilogueIterationCountCheck, 8274 EPI.VectorTripCount} /* AdditionalBypass */); 8275 8276 AddRuntimeUnrollDisableMetaData(Lp); 8277 return {completeLoopSkeleton(Lp, OrigLoopID), EPResumeVal}; 8278 } 8279 8280 BasicBlock * 8281 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8282 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8283 8284 assert(EPI.TripCount && 8285 "Expected trip count to have been safed in the first pass."); 8286 assert( 8287 (!isa<Instruction>(EPI.TripCount) || 8288 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8289 "saved trip count does not dominate insertion point."); 8290 Value *TC = EPI.TripCount; 8291 IRBuilder<> Builder(Insert->getTerminator()); 8292 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8293 8294 // Generate code to check if the loop's trip count is less than VF * UF of the 8295 // vector epilogue loop. 8296 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8297 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8298 8299 Value *CheckMinIters = 8300 Builder.CreateICmp(P, Count, 8301 createStepForVF(Builder, Count->getType(), 8302 EPI.EpilogueVF, EPI.EpilogueUF), 8303 "min.epilog.iters.check"); 8304 8305 ReplaceInstWithInst( 8306 Insert->getTerminator(), 8307 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8308 8309 LoopBypassBlocks.push_back(Insert); 8310 return Insert; 8311 } 8312 8313 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8314 LLVM_DEBUG({ 8315 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8316 << "Epilogue Loop VF:" << EPI.EpilogueVF 8317 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8318 }); 8319 } 8320 8321 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8322 DEBUG_WITH_TYPE(VerboseDebug, { 8323 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 8324 }); 8325 } 8326 8327 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8328 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8329 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8330 bool PredicateAtRangeStart = Predicate(Range.Start); 8331 8332 for (ElementCount TmpVF = Range.Start * 2; 8333 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8334 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8335 Range.End = TmpVF; 8336 break; 8337 } 8338 8339 return PredicateAtRangeStart; 8340 } 8341 8342 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8343 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8344 /// of VF's starting at a given VF and extending it as much as possible. Each 8345 /// vectorization decision can potentially shorten this sub-range during 8346 /// buildVPlan(). 8347 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8348 ElementCount MaxVF) { 8349 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8350 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8351 VFRange SubRange = {VF, MaxVFPlusOne}; 8352 VPlans.push_back(buildVPlan(SubRange)); 8353 VF = SubRange.End; 8354 } 8355 } 8356 8357 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8358 VPlanPtr &Plan) { 8359 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8360 8361 // Look for cached value. 8362 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8363 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8364 if (ECEntryIt != EdgeMaskCache.end()) 8365 return ECEntryIt->second; 8366 8367 VPValue *SrcMask = createBlockInMask(Src, Plan); 8368 8369 // The terminator has to be a branch inst! 8370 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8371 assert(BI && "Unexpected terminator found"); 8372 8373 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8374 return EdgeMaskCache[Edge] = SrcMask; 8375 8376 // If source is an exiting block, we know the exit edge is dynamically dead 8377 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8378 // adding uses of an otherwise potentially dead instruction. 8379 if (OrigLoop->isLoopExiting(Src)) 8380 return EdgeMaskCache[Edge] = SrcMask; 8381 8382 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8383 assert(EdgeMask && "No Edge Mask found for condition"); 8384 8385 if (BI->getSuccessor(0) != Dst) 8386 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8387 8388 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8389 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8390 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8391 // The select version does not introduce new UB if SrcMask is false and 8392 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8393 VPValue *False = Plan->getOrAddVPValue( 8394 ConstantInt::getFalse(BI->getCondition()->getType())); 8395 EdgeMask = 8396 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8397 } 8398 8399 return EdgeMaskCache[Edge] = EdgeMask; 8400 } 8401 8402 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8403 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8404 8405 // Look for cached value. 8406 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8407 if (BCEntryIt != BlockMaskCache.end()) 8408 return BCEntryIt->second; 8409 8410 // All-one mask is modelled as no-mask following the convention for masked 8411 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8412 VPValue *BlockMask = nullptr; 8413 8414 if (OrigLoop->getHeader() == BB) { 8415 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8416 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8417 8418 // Introduce the early-exit compare IV <= BTC to form header block mask. 8419 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8420 // constructing the desired canonical IV in the header block as its first 8421 // non-phi instructions. 8422 assert(CM.foldTailByMasking() && "must fold the tail"); 8423 VPBasicBlock *HeaderVPBB = Plan->getEntry()->getEntryBasicBlock(); 8424 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8425 8426 VPValue *IV = nullptr; 8427 if (Legal->getPrimaryInduction()) 8428 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8429 else { 8430 auto *IVRecipe = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8431 HeaderVPBB->insert(IVRecipe, NewInsertionPoint); 8432 IV = IVRecipe; 8433 } 8434 8435 VPBuilder::InsertPointGuard Guard(Builder); 8436 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8437 if (CM.TTI.emitGetActiveLaneMask()) { 8438 VPValue *TC = Plan->getOrCreateTripCount(); 8439 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8440 } else { 8441 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8442 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8443 } 8444 return BlockMaskCache[BB] = BlockMask; 8445 } 8446 8447 // This is the block mask. We OR all incoming edges. 8448 for (auto *Predecessor : predecessors(BB)) { 8449 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8450 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8451 return BlockMaskCache[BB] = EdgeMask; 8452 8453 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8454 BlockMask = EdgeMask; 8455 continue; 8456 } 8457 8458 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8459 } 8460 8461 return BlockMaskCache[BB] = BlockMask; 8462 } 8463 8464 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8465 ArrayRef<VPValue *> Operands, 8466 VFRange &Range, 8467 VPlanPtr &Plan) { 8468 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8469 "Must be called with either a load or store"); 8470 8471 auto willWiden = [&](ElementCount VF) -> bool { 8472 if (VF.isScalar()) 8473 return false; 8474 LoopVectorizationCostModel::InstWidening Decision = 8475 CM.getWideningDecision(I, VF); 8476 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8477 "CM decision should be taken at this point."); 8478 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8479 return true; 8480 if (CM.isScalarAfterVectorization(I, VF) || 8481 CM.isProfitableToScalarize(I, VF)) 8482 return false; 8483 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8484 }; 8485 8486 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8487 return nullptr; 8488 8489 VPValue *Mask = nullptr; 8490 if (Legal->isMaskRequired(I)) 8491 Mask = createBlockInMask(I->getParent(), Plan); 8492 8493 // Determine if the pointer operand of the access is either consecutive or 8494 // reverse consecutive. 8495 LoopVectorizationCostModel::InstWidening Decision = 8496 CM.getWideningDecision(I, Range.Start); 8497 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8498 bool Consecutive = 8499 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8500 8501 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8502 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8503 Consecutive, Reverse); 8504 8505 StoreInst *Store = cast<StoreInst>(I); 8506 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8507 Mask, Consecutive, Reverse); 8508 } 8509 8510 VPWidenIntOrFpInductionRecipe * 8511 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8512 ArrayRef<VPValue *> Operands) const { 8513 // Check if this is an integer or fp induction. If so, build the recipe that 8514 // produces its scalar and vector values. 8515 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) { 8516 assert(II->getStartValue() == 8517 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8518 return new VPWidenIntOrFpInductionRecipe(Phi, Operands[0], *II); 8519 } 8520 8521 return nullptr; 8522 } 8523 8524 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8525 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8526 VPlan &Plan) const { 8527 // Optimize the special case where the source is a constant integer 8528 // induction variable. Notice that we can only optimize the 'trunc' case 8529 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8530 // (c) other casts depend on pointer size. 8531 8532 // Determine whether \p K is a truncation based on an induction variable that 8533 // can be optimized. 8534 auto isOptimizableIVTruncate = 8535 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8536 return [=](ElementCount VF) -> bool { 8537 return CM.isOptimizableIVTruncate(K, VF); 8538 }; 8539 }; 8540 8541 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8542 isOptimizableIVTruncate(I), Range)) { 8543 8544 auto *Phi = cast<PHINode>(I->getOperand(0)); 8545 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8546 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8547 return new VPWidenIntOrFpInductionRecipe(Phi, Start, II, I); 8548 } 8549 return nullptr; 8550 } 8551 8552 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8553 ArrayRef<VPValue *> Operands, 8554 VPlanPtr &Plan) { 8555 // If all incoming values are equal, the incoming VPValue can be used directly 8556 // instead of creating a new VPBlendRecipe. 8557 VPValue *FirstIncoming = Operands[0]; 8558 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8559 return FirstIncoming == Inc; 8560 })) { 8561 return Operands[0]; 8562 } 8563 8564 // We know that all PHIs in non-header blocks are converted into selects, so 8565 // we don't have to worry about the insertion order and we can just use the 8566 // builder. At this point we generate the predication tree. There may be 8567 // duplications since this is a simple recursive scan, but future 8568 // optimizations will clean it up. 8569 SmallVector<VPValue *, 2> OperandsWithMask; 8570 unsigned NumIncoming = Phi->getNumIncomingValues(); 8571 8572 for (unsigned In = 0; In < NumIncoming; In++) { 8573 VPValue *EdgeMask = 8574 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8575 assert((EdgeMask || NumIncoming == 1) && 8576 "Multiple predecessors with one having a full mask"); 8577 OperandsWithMask.push_back(Operands[In]); 8578 if (EdgeMask) 8579 OperandsWithMask.push_back(EdgeMask); 8580 } 8581 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8582 } 8583 8584 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8585 ArrayRef<VPValue *> Operands, 8586 VFRange &Range) const { 8587 8588 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8589 [this, CI](ElementCount VF) { 8590 return CM.isScalarWithPredication(CI, VF); 8591 }, 8592 Range); 8593 8594 if (IsPredicated) 8595 return nullptr; 8596 8597 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8598 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8599 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8600 ID == Intrinsic::pseudoprobe || 8601 ID == Intrinsic::experimental_noalias_scope_decl)) 8602 return nullptr; 8603 8604 auto willWiden = [&](ElementCount VF) -> bool { 8605 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8606 // The following case may be scalarized depending on the VF. 8607 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8608 // version of the instruction. 8609 // Is it beneficial to perform intrinsic call compared to lib call? 8610 bool NeedToScalarize = false; 8611 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8612 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8613 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8614 return UseVectorIntrinsic || !NeedToScalarize; 8615 }; 8616 8617 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8618 return nullptr; 8619 8620 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8621 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8622 } 8623 8624 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8625 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8626 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8627 // Instruction should be widened, unless it is scalar after vectorization, 8628 // scalarization is profitable or it is predicated. 8629 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8630 return CM.isScalarAfterVectorization(I, VF) || 8631 CM.isProfitableToScalarize(I, VF) || 8632 CM.isScalarWithPredication(I, VF); 8633 }; 8634 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8635 Range); 8636 } 8637 8638 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8639 ArrayRef<VPValue *> Operands) const { 8640 auto IsVectorizableOpcode = [](unsigned Opcode) { 8641 switch (Opcode) { 8642 case Instruction::Add: 8643 case Instruction::And: 8644 case Instruction::AShr: 8645 case Instruction::BitCast: 8646 case Instruction::FAdd: 8647 case Instruction::FCmp: 8648 case Instruction::FDiv: 8649 case Instruction::FMul: 8650 case Instruction::FNeg: 8651 case Instruction::FPExt: 8652 case Instruction::FPToSI: 8653 case Instruction::FPToUI: 8654 case Instruction::FPTrunc: 8655 case Instruction::FRem: 8656 case Instruction::FSub: 8657 case Instruction::ICmp: 8658 case Instruction::IntToPtr: 8659 case Instruction::LShr: 8660 case Instruction::Mul: 8661 case Instruction::Or: 8662 case Instruction::PtrToInt: 8663 case Instruction::SDiv: 8664 case Instruction::Select: 8665 case Instruction::SExt: 8666 case Instruction::Shl: 8667 case Instruction::SIToFP: 8668 case Instruction::SRem: 8669 case Instruction::Sub: 8670 case Instruction::Trunc: 8671 case Instruction::UDiv: 8672 case Instruction::UIToFP: 8673 case Instruction::URem: 8674 case Instruction::Xor: 8675 case Instruction::ZExt: 8676 return true; 8677 } 8678 return false; 8679 }; 8680 8681 if (!IsVectorizableOpcode(I->getOpcode())) 8682 return nullptr; 8683 8684 // Success: widen this instruction. 8685 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8686 } 8687 8688 void VPRecipeBuilder::fixHeaderPhis() { 8689 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8690 for (VPHeaderPHIRecipe *R : PhisToFix) { 8691 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8692 VPRecipeBase *IncR = 8693 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8694 R->addOperand(IncR->getVPSingleValue()); 8695 } 8696 } 8697 8698 VPBasicBlock *VPRecipeBuilder::handleReplication( 8699 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8700 VPlanPtr &Plan) { 8701 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8702 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8703 Range); 8704 8705 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8706 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8707 Range); 8708 8709 // Even if the instruction is not marked as uniform, there are certain 8710 // intrinsic calls that can be effectively treated as such, so we check for 8711 // them here. Conservatively, we only do this for scalable vectors, since 8712 // for fixed-width VFs we can always fall back on full scalarization. 8713 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8714 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8715 case Intrinsic::assume: 8716 case Intrinsic::lifetime_start: 8717 case Intrinsic::lifetime_end: 8718 // For scalable vectors if one of the operands is variant then we still 8719 // want to mark as uniform, which will generate one instruction for just 8720 // the first lane of the vector. We can't scalarize the call in the same 8721 // way as for fixed-width vectors because we don't know how many lanes 8722 // there are. 8723 // 8724 // The reasons for doing it this way for scalable vectors are: 8725 // 1. For the assume intrinsic generating the instruction for the first 8726 // lane is still be better than not generating any at all. For 8727 // example, the input may be a splat across all lanes. 8728 // 2. For the lifetime start/end intrinsics the pointer operand only 8729 // does anything useful when the input comes from a stack object, 8730 // which suggests it should always be uniform. For non-stack objects 8731 // the effect is to poison the object, which still allows us to 8732 // remove the call. 8733 IsUniform = true; 8734 break; 8735 default: 8736 break; 8737 } 8738 } 8739 8740 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8741 IsUniform, IsPredicated); 8742 setRecipe(I, Recipe); 8743 Plan->addVPValue(I, Recipe); 8744 8745 // Find if I uses a predicated instruction. If so, it will use its scalar 8746 // value. Avoid hoisting the insert-element which packs the scalar value into 8747 // a vector value, as that happens iff all users use the vector value. 8748 for (VPValue *Op : Recipe->operands()) { 8749 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8750 if (!PredR) 8751 continue; 8752 auto *RepR = 8753 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8754 assert(RepR->isPredicated() && 8755 "expected Replicate recipe to be predicated"); 8756 RepR->setAlsoPack(false); 8757 } 8758 8759 // Finalize the recipe for Instr, first if it is not predicated. 8760 if (!IsPredicated) { 8761 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8762 VPBB->appendRecipe(Recipe); 8763 return VPBB; 8764 } 8765 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8766 8767 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8768 assert(SingleSucc && "VPBB must have a single successor when handling " 8769 "predicated replication."); 8770 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8771 // Record predicated instructions for above packing optimizations. 8772 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8773 VPBlockUtils::insertBlockAfter(Region, VPBB); 8774 auto *RegSucc = new VPBasicBlock(); 8775 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8776 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8777 return RegSucc; 8778 } 8779 8780 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8781 VPRecipeBase *PredRecipe, 8782 VPlanPtr &Plan) { 8783 // Instructions marked for predication are replicated and placed under an 8784 // if-then construct to prevent side-effects. 8785 8786 // Generate recipes to compute the block mask for this region. 8787 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8788 8789 // Build the triangular if-then region. 8790 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8791 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8792 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8793 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8794 auto *PHIRecipe = Instr->getType()->isVoidTy() 8795 ? nullptr 8796 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8797 if (PHIRecipe) { 8798 Plan->removeVPValueFor(Instr); 8799 Plan->addVPValue(Instr, PHIRecipe); 8800 } 8801 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8802 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8803 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8804 8805 // Note: first set Entry as region entry and then connect successors starting 8806 // from it in order, to propagate the "parent" of each VPBasicBlock. 8807 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8808 VPBlockUtils::connectBlocks(Pred, Exit); 8809 8810 return Region; 8811 } 8812 8813 VPRecipeOrVPValueTy 8814 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8815 ArrayRef<VPValue *> Operands, 8816 VFRange &Range, VPlanPtr &Plan) { 8817 // First, check for specific widening recipes that deal with calls, memory 8818 // operations, inductions and Phi nodes. 8819 if (auto *CI = dyn_cast<CallInst>(Instr)) 8820 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8821 8822 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8823 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8824 8825 VPRecipeBase *Recipe; 8826 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8827 if (Phi->getParent() != OrigLoop->getHeader()) 8828 return tryToBlend(Phi, Operands, Plan); 8829 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 8830 return toVPRecipeResult(Recipe); 8831 8832 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8833 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 8834 VPValue *StartV = Operands[0]; 8835 if (Legal->isReductionVariable(Phi)) { 8836 const RecurrenceDescriptor &RdxDesc = 8837 Legal->getReductionVars().find(Phi)->second; 8838 assert(RdxDesc.getRecurrenceStartValue() == 8839 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8840 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8841 CM.isInLoopReduction(Phi), 8842 CM.useOrderedReductions(RdxDesc)); 8843 } else { 8844 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8845 } 8846 8847 // Record the incoming value from the backedge, so we can add the incoming 8848 // value from the backedge after all recipes have been created. 8849 recordRecipeOf(cast<Instruction>( 8850 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8851 PhisToFix.push_back(PhiRecipe); 8852 } else { 8853 // TODO: record backedge value for remaining pointer induction phis. 8854 assert(Phi->getType()->isPointerTy() && 8855 "only pointer phis should be handled here"); 8856 assert(Legal->getInductionVars().count(Phi) && 8857 "Not an induction variable"); 8858 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8859 VPValue *Start = Plan->getOrAddVPValue(II.getStartValue()); 8860 PhiRecipe = new VPWidenPHIRecipe(Phi, Start); 8861 } 8862 8863 return toVPRecipeResult(PhiRecipe); 8864 } 8865 8866 if (isa<TruncInst>(Instr) && 8867 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8868 Range, *Plan))) 8869 return toVPRecipeResult(Recipe); 8870 8871 if (!shouldWiden(Instr, Range)) 8872 return nullptr; 8873 8874 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8875 return toVPRecipeResult(new VPWidenGEPRecipe( 8876 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8877 8878 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8879 bool InvariantCond = 8880 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8881 return toVPRecipeResult(new VPWidenSelectRecipe( 8882 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8883 } 8884 8885 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8886 } 8887 8888 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8889 ElementCount MaxVF) { 8890 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8891 8892 // Collect instructions from the original loop that will become trivially dead 8893 // in the vectorized loop. We don't need to vectorize these instructions. For 8894 // example, original induction update instructions can become dead because we 8895 // separately emit induction "steps" when generating code for the new loop. 8896 // Similarly, we create a new latch condition when setting up the structure 8897 // of the new loop, so the old one can become dead. 8898 SmallPtrSet<Instruction *, 4> DeadInstructions; 8899 collectTriviallyDeadInstructions(DeadInstructions); 8900 8901 // Add assume instructions we need to drop to DeadInstructions, to prevent 8902 // them from being added to the VPlan. 8903 // TODO: We only need to drop assumes in blocks that get flattend. If the 8904 // control flow is preserved, we should keep them. 8905 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8906 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8907 8908 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8909 // Dead instructions do not need sinking. Remove them from SinkAfter. 8910 for (Instruction *I : DeadInstructions) 8911 SinkAfter.erase(I); 8912 8913 // Cannot sink instructions after dead instructions (there won't be any 8914 // recipes for them). Instead, find the first non-dead previous instruction. 8915 for (auto &P : Legal->getSinkAfter()) { 8916 Instruction *SinkTarget = P.second; 8917 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8918 (void)FirstInst; 8919 while (DeadInstructions.contains(SinkTarget)) { 8920 assert( 8921 SinkTarget != FirstInst && 8922 "Must find a live instruction (at least the one feeding the " 8923 "first-order recurrence PHI) before reaching beginning of the block"); 8924 SinkTarget = SinkTarget->getPrevNode(); 8925 assert(SinkTarget != P.first && 8926 "sink source equals target, no sinking required"); 8927 } 8928 P.second = SinkTarget; 8929 } 8930 8931 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8932 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8933 VFRange SubRange = {VF, MaxVFPlusOne}; 8934 VPlans.push_back( 8935 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8936 VF = SubRange.End; 8937 } 8938 } 8939 8940 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8941 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8942 // BranchOnCount VPInstruction to the latch. 8943 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8944 bool HasNUW, bool IsVPlanNative) { 8945 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8946 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8947 8948 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8949 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8950 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8951 if (IsVPlanNative) 8952 Header = cast<VPBasicBlock>(Header->getSingleSuccessor()); 8953 Header->insert(CanonicalIVPHI, Header->begin()); 8954 8955 auto *CanonicalIVIncrement = 8956 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8957 : VPInstruction::CanonicalIVIncrement, 8958 {CanonicalIVPHI}, DL); 8959 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8960 8961 VPBasicBlock *EB = TopRegion->getExitBasicBlock(); 8962 if (IsVPlanNative) { 8963 EB = cast<VPBasicBlock>(EB->getSinglePredecessor()); 8964 EB->setCondBit(nullptr); 8965 } 8966 EB->appendRecipe(CanonicalIVIncrement); 8967 8968 auto *BranchOnCount = 8969 new VPInstruction(VPInstruction::BranchOnCount, 8970 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8971 EB->appendRecipe(BranchOnCount); 8972 } 8973 8974 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8975 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8976 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8977 8978 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8979 8980 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8981 8982 // --------------------------------------------------------------------------- 8983 // Pre-construction: record ingredients whose recipes we'll need to further 8984 // process after constructing the initial VPlan. 8985 // --------------------------------------------------------------------------- 8986 8987 // Mark instructions we'll need to sink later and their targets as 8988 // ingredients whose recipe we'll need to record. 8989 for (auto &Entry : SinkAfter) { 8990 RecipeBuilder.recordRecipeOf(Entry.first); 8991 RecipeBuilder.recordRecipeOf(Entry.second); 8992 } 8993 for (auto &Reduction : CM.getInLoopReductionChains()) { 8994 PHINode *Phi = Reduction.first; 8995 RecurKind Kind = 8996 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8997 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8998 8999 RecipeBuilder.recordRecipeOf(Phi); 9000 for (auto &R : ReductionOperations) { 9001 RecipeBuilder.recordRecipeOf(R); 9002 // For min/max reducitons, where we have a pair of icmp/select, we also 9003 // need to record the ICmp recipe, so it can be removed later. 9004 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9005 "Only min/max recurrences allowed for inloop reductions"); 9006 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9007 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9008 } 9009 } 9010 9011 // For each interleave group which is relevant for this (possibly trimmed) 9012 // Range, add it to the set of groups to be later applied to the VPlan and add 9013 // placeholders for its members' Recipes which we'll be replacing with a 9014 // single VPInterleaveRecipe. 9015 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9016 auto applyIG = [IG, this](ElementCount VF) -> bool { 9017 return (VF.isVector() && // Query is illegal for VF == 1 9018 CM.getWideningDecision(IG->getInsertPos(), VF) == 9019 LoopVectorizationCostModel::CM_Interleave); 9020 }; 9021 if (!getDecisionAndClampRange(applyIG, Range)) 9022 continue; 9023 InterleaveGroups.insert(IG); 9024 for (unsigned i = 0; i < IG->getFactor(); i++) 9025 if (Instruction *Member = IG->getMember(i)) 9026 RecipeBuilder.recordRecipeOf(Member); 9027 }; 9028 9029 // --------------------------------------------------------------------------- 9030 // Build initial VPlan: Scan the body of the loop in a topological order to 9031 // visit each basic block after having visited its predecessor basic blocks. 9032 // --------------------------------------------------------------------------- 9033 9034 // Create initial VPlan skeleton, with separate header and latch blocks. 9035 VPBasicBlock *HeaderVPBB = new VPBasicBlock(); 9036 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 9037 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 9038 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 9039 auto Plan = std::make_unique<VPlan>(TopRegion); 9040 9041 Instruction *DLInst = 9042 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 9043 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 9044 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 9045 !CM.foldTailByMasking(), false); 9046 9047 // Scan the body of the loop in a topological order to visit each basic block 9048 // after having visited its predecessor basic blocks. 9049 LoopBlocksDFS DFS(OrigLoop); 9050 DFS.perform(LI); 9051 9052 VPBasicBlock *VPBB = HeaderVPBB; 9053 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 9054 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9055 // Relevant instructions from basic block BB will be grouped into VPRecipe 9056 // ingredients and fill a new VPBasicBlock. 9057 unsigned VPBBsForBB = 0; 9058 VPBB->setName(BB->getName()); 9059 Builder.setInsertPoint(VPBB); 9060 9061 // Introduce each ingredient into VPlan. 9062 // TODO: Model and preserve debug instrinsics in VPlan. 9063 for (Instruction &I : BB->instructionsWithoutDebug()) { 9064 Instruction *Instr = &I; 9065 9066 // First filter out irrelevant instructions, to ensure no recipes are 9067 // built for them. 9068 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9069 continue; 9070 9071 SmallVector<VPValue *, 4> Operands; 9072 auto *Phi = dyn_cast<PHINode>(Instr); 9073 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9074 Operands.push_back(Plan->getOrAddVPValue( 9075 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9076 } else { 9077 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9078 Operands = {OpRange.begin(), OpRange.end()}; 9079 } 9080 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9081 Instr, Operands, Range, Plan)) { 9082 // If Instr can be simplified to an existing VPValue, use it. 9083 if (RecipeOrValue.is<VPValue *>()) { 9084 auto *VPV = RecipeOrValue.get<VPValue *>(); 9085 Plan->addVPValue(Instr, VPV); 9086 // If the re-used value is a recipe, register the recipe for the 9087 // instruction, in case the recipe for Instr needs to be recorded. 9088 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9089 RecipeBuilder.setRecipe(Instr, R); 9090 continue; 9091 } 9092 // Otherwise, add the new recipe. 9093 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9094 for (auto *Def : Recipe->definedValues()) { 9095 auto *UV = Def->getUnderlyingValue(); 9096 Plan->addVPValue(UV, Def); 9097 } 9098 9099 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 9100 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 9101 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 9102 // of the header block. That can happen for truncates of induction 9103 // variables. Those recipes are moved to the phi section of the header 9104 // block after applying SinkAfter, which relies on the original 9105 // position of the trunc. 9106 assert(isa<TruncInst>(Instr)); 9107 InductionsToMove.push_back( 9108 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 9109 } 9110 RecipeBuilder.setRecipe(Instr, Recipe); 9111 VPBB->appendRecipe(Recipe); 9112 continue; 9113 } 9114 9115 // Otherwise, if all widening options failed, Instruction is to be 9116 // replicated. This may create a successor for VPBB. 9117 VPBasicBlock *NextVPBB = 9118 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9119 if (NextVPBB != VPBB) { 9120 VPBB = NextVPBB; 9121 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9122 : ""); 9123 } 9124 } 9125 9126 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 9127 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 9128 } 9129 9130 // Fold the last, empty block into its predecessor. 9131 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 9132 assert(VPBB && "expected to fold last (empty) block"); 9133 // After here, VPBB should not be used. 9134 VPBB = nullptr; 9135 9136 assert(isa<VPRegionBlock>(Plan->getEntry()) && 9137 !Plan->getEntry()->getEntryBasicBlock()->empty() && 9138 "entry block must be set to a VPRegionBlock having a non-empty entry " 9139 "VPBasicBlock"); 9140 RecipeBuilder.fixHeaderPhis(); 9141 9142 // --------------------------------------------------------------------------- 9143 // Transform initial VPlan: Apply previously taken decisions, in order, to 9144 // bring the VPlan to its final state. 9145 // --------------------------------------------------------------------------- 9146 9147 // Apply Sink-After legal constraints. 9148 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9149 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9150 if (Region && Region->isReplicator()) { 9151 assert(Region->getNumSuccessors() == 1 && 9152 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9153 assert(R->getParent()->size() == 1 && 9154 "A recipe in an original replicator region must be the only " 9155 "recipe in its block"); 9156 return Region; 9157 } 9158 return nullptr; 9159 }; 9160 for (auto &Entry : SinkAfter) { 9161 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9162 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9163 9164 auto *TargetRegion = GetReplicateRegion(Target); 9165 auto *SinkRegion = GetReplicateRegion(Sink); 9166 if (!SinkRegion) { 9167 // If the sink source is not a replicate region, sink the recipe directly. 9168 if (TargetRegion) { 9169 // The target is in a replication region, make sure to move Sink to 9170 // the block after it, not into the replication region itself. 9171 VPBasicBlock *NextBlock = 9172 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9173 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9174 } else 9175 Sink->moveAfter(Target); 9176 continue; 9177 } 9178 9179 // The sink source is in a replicate region. Unhook the region from the CFG. 9180 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9181 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9182 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9183 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9184 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9185 9186 if (TargetRegion) { 9187 // The target recipe is also in a replicate region, move the sink region 9188 // after the target region. 9189 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9190 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9191 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9192 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9193 } else { 9194 // The sink source is in a replicate region, we need to move the whole 9195 // replicate region, which should only contain a single recipe in the 9196 // main block. 9197 auto *SplitBlock = 9198 Target->getParent()->splitAt(std::next(Target->getIterator())); 9199 9200 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9201 9202 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9203 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9204 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9205 } 9206 } 9207 9208 VPlanTransforms::removeRedundantInductionCasts(*Plan); 9209 9210 // Now that sink-after is done, move induction recipes for optimized truncates 9211 // to the phi section of the header block. 9212 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 9213 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 9214 9215 // Adjust the recipes for any inloop reductions. 9216 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExit()), Plan, 9217 RecipeBuilder, Range.Start); 9218 9219 // Introduce a recipe to combine the incoming and previous values of a 9220 // first-order recurrence. 9221 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9222 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9223 if (!RecurPhi) 9224 continue; 9225 9226 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9227 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 9228 auto *Region = GetReplicateRegion(PrevRecipe); 9229 if (Region) 9230 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9231 if (Region || PrevRecipe->isPhi()) 9232 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 9233 else 9234 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 9235 9236 auto *RecurSplice = cast<VPInstruction>( 9237 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9238 {RecurPhi, RecurPhi->getBackedgeValue()})); 9239 9240 RecurPhi->replaceAllUsesWith(RecurSplice); 9241 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9242 // all users. 9243 RecurSplice->setOperand(0, RecurPhi); 9244 } 9245 9246 // Interleave memory: for each Interleave Group we marked earlier as relevant 9247 // for this VPlan, replace the Recipes widening its memory instructions with a 9248 // single VPInterleaveRecipe at its insertion point. 9249 for (auto IG : InterleaveGroups) { 9250 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9251 RecipeBuilder.getRecipe(IG->getInsertPos())); 9252 SmallVector<VPValue *, 4> StoredValues; 9253 for (unsigned i = 0; i < IG->getFactor(); ++i) 9254 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9255 auto *StoreR = 9256 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9257 StoredValues.push_back(StoreR->getStoredValue()); 9258 } 9259 9260 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9261 Recipe->getMask()); 9262 VPIG->insertBefore(Recipe); 9263 unsigned J = 0; 9264 for (unsigned i = 0; i < IG->getFactor(); ++i) 9265 if (Instruction *Member = IG->getMember(i)) { 9266 if (!Member->getType()->isVoidTy()) { 9267 VPValue *OriginalV = Plan->getVPValue(Member); 9268 Plan->removeVPValueFor(Member); 9269 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9270 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9271 J++; 9272 } 9273 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9274 } 9275 } 9276 9277 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9278 // in ways that accessing values using original IR values is incorrect. 9279 Plan->disableValue2VPValue(); 9280 9281 VPlanTransforms::sinkScalarOperands(*Plan); 9282 VPlanTransforms::mergeReplicateRegions(*Plan); 9283 9284 std::string PlanName; 9285 raw_string_ostream RSO(PlanName); 9286 ElementCount VF = Range.Start; 9287 Plan->addVF(VF); 9288 RSO << "Initial VPlan for VF={" << VF; 9289 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9290 Plan->addVF(VF); 9291 RSO << "," << VF; 9292 } 9293 RSO << "},UF>=1"; 9294 RSO.flush(); 9295 Plan->setName(PlanName); 9296 9297 // Fold Exit block into its predecessor if possible. 9298 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9299 // VPBasicBlock as exit. 9300 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExit()); 9301 9302 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9303 return Plan; 9304 } 9305 9306 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9307 // Outer loop handling: They may require CFG and instruction level 9308 // transformations before even evaluating whether vectorization is profitable. 9309 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9310 // the vectorization pipeline. 9311 assert(!OrigLoop->isInnermost()); 9312 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9313 9314 // Create new empty VPlan 9315 auto Plan = std::make_unique<VPlan>(); 9316 9317 // Build hierarchical CFG 9318 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9319 HCFGBuilder.buildHierarchicalCFG(); 9320 9321 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9322 VF *= 2) 9323 Plan->addVF(VF); 9324 9325 if (EnableVPlanPredication) { 9326 VPlanPredicator VPP(*Plan); 9327 VPP.predicate(); 9328 9329 // Avoid running transformation to recipes until masked code generation in 9330 // VPlan-native path is in place. 9331 return Plan; 9332 } 9333 9334 SmallPtrSet<Instruction *, 1> DeadInstructions; 9335 VPlanTransforms::VPInstructionsToVPRecipes( 9336 OrigLoop, Plan, 9337 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9338 DeadInstructions, *PSE.getSE()); 9339 9340 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9341 true, true); 9342 return Plan; 9343 } 9344 9345 // Adjust the recipes for reductions. For in-loop reductions the chain of 9346 // instructions leading from the loop exit instr to the phi need to be converted 9347 // to reductions, with one operand being vector and the other being the scalar 9348 // reduction chain. For other reductions, a select is introduced between the phi 9349 // and live-out recipes when folding the tail. 9350 void LoopVectorizationPlanner::adjustRecipesForReductions( 9351 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9352 ElementCount MinVF) { 9353 for (auto &Reduction : CM.getInLoopReductionChains()) { 9354 PHINode *Phi = Reduction.first; 9355 const RecurrenceDescriptor &RdxDesc = 9356 Legal->getReductionVars().find(Phi)->second; 9357 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9358 9359 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9360 continue; 9361 9362 // ReductionOperations are orders top-down from the phi's use to the 9363 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9364 // which of the two operands will remain scalar and which will be reduced. 9365 // For minmax the chain will be the select instructions. 9366 Instruction *Chain = Phi; 9367 for (Instruction *R : ReductionOperations) { 9368 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9369 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9370 9371 VPValue *ChainOp = Plan->getVPValue(Chain); 9372 unsigned FirstOpId; 9373 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9374 "Only min/max recurrences allowed for inloop reductions"); 9375 // Recognize a call to the llvm.fmuladd intrinsic. 9376 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9377 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9378 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9379 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9380 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9381 "Expected to replace a VPWidenSelectSC"); 9382 FirstOpId = 1; 9383 } else { 9384 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9385 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9386 "Expected to replace a VPWidenSC"); 9387 FirstOpId = 0; 9388 } 9389 unsigned VecOpId = 9390 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9391 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9392 9393 auto *CondOp = CM.foldTailByMasking() 9394 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9395 : nullptr; 9396 9397 if (IsFMulAdd) { 9398 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9399 // need to create an fmul recipe to use as the vector operand for the 9400 // fadd reduction. 9401 VPInstruction *FMulRecipe = new VPInstruction( 9402 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9403 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9404 WidenRecipe->getParent()->insert(FMulRecipe, 9405 WidenRecipe->getIterator()); 9406 VecOp = FMulRecipe; 9407 } 9408 VPReductionRecipe *RedRecipe = 9409 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9410 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9411 Plan->removeVPValueFor(R); 9412 Plan->addVPValue(R, RedRecipe); 9413 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9414 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9415 WidenRecipe->eraseFromParent(); 9416 9417 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9418 VPRecipeBase *CompareRecipe = 9419 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9420 assert(isa<VPWidenRecipe>(CompareRecipe) && 9421 "Expected to replace a VPWidenSC"); 9422 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9423 "Expected no remaining users"); 9424 CompareRecipe->eraseFromParent(); 9425 } 9426 Chain = R; 9427 } 9428 } 9429 9430 // If tail is folded by masking, introduce selects between the phi 9431 // and the live-out instruction of each reduction, at the beginning of the 9432 // dedicated latch block. 9433 if (CM.foldTailByMasking()) { 9434 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9435 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9436 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9437 if (!PhiR || PhiR->isInLoop()) 9438 continue; 9439 VPValue *Cond = 9440 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9441 VPValue *Red = PhiR->getBackedgeValue(); 9442 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9443 "reduction recipe must be defined before latch"); 9444 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9445 } 9446 } 9447 } 9448 9449 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9450 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9451 VPSlotTracker &SlotTracker) const { 9452 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9453 IG->getInsertPos()->printAsOperand(O, false); 9454 O << ", "; 9455 getAddr()->printAsOperand(O, SlotTracker); 9456 VPValue *Mask = getMask(); 9457 if (Mask) { 9458 O << ", "; 9459 Mask->printAsOperand(O, SlotTracker); 9460 } 9461 9462 unsigned OpIdx = 0; 9463 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9464 if (!IG->getMember(i)) 9465 continue; 9466 if (getNumStoreOperands() > 0) { 9467 O << "\n" << Indent << " store "; 9468 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9469 O << " to index " << i; 9470 } else { 9471 O << "\n" << Indent << " "; 9472 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9473 O << " = load from index " << i; 9474 } 9475 ++OpIdx; 9476 } 9477 } 9478 #endif 9479 9480 void VPWidenCallRecipe::execute(VPTransformState &State) { 9481 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9482 *this, State); 9483 } 9484 9485 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9486 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9487 State.ILV->setDebugLocFromInst(&I); 9488 9489 // The condition can be loop invariant but still defined inside the 9490 // loop. This means that we can't just use the original 'cond' value. 9491 // We have to take the 'vectorized' value and pick the first lane. 9492 // Instcombine will make this a no-op. 9493 auto *InvarCond = 9494 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9495 9496 for (unsigned Part = 0; Part < State.UF; ++Part) { 9497 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9498 Value *Op0 = State.get(getOperand(1), Part); 9499 Value *Op1 = State.get(getOperand(2), Part); 9500 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9501 State.set(this, Sel, Part); 9502 State.ILV->addMetadata(Sel, &I); 9503 } 9504 } 9505 9506 void VPWidenRecipe::execute(VPTransformState &State) { 9507 auto &I = *cast<Instruction>(getUnderlyingValue()); 9508 auto &Builder = State.Builder; 9509 switch (I.getOpcode()) { 9510 case Instruction::Call: 9511 case Instruction::Br: 9512 case Instruction::PHI: 9513 case Instruction::GetElementPtr: 9514 case Instruction::Select: 9515 llvm_unreachable("This instruction is handled by a different recipe."); 9516 case Instruction::UDiv: 9517 case Instruction::SDiv: 9518 case Instruction::SRem: 9519 case Instruction::URem: 9520 case Instruction::Add: 9521 case Instruction::FAdd: 9522 case Instruction::Sub: 9523 case Instruction::FSub: 9524 case Instruction::FNeg: 9525 case Instruction::Mul: 9526 case Instruction::FMul: 9527 case Instruction::FDiv: 9528 case Instruction::FRem: 9529 case Instruction::Shl: 9530 case Instruction::LShr: 9531 case Instruction::AShr: 9532 case Instruction::And: 9533 case Instruction::Or: 9534 case Instruction::Xor: { 9535 // Just widen unops and binops. 9536 State.ILV->setDebugLocFromInst(&I); 9537 9538 for (unsigned Part = 0; Part < State.UF; ++Part) { 9539 SmallVector<Value *, 2> Ops; 9540 for (VPValue *VPOp : operands()) 9541 Ops.push_back(State.get(VPOp, Part)); 9542 9543 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9544 9545 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9546 VecOp->copyIRFlags(&I); 9547 9548 // If the instruction is vectorized and was in a basic block that needed 9549 // predication, we can't propagate poison-generating flags (nuw/nsw, 9550 // exact, etc.). The control flow has been linearized and the 9551 // instruction is no longer guarded by the predicate, which could make 9552 // the flag properties to no longer hold. 9553 if (State.MayGeneratePoisonRecipes.contains(this)) 9554 VecOp->dropPoisonGeneratingFlags(); 9555 } 9556 9557 // Use this vector value for all users of the original instruction. 9558 State.set(this, V, Part); 9559 State.ILV->addMetadata(V, &I); 9560 } 9561 9562 break; 9563 } 9564 case Instruction::ICmp: 9565 case Instruction::FCmp: { 9566 // Widen compares. Generate vector compares. 9567 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9568 auto *Cmp = cast<CmpInst>(&I); 9569 State.ILV->setDebugLocFromInst(Cmp); 9570 for (unsigned Part = 0; Part < State.UF; ++Part) { 9571 Value *A = State.get(getOperand(0), Part); 9572 Value *B = State.get(getOperand(1), Part); 9573 Value *C = nullptr; 9574 if (FCmp) { 9575 // Propagate fast math flags. 9576 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9577 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9578 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9579 } else { 9580 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9581 } 9582 State.set(this, C, Part); 9583 State.ILV->addMetadata(C, &I); 9584 } 9585 9586 break; 9587 } 9588 9589 case Instruction::ZExt: 9590 case Instruction::SExt: 9591 case Instruction::FPToUI: 9592 case Instruction::FPToSI: 9593 case Instruction::FPExt: 9594 case Instruction::PtrToInt: 9595 case Instruction::IntToPtr: 9596 case Instruction::SIToFP: 9597 case Instruction::UIToFP: 9598 case Instruction::Trunc: 9599 case Instruction::FPTrunc: 9600 case Instruction::BitCast: { 9601 auto *CI = cast<CastInst>(&I); 9602 State.ILV->setDebugLocFromInst(CI); 9603 9604 /// Vectorize casts. 9605 Type *DestTy = (State.VF.isScalar()) 9606 ? CI->getType() 9607 : VectorType::get(CI->getType(), State.VF); 9608 9609 for (unsigned Part = 0; Part < State.UF; ++Part) { 9610 Value *A = State.get(getOperand(0), Part); 9611 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9612 State.set(this, Cast, Part); 9613 State.ILV->addMetadata(Cast, &I); 9614 } 9615 break; 9616 } 9617 default: 9618 // This instruction is not vectorized by simple widening. 9619 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9620 llvm_unreachable("Unhandled instruction!"); 9621 } // end of switch. 9622 } 9623 9624 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9625 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9626 // Construct a vector GEP by widening the operands of the scalar GEP as 9627 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9628 // results in a vector of pointers when at least one operand of the GEP 9629 // is vector-typed. Thus, to keep the representation compact, we only use 9630 // vector-typed operands for loop-varying values. 9631 9632 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9633 // If we are vectorizing, but the GEP has only loop-invariant operands, 9634 // the GEP we build (by only using vector-typed operands for 9635 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9636 // produce a vector of pointers, we need to either arbitrarily pick an 9637 // operand to broadcast, or broadcast a clone of the original GEP. 9638 // Here, we broadcast a clone of the original. 9639 // 9640 // TODO: If at some point we decide to scalarize instructions having 9641 // loop-invariant operands, this special case will no longer be 9642 // required. We would add the scalarization decision to 9643 // collectLoopScalars() and teach getVectorValue() to broadcast 9644 // the lane-zero scalar value. 9645 auto *Clone = State.Builder.Insert(GEP->clone()); 9646 for (unsigned Part = 0; Part < State.UF; ++Part) { 9647 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9648 State.set(this, EntryPart, Part); 9649 State.ILV->addMetadata(EntryPart, GEP); 9650 } 9651 } else { 9652 // If the GEP has at least one loop-varying operand, we are sure to 9653 // produce a vector of pointers. But if we are only unrolling, we want 9654 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9655 // produce with the code below will be scalar (if VF == 1) or vector 9656 // (otherwise). Note that for the unroll-only case, we still maintain 9657 // values in the vector mapping with initVector, as we do for other 9658 // instructions. 9659 for (unsigned Part = 0; Part < State.UF; ++Part) { 9660 // The pointer operand of the new GEP. If it's loop-invariant, we 9661 // won't broadcast it. 9662 auto *Ptr = IsPtrLoopInvariant 9663 ? State.get(getOperand(0), VPIteration(0, 0)) 9664 : State.get(getOperand(0), Part); 9665 9666 // Collect all the indices for the new GEP. If any index is 9667 // loop-invariant, we won't broadcast it. 9668 SmallVector<Value *, 4> Indices; 9669 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9670 VPValue *Operand = getOperand(I); 9671 if (IsIndexLoopInvariant[I - 1]) 9672 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9673 else 9674 Indices.push_back(State.get(Operand, Part)); 9675 } 9676 9677 // If the GEP instruction is vectorized and was in a basic block that 9678 // needed predication, we can't propagate the poison-generating 'inbounds' 9679 // flag. The control flow has been linearized and the GEP is no longer 9680 // guarded by the predicate, which could make the 'inbounds' properties to 9681 // no longer hold. 9682 bool IsInBounds = 9683 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9684 9685 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9686 // but it should be a vector, otherwise. 9687 auto *NewGEP = IsInBounds 9688 ? State.Builder.CreateInBoundsGEP( 9689 GEP->getSourceElementType(), Ptr, Indices) 9690 : State.Builder.CreateGEP(GEP->getSourceElementType(), 9691 Ptr, Indices); 9692 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9693 "NewGEP is not a pointer vector"); 9694 State.set(this, NewGEP, Part); 9695 State.ILV->addMetadata(NewGEP, GEP); 9696 } 9697 } 9698 } 9699 9700 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9701 assert(!State.Instance && "Int or FP induction being replicated."); 9702 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9703 State.ILV->widenIntOrFpInduction(IV, getInductionDescriptor(), 9704 getStartValue()->getLiveInIRValue(), 9705 getTruncInst(), this, State, CanonicalIV); 9706 } 9707 9708 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9709 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9710 State); 9711 } 9712 9713 void VPBlendRecipe::execute(VPTransformState &State) { 9714 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9715 // We know that all PHIs in non-header blocks are converted into 9716 // selects, so we don't have to worry about the insertion order and we 9717 // can just use the builder. 9718 // At this point we generate the predication tree. There may be 9719 // duplications since this is a simple recursive scan, but future 9720 // optimizations will clean it up. 9721 9722 unsigned NumIncoming = getNumIncomingValues(); 9723 9724 // Generate a sequence of selects of the form: 9725 // SELECT(Mask3, In3, 9726 // SELECT(Mask2, In2, 9727 // SELECT(Mask1, In1, 9728 // In0))) 9729 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9730 // are essentially undef are taken from In0. 9731 InnerLoopVectorizer::VectorParts Entry(State.UF); 9732 for (unsigned In = 0; In < NumIncoming; ++In) { 9733 for (unsigned Part = 0; Part < State.UF; ++Part) { 9734 // We might have single edge PHIs (blocks) - use an identity 9735 // 'select' for the first PHI operand. 9736 Value *In0 = State.get(getIncomingValue(In), Part); 9737 if (In == 0) 9738 Entry[Part] = In0; // Initialize with the first incoming value. 9739 else { 9740 // Select between the current value and the previous incoming edge 9741 // based on the incoming mask. 9742 Value *Cond = State.get(getMask(In), Part); 9743 Entry[Part] = 9744 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9745 } 9746 } 9747 } 9748 for (unsigned Part = 0; Part < State.UF; ++Part) 9749 State.set(this, Entry[Part], Part); 9750 } 9751 9752 void VPInterleaveRecipe::execute(VPTransformState &State) { 9753 assert(!State.Instance && "Interleave group being replicated."); 9754 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9755 getStoredValues(), getMask()); 9756 } 9757 9758 void VPReductionRecipe::execute(VPTransformState &State) { 9759 assert(!State.Instance && "Reduction being replicated."); 9760 Value *PrevInChain = State.get(getChainOp(), 0); 9761 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9762 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9763 // Propagate the fast-math flags carried by the underlying instruction. 9764 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9765 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9766 for (unsigned Part = 0; Part < State.UF; ++Part) { 9767 Value *NewVecOp = State.get(getVecOp(), Part); 9768 if (VPValue *Cond = getCondOp()) { 9769 Value *NewCond = State.get(Cond, Part); 9770 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9771 Value *Iden = RdxDesc->getRecurrenceIdentity( 9772 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9773 Value *IdenVec = 9774 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9775 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9776 NewVecOp = Select; 9777 } 9778 Value *NewRed; 9779 Value *NextInChain; 9780 if (IsOrdered) { 9781 if (State.VF.isVector()) 9782 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9783 PrevInChain); 9784 else 9785 NewRed = State.Builder.CreateBinOp( 9786 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9787 NewVecOp); 9788 PrevInChain = NewRed; 9789 } else { 9790 PrevInChain = State.get(getChainOp(), Part); 9791 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9792 } 9793 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9794 NextInChain = 9795 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9796 NewRed, PrevInChain); 9797 } else if (IsOrdered) 9798 NextInChain = NewRed; 9799 else 9800 NextInChain = State.Builder.CreateBinOp( 9801 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9802 PrevInChain); 9803 State.set(this, NextInChain, Part); 9804 } 9805 } 9806 9807 void VPReplicateRecipe::execute(VPTransformState &State) { 9808 if (State.Instance) { // Generate a single instance. 9809 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9810 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9811 IsPredicated, State); 9812 // Insert scalar instance packing it into a vector. 9813 if (AlsoPack && State.VF.isVector()) { 9814 // If we're constructing lane 0, initialize to start from poison. 9815 if (State.Instance->Lane.isFirstLane()) { 9816 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9817 Value *Poison = PoisonValue::get( 9818 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9819 State.set(this, Poison, State.Instance->Part); 9820 } 9821 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9822 } 9823 return; 9824 } 9825 9826 // Generate scalar instances for all VF lanes of all UF parts, unless the 9827 // instruction is uniform inwhich case generate only the first lane for each 9828 // of the UF parts. 9829 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9830 assert((!State.VF.isScalable() || IsUniform) && 9831 "Can't scalarize a scalable vector"); 9832 for (unsigned Part = 0; Part < State.UF; ++Part) 9833 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9834 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9835 VPIteration(Part, Lane), IsPredicated, 9836 State); 9837 } 9838 9839 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9840 assert(State.Instance && "Branch on Mask works only on single instance."); 9841 9842 unsigned Part = State.Instance->Part; 9843 unsigned Lane = State.Instance->Lane.getKnownLane(); 9844 9845 Value *ConditionBit = nullptr; 9846 VPValue *BlockInMask = getMask(); 9847 if (BlockInMask) { 9848 ConditionBit = State.get(BlockInMask, Part); 9849 if (ConditionBit->getType()->isVectorTy()) 9850 ConditionBit = State.Builder.CreateExtractElement( 9851 ConditionBit, State.Builder.getInt32(Lane)); 9852 } else // Block in mask is all-one. 9853 ConditionBit = State.Builder.getTrue(); 9854 9855 // Replace the temporary unreachable terminator with a new conditional branch, 9856 // whose two destinations will be set later when they are created. 9857 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9858 assert(isa<UnreachableInst>(CurrentTerminator) && 9859 "Expected to replace unreachable terminator with conditional branch."); 9860 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9861 CondBr->setSuccessor(0, nullptr); 9862 ReplaceInstWithInst(CurrentTerminator, CondBr); 9863 } 9864 9865 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9866 assert(State.Instance && "Predicated instruction PHI works per instance."); 9867 Instruction *ScalarPredInst = 9868 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9869 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9870 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9871 assert(PredicatingBB && "Predicated block has no single predecessor."); 9872 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9873 "operand must be VPReplicateRecipe"); 9874 9875 // By current pack/unpack logic we need to generate only a single phi node: if 9876 // a vector value for the predicated instruction exists at this point it means 9877 // the instruction has vector users only, and a phi for the vector value is 9878 // needed. In this case the recipe of the predicated instruction is marked to 9879 // also do that packing, thereby "hoisting" the insert-element sequence. 9880 // Otherwise, a phi node for the scalar value is needed. 9881 unsigned Part = State.Instance->Part; 9882 if (State.hasVectorValue(getOperand(0), Part)) { 9883 Value *VectorValue = State.get(getOperand(0), Part); 9884 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9885 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9886 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9887 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9888 if (State.hasVectorValue(this, Part)) 9889 State.reset(this, VPhi, Part); 9890 else 9891 State.set(this, VPhi, Part); 9892 // NOTE: Currently we need to update the value of the operand, so the next 9893 // predicated iteration inserts its generated value in the correct vector. 9894 State.reset(getOperand(0), VPhi, Part); 9895 } else { 9896 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9897 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9898 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9899 PredicatingBB); 9900 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9901 if (State.hasScalarValue(this, *State.Instance)) 9902 State.reset(this, Phi, *State.Instance); 9903 else 9904 State.set(this, Phi, *State.Instance); 9905 // NOTE: Currently we need to update the value of the operand, so the next 9906 // predicated iteration inserts its generated value in the correct vector. 9907 State.reset(getOperand(0), Phi, *State.Instance); 9908 } 9909 } 9910 9911 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9912 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9913 9914 // Attempt to issue a wide load. 9915 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9916 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9917 9918 assert((LI || SI) && "Invalid Load/Store instruction"); 9919 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9920 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9921 9922 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9923 9924 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9925 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9926 bool CreateGatherScatter = !Consecutive; 9927 9928 auto &Builder = State.Builder; 9929 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9930 bool isMaskRequired = getMask(); 9931 if (isMaskRequired) 9932 for (unsigned Part = 0; Part < State.UF; ++Part) 9933 BlockInMaskParts[Part] = State.get(getMask(), Part); 9934 9935 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9936 // Calculate the pointer for the specific unroll-part. 9937 GetElementPtrInst *PartPtr = nullptr; 9938 9939 bool InBounds = false; 9940 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9941 InBounds = gep->isInBounds(); 9942 if (Reverse) { 9943 // If the address is consecutive but reversed, then the 9944 // wide store needs to start at the last vector element. 9945 // RunTimeVF = VScale * VF.getKnownMinValue() 9946 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9947 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9948 // NumElt = -Part * RunTimeVF 9949 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9950 // LastLane = 1 - RunTimeVF 9951 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9952 PartPtr = 9953 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9954 PartPtr->setIsInBounds(InBounds); 9955 PartPtr = cast<GetElementPtrInst>( 9956 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9957 PartPtr->setIsInBounds(InBounds); 9958 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9959 BlockInMaskParts[Part] = 9960 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9961 } else { 9962 Value *Increment = 9963 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9964 PartPtr = cast<GetElementPtrInst>( 9965 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9966 PartPtr->setIsInBounds(InBounds); 9967 } 9968 9969 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9970 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9971 }; 9972 9973 // Handle Stores: 9974 if (SI) { 9975 State.ILV->setDebugLocFromInst(SI); 9976 9977 for (unsigned Part = 0; Part < State.UF; ++Part) { 9978 Instruction *NewSI = nullptr; 9979 Value *StoredVal = State.get(StoredValue, Part); 9980 if (CreateGatherScatter) { 9981 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9982 Value *VectorGep = State.get(getAddr(), Part); 9983 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9984 MaskPart); 9985 } else { 9986 if (Reverse) { 9987 // If we store to reverse consecutive memory locations, then we need 9988 // to reverse the order of elements in the stored value. 9989 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 9990 // We don't want to update the value in the map as it might be used in 9991 // another expression. So don't call resetVectorValue(StoredVal). 9992 } 9993 auto *VecPtr = 9994 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9995 if (isMaskRequired) 9996 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 9997 BlockInMaskParts[Part]); 9998 else 9999 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 10000 } 10001 State.ILV->addMetadata(NewSI, SI); 10002 } 10003 return; 10004 } 10005 10006 // Handle loads. 10007 assert(LI && "Must have a load instruction"); 10008 State.ILV->setDebugLocFromInst(LI); 10009 for (unsigned Part = 0; Part < State.UF; ++Part) { 10010 Value *NewLI; 10011 if (CreateGatherScatter) { 10012 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10013 Value *VectorGep = State.get(getAddr(), Part); 10014 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10015 nullptr, "wide.masked.gather"); 10016 State.ILV->addMetadata(NewLI, LI); 10017 } else { 10018 auto *VecPtr = 10019 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10020 if (isMaskRequired) 10021 NewLI = Builder.CreateMaskedLoad( 10022 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10023 PoisonValue::get(DataTy), "wide.masked.load"); 10024 else 10025 NewLI = 10026 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10027 10028 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10029 State.ILV->addMetadata(NewLI, LI); 10030 if (Reverse) 10031 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10032 } 10033 10034 State.set(this, NewLI, Part); 10035 } 10036 } 10037 10038 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10039 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10040 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10041 // for predication. 10042 static ScalarEpilogueLowering getScalarEpilogueLowering( 10043 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10044 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10045 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10046 LoopVectorizationLegality &LVL) { 10047 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10048 // don't look at hints or options, and don't request a scalar epilogue. 10049 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10050 // LoopAccessInfo (due to code dependency and not being able to reliably get 10051 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10052 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10053 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10054 // back to the old way and vectorize with versioning when forced. See D81345.) 10055 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10056 PGSOQueryType::IRPass) && 10057 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10058 return CM_ScalarEpilogueNotAllowedOptSize; 10059 10060 // 2) If set, obey the directives 10061 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10062 switch (PreferPredicateOverEpilogue) { 10063 case PreferPredicateTy::ScalarEpilogue: 10064 return CM_ScalarEpilogueAllowed; 10065 case PreferPredicateTy::PredicateElseScalarEpilogue: 10066 return CM_ScalarEpilogueNotNeededUsePredicate; 10067 case PreferPredicateTy::PredicateOrDontVectorize: 10068 return CM_ScalarEpilogueNotAllowedUsePredicate; 10069 }; 10070 } 10071 10072 // 3) If set, obey the hints 10073 switch (Hints.getPredicate()) { 10074 case LoopVectorizeHints::FK_Enabled: 10075 return CM_ScalarEpilogueNotNeededUsePredicate; 10076 case LoopVectorizeHints::FK_Disabled: 10077 return CM_ScalarEpilogueAllowed; 10078 }; 10079 10080 // 4) if the TTI hook indicates this is profitable, request predication. 10081 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10082 LVL.getLAI())) 10083 return CM_ScalarEpilogueNotNeededUsePredicate; 10084 10085 return CM_ScalarEpilogueAllowed; 10086 } 10087 10088 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10089 // If Values have been set for this Def return the one relevant for \p Part. 10090 if (hasVectorValue(Def, Part)) 10091 return Data.PerPartOutput[Def][Part]; 10092 10093 if (!hasScalarValue(Def, {Part, 0})) { 10094 Value *IRV = Def->getLiveInIRValue(); 10095 Value *B = ILV->getBroadcastInstrs(IRV); 10096 set(Def, B, Part); 10097 return B; 10098 } 10099 10100 Value *ScalarValue = get(Def, {Part, 0}); 10101 // If we aren't vectorizing, we can just copy the scalar map values over 10102 // to the vector map. 10103 if (VF.isScalar()) { 10104 set(Def, ScalarValue, Part); 10105 return ScalarValue; 10106 } 10107 10108 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10109 bool IsUniform = RepR && RepR->isUniform(); 10110 10111 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10112 // Check if there is a scalar value for the selected lane. 10113 if (!hasScalarValue(Def, {Part, LastLane})) { 10114 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10115 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 10116 "unexpected recipe found to be invariant"); 10117 IsUniform = true; 10118 LastLane = 0; 10119 } 10120 10121 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10122 // Set the insert point after the last scalarized instruction or after the 10123 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10124 // will directly follow the scalar definitions. 10125 auto OldIP = Builder.saveIP(); 10126 auto NewIP = 10127 isa<PHINode>(LastInst) 10128 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10129 : std::next(BasicBlock::iterator(LastInst)); 10130 Builder.SetInsertPoint(&*NewIP); 10131 10132 // However, if we are vectorizing, we need to construct the vector values. 10133 // If the value is known to be uniform after vectorization, we can just 10134 // broadcast the scalar value corresponding to lane zero for each unroll 10135 // iteration. Otherwise, we construct the vector values using 10136 // insertelement instructions. Since the resulting vectors are stored in 10137 // State, we will only generate the insertelements once. 10138 Value *VectorValue = nullptr; 10139 if (IsUniform) { 10140 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10141 set(Def, VectorValue, Part); 10142 } else { 10143 // Initialize packing with insertelements to start from undef. 10144 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10145 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10146 set(Def, Undef, Part); 10147 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10148 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10149 VectorValue = get(Def, Part); 10150 } 10151 Builder.restoreIP(OldIP); 10152 return VectorValue; 10153 } 10154 10155 // Process the loop in the VPlan-native vectorization path. This path builds 10156 // VPlan upfront in the vectorization pipeline, which allows to apply 10157 // VPlan-to-VPlan transformations from the very beginning without modifying the 10158 // input LLVM IR. 10159 static bool processLoopInVPlanNativePath( 10160 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10161 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10162 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10163 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10164 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10165 LoopVectorizationRequirements &Requirements) { 10166 10167 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10168 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10169 return false; 10170 } 10171 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10172 Function *F = L->getHeader()->getParent(); 10173 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10174 10175 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10176 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10177 10178 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10179 &Hints, IAI); 10180 // Use the planner for outer loop vectorization. 10181 // TODO: CM is not used at this point inside the planner. Turn CM into an 10182 // optional argument if we don't need it in the future. 10183 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10184 Requirements, ORE); 10185 10186 // Get user vectorization factor. 10187 ElementCount UserVF = Hints.getWidth(); 10188 10189 CM.collectElementTypesForWidening(); 10190 10191 // Plan how to best vectorize, return the best VF and its cost. 10192 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10193 10194 // If we are stress testing VPlan builds, do not attempt to generate vector 10195 // code. Masked vector code generation support will follow soon. 10196 // Also, do not attempt to vectorize if no vector code will be produced. 10197 if (VPlanBuildStressTest || EnableVPlanPredication || 10198 VectorizationFactor::Disabled() == VF) 10199 return false; 10200 10201 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10202 10203 { 10204 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10205 F->getParent()->getDataLayout()); 10206 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10207 &CM, BFI, PSI, Checks); 10208 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10209 << L->getHeader()->getParent()->getName() << "\"\n"); 10210 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10211 } 10212 10213 // Mark the loop as already vectorized to avoid vectorizing again. 10214 Hints.setAlreadyVectorized(); 10215 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10216 return true; 10217 } 10218 10219 // Emit a remark if there are stores to floats that required a floating point 10220 // extension. If the vectorized loop was generated with floating point there 10221 // will be a performance penalty from the conversion overhead and the change in 10222 // the vector width. 10223 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10224 SmallVector<Instruction *, 4> Worklist; 10225 for (BasicBlock *BB : L->getBlocks()) { 10226 for (Instruction &Inst : *BB) { 10227 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10228 if (S->getValueOperand()->getType()->isFloatTy()) 10229 Worklist.push_back(S); 10230 } 10231 } 10232 } 10233 10234 // Traverse the floating point stores upwards searching, for floating point 10235 // conversions. 10236 SmallPtrSet<const Instruction *, 4> Visited; 10237 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10238 while (!Worklist.empty()) { 10239 auto *I = Worklist.pop_back_val(); 10240 if (!L->contains(I)) 10241 continue; 10242 if (!Visited.insert(I).second) 10243 continue; 10244 10245 // Emit a remark if the floating point store required a floating 10246 // point conversion. 10247 // TODO: More work could be done to identify the root cause such as a 10248 // constant or a function return type and point the user to it. 10249 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10250 ORE->emit([&]() { 10251 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10252 I->getDebugLoc(), L->getHeader()) 10253 << "floating point conversion changes vector width. " 10254 << "Mixed floating point precision requires an up/down " 10255 << "cast that will negatively impact performance."; 10256 }); 10257 10258 for (Use &Op : I->operands()) 10259 if (auto *OpI = dyn_cast<Instruction>(Op)) 10260 Worklist.push_back(OpI); 10261 } 10262 } 10263 10264 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10265 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10266 !EnableLoopInterleaving), 10267 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10268 !EnableLoopVectorization) {} 10269 10270 bool LoopVectorizePass::processLoop(Loop *L) { 10271 assert((EnableVPlanNativePath || L->isInnermost()) && 10272 "VPlan-native path is not enabled. Only process inner loops."); 10273 10274 #ifndef NDEBUG 10275 const std::string DebugLocStr = getDebugLocString(L); 10276 #endif /* NDEBUG */ 10277 10278 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10279 << L->getHeader()->getParent()->getName() << "\" from " 10280 << DebugLocStr << "\n"); 10281 10282 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10283 10284 LLVM_DEBUG( 10285 dbgs() << "LV: Loop hints:" 10286 << " force=" 10287 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10288 ? "disabled" 10289 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10290 ? "enabled" 10291 : "?")) 10292 << " width=" << Hints.getWidth() 10293 << " interleave=" << Hints.getInterleave() << "\n"); 10294 10295 // Function containing loop 10296 Function *F = L->getHeader()->getParent(); 10297 10298 // Looking at the diagnostic output is the only way to determine if a loop 10299 // was vectorized (other than looking at the IR or machine code), so it 10300 // is important to generate an optimization remark for each loop. Most of 10301 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10302 // generated as OptimizationRemark and OptimizationRemarkMissed are 10303 // less verbose reporting vectorized loops and unvectorized loops that may 10304 // benefit from vectorization, respectively. 10305 10306 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10307 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10308 return false; 10309 } 10310 10311 PredicatedScalarEvolution PSE(*SE, *L); 10312 10313 // Check if it is legal to vectorize the loop. 10314 LoopVectorizationRequirements Requirements; 10315 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10316 &Requirements, &Hints, DB, AC, BFI, PSI); 10317 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10318 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10319 Hints.emitRemarkWithHints(); 10320 return false; 10321 } 10322 10323 // Check the function attributes and profiles to find out if this function 10324 // should be optimized for size. 10325 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10326 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10327 10328 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10329 // here. They may require CFG and instruction level transformations before 10330 // even evaluating whether vectorization is profitable. Since we cannot modify 10331 // the incoming IR, we need to build VPlan upfront in the vectorization 10332 // pipeline. 10333 if (!L->isInnermost()) 10334 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10335 ORE, BFI, PSI, Hints, Requirements); 10336 10337 assert(L->isInnermost() && "Inner loop expected."); 10338 10339 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10340 // count by optimizing for size, to minimize overheads. 10341 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10342 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10343 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10344 << "This loop is worth vectorizing only if no scalar " 10345 << "iteration overheads are incurred."); 10346 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10347 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10348 else { 10349 LLVM_DEBUG(dbgs() << "\n"); 10350 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10351 } 10352 } 10353 10354 // Check the function attributes to see if implicit floats are allowed. 10355 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10356 // an integer loop and the vector instructions selected are purely integer 10357 // vector instructions? 10358 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10359 reportVectorizationFailure( 10360 "Can't vectorize when the NoImplicitFloat attribute is used", 10361 "loop not vectorized due to NoImplicitFloat attribute", 10362 "NoImplicitFloat", ORE, L); 10363 Hints.emitRemarkWithHints(); 10364 return false; 10365 } 10366 10367 // Check if the target supports potentially unsafe FP vectorization. 10368 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10369 // for the target we're vectorizing for, to make sure none of the 10370 // additional fp-math flags can help. 10371 if (Hints.isPotentiallyUnsafe() && 10372 TTI->isFPVectorizationPotentiallyUnsafe()) { 10373 reportVectorizationFailure( 10374 "Potentially unsafe FP op prevents vectorization", 10375 "loop not vectorized due to unsafe FP support.", 10376 "UnsafeFP", ORE, L); 10377 Hints.emitRemarkWithHints(); 10378 return false; 10379 } 10380 10381 bool AllowOrderedReductions; 10382 // If the flag is set, use that instead and override the TTI behaviour. 10383 if (ForceOrderedReductions.getNumOccurrences() > 0) 10384 AllowOrderedReductions = ForceOrderedReductions; 10385 else 10386 AllowOrderedReductions = TTI->enableOrderedReductions(); 10387 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10388 ORE->emit([&]() { 10389 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10390 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10391 ExactFPMathInst->getDebugLoc(), 10392 ExactFPMathInst->getParent()) 10393 << "loop not vectorized: cannot prove it is safe to reorder " 10394 "floating-point operations"; 10395 }); 10396 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10397 "reorder floating-point operations\n"); 10398 Hints.emitRemarkWithHints(); 10399 return false; 10400 } 10401 10402 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10403 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10404 10405 // If an override option has been passed in for interleaved accesses, use it. 10406 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10407 UseInterleaved = EnableInterleavedMemAccesses; 10408 10409 // Analyze interleaved memory accesses. 10410 if (UseInterleaved) { 10411 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10412 } 10413 10414 // Use the cost model. 10415 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10416 F, &Hints, IAI); 10417 CM.collectValuesToIgnore(); 10418 CM.collectElementTypesForWidening(); 10419 10420 // Use the planner for vectorization. 10421 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10422 Requirements, ORE); 10423 10424 // Get user vectorization factor and interleave count. 10425 ElementCount UserVF = Hints.getWidth(); 10426 unsigned UserIC = Hints.getInterleave(); 10427 10428 // Plan how to best vectorize, return the best VF and its cost. 10429 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10430 10431 VectorizationFactor VF = VectorizationFactor::Disabled(); 10432 unsigned IC = 1; 10433 10434 if (MaybeVF) { 10435 VF = *MaybeVF; 10436 // Select the interleave count. 10437 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10438 } 10439 10440 // Identify the diagnostic messages that should be produced. 10441 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10442 bool VectorizeLoop = true, InterleaveLoop = true; 10443 if (VF.Width.isScalar()) { 10444 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10445 VecDiagMsg = std::make_pair( 10446 "VectorizationNotBeneficial", 10447 "the cost-model indicates that vectorization is not beneficial"); 10448 VectorizeLoop = false; 10449 } 10450 10451 if (!MaybeVF && UserIC > 1) { 10452 // Tell the user interleaving was avoided up-front, despite being explicitly 10453 // requested. 10454 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10455 "interleaving should be avoided up front\n"); 10456 IntDiagMsg = std::make_pair( 10457 "InterleavingAvoided", 10458 "Ignoring UserIC, because interleaving was avoided up front"); 10459 InterleaveLoop = false; 10460 } else if (IC == 1 && UserIC <= 1) { 10461 // Tell the user interleaving is not beneficial. 10462 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10463 IntDiagMsg = std::make_pair( 10464 "InterleavingNotBeneficial", 10465 "the cost-model indicates that interleaving is not beneficial"); 10466 InterleaveLoop = false; 10467 if (UserIC == 1) { 10468 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10469 IntDiagMsg.second += 10470 " and is explicitly disabled or interleave count is set to 1"; 10471 } 10472 } else if (IC > 1 && UserIC == 1) { 10473 // Tell the user interleaving is beneficial, but it explicitly disabled. 10474 LLVM_DEBUG( 10475 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10476 IntDiagMsg = std::make_pair( 10477 "InterleavingBeneficialButDisabled", 10478 "the cost-model indicates that interleaving is beneficial " 10479 "but is explicitly disabled or interleave count is set to 1"); 10480 InterleaveLoop = false; 10481 } 10482 10483 // Override IC if user provided an interleave count. 10484 IC = UserIC > 0 ? UserIC : IC; 10485 10486 // Emit diagnostic messages, if any. 10487 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10488 if (!VectorizeLoop && !InterleaveLoop) { 10489 // Do not vectorize or interleaving the loop. 10490 ORE->emit([&]() { 10491 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10492 L->getStartLoc(), L->getHeader()) 10493 << VecDiagMsg.second; 10494 }); 10495 ORE->emit([&]() { 10496 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10497 L->getStartLoc(), L->getHeader()) 10498 << IntDiagMsg.second; 10499 }); 10500 return false; 10501 } else if (!VectorizeLoop && InterleaveLoop) { 10502 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10503 ORE->emit([&]() { 10504 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10505 L->getStartLoc(), L->getHeader()) 10506 << VecDiagMsg.second; 10507 }); 10508 } else if (VectorizeLoop && !InterleaveLoop) { 10509 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10510 << ") in " << DebugLocStr << '\n'); 10511 ORE->emit([&]() { 10512 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10513 L->getStartLoc(), L->getHeader()) 10514 << IntDiagMsg.second; 10515 }); 10516 } else if (VectorizeLoop && InterleaveLoop) { 10517 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10518 << ") in " << DebugLocStr << '\n'); 10519 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10520 } 10521 10522 bool DisableRuntimeUnroll = false; 10523 MDNode *OrigLoopID = L->getLoopID(); 10524 { 10525 // Optimistically generate runtime checks. Drop them if they turn out to not 10526 // be profitable. Limit the scope of Checks, so the cleanup happens 10527 // immediately after vector codegeneration is done. 10528 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10529 F->getParent()->getDataLayout()); 10530 if (!VF.Width.isScalar() || IC > 1) 10531 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10532 10533 using namespace ore; 10534 if (!VectorizeLoop) { 10535 assert(IC > 1 && "interleave count should not be 1 or 0"); 10536 // If we decided that it is not legal to vectorize the loop, then 10537 // interleave it. 10538 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10539 &CM, BFI, PSI, Checks); 10540 10541 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10542 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10543 10544 ORE->emit([&]() { 10545 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10546 L->getHeader()) 10547 << "interleaved loop (interleaved count: " 10548 << NV("InterleaveCount", IC) << ")"; 10549 }); 10550 } else { 10551 // If we decided that it is *legal* to vectorize the loop, then do it. 10552 10553 // Consider vectorizing the epilogue too if it's profitable. 10554 VectorizationFactor EpilogueVF = 10555 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10556 if (EpilogueVF.Width.isVector()) { 10557 10558 // The first pass vectorizes the main loop and creates a scalar epilogue 10559 // to be vectorized by executing the plan (potentially with a different 10560 // factor) again shortly afterwards. 10561 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10562 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10563 EPI, &LVL, &CM, BFI, PSI, Checks); 10564 10565 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10566 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10567 DT); 10568 ++LoopsVectorized; 10569 10570 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10571 formLCSSARecursively(*L, *DT, LI, SE); 10572 10573 // Second pass vectorizes the epilogue and adjusts the control flow 10574 // edges from the first pass. 10575 EPI.MainLoopVF = EPI.EpilogueVF; 10576 EPI.MainLoopUF = EPI.EpilogueUF; 10577 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10578 ORE, EPI, &LVL, &CM, BFI, PSI, 10579 Checks); 10580 10581 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10582 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10583 DT); 10584 ++LoopsEpilogueVectorized; 10585 10586 if (!MainILV.areSafetyChecksAdded()) 10587 DisableRuntimeUnroll = true; 10588 } else { 10589 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10590 &LVL, &CM, BFI, PSI, Checks); 10591 10592 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10593 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10594 ++LoopsVectorized; 10595 10596 // Add metadata to disable runtime unrolling a scalar loop when there 10597 // are no runtime checks about strides and memory. A scalar loop that is 10598 // rarely used is not worth unrolling. 10599 if (!LB.areSafetyChecksAdded()) 10600 DisableRuntimeUnroll = true; 10601 } 10602 // Report the vectorization decision. 10603 ORE->emit([&]() { 10604 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10605 L->getHeader()) 10606 << "vectorized loop (vectorization width: " 10607 << NV("VectorizationFactor", VF.Width) 10608 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10609 }); 10610 } 10611 10612 if (ORE->allowExtraAnalysis(LV_NAME)) 10613 checkMixedPrecision(L, ORE); 10614 } 10615 10616 Optional<MDNode *> RemainderLoopID = 10617 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10618 LLVMLoopVectorizeFollowupEpilogue}); 10619 if (RemainderLoopID.hasValue()) { 10620 L->setLoopID(RemainderLoopID.getValue()); 10621 } else { 10622 if (DisableRuntimeUnroll) 10623 AddRuntimeUnrollDisableMetaData(L); 10624 10625 // Mark the loop as already vectorized to avoid vectorizing again. 10626 Hints.setAlreadyVectorized(); 10627 } 10628 10629 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10630 return true; 10631 } 10632 10633 LoopVectorizeResult LoopVectorizePass::runImpl( 10634 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10635 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10636 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10637 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10638 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10639 SE = &SE_; 10640 LI = &LI_; 10641 TTI = &TTI_; 10642 DT = &DT_; 10643 BFI = &BFI_; 10644 TLI = TLI_; 10645 AA = &AA_; 10646 AC = &AC_; 10647 GetLAA = &GetLAA_; 10648 DB = &DB_; 10649 ORE = &ORE_; 10650 PSI = PSI_; 10651 10652 // Don't attempt if 10653 // 1. the target claims to have no vector registers, and 10654 // 2. interleaving won't help ILP. 10655 // 10656 // The second condition is necessary because, even if the target has no 10657 // vector registers, loop vectorization may still enable scalar 10658 // interleaving. 10659 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10660 TTI->getMaxInterleaveFactor(1) < 2) 10661 return LoopVectorizeResult(false, false); 10662 10663 bool Changed = false, CFGChanged = false; 10664 10665 // The vectorizer requires loops to be in simplified form. 10666 // Since simplification may add new inner loops, it has to run before the 10667 // legality and profitability checks. This means running the loop vectorizer 10668 // will simplify all loops, regardless of whether anything end up being 10669 // vectorized. 10670 for (auto &L : *LI) 10671 Changed |= CFGChanged |= 10672 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10673 10674 // Build up a worklist of inner-loops to vectorize. This is necessary as 10675 // the act of vectorizing or partially unrolling a loop creates new loops 10676 // and can invalidate iterators across the loops. 10677 SmallVector<Loop *, 8> Worklist; 10678 10679 for (Loop *L : *LI) 10680 collectSupportedLoops(*L, LI, ORE, Worklist); 10681 10682 LoopsAnalyzed += Worklist.size(); 10683 10684 // Now walk the identified inner loops. 10685 while (!Worklist.empty()) { 10686 Loop *L = Worklist.pop_back_val(); 10687 10688 // For the inner loops we actually process, form LCSSA to simplify the 10689 // transform. 10690 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10691 10692 Changed |= CFGChanged |= processLoop(L); 10693 } 10694 10695 // Process each loop nest in the function. 10696 return LoopVectorizeResult(Changed, CFGChanged); 10697 } 10698 10699 PreservedAnalyses LoopVectorizePass::run(Function &F, 10700 FunctionAnalysisManager &AM) { 10701 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10702 auto &LI = AM.getResult<LoopAnalysis>(F); 10703 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10704 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10705 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10706 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10707 auto &AA = AM.getResult<AAManager>(F); 10708 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10709 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10710 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10711 10712 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10713 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10714 [&](Loop &L) -> const LoopAccessInfo & { 10715 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10716 TLI, TTI, nullptr, nullptr, nullptr}; 10717 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10718 }; 10719 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10720 ProfileSummaryInfo *PSI = 10721 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10722 LoopVectorizeResult Result = 10723 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10724 if (!Result.MadeAnyChange) 10725 return PreservedAnalyses::all(); 10726 PreservedAnalyses PA; 10727 10728 // We currently do not preserve loopinfo/dominator analyses with outer loop 10729 // vectorization. Until this is addressed, mark these analyses as preserved 10730 // only for non-VPlan-native path. 10731 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10732 if (!EnableVPlanNativePath) { 10733 PA.preserve<LoopAnalysis>(); 10734 PA.preserve<DominatorTreeAnalysis>(); 10735 } 10736 10737 if (Result.MadeCFGChange) { 10738 // Making CFG changes likely means a loop got vectorized. Indicate that 10739 // extra simplification passes should be run. 10740 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10741 // be run if runtime checks have been added. 10742 AM.getResult<ShouldRunExtraVectorPasses>(F); 10743 PA.preserve<ShouldRunExtraVectorPasses>(); 10744 } else { 10745 PA.preserveSet<CFGAnalyses>(); 10746 } 10747 return PA; 10748 } 10749 10750 void LoopVectorizePass::printPipeline( 10751 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10752 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10753 OS, MapClassName2PassName); 10754 10755 OS << "<"; 10756 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10757 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10758 OS << ">"; 10759 } 10760