1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 202 // that predication is preferred, and this lists all options. I.e., the 203 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 204 // and predicate the instructions accordingly. If tail-folding fails, there are 205 // different fallback strategies depending on these values: 206 namespace PreferPredicateTy { 207 enum Option { 208 ScalarEpilogue = 0, 209 PredicateElseScalarEpilogue, 210 PredicateOrDontVectorize 211 }; 212 } // namespace PreferPredicateTy 213 214 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 215 "prefer-predicate-over-epilogue", 216 cl::init(PreferPredicateTy::ScalarEpilogue), 217 cl::Hidden, 218 cl::desc("Tail-folding and predication preferences over creating a scalar " 219 "epilogue loop."), 220 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 221 "scalar-epilogue", 222 "Don't tail-predicate loops, create scalar epilogue"), 223 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 224 "predicate-else-scalar-epilogue", 225 "prefer tail-folding, create scalar epilogue if tail " 226 "folding fails."), 227 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 228 "predicate-dont-vectorize", 229 "prefers tail-folding, don't attempt vectorization if " 230 "tail-folding fails."))); 231 232 static cl::opt<bool> MaximizeBandwidth( 233 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 234 cl::desc("Maximize bandwidth when selecting vectorization factor which " 235 "will be determined by the smallest type in loop.")); 236 237 static cl::opt<bool> EnableInterleavedMemAccesses( 238 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 239 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 240 241 /// An interleave-group may need masking if it resides in a block that needs 242 /// predication, or in order to mask away gaps. 243 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 244 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 245 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 246 247 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 248 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 249 cl::desc("We don't interleave loops with a estimated constant trip count " 250 "below this number")); 251 252 static cl::opt<unsigned> ForceTargetNumScalarRegs( 253 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 254 cl::desc("A flag that overrides the target's number of scalar registers.")); 255 256 static cl::opt<unsigned> ForceTargetNumVectorRegs( 257 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 258 cl::desc("A flag that overrides the target's number of vector registers.")); 259 260 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 261 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 262 cl::desc("A flag that overrides the target's max interleave factor for " 263 "scalar loops.")); 264 265 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 266 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "vectorized loops.")); 269 270 static cl::opt<unsigned> ForceTargetInstructionCost( 271 "force-target-instruction-cost", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's expected cost for " 273 "an instruction to a single constant value. Mostly " 274 "useful for getting consistent testing.")); 275 276 static cl::opt<bool> ForceTargetSupportsScalableVectors( 277 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 278 cl::desc( 279 "Pretend that scalable vectors are supported, even if the target does " 280 "not support them. This flag should only be used for testing.")); 281 282 static cl::opt<unsigned> SmallLoopCost( 283 "small-loop-cost", cl::init(20), cl::Hidden, 284 cl::desc( 285 "The cost of a loop that is considered 'small' by the interleaver.")); 286 287 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 288 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 289 cl::desc("Enable the use of the block frequency analysis to access PGO " 290 "heuristics minimizing code growth in cold regions and being more " 291 "aggressive in hot regions.")); 292 293 // Runtime interleave loops for load/store throughput. 294 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 295 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 296 cl::desc( 297 "Enable runtime interleaving until load/store ports are saturated")); 298 299 /// Interleave small loops with scalar reductions. 300 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 301 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 302 cl::desc("Enable interleaving for loops with small iteration counts that " 303 "contain scalar reductions to expose ILP.")); 304 305 /// The number of stores in a loop that are allowed to need predication. 306 static cl::opt<unsigned> NumberOfStoresToPredicate( 307 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 308 cl::desc("Max number of stores to be predicated behind an if.")); 309 310 static cl::opt<bool> EnableIndVarRegisterHeur( 311 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 312 cl::desc("Count the induction variable only once when interleaving")); 313 314 static cl::opt<bool> EnableCondStoresVectorization( 315 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 316 cl::desc("Enable if predication of stores during vectorization.")); 317 318 static cl::opt<unsigned> MaxNestedScalarReductionIC( 319 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 320 cl::desc("The maximum interleave count to use when interleaving a scalar " 321 "reduction in a nested loop.")); 322 323 static cl::opt<bool> 324 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 325 cl::Hidden, 326 cl::desc("Prefer in-loop vector reductions, " 327 "overriding the targets preference.")); 328 329 static cl::opt<bool> PreferPredicatedReductionSelect( 330 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 331 cl::desc( 332 "Prefer predicating a reduction operation over an after loop select.")); 333 334 cl::opt<bool> EnableVPlanNativePath( 335 "enable-vplan-native-path", cl::init(false), cl::Hidden, 336 cl::desc("Enable VPlan-native vectorization path with " 337 "support for outer loop vectorization.")); 338 339 // FIXME: Remove this switch once we have divergence analysis. Currently we 340 // assume divergent non-backedge branches when this switch is true. 341 cl::opt<bool> EnableVPlanPredication( 342 "enable-vplan-predication", cl::init(false), cl::Hidden, 343 cl::desc("Enable VPlan-native vectorization path predicator with " 344 "support for outer loop vectorization.")); 345 346 // This flag enables the stress testing of the VPlan H-CFG construction in the 347 // VPlan-native vectorization path. It must be used in conjuction with 348 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 349 // verification of the H-CFGs built. 350 static cl::opt<bool> VPlanBuildStressTest( 351 "vplan-build-stress-test", cl::init(false), cl::Hidden, 352 cl::desc( 353 "Build VPlan for every supported loop nest in the function and bail " 354 "out right after the build (stress test the VPlan H-CFG construction " 355 "in the VPlan-native vectorization path).")); 356 357 cl::opt<bool> llvm::EnableLoopInterleaving( 358 "interleave-loops", cl::init(true), cl::Hidden, 359 cl::desc("Enable loop interleaving in Loop vectorization passes")); 360 cl::opt<bool> llvm::EnableLoopVectorization( 361 "vectorize-loops", cl::init(true), cl::Hidden, 362 cl::desc("Run the Loop vectorization passes")); 363 364 /// A helper function that returns the type of loaded or stored value. 365 static Type *getMemInstValueType(Value *I) { 366 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 367 "Expected Load or Store instruction"); 368 if (auto *LI = dyn_cast<LoadInst>(I)) 369 return LI->getType(); 370 return cast<StoreInst>(I)->getValueOperand()->getType(); 371 } 372 373 /// A helper function that returns true if the given type is irregular. The 374 /// type is irregular if its allocated size doesn't equal the store size of an 375 /// element of the corresponding vector type at the given vectorization factor. 376 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) { 377 // Determine if an array of VF elements of type Ty is "bitcast compatible" 378 // with a <VF x Ty> vector. 379 if (VF.isVector()) { 380 auto *VectorTy = VectorType::get(Ty, VF); 381 return TypeSize::get(VF.getKnownMinValue() * 382 DL.getTypeAllocSize(Ty).getFixedValue(), 383 VF.isScalable()) != DL.getTypeStoreSize(VectorTy); 384 } 385 386 // If the vectorization factor is one, we just check if an array of type Ty 387 // requires padding between elements. 388 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 389 } 390 391 /// A helper function that returns the reciprocal of the block probability of 392 /// predicated blocks. If we return X, we are assuming the predicated block 393 /// will execute once for every X iterations of the loop header. 394 /// 395 /// TODO: We should use actual block probability here, if available. Currently, 396 /// we always assume predicated blocks have a 50% chance of executing. 397 static unsigned getReciprocalPredBlockProb() { return 2; } 398 399 /// A helper function that adds a 'fast' flag to floating-point operations. 400 static Value *addFastMathFlag(Value *V) { 401 if (isa<FPMathOperator>(V)) 402 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 403 return V; 404 } 405 406 /// A helper function that returns an integer or floating-point constant with 407 /// value C. 408 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 409 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 410 : ConstantFP::get(Ty, C); 411 } 412 413 /// Returns "best known" trip count for the specified loop \p L as defined by 414 /// the following procedure: 415 /// 1) Returns exact trip count if it is known. 416 /// 2) Returns expected trip count according to profile data if any. 417 /// 3) Returns upper bound estimate if it is known. 418 /// 4) Returns None if all of the above failed. 419 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 420 // Check if exact trip count is known. 421 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 422 return ExpectedTC; 423 424 // Check if there is an expected trip count available from profile data. 425 if (LoopVectorizeWithBlockFrequency) 426 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 427 return EstimatedTC; 428 429 // Check if upper bound estimate is known. 430 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 431 return ExpectedTC; 432 433 return None; 434 } 435 436 namespace llvm { 437 438 /// InnerLoopVectorizer vectorizes loops which contain only one basic 439 /// block to a specified vectorization factor (VF). 440 /// This class performs the widening of scalars into vectors, or multiple 441 /// scalars. This class also implements the following features: 442 /// * It inserts an epilogue loop for handling loops that don't have iteration 443 /// counts that are known to be a multiple of the vectorization factor. 444 /// * It handles the code generation for reduction variables. 445 /// * Scalarization (implementation using scalars) of un-vectorizable 446 /// instructions. 447 /// InnerLoopVectorizer does not perform any vectorization-legality 448 /// checks, and relies on the caller to check for the different legality 449 /// aspects. The InnerLoopVectorizer relies on the 450 /// LoopVectorizationLegality class to provide information about the induction 451 /// and reduction variables that were found to a given vectorization factor. 452 class InnerLoopVectorizer { 453 public: 454 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 455 LoopInfo *LI, DominatorTree *DT, 456 const TargetLibraryInfo *TLI, 457 const TargetTransformInfo *TTI, AssumptionCache *AC, 458 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 459 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 460 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 461 ProfileSummaryInfo *PSI) 462 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 463 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 464 Builder(PSE.getSE()->getContext()), 465 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM), 466 BFI(BFI), PSI(PSI) { 467 // Query this against the original loop and save it here because the profile 468 // of the original loop header may change as the transformation happens. 469 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 470 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 471 } 472 473 virtual ~InnerLoopVectorizer() = default; 474 475 /// Create a new empty loop that will contain vectorized instructions later 476 /// on, while the old loop will be used as the scalar remainder. Control flow 477 /// is generated around the vectorized (and scalar epilogue) loops consisting 478 /// of various checks and bypasses. Return the pre-header block of the new 479 /// loop. 480 /// In the case of epilogue vectorization, this function is overriden to 481 /// handle the more complex control flow around the loops. 482 virtual BasicBlock *createVectorizedLoopSkeleton(); 483 484 /// Widen a single instruction within the innermost loop. 485 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 486 VPTransformState &State); 487 488 /// Widen a single call instruction within the innermost loop. 489 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 490 VPTransformState &State); 491 492 /// Widen a single select instruction within the innermost loop. 493 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 494 bool InvariantCond, VPTransformState &State); 495 496 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 497 void fixVectorizedLoop(VPTransformState &State); 498 499 // Return true if any runtime check is added. 500 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 501 502 /// A type for vectorized values in the new loop. Each value from the 503 /// original loop, when vectorized, is represented by UF vector values in the 504 /// new unrolled loop, where UF is the unroll factor. 505 using VectorParts = SmallVector<Value *, 2>; 506 507 /// Vectorize a single GetElementPtrInst based on information gathered and 508 /// decisions taken during planning. 509 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 510 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 511 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 512 513 /// Vectorize a single PHINode in a block. This method handles the induction 514 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 515 /// arbitrary length vectors. 516 void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc, 517 Value *StartV, unsigned UF, ElementCount VF); 518 519 /// A helper function to scalarize a single Instruction in the innermost loop. 520 /// Generates a sequence of scalar instances for each lane between \p MinLane 521 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 522 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 523 /// Instr's operands. 524 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 525 const VPIteration &Instance, bool IfPredicateInstr, 526 VPTransformState &State); 527 528 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 529 /// is provided, the integer induction variable will first be truncated to 530 /// the corresponding type. 531 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 532 VPValue *Def, VPValue *CastDef, 533 VPTransformState &State); 534 535 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 536 /// vector or scalar value on-demand if one is not yet available. When 537 /// vectorizing a loop, we visit the definition of an instruction before its 538 /// uses. When visiting the definition, we either vectorize or scalarize the 539 /// instruction, creating an entry for it in the corresponding map. (In some 540 /// cases, such as induction variables, we will create both vector and scalar 541 /// entries.) Then, as we encounter uses of the definition, we derive values 542 /// for each scalar or vector use unless such a value is already available. 543 /// For example, if we scalarize a definition and one of its uses is vector, 544 /// we build the required vector on-demand with an insertelement sequence 545 /// when visiting the use. Otherwise, if the use is scalar, we can use the 546 /// existing scalar definition. 547 /// 548 /// Return a value in the new loop corresponding to \p V from the original 549 /// loop at unroll index \p Part. If the value has already been vectorized, 550 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 551 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 552 /// a new vector value on-demand by inserting the scalar values into a vector 553 /// with an insertelement sequence. If the value has been neither vectorized 554 /// nor scalarized, it must be loop invariant, so we simply broadcast the 555 /// value into a vector. 556 Value *getOrCreateVectorValue(Value *V, unsigned Part); 557 558 void setVectorValue(Value *Scalar, unsigned Part, Value *Vector) { 559 VectorLoopValueMap.setVectorValue(Scalar, Part, Vector); 560 } 561 562 void resetVectorValue(Value *Scalar, unsigned Part, Value *Vector) { 563 VectorLoopValueMap.resetVectorValue(Scalar, Part, Vector); 564 } 565 566 void setScalarValue(Value *Scalar, const VPIteration &Instance, Value *V) { 567 VectorLoopValueMap.setScalarValue(Scalar, Instance, V); 568 } 569 570 /// Return a value in the new loop corresponding to \p V from the original 571 /// loop at unroll and vector indices \p Instance. If the value has been 572 /// vectorized but not scalarized, the necessary extractelement instruction 573 /// will be generated. 574 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 575 576 /// Construct the vector value of a scalarized value \p V one lane at a time. 577 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 578 579 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 580 VPTransformState &State); 581 582 /// Try to vectorize interleaved access group \p Group with the base address 583 /// given in \p Addr, optionally masking the vector operations if \p 584 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 585 /// values in the vectorized loop. 586 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 587 ArrayRef<VPValue *> VPDefs, 588 VPTransformState &State, VPValue *Addr, 589 ArrayRef<VPValue *> StoredValues, 590 VPValue *BlockInMask = nullptr); 591 592 /// Vectorize Load and Store instructions with the base address given in \p 593 /// Addr, optionally masking the vector operations if \p BlockInMask is 594 /// non-null. Use \p State to translate given VPValues to IR values in the 595 /// vectorized loop. 596 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 597 VPValue *Def, VPValue *Addr, 598 VPValue *StoredValue, VPValue *BlockInMask); 599 600 /// Set the debug location in the builder using the debug location in 601 /// the instruction. 602 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 603 604 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 605 void fixNonInductionPHIs(VPTransformState &State); 606 607 /// Create a broadcast instruction. This method generates a broadcast 608 /// instruction (shuffle) for loop invariant values and for the induction 609 /// value. If this is the induction variable then we extend it to N, N+1, ... 610 /// this is needed because each iteration in the loop corresponds to a SIMD 611 /// element. 612 virtual Value *getBroadcastInstrs(Value *V); 613 614 protected: 615 friend class LoopVectorizationPlanner; 616 617 /// A small list of PHINodes. 618 using PhiVector = SmallVector<PHINode *, 4>; 619 620 /// A type for scalarized values in the new loop. Each value from the 621 /// original loop, when scalarized, is represented by UF x VF scalar values 622 /// in the new unrolled loop, where UF is the unroll factor and VF is the 623 /// vectorization factor. 624 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 625 626 /// Set up the values of the IVs correctly when exiting the vector loop. 627 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 628 Value *CountRoundDown, Value *EndValue, 629 BasicBlock *MiddleBlock); 630 631 /// Create a new induction variable inside L. 632 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 633 Value *Step, Instruction *DL); 634 635 /// Handle all cross-iteration phis in the header. 636 void fixCrossIterationPHIs(VPTransformState &State); 637 638 /// Fix a first-order recurrence. This is the second phase of vectorizing 639 /// this phi node. 640 void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State); 641 642 /// Fix a reduction cross-iteration phi. This is the second phase of 643 /// vectorizing this phi node. 644 void fixReduction(PHINode *Phi, VPTransformState &State); 645 646 /// Clear NSW/NUW flags from reduction instructions if necessary. 647 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 648 649 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 650 /// means we need to add the appropriate incoming value from the middle 651 /// block as exiting edges from the scalar epilogue loop (if present) are 652 /// already in place, and we exit the vector loop exclusively to the middle 653 /// block. 654 void fixLCSSAPHIs(VPTransformState &State); 655 656 /// Iteratively sink the scalarized operands of a predicated instruction into 657 /// the block that was created for it. 658 void sinkScalarOperands(Instruction *PredInst); 659 660 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 661 /// represented as. 662 void truncateToMinimalBitwidths(); 663 664 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 665 /// to each vector element of Val. The sequence starts at StartIndex. 666 /// \p Opcode is relevant for FP induction variable. 667 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 668 Instruction::BinaryOps Opcode = 669 Instruction::BinaryOpsEnd); 670 671 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 672 /// variable on which to base the steps, \p Step is the size of the step, and 673 /// \p EntryVal is the value from the original loop that maps to the steps. 674 /// Note that \p EntryVal doesn't have to be an induction variable - it 675 /// can also be a truncate instruction. 676 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 677 const InductionDescriptor &ID, VPValue *Def, 678 VPValue *CastDef, VPTransformState &State); 679 680 /// Create a vector induction phi node based on an existing scalar one. \p 681 /// EntryVal is the value from the original loop that maps to the vector phi 682 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 683 /// truncate instruction, instead of widening the original IV, we widen a 684 /// version of the IV truncated to \p EntryVal's type. 685 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 686 Value *Step, Value *Start, 687 Instruction *EntryVal, VPValue *Def, 688 VPValue *CastDef, 689 VPTransformState &State); 690 691 /// Returns true if an instruction \p I should be scalarized instead of 692 /// vectorized for the chosen vectorization factor. 693 bool shouldScalarizeInstruction(Instruction *I) const; 694 695 /// Returns true if we should generate a scalar version of \p IV. 696 bool needsScalarInduction(Instruction *IV) const; 697 698 /// If there is a cast involved in the induction variable \p ID, which should 699 /// be ignored in the vectorized loop body, this function records the 700 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 701 /// cast. We had already proved that the casted Phi is equal to the uncasted 702 /// Phi in the vectorized loop (under a runtime guard), and therefore 703 /// there is no need to vectorize the cast - the same value can be used in the 704 /// vector loop for both the Phi and the cast. 705 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 706 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 707 /// 708 /// \p EntryVal is the value from the original loop that maps to the vector 709 /// phi node and is used to distinguish what is the IV currently being 710 /// processed - original one (if \p EntryVal is a phi corresponding to the 711 /// original IV) or the "newly-created" one based on the proof mentioned above 712 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 713 /// latter case \p EntryVal is a TruncInst and we must not record anything for 714 /// that IV, but it's error-prone to expect callers of this routine to care 715 /// about that, hence this explicit parameter. 716 void recordVectorLoopValueForInductionCast( 717 const InductionDescriptor &ID, const Instruction *EntryVal, 718 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 719 unsigned Part, unsigned Lane = UINT_MAX); 720 721 /// Generate a shuffle sequence that will reverse the vector Vec. 722 virtual Value *reverseVector(Value *Vec); 723 724 /// Returns (and creates if needed) the original loop trip count. 725 Value *getOrCreateTripCount(Loop *NewLoop); 726 727 /// Returns (and creates if needed) the trip count of the widened loop. 728 Value *getOrCreateVectorTripCount(Loop *NewLoop); 729 730 /// Returns a bitcasted value to the requested vector type. 731 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 732 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 733 const DataLayout &DL); 734 735 /// Emit a bypass check to see if the vector trip count is zero, including if 736 /// it overflows. 737 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 738 739 /// Emit a bypass check to see if all of the SCEV assumptions we've 740 /// had to make are correct. 741 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 742 743 /// Emit bypass checks to check any memory assumptions we may have made. 744 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 745 746 /// Compute the transformed value of Index at offset StartValue using step 747 /// StepValue. 748 /// For integer induction, returns StartValue + Index * StepValue. 749 /// For pointer induction, returns StartValue[Index * StepValue]. 750 /// FIXME: The newly created binary instructions should contain nsw/nuw 751 /// flags, which can be found from the original scalar operations. 752 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 753 const DataLayout &DL, 754 const InductionDescriptor &ID) const; 755 756 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 757 /// vector loop preheader, middle block and scalar preheader. Also 758 /// allocate a loop object for the new vector loop and return it. 759 Loop *createVectorLoopSkeleton(StringRef Prefix); 760 761 /// Create new phi nodes for the induction variables to resume iteration count 762 /// in the scalar epilogue, from where the vectorized loop left off (given by 763 /// \p VectorTripCount). 764 /// In cases where the loop skeleton is more complicated (eg. epilogue 765 /// vectorization) and the resume values can come from an additional bypass 766 /// block, the \p AdditionalBypass pair provides information about the bypass 767 /// block and the end value on the edge from bypass to this loop. 768 void createInductionResumeValues( 769 Loop *L, Value *VectorTripCount, 770 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 771 772 /// Complete the loop skeleton by adding debug MDs, creating appropriate 773 /// conditional branches in the middle block, preparing the builder and 774 /// running the verifier. Take in the vector loop \p L as argument, and return 775 /// the preheader of the completed vector loop. 776 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 777 778 /// Add additional metadata to \p To that was not present on \p Orig. 779 /// 780 /// Currently this is used to add the noalias annotations based on the 781 /// inserted memchecks. Use this for instructions that are *cloned* into the 782 /// vector loop. 783 void addNewMetadata(Instruction *To, const Instruction *Orig); 784 785 /// Add metadata from one instruction to another. 786 /// 787 /// This includes both the original MDs from \p From and additional ones (\see 788 /// addNewMetadata). Use this for *newly created* instructions in the vector 789 /// loop. 790 void addMetadata(Instruction *To, Instruction *From); 791 792 /// Similar to the previous function but it adds the metadata to a 793 /// vector of instructions. 794 void addMetadata(ArrayRef<Value *> To, Instruction *From); 795 796 /// Allow subclasses to override and print debug traces before/after vplan 797 /// execution, when trace information is requested. 798 virtual void printDebugTracesAtStart(){}; 799 virtual void printDebugTracesAtEnd(){}; 800 801 /// The original loop. 802 Loop *OrigLoop; 803 804 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 805 /// dynamic knowledge to simplify SCEV expressions and converts them to a 806 /// more usable form. 807 PredicatedScalarEvolution &PSE; 808 809 /// Loop Info. 810 LoopInfo *LI; 811 812 /// Dominator Tree. 813 DominatorTree *DT; 814 815 /// Alias Analysis. 816 AAResults *AA; 817 818 /// Target Library Info. 819 const TargetLibraryInfo *TLI; 820 821 /// Target Transform Info. 822 const TargetTransformInfo *TTI; 823 824 /// Assumption Cache. 825 AssumptionCache *AC; 826 827 /// Interface to emit optimization remarks. 828 OptimizationRemarkEmitter *ORE; 829 830 /// LoopVersioning. It's only set up (non-null) if memchecks were 831 /// used. 832 /// 833 /// This is currently only used to add no-alias metadata based on the 834 /// memchecks. The actually versioning is performed manually. 835 std::unique_ptr<LoopVersioning> LVer; 836 837 /// The vectorization SIMD factor to use. Each vector will have this many 838 /// vector elements. 839 ElementCount VF; 840 841 /// The vectorization unroll factor to use. Each scalar is vectorized to this 842 /// many different vector instructions. 843 unsigned UF; 844 845 /// The builder that we use 846 IRBuilder<> Builder; 847 848 // --- Vectorization state --- 849 850 /// The vector-loop preheader. 851 BasicBlock *LoopVectorPreHeader; 852 853 /// The scalar-loop preheader. 854 BasicBlock *LoopScalarPreHeader; 855 856 /// Middle Block between the vector and the scalar. 857 BasicBlock *LoopMiddleBlock; 858 859 /// The (unique) ExitBlock of the scalar loop. Note that 860 /// there can be multiple exiting edges reaching this block. 861 BasicBlock *LoopExitBlock; 862 863 /// The vector loop body. 864 BasicBlock *LoopVectorBody; 865 866 /// The scalar loop body. 867 BasicBlock *LoopScalarBody; 868 869 /// A list of all bypass blocks. The first block is the entry of the loop. 870 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 871 872 /// The new Induction variable which was added to the new block. 873 PHINode *Induction = nullptr; 874 875 /// The induction variable of the old basic block. 876 PHINode *OldInduction = nullptr; 877 878 /// Maps values from the original loop to their corresponding values in the 879 /// vectorized loop. A key value can map to either vector values, scalar 880 /// values or both kinds of values, depending on whether the key was 881 /// vectorized and scalarized. 882 VectorizerValueMap VectorLoopValueMap; 883 884 /// Store instructions that were predicated. 885 SmallVector<Instruction *, 4> PredicatedInstructions; 886 887 /// Trip count of the original loop. 888 Value *TripCount = nullptr; 889 890 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 891 Value *VectorTripCount = nullptr; 892 893 /// The legality analysis. 894 LoopVectorizationLegality *Legal; 895 896 /// The profitablity analysis. 897 LoopVectorizationCostModel *Cost; 898 899 // Record whether runtime checks are added. 900 bool AddedSafetyChecks = false; 901 902 // Holds the end values for each induction variable. We save the end values 903 // so we can later fix-up the external users of the induction variables. 904 DenseMap<PHINode *, Value *> IVEndValues; 905 906 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 907 // fixed up at the end of vector code generation. 908 SmallVector<PHINode *, 8> OrigPHIsToFix; 909 910 /// BFI and PSI are used to check for profile guided size optimizations. 911 BlockFrequencyInfo *BFI; 912 ProfileSummaryInfo *PSI; 913 914 // Whether this loop should be optimized for size based on profile guided size 915 // optimizatios. 916 bool OptForSizeBasedOnProfile; 917 }; 918 919 class InnerLoopUnroller : public InnerLoopVectorizer { 920 public: 921 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 922 LoopInfo *LI, DominatorTree *DT, 923 const TargetLibraryInfo *TLI, 924 const TargetTransformInfo *TTI, AssumptionCache *AC, 925 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 926 LoopVectorizationLegality *LVL, 927 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 928 ProfileSummaryInfo *PSI) 929 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 930 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 931 BFI, PSI) {} 932 933 private: 934 Value *getBroadcastInstrs(Value *V) override; 935 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 936 Instruction::BinaryOps Opcode = 937 Instruction::BinaryOpsEnd) override; 938 Value *reverseVector(Value *Vec) override; 939 }; 940 941 /// Encapsulate information regarding vectorization of a loop and its epilogue. 942 /// This information is meant to be updated and used across two stages of 943 /// epilogue vectorization. 944 struct EpilogueLoopVectorizationInfo { 945 ElementCount MainLoopVF = ElementCount::getFixed(0); 946 unsigned MainLoopUF = 0; 947 ElementCount EpilogueVF = ElementCount::getFixed(0); 948 unsigned EpilogueUF = 0; 949 BasicBlock *MainLoopIterationCountCheck = nullptr; 950 BasicBlock *EpilogueIterationCountCheck = nullptr; 951 BasicBlock *SCEVSafetyCheck = nullptr; 952 BasicBlock *MemSafetyCheck = nullptr; 953 Value *TripCount = nullptr; 954 Value *VectorTripCount = nullptr; 955 956 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 957 unsigned EUF) 958 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 959 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 960 assert(EUF == 1 && 961 "A high UF for the epilogue loop is likely not beneficial."); 962 } 963 }; 964 965 /// An extension of the inner loop vectorizer that creates a skeleton for a 966 /// vectorized loop that has its epilogue (residual) also vectorized. 967 /// The idea is to run the vplan on a given loop twice, firstly to setup the 968 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 969 /// from the first step and vectorize the epilogue. This is achieved by 970 /// deriving two concrete strategy classes from this base class and invoking 971 /// them in succession from the loop vectorizer planner. 972 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 973 public: 974 InnerLoopAndEpilogueVectorizer( 975 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 976 DominatorTree *DT, const TargetLibraryInfo *TLI, 977 const TargetTransformInfo *TTI, AssumptionCache *AC, 978 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 979 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 980 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 981 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 982 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI), 983 EPI(EPI) {} 984 985 // Override this function to handle the more complex control flow around the 986 // three loops. 987 BasicBlock *createVectorizedLoopSkeleton() final override { 988 return createEpilogueVectorizedLoopSkeleton(); 989 } 990 991 /// The interface for creating a vectorized skeleton using one of two 992 /// different strategies, each corresponding to one execution of the vplan 993 /// as described above. 994 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 995 996 /// Holds and updates state information required to vectorize the main loop 997 /// and its epilogue in two separate passes. This setup helps us avoid 998 /// regenerating and recomputing runtime safety checks. It also helps us to 999 /// shorten the iteration-count-check path length for the cases where the 1000 /// iteration count of the loop is so small that the main vector loop is 1001 /// completely skipped. 1002 EpilogueLoopVectorizationInfo &EPI; 1003 }; 1004 1005 /// A specialized derived class of inner loop vectorizer that performs 1006 /// vectorization of *main* loops in the process of vectorizing loops and their 1007 /// epilogues. 1008 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 1009 public: 1010 EpilogueVectorizerMainLoop( 1011 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 1012 DominatorTree *DT, const TargetLibraryInfo *TLI, 1013 const TargetTransformInfo *TTI, AssumptionCache *AC, 1014 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1015 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1016 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 1017 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1018 EPI, LVL, CM, BFI, PSI) {} 1019 /// Implements the interface for creating a vectorized skeleton using the 1020 /// *main loop* strategy (ie the first pass of vplan execution). 1021 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1022 1023 protected: 1024 /// Emits an iteration count bypass check once for the main loop (when \p 1025 /// ForEpilogue is false) and once for the epilogue loop (when \p 1026 /// ForEpilogue is true). 1027 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 1028 bool ForEpilogue); 1029 void printDebugTracesAtStart() override; 1030 void printDebugTracesAtEnd() override; 1031 }; 1032 1033 // A specialized derived class of inner loop vectorizer that performs 1034 // vectorization of *epilogue* loops in the process of vectorizing loops and 1035 // their epilogues. 1036 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 1037 public: 1038 EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 1039 LoopInfo *LI, DominatorTree *DT, 1040 const TargetLibraryInfo *TLI, 1041 const TargetTransformInfo *TTI, AssumptionCache *AC, 1042 OptimizationRemarkEmitter *ORE, 1043 EpilogueLoopVectorizationInfo &EPI, 1044 LoopVectorizationLegality *LVL, 1045 llvm::LoopVectorizationCostModel *CM, 1046 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 1047 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1048 EPI, LVL, CM, BFI, PSI) {} 1049 /// Implements the interface for creating a vectorized skeleton using the 1050 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1051 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1052 1053 protected: 1054 /// Emits an iteration count bypass check after the main vector loop has 1055 /// finished to see if there are any iterations left to execute by either 1056 /// the vector epilogue or the scalar epilogue. 1057 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1058 BasicBlock *Bypass, 1059 BasicBlock *Insert); 1060 void printDebugTracesAtStart() override; 1061 void printDebugTracesAtEnd() override; 1062 }; 1063 } // end namespace llvm 1064 1065 /// Look for a meaningful debug location on the instruction or it's 1066 /// operands. 1067 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1068 if (!I) 1069 return I; 1070 1071 DebugLoc Empty; 1072 if (I->getDebugLoc() != Empty) 1073 return I; 1074 1075 for (Use &Op : I->operands()) { 1076 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1077 if (OpInst->getDebugLoc() != Empty) 1078 return OpInst; 1079 } 1080 1081 return I; 1082 } 1083 1084 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 1085 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 1086 const DILocation *DIL = Inst->getDebugLoc(); 1087 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1088 !isa<DbgInfoIntrinsic>(Inst)) { 1089 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1090 auto NewDIL = 1091 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1092 if (NewDIL) 1093 B.SetCurrentDebugLocation(NewDIL.getValue()); 1094 else 1095 LLVM_DEBUG(dbgs() 1096 << "Failed to create new discriminator: " 1097 << DIL->getFilename() << " Line: " << DIL->getLine()); 1098 } 1099 else 1100 B.SetCurrentDebugLocation(DIL); 1101 } else 1102 B.SetCurrentDebugLocation(DebugLoc()); 1103 } 1104 1105 /// Write a record \p DebugMsg about vectorization failure to the debug 1106 /// output stream. If \p I is passed, it is an instruction that prevents 1107 /// vectorization. 1108 #ifndef NDEBUG 1109 static void debugVectorizationFailure(const StringRef DebugMsg, 1110 Instruction *I) { 1111 dbgs() << "LV: Not vectorizing: " << DebugMsg; 1112 if (I != nullptr) 1113 dbgs() << " " << *I; 1114 else 1115 dbgs() << '.'; 1116 dbgs() << '\n'; 1117 } 1118 #endif 1119 1120 /// Create an analysis remark that explains why vectorization failed 1121 /// 1122 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1123 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1124 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1125 /// the location of the remark. \return the remark object that can be 1126 /// streamed to. 1127 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1128 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1129 Value *CodeRegion = TheLoop->getHeader(); 1130 DebugLoc DL = TheLoop->getStartLoc(); 1131 1132 if (I) { 1133 CodeRegion = I->getParent(); 1134 // If there is no debug location attached to the instruction, revert back to 1135 // using the loop's. 1136 if (I->getDebugLoc()) 1137 DL = I->getDebugLoc(); 1138 } 1139 1140 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 1141 R << "loop not vectorized: "; 1142 return R; 1143 } 1144 1145 /// Return a value for Step multiplied by VF. 1146 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1147 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1148 Constant *StepVal = ConstantInt::get( 1149 Step->getType(), 1150 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1151 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1152 } 1153 1154 namespace llvm { 1155 1156 void reportVectorizationFailure(const StringRef DebugMsg, 1157 const StringRef OREMsg, const StringRef ORETag, 1158 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 1159 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 1160 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1161 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 1162 ORETag, TheLoop, I) << OREMsg); 1163 } 1164 1165 } // end namespace llvm 1166 1167 #ifndef NDEBUG 1168 /// \return string containing a file name and a line # for the given loop. 1169 static std::string getDebugLocString(const Loop *L) { 1170 std::string Result; 1171 if (L) { 1172 raw_string_ostream OS(Result); 1173 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1174 LoopDbgLoc.print(OS); 1175 else 1176 // Just print the module name. 1177 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1178 OS.flush(); 1179 } 1180 return Result; 1181 } 1182 #endif 1183 1184 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1185 const Instruction *Orig) { 1186 // If the loop was versioned with memchecks, add the corresponding no-alias 1187 // metadata. 1188 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1189 LVer->annotateInstWithNoAlias(To, Orig); 1190 } 1191 1192 void InnerLoopVectorizer::addMetadata(Instruction *To, 1193 Instruction *From) { 1194 propagateMetadata(To, From); 1195 addNewMetadata(To, From); 1196 } 1197 1198 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1199 Instruction *From) { 1200 for (Value *V : To) { 1201 if (Instruction *I = dyn_cast<Instruction>(V)) 1202 addMetadata(I, From); 1203 } 1204 } 1205 1206 namespace llvm { 1207 1208 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1209 // lowered. 1210 enum ScalarEpilogueLowering { 1211 1212 // The default: allowing scalar epilogues. 1213 CM_ScalarEpilogueAllowed, 1214 1215 // Vectorization with OptForSize: don't allow epilogues. 1216 CM_ScalarEpilogueNotAllowedOptSize, 1217 1218 // A special case of vectorisation with OptForSize: loops with a very small 1219 // trip count are considered for vectorization under OptForSize, thereby 1220 // making sure the cost of their loop body is dominant, free of runtime 1221 // guards and scalar iteration overheads. 1222 CM_ScalarEpilogueNotAllowedLowTripLoop, 1223 1224 // Loop hint predicate indicating an epilogue is undesired. 1225 CM_ScalarEpilogueNotNeededUsePredicate, 1226 1227 // Directive indicating we must either tail fold or not vectorize 1228 CM_ScalarEpilogueNotAllowedUsePredicate 1229 }; 1230 1231 /// LoopVectorizationCostModel - estimates the expected speedups due to 1232 /// vectorization. 1233 /// In many cases vectorization is not profitable. This can happen because of 1234 /// a number of reasons. In this class we mainly attempt to predict the 1235 /// expected speedup/slowdowns due to the supported instruction set. We use the 1236 /// TargetTransformInfo to query the different backends for the cost of 1237 /// different operations. 1238 class LoopVectorizationCostModel { 1239 public: 1240 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1241 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1242 LoopVectorizationLegality *Legal, 1243 const TargetTransformInfo &TTI, 1244 const TargetLibraryInfo *TLI, DemandedBits *DB, 1245 AssumptionCache *AC, 1246 OptimizationRemarkEmitter *ORE, const Function *F, 1247 const LoopVectorizeHints *Hints, 1248 InterleavedAccessInfo &IAI) 1249 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1250 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1251 Hints(Hints), InterleaveInfo(IAI) {} 1252 1253 /// \return An upper bound for the vectorization factor, or None if 1254 /// vectorization and interleaving should be avoided up front. 1255 Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC); 1256 1257 /// \return True if runtime checks are required for vectorization, and false 1258 /// otherwise. 1259 bool runtimeChecksRequired(); 1260 1261 /// \return The most profitable vectorization factor and the cost of that VF. 1262 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1263 /// then this vectorization factor will be selected if vectorization is 1264 /// possible. 1265 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1266 VectorizationFactor 1267 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1268 const LoopVectorizationPlanner &LVP); 1269 1270 /// Setup cost-based decisions for user vectorization factor. 1271 void selectUserVectorizationFactor(ElementCount UserVF) { 1272 collectUniformsAndScalars(UserVF); 1273 collectInstsToScalarize(UserVF); 1274 } 1275 1276 /// \return The size (in bits) of the smallest and widest types in the code 1277 /// that needs to be vectorized. We ignore values that remain scalar such as 1278 /// 64 bit loop indices. 1279 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1280 1281 /// \return The desired interleave count. 1282 /// If interleave count has been specified by metadata it will be returned. 1283 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1284 /// are the selected vectorization factor and the cost of the selected VF. 1285 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1286 1287 /// Memory access instruction may be vectorized in more than one way. 1288 /// Form of instruction after vectorization depends on cost. 1289 /// This function takes cost-based decisions for Load/Store instructions 1290 /// and collects them in a map. This decisions map is used for building 1291 /// the lists of loop-uniform and loop-scalar instructions. 1292 /// The calculated cost is saved with widening decision in order to 1293 /// avoid redundant calculations. 1294 void setCostBasedWideningDecision(ElementCount VF); 1295 1296 /// A struct that represents some properties of the register usage 1297 /// of a loop. 1298 struct RegisterUsage { 1299 /// Holds the number of loop invariant values that are used in the loop. 1300 /// The key is ClassID of target-provided register class. 1301 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1302 /// Holds the maximum number of concurrent live intervals in the loop. 1303 /// The key is ClassID of target-provided register class. 1304 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1305 }; 1306 1307 /// \return Returns information about the register usages of the loop for the 1308 /// given vectorization factors. 1309 SmallVector<RegisterUsage, 8> 1310 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1311 1312 /// Collect values we want to ignore in the cost model. 1313 void collectValuesToIgnore(); 1314 1315 /// Split reductions into those that happen in the loop, and those that happen 1316 /// outside. In loop reductions are collected into InLoopReductionChains. 1317 void collectInLoopReductions(); 1318 1319 /// \returns The smallest bitwidth each instruction can be represented with. 1320 /// The vector equivalents of these instructions should be truncated to this 1321 /// type. 1322 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1323 return MinBWs; 1324 } 1325 1326 /// \returns True if it is more profitable to scalarize instruction \p I for 1327 /// vectorization factor \p VF. 1328 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1329 assert(VF.isVector() && 1330 "Profitable to scalarize relevant only for VF > 1."); 1331 1332 // Cost model is not run in the VPlan-native path - return conservative 1333 // result until this changes. 1334 if (EnableVPlanNativePath) 1335 return false; 1336 1337 auto Scalars = InstsToScalarize.find(VF); 1338 assert(Scalars != InstsToScalarize.end() && 1339 "VF not yet analyzed for scalarization profitability"); 1340 return Scalars->second.find(I) != Scalars->second.end(); 1341 } 1342 1343 /// Returns true if \p I is known to be uniform after vectorization. 1344 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1345 if (VF.isScalar()) 1346 return true; 1347 1348 // Cost model is not run in the VPlan-native path - return conservative 1349 // result until this changes. 1350 if (EnableVPlanNativePath) 1351 return false; 1352 1353 auto UniformsPerVF = Uniforms.find(VF); 1354 assert(UniformsPerVF != Uniforms.end() && 1355 "VF not yet analyzed for uniformity"); 1356 return UniformsPerVF->second.count(I); 1357 } 1358 1359 /// Returns true if \p I is known to be scalar after vectorization. 1360 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1361 if (VF.isScalar()) 1362 return true; 1363 1364 // Cost model is not run in the VPlan-native path - return conservative 1365 // result until this changes. 1366 if (EnableVPlanNativePath) 1367 return false; 1368 1369 auto ScalarsPerVF = Scalars.find(VF); 1370 assert(ScalarsPerVF != Scalars.end() && 1371 "Scalar values are not calculated for VF"); 1372 return ScalarsPerVF->second.count(I); 1373 } 1374 1375 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1376 /// for vectorization factor \p VF. 1377 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1378 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1379 !isProfitableToScalarize(I, VF) && 1380 !isScalarAfterVectorization(I, VF); 1381 } 1382 1383 /// Decision that was taken during cost calculation for memory instruction. 1384 enum InstWidening { 1385 CM_Unknown, 1386 CM_Widen, // For consecutive accesses with stride +1. 1387 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1388 CM_Interleave, 1389 CM_GatherScatter, 1390 CM_Scalarize 1391 }; 1392 1393 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1394 /// instruction \p I and vector width \p VF. 1395 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1396 InstructionCost Cost) { 1397 assert(VF.isVector() && "Expected VF >=2"); 1398 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1399 } 1400 1401 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1402 /// interleaving group \p Grp and vector width \p VF. 1403 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1404 ElementCount VF, InstWidening W, 1405 InstructionCost Cost) { 1406 assert(VF.isVector() && "Expected VF >=2"); 1407 /// Broadcast this decicion to all instructions inside the group. 1408 /// But the cost will be assigned to one instruction only. 1409 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1410 if (auto *I = Grp->getMember(i)) { 1411 if (Grp->getInsertPos() == I) 1412 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1413 else 1414 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1415 } 1416 } 1417 } 1418 1419 /// Return the cost model decision for the given instruction \p I and vector 1420 /// width \p VF. Return CM_Unknown if this instruction did not pass 1421 /// through the cost modeling. 1422 InstWidening getWideningDecision(Instruction *I, ElementCount VF) { 1423 assert(VF.isVector() && "Expected VF to be a vector VF"); 1424 // Cost model is not run in the VPlan-native path - return conservative 1425 // result until this changes. 1426 if (EnableVPlanNativePath) 1427 return CM_GatherScatter; 1428 1429 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1430 auto Itr = WideningDecisions.find(InstOnVF); 1431 if (Itr == WideningDecisions.end()) 1432 return CM_Unknown; 1433 return Itr->second.first; 1434 } 1435 1436 /// Return the vectorization cost for the given instruction \p I and vector 1437 /// width \p VF. 1438 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1439 assert(VF.isVector() && "Expected VF >=2"); 1440 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1441 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1442 "The cost is not calculated"); 1443 return WideningDecisions[InstOnVF].second; 1444 } 1445 1446 /// Return True if instruction \p I is an optimizable truncate whose operand 1447 /// is an induction variable. Such a truncate will be removed by adding a new 1448 /// induction variable with the destination type. 1449 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1450 // If the instruction is not a truncate, return false. 1451 auto *Trunc = dyn_cast<TruncInst>(I); 1452 if (!Trunc) 1453 return false; 1454 1455 // Get the source and destination types of the truncate. 1456 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1457 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1458 1459 // If the truncate is free for the given types, return false. Replacing a 1460 // free truncate with an induction variable would add an induction variable 1461 // update instruction to each iteration of the loop. We exclude from this 1462 // check the primary induction variable since it will need an update 1463 // instruction regardless. 1464 Value *Op = Trunc->getOperand(0); 1465 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1466 return false; 1467 1468 // If the truncated value is not an induction variable, return false. 1469 return Legal->isInductionPhi(Op); 1470 } 1471 1472 /// Collects the instructions to scalarize for each predicated instruction in 1473 /// the loop. 1474 void collectInstsToScalarize(ElementCount VF); 1475 1476 /// Collect Uniform and Scalar values for the given \p VF. 1477 /// The sets depend on CM decision for Load/Store instructions 1478 /// that may be vectorized as interleave, gather-scatter or scalarized. 1479 void collectUniformsAndScalars(ElementCount VF) { 1480 // Do the analysis once. 1481 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1482 return; 1483 setCostBasedWideningDecision(VF); 1484 collectLoopUniforms(VF); 1485 collectLoopScalars(VF); 1486 } 1487 1488 /// Returns true if the target machine supports masked store operation 1489 /// for the given \p DataType and kind of access to \p Ptr. 1490 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1491 return Legal->isConsecutivePtr(Ptr) && 1492 TTI.isLegalMaskedStore(DataType, Alignment); 1493 } 1494 1495 /// Returns true if the target machine supports masked load operation 1496 /// for the given \p DataType and kind of access to \p Ptr. 1497 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1498 return Legal->isConsecutivePtr(Ptr) && 1499 TTI.isLegalMaskedLoad(DataType, Alignment); 1500 } 1501 1502 /// Returns true if the target machine supports masked scatter operation 1503 /// for the given \p DataType. 1504 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1505 return TTI.isLegalMaskedScatter(DataType, Alignment); 1506 } 1507 1508 /// Returns true if the target machine supports masked gather operation 1509 /// for the given \p DataType. 1510 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1511 return TTI.isLegalMaskedGather(DataType, Alignment); 1512 } 1513 1514 /// Returns true if the target machine can represent \p V as a masked gather 1515 /// or scatter operation. 1516 bool isLegalGatherOrScatter(Value *V) { 1517 bool LI = isa<LoadInst>(V); 1518 bool SI = isa<StoreInst>(V); 1519 if (!LI && !SI) 1520 return false; 1521 auto *Ty = getMemInstValueType(V); 1522 Align Align = getLoadStoreAlignment(V); 1523 return (LI && isLegalMaskedGather(Ty, Align)) || 1524 (SI && isLegalMaskedScatter(Ty, Align)); 1525 } 1526 1527 /// Returns true if \p I is an instruction that will be scalarized with 1528 /// predication. Such instructions include conditional stores and 1529 /// instructions that may divide by zero. 1530 /// If a non-zero VF has been calculated, we check if I will be scalarized 1531 /// predication for that VF. 1532 bool isScalarWithPredication(Instruction *I, 1533 ElementCount VF = ElementCount::getFixed(1)); 1534 1535 // Returns true if \p I is an instruction that will be predicated either 1536 // through scalar predication or masked load/store or masked gather/scatter. 1537 // Superset of instructions that return true for isScalarWithPredication. 1538 bool isPredicatedInst(Instruction *I) { 1539 if (!blockNeedsPredication(I->getParent())) 1540 return false; 1541 // Loads and stores that need some form of masked operation are predicated 1542 // instructions. 1543 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1544 return Legal->isMaskRequired(I); 1545 return isScalarWithPredication(I); 1546 } 1547 1548 /// Returns true if \p I is a memory instruction with consecutive memory 1549 /// access that can be widened. 1550 bool 1551 memoryInstructionCanBeWidened(Instruction *I, 1552 ElementCount VF = ElementCount::getFixed(1)); 1553 1554 /// Returns true if \p I is a memory instruction in an interleaved-group 1555 /// of memory accesses that can be vectorized with wide vector loads/stores 1556 /// and shuffles. 1557 bool 1558 interleavedAccessCanBeWidened(Instruction *I, 1559 ElementCount VF = ElementCount::getFixed(1)); 1560 1561 /// Check if \p Instr belongs to any interleaved access group. 1562 bool isAccessInterleaved(Instruction *Instr) { 1563 return InterleaveInfo.isInterleaved(Instr); 1564 } 1565 1566 /// Get the interleaved access group that \p Instr belongs to. 1567 const InterleaveGroup<Instruction> * 1568 getInterleavedAccessGroup(Instruction *Instr) { 1569 return InterleaveInfo.getInterleaveGroup(Instr); 1570 } 1571 1572 /// Returns true if we're required to use a scalar epilogue for at least 1573 /// the final iteration of the original loop. 1574 bool requiresScalarEpilogue() const { 1575 if (!isScalarEpilogueAllowed()) 1576 return false; 1577 // If we might exit from anywhere but the latch, must run the exiting 1578 // iteration in scalar form. 1579 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1580 return true; 1581 return InterleaveInfo.requiresScalarEpilogue(); 1582 } 1583 1584 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1585 /// loop hint annotation. 1586 bool isScalarEpilogueAllowed() const { 1587 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1588 } 1589 1590 /// Returns true if all loop blocks should be masked to fold tail loop. 1591 bool foldTailByMasking() const { return FoldTailByMasking; } 1592 1593 bool blockNeedsPredication(BasicBlock *BB) { 1594 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1595 } 1596 1597 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1598 /// nodes to the chain of instructions representing the reductions. Uses a 1599 /// MapVector to ensure deterministic iteration order. 1600 using ReductionChainMap = 1601 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1602 1603 /// Return the chain of instructions representing an inloop reduction. 1604 const ReductionChainMap &getInLoopReductionChains() const { 1605 return InLoopReductionChains; 1606 } 1607 1608 /// Returns true if the Phi is part of an inloop reduction. 1609 bool isInLoopReduction(PHINode *Phi) const { 1610 return InLoopReductionChains.count(Phi); 1611 } 1612 1613 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1614 /// with factor VF. Return the cost of the instruction, including 1615 /// scalarization overhead if it's needed. 1616 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF); 1617 1618 /// Estimate cost of a call instruction CI if it were vectorized with factor 1619 /// VF. Return the cost of the instruction, including scalarization overhead 1620 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1621 /// scalarized - 1622 /// i.e. either vector version isn't available, or is too expensive. 1623 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1624 bool &NeedToScalarize); 1625 1626 /// Invalidates decisions already taken by the cost model. 1627 void invalidateCostModelingDecisions() { 1628 WideningDecisions.clear(); 1629 Uniforms.clear(); 1630 Scalars.clear(); 1631 } 1632 1633 private: 1634 unsigned NumPredStores = 0; 1635 1636 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1637 /// than zero. One is returned if vectorization should best be avoided due 1638 /// to cost. 1639 ElementCount computeFeasibleMaxVF(unsigned ConstTripCount, 1640 ElementCount UserVF); 1641 1642 /// The vectorization cost is a combination of the cost itself and a boolean 1643 /// indicating whether any of the contributing operations will actually 1644 /// operate on 1645 /// vector values after type legalization in the backend. If this latter value 1646 /// is 1647 /// false, then all operations will be scalarized (i.e. no vectorization has 1648 /// actually taken place). 1649 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1650 1651 /// Returns the expected execution cost. The unit of the cost does 1652 /// not matter because we use the 'cost' units to compare different 1653 /// vector widths. The cost that is returned is *not* normalized by 1654 /// the factor width. 1655 VectorizationCostTy expectedCost(ElementCount VF); 1656 1657 /// Returns the execution time cost of an instruction for a given vector 1658 /// width. Vector width of one means scalar. 1659 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1660 1661 /// The cost-computation logic from getInstructionCost which provides 1662 /// the vector type as an output parameter. 1663 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1664 Type *&VectorTy); 1665 1666 /// Return the cost of instructions in an inloop reduction pattern, if I is 1667 /// part of that pattern. 1668 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1669 Type *VectorTy, 1670 TTI::TargetCostKind CostKind); 1671 1672 /// Calculate vectorization cost of memory instruction \p I. 1673 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1674 1675 /// The cost computation for scalarized memory instruction. 1676 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1677 1678 /// The cost computation for interleaving group of memory instructions. 1679 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1680 1681 /// The cost computation for Gather/Scatter instruction. 1682 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1683 1684 /// The cost computation for widening instruction \p I with consecutive 1685 /// memory access. 1686 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1687 1688 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1689 /// Load: scalar load + broadcast. 1690 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1691 /// element) 1692 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1693 1694 /// Estimate the overhead of scalarizing an instruction. This is a 1695 /// convenience wrapper for the type-based getScalarizationOverhead API. 1696 InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF); 1697 1698 /// Returns whether the instruction is a load or store and will be a emitted 1699 /// as a vector operation. 1700 bool isConsecutiveLoadOrStore(Instruction *I); 1701 1702 /// Returns true if an artificially high cost for emulated masked memrefs 1703 /// should be used. 1704 bool useEmulatedMaskMemRefHack(Instruction *I); 1705 1706 /// Map of scalar integer values to the smallest bitwidth they can be legally 1707 /// represented as. The vector equivalents of these values should be truncated 1708 /// to this type. 1709 MapVector<Instruction *, uint64_t> MinBWs; 1710 1711 /// A type representing the costs for instructions if they were to be 1712 /// scalarized rather than vectorized. The entries are Instruction-Cost 1713 /// pairs. 1714 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1715 1716 /// A set containing all BasicBlocks that are known to present after 1717 /// vectorization as a predicated block. 1718 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1719 1720 /// Records whether it is allowed to have the original scalar loop execute at 1721 /// least once. This may be needed as a fallback loop in case runtime 1722 /// aliasing/dependence checks fail, or to handle the tail/remainder 1723 /// iterations when the trip count is unknown or doesn't divide by the VF, 1724 /// or as a peel-loop to handle gaps in interleave-groups. 1725 /// Under optsize and when the trip count is very small we don't allow any 1726 /// iterations to execute in the scalar loop. 1727 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1728 1729 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1730 bool FoldTailByMasking = false; 1731 1732 /// A map holding scalar costs for different vectorization factors. The 1733 /// presence of a cost for an instruction in the mapping indicates that the 1734 /// instruction will be scalarized when vectorizing with the associated 1735 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1736 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1737 1738 /// Holds the instructions known to be uniform after vectorization. 1739 /// The data is collected per VF. 1740 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1741 1742 /// Holds the instructions known to be scalar after vectorization. 1743 /// The data is collected per VF. 1744 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1745 1746 /// Holds the instructions (address computations) that are forced to be 1747 /// scalarized. 1748 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1749 1750 /// PHINodes of the reductions that should be expanded in-loop along with 1751 /// their associated chains of reduction operations, in program order from top 1752 /// (PHI) to bottom 1753 ReductionChainMap InLoopReductionChains; 1754 1755 /// A Map of inloop reduction operations and their immediate chain operand. 1756 /// FIXME: This can be removed once reductions can be costed correctly in 1757 /// vplan. This was added to allow quick lookup to the inloop operations, 1758 /// without having to loop through InLoopReductionChains. 1759 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1760 1761 /// Returns the expected difference in cost from scalarizing the expression 1762 /// feeding a predicated instruction \p PredInst. The instructions to 1763 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1764 /// non-negative return value implies the expression will be scalarized. 1765 /// Currently, only single-use chains are considered for scalarization. 1766 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1767 ElementCount VF); 1768 1769 /// Collect the instructions that are uniform after vectorization. An 1770 /// instruction is uniform if we represent it with a single scalar value in 1771 /// the vectorized loop corresponding to each vector iteration. Examples of 1772 /// uniform instructions include pointer operands of consecutive or 1773 /// interleaved memory accesses. Note that although uniformity implies an 1774 /// instruction will be scalar, the reverse is not true. In general, a 1775 /// scalarized instruction will be represented by VF scalar values in the 1776 /// vectorized loop, each corresponding to an iteration of the original 1777 /// scalar loop. 1778 void collectLoopUniforms(ElementCount VF); 1779 1780 /// Collect the instructions that are scalar after vectorization. An 1781 /// instruction is scalar if it is known to be uniform or will be scalarized 1782 /// during vectorization. Non-uniform scalarized instructions will be 1783 /// represented by VF values in the vectorized loop, each corresponding to an 1784 /// iteration of the original scalar loop. 1785 void collectLoopScalars(ElementCount VF); 1786 1787 /// Keeps cost model vectorization decision and cost for instructions. 1788 /// Right now it is used for memory instructions only. 1789 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1790 std::pair<InstWidening, InstructionCost>>; 1791 1792 DecisionList WideningDecisions; 1793 1794 /// Returns true if \p V is expected to be vectorized and it needs to be 1795 /// extracted. 1796 bool needsExtract(Value *V, ElementCount VF) const { 1797 Instruction *I = dyn_cast<Instruction>(V); 1798 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1799 TheLoop->isLoopInvariant(I)) 1800 return false; 1801 1802 // Assume we can vectorize V (and hence we need extraction) if the 1803 // scalars are not computed yet. This can happen, because it is called 1804 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1805 // the scalars are collected. That should be a safe assumption in most 1806 // cases, because we check if the operands have vectorizable types 1807 // beforehand in LoopVectorizationLegality. 1808 return Scalars.find(VF) == Scalars.end() || 1809 !isScalarAfterVectorization(I, VF); 1810 }; 1811 1812 /// Returns a range containing only operands needing to be extracted. 1813 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1814 ElementCount VF) { 1815 return SmallVector<Value *, 4>(make_filter_range( 1816 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1817 } 1818 1819 /// Determines if we have the infrastructure to vectorize loop \p L and its 1820 /// epilogue, assuming the main loop is vectorized by \p VF. 1821 bool isCandidateForEpilogueVectorization(const Loop &L, 1822 const ElementCount VF) const; 1823 1824 /// Returns true if epilogue vectorization is considered profitable, and 1825 /// false otherwise. 1826 /// \p VF is the vectorization factor chosen for the original loop. 1827 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1828 1829 public: 1830 /// The loop that we evaluate. 1831 Loop *TheLoop; 1832 1833 /// Predicated scalar evolution analysis. 1834 PredicatedScalarEvolution &PSE; 1835 1836 /// Loop Info analysis. 1837 LoopInfo *LI; 1838 1839 /// Vectorization legality. 1840 LoopVectorizationLegality *Legal; 1841 1842 /// Vector target information. 1843 const TargetTransformInfo &TTI; 1844 1845 /// Target Library Info. 1846 const TargetLibraryInfo *TLI; 1847 1848 /// Demanded bits analysis. 1849 DemandedBits *DB; 1850 1851 /// Assumption cache. 1852 AssumptionCache *AC; 1853 1854 /// Interface to emit optimization remarks. 1855 OptimizationRemarkEmitter *ORE; 1856 1857 const Function *TheFunction; 1858 1859 /// Loop Vectorize Hint. 1860 const LoopVectorizeHints *Hints; 1861 1862 /// The interleave access information contains groups of interleaved accesses 1863 /// with the same stride and close to each other. 1864 InterleavedAccessInfo &InterleaveInfo; 1865 1866 /// Values to ignore in the cost model. 1867 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1868 1869 /// Values to ignore in the cost model when VF > 1. 1870 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1871 1872 /// Profitable vector factors. 1873 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1874 }; 1875 1876 } // end namespace llvm 1877 1878 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1879 // vectorization. The loop needs to be annotated with #pragma omp simd 1880 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1881 // vector length information is not provided, vectorization is not considered 1882 // explicit. Interleave hints are not allowed either. These limitations will be 1883 // relaxed in the future. 1884 // Please, note that we are currently forced to abuse the pragma 'clang 1885 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1886 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1887 // provides *explicit vectorization hints* (LV can bypass legal checks and 1888 // assume that vectorization is legal). However, both hints are implemented 1889 // using the same metadata (llvm.loop.vectorize, processed by 1890 // LoopVectorizeHints). This will be fixed in the future when the native IR 1891 // representation for pragma 'omp simd' is introduced. 1892 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1893 OptimizationRemarkEmitter *ORE) { 1894 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 1895 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1896 1897 // Only outer loops with an explicit vectorization hint are supported. 1898 // Unannotated outer loops are ignored. 1899 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1900 return false; 1901 1902 Function *Fn = OuterLp->getHeader()->getParent(); 1903 if (!Hints.allowVectorization(Fn, OuterLp, 1904 true /*VectorizeOnlyWhenForced*/)) { 1905 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1906 return false; 1907 } 1908 1909 if (Hints.getInterleave() > 1) { 1910 // TODO: Interleave support is future work. 1911 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1912 "outer loops.\n"); 1913 Hints.emitRemarkWithHints(); 1914 return false; 1915 } 1916 1917 return true; 1918 } 1919 1920 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1921 OptimizationRemarkEmitter *ORE, 1922 SmallVectorImpl<Loop *> &V) { 1923 // Collect inner loops and outer loops without irreducible control flow. For 1924 // now, only collect outer loops that have explicit vectorization hints. If we 1925 // are stress testing the VPlan H-CFG construction, we collect the outermost 1926 // loop of every loop nest. 1927 if (L.isInnermost() || VPlanBuildStressTest || 1928 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1929 LoopBlocksRPO RPOT(&L); 1930 RPOT.perform(LI); 1931 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1932 V.push_back(&L); 1933 // TODO: Collect inner loops inside marked outer loops in case 1934 // vectorization fails for the outer loop. Do not invoke 1935 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1936 // already known to be reducible. We can use an inherited attribute for 1937 // that. 1938 return; 1939 } 1940 } 1941 for (Loop *InnerL : L) 1942 collectSupportedLoops(*InnerL, LI, ORE, V); 1943 } 1944 1945 namespace { 1946 1947 /// The LoopVectorize Pass. 1948 struct LoopVectorize : public FunctionPass { 1949 /// Pass identification, replacement for typeid 1950 static char ID; 1951 1952 LoopVectorizePass Impl; 1953 1954 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1955 bool VectorizeOnlyWhenForced = false) 1956 : FunctionPass(ID), 1957 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1958 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1959 } 1960 1961 bool runOnFunction(Function &F) override { 1962 if (skipFunction(F)) 1963 return false; 1964 1965 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1966 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1967 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1968 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1969 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1970 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1971 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1972 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1973 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1974 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1975 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1976 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1977 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1978 1979 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1980 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1981 1982 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1983 GetLAA, *ORE, PSI).MadeAnyChange; 1984 } 1985 1986 void getAnalysisUsage(AnalysisUsage &AU) const override { 1987 AU.addRequired<AssumptionCacheTracker>(); 1988 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1989 AU.addRequired<DominatorTreeWrapperPass>(); 1990 AU.addRequired<LoopInfoWrapperPass>(); 1991 AU.addRequired<ScalarEvolutionWrapperPass>(); 1992 AU.addRequired<TargetTransformInfoWrapperPass>(); 1993 AU.addRequired<AAResultsWrapperPass>(); 1994 AU.addRequired<LoopAccessLegacyAnalysis>(); 1995 AU.addRequired<DemandedBitsWrapperPass>(); 1996 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1997 AU.addRequired<InjectTLIMappingsLegacy>(); 1998 1999 // We currently do not preserve loopinfo/dominator analyses with outer loop 2000 // vectorization. Until this is addressed, mark these analyses as preserved 2001 // only for non-VPlan-native path. 2002 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2003 if (!EnableVPlanNativePath) { 2004 AU.addPreserved<LoopInfoWrapperPass>(); 2005 AU.addPreserved<DominatorTreeWrapperPass>(); 2006 } 2007 2008 AU.addPreserved<BasicAAWrapperPass>(); 2009 AU.addPreserved<GlobalsAAWrapperPass>(); 2010 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2011 } 2012 }; 2013 2014 } // end anonymous namespace 2015 2016 //===----------------------------------------------------------------------===// 2017 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2018 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2019 //===----------------------------------------------------------------------===// 2020 2021 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2022 // We need to place the broadcast of invariant variables outside the loop, 2023 // but only if it's proven safe to do so. Else, broadcast will be inside 2024 // vector loop body. 2025 Instruction *Instr = dyn_cast<Instruction>(V); 2026 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2027 (!Instr || 2028 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2029 // Place the code for broadcasting invariant variables in the new preheader. 2030 IRBuilder<>::InsertPointGuard Guard(Builder); 2031 if (SafeToHoist) 2032 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2033 2034 // Broadcast the scalar into all locations in the vector. 2035 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2036 2037 return Shuf; 2038 } 2039 2040 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2041 const InductionDescriptor &II, Value *Step, Value *Start, 2042 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2043 VPTransformState &State) { 2044 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2045 "Expected either an induction phi-node or a truncate of it!"); 2046 2047 // Construct the initial value of the vector IV in the vector loop preheader 2048 auto CurrIP = Builder.saveIP(); 2049 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2050 if (isa<TruncInst>(EntryVal)) { 2051 assert(Start->getType()->isIntegerTy() && 2052 "Truncation requires an integer type"); 2053 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2054 Step = Builder.CreateTrunc(Step, TruncType); 2055 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2056 } 2057 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2058 Value *SteppedStart = 2059 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2060 2061 // We create vector phi nodes for both integer and floating-point induction 2062 // variables. Here, we determine the kind of arithmetic we will perform. 2063 Instruction::BinaryOps AddOp; 2064 Instruction::BinaryOps MulOp; 2065 if (Step->getType()->isIntegerTy()) { 2066 AddOp = Instruction::Add; 2067 MulOp = Instruction::Mul; 2068 } else { 2069 AddOp = II.getInductionOpcode(); 2070 MulOp = Instruction::FMul; 2071 } 2072 2073 // Multiply the vectorization factor by the step using integer or 2074 // floating-point arithmetic as appropriate. 2075 Value *ConstVF = 2076 getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue()); 2077 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2078 2079 // Create a vector splat to use in the induction update. 2080 // 2081 // FIXME: If the step is non-constant, we create the vector splat with 2082 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2083 // handle a constant vector splat. 2084 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2085 Value *SplatVF = isa<Constant>(Mul) 2086 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2087 : Builder.CreateVectorSplat(VF, Mul); 2088 Builder.restoreIP(CurrIP); 2089 2090 // We may need to add the step a number of times, depending on the unroll 2091 // factor. The last of those goes into the PHI. 2092 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2093 &*LoopVectorBody->getFirstInsertionPt()); 2094 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2095 Instruction *LastInduction = VecInd; 2096 for (unsigned Part = 0; Part < UF; ++Part) { 2097 State.set(Def, EntryVal, LastInduction, Part); 2098 2099 if (isa<TruncInst>(EntryVal)) 2100 addMetadata(LastInduction, EntryVal); 2101 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2102 State, Part); 2103 2104 LastInduction = cast<Instruction>(addFastMathFlag( 2105 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2106 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2107 } 2108 2109 // Move the last step to the end of the latch block. This ensures consistent 2110 // placement of all induction updates. 2111 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2112 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2113 auto *ICmp = cast<Instruction>(Br->getCondition()); 2114 LastInduction->moveBefore(ICmp); 2115 LastInduction->setName("vec.ind.next"); 2116 2117 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2118 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2119 } 2120 2121 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2122 return Cost->isScalarAfterVectorization(I, VF) || 2123 Cost->isProfitableToScalarize(I, VF); 2124 } 2125 2126 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2127 if (shouldScalarizeInstruction(IV)) 2128 return true; 2129 auto isScalarInst = [&](User *U) -> bool { 2130 auto *I = cast<Instruction>(U); 2131 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2132 }; 2133 return llvm::any_of(IV->users(), isScalarInst); 2134 } 2135 2136 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2137 const InductionDescriptor &ID, const Instruction *EntryVal, 2138 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2139 unsigned Part, unsigned Lane) { 2140 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2141 "Expected either an induction phi-node or a truncate of it!"); 2142 2143 // This induction variable is not the phi from the original loop but the 2144 // newly-created IV based on the proof that casted Phi is equal to the 2145 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2146 // re-uses the same InductionDescriptor that original IV uses but we don't 2147 // have to do any recording in this case - that is done when original IV is 2148 // processed. 2149 if (isa<TruncInst>(EntryVal)) 2150 return; 2151 2152 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2153 if (Casts.empty()) 2154 return; 2155 // Only the first Cast instruction in the Casts vector is of interest. 2156 // The rest of the Casts (if exist) have no uses outside the 2157 // induction update chain itself. 2158 if (Lane < UINT_MAX) 2159 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2160 else 2161 State.set(CastDef, VectorLoopVal, Part); 2162 } 2163 2164 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2165 TruncInst *Trunc, VPValue *Def, 2166 VPValue *CastDef, 2167 VPTransformState &State) { 2168 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2169 "Primary induction variable must have an integer type"); 2170 2171 auto II = Legal->getInductionVars().find(IV); 2172 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2173 2174 auto ID = II->second; 2175 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2176 2177 // The value from the original loop to which we are mapping the new induction 2178 // variable. 2179 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2180 2181 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2182 2183 // Generate code for the induction step. Note that induction steps are 2184 // required to be loop-invariant 2185 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2186 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2187 "Induction step should be loop invariant"); 2188 if (PSE.getSE()->isSCEVable(IV->getType())) { 2189 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2190 return Exp.expandCodeFor(Step, Step->getType(), 2191 LoopVectorPreHeader->getTerminator()); 2192 } 2193 return cast<SCEVUnknown>(Step)->getValue(); 2194 }; 2195 2196 // The scalar value to broadcast. This is derived from the canonical 2197 // induction variable. If a truncation type is given, truncate the canonical 2198 // induction variable and step. Otherwise, derive these values from the 2199 // induction descriptor. 2200 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2201 Value *ScalarIV = Induction; 2202 if (IV != OldInduction) { 2203 ScalarIV = IV->getType()->isIntegerTy() 2204 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2205 : Builder.CreateCast(Instruction::SIToFP, Induction, 2206 IV->getType()); 2207 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2208 ScalarIV->setName("offset.idx"); 2209 } 2210 if (Trunc) { 2211 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2212 assert(Step->getType()->isIntegerTy() && 2213 "Truncation requires an integer step"); 2214 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2215 Step = Builder.CreateTrunc(Step, TruncType); 2216 } 2217 return ScalarIV; 2218 }; 2219 2220 // Create the vector values from the scalar IV, in the absence of creating a 2221 // vector IV. 2222 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2223 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2224 for (unsigned Part = 0; Part < UF; ++Part) { 2225 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2226 Value *EntryPart = 2227 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2228 ID.getInductionOpcode()); 2229 State.set(Def, EntryVal, EntryPart, Part); 2230 if (Trunc) 2231 addMetadata(EntryPart, Trunc); 2232 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2233 State, Part); 2234 } 2235 }; 2236 2237 // Now do the actual transformations, and start with creating the step value. 2238 Value *Step = CreateStepValue(ID.getStep()); 2239 if (VF.isZero() || VF.isScalar()) { 2240 Value *ScalarIV = CreateScalarIV(Step); 2241 CreateSplatIV(ScalarIV, Step); 2242 return; 2243 } 2244 2245 // Determine if we want a scalar version of the induction variable. This is 2246 // true if the induction variable itself is not widened, or if it has at 2247 // least one user in the loop that is not widened. 2248 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2249 if (!NeedsScalarIV) { 2250 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2251 State); 2252 return; 2253 } 2254 2255 // Try to create a new independent vector induction variable. If we can't 2256 // create the phi node, we will splat the scalar induction variable in each 2257 // loop iteration. 2258 if (!shouldScalarizeInstruction(EntryVal)) { 2259 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2260 State); 2261 Value *ScalarIV = CreateScalarIV(Step); 2262 // Create scalar steps that can be used by instructions we will later 2263 // scalarize. Note that the addition of the scalar steps will not increase 2264 // the number of instructions in the loop in the common case prior to 2265 // InstCombine. We will be trading one vector extract for each scalar step. 2266 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2267 return; 2268 } 2269 2270 // All IV users are scalar instructions, so only emit a scalar IV, not a 2271 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2272 // predicate used by the masked loads/stores. 2273 Value *ScalarIV = CreateScalarIV(Step); 2274 if (!Cost->isScalarEpilogueAllowed()) 2275 CreateSplatIV(ScalarIV, Step); 2276 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2277 } 2278 2279 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2280 Instruction::BinaryOps BinOp) { 2281 // Create and check the types. 2282 auto *ValVTy = cast<FixedVectorType>(Val->getType()); 2283 int VLen = ValVTy->getNumElements(); 2284 2285 Type *STy = Val->getType()->getScalarType(); 2286 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2287 "Induction Step must be an integer or FP"); 2288 assert(Step->getType() == STy && "Step has wrong type"); 2289 2290 SmallVector<Constant *, 8> Indices; 2291 2292 if (STy->isIntegerTy()) { 2293 // Create a vector of consecutive numbers from zero to VF. 2294 for (int i = 0; i < VLen; ++i) 2295 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2296 2297 // Add the consecutive indices to the vector value. 2298 Constant *Cv = ConstantVector::get(Indices); 2299 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2300 Step = Builder.CreateVectorSplat(VLen, Step); 2301 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2302 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2303 // which can be found from the original scalar operations. 2304 Step = Builder.CreateMul(Cv, Step); 2305 return Builder.CreateAdd(Val, Step, "induction"); 2306 } 2307 2308 // Floating point induction. 2309 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2310 "Binary Opcode should be specified for FP induction"); 2311 // Create a vector of consecutive numbers from zero to VF. 2312 for (int i = 0; i < VLen; ++i) 2313 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2314 2315 // Add the consecutive indices to the vector value. 2316 Constant *Cv = ConstantVector::get(Indices); 2317 2318 Step = Builder.CreateVectorSplat(VLen, Step); 2319 2320 // Floating point operations had to be 'fast' to enable the induction. 2321 FastMathFlags Flags; 2322 Flags.setFast(); 2323 2324 Value *MulOp = Builder.CreateFMul(Cv, Step); 2325 if (isa<Instruction>(MulOp)) 2326 // Have to check, MulOp may be a constant 2327 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2328 2329 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2330 if (isa<Instruction>(BOp)) 2331 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2332 return BOp; 2333 } 2334 2335 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2336 Instruction *EntryVal, 2337 const InductionDescriptor &ID, 2338 VPValue *Def, VPValue *CastDef, 2339 VPTransformState &State) { 2340 // We shouldn't have to build scalar steps if we aren't vectorizing. 2341 assert(VF.isVector() && "VF should be greater than one"); 2342 // Get the value type and ensure it and the step have the same integer type. 2343 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2344 assert(ScalarIVTy == Step->getType() && 2345 "Val and Step should have the same type"); 2346 2347 // We build scalar steps for both integer and floating-point induction 2348 // variables. Here, we determine the kind of arithmetic we will perform. 2349 Instruction::BinaryOps AddOp; 2350 Instruction::BinaryOps MulOp; 2351 if (ScalarIVTy->isIntegerTy()) { 2352 AddOp = Instruction::Add; 2353 MulOp = Instruction::Mul; 2354 } else { 2355 AddOp = ID.getInductionOpcode(); 2356 MulOp = Instruction::FMul; 2357 } 2358 2359 // Determine the number of scalars we need to generate for each unroll 2360 // iteration. If EntryVal is uniform, we only need to generate the first 2361 // lane. Otherwise, we generate all VF values. 2362 unsigned Lanes = 2363 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) 2364 ? 1 2365 : VF.getKnownMinValue(); 2366 assert((!VF.isScalable() || Lanes == 1) && 2367 "Should never scalarize a scalable vector"); 2368 // Compute the scalar steps and save the results in VectorLoopValueMap. 2369 for (unsigned Part = 0; Part < UF; ++Part) { 2370 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2371 auto *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2372 ScalarIVTy->getScalarSizeInBits()); 2373 Value *StartIdx = 2374 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2375 if (ScalarIVTy->isFloatingPointTy()) 2376 StartIdx = Builder.CreateSIToFP(StartIdx, ScalarIVTy); 2377 StartIdx = addFastMathFlag(Builder.CreateBinOp( 2378 AddOp, StartIdx, getSignedIntOrFpConstant(ScalarIVTy, Lane))); 2379 // The step returned by `createStepForVF` is a runtime-evaluated value 2380 // when VF is scalable. Otherwise, it should be folded into a Constant. 2381 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2382 "Expected StartIdx to be folded to a constant when VF is not " 2383 "scalable"); 2384 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2385 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2386 State.set(Def, Add, VPIteration(Part, Lane)); 2387 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2388 Part, Lane); 2389 } 2390 } 2391 } 2392 2393 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2394 assert(V != Induction && "The new induction variable should not be used."); 2395 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2396 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2397 2398 // If we have a stride that is replaced by one, do it here. Defer this for 2399 // the VPlan-native path until we start running Legal checks in that path. 2400 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2401 V = ConstantInt::get(V->getType(), 1); 2402 2403 // If we have a vector mapped to this value, return it. 2404 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2405 return VectorLoopValueMap.getVectorValue(V, Part); 2406 2407 // If the value has not been vectorized, check if it has been scalarized 2408 // instead. If it has been scalarized, and we actually need the value in 2409 // vector form, we will construct the vector values on demand. 2410 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2411 Value *ScalarValue = 2412 VectorLoopValueMap.getScalarValue(V, VPIteration(Part, 0)); 2413 2414 // If we've scalarized a value, that value should be an instruction. 2415 auto *I = cast<Instruction>(V); 2416 2417 // If we aren't vectorizing, we can just copy the scalar map values over to 2418 // the vector map. 2419 if (VF.isScalar()) { 2420 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2421 return ScalarValue; 2422 } 2423 2424 // Get the last scalar instruction we generated for V and Part. If the value 2425 // is known to be uniform after vectorization, this corresponds to lane zero 2426 // of the Part unroll iteration. Otherwise, the last instruction is the one 2427 // we created for the last vector lane of the Part unroll iteration. 2428 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) 2429 ? 0 2430 : VF.getKnownMinValue() - 1; 2431 assert((!VF.isScalable() || LastLane == 0) && 2432 "Scalable vectorization can't lead to any scalarized values."); 2433 auto *LastInst = cast<Instruction>( 2434 VectorLoopValueMap.getScalarValue(V, VPIteration(Part, LastLane))); 2435 2436 // Set the insert point after the last scalarized instruction. This ensures 2437 // the insertelement sequence will directly follow the scalar definitions. 2438 auto OldIP = Builder.saveIP(); 2439 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2440 Builder.SetInsertPoint(&*NewIP); 2441 2442 // However, if we are vectorizing, we need to construct the vector values. 2443 // If the value is known to be uniform after vectorization, we can just 2444 // broadcast the scalar value corresponding to lane zero for each unroll 2445 // iteration. Otherwise, we construct the vector values using insertelement 2446 // instructions. Since the resulting vectors are stored in 2447 // VectorLoopValueMap, we will only generate the insertelements once. 2448 Value *VectorValue = nullptr; 2449 if (Cost->isUniformAfterVectorization(I, VF)) { 2450 VectorValue = getBroadcastInstrs(ScalarValue); 2451 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2452 } else { 2453 // Initialize packing with insertelements to start from poison. 2454 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2455 Value *Poison = PoisonValue::get(VectorType::get(V->getType(), VF)); 2456 VectorLoopValueMap.setVectorValue(V, Part, Poison); 2457 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 2458 packScalarIntoVectorValue(V, VPIteration(Part, Lane)); 2459 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2460 } 2461 Builder.restoreIP(OldIP); 2462 return VectorValue; 2463 } 2464 2465 // If this scalar is unknown, assume that it is a constant or that it is 2466 // loop invariant. Broadcast V and save the value for future uses. 2467 Value *B = getBroadcastInstrs(V); 2468 VectorLoopValueMap.setVectorValue(V, Part, B); 2469 return B; 2470 } 2471 2472 Value * 2473 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2474 const VPIteration &Instance) { 2475 // If the value is not an instruction contained in the loop, it should 2476 // already be scalar. 2477 if (OrigLoop->isLoopInvariant(V)) 2478 return V; 2479 2480 assert(Instance.Lane > 0 2481 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2482 : true && "Uniform values only have lane zero"); 2483 2484 // If the value from the original loop has not been vectorized, it is 2485 // represented by UF x VF scalar values in the new loop. Return the requested 2486 // scalar value. 2487 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2488 return VectorLoopValueMap.getScalarValue(V, Instance); 2489 2490 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2491 // for the given unroll part. If this entry is not a vector type (i.e., the 2492 // vectorization factor is one), there is no need to generate an 2493 // extractelement instruction. 2494 auto *U = getOrCreateVectorValue(V, Instance.Part); 2495 if (!U->getType()->isVectorTy()) { 2496 assert(VF.isScalar() && "Value not scalarized has non-vector type"); 2497 return U; 2498 } 2499 2500 // Otherwise, the value from the original loop has been vectorized and is 2501 // represented by UF vector values. Extract and return the requested scalar 2502 // value from the appropriate vector lane. 2503 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2504 } 2505 2506 void InnerLoopVectorizer::packScalarIntoVectorValue( 2507 Value *V, const VPIteration &Instance) { 2508 assert(V != Induction && "The new induction variable should not be used."); 2509 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2510 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2511 2512 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2513 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2514 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2515 Builder.getInt32(Instance.Lane)); 2516 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2517 } 2518 2519 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2520 const VPIteration &Instance, 2521 VPTransformState &State) { 2522 Value *ScalarInst = State.get(Def, Instance); 2523 Value *VectorValue = State.get(Def, Instance.Part); 2524 VectorValue = Builder.CreateInsertElement( 2525 VectorValue, ScalarInst, State.Builder.getInt32(Instance.Lane)); 2526 State.set(Def, VectorValue, Instance.Part); 2527 } 2528 2529 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2530 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2531 assert(!VF.isScalable() && "Cannot reverse scalable vectors"); 2532 SmallVector<int, 8> ShuffleMask; 2533 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 2534 ShuffleMask.push_back(VF.getKnownMinValue() - i - 1); 2535 2536 return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse"); 2537 } 2538 2539 // Return whether we allow using masked interleave-groups (for dealing with 2540 // strided loads/stores that reside in predicated blocks, or for dealing 2541 // with gaps). 2542 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2543 // If an override option has been passed in for interleaved accesses, use it. 2544 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2545 return EnableMaskedInterleavedMemAccesses; 2546 2547 return TTI.enableMaskedInterleavedAccessVectorization(); 2548 } 2549 2550 // Try to vectorize the interleave group that \p Instr belongs to. 2551 // 2552 // E.g. Translate following interleaved load group (factor = 3): 2553 // for (i = 0; i < N; i+=3) { 2554 // R = Pic[i]; // Member of index 0 2555 // G = Pic[i+1]; // Member of index 1 2556 // B = Pic[i+2]; // Member of index 2 2557 // ... // do something to R, G, B 2558 // } 2559 // To: 2560 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2561 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2562 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2563 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2564 // 2565 // Or translate following interleaved store group (factor = 3): 2566 // for (i = 0; i < N; i+=3) { 2567 // ... do something to R, G, B 2568 // Pic[i] = R; // Member of index 0 2569 // Pic[i+1] = G; // Member of index 1 2570 // Pic[i+2] = B; // Member of index 2 2571 // } 2572 // To: 2573 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2574 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2575 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2576 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2577 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2578 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2579 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2580 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2581 VPValue *BlockInMask) { 2582 Instruction *Instr = Group->getInsertPos(); 2583 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2584 2585 // Prepare for the vector type of the interleaved load/store. 2586 Type *ScalarTy = getMemInstValueType(Instr); 2587 unsigned InterleaveFactor = Group->getFactor(); 2588 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2589 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2590 2591 // Prepare for the new pointers. 2592 SmallVector<Value *, 2> AddrParts; 2593 unsigned Index = Group->getIndex(Instr); 2594 2595 // TODO: extend the masked interleaved-group support to reversed access. 2596 assert((!BlockInMask || !Group->isReverse()) && 2597 "Reversed masked interleave-group not supported."); 2598 2599 // If the group is reverse, adjust the index to refer to the last vector lane 2600 // instead of the first. We adjust the index from the first vector lane, 2601 // rather than directly getting the pointer for lane VF - 1, because the 2602 // pointer operand of the interleaved access is supposed to be uniform. For 2603 // uniform instructions, we're only required to generate a value for the 2604 // first vector lane in each unroll iteration. 2605 assert(!VF.isScalable() && 2606 "scalable vector reverse operation is not implemented"); 2607 if (Group->isReverse()) 2608 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2609 2610 for (unsigned Part = 0; Part < UF; Part++) { 2611 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2612 setDebugLocFromInst(Builder, AddrPart); 2613 2614 // Notice current instruction could be any index. Need to adjust the address 2615 // to the member of index 0. 2616 // 2617 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2618 // b = A[i]; // Member of index 0 2619 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2620 // 2621 // E.g. A[i+1] = a; // Member of index 1 2622 // A[i] = b; // Member of index 0 2623 // A[i+2] = c; // Member of index 2 (Current instruction) 2624 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2625 2626 bool InBounds = false; 2627 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2628 InBounds = gep->isInBounds(); 2629 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2630 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2631 2632 // Cast to the vector pointer type. 2633 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2634 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2635 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2636 } 2637 2638 setDebugLocFromInst(Builder, Instr); 2639 Value *PoisonVec = PoisonValue::get(VecTy); 2640 2641 Value *MaskForGaps = nullptr; 2642 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2643 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2644 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2645 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2646 } 2647 2648 // Vectorize the interleaved load group. 2649 if (isa<LoadInst>(Instr)) { 2650 // For each unroll part, create a wide load for the group. 2651 SmallVector<Value *, 2> NewLoads; 2652 for (unsigned Part = 0; Part < UF; Part++) { 2653 Instruction *NewLoad; 2654 if (BlockInMask || MaskForGaps) { 2655 assert(useMaskedInterleavedAccesses(*TTI) && 2656 "masked interleaved groups are not allowed."); 2657 Value *GroupMask = MaskForGaps; 2658 if (BlockInMask) { 2659 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2660 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2661 Value *ShuffledMask = Builder.CreateShuffleVector( 2662 BlockInMaskPart, 2663 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2664 "interleaved.mask"); 2665 GroupMask = MaskForGaps 2666 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2667 MaskForGaps) 2668 : ShuffledMask; 2669 } 2670 NewLoad = 2671 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2672 GroupMask, PoisonVec, "wide.masked.vec"); 2673 } 2674 else 2675 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2676 Group->getAlign(), "wide.vec"); 2677 Group->addMetadata(NewLoad); 2678 NewLoads.push_back(NewLoad); 2679 } 2680 2681 // For each member in the group, shuffle out the appropriate data from the 2682 // wide loads. 2683 unsigned J = 0; 2684 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2685 Instruction *Member = Group->getMember(I); 2686 2687 // Skip the gaps in the group. 2688 if (!Member) 2689 continue; 2690 2691 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2692 auto StrideMask = 2693 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2694 for (unsigned Part = 0; Part < UF; Part++) { 2695 Value *StridedVec = Builder.CreateShuffleVector( 2696 NewLoads[Part], StrideMask, "strided.vec"); 2697 2698 // If this member has different type, cast the result type. 2699 if (Member->getType() != ScalarTy) { 2700 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2701 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2702 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2703 } 2704 2705 if (Group->isReverse()) 2706 StridedVec = reverseVector(StridedVec); 2707 2708 State.set(VPDefs[J], Member, StridedVec, Part); 2709 } 2710 ++J; 2711 } 2712 return; 2713 } 2714 2715 // The sub vector type for current instruction. 2716 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2717 auto *SubVT = VectorType::get(ScalarTy, VF); 2718 2719 // Vectorize the interleaved store group. 2720 for (unsigned Part = 0; Part < UF; Part++) { 2721 // Collect the stored vector from each member. 2722 SmallVector<Value *, 4> StoredVecs; 2723 for (unsigned i = 0; i < InterleaveFactor; i++) { 2724 // Interleaved store group doesn't allow a gap, so each index has a member 2725 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2726 2727 Value *StoredVec = State.get(StoredValues[i], Part); 2728 2729 if (Group->isReverse()) 2730 StoredVec = reverseVector(StoredVec); 2731 2732 // If this member has different type, cast it to a unified type. 2733 2734 if (StoredVec->getType() != SubVT) 2735 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2736 2737 StoredVecs.push_back(StoredVec); 2738 } 2739 2740 // Concatenate all vectors into a wide vector. 2741 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2742 2743 // Interleave the elements in the wide vector. 2744 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2745 Value *IVec = Builder.CreateShuffleVector( 2746 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2747 "interleaved.vec"); 2748 2749 Instruction *NewStoreInstr; 2750 if (BlockInMask) { 2751 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2752 Value *ShuffledMask = Builder.CreateShuffleVector( 2753 BlockInMaskPart, 2754 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2755 "interleaved.mask"); 2756 NewStoreInstr = Builder.CreateMaskedStore( 2757 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2758 } 2759 else 2760 NewStoreInstr = 2761 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2762 2763 Group->addMetadata(NewStoreInstr); 2764 } 2765 } 2766 2767 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2768 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2769 VPValue *StoredValue, VPValue *BlockInMask) { 2770 // Attempt to issue a wide load. 2771 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2772 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2773 2774 assert((LI || SI) && "Invalid Load/Store instruction"); 2775 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2776 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2777 2778 LoopVectorizationCostModel::InstWidening Decision = 2779 Cost->getWideningDecision(Instr, VF); 2780 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2781 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2782 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2783 "CM decision is not to widen the memory instruction"); 2784 2785 Type *ScalarDataTy = getMemInstValueType(Instr); 2786 2787 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2788 const Align Alignment = getLoadStoreAlignment(Instr); 2789 2790 // Determine if the pointer operand of the access is either consecutive or 2791 // reverse consecutive. 2792 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2793 bool ConsecutiveStride = 2794 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2795 bool CreateGatherScatter = 2796 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2797 2798 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2799 // gather/scatter. Otherwise Decision should have been to Scalarize. 2800 assert((ConsecutiveStride || CreateGatherScatter) && 2801 "The instruction should be scalarized"); 2802 (void)ConsecutiveStride; 2803 2804 VectorParts BlockInMaskParts(UF); 2805 bool isMaskRequired = BlockInMask; 2806 if (isMaskRequired) 2807 for (unsigned Part = 0; Part < UF; ++Part) 2808 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2809 2810 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2811 // Calculate the pointer for the specific unroll-part. 2812 GetElementPtrInst *PartPtr = nullptr; 2813 2814 bool InBounds = false; 2815 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2816 InBounds = gep->isInBounds(); 2817 2818 if (Reverse) { 2819 assert(!VF.isScalable() && 2820 "Reversing vectors is not yet supported for scalable vectors."); 2821 2822 // If the address is consecutive but reversed, then the 2823 // wide store needs to start at the last vector element. 2824 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2825 ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue()))); 2826 PartPtr->setIsInBounds(InBounds); 2827 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2828 ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue()))); 2829 PartPtr->setIsInBounds(InBounds); 2830 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2831 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2832 } else { 2833 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2834 PartPtr = cast<GetElementPtrInst>( 2835 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2836 PartPtr->setIsInBounds(InBounds); 2837 } 2838 2839 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2840 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2841 }; 2842 2843 // Handle Stores: 2844 if (SI) { 2845 setDebugLocFromInst(Builder, SI); 2846 2847 for (unsigned Part = 0; Part < UF; ++Part) { 2848 Instruction *NewSI = nullptr; 2849 Value *StoredVal = State.get(StoredValue, Part); 2850 if (CreateGatherScatter) { 2851 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2852 Value *VectorGep = State.get(Addr, Part); 2853 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2854 MaskPart); 2855 } else { 2856 if (Reverse) { 2857 // If we store to reverse consecutive memory locations, then we need 2858 // to reverse the order of elements in the stored value. 2859 StoredVal = reverseVector(StoredVal); 2860 // We don't want to update the value in the map as it might be used in 2861 // another expression. So don't call resetVectorValue(StoredVal). 2862 } 2863 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2864 if (isMaskRequired) 2865 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2866 BlockInMaskParts[Part]); 2867 else 2868 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2869 } 2870 addMetadata(NewSI, SI); 2871 } 2872 return; 2873 } 2874 2875 // Handle loads. 2876 assert(LI && "Must have a load instruction"); 2877 setDebugLocFromInst(Builder, LI); 2878 for (unsigned Part = 0; Part < UF; ++Part) { 2879 Value *NewLI; 2880 if (CreateGatherScatter) { 2881 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2882 Value *VectorGep = State.get(Addr, Part); 2883 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2884 nullptr, "wide.masked.gather"); 2885 addMetadata(NewLI, LI); 2886 } else { 2887 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2888 if (isMaskRequired) 2889 NewLI = Builder.CreateMaskedLoad( 2890 VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy), 2891 "wide.masked.load"); 2892 else 2893 NewLI = 2894 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2895 2896 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2897 addMetadata(NewLI, LI); 2898 if (Reverse) 2899 NewLI = reverseVector(NewLI); 2900 } 2901 2902 State.set(Def, Instr, NewLI, Part); 2903 } 2904 } 2905 2906 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2907 const VPIteration &Instance, 2908 bool IfPredicateInstr, 2909 VPTransformState &State) { 2910 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2911 2912 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2913 // the first lane and part. 2914 if (isa<NoAliasScopeDeclInst>(Instr)) 2915 if (!Instance.isFirstIteration()) 2916 return; 2917 2918 setDebugLocFromInst(Builder, Instr); 2919 2920 // Does this instruction return a value ? 2921 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2922 2923 Instruction *Cloned = Instr->clone(); 2924 if (!IsVoidRetTy) 2925 Cloned->setName(Instr->getName() + ".cloned"); 2926 2927 // Replace the operands of the cloned instructions with their scalar 2928 // equivalents in the new loop. 2929 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2930 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 2931 auto InputInstance = Instance; 2932 if (!Operand || !OrigLoop->contains(Operand) || 2933 (Cost->isUniformAfterVectorization(Operand, State.VF))) 2934 InputInstance.Lane = 0; 2935 auto *NewOp = State.get(User.getOperand(op), InputInstance); 2936 Cloned->setOperand(op, NewOp); 2937 } 2938 addNewMetadata(Cloned, Instr); 2939 2940 // Place the cloned scalar in the new loop. 2941 Builder.Insert(Cloned); 2942 2943 // TODO: Set result for VPValue of VPReciplicateRecipe. This requires 2944 // representing scalar values in VPTransformState. Add the cloned scalar to 2945 // the scalar map entry. 2946 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2947 2948 // If we just cloned a new assumption, add it the assumption cache. 2949 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2950 if (II->getIntrinsicID() == Intrinsic::assume) 2951 AC->registerAssumption(II); 2952 2953 // End if-block. 2954 if (IfPredicateInstr) 2955 PredicatedInstructions.push_back(Cloned); 2956 } 2957 2958 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2959 Value *End, Value *Step, 2960 Instruction *DL) { 2961 BasicBlock *Header = L->getHeader(); 2962 BasicBlock *Latch = L->getLoopLatch(); 2963 // As we're just creating this loop, it's possible no latch exists 2964 // yet. If so, use the header as this will be a single block loop. 2965 if (!Latch) 2966 Latch = Header; 2967 2968 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2969 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2970 setDebugLocFromInst(Builder, OldInst); 2971 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2972 2973 Builder.SetInsertPoint(Latch->getTerminator()); 2974 setDebugLocFromInst(Builder, OldInst); 2975 2976 // Create i+1 and fill the PHINode. 2977 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2978 Induction->addIncoming(Start, L->getLoopPreheader()); 2979 Induction->addIncoming(Next, Latch); 2980 // Create the compare. 2981 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2982 Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 2983 2984 // Now we have two terminators. Remove the old one from the block. 2985 Latch->getTerminator()->eraseFromParent(); 2986 2987 return Induction; 2988 } 2989 2990 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2991 if (TripCount) 2992 return TripCount; 2993 2994 assert(L && "Create Trip Count for null loop."); 2995 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2996 // Find the loop boundaries. 2997 ScalarEvolution *SE = PSE.getSE(); 2998 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2999 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3000 "Invalid loop count"); 3001 3002 Type *IdxTy = Legal->getWidestInductionType(); 3003 assert(IdxTy && "No type for induction"); 3004 3005 // The exit count might have the type of i64 while the phi is i32. This can 3006 // happen if we have an induction variable that is sign extended before the 3007 // compare. The only way that we get a backedge taken count is that the 3008 // induction variable was signed and as such will not overflow. In such a case 3009 // truncation is legal. 3010 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3011 IdxTy->getPrimitiveSizeInBits()) 3012 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3013 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3014 3015 // Get the total trip count from the count by adding 1. 3016 const SCEV *ExitCount = SE->getAddExpr( 3017 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3018 3019 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3020 3021 // Expand the trip count and place the new instructions in the preheader. 3022 // Notice that the pre-header does not change, only the loop body. 3023 SCEVExpander Exp(*SE, DL, "induction"); 3024 3025 // Count holds the overall loop count (N). 3026 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3027 L->getLoopPreheader()->getTerminator()); 3028 3029 if (TripCount->getType()->isPointerTy()) 3030 TripCount = 3031 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3032 L->getLoopPreheader()->getTerminator()); 3033 3034 return TripCount; 3035 } 3036 3037 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3038 if (VectorTripCount) 3039 return VectorTripCount; 3040 3041 Value *TC = getOrCreateTripCount(L); 3042 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3043 3044 Type *Ty = TC->getType(); 3045 // This is where we can make the step a runtime constant. 3046 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3047 3048 // If the tail is to be folded by masking, round the number of iterations N 3049 // up to a multiple of Step instead of rounding down. This is done by first 3050 // adding Step-1 and then rounding down. Note that it's ok if this addition 3051 // overflows: the vector induction variable will eventually wrap to zero given 3052 // that it starts at zero and its Step is a power of two; the loop will then 3053 // exit, with the last early-exit vector comparison also producing all-true. 3054 if (Cost->foldTailByMasking()) { 3055 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3056 "VF*UF must be a power of 2 when folding tail by masking"); 3057 assert(!VF.isScalable() && 3058 "Tail folding not yet supported for scalable vectors"); 3059 TC = Builder.CreateAdd( 3060 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3061 } 3062 3063 // Now we need to generate the expression for the part of the loop that the 3064 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3065 // iterations are not required for correctness, or N - Step, otherwise. Step 3066 // is equal to the vectorization factor (number of SIMD elements) times the 3067 // unroll factor (number of SIMD instructions). 3068 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3069 3070 // There are two cases where we need to ensure (at least) the last iteration 3071 // runs in the scalar remainder loop. Thus, if the step evenly divides 3072 // the trip count, we set the remainder to be equal to the step. If the step 3073 // does not evenly divide the trip count, no adjustment is necessary since 3074 // there will already be scalar iterations. Note that the minimum iterations 3075 // check ensures that N >= Step. The cases are: 3076 // 1) If there is a non-reversed interleaved group that may speculatively 3077 // access memory out-of-bounds. 3078 // 2) If any instruction may follow a conditionally taken exit. That is, if 3079 // the loop contains multiple exiting blocks, or a single exiting block 3080 // which is not the latch. 3081 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 3082 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3083 R = Builder.CreateSelect(IsZero, Step, R); 3084 } 3085 3086 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3087 3088 return VectorTripCount; 3089 } 3090 3091 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3092 const DataLayout &DL) { 3093 // Verify that V is a vector type with same number of elements as DstVTy. 3094 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3095 unsigned VF = DstFVTy->getNumElements(); 3096 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3097 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3098 Type *SrcElemTy = SrcVecTy->getElementType(); 3099 Type *DstElemTy = DstFVTy->getElementType(); 3100 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3101 "Vector elements must have same size"); 3102 3103 // Do a direct cast if element types are castable. 3104 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3105 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3106 } 3107 // V cannot be directly casted to desired vector type. 3108 // May happen when V is a floating point vector but DstVTy is a vector of 3109 // pointers or vice-versa. Handle this using a two-step bitcast using an 3110 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3111 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3112 "Only one type should be a pointer type"); 3113 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3114 "Only one type should be a floating point type"); 3115 Type *IntTy = 3116 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3117 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3118 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3119 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3120 } 3121 3122 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3123 BasicBlock *Bypass) { 3124 Value *Count = getOrCreateTripCount(L); 3125 // Reuse existing vector loop preheader for TC checks. 3126 // Note that new preheader block is generated for vector loop. 3127 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3128 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3129 3130 // Generate code to check if the loop's trip count is less than VF * UF, or 3131 // equal to it in case a scalar epilogue is required; this implies that the 3132 // vector trip count is zero. This check also covers the case where adding one 3133 // to the backedge-taken count overflowed leading to an incorrect trip count 3134 // of zero. In this case we will also jump to the scalar loop. 3135 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3136 : ICmpInst::ICMP_ULT; 3137 3138 // If tail is to be folded, vector loop takes care of all iterations. 3139 Value *CheckMinIters = Builder.getFalse(); 3140 if (!Cost->foldTailByMasking()) { 3141 Value *Step = 3142 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3143 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3144 } 3145 // Create new preheader for vector loop. 3146 LoopVectorPreHeader = 3147 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3148 "vector.ph"); 3149 3150 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3151 DT->getNode(Bypass)->getIDom()) && 3152 "TC check is expected to dominate Bypass"); 3153 3154 // Update dominator for Bypass & LoopExit. 3155 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3156 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3157 3158 ReplaceInstWithInst( 3159 TCCheckBlock->getTerminator(), 3160 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3161 LoopBypassBlocks.push_back(TCCheckBlock); 3162 } 3163 3164 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3165 // Reuse existing vector loop preheader for SCEV checks. 3166 // Note that new preheader block is generated for vector loop. 3167 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 3168 3169 // Generate the code to check that the SCEV assumptions that we made. 3170 // We want the new basic block to start at the first instruction in a 3171 // sequence of instructions that form a check. 3172 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3173 "scev.check"); 3174 Value *SCEVCheck = Exp.expandCodeForPredicate( 3175 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 3176 3177 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3178 if (C->isZero()) 3179 return; 3180 3181 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3182 (OptForSizeBasedOnProfile && 3183 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3184 "Cannot SCEV check stride or overflow when optimizing for size"); 3185 3186 SCEVCheckBlock->setName("vector.scevcheck"); 3187 // Create new preheader for vector loop. 3188 LoopVectorPreHeader = 3189 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 3190 nullptr, "vector.ph"); 3191 3192 // Update dominator only if this is first RT check. 3193 if (LoopBypassBlocks.empty()) { 3194 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3195 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3196 } 3197 3198 ReplaceInstWithInst( 3199 SCEVCheckBlock->getTerminator(), 3200 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 3201 LoopBypassBlocks.push_back(SCEVCheckBlock); 3202 AddedSafetyChecks = true; 3203 } 3204 3205 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3206 // VPlan-native path does not do any analysis for runtime checks currently. 3207 if (EnableVPlanNativePath) 3208 return; 3209 3210 // Reuse existing vector loop preheader for runtime memory checks. 3211 // Note that new preheader block is generated for vector loop. 3212 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 3213 3214 // Generate the code that checks in runtime if arrays overlap. We put the 3215 // checks into a separate block to make the more common case of few elements 3216 // faster. 3217 auto *LAI = Legal->getLAI(); 3218 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 3219 if (!RtPtrChecking.Need) 3220 return; 3221 3222 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3223 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3224 "Cannot emit memory checks when optimizing for size, unless forced " 3225 "to vectorize."); 3226 ORE->emit([&]() { 3227 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3228 L->getStartLoc(), L->getHeader()) 3229 << "Code-size may be reduced by not forcing " 3230 "vectorization, or by source-code modifications " 3231 "eliminating the need for runtime checks " 3232 "(e.g., adding 'restrict')."; 3233 }); 3234 } 3235 3236 MemCheckBlock->setName("vector.memcheck"); 3237 // Create new preheader for vector loop. 3238 LoopVectorPreHeader = 3239 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 3240 "vector.ph"); 3241 3242 auto *CondBranch = cast<BranchInst>( 3243 Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader)); 3244 ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch); 3245 LoopBypassBlocks.push_back(MemCheckBlock); 3246 AddedSafetyChecks = true; 3247 3248 // Update dominator only if this is first RT check. 3249 if (LoopBypassBlocks.empty()) { 3250 DT->changeImmediateDominator(Bypass, MemCheckBlock); 3251 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 3252 } 3253 3254 Instruction *FirstCheckInst; 3255 Instruction *MemRuntimeCheck; 3256 SCEVExpander Exp(*PSE.getSE(), MemCheckBlock->getModule()->getDataLayout(), 3257 "induction"); 3258 std::tie(FirstCheckInst, MemRuntimeCheck) = addRuntimeChecks( 3259 MemCheckBlock->getTerminator(), OrigLoop, RtPtrChecking.getChecks(), Exp); 3260 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 3261 "claimed checks are required"); 3262 CondBranch->setCondition(MemRuntimeCheck); 3263 3264 // We currently don't use LoopVersioning for the actual loop cloning but we 3265 // still use it to add the noalias metadata. 3266 LVer = std::make_unique<LoopVersioning>( 3267 *Legal->getLAI(), 3268 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3269 DT, PSE.getSE()); 3270 LVer->prepareNoAliasMetadata(); 3271 } 3272 3273 Value *InnerLoopVectorizer::emitTransformedIndex( 3274 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3275 const InductionDescriptor &ID) const { 3276 3277 SCEVExpander Exp(*SE, DL, "induction"); 3278 auto Step = ID.getStep(); 3279 auto StartValue = ID.getStartValue(); 3280 assert(Index->getType() == Step->getType() && 3281 "Index type does not match StepValue type"); 3282 3283 // Note: the IR at this point is broken. We cannot use SE to create any new 3284 // SCEV and then expand it, hoping that SCEV's simplification will give us 3285 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3286 // lead to various SCEV crashes. So all we can do is to use builder and rely 3287 // on InstCombine for future simplifications. Here we handle some trivial 3288 // cases only. 3289 auto CreateAdd = [&B](Value *X, Value *Y) { 3290 assert(X->getType() == Y->getType() && "Types don't match!"); 3291 if (auto *CX = dyn_cast<ConstantInt>(X)) 3292 if (CX->isZero()) 3293 return Y; 3294 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3295 if (CY->isZero()) 3296 return X; 3297 return B.CreateAdd(X, Y); 3298 }; 3299 3300 auto CreateMul = [&B](Value *X, Value *Y) { 3301 assert(X->getType() == Y->getType() && "Types don't match!"); 3302 if (auto *CX = dyn_cast<ConstantInt>(X)) 3303 if (CX->isOne()) 3304 return Y; 3305 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3306 if (CY->isOne()) 3307 return X; 3308 return B.CreateMul(X, Y); 3309 }; 3310 3311 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3312 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3313 // the DomTree is not kept up-to-date for additional blocks generated in the 3314 // vector loop. By using the header as insertion point, we guarantee that the 3315 // expanded instructions dominate all their uses. 3316 auto GetInsertPoint = [this, &B]() { 3317 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3318 if (InsertBB != LoopVectorBody && 3319 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3320 return LoopVectorBody->getTerminator(); 3321 return &*B.GetInsertPoint(); 3322 }; 3323 switch (ID.getKind()) { 3324 case InductionDescriptor::IK_IntInduction: { 3325 assert(Index->getType() == StartValue->getType() && 3326 "Index type does not match StartValue type"); 3327 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3328 return B.CreateSub(StartValue, Index); 3329 auto *Offset = CreateMul( 3330 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3331 return CreateAdd(StartValue, Offset); 3332 } 3333 case InductionDescriptor::IK_PtrInduction: { 3334 assert(isa<SCEVConstant>(Step) && 3335 "Expected constant step for pointer induction"); 3336 return B.CreateGEP( 3337 StartValue->getType()->getPointerElementType(), StartValue, 3338 CreateMul(Index, 3339 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3340 } 3341 case InductionDescriptor::IK_FpInduction: { 3342 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3343 auto InductionBinOp = ID.getInductionBinOp(); 3344 assert(InductionBinOp && 3345 (InductionBinOp->getOpcode() == Instruction::FAdd || 3346 InductionBinOp->getOpcode() == Instruction::FSub) && 3347 "Original bin op should be defined for FP induction"); 3348 3349 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3350 3351 // Floating point operations had to be 'fast' to enable the induction. 3352 FastMathFlags Flags; 3353 Flags.setFast(); 3354 3355 Value *MulExp = B.CreateFMul(StepValue, Index); 3356 if (isa<Instruction>(MulExp)) 3357 // We have to check, the MulExp may be a constant. 3358 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 3359 3360 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3361 "induction"); 3362 if (isa<Instruction>(BOp)) 3363 cast<Instruction>(BOp)->setFastMathFlags(Flags); 3364 3365 return BOp; 3366 } 3367 case InductionDescriptor::IK_NoInduction: 3368 return nullptr; 3369 } 3370 llvm_unreachable("invalid enum"); 3371 } 3372 3373 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3374 LoopScalarBody = OrigLoop->getHeader(); 3375 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3376 LoopExitBlock = OrigLoop->getUniqueExitBlock(); 3377 assert(LoopExitBlock && "Must have an exit block"); 3378 assert(LoopVectorPreHeader && "Invalid loop structure"); 3379 3380 LoopMiddleBlock = 3381 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3382 LI, nullptr, Twine(Prefix) + "middle.block"); 3383 LoopScalarPreHeader = 3384 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3385 nullptr, Twine(Prefix) + "scalar.ph"); 3386 3387 // Set up branch from middle block to the exit and scalar preheader blocks. 3388 // completeLoopSkeleton will update the condition to use an iteration check, 3389 // if required to decide whether to execute the remainder. 3390 BranchInst *BrInst = 3391 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue()); 3392 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3393 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3394 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3395 3396 // We intentionally don't let SplitBlock to update LoopInfo since 3397 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3398 // LoopVectorBody is explicitly added to the correct place few lines later. 3399 LoopVectorBody = 3400 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3401 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3402 3403 // Update dominator for loop exit. 3404 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3405 3406 // Create and register the new vector loop. 3407 Loop *Lp = LI->AllocateLoop(); 3408 Loop *ParentLoop = OrigLoop->getParentLoop(); 3409 3410 // Insert the new loop into the loop nest and register the new basic blocks 3411 // before calling any utilities such as SCEV that require valid LoopInfo. 3412 if (ParentLoop) { 3413 ParentLoop->addChildLoop(Lp); 3414 } else { 3415 LI->addTopLevelLoop(Lp); 3416 } 3417 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3418 return Lp; 3419 } 3420 3421 void InnerLoopVectorizer::createInductionResumeValues( 3422 Loop *L, Value *VectorTripCount, 3423 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3424 assert(VectorTripCount && L && "Expected valid arguments"); 3425 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3426 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3427 "Inconsistent information about additional bypass."); 3428 // We are going to resume the execution of the scalar loop. 3429 // Go over all of the induction variables that we found and fix the 3430 // PHIs that are left in the scalar version of the loop. 3431 // The starting values of PHI nodes depend on the counter of the last 3432 // iteration in the vectorized loop. 3433 // If we come from a bypass edge then we need to start from the original 3434 // start value. 3435 for (auto &InductionEntry : Legal->getInductionVars()) { 3436 PHINode *OrigPhi = InductionEntry.first; 3437 InductionDescriptor II = InductionEntry.second; 3438 3439 // Create phi nodes to merge from the backedge-taken check block. 3440 PHINode *BCResumeVal = 3441 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3442 LoopScalarPreHeader->getTerminator()); 3443 // Copy original phi DL over to the new one. 3444 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3445 Value *&EndValue = IVEndValues[OrigPhi]; 3446 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3447 if (OrigPhi == OldInduction) { 3448 // We know what the end value is. 3449 EndValue = VectorTripCount; 3450 } else { 3451 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3452 Type *StepType = II.getStep()->getType(); 3453 Instruction::CastOps CastOp = 3454 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3455 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3456 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3457 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3458 EndValue->setName("ind.end"); 3459 3460 // Compute the end value for the additional bypass (if applicable). 3461 if (AdditionalBypass.first) { 3462 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3463 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3464 StepType, true); 3465 CRD = 3466 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3467 EndValueFromAdditionalBypass = 3468 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3469 EndValueFromAdditionalBypass->setName("ind.end"); 3470 } 3471 } 3472 // The new PHI merges the original incoming value, in case of a bypass, 3473 // or the value at the end of the vectorized loop. 3474 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3475 3476 // Fix the scalar body counter (PHI node). 3477 // The old induction's phi node in the scalar body needs the truncated 3478 // value. 3479 for (BasicBlock *BB : LoopBypassBlocks) 3480 BCResumeVal->addIncoming(II.getStartValue(), BB); 3481 3482 if (AdditionalBypass.first) 3483 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3484 EndValueFromAdditionalBypass); 3485 3486 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3487 } 3488 } 3489 3490 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3491 MDNode *OrigLoopID) { 3492 assert(L && "Expected valid loop."); 3493 3494 // The trip counts should be cached by now. 3495 Value *Count = getOrCreateTripCount(L); 3496 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3497 3498 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3499 3500 // Add a check in the middle block to see if we have completed 3501 // all of the iterations in the first vector loop. 3502 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3503 // If tail is to be folded, we know we don't need to run the remainder. 3504 if (!Cost->foldTailByMasking()) { 3505 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3506 Count, VectorTripCount, "cmp.n", 3507 LoopMiddleBlock->getTerminator()); 3508 3509 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3510 // of the corresponding compare because they may have ended up with 3511 // different line numbers and we want to avoid awkward line stepping while 3512 // debugging. Eg. if the compare has got a line number inside the loop. 3513 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3514 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3515 } 3516 3517 // Get ready to start creating new instructions into the vectorized body. 3518 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3519 "Inconsistent vector loop preheader"); 3520 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3521 3522 Optional<MDNode *> VectorizedLoopID = 3523 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3524 LLVMLoopVectorizeFollowupVectorized}); 3525 if (VectorizedLoopID.hasValue()) { 3526 L->setLoopID(VectorizedLoopID.getValue()); 3527 3528 // Do not setAlreadyVectorized if loop attributes have been defined 3529 // explicitly. 3530 return LoopVectorPreHeader; 3531 } 3532 3533 // Keep all loop hints from the original loop on the vector loop (we'll 3534 // replace the vectorizer-specific hints below). 3535 if (MDNode *LID = OrigLoop->getLoopID()) 3536 L->setLoopID(LID); 3537 3538 LoopVectorizeHints Hints(L, true, *ORE); 3539 Hints.setAlreadyVectorized(); 3540 3541 #ifdef EXPENSIVE_CHECKS 3542 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3543 LI->verify(*DT); 3544 #endif 3545 3546 return LoopVectorPreHeader; 3547 } 3548 3549 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3550 /* 3551 In this function we generate a new loop. The new loop will contain 3552 the vectorized instructions while the old loop will continue to run the 3553 scalar remainder. 3554 3555 [ ] <-- loop iteration number check. 3556 / | 3557 / v 3558 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3559 | / | 3560 | / v 3561 || [ ] <-- vector pre header. 3562 |/ | 3563 | v 3564 | [ ] \ 3565 | [ ]_| <-- vector loop. 3566 | | 3567 | v 3568 | -[ ] <--- middle-block. 3569 | / | 3570 | / v 3571 -|- >[ ] <--- new preheader. 3572 | | 3573 | v 3574 | [ ] \ 3575 | [ ]_| <-- old scalar loop to handle remainder. 3576 \ | 3577 \ v 3578 >[ ] <-- exit block. 3579 ... 3580 */ 3581 3582 // Get the metadata of the original loop before it gets modified. 3583 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3584 3585 // Create an empty vector loop, and prepare basic blocks for the runtime 3586 // checks. 3587 Loop *Lp = createVectorLoopSkeleton(""); 3588 3589 // Now, compare the new count to zero. If it is zero skip the vector loop and 3590 // jump to the scalar loop. This check also covers the case where the 3591 // backedge-taken count is uint##_max: adding one to it will overflow leading 3592 // to an incorrect trip count of zero. In this (rare) case we will also jump 3593 // to the scalar loop. 3594 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3595 3596 // Generate the code to check any assumptions that we've made for SCEV 3597 // expressions. 3598 emitSCEVChecks(Lp, LoopScalarPreHeader); 3599 3600 // Generate the code that checks in runtime if arrays overlap. We put the 3601 // checks into a separate block to make the more common case of few elements 3602 // faster. 3603 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3604 3605 // Some loops have a single integer induction variable, while other loops 3606 // don't. One example is c++ iterators that often have multiple pointer 3607 // induction variables. In the code below we also support a case where we 3608 // don't have a single induction variable. 3609 // 3610 // We try to obtain an induction variable from the original loop as hard 3611 // as possible. However if we don't find one that: 3612 // - is an integer 3613 // - counts from zero, stepping by one 3614 // - is the size of the widest induction variable type 3615 // then we create a new one. 3616 OldInduction = Legal->getPrimaryInduction(); 3617 Type *IdxTy = Legal->getWidestInductionType(); 3618 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3619 // The loop step is equal to the vectorization factor (num of SIMD elements) 3620 // times the unroll factor (num of SIMD instructions). 3621 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3622 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3623 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3624 Induction = 3625 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3626 getDebugLocFromInstOrOperands(OldInduction)); 3627 3628 // Emit phis for the new starting index of the scalar loop. 3629 createInductionResumeValues(Lp, CountRoundDown); 3630 3631 return completeLoopSkeleton(Lp, OrigLoopID); 3632 } 3633 3634 // Fix up external users of the induction variable. At this point, we are 3635 // in LCSSA form, with all external PHIs that use the IV having one input value, 3636 // coming from the remainder loop. We need those PHIs to also have a correct 3637 // value for the IV when arriving directly from the middle block. 3638 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3639 const InductionDescriptor &II, 3640 Value *CountRoundDown, Value *EndValue, 3641 BasicBlock *MiddleBlock) { 3642 // There are two kinds of external IV usages - those that use the value 3643 // computed in the last iteration (the PHI) and those that use the penultimate 3644 // value (the value that feeds into the phi from the loop latch). 3645 // We allow both, but they, obviously, have different values. 3646 3647 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3648 3649 DenseMap<Value *, Value *> MissingVals; 3650 3651 // An external user of the last iteration's value should see the value that 3652 // the remainder loop uses to initialize its own IV. 3653 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3654 for (User *U : PostInc->users()) { 3655 Instruction *UI = cast<Instruction>(U); 3656 if (!OrigLoop->contains(UI)) { 3657 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3658 MissingVals[UI] = EndValue; 3659 } 3660 } 3661 3662 // An external user of the penultimate value need to see EndValue - Step. 3663 // The simplest way to get this is to recompute it from the constituent SCEVs, 3664 // that is Start + (Step * (CRD - 1)). 3665 for (User *U : OrigPhi->users()) { 3666 auto *UI = cast<Instruction>(U); 3667 if (!OrigLoop->contains(UI)) { 3668 const DataLayout &DL = 3669 OrigLoop->getHeader()->getModule()->getDataLayout(); 3670 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3671 3672 IRBuilder<> B(MiddleBlock->getTerminator()); 3673 Value *CountMinusOne = B.CreateSub( 3674 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3675 Value *CMO = 3676 !II.getStep()->getType()->isIntegerTy() 3677 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3678 II.getStep()->getType()) 3679 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3680 CMO->setName("cast.cmo"); 3681 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3682 Escape->setName("ind.escape"); 3683 MissingVals[UI] = Escape; 3684 } 3685 } 3686 3687 for (auto &I : MissingVals) { 3688 PHINode *PHI = cast<PHINode>(I.first); 3689 // One corner case we have to handle is two IVs "chasing" each-other, 3690 // that is %IV2 = phi [...], [ %IV1, %latch ] 3691 // In this case, if IV1 has an external use, we need to avoid adding both 3692 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3693 // don't already have an incoming value for the middle block. 3694 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3695 PHI->addIncoming(I.second, MiddleBlock); 3696 } 3697 } 3698 3699 namespace { 3700 3701 struct CSEDenseMapInfo { 3702 static bool canHandle(const Instruction *I) { 3703 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3704 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3705 } 3706 3707 static inline Instruction *getEmptyKey() { 3708 return DenseMapInfo<Instruction *>::getEmptyKey(); 3709 } 3710 3711 static inline Instruction *getTombstoneKey() { 3712 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3713 } 3714 3715 static unsigned getHashValue(const Instruction *I) { 3716 assert(canHandle(I) && "Unknown instruction!"); 3717 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3718 I->value_op_end())); 3719 } 3720 3721 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3722 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3723 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3724 return LHS == RHS; 3725 return LHS->isIdenticalTo(RHS); 3726 } 3727 }; 3728 3729 } // end anonymous namespace 3730 3731 ///Perform cse of induction variable instructions. 3732 static void cse(BasicBlock *BB) { 3733 // Perform simple cse. 3734 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3735 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3736 Instruction *In = &*I++; 3737 3738 if (!CSEDenseMapInfo::canHandle(In)) 3739 continue; 3740 3741 // Check if we can replace this instruction with any of the 3742 // visited instructions. 3743 if (Instruction *V = CSEMap.lookup(In)) { 3744 In->replaceAllUsesWith(V); 3745 In->eraseFromParent(); 3746 continue; 3747 } 3748 3749 CSEMap[In] = In; 3750 } 3751 } 3752 3753 InstructionCost 3754 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3755 bool &NeedToScalarize) { 3756 assert(!VF.isScalable() && "scalable vectors not yet supported."); 3757 Function *F = CI->getCalledFunction(); 3758 Type *ScalarRetTy = CI->getType(); 3759 SmallVector<Type *, 4> Tys, ScalarTys; 3760 for (auto &ArgOp : CI->arg_operands()) 3761 ScalarTys.push_back(ArgOp->getType()); 3762 3763 // Estimate cost of scalarized vector call. The source operands are assumed 3764 // to be vectors, so we need to extract individual elements from there, 3765 // execute VF scalar calls, and then gather the result into the vector return 3766 // value. 3767 InstructionCost ScalarCallCost = 3768 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3769 if (VF.isScalar()) 3770 return ScalarCallCost; 3771 3772 // Compute corresponding vector type for return value and arguments. 3773 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3774 for (Type *ScalarTy : ScalarTys) 3775 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3776 3777 // Compute costs of unpacking argument values for the scalar calls and 3778 // packing the return values to a vector. 3779 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3780 3781 InstructionCost Cost = 3782 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3783 3784 // If we can't emit a vector call for this function, then the currently found 3785 // cost is the cost we need to return. 3786 NeedToScalarize = true; 3787 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3788 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3789 3790 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3791 return Cost; 3792 3793 // If the corresponding vector cost is cheaper, return its cost. 3794 InstructionCost VectorCallCost = 3795 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3796 if (VectorCallCost < Cost) { 3797 NeedToScalarize = false; 3798 Cost = VectorCallCost; 3799 } 3800 return Cost; 3801 } 3802 3803 InstructionCost 3804 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3805 ElementCount VF) { 3806 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3807 assert(ID && "Expected intrinsic call!"); 3808 3809 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3810 return TTI.getIntrinsicInstrCost(CostAttrs, 3811 TargetTransformInfo::TCK_RecipThroughput); 3812 } 3813 3814 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3815 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3816 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3817 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3818 } 3819 3820 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3821 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3822 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3823 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3824 } 3825 3826 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3827 // For every instruction `I` in MinBWs, truncate the operands, create a 3828 // truncated version of `I` and reextend its result. InstCombine runs 3829 // later and will remove any ext/trunc pairs. 3830 SmallPtrSet<Value *, 4> Erased; 3831 for (const auto &KV : Cost->getMinimalBitwidths()) { 3832 // If the value wasn't vectorized, we must maintain the original scalar 3833 // type. The absence of the value from VectorLoopValueMap indicates that it 3834 // wasn't vectorized. 3835 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3836 continue; 3837 for (unsigned Part = 0; Part < UF; ++Part) { 3838 Value *I = getOrCreateVectorValue(KV.first, Part); 3839 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3840 continue; 3841 Type *OriginalTy = I->getType(); 3842 Type *ScalarTruncatedTy = 3843 IntegerType::get(OriginalTy->getContext(), KV.second); 3844 auto *TruncatedTy = FixedVectorType::get( 3845 ScalarTruncatedTy, 3846 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3847 if (TruncatedTy == OriginalTy) 3848 continue; 3849 3850 IRBuilder<> B(cast<Instruction>(I)); 3851 auto ShrinkOperand = [&](Value *V) -> Value * { 3852 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3853 if (ZI->getSrcTy() == TruncatedTy) 3854 return ZI->getOperand(0); 3855 return B.CreateZExtOrTrunc(V, TruncatedTy); 3856 }; 3857 3858 // The actual instruction modification depends on the instruction type, 3859 // unfortunately. 3860 Value *NewI = nullptr; 3861 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3862 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3863 ShrinkOperand(BO->getOperand(1))); 3864 3865 // Any wrapping introduced by shrinking this operation shouldn't be 3866 // considered undefined behavior. So, we can't unconditionally copy 3867 // arithmetic wrapping flags to NewI. 3868 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3869 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3870 NewI = 3871 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3872 ShrinkOperand(CI->getOperand(1))); 3873 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3874 NewI = B.CreateSelect(SI->getCondition(), 3875 ShrinkOperand(SI->getTrueValue()), 3876 ShrinkOperand(SI->getFalseValue())); 3877 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3878 switch (CI->getOpcode()) { 3879 default: 3880 llvm_unreachable("Unhandled cast!"); 3881 case Instruction::Trunc: 3882 NewI = ShrinkOperand(CI->getOperand(0)); 3883 break; 3884 case Instruction::SExt: 3885 NewI = B.CreateSExtOrTrunc( 3886 CI->getOperand(0), 3887 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3888 break; 3889 case Instruction::ZExt: 3890 NewI = B.CreateZExtOrTrunc( 3891 CI->getOperand(0), 3892 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3893 break; 3894 } 3895 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3896 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3897 ->getNumElements(); 3898 auto *O0 = B.CreateZExtOrTrunc( 3899 SI->getOperand(0), 3900 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3901 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3902 ->getNumElements(); 3903 auto *O1 = B.CreateZExtOrTrunc( 3904 SI->getOperand(1), 3905 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3906 3907 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3908 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3909 // Don't do anything with the operands, just extend the result. 3910 continue; 3911 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3912 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3913 ->getNumElements(); 3914 auto *O0 = B.CreateZExtOrTrunc( 3915 IE->getOperand(0), 3916 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3917 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3918 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3919 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3920 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3921 ->getNumElements(); 3922 auto *O0 = B.CreateZExtOrTrunc( 3923 EE->getOperand(0), 3924 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3925 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3926 } else { 3927 // If we don't know what to do, be conservative and don't do anything. 3928 continue; 3929 } 3930 3931 // Lastly, extend the result. 3932 NewI->takeName(cast<Instruction>(I)); 3933 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3934 I->replaceAllUsesWith(Res); 3935 cast<Instruction>(I)->eraseFromParent(); 3936 Erased.insert(I); 3937 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3938 } 3939 } 3940 3941 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3942 for (const auto &KV : Cost->getMinimalBitwidths()) { 3943 // If the value wasn't vectorized, we must maintain the original scalar 3944 // type. The absence of the value from VectorLoopValueMap indicates that it 3945 // wasn't vectorized. 3946 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3947 continue; 3948 for (unsigned Part = 0; Part < UF; ++Part) { 3949 Value *I = getOrCreateVectorValue(KV.first, Part); 3950 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3951 if (Inst && Inst->use_empty()) { 3952 Value *NewI = Inst->getOperand(0); 3953 Inst->eraseFromParent(); 3954 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3955 } 3956 } 3957 } 3958 } 3959 3960 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3961 // Insert truncates and extends for any truncated instructions as hints to 3962 // InstCombine. 3963 if (VF.isVector()) 3964 truncateToMinimalBitwidths(); 3965 3966 // Fix widened non-induction PHIs by setting up the PHI operands. 3967 if (OrigPHIsToFix.size()) { 3968 assert(EnableVPlanNativePath && 3969 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3970 fixNonInductionPHIs(State); 3971 } 3972 3973 // At this point every instruction in the original loop is widened to a 3974 // vector form. Now we need to fix the recurrences in the loop. These PHI 3975 // nodes are currently empty because we did not want to introduce cycles. 3976 // This is the second stage of vectorizing recurrences. 3977 fixCrossIterationPHIs(State); 3978 3979 // Forget the original basic block. 3980 PSE.getSE()->forgetLoop(OrigLoop); 3981 3982 // Fix-up external users of the induction variables. 3983 for (auto &Entry : Legal->getInductionVars()) 3984 fixupIVUsers(Entry.first, Entry.second, 3985 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3986 IVEndValues[Entry.first], LoopMiddleBlock); 3987 3988 fixLCSSAPHIs(State); 3989 for (Instruction *PI : PredicatedInstructions) 3990 sinkScalarOperands(&*PI); 3991 3992 // Remove redundant induction instructions. 3993 cse(LoopVectorBody); 3994 3995 // Set/update profile weights for the vector and remainder loops as original 3996 // loop iterations are now distributed among them. Note that original loop 3997 // represented by LoopScalarBody becomes remainder loop after vectorization. 3998 // 3999 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4000 // end up getting slightly roughened result but that should be OK since 4001 // profile is not inherently precise anyway. Note also possible bypass of 4002 // vector code caused by legality checks is ignored, assigning all the weight 4003 // to the vector loop, optimistically. 4004 // 4005 // For scalable vectorization we can't know at compile time how many iterations 4006 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4007 // vscale of '1'. 4008 setProfileInfoAfterUnrolling( 4009 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4010 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4011 } 4012 4013 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4014 // In order to support recurrences we need to be able to vectorize Phi nodes. 4015 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4016 // stage #2: We now need to fix the recurrences by adding incoming edges to 4017 // the currently empty PHI nodes. At this point every instruction in the 4018 // original loop is widened to a vector form so we can use them to construct 4019 // the incoming edges. 4020 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 4021 // Handle first-order recurrences and reductions that need to be fixed. 4022 if (Legal->isFirstOrderRecurrence(&Phi)) 4023 fixFirstOrderRecurrence(&Phi, State); 4024 else if (Legal->isReductionVariable(&Phi)) 4025 fixReduction(&Phi, State); 4026 } 4027 } 4028 4029 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi, 4030 VPTransformState &State) { 4031 // This is the second phase of vectorizing first-order recurrences. An 4032 // overview of the transformation is described below. Suppose we have the 4033 // following loop. 4034 // 4035 // for (int i = 0; i < n; ++i) 4036 // b[i] = a[i] - a[i - 1]; 4037 // 4038 // There is a first-order recurrence on "a". For this loop, the shorthand 4039 // scalar IR looks like: 4040 // 4041 // scalar.ph: 4042 // s_init = a[-1] 4043 // br scalar.body 4044 // 4045 // scalar.body: 4046 // i = phi [0, scalar.ph], [i+1, scalar.body] 4047 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4048 // s2 = a[i] 4049 // b[i] = s2 - s1 4050 // br cond, scalar.body, ... 4051 // 4052 // In this example, s1 is a recurrence because it's value depends on the 4053 // previous iteration. In the first phase of vectorization, we created a 4054 // temporary value for s1. We now complete the vectorization and produce the 4055 // shorthand vector IR shown below (for VF = 4, UF = 1). 4056 // 4057 // vector.ph: 4058 // v_init = vector(..., ..., ..., a[-1]) 4059 // br vector.body 4060 // 4061 // vector.body 4062 // i = phi [0, vector.ph], [i+4, vector.body] 4063 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4064 // v2 = a[i, i+1, i+2, i+3]; 4065 // v3 = vector(v1(3), v2(0, 1, 2)) 4066 // b[i, i+1, i+2, i+3] = v2 - v3 4067 // br cond, vector.body, middle.block 4068 // 4069 // middle.block: 4070 // x = v2(3) 4071 // br scalar.ph 4072 // 4073 // scalar.ph: 4074 // s_init = phi [x, middle.block], [a[-1], otherwise] 4075 // br scalar.body 4076 // 4077 // After execution completes the vector loop, we extract the next value of 4078 // the recurrence (x) to use as the initial value in the scalar loop. 4079 4080 // Get the original loop preheader and single loop latch. 4081 auto *Preheader = OrigLoop->getLoopPreheader(); 4082 auto *Latch = OrigLoop->getLoopLatch(); 4083 4084 // Get the initial and previous values of the scalar recurrence. 4085 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4086 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4087 4088 // Create a vector from the initial value. 4089 auto *VectorInit = ScalarInit; 4090 if (VF.isVector()) { 4091 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4092 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4093 VectorInit = Builder.CreateInsertElement( 4094 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4095 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 4096 } 4097 4098 VPValue *PhiDef = State.Plan->getVPValue(Phi); 4099 VPValue *PreviousDef = State.Plan->getVPValue(Previous); 4100 // We constructed a temporary phi node in the first phase of vectorization. 4101 // This phi node will eventually be deleted. 4102 Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0))); 4103 4104 // Create a phi node for the new recurrence. The current value will either be 4105 // the initial value inserted into a vector or loop-varying vector value. 4106 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4107 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4108 4109 // Get the vectorized previous value of the last part UF - 1. It appears last 4110 // among all unrolled iterations, due to the order of their construction. 4111 Value *PreviousLastPart = State.get(PreviousDef, UF - 1); 4112 4113 // Find and set the insertion point after the previous value if it is an 4114 // instruction. 4115 BasicBlock::iterator InsertPt; 4116 // Note that the previous value may have been constant-folded so it is not 4117 // guaranteed to be an instruction in the vector loop. 4118 // FIXME: Loop invariant values do not form recurrences. We should deal with 4119 // them earlier. 4120 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4121 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4122 else { 4123 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4124 if (isa<PHINode>(PreviousLastPart)) 4125 // If the previous value is a phi node, we should insert after all the phi 4126 // nodes in the block containing the PHI to avoid breaking basic block 4127 // verification. Note that the basic block may be different to 4128 // LoopVectorBody, in case we predicate the loop. 4129 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4130 else 4131 InsertPt = ++PreviousInst->getIterator(); 4132 } 4133 Builder.SetInsertPoint(&*InsertPt); 4134 4135 // We will construct a vector for the recurrence by combining the values for 4136 // the current and previous iterations. This is the required shuffle mask. 4137 assert(!VF.isScalable()); 4138 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 4139 ShuffleMask[0] = VF.getKnownMinValue() - 1; 4140 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 4141 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 4142 4143 // The vector from which to take the initial value for the current iteration 4144 // (actual or unrolled). Initially, this is the vector phi node. 4145 Value *Incoming = VecPhi; 4146 4147 // Shuffle the current and previous vector and update the vector parts. 4148 for (unsigned Part = 0; Part < UF; ++Part) { 4149 Value *PreviousPart = State.get(PreviousDef, Part); 4150 Value *PhiPart = State.get(PhiDef, Part); 4151 auto *Shuffle = 4152 VF.isVector() 4153 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 4154 : Incoming; 4155 PhiPart->replaceAllUsesWith(Shuffle); 4156 cast<Instruction>(PhiPart)->eraseFromParent(); 4157 State.reset(PhiDef, Phi, Shuffle, Part); 4158 Incoming = PreviousPart; 4159 } 4160 4161 // Fix the latch value of the new recurrence in the vector loop. 4162 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4163 4164 // Extract the last vector element in the middle block. This will be the 4165 // initial value for the recurrence when jumping to the scalar loop. 4166 auto *ExtractForScalar = Incoming; 4167 if (VF.isVector()) { 4168 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4169 ExtractForScalar = Builder.CreateExtractElement( 4170 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 4171 "vector.recur.extract"); 4172 } 4173 // Extract the second last element in the middle block if the 4174 // Phi is used outside the loop. We need to extract the phi itself 4175 // and not the last element (the phi update in the current iteration). This 4176 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4177 // when the scalar loop is not run at all. 4178 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4179 if (VF.isVector()) 4180 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4181 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 4182 "vector.recur.extract.for.phi"); 4183 // When loop is unrolled without vectorizing, initialize 4184 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4185 // `Incoming`. This is analogous to the vectorized case above: extracting the 4186 // second last element when VF > 1. 4187 else if (UF > 1) 4188 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4189 4190 // Fix the initial value of the original recurrence in the scalar loop. 4191 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4192 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4193 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4194 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4195 Start->addIncoming(Incoming, BB); 4196 } 4197 4198 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4199 Phi->setName("scalar.recur"); 4200 4201 // Finally, fix users of the recurrence outside the loop. The users will need 4202 // either the last value of the scalar recurrence or the last value of the 4203 // vector recurrence we extracted in the middle block. Since the loop is in 4204 // LCSSA form, we just need to find all the phi nodes for the original scalar 4205 // recurrence in the exit block, and then add an edge for the middle block. 4206 // Note that LCSSA does not imply single entry when the original scalar loop 4207 // had multiple exiting edges (as we always run the last iteration in the 4208 // scalar epilogue); in that case, the exiting path through middle will be 4209 // dynamically dead and the value picked for the phi doesn't matter. 4210 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4211 if (any_of(LCSSAPhi.incoming_values(), 4212 [Phi](Value *V) { return V == Phi; })) 4213 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4214 } 4215 4216 void InnerLoopVectorizer::fixReduction(PHINode *Phi, VPTransformState &State) { 4217 // Get it's reduction variable descriptor. 4218 assert(Legal->isReductionVariable(Phi) && 4219 "Unable to find the reduction variable"); 4220 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4221 4222 RecurKind RK = RdxDesc.getRecurrenceKind(); 4223 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4224 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4225 setDebugLocFromInst(Builder, ReductionStartValue); 4226 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 4227 4228 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4229 // This is the vector-clone of the value that leaves the loop. 4230 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4231 4232 // Wrap flags are in general invalid after vectorization, clear them. 4233 clearReductionWrapFlags(RdxDesc); 4234 4235 // Fix the vector-loop phi. 4236 4237 // Reductions do not have to start at zero. They can start with 4238 // any loop invariant values. 4239 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4240 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4241 4242 for (unsigned Part = 0; Part < UF; ++Part) { 4243 Value *VecRdxPhi = State.get(State.Plan->getVPValue(Phi), Part); 4244 Value *Val = State.get(State.Plan->getVPValue(LoopVal), Part); 4245 cast<PHINode>(VecRdxPhi) 4246 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4247 } 4248 4249 // Before each round, move the insertion point right between 4250 // the PHIs and the values we are going to write. 4251 // This allows us to write both PHINodes and the extractelement 4252 // instructions. 4253 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4254 4255 setDebugLocFromInst(Builder, LoopExitInst); 4256 4257 // If tail is folded by masking, the vector value to leave the loop should be 4258 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4259 // instead of the former. For an inloop reduction the reduction will already 4260 // be predicated, and does not need to be handled here. 4261 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4262 for (unsigned Part = 0; Part < UF; ++Part) { 4263 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4264 Value *Sel = nullptr; 4265 for (User *U : VecLoopExitInst->users()) { 4266 if (isa<SelectInst>(U)) { 4267 assert(!Sel && "Reduction exit feeding two selects"); 4268 Sel = U; 4269 } else 4270 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4271 } 4272 assert(Sel && "Reduction exit feeds no select"); 4273 State.reset(LoopExitInstDef, LoopExitInst, Sel, Part); 4274 4275 // If the target can create a predicated operator for the reduction at no 4276 // extra cost in the loop (for example a predicated vadd), it can be 4277 // cheaper for the select to remain in the loop than be sunk out of it, 4278 // and so use the select value for the phi instead of the old 4279 // LoopExitValue. 4280 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4281 if (PreferPredicatedReductionSelect || 4282 TTI->preferPredicatedReductionSelect( 4283 RdxDesc.getOpcode(), Phi->getType(), 4284 TargetTransformInfo::ReductionFlags())) { 4285 auto *VecRdxPhi = 4286 cast<PHINode>(State.get(State.Plan->getVPValue(Phi), Part)); 4287 VecRdxPhi->setIncomingValueForBlock( 4288 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4289 } 4290 } 4291 } 4292 4293 // If the vector reduction can be performed in a smaller type, we truncate 4294 // then extend the loop exit value to enable InstCombine to evaluate the 4295 // entire expression in the smaller type. 4296 if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) { 4297 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4298 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4299 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4300 Builder.SetInsertPoint( 4301 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4302 VectorParts RdxParts(UF); 4303 for (unsigned Part = 0; Part < UF; ++Part) { 4304 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4305 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4306 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4307 : Builder.CreateZExt(Trunc, VecTy); 4308 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4309 UI != RdxParts[Part]->user_end();) 4310 if (*UI != Trunc) { 4311 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4312 RdxParts[Part] = Extnd; 4313 } else { 4314 ++UI; 4315 } 4316 } 4317 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4318 for (unsigned Part = 0; Part < UF; ++Part) { 4319 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4320 State.reset(LoopExitInstDef, LoopExitInst, RdxParts[Part], Part); 4321 } 4322 } 4323 4324 // Reduce all of the unrolled parts into a single vector. 4325 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4326 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4327 4328 // The middle block terminator has already been assigned a DebugLoc here (the 4329 // OrigLoop's single latch terminator). We want the whole middle block to 4330 // appear to execute on this line because: (a) it is all compiler generated, 4331 // (b) these instructions are always executed after evaluating the latch 4332 // conditional branch, and (c) other passes may add new predecessors which 4333 // terminate on this line. This is the easiest way to ensure we don't 4334 // accidentally cause an extra step back into the loop while debugging. 4335 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4336 { 4337 // Floating-point operations should have some FMF to enable the reduction. 4338 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4339 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4340 for (unsigned Part = 1; Part < UF; ++Part) { 4341 Value *RdxPart = State.get(LoopExitInstDef, Part); 4342 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4343 ReducedPartRdx = Builder.CreateBinOp( 4344 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4345 } else { 4346 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4347 } 4348 } 4349 } 4350 4351 // Create the reduction after the loop. Note that inloop reductions create the 4352 // target reduction in the loop using a Reduction recipe. 4353 if (VF.isVector() && !IsInLoopReductionPhi) { 4354 ReducedPartRdx = 4355 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4356 // If the reduction can be performed in a smaller type, we need to extend 4357 // the reduction to the wider type before we branch to the original loop. 4358 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4359 ReducedPartRdx = 4360 RdxDesc.isSigned() 4361 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4362 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4363 } 4364 4365 // Create a phi node that merges control-flow from the backedge-taken check 4366 // block and the middle block. 4367 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4368 LoopScalarPreHeader->getTerminator()); 4369 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4370 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4371 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4372 4373 // Now, we need to fix the users of the reduction variable 4374 // inside and outside of the scalar remainder loop. 4375 4376 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4377 // in the exit blocks. See comment on analogous loop in 4378 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4379 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4380 if (any_of(LCSSAPhi.incoming_values(), 4381 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4382 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4383 4384 // Fix the scalar loop reduction variable with the incoming reduction sum 4385 // from the vector body and from the backedge value. 4386 int IncomingEdgeBlockIdx = 4387 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4388 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4389 // Pick the other block. 4390 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4391 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4392 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4393 } 4394 4395 void InnerLoopVectorizer::clearReductionWrapFlags( 4396 RecurrenceDescriptor &RdxDesc) { 4397 RecurKind RK = RdxDesc.getRecurrenceKind(); 4398 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4399 return; 4400 4401 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4402 assert(LoopExitInstr && "null loop exit instruction"); 4403 SmallVector<Instruction *, 8> Worklist; 4404 SmallPtrSet<Instruction *, 8> Visited; 4405 Worklist.push_back(LoopExitInstr); 4406 Visited.insert(LoopExitInstr); 4407 4408 while (!Worklist.empty()) { 4409 Instruction *Cur = Worklist.pop_back_val(); 4410 if (isa<OverflowingBinaryOperator>(Cur)) 4411 for (unsigned Part = 0; Part < UF; ++Part) { 4412 Value *V = getOrCreateVectorValue(Cur, Part); 4413 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4414 } 4415 4416 for (User *U : Cur->users()) { 4417 Instruction *UI = cast<Instruction>(U); 4418 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4419 Visited.insert(UI).second) 4420 Worklist.push_back(UI); 4421 } 4422 } 4423 } 4424 4425 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4426 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4427 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4428 // Some phis were already hand updated by the reduction and recurrence 4429 // code above, leave them alone. 4430 continue; 4431 4432 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4433 // Non-instruction incoming values will have only one value. 4434 unsigned LastLane = 0; 4435 if (isa<Instruction>(IncomingValue)) 4436 LastLane = Cost->isUniformAfterVectorization( 4437 cast<Instruction>(IncomingValue), VF) 4438 ? 0 4439 : VF.getKnownMinValue() - 1; 4440 assert((!VF.isScalable() || LastLane == 0) && 4441 "scalable vectors dont support non-uniform scalars yet"); 4442 // Can be a loop invariant incoming value or the last scalar value to be 4443 // extracted from the vectorized loop. 4444 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4445 Value *lastIncomingValue = 4446 OrigLoop->isLoopInvariant(IncomingValue) 4447 ? IncomingValue 4448 : State.get(State.Plan->getVPValue(IncomingValue), 4449 VPIteration(UF - 1, LastLane)); 4450 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4451 } 4452 } 4453 4454 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4455 // The basic block and loop containing the predicated instruction. 4456 auto *PredBB = PredInst->getParent(); 4457 auto *VectorLoop = LI->getLoopFor(PredBB); 4458 4459 // Initialize a worklist with the operands of the predicated instruction. 4460 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4461 4462 // Holds instructions that we need to analyze again. An instruction may be 4463 // reanalyzed if we don't yet know if we can sink it or not. 4464 SmallVector<Instruction *, 8> InstsToReanalyze; 4465 4466 // Returns true if a given use occurs in the predicated block. Phi nodes use 4467 // their operands in their corresponding predecessor blocks. 4468 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4469 auto *I = cast<Instruction>(U.getUser()); 4470 BasicBlock *BB = I->getParent(); 4471 if (auto *Phi = dyn_cast<PHINode>(I)) 4472 BB = Phi->getIncomingBlock( 4473 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4474 return BB == PredBB; 4475 }; 4476 4477 // Iteratively sink the scalarized operands of the predicated instruction 4478 // into the block we created for it. When an instruction is sunk, it's 4479 // operands are then added to the worklist. The algorithm ends after one pass 4480 // through the worklist doesn't sink a single instruction. 4481 bool Changed; 4482 do { 4483 // Add the instructions that need to be reanalyzed to the worklist, and 4484 // reset the changed indicator. 4485 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4486 InstsToReanalyze.clear(); 4487 Changed = false; 4488 4489 while (!Worklist.empty()) { 4490 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4491 4492 // We can't sink an instruction if it is a phi node, is already in the 4493 // predicated block, is not in the loop, or may have side effects. 4494 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4495 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4496 continue; 4497 4498 // It's legal to sink the instruction if all its uses occur in the 4499 // predicated block. Otherwise, there's nothing to do yet, and we may 4500 // need to reanalyze the instruction. 4501 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4502 InstsToReanalyze.push_back(I); 4503 continue; 4504 } 4505 4506 // Move the instruction to the beginning of the predicated block, and add 4507 // it's operands to the worklist. 4508 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4509 Worklist.insert(I->op_begin(), I->op_end()); 4510 4511 // The sinking may have enabled other instructions to be sunk, so we will 4512 // need to iterate. 4513 Changed = true; 4514 } 4515 } while (Changed); 4516 } 4517 4518 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4519 for (PHINode *OrigPhi : OrigPHIsToFix) { 4520 PHINode *NewPhi = 4521 cast<PHINode>(State.get(State.Plan->getVPValue(OrigPhi), 0)); 4522 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4523 4524 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4525 predecessors(OrigPhi->getParent())); 4526 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4527 predecessors(NewPhi->getParent())); 4528 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4529 "Scalar and Vector BB should have the same number of predecessors"); 4530 4531 // The insertion point in Builder may be invalidated by the time we get 4532 // here. Force the Builder insertion point to something valid so that we do 4533 // not run into issues during insertion point restore in 4534 // getOrCreateVectorValue calls below. 4535 Builder.SetInsertPoint(NewPhi); 4536 4537 // The predecessor order is preserved and we can rely on mapping between 4538 // scalar and vector block predecessors. 4539 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4540 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4541 4542 // When looking up the new scalar/vector values to fix up, use incoming 4543 // values from original phi. 4544 Value *ScIncV = 4545 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4546 4547 // Scalar incoming value may need a broadcast 4548 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4549 NewPhi->addIncoming(NewIncV, NewPredBB); 4550 } 4551 } 4552 } 4553 4554 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4555 VPUser &Operands, unsigned UF, 4556 ElementCount VF, bool IsPtrLoopInvariant, 4557 SmallBitVector &IsIndexLoopInvariant, 4558 VPTransformState &State) { 4559 // Construct a vector GEP by widening the operands of the scalar GEP as 4560 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4561 // results in a vector of pointers when at least one operand of the GEP 4562 // is vector-typed. Thus, to keep the representation compact, we only use 4563 // vector-typed operands for loop-varying values. 4564 4565 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4566 // If we are vectorizing, but the GEP has only loop-invariant operands, 4567 // the GEP we build (by only using vector-typed operands for 4568 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4569 // produce a vector of pointers, we need to either arbitrarily pick an 4570 // operand to broadcast, or broadcast a clone of the original GEP. 4571 // Here, we broadcast a clone of the original. 4572 // 4573 // TODO: If at some point we decide to scalarize instructions having 4574 // loop-invariant operands, this special case will no longer be 4575 // required. We would add the scalarization decision to 4576 // collectLoopScalars() and teach getVectorValue() to broadcast 4577 // the lane-zero scalar value. 4578 auto *Clone = Builder.Insert(GEP->clone()); 4579 for (unsigned Part = 0; Part < UF; ++Part) { 4580 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4581 State.set(VPDef, GEP, EntryPart, Part); 4582 addMetadata(EntryPart, GEP); 4583 } 4584 } else { 4585 // If the GEP has at least one loop-varying operand, we are sure to 4586 // produce a vector of pointers. But if we are only unrolling, we want 4587 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4588 // produce with the code below will be scalar (if VF == 1) or vector 4589 // (otherwise). Note that for the unroll-only case, we still maintain 4590 // values in the vector mapping with initVector, as we do for other 4591 // instructions. 4592 for (unsigned Part = 0; Part < UF; ++Part) { 4593 // The pointer operand of the new GEP. If it's loop-invariant, we 4594 // won't broadcast it. 4595 auto *Ptr = IsPtrLoopInvariant 4596 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4597 : State.get(Operands.getOperand(0), Part); 4598 4599 // Collect all the indices for the new GEP. If any index is 4600 // loop-invariant, we won't broadcast it. 4601 SmallVector<Value *, 4> Indices; 4602 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4603 VPValue *Operand = Operands.getOperand(I); 4604 if (IsIndexLoopInvariant[I - 1]) 4605 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4606 else 4607 Indices.push_back(State.get(Operand, Part)); 4608 } 4609 4610 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4611 // but it should be a vector, otherwise. 4612 auto *NewGEP = 4613 GEP->isInBounds() 4614 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4615 Indices) 4616 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4617 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4618 "NewGEP is not a pointer vector"); 4619 State.set(VPDef, GEP, NewGEP, Part); 4620 addMetadata(NewGEP, GEP); 4621 } 4622 } 4623 } 4624 4625 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4626 RecurrenceDescriptor *RdxDesc, 4627 Value *StartV, unsigned UF, 4628 ElementCount VF) { 4629 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4630 PHINode *P = cast<PHINode>(PN); 4631 if (EnableVPlanNativePath) { 4632 // Currently we enter here in the VPlan-native path for non-induction 4633 // PHIs where all control flow is uniform. We simply widen these PHIs. 4634 // Create a vector phi with no operands - the vector phi operands will be 4635 // set at the end of vector code generation. 4636 Type *VecTy = 4637 (VF.isScalar()) ? PN->getType() : VectorType::get(PN->getType(), VF); 4638 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4639 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4640 OrigPHIsToFix.push_back(P); 4641 4642 return; 4643 } 4644 4645 assert(PN->getParent() == OrigLoop->getHeader() && 4646 "Non-header phis should have been handled elsewhere"); 4647 4648 // In order to support recurrences we need to be able to vectorize Phi nodes. 4649 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4650 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4651 // this value when we vectorize all of the instructions that use the PHI. 4652 if (RdxDesc || Legal->isFirstOrderRecurrence(P)) { 4653 Value *Iden = nullptr; 4654 bool ScalarPHI = 4655 (VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4656 Type *VecTy = 4657 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), VF); 4658 4659 if (RdxDesc) { 4660 assert(Legal->isReductionVariable(P) && StartV && 4661 "RdxDesc should only be set for reduction variables; in that case " 4662 "a StartV is also required"); 4663 RecurKind RK = RdxDesc->getRecurrenceKind(); 4664 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 4665 // MinMax reduction have the start value as their identify. 4666 if (ScalarPHI) { 4667 Iden = StartV; 4668 } else { 4669 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4670 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4671 StartV = Iden = Builder.CreateVectorSplat(VF, StartV, "minmax.ident"); 4672 } 4673 } else { 4674 Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity( 4675 RK, VecTy->getScalarType()); 4676 Iden = IdenC; 4677 4678 if (!ScalarPHI) { 4679 Iden = ConstantVector::getSplat(VF, IdenC); 4680 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4681 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4682 Constant *Zero = Builder.getInt32(0); 4683 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 4684 } 4685 } 4686 } 4687 4688 for (unsigned Part = 0; Part < UF; ++Part) { 4689 // This is phase one of vectorizing PHIs. 4690 Value *EntryPart = PHINode::Create( 4691 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4692 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4693 if (StartV) { 4694 // Make sure to add the reduction start value only to the 4695 // first unroll part. 4696 Value *StartVal = (Part == 0) ? StartV : Iden; 4697 cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader); 4698 } 4699 } 4700 return; 4701 } 4702 4703 assert(!Legal->isReductionVariable(P) && 4704 "reductions should be handled above"); 4705 4706 setDebugLocFromInst(Builder, P); 4707 4708 // This PHINode must be an induction variable. 4709 // Make sure that we know about it. 4710 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4711 4712 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4713 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4714 4715 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4716 // which can be found from the original scalar operations. 4717 switch (II.getKind()) { 4718 case InductionDescriptor::IK_NoInduction: 4719 llvm_unreachable("Unknown induction"); 4720 case InductionDescriptor::IK_IntInduction: 4721 case InductionDescriptor::IK_FpInduction: 4722 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4723 case InductionDescriptor::IK_PtrInduction: { 4724 // Handle the pointer induction variable case. 4725 assert(P->getType()->isPointerTy() && "Unexpected type."); 4726 4727 if (Cost->isScalarAfterVectorization(P, VF)) { 4728 // This is the normalized GEP that starts counting at zero. 4729 Value *PtrInd = 4730 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4731 // Determine the number of scalars we need to generate for each unroll 4732 // iteration. If the instruction is uniform, we only need to generate the 4733 // first lane. Otherwise, we generate all VF values. 4734 unsigned Lanes = 4735 Cost->isUniformAfterVectorization(P, VF) ? 1 : VF.getKnownMinValue(); 4736 for (unsigned Part = 0; Part < UF; ++Part) { 4737 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4738 Constant *Idx = ConstantInt::get(PtrInd->getType(), 4739 Lane + Part * VF.getKnownMinValue()); 4740 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4741 Value *SclrGep = 4742 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4743 SclrGep->setName("next.gep"); 4744 VectorLoopValueMap.setScalarValue(P, VPIteration(Part, Lane), 4745 SclrGep); 4746 } 4747 } 4748 return; 4749 } 4750 assert(isa<SCEVConstant>(II.getStep()) && 4751 "Induction step not a SCEV constant!"); 4752 Type *PhiType = II.getStep()->getType(); 4753 4754 // Build a pointer phi 4755 Value *ScalarStartValue = II.getStartValue(); 4756 Type *ScStValueType = ScalarStartValue->getType(); 4757 PHINode *NewPointerPhi = 4758 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4759 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4760 4761 // A pointer induction, performed by using a gep 4762 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4763 Instruction *InductionLoc = LoopLatch->getTerminator(); 4764 const SCEV *ScalarStep = II.getStep(); 4765 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4766 Value *ScalarStepValue = 4767 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4768 Value *InductionGEP = GetElementPtrInst::Create( 4769 ScStValueType->getPointerElementType(), NewPointerPhi, 4770 Builder.CreateMul( 4771 ScalarStepValue, 4772 ConstantInt::get(PhiType, VF.getKnownMinValue() * UF)), 4773 "ptr.ind", InductionLoc); 4774 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4775 4776 // Create UF many actual address geps that use the pointer 4777 // phi as base and a vectorized version of the step value 4778 // (<step*0, ..., step*N>) as offset. 4779 for (unsigned Part = 0; Part < UF; ++Part) { 4780 SmallVector<Constant *, 8> Indices; 4781 // Create a vector of consecutive numbers from zero to VF. 4782 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 4783 Indices.push_back( 4784 ConstantInt::get(PhiType, i + Part * VF.getKnownMinValue())); 4785 Constant *StartOffset = ConstantVector::get(Indices); 4786 4787 Value *GEP = Builder.CreateGEP( 4788 ScStValueType->getPointerElementType(), NewPointerPhi, 4789 Builder.CreateMul( 4790 StartOffset, 4791 Builder.CreateVectorSplat(VF.getKnownMinValue(), ScalarStepValue), 4792 "vector.gep")); 4793 VectorLoopValueMap.setVectorValue(P, Part, GEP); 4794 } 4795 } 4796 } 4797 } 4798 4799 /// A helper function for checking whether an integer division-related 4800 /// instruction may divide by zero (in which case it must be predicated if 4801 /// executed conditionally in the scalar code). 4802 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4803 /// Non-zero divisors that are non compile-time constants will not be 4804 /// converted into multiplication, so we will still end up scalarizing 4805 /// the division, but can do so w/o predication. 4806 static bool mayDivideByZero(Instruction &I) { 4807 assert((I.getOpcode() == Instruction::UDiv || 4808 I.getOpcode() == Instruction::SDiv || 4809 I.getOpcode() == Instruction::URem || 4810 I.getOpcode() == Instruction::SRem) && 4811 "Unexpected instruction"); 4812 Value *Divisor = I.getOperand(1); 4813 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4814 return !CInt || CInt->isZero(); 4815 } 4816 4817 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4818 VPUser &User, 4819 VPTransformState &State) { 4820 switch (I.getOpcode()) { 4821 case Instruction::Call: 4822 case Instruction::Br: 4823 case Instruction::PHI: 4824 case Instruction::GetElementPtr: 4825 case Instruction::Select: 4826 llvm_unreachable("This instruction is handled by a different recipe."); 4827 case Instruction::UDiv: 4828 case Instruction::SDiv: 4829 case Instruction::SRem: 4830 case Instruction::URem: 4831 case Instruction::Add: 4832 case Instruction::FAdd: 4833 case Instruction::Sub: 4834 case Instruction::FSub: 4835 case Instruction::FNeg: 4836 case Instruction::Mul: 4837 case Instruction::FMul: 4838 case Instruction::FDiv: 4839 case Instruction::FRem: 4840 case Instruction::Shl: 4841 case Instruction::LShr: 4842 case Instruction::AShr: 4843 case Instruction::And: 4844 case Instruction::Or: 4845 case Instruction::Xor: { 4846 // Just widen unops and binops. 4847 setDebugLocFromInst(Builder, &I); 4848 4849 for (unsigned Part = 0; Part < UF; ++Part) { 4850 SmallVector<Value *, 2> Ops; 4851 for (VPValue *VPOp : User.operands()) 4852 Ops.push_back(State.get(VPOp, Part)); 4853 4854 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4855 4856 if (auto *VecOp = dyn_cast<Instruction>(V)) 4857 VecOp->copyIRFlags(&I); 4858 4859 // Use this vector value for all users of the original instruction. 4860 State.set(Def, &I, V, Part); 4861 addMetadata(V, &I); 4862 } 4863 4864 break; 4865 } 4866 case Instruction::ICmp: 4867 case Instruction::FCmp: { 4868 // Widen compares. Generate vector compares. 4869 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4870 auto *Cmp = cast<CmpInst>(&I); 4871 setDebugLocFromInst(Builder, Cmp); 4872 for (unsigned Part = 0; Part < UF; ++Part) { 4873 Value *A = State.get(User.getOperand(0), Part); 4874 Value *B = State.get(User.getOperand(1), Part); 4875 Value *C = nullptr; 4876 if (FCmp) { 4877 // Propagate fast math flags. 4878 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4879 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4880 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4881 } else { 4882 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4883 } 4884 State.set(Def, &I, C, Part); 4885 addMetadata(C, &I); 4886 } 4887 4888 break; 4889 } 4890 4891 case Instruction::ZExt: 4892 case Instruction::SExt: 4893 case Instruction::FPToUI: 4894 case Instruction::FPToSI: 4895 case Instruction::FPExt: 4896 case Instruction::PtrToInt: 4897 case Instruction::IntToPtr: 4898 case Instruction::SIToFP: 4899 case Instruction::UIToFP: 4900 case Instruction::Trunc: 4901 case Instruction::FPTrunc: 4902 case Instruction::BitCast: { 4903 auto *CI = cast<CastInst>(&I); 4904 setDebugLocFromInst(Builder, CI); 4905 4906 /// Vectorize casts. 4907 Type *DestTy = 4908 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4909 4910 for (unsigned Part = 0; Part < UF; ++Part) { 4911 Value *A = State.get(User.getOperand(0), Part); 4912 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4913 State.set(Def, &I, Cast, Part); 4914 addMetadata(Cast, &I); 4915 } 4916 break; 4917 } 4918 default: 4919 // This instruction is not vectorized by simple widening. 4920 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4921 llvm_unreachable("Unhandled instruction!"); 4922 } // end of switch. 4923 } 4924 4925 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4926 VPUser &ArgOperands, 4927 VPTransformState &State) { 4928 assert(!isa<DbgInfoIntrinsic>(I) && 4929 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4930 setDebugLocFromInst(Builder, &I); 4931 4932 Module *M = I.getParent()->getParent()->getParent(); 4933 auto *CI = cast<CallInst>(&I); 4934 4935 SmallVector<Type *, 4> Tys; 4936 for (Value *ArgOperand : CI->arg_operands()) 4937 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4938 4939 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4940 4941 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4942 // version of the instruction. 4943 // Is it beneficial to perform intrinsic call compared to lib call? 4944 bool NeedToScalarize = false; 4945 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4946 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4947 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4948 assert((UseVectorIntrinsic || !NeedToScalarize) && 4949 "Instruction should be scalarized elsewhere."); 4950 assert(IntrinsicCost.isValid() && CallCost.isValid() && 4951 "Cannot have invalid costs while widening"); 4952 4953 for (unsigned Part = 0; Part < UF; ++Part) { 4954 SmallVector<Value *, 4> Args; 4955 for (auto &I : enumerate(ArgOperands.operands())) { 4956 // Some intrinsics have a scalar argument - don't replace it with a 4957 // vector. 4958 Value *Arg; 4959 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4960 Arg = State.get(I.value(), Part); 4961 else 4962 Arg = State.get(I.value(), VPIteration(0, 0)); 4963 Args.push_back(Arg); 4964 } 4965 4966 Function *VectorF; 4967 if (UseVectorIntrinsic) { 4968 // Use vector version of the intrinsic. 4969 Type *TysForDecl[] = {CI->getType()}; 4970 if (VF.isVector()) { 4971 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4972 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4973 } 4974 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4975 assert(VectorF && "Can't retrieve vector intrinsic."); 4976 } else { 4977 // Use vector version of the function call. 4978 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4979 #ifndef NDEBUG 4980 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4981 "Can't create vector function."); 4982 #endif 4983 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4984 } 4985 SmallVector<OperandBundleDef, 1> OpBundles; 4986 CI->getOperandBundlesAsDefs(OpBundles); 4987 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4988 4989 if (isa<FPMathOperator>(V)) 4990 V->copyFastMathFlags(CI); 4991 4992 State.set(Def, &I, V, Part); 4993 addMetadata(V, &I); 4994 } 4995 } 4996 4997 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 4998 VPUser &Operands, 4999 bool InvariantCond, 5000 VPTransformState &State) { 5001 setDebugLocFromInst(Builder, &I); 5002 5003 // The condition can be loop invariant but still defined inside the 5004 // loop. This means that we can't just use the original 'cond' value. 5005 // We have to take the 'vectorized' value and pick the first lane. 5006 // Instcombine will make this a no-op. 5007 auto *InvarCond = InvariantCond 5008 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5009 : nullptr; 5010 5011 for (unsigned Part = 0; Part < UF; ++Part) { 5012 Value *Cond = 5013 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5014 Value *Op0 = State.get(Operands.getOperand(1), Part); 5015 Value *Op1 = State.get(Operands.getOperand(2), Part); 5016 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5017 State.set(VPDef, &I, Sel, Part); 5018 addMetadata(Sel, &I); 5019 } 5020 } 5021 5022 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5023 // We should not collect Scalars more than once per VF. Right now, this 5024 // function is called from collectUniformsAndScalars(), which already does 5025 // this check. Collecting Scalars for VF=1 does not make any sense. 5026 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5027 "This function should not be visited twice for the same VF"); 5028 5029 SmallSetVector<Instruction *, 8> Worklist; 5030 5031 // These sets are used to seed the analysis with pointers used by memory 5032 // accesses that will remain scalar. 5033 SmallSetVector<Instruction *, 8> ScalarPtrs; 5034 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5035 auto *Latch = TheLoop->getLoopLatch(); 5036 5037 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5038 // The pointer operands of loads and stores will be scalar as long as the 5039 // memory access is not a gather or scatter operation. The value operand of a 5040 // store will remain scalar if the store is scalarized. 5041 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5042 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5043 assert(WideningDecision != CM_Unknown && 5044 "Widening decision should be ready at this moment"); 5045 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5046 if (Ptr == Store->getValueOperand()) 5047 return WideningDecision == CM_Scalarize; 5048 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5049 "Ptr is neither a value or pointer operand"); 5050 return WideningDecision != CM_GatherScatter; 5051 }; 5052 5053 // A helper that returns true if the given value is a bitcast or 5054 // getelementptr instruction contained in the loop. 5055 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5056 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5057 isa<GetElementPtrInst>(V)) && 5058 !TheLoop->isLoopInvariant(V); 5059 }; 5060 5061 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5062 if (!isa<PHINode>(Ptr) || 5063 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5064 return false; 5065 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5066 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5067 return false; 5068 return isScalarUse(MemAccess, Ptr); 5069 }; 5070 5071 // A helper that evaluates a memory access's use of a pointer. If the 5072 // pointer is actually the pointer induction of a loop, it is being 5073 // inserted into Worklist. If the use will be a scalar use, and the 5074 // pointer is only used by memory accesses, we place the pointer in 5075 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5076 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5077 if (isScalarPtrInduction(MemAccess, Ptr)) { 5078 Worklist.insert(cast<Instruction>(Ptr)); 5079 Instruction *Update = cast<Instruction>( 5080 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5081 Worklist.insert(Update); 5082 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5083 << "\n"); 5084 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 5085 << "\n"); 5086 return; 5087 } 5088 // We only care about bitcast and getelementptr instructions contained in 5089 // the loop. 5090 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5091 return; 5092 5093 // If the pointer has already been identified as scalar (e.g., if it was 5094 // also identified as uniform), there's nothing to do. 5095 auto *I = cast<Instruction>(Ptr); 5096 if (Worklist.count(I)) 5097 return; 5098 5099 // If the use of the pointer will be a scalar use, and all users of the 5100 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5101 // place the pointer in PossibleNonScalarPtrs. 5102 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5103 return isa<LoadInst>(U) || isa<StoreInst>(U); 5104 })) 5105 ScalarPtrs.insert(I); 5106 else 5107 PossibleNonScalarPtrs.insert(I); 5108 }; 5109 5110 // We seed the scalars analysis with three classes of instructions: (1) 5111 // instructions marked uniform-after-vectorization and (2) bitcast, 5112 // getelementptr and (pointer) phi instructions used by memory accesses 5113 // requiring a scalar use. 5114 // 5115 // (1) Add to the worklist all instructions that have been identified as 5116 // uniform-after-vectorization. 5117 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5118 5119 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5120 // memory accesses requiring a scalar use. The pointer operands of loads and 5121 // stores will be scalar as long as the memory accesses is not a gather or 5122 // scatter operation. The value operand of a store will remain scalar if the 5123 // store is scalarized. 5124 for (auto *BB : TheLoop->blocks()) 5125 for (auto &I : *BB) { 5126 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5127 evaluatePtrUse(Load, Load->getPointerOperand()); 5128 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5129 evaluatePtrUse(Store, Store->getPointerOperand()); 5130 evaluatePtrUse(Store, Store->getValueOperand()); 5131 } 5132 } 5133 for (auto *I : ScalarPtrs) 5134 if (!PossibleNonScalarPtrs.count(I)) { 5135 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5136 Worklist.insert(I); 5137 } 5138 5139 // Insert the forced scalars. 5140 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5141 // induction variable when the PHI user is scalarized. 5142 auto ForcedScalar = ForcedScalars.find(VF); 5143 if (ForcedScalar != ForcedScalars.end()) 5144 for (auto *I : ForcedScalar->second) 5145 Worklist.insert(I); 5146 5147 // Expand the worklist by looking through any bitcasts and getelementptr 5148 // instructions we've already identified as scalar. This is similar to the 5149 // expansion step in collectLoopUniforms(); however, here we're only 5150 // expanding to include additional bitcasts and getelementptr instructions. 5151 unsigned Idx = 0; 5152 while (Idx != Worklist.size()) { 5153 Instruction *Dst = Worklist[Idx++]; 5154 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5155 continue; 5156 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5157 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5158 auto *J = cast<Instruction>(U); 5159 return !TheLoop->contains(J) || Worklist.count(J) || 5160 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5161 isScalarUse(J, Src)); 5162 })) { 5163 Worklist.insert(Src); 5164 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5165 } 5166 } 5167 5168 // An induction variable will remain scalar if all users of the induction 5169 // variable and induction variable update remain scalar. 5170 for (auto &Induction : Legal->getInductionVars()) { 5171 auto *Ind = Induction.first; 5172 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5173 5174 // If tail-folding is applied, the primary induction variable will be used 5175 // to feed a vector compare. 5176 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5177 continue; 5178 5179 // Determine if all users of the induction variable are scalar after 5180 // vectorization. 5181 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5182 auto *I = cast<Instruction>(U); 5183 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5184 }); 5185 if (!ScalarInd) 5186 continue; 5187 5188 // Determine if all users of the induction variable update instruction are 5189 // scalar after vectorization. 5190 auto ScalarIndUpdate = 5191 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5192 auto *I = cast<Instruction>(U); 5193 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5194 }); 5195 if (!ScalarIndUpdate) 5196 continue; 5197 5198 // The induction variable and its update instruction will remain scalar. 5199 Worklist.insert(Ind); 5200 Worklist.insert(IndUpdate); 5201 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5202 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5203 << "\n"); 5204 } 5205 5206 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5207 } 5208 5209 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, 5210 ElementCount VF) { 5211 if (!blockNeedsPredication(I->getParent())) 5212 return false; 5213 switch(I->getOpcode()) { 5214 default: 5215 break; 5216 case Instruction::Load: 5217 case Instruction::Store: { 5218 if (!Legal->isMaskRequired(I)) 5219 return false; 5220 auto *Ptr = getLoadStorePointerOperand(I); 5221 auto *Ty = getMemInstValueType(I); 5222 // We have already decided how to vectorize this instruction, get that 5223 // result. 5224 if (VF.isVector()) { 5225 InstWidening WideningDecision = getWideningDecision(I, VF); 5226 assert(WideningDecision != CM_Unknown && 5227 "Widening decision should be ready at this moment"); 5228 return WideningDecision == CM_Scalarize; 5229 } 5230 const Align Alignment = getLoadStoreAlignment(I); 5231 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5232 isLegalMaskedGather(Ty, Alignment)) 5233 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5234 isLegalMaskedScatter(Ty, Alignment)); 5235 } 5236 case Instruction::UDiv: 5237 case Instruction::SDiv: 5238 case Instruction::SRem: 5239 case Instruction::URem: 5240 return mayDivideByZero(*I); 5241 } 5242 return false; 5243 } 5244 5245 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5246 Instruction *I, ElementCount VF) { 5247 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5248 assert(getWideningDecision(I, VF) == CM_Unknown && 5249 "Decision should not be set yet."); 5250 auto *Group = getInterleavedAccessGroup(I); 5251 assert(Group && "Must have a group."); 5252 5253 // If the instruction's allocated size doesn't equal it's type size, it 5254 // requires padding and will be scalarized. 5255 auto &DL = I->getModule()->getDataLayout(); 5256 auto *ScalarTy = getMemInstValueType(I); 5257 if (hasIrregularType(ScalarTy, DL, VF)) 5258 return false; 5259 5260 // Check if masking is required. 5261 // A Group may need masking for one of two reasons: it resides in a block that 5262 // needs predication, or it was decided to use masking to deal with gaps. 5263 bool PredicatedAccessRequiresMasking = 5264 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5265 bool AccessWithGapsRequiresMasking = 5266 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5267 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5268 return true; 5269 5270 // If masked interleaving is required, we expect that the user/target had 5271 // enabled it, because otherwise it either wouldn't have been created or 5272 // it should have been invalidated by the CostModel. 5273 assert(useMaskedInterleavedAccesses(TTI) && 5274 "Masked interleave-groups for predicated accesses are not enabled."); 5275 5276 auto *Ty = getMemInstValueType(I); 5277 const Align Alignment = getLoadStoreAlignment(I); 5278 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5279 : TTI.isLegalMaskedStore(Ty, Alignment); 5280 } 5281 5282 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5283 Instruction *I, ElementCount VF) { 5284 // Get and ensure we have a valid memory instruction. 5285 LoadInst *LI = dyn_cast<LoadInst>(I); 5286 StoreInst *SI = dyn_cast<StoreInst>(I); 5287 assert((LI || SI) && "Invalid memory instruction"); 5288 5289 auto *Ptr = getLoadStorePointerOperand(I); 5290 5291 // In order to be widened, the pointer should be consecutive, first of all. 5292 if (!Legal->isConsecutivePtr(Ptr)) 5293 return false; 5294 5295 // If the instruction is a store located in a predicated block, it will be 5296 // scalarized. 5297 if (isScalarWithPredication(I)) 5298 return false; 5299 5300 // If the instruction's allocated size doesn't equal it's type size, it 5301 // requires padding and will be scalarized. 5302 auto &DL = I->getModule()->getDataLayout(); 5303 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5304 if (hasIrregularType(ScalarTy, DL, VF)) 5305 return false; 5306 5307 return true; 5308 } 5309 5310 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5311 // We should not collect Uniforms more than once per VF. Right now, 5312 // this function is called from collectUniformsAndScalars(), which 5313 // already does this check. Collecting Uniforms for VF=1 does not make any 5314 // sense. 5315 5316 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5317 "This function should not be visited twice for the same VF"); 5318 5319 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5320 // not analyze again. Uniforms.count(VF) will return 1. 5321 Uniforms[VF].clear(); 5322 5323 // We now know that the loop is vectorizable! 5324 // Collect instructions inside the loop that will remain uniform after 5325 // vectorization. 5326 5327 // Global values, params and instructions outside of current loop are out of 5328 // scope. 5329 auto isOutOfScope = [&](Value *V) -> bool { 5330 Instruction *I = dyn_cast<Instruction>(V); 5331 return (!I || !TheLoop->contains(I)); 5332 }; 5333 5334 SetVector<Instruction *> Worklist; 5335 BasicBlock *Latch = TheLoop->getLoopLatch(); 5336 5337 // Instructions that are scalar with predication must not be considered 5338 // uniform after vectorization, because that would create an erroneous 5339 // replicating region where only a single instance out of VF should be formed. 5340 // TODO: optimize such seldom cases if found important, see PR40816. 5341 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5342 if (isOutOfScope(I)) { 5343 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5344 << *I << "\n"); 5345 return; 5346 } 5347 if (isScalarWithPredication(I, VF)) { 5348 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5349 << *I << "\n"); 5350 return; 5351 } 5352 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5353 Worklist.insert(I); 5354 }; 5355 5356 // Start with the conditional branch. If the branch condition is an 5357 // instruction contained in the loop that is only used by the branch, it is 5358 // uniform. 5359 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5360 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5361 addToWorklistIfAllowed(Cmp); 5362 5363 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5364 InstWidening WideningDecision = getWideningDecision(I, VF); 5365 assert(WideningDecision != CM_Unknown && 5366 "Widening decision should be ready at this moment"); 5367 5368 // A uniform memory op is itself uniform. We exclude uniform stores 5369 // here as they demand the last lane, not the first one. 5370 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5371 assert(WideningDecision == CM_Scalarize); 5372 return true; 5373 } 5374 5375 return (WideningDecision == CM_Widen || 5376 WideningDecision == CM_Widen_Reverse || 5377 WideningDecision == CM_Interleave); 5378 }; 5379 5380 5381 // Returns true if Ptr is the pointer operand of a memory access instruction 5382 // I, and I is known to not require scalarization. 5383 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5384 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5385 }; 5386 5387 // Holds a list of values which are known to have at least one uniform use. 5388 // Note that there may be other uses which aren't uniform. A "uniform use" 5389 // here is something which only demands lane 0 of the unrolled iterations; 5390 // it does not imply that all lanes produce the same value (e.g. this is not 5391 // the usual meaning of uniform) 5392 SmallPtrSet<Value *, 8> HasUniformUse; 5393 5394 // Scan the loop for instructions which are either a) known to have only 5395 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5396 for (auto *BB : TheLoop->blocks()) 5397 for (auto &I : *BB) { 5398 // If there's no pointer operand, there's nothing to do. 5399 auto *Ptr = getLoadStorePointerOperand(&I); 5400 if (!Ptr) 5401 continue; 5402 5403 // A uniform memory op is itself uniform. We exclude uniform stores 5404 // here as they demand the last lane, not the first one. 5405 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5406 addToWorklistIfAllowed(&I); 5407 5408 if (isUniformDecision(&I, VF)) { 5409 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5410 HasUniformUse.insert(Ptr); 5411 } 5412 } 5413 5414 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5415 // demanding) users. Since loops are assumed to be in LCSSA form, this 5416 // disallows uses outside the loop as well. 5417 for (auto *V : HasUniformUse) { 5418 if (isOutOfScope(V)) 5419 continue; 5420 auto *I = cast<Instruction>(V); 5421 auto UsersAreMemAccesses = 5422 llvm::all_of(I->users(), [&](User *U) -> bool { 5423 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5424 }); 5425 if (UsersAreMemAccesses) 5426 addToWorklistIfAllowed(I); 5427 } 5428 5429 // Expand Worklist in topological order: whenever a new instruction 5430 // is added , its users should be already inside Worklist. It ensures 5431 // a uniform instruction will only be used by uniform instructions. 5432 unsigned idx = 0; 5433 while (idx != Worklist.size()) { 5434 Instruction *I = Worklist[idx++]; 5435 5436 for (auto OV : I->operand_values()) { 5437 // isOutOfScope operands cannot be uniform instructions. 5438 if (isOutOfScope(OV)) 5439 continue; 5440 // First order recurrence Phi's should typically be considered 5441 // non-uniform. 5442 auto *OP = dyn_cast<PHINode>(OV); 5443 if (OP && Legal->isFirstOrderRecurrence(OP)) 5444 continue; 5445 // If all the users of the operand are uniform, then add the 5446 // operand into the uniform worklist. 5447 auto *OI = cast<Instruction>(OV); 5448 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5449 auto *J = cast<Instruction>(U); 5450 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5451 })) 5452 addToWorklistIfAllowed(OI); 5453 } 5454 } 5455 5456 // For an instruction to be added into Worklist above, all its users inside 5457 // the loop should also be in Worklist. However, this condition cannot be 5458 // true for phi nodes that form a cyclic dependence. We must process phi 5459 // nodes separately. An induction variable will remain uniform if all users 5460 // of the induction variable and induction variable update remain uniform. 5461 // The code below handles both pointer and non-pointer induction variables. 5462 for (auto &Induction : Legal->getInductionVars()) { 5463 auto *Ind = Induction.first; 5464 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5465 5466 // Determine if all users of the induction variable are uniform after 5467 // vectorization. 5468 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5469 auto *I = cast<Instruction>(U); 5470 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5471 isVectorizedMemAccessUse(I, Ind); 5472 }); 5473 if (!UniformInd) 5474 continue; 5475 5476 // Determine if all users of the induction variable update instruction are 5477 // uniform after vectorization. 5478 auto UniformIndUpdate = 5479 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5480 auto *I = cast<Instruction>(U); 5481 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5482 isVectorizedMemAccessUse(I, IndUpdate); 5483 }); 5484 if (!UniformIndUpdate) 5485 continue; 5486 5487 // The induction variable and its update instruction will remain uniform. 5488 addToWorklistIfAllowed(Ind); 5489 addToWorklistIfAllowed(IndUpdate); 5490 } 5491 5492 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5493 } 5494 5495 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5496 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5497 5498 if (Legal->getRuntimePointerChecking()->Need) { 5499 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5500 "runtime pointer checks needed. Enable vectorization of this " 5501 "loop with '#pragma clang loop vectorize(enable)' when " 5502 "compiling with -Os/-Oz", 5503 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5504 return true; 5505 } 5506 5507 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5508 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5509 "runtime SCEV checks needed. Enable vectorization of this " 5510 "loop with '#pragma clang loop vectorize(enable)' when " 5511 "compiling with -Os/-Oz", 5512 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5513 return true; 5514 } 5515 5516 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5517 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5518 reportVectorizationFailure("Runtime stride check for small trip count", 5519 "runtime stride == 1 checks needed. Enable vectorization of " 5520 "this loop without such check by compiling with -Os/-Oz", 5521 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5522 return true; 5523 } 5524 5525 return false; 5526 } 5527 5528 Optional<ElementCount> 5529 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5530 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5531 // TODO: It may by useful to do since it's still likely to be dynamically 5532 // uniform if the target can skip. 5533 reportVectorizationFailure( 5534 "Not inserting runtime ptr check for divergent target", 5535 "runtime pointer checks needed. Not enabled for divergent target", 5536 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5537 return None; 5538 } 5539 5540 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5541 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5542 if (TC == 1) { 5543 reportVectorizationFailure("Single iteration (non) loop", 5544 "loop trip count is one, irrelevant for vectorization", 5545 "SingleIterationLoop", ORE, TheLoop); 5546 return None; 5547 } 5548 5549 switch (ScalarEpilogueStatus) { 5550 case CM_ScalarEpilogueAllowed: 5551 return computeFeasibleMaxVF(TC, UserVF); 5552 case CM_ScalarEpilogueNotAllowedUsePredicate: 5553 LLVM_FALLTHROUGH; 5554 case CM_ScalarEpilogueNotNeededUsePredicate: 5555 LLVM_DEBUG( 5556 dbgs() << "LV: vector predicate hint/switch found.\n" 5557 << "LV: Not allowing scalar epilogue, creating predicated " 5558 << "vector loop.\n"); 5559 break; 5560 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5561 // fallthrough as a special case of OptForSize 5562 case CM_ScalarEpilogueNotAllowedOptSize: 5563 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5564 LLVM_DEBUG( 5565 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5566 else 5567 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5568 << "count.\n"); 5569 5570 // Bail if runtime checks are required, which are not good when optimising 5571 // for size. 5572 if (runtimeChecksRequired()) 5573 return None; 5574 5575 break; 5576 } 5577 5578 // The only loops we can vectorize without a scalar epilogue, are loops with 5579 // a bottom-test and a single exiting block. We'd have to handle the fact 5580 // that not every instruction executes on the last iteration. This will 5581 // require a lane mask which varies through the vector loop body. (TODO) 5582 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5583 // If there was a tail-folding hint/switch, but we can't fold the tail by 5584 // masking, fallback to a vectorization with a scalar epilogue. 5585 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5586 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5587 "scalar epilogue instead.\n"); 5588 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5589 return computeFeasibleMaxVF(TC, UserVF); 5590 } 5591 return None; 5592 } 5593 5594 // Now try the tail folding 5595 5596 // Invalidate interleave groups that require an epilogue if we can't mask 5597 // the interleave-group. 5598 if (!useMaskedInterleavedAccesses(TTI)) { 5599 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5600 "No decisions should have been taken at this point"); 5601 // Note: There is no need to invalidate any cost modeling decisions here, as 5602 // non where taken so far. 5603 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5604 } 5605 5606 ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF); 5607 assert(!MaxVF.isScalable() && 5608 "Scalable vectors do not yet support tail folding"); 5609 assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) && 5610 "MaxVF must be a power of 2"); 5611 unsigned MaxVFtimesIC = 5612 UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue(); 5613 // Avoid tail folding if the trip count is known to be a multiple of any VF we 5614 // chose. 5615 ScalarEvolution *SE = PSE.getSE(); 5616 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5617 const SCEV *ExitCount = SE->getAddExpr( 5618 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5619 const SCEV *Rem = SE->getURemExpr( 5620 SE->applyLoopGuards(ExitCount, TheLoop), 5621 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5622 if (Rem->isZero()) { 5623 // Accept MaxVF if we do not have a tail. 5624 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5625 return MaxVF; 5626 } 5627 5628 // If we don't know the precise trip count, or if the trip count that we 5629 // found modulo the vectorization factor is not zero, try to fold the tail 5630 // by masking. 5631 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5632 if (Legal->prepareToFoldTailByMasking()) { 5633 FoldTailByMasking = true; 5634 return MaxVF; 5635 } 5636 5637 // If there was a tail-folding hint/switch, but we can't fold the tail by 5638 // masking, fallback to a vectorization with a scalar epilogue. 5639 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5640 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5641 "scalar epilogue instead.\n"); 5642 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5643 return MaxVF; 5644 } 5645 5646 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5647 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5648 return None; 5649 } 5650 5651 if (TC == 0) { 5652 reportVectorizationFailure( 5653 "Unable to calculate the loop count due to complex control flow", 5654 "unable to calculate the loop count due to complex control flow", 5655 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5656 return None; 5657 } 5658 5659 reportVectorizationFailure( 5660 "Cannot optimize for size and vectorize at the same time.", 5661 "cannot optimize for size and vectorize at the same time. " 5662 "Enable vectorization of this loop with '#pragma clang loop " 5663 "vectorize(enable)' when compiling with -Os/-Oz", 5664 "NoTailLoopWithOptForSize", ORE, TheLoop); 5665 return None; 5666 } 5667 5668 ElementCount 5669 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5670 ElementCount UserVF) { 5671 bool IgnoreScalableUserVF = UserVF.isScalable() && 5672 !TTI.supportsScalableVectors() && 5673 !ForceTargetSupportsScalableVectors; 5674 if (IgnoreScalableUserVF) { 5675 LLVM_DEBUG( 5676 dbgs() << "LV: Ignoring VF=" << UserVF 5677 << " because target does not support scalable vectors.\n"); 5678 ORE->emit([&]() { 5679 return OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreScalableUserVF", 5680 TheLoop->getStartLoc(), 5681 TheLoop->getHeader()) 5682 << "Ignoring VF=" << ore::NV("UserVF", UserVF) 5683 << " because target does not support scalable vectors."; 5684 }); 5685 } 5686 5687 // Beyond this point two scenarios are handled. If UserVF isn't specified 5688 // then a suitable VF is chosen. If UserVF is specified and there are 5689 // dependencies, check if it's legal. However, if a UserVF is specified and 5690 // there are no dependencies, then there's nothing to do. 5691 if (UserVF.isNonZero() && !IgnoreScalableUserVF && 5692 Legal->isSafeForAnyVectorWidth()) 5693 return UserVF; 5694 5695 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5696 unsigned SmallestType, WidestType; 5697 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5698 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5699 5700 // Get the maximum safe dependence distance in bits computed by LAA. 5701 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5702 // the memory accesses that is most restrictive (involved in the smallest 5703 // dependence distance). 5704 unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits(); 5705 5706 // If the user vectorization factor is legally unsafe, clamp it to a safe 5707 // value. Otherwise, return as is. 5708 if (UserVF.isNonZero() && !IgnoreScalableUserVF) { 5709 unsigned MaxSafeElements = 5710 PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType); 5711 ElementCount MaxSafeVF = ElementCount::getFixed(MaxSafeElements); 5712 5713 if (UserVF.isScalable()) { 5714 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5715 5716 // Scale VF by vscale before checking if it's safe. 5717 MaxSafeVF = ElementCount::getScalable( 5718 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5719 5720 if (MaxSafeVF.isZero()) { 5721 // The dependence distance is too small to use scalable vectors, 5722 // fallback on fixed. 5723 LLVM_DEBUG( 5724 dbgs() 5725 << "LV: Max legal vector width too small, scalable vectorization " 5726 "unfeasible. Using fixed-width vectorization instead.\n"); 5727 ORE->emit([&]() { 5728 return OptimizationRemarkAnalysis(DEBUG_TYPE, "ScalableVFUnfeasible", 5729 TheLoop->getStartLoc(), 5730 TheLoop->getHeader()) 5731 << "Max legal vector width too small, scalable vectorization " 5732 << "unfeasible. Using fixed-width vectorization instead."; 5733 }); 5734 return computeFeasibleMaxVF( 5735 ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue())); 5736 } 5737 } 5738 5739 LLVM_DEBUG(dbgs() << "LV: The max safe VF is: " << MaxSafeVF << ".\n"); 5740 5741 if (ElementCount::isKnownLE(UserVF, MaxSafeVF)) 5742 return UserVF; 5743 5744 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5745 << " is unsafe, clamping to max safe VF=" << MaxSafeVF 5746 << ".\n"); 5747 ORE->emit([&]() { 5748 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5749 TheLoop->getStartLoc(), 5750 TheLoop->getHeader()) 5751 << "User-specified vectorization factor " 5752 << ore::NV("UserVectorizationFactor", UserVF) 5753 << " is unsafe, clamping to maximum safe vectorization factor " 5754 << ore::NV("VectorizationFactor", MaxSafeVF); 5755 }); 5756 return MaxSafeVF; 5757 } 5758 5759 WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits); 5760 5761 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5762 // Note that both WidestRegister and WidestType may not be a powers of 2. 5763 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5764 5765 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5766 << " / " << WidestType << " bits.\n"); 5767 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5768 << WidestRegister << " bits.\n"); 5769 5770 assert(MaxVectorSize <= WidestRegister && 5771 "Did not expect to pack so many elements" 5772 " into one vector!"); 5773 if (MaxVectorSize == 0) { 5774 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5775 MaxVectorSize = 1; 5776 return ElementCount::getFixed(MaxVectorSize); 5777 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5778 isPowerOf2_32(ConstTripCount)) { 5779 // We need to clamp the VF to be the ConstTripCount. There is no point in 5780 // choosing a higher viable VF as done in the loop below. 5781 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5782 << ConstTripCount << "\n"); 5783 MaxVectorSize = ConstTripCount; 5784 return ElementCount::getFixed(MaxVectorSize); 5785 } 5786 5787 unsigned MaxVF = MaxVectorSize; 5788 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5789 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5790 // Collect all viable vectorization factors larger than the default MaxVF 5791 // (i.e. MaxVectorSize). 5792 SmallVector<ElementCount, 8> VFs; 5793 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5794 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5795 VFs.push_back(ElementCount::getFixed(VS)); 5796 5797 // For each VF calculate its register usage. 5798 auto RUs = calculateRegisterUsage(VFs); 5799 5800 // Select the largest VF which doesn't require more registers than existing 5801 // ones. 5802 for (int i = RUs.size() - 1; i >= 0; --i) { 5803 bool Selected = true; 5804 for (auto& pair : RUs[i].MaxLocalUsers) { 5805 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5806 if (pair.second > TargetNumRegisters) 5807 Selected = false; 5808 } 5809 if (Selected) { 5810 MaxVF = VFs[i].getKnownMinValue(); 5811 break; 5812 } 5813 } 5814 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5815 if (MaxVF < MinVF) { 5816 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5817 << ") with target's minimum: " << MinVF << '\n'); 5818 MaxVF = MinVF; 5819 } 5820 } 5821 } 5822 return ElementCount::getFixed(MaxVF); 5823 } 5824 5825 VectorizationFactor 5826 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 5827 // FIXME: This can be fixed for scalable vectors later, because at this stage 5828 // the LoopVectorizer will only consider vectorizing a loop with scalable 5829 // vectors when the loop has a hint to enable vectorization for a given VF. 5830 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 5831 5832 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5833 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5834 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5835 5836 unsigned Width = 1; 5837 const float ScalarCost = *ExpectedCost.getValue(); 5838 float Cost = ScalarCost; 5839 5840 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5841 if (ForceVectorization && MaxVF.isVector()) { 5842 // Ignore scalar width, because the user explicitly wants vectorization. 5843 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5844 // evaluation. 5845 Cost = std::numeric_limits<float>::max(); 5846 } 5847 5848 for (unsigned i = 2; i <= MaxVF.getFixedValue(); i *= 2) { 5849 // Notice that the vector loop needs to be executed less times, so 5850 // we need to divide the cost of the vector loops by the width of 5851 // the vector elements. 5852 VectorizationCostTy C = expectedCost(ElementCount::getFixed(i)); 5853 assert(C.first.isValid() && "Unexpected invalid cost for vector loop"); 5854 float VectorCost = *C.first.getValue() / (float)i; 5855 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5856 << " costs: " << (int)VectorCost << ".\n"); 5857 if (!C.second && !ForceVectorization) { 5858 LLVM_DEBUG( 5859 dbgs() << "LV: Not considering vector loop of width " << i 5860 << " because it will not generate any vector instructions.\n"); 5861 continue; 5862 } 5863 5864 // If profitable add it to ProfitableVF list. 5865 if (VectorCost < ScalarCost) { 5866 ProfitableVFs.push_back(VectorizationFactor( 5867 {ElementCount::getFixed(i), (unsigned)VectorCost})); 5868 } 5869 5870 if (VectorCost < Cost) { 5871 Cost = VectorCost; 5872 Width = i; 5873 } 5874 } 5875 5876 if (!EnableCondStoresVectorization && NumPredStores) { 5877 reportVectorizationFailure("There are conditional stores.", 5878 "store that is conditionally executed prevents vectorization", 5879 "ConditionalStore", ORE, TheLoop); 5880 Width = 1; 5881 Cost = ScalarCost; 5882 } 5883 5884 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5885 << "LV: Vectorization seems to be not beneficial, " 5886 << "but was forced by a user.\n"); 5887 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5888 VectorizationFactor Factor = {ElementCount::getFixed(Width), 5889 (unsigned)(Width * Cost)}; 5890 return Factor; 5891 } 5892 5893 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5894 const Loop &L, ElementCount VF) const { 5895 // Cross iteration phis such as reductions need special handling and are 5896 // currently unsupported. 5897 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 5898 return Legal->isFirstOrderRecurrence(&Phi) || 5899 Legal->isReductionVariable(&Phi); 5900 })) 5901 return false; 5902 5903 // Phis with uses outside of the loop require special handling and are 5904 // currently unsupported. 5905 for (auto &Entry : Legal->getInductionVars()) { 5906 // Look for uses of the value of the induction at the last iteration. 5907 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5908 for (User *U : PostInc->users()) 5909 if (!L.contains(cast<Instruction>(U))) 5910 return false; 5911 // Look for uses of penultimate value of the induction. 5912 for (User *U : Entry.first->users()) 5913 if (!L.contains(cast<Instruction>(U))) 5914 return false; 5915 } 5916 5917 // Induction variables that are widened require special handling that is 5918 // currently not supported. 5919 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5920 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5921 this->isProfitableToScalarize(Entry.first, VF)); 5922 })) 5923 return false; 5924 5925 return true; 5926 } 5927 5928 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5929 const ElementCount VF) const { 5930 // FIXME: We need a much better cost-model to take different parameters such 5931 // as register pressure, code size increase and cost of extra branches into 5932 // account. For now we apply a very crude heuristic and only consider loops 5933 // with vectorization factors larger than a certain value. 5934 // We also consider epilogue vectorization unprofitable for targets that don't 5935 // consider interleaving beneficial (eg. MVE). 5936 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5937 return false; 5938 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 5939 return true; 5940 return false; 5941 } 5942 5943 VectorizationFactor 5944 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5945 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5946 VectorizationFactor Result = VectorizationFactor::Disabled(); 5947 if (!EnableEpilogueVectorization) { 5948 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5949 return Result; 5950 } 5951 5952 if (!isScalarEpilogueAllowed()) { 5953 LLVM_DEBUG( 5954 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5955 "allowed.\n";); 5956 return Result; 5957 } 5958 5959 // FIXME: This can be fixed for scalable vectors later, because at this stage 5960 // the LoopVectorizer will only consider vectorizing a loop with scalable 5961 // vectors when the loop has a hint to enable vectorization for a given VF. 5962 if (MainLoopVF.isScalable()) { 5963 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 5964 "yet supported.\n"); 5965 return Result; 5966 } 5967 5968 // Not really a cost consideration, but check for unsupported cases here to 5969 // simplify the logic. 5970 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5971 LLVM_DEBUG( 5972 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5973 "not a supported candidate.\n";); 5974 return Result; 5975 } 5976 5977 if (EpilogueVectorizationForceVF > 1) { 5978 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5979 if (LVP.hasPlanWithVFs( 5980 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 5981 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 5982 else { 5983 LLVM_DEBUG( 5984 dbgs() 5985 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5986 return Result; 5987 } 5988 } 5989 5990 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5991 TheLoop->getHeader()->getParent()->hasMinSize()) { 5992 LLVM_DEBUG( 5993 dbgs() 5994 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5995 return Result; 5996 } 5997 5998 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 5999 return Result; 6000 6001 for (auto &NextVF : ProfitableVFs) 6002 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6003 (Result.Width.getFixedValue() == 1 || NextVF.Cost < Result.Cost) && 6004 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6005 Result = NextVF; 6006 6007 if (Result != VectorizationFactor::Disabled()) 6008 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6009 << Result.Width.getFixedValue() << "\n";); 6010 return Result; 6011 } 6012 6013 std::pair<unsigned, unsigned> 6014 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6015 unsigned MinWidth = -1U; 6016 unsigned MaxWidth = 8; 6017 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6018 6019 // For each block. 6020 for (BasicBlock *BB : TheLoop->blocks()) { 6021 // For each instruction in the loop. 6022 for (Instruction &I : BB->instructionsWithoutDebug()) { 6023 Type *T = I.getType(); 6024 6025 // Skip ignored values. 6026 if (ValuesToIgnore.count(&I)) 6027 continue; 6028 6029 // Only examine Loads, Stores and PHINodes. 6030 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6031 continue; 6032 6033 // Examine PHI nodes that are reduction variables. Update the type to 6034 // account for the recurrence type. 6035 if (auto *PN = dyn_cast<PHINode>(&I)) { 6036 if (!Legal->isReductionVariable(PN)) 6037 continue; 6038 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 6039 if (PreferInLoopReductions || 6040 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6041 RdxDesc.getRecurrenceType(), 6042 TargetTransformInfo::ReductionFlags())) 6043 continue; 6044 T = RdxDesc.getRecurrenceType(); 6045 } 6046 6047 // Examine the stored values. 6048 if (auto *ST = dyn_cast<StoreInst>(&I)) 6049 T = ST->getValueOperand()->getType(); 6050 6051 // Ignore loaded pointer types and stored pointer types that are not 6052 // vectorizable. 6053 // 6054 // FIXME: The check here attempts to predict whether a load or store will 6055 // be vectorized. We only know this for certain after a VF has 6056 // been selected. Here, we assume that if an access can be 6057 // vectorized, it will be. We should also look at extending this 6058 // optimization to non-pointer types. 6059 // 6060 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6061 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6062 continue; 6063 6064 MinWidth = std::min(MinWidth, 6065 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6066 MaxWidth = std::max(MaxWidth, 6067 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6068 } 6069 } 6070 6071 return {MinWidth, MaxWidth}; 6072 } 6073 6074 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6075 unsigned LoopCost) { 6076 // -- The interleave heuristics -- 6077 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6078 // There are many micro-architectural considerations that we can't predict 6079 // at this level. For example, frontend pressure (on decode or fetch) due to 6080 // code size, or the number and capabilities of the execution ports. 6081 // 6082 // We use the following heuristics to select the interleave count: 6083 // 1. If the code has reductions, then we interleave to break the cross 6084 // iteration dependency. 6085 // 2. If the loop is really small, then we interleave to reduce the loop 6086 // overhead. 6087 // 3. We don't interleave if we think that we will spill registers to memory 6088 // due to the increased register pressure. 6089 6090 if (!isScalarEpilogueAllowed()) 6091 return 1; 6092 6093 // We used the distance for the interleave count. 6094 if (Legal->getMaxSafeDepDistBytes() != -1U) 6095 return 1; 6096 6097 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6098 const bool HasReductions = !Legal->getReductionVars().empty(); 6099 // Do not interleave loops with a relatively small known or estimated trip 6100 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6101 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6102 // because with the above conditions interleaving can expose ILP and break 6103 // cross iteration dependences for reductions. 6104 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6105 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6106 return 1; 6107 6108 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6109 // We divide by these constants so assume that we have at least one 6110 // instruction that uses at least one register. 6111 for (auto& pair : R.MaxLocalUsers) { 6112 pair.second = std::max(pair.second, 1U); 6113 } 6114 6115 // We calculate the interleave count using the following formula. 6116 // Subtract the number of loop invariants from the number of available 6117 // registers. These registers are used by all of the interleaved instances. 6118 // Next, divide the remaining registers by the number of registers that is 6119 // required by the loop, in order to estimate how many parallel instances 6120 // fit without causing spills. All of this is rounded down if necessary to be 6121 // a power of two. We want power of two interleave count to simplify any 6122 // addressing operations or alignment considerations. 6123 // We also want power of two interleave counts to ensure that the induction 6124 // variable of the vector loop wraps to zero, when tail is folded by masking; 6125 // this currently happens when OptForSize, in which case IC is set to 1 above. 6126 unsigned IC = UINT_MAX; 6127 6128 for (auto& pair : R.MaxLocalUsers) { 6129 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6130 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6131 << " registers of " 6132 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6133 if (VF.isScalar()) { 6134 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6135 TargetNumRegisters = ForceTargetNumScalarRegs; 6136 } else { 6137 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6138 TargetNumRegisters = ForceTargetNumVectorRegs; 6139 } 6140 unsigned MaxLocalUsers = pair.second; 6141 unsigned LoopInvariantRegs = 0; 6142 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6143 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6144 6145 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6146 // Don't count the induction variable as interleaved. 6147 if (EnableIndVarRegisterHeur) { 6148 TmpIC = 6149 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6150 std::max(1U, (MaxLocalUsers - 1))); 6151 } 6152 6153 IC = std::min(IC, TmpIC); 6154 } 6155 6156 // Clamp the interleave ranges to reasonable counts. 6157 unsigned MaxInterleaveCount = 6158 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6159 6160 // Check if the user has overridden the max. 6161 if (VF.isScalar()) { 6162 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6163 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6164 } else { 6165 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6166 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6167 } 6168 6169 // If trip count is known or estimated compile time constant, limit the 6170 // interleave count to be less than the trip count divided by VF, provided it 6171 // is at least 1. 6172 // 6173 // For scalable vectors we can't know if interleaving is beneficial. It may 6174 // not be beneficial for small loops if none of the lanes in the second vector 6175 // iterations is enabled. However, for larger loops, there is likely to be a 6176 // similar benefit as for fixed-width vectors. For now, we choose to leave 6177 // the InterleaveCount as if vscale is '1', although if some information about 6178 // the vector is known (e.g. min vector size), we can make a better decision. 6179 if (BestKnownTC) { 6180 MaxInterleaveCount = 6181 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6182 // Make sure MaxInterleaveCount is greater than 0. 6183 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6184 } 6185 6186 assert(MaxInterleaveCount > 0 && 6187 "Maximum interleave count must be greater than 0"); 6188 6189 // Clamp the calculated IC to be between the 1 and the max interleave count 6190 // that the target and trip count allows. 6191 if (IC > MaxInterleaveCount) 6192 IC = MaxInterleaveCount; 6193 else 6194 // Make sure IC is greater than 0. 6195 IC = std::max(1u, IC); 6196 6197 assert(IC > 0 && "Interleave count must be greater than 0."); 6198 6199 // If we did not calculate the cost for VF (because the user selected the VF) 6200 // then we calculate the cost of VF here. 6201 if (LoopCost == 0) { 6202 assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); 6203 LoopCost = *expectedCost(VF).first.getValue(); 6204 } 6205 6206 assert(LoopCost && "Non-zero loop cost expected"); 6207 6208 // Interleave if we vectorized this loop and there is a reduction that could 6209 // benefit from interleaving. 6210 if (VF.isVector() && HasReductions) { 6211 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6212 return IC; 6213 } 6214 6215 // Note that if we've already vectorized the loop we will have done the 6216 // runtime check and so interleaving won't require further checks. 6217 bool InterleavingRequiresRuntimePointerCheck = 6218 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6219 6220 // We want to interleave small loops in order to reduce the loop overhead and 6221 // potentially expose ILP opportunities. 6222 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6223 << "LV: IC is " << IC << '\n' 6224 << "LV: VF is " << VF << '\n'); 6225 const bool AggressivelyInterleaveReductions = 6226 TTI.enableAggressiveInterleaving(HasReductions); 6227 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6228 // We assume that the cost overhead is 1 and we use the cost model 6229 // to estimate the cost of the loop and interleave until the cost of the 6230 // loop overhead is about 5% of the cost of the loop. 6231 unsigned SmallIC = 6232 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6233 6234 // Interleave until store/load ports (estimated by max interleave count) are 6235 // saturated. 6236 unsigned NumStores = Legal->getNumStores(); 6237 unsigned NumLoads = Legal->getNumLoads(); 6238 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6239 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6240 6241 // If we have a scalar reduction (vector reductions are already dealt with 6242 // by this point), we can increase the critical path length if the loop 6243 // we're interleaving is inside another loop. Limit, by default to 2, so the 6244 // critical path only gets increased by one reduction operation. 6245 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6246 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6247 SmallIC = std::min(SmallIC, F); 6248 StoresIC = std::min(StoresIC, F); 6249 LoadsIC = std::min(LoadsIC, F); 6250 } 6251 6252 if (EnableLoadStoreRuntimeInterleave && 6253 std::max(StoresIC, LoadsIC) > SmallIC) { 6254 LLVM_DEBUG( 6255 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6256 return std::max(StoresIC, LoadsIC); 6257 } 6258 6259 // If there are scalar reductions and TTI has enabled aggressive 6260 // interleaving for reductions, we will interleave to expose ILP. 6261 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6262 AggressivelyInterleaveReductions) { 6263 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6264 // Interleave no less than SmallIC but not as aggressive as the normal IC 6265 // to satisfy the rare situation when resources are too limited. 6266 return std::max(IC / 2, SmallIC); 6267 } else { 6268 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6269 return SmallIC; 6270 } 6271 } 6272 6273 // Interleave if this is a large loop (small loops are already dealt with by 6274 // this point) that could benefit from interleaving. 6275 if (AggressivelyInterleaveReductions) { 6276 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6277 return IC; 6278 } 6279 6280 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6281 return 1; 6282 } 6283 6284 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6285 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6286 // This function calculates the register usage by measuring the highest number 6287 // of values that are alive at a single location. Obviously, this is a very 6288 // rough estimation. We scan the loop in a topological order in order and 6289 // assign a number to each instruction. We use RPO to ensure that defs are 6290 // met before their users. We assume that each instruction that has in-loop 6291 // users starts an interval. We record every time that an in-loop value is 6292 // used, so we have a list of the first and last occurrences of each 6293 // instruction. Next, we transpose this data structure into a multi map that 6294 // holds the list of intervals that *end* at a specific location. This multi 6295 // map allows us to perform a linear search. We scan the instructions linearly 6296 // and record each time that a new interval starts, by placing it in a set. 6297 // If we find this value in the multi-map then we remove it from the set. 6298 // The max register usage is the maximum size of the set. 6299 // We also search for instructions that are defined outside the loop, but are 6300 // used inside the loop. We need this number separately from the max-interval 6301 // usage number because when we unroll, loop-invariant values do not take 6302 // more register. 6303 LoopBlocksDFS DFS(TheLoop); 6304 DFS.perform(LI); 6305 6306 RegisterUsage RU; 6307 6308 // Each 'key' in the map opens a new interval. The values 6309 // of the map are the index of the 'last seen' usage of the 6310 // instruction that is the key. 6311 using IntervalMap = DenseMap<Instruction *, unsigned>; 6312 6313 // Maps instruction to its index. 6314 SmallVector<Instruction *, 64> IdxToInstr; 6315 // Marks the end of each interval. 6316 IntervalMap EndPoint; 6317 // Saves the list of instruction indices that are used in the loop. 6318 SmallPtrSet<Instruction *, 8> Ends; 6319 // Saves the list of values that are used in the loop but are 6320 // defined outside the loop, such as arguments and constants. 6321 SmallPtrSet<Value *, 8> LoopInvariants; 6322 6323 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6324 for (Instruction &I : BB->instructionsWithoutDebug()) { 6325 IdxToInstr.push_back(&I); 6326 6327 // Save the end location of each USE. 6328 for (Value *U : I.operands()) { 6329 auto *Instr = dyn_cast<Instruction>(U); 6330 6331 // Ignore non-instruction values such as arguments, constants, etc. 6332 if (!Instr) 6333 continue; 6334 6335 // If this instruction is outside the loop then record it and continue. 6336 if (!TheLoop->contains(Instr)) { 6337 LoopInvariants.insert(Instr); 6338 continue; 6339 } 6340 6341 // Overwrite previous end points. 6342 EndPoint[Instr] = IdxToInstr.size(); 6343 Ends.insert(Instr); 6344 } 6345 } 6346 } 6347 6348 // Saves the list of intervals that end with the index in 'key'. 6349 using InstrList = SmallVector<Instruction *, 2>; 6350 DenseMap<unsigned, InstrList> TransposeEnds; 6351 6352 // Transpose the EndPoints to a list of values that end at each index. 6353 for (auto &Interval : EndPoint) 6354 TransposeEnds[Interval.second].push_back(Interval.first); 6355 6356 SmallPtrSet<Instruction *, 8> OpenIntervals; 6357 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6358 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6359 6360 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6361 6362 // A lambda that gets the register usage for the given type and VF. 6363 const auto &TTICapture = TTI; 6364 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6365 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6366 return 0U; 6367 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 6368 }; 6369 6370 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6371 Instruction *I = IdxToInstr[i]; 6372 6373 // Remove all of the instructions that end at this location. 6374 InstrList &List = TransposeEnds[i]; 6375 for (Instruction *ToRemove : List) 6376 OpenIntervals.erase(ToRemove); 6377 6378 // Ignore instructions that are never used within the loop. 6379 if (!Ends.count(I)) 6380 continue; 6381 6382 // Skip ignored values. 6383 if (ValuesToIgnore.count(I)) 6384 continue; 6385 6386 // For each VF find the maximum usage of registers. 6387 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6388 // Count the number of live intervals. 6389 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6390 6391 if (VFs[j].isScalar()) { 6392 for (auto Inst : OpenIntervals) { 6393 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6394 if (RegUsage.find(ClassID) == RegUsage.end()) 6395 RegUsage[ClassID] = 1; 6396 else 6397 RegUsage[ClassID] += 1; 6398 } 6399 } else { 6400 collectUniformsAndScalars(VFs[j]); 6401 for (auto Inst : OpenIntervals) { 6402 // Skip ignored values for VF > 1. 6403 if (VecValuesToIgnore.count(Inst)) 6404 continue; 6405 if (isScalarAfterVectorization(Inst, VFs[j])) { 6406 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6407 if (RegUsage.find(ClassID) == RegUsage.end()) 6408 RegUsage[ClassID] = 1; 6409 else 6410 RegUsage[ClassID] += 1; 6411 } else { 6412 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6413 if (RegUsage.find(ClassID) == RegUsage.end()) 6414 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6415 else 6416 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6417 } 6418 } 6419 } 6420 6421 for (auto& pair : RegUsage) { 6422 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6423 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6424 else 6425 MaxUsages[j][pair.first] = pair.second; 6426 } 6427 } 6428 6429 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6430 << OpenIntervals.size() << '\n'); 6431 6432 // Add the current instruction to the list of open intervals. 6433 OpenIntervals.insert(I); 6434 } 6435 6436 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6437 SmallMapVector<unsigned, unsigned, 4> Invariant; 6438 6439 for (auto Inst : LoopInvariants) { 6440 unsigned Usage = 6441 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6442 unsigned ClassID = 6443 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6444 if (Invariant.find(ClassID) == Invariant.end()) 6445 Invariant[ClassID] = Usage; 6446 else 6447 Invariant[ClassID] += Usage; 6448 } 6449 6450 LLVM_DEBUG({ 6451 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6452 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6453 << " item\n"; 6454 for (const auto &pair : MaxUsages[i]) { 6455 dbgs() << "LV(REG): RegisterClass: " 6456 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6457 << " registers\n"; 6458 } 6459 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6460 << " item\n"; 6461 for (const auto &pair : Invariant) { 6462 dbgs() << "LV(REG): RegisterClass: " 6463 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6464 << " registers\n"; 6465 } 6466 }); 6467 6468 RU.LoopInvariantRegs = Invariant; 6469 RU.MaxLocalUsers = MaxUsages[i]; 6470 RUs[i] = RU; 6471 } 6472 6473 return RUs; 6474 } 6475 6476 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6477 // TODO: Cost model for emulated masked load/store is completely 6478 // broken. This hack guides the cost model to use an artificially 6479 // high enough value to practically disable vectorization with such 6480 // operations, except where previously deployed legality hack allowed 6481 // using very low cost values. This is to avoid regressions coming simply 6482 // from moving "masked load/store" check from legality to cost model. 6483 // Masked Load/Gather emulation was previously never allowed. 6484 // Limited number of Masked Store/Scatter emulation was allowed. 6485 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 6486 return isa<LoadInst>(I) || 6487 (isa<StoreInst>(I) && 6488 NumPredStores > NumberOfStoresToPredicate); 6489 } 6490 6491 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6492 // If we aren't vectorizing the loop, or if we've already collected the 6493 // instructions to scalarize, there's nothing to do. Collection may already 6494 // have occurred if we have a user-selected VF and are now computing the 6495 // expected cost for interleaving. 6496 if (VF.isScalar() || VF.isZero() || 6497 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6498 return; 6499 6500 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6501 // not profitable to scalarize any instructions, the presence of VF in the 6502 // map will indicate that we've analyzed it already. 6503 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6504 6505 // Find all the instructions that are scalar with predication in the loop and 6506 // determine if it would be better to not if-convert the blocks they are in. 6507 // If so, we also record the instructions to scalarize. 6508 for (BasicBlock *BB : TheLoop->blocks()) { 6509 if (!blockNeedsPredication(BB)) 6510 continue; 6511 for (Instruction &I : *BB) 6512 if (isScalarWithPredication(&I)) { 6513 ScalarCostsTy ScalarCosts; 6514 // Do not apply discount logic if hacked cost is needed 6515 // for emulated masked memrefs. 6516 if (!useEmulatedMaskMemRefHack(&I) && 6517 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6518 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6519 // Remember that BB will remain after vectorization. 6520 PredicatedBBsAfterVectorization.insert(BB); 6521 } 6522 } 6523 } 6524 6525 int LoopVectorizationCostModel::computePredInstDiscount( 6526 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6527 assert(!isUniformAfterVectorization(PredInst, VF) && 6528 "Instruction marked uniform-after-vectorization will be predicated"); 6529 6530 // Initialize the discount to zero, meaning that the scalar version and the 6531 // vector version cost the same. 6532 InstructionCost Discount = 0; 6533 6534 // Holds instructions to analyze. The instructions we visit are mapped in 6535 // ScalarCosts. Those instructions are the ones that would be scalarized if 6536 // we find that the scalar version costs less. 6537 SmallVector<Instruction *, 8> Worklist; 6538 6539 // Returns true if the given instruction can be scalarized. 6540 auto canBeScalarized = [&](Instruction *I) -> bool { 6541 // We only attempt to scalarize instructions forming a single-use chain 6542 // from the original predicated block that would otherwise be vectorized. 6543 // Although not strictly necessary, we give up on instructions we know will 6544 // already be scalar to avoid traversing chains that are unlikely to be 6545 // beneficial. 6546 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6547 isScalarAfterVectorization(I, VF)) 6548 return false; 6549 6550 // If the instruction is scalar with predication, it will be analyzed 6551 // separately. We ignore it within the context of PredInst. 6552 if (isScalarWithPredication(I)) 6553 return false; 6554 6555 // If any of the instruction's operands are uniform after vectorization, 6556 // the instruction cannot be scalarized. This prevents, for example, a 6557 // masked load from being scalarized. 6558 // 6559 // We assume we will only emit a value for lane zero of an instruction 6560 // marked uniform after vectorization, rather than VF identical values. 6561 // Thus, if we scalarize an instruction that uses a uniform, we would 6562 // create uses of values corresponding to the lanes we aren't emitting code 6563 // for. This behavior can be changed by allowing getScalarValue to clone 6564 // the lane zero values for uniforms rather than asserting. 6565 for (Use &U : I->operands()) 6566 if (auto *J = dyn_cast<Instruction>(U.get())) 6567 if (isUniformAfterVectorization(J, VF)) 6568 return false; 6569 6570 // Otherwise, we can scalarize the instruction. 6571 return true; 6572 }; 6573 6574 // Compute the expected cost discount from scalarizing the entire expression 6575 // feeding the predicated instruction. We currently only consider expressions 6576 // that are single-use instruction chains. 6577 Worklist.push_back(PredInst); 6578 while (!Worklist.empty()) { 6579 Instruction *I = Worklist.pop_back_val(); 6580 6581 // If we've already analyzed the instruction, there's nothing to do. 6582 if (ScalarCosts.find(I) != ScalarCosts.end()) 6583 continue; 6584 6585 // Compute the cost of the vector instruction. Note that this cost already 6586 // includes the scalarization overhead of the predicated instruction. 6587 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6588 6589 // Compute the cost of the scalarized instruction. This cost is the cost of 6590 // the instruction as if it wasn't if-converted and instead remained in the 6591 // predicated block. We will scale this cost by block probability after 6592 // computing the scalarization overhead. 6593 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6594 InstructionCost ScalarCost = 6595 VF.getKnownMinValue() * 6596 getInstructionCost(I, ElementCount::getFixed(1)).first; 6597 6598 // Compute the scalarization overhead of needed insertelement instructions 6599 // and phi nodes. 6600 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6601 ScalarCost += TTI.getScalarizationOverhead( 6602 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6603 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6604 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6605 ScalarCost += 6606 VF.getKnownMinValue() * 6607 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6608 } 6609 6610 // Compute the scalarization overhead of needed extractelement 6611 // instructions. For each of the instruction's operands, if the operand can 6612 // be scalarized, add it to the worklist; otherwise, account for the 6613 // overhead. 6614 for (Use &U : I->operands()) 6615 if (auto *J = dyn_cast<Instruction>(U.get())) { 6616 assert(VectorType::isValidElementType(J->getType()) && 6617 "Instruction has non-scalar type"); 6618 if (canBeScalarized(J)) 6619 Worklist.push_back(J); 6620 else if (needsExtract(J, VF)) { 6621 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6622 ScalarCost += TTI.getScalarizationOverhead( 6623 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6624 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6625 } 6626 } 6627 6628 // Scale the total scalar cost by block probability. 6629 ScalarCost /= getReciprocalPredBlockProb(); 6630 6631 // Compute the discount. A non-negative discount means the vector version 6632 // of the instruction costs more, and scalarizing would be beneficial. 6633 Discount += VectorCost - ScalarCost; 6634 ScalarCosts[I] = ScalarCost; 6635 } 6636 6637 return *Discount.getValue(); 6638 } 6639 6640 LoopVectorizationCostModel::VectorizationCostTy 6641 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6642 VectorizationCostTy Cost; 6643 6644 // For each block. 6645 for (BasicBlock *BB : TheLoop->blocks()) { 6646 VectorizationCostTy BlockCost; 6647 6648 // For each instruction in the old loop. 6649 for (Instruction &I : BB->instructionsWithoutDebug()) { 6650 // Skip ignored values. 6651 if (ValuesToIgnore.count(&I) || 6652 (VF.isVector() && VecValuesToIgnore.count(&I))) 6653 continue; 6654 6655 VectorizationCostTy C = getInstructionCost(&I, VF); 6656 6657 // Check if we should override the cost. 6658 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6659 C.first = InstructionCost(ForceTargetInstructionCost); 6660 6661 BlockCost.first += C.first; 6662 BlockCost.second |= C.second; 6663 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6664 << " for VF " << VF << " For instruction: " << I 6665 << '\n'); 6666 } 6667 6668 // If we are vectorizing a predicated block, it will have been 6669 // if-converted. This means that the block's instructions (aside from 6670 // stores and instructions that may divide by zero) will now be 6671 // unconditionally executed. For the scalar case, we may not always execute 6672 // the predicated block, if it is an if-else block. Thus, scale the block's 6673 // cost by the probability of executing it. blockNeedsPredication from 6674 // Legal is used so as to not include all blocks in tail folded loops. 6675 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6676 BlockCost.first /= getReciprocalPredBlockProb(); 6677 6678 Cost.first += BlockCost.first; 6679 Cost.second |= BlockCost.second; 6680 } 6681 6682 return Cost; 6683 } 6684 6685 /// Gets Address Access SCEV after verifying that the access pattern 6686 /// is loop invariant except the induction variable dependence. 6687 /// 6688 /// This SCEV can be sent to the Target in order to estimate the address 6689 /// calculation cost. 6690 static const SCEV *getAddressAccessSCEV( 6691 Value *Ptr, 6692 LoopVectorizationLegality *Legal, 6693 PredicatedScalarEvolution &PSE, 6694 const Loop *TheLoop) { 6695 6696 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6697 if (!Gep) 6698 return nullptr; 6699 6700 // We are looking for a gep with all loop invariant indices except for one 6701 // which should be an induction variable. 6702 auto SE = PSE.getSE(); 6703 unsigned NumOperands = Gep->getNumOperands(); 6704 for (unsigned i = 1; i < NumOperands; ++i) { 6705 Value *Opd = Gep->getOperand(i); 6706 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6707 !Legal->isInductionVariable(Opd)) 6708 return nullptr; 6709 } 6710 6711 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6712 return PSE.getSCEV(Ptr); 6713 } 6714 6715 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6716 return Legal->hasStride(I->getOperand(0)) || 6717 Legal->hasStride(I->getOperand(1)); 6718 } 6719 6720 InstructionCost 6721 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6722 ElementCount VF) { 6723 assert(VF.isVector() && 6724 "Scalarization cost of instruction implies vectorization."); 6725 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6726 Type *ValTy = getMemInstValueType(I); 6727 auto SE = PSE.getSE(); 6728 6729 unsigned AS = getLoadStoreAddressSpace(I); 6730 Value *Ptr = getLoadStorePointerOperand(I); 6731 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6732 6733 // Figure out whether the access is strided and get the stride value 6734 // if it's known in compile time 6735 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6736 6737 // Get the cost of the scalar memory instruction and address computation. 6738 InstructionCost Cost = 6739 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6740 6741 // Don't pass *I here, since it is scalar but will actually be part of a 6742 // vectorized loop where the user of it is a vectorized instruction. 6743 const Align Alignment = getLoadStoreAlignment(I); 6744 Cost += VF.getKnownMinValue() * 6745 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6746 AS, TTI::TCK_RecipThroughput); 6747 6748 // Get the overhead of the extractelement and insertelement instructions 6749 // we might create due to scalarization. 6750 Cost += getScalarizationOverhead(I, VF); 6751 6752 // If we have a predicated store, it may not be executed for each vector 6753 // lane. Scale the cost by the probability of executing the predicated 6754 // block. 6755 if (isPredicatedInst(I)) { 6756 Cost /= getReciprocalPredBlockProb(); 6757 6758 if (useEmulatedMaskMemRefHack(I)) 6759 // Artificially setting to a high enough value to practically disable 6760 // vectorization with such operations. 6761 Cost = 3000000; 6762 } 6763 6764 return Cost; 6765 } 6766 6767 InstructionCost 6768 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6769 ElementCount VF) { 6770 Type *ValTy = getMemInstValueType(I); 6771 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6772 Value *Ptr = getLoadStorePointerOperand(I); 6773 unsigned AS = getLoadStoreAddressSpace(I); 6774 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6775 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6776 6777 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6778 "Stride should be 1 or -1 for consecutive memory access"); 6779 const Align Alignment = getLoadStoreAlignment(I); 6780 InstructionCost Cost = 0; 6781 if (Legal->isMaskRequired(I)) 6782 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6783 CostKind); 6784 else 6785 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6786 CostKind, I); 6787 6788 bool Reverse = ConsecutiveStride < 0; 6789 if (Reverse) 6790 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6791 return Cost; 6792 } 6793 6794 InstructionCost 6795 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6796 ElementCount VF) { 6797 assert(Legal->isUniformMemOp(*I)); 6798 6799 Type *ValTy = getMemInstValueType(I); 6800 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6801 const Align Alignment = getLoadStoreAlignment(I); 6802 unsigned AS = getLoadStoreAddressSpace(I); 6803 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6804 if (isa<LoadInst>(I)) { 6805 return TTI.getAddressComputationCost(ValTy) + 6806 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6807 CostKind) + 6808 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6809 } 6810 StoreInst *SI = cast<StoreInst>(I); 6811 6812 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6813 return TTI.getAddressComputationCost(ValTy) + 6814 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6815 CostKind) + 6816 (isLoopInvariantStoreValue 6817 ? 0 6818 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6819 VF.getKnownMinValue() - 1)); 6820 } 6821 6822 InstructionCost 6823 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6824 ElementCount VF) { 6825 Type *ValTy = getMemInstValueType(I); 6826 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6827 const Align Alignment = getLoadStoreAlignment(I); 6828 const Value *Ptr = getLoadStorePointerOperand(I); 6829 6830 return TTI.getAddressComputationCost(VectorTy) + 6831 TTI.getGatherScatterOpCost( 6832 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6833 TargetTransformInfo::TCK_RecipThroughput, I); 6834 } 6835 6836 InstructionCost 6837 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6838 ElementCount VF) { 6839 // TODO: Once we have support for interleaving with scalable vectors 6840 // we can calculate the cost properly here. 6841 if (VF.isScalable()) 6842 return InstructionCost::getInvalid(); 6843 6844 Type *ValTy = getMemInstValueType(I); 6845 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6846 unsigned AS = getLoadStoreAddressSpace(I); 6847 6848 auto Group = getInterleavedAccessGroup(I); 6849 assert(Group && "Fail to get an interleaved access group."); 6850 6851 unsigned InterleaveFactor = Group->getFactor(); 6852 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6853 6854 // Holds the indices of existing members in an interleaved load group. 6855 // An interleaved store group doesn't need this as it doesn't allow gaps. 6856 SmallVector<unsigned, 4> Indices; 6857 if (isa<LoadInst>(I)) { 6858 for (unsigned i = 0; i < InterleaveFactor; i++) 6859 if (Group->getMember(i)) 6860 Indices.push_back(i); 6861 } 6862 6863 // Calculate the cost of the whole interleaved group. 6864 bool UseMaskForGaps = 6865 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6866 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6867 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6868 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6869 6870 if (Group->isReverse()) { 6871 // TODO: Add support for reversed masked interleaved access. 6872 assert(!Legal->isMaskRequired(I) && 6873 "Reverse masked interleaved access not supported."); 6874 Cost += Group->getNumMembers() * 6875 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6876 } 6877 return Cost; 6878 } 6879 6880 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 6881 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6882 // Early exit for no inloop reductions 6883 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6884 return InstructionCost::getInvalid(); 6885 auto *VectorTy = cast<VectorType>(Ty); 6886 6887 // We are looking for a pattern of, and finding the minimal acceptable cost: 6888 // reduce(mul(ext(A), ext(B))) or 6889 // reduce(mul(A, B)) or 6890 // reduce(ext(A)) or 6891 // reduce(A). 6892 // The basic idea is that we walk down the tree to do that, finding the root 6893 // reduction instruction in InLoopReductionImmediateChains. From there we find 6894 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6895 // of the components. If the reduction cost is lower then we return it for the 6896 // reduction instruction and 0 for the other instructions in the pattern. If 6897 // it is not we return an invalid cost specifying the orignal cost method 6898 // should be used. 6899 Instruction *RetI = I; 6900 if ((RetI->getOpcode() == Instruction::SExt || 6901 RetI->getOpcode() == Instruction::ZExt)) { 6902 if (!RetI->hasOneUser()) 6903 return InstructionCost::getInvalid(); 6904 RetI = RetI->user_back(); 6905 } 6906 if (RetI->getOpcode() == Instruction::Mul && 6907 RetI->user_back()->getOpcode() == Instruction::Add) { 6908 if (!RetI->hasOneUser()) 6909 return InstructionCost::getInvalid(); 6910 RetI = RetI->user_back(); 6911 } 6912 6913 // Test if the found instruction is a reduction, and if not return an invalid 6914 // cost specifying the parent to use the original cost modelling. 6915 if (!InLoopReductionImmediateChains.count(RetI)) 6916 return InstructionCost::getInvalid(); 6917 6918 // Find the reduction this chain is a part of and calculate the basic cost of 6919 // the reduction on its own. 6920 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6921 Instruction *ReductionPhi = LastChain; 6922 while (!isa<PHINode>(ReductionPhi)) 6923 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6924 6925 RecurrenceDescriptor RdxDesc = 6926 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 6927 unsigned BaseCost = TTI.getArithmeticReductionCost(RdxDesc.getOpcode(), 6928 VectorTy, false, CostKind); 6929 6930 // Get the operand that was not the reduction chain and match it to one of the 6931 // patterns, returning the better cost if it is found. 6932 Instruction *RedOp = RetI->getOperand(1) == LastChain 6933 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6934 : dyn_cast<Instruction>(RetI->getOperand(1)); 6935 6936 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6937 6938 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 6939 !TheLoop->isLoopInvariant(RedOp)) { 6940 bool IsUnsigned = isa<ZExtInst>(RedOp); 6941 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6942 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6943 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6944 CostKind); 6945 6946 unsigned ExtCost = 6947 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6948 TTI::CastContextHint::None, CostKind, RedOp); 6949 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6950 return I == RetI ? *RedCost.getValue() : 0; 6951 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 6952 Instruction *Mul = RedOp; 6953 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 6954 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 6955 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 6956 Op0->getOpcode() == Op1->getOpcode() && 6957 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6958 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6959 bool IsUnsigned = isa<ZExtInst>(Op0); 6960 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6961 // reduce(mul(ext, ext)) 6962 unsigned ExtCost = 6963 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 6964 TTI::CastContextHint::None, CostKind, Op0); 6965 unsigned MulCost = 6966 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 6967 6968 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6969 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6970 CostKind); 6971 6972 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 6973 return I == RetI ? *RedCost.getValue() : 0; 6974 } else { 6975 unsigned MulCost = 6976 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 6977 6978 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6979 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6980 CostKind); 6981 6982 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6983 return I == RetI ? *RedCost.getValue() : 0; 6984 } 6985 } 6986 6987 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 6988 } 6989 6990 InstructionCost 6991 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6992 ElementCount VF) { 6993 // Calculate scalar cost only. Vectorization cost should be ready at this 6994 // moment. 6995 if (VF.isScalar()) { 6996 Type *ValTy = getMemInstValueType(I); 6997 const Align Alignment = getLoadStoreAlignment(I); 6998 unsigned AS = getLoadStoreAddressSpace(I); 6999 7000 return TTI.getAddressComputationCost(ValTy) + 7001 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7002 TTI::TCK_RecipThroughput, I); 7003 } 7004 return getWideningCost(I, VF); 7005 } 7006 7007 LoopVectorizationCostModel::VectorizationCostTy 7008 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7009 ElementCount VF) { 7010 // If we know that this instruction will remain uniform, check the cost of 7011 // the scalar version. 7012 if (isUniformAfterVectorization(I, VF)) 7013 VF = ElementCount::getFixed(1); 7014 7015 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7016 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7017 7018 // Forced scalars do not have any scalarization overhead. 7019 auto ForcedScalar = ForcedScalars.find(VF); 7020 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7021 auto InstSet = ForcedScalar->second; 7022 if (InstSet.count(I)) 7023 return VectorizationCostTy( 7024 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7025 VF.getKnownMinValue()), 7026 false); 7027 } 7028 7029 Type *VectorTy; 7030 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7031 7032 bool TypeNotScalarized = 7033 VF.isVector() && VectorTy->isVectorTy() && 7034 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7035 return VectorizationCostTy(C, TypeNotScalarized); 7036 } 7037 7038 InstructionCost 7039 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7040 ElementCount VF) { 7041 7042 assert(!VF.isScalable() && 7043 "cannot compute scalarization overhead for scalable vectorization"); 7044 if (VF.isScalar()) 7045 return 0; 7046 7047 InstructionCost Cost = 0; 7048 Type *RetTy = ToVectorTy(I->getType(), VF); 7049 if (!RetTy->isVoidTy() && 7050 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7051 Cost += TTI.getScalarizationOverhead( 7052 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 7053 true, false); 7054 7055 // Some targets keep addresses scalar. 7056 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7057 return Cost; 7058 7059 // Some targets support efficient element stores. 7060 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7061 return Cost; 7062 7063 // Collect operands to consider. 7064 CallInst *CI = dyn_cast<CallInst>(I); 7065 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7066 7067 // Skip operands that do not require extraction/scalarization and do not incur 7068 // any overhead. 7069 return Cost + TTI.getOperandsScalarizationOverhead( 7070 filterExtractingOperands(Ops, VF), VF.getKnownMinValue()); 7071 } 7072 7073 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7074 if (VF.isScalar()) 7075 return; 7076 NumPredStores = 0; 7077 for (BasicBlock *BB : TheLoop->blocks()) { 7078 // For each instruction in the old loop. 7079 for (Instruction &I : *BB) { 7080 Value *Ptr = getLoadStorePointerOperand(&I); 7081 if (!Ptr) 7082 continue; 7083 7084 // TODO: We should generate better code and update the cost model for 7085 // predicated uniform stores. Today they are treated as any other 7086 // predicated store (see added test cases in 7087 // invariant-store-vectorization.ll). 7088 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7089 NumPredStores++; 7090 7091 if (Legal->isUniformMemOp(I)) { 7092 // TODO: Avoid replicating loads and stores instead of 7093 // relying on instcombine to remove them. 7094 // Load: Scalar load + broadcast 7095 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7096 InstructionCost Cost = getUniformMemOpCost(&I, VF); 7097 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7098 continue; 7099 } 7100 7101 // We assume that widening is the best solution when possible. 7102 if (memoryInstructionCanBeWidened(&I, VF)) { 7103 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7104 int ConsecutiveStride = 7105 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7106 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7107 "Expected consecutive stride."); 7108 InstWidening Decision = 7109 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7110 setWideningDecision(&I, VF, Decision, Cost); 7111 continue; 7112 } 7113 7114 // Choose between Interleaving, Gather/Scatter or Scalarization. 7115 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7116 unsigned NumAccesses = 1; 7117 if (isAccessInterleaved(&I)) { 7118 auto Group = getInterleavedAccessGroup(&I); 7119 assert(Group && "Fail to get an interleaved access group."); 7120 7121 // Make one decision for the whole group. 7122 if (getWideningDecision(&I, VF) != CM_Unknown) 7123 continue; 7124 7125 NumAccesses = Group->getNumMembers(); 7126 if (interleavedAccessCanBeWidened(&I, VF)) 7127 InterleaveCost = getInterleaveGroupCost(&I, VF); 7128 } 7129 7130 InstructionCost GatherScatterCost = 7131 isLegalGatherOrScatter(&I) 7132 ? getGatherScatterCost(&I, VF) * NumAccesses 7133 : InstructionCost::getInvalid(); 7134 7135 InstructionCost ScalarizationCost = 7136 !VF.isScalable() ? getMemInstScalarizationCost(&I, VF) * NumAccesses 7137 : InstructionCost::getInvalid(); 7138 7139 // Choose better solution for the current VF, 7140 // write down this decision and use it during vectorization. 7141 InstructionCost Cost; 7142 InstWidening Decision; 7143 if (InterleaveCost <= GatherScatterCost && 7144 InterleaveCost < ScalarizationCost) { 7145 Decision = CM_Interleave; 7146 Cost = InterleaveCost; 7147 } else if (GatherScatterCost < ScalarizationCost) { 7148 Decision = CM_GatherScatter; 7149 Cost = GatherScatterCost; 7150 } else { 7151 assert(!VF.isScalable() && 7152 "We cannot yet scalarise for scalable vectors"); 7153 Decision = CM_Scalarize; 7154 Cost = ScalarizationCost; 7155 } 7156 // If the instructions belongs to an interleave group, the whole group 7157 // receives the same decision. The whole group receives the cost, but 7158 // the cost will actually be assigned to one instruction. 7159 if (auto Group = getInterleavedAccessGroup(&I)) 7160 setWideningDecision(Group, VF, Decision, Cost); 7161 else 7162 setWideningDecision(&I, VF, Decision, Cost); 7163 } 7164 } 7165 7166 // Make sure that any load of address and any other address computation 7167 // remains scalar unless there is gather/scatter support. This avoids 7168 // inevitable extracts into address registers, and also has the benefit of 7169 // activating LSR more, since that pass can't optimize vectorized 7170 // addresses. 7171 if (TTI.prefersVectorizedAddressing()) 7172 return; 7173 7174 // Start with all scalar pointer uses. 7175 SmallPtrSet<Instruction *, 8> AddrDefs; 7176 for (BasicBlock *BB : TheLoop->blocks()) 7177 for (Instruction &I : *BB) { 7178 Instruction *PtrDef = 7179 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7180 if (PtrDef && TheLoop->contains(PtrDef) && 7181 getWideningDecision(&I, VF) != CM_GatherScatter) 7182 AddrDefs.insert(PtrDef); 7183 } 7184 7185 // Add all instructions used to generate the addresses. 7186 SmallVector<Instruction *, 4> Worklist; 7187 append_range(Worklist, AddrDefs); 7188 while (!Worklist.empty()) { 7189 Instruction *I = Worklist.pop_back_val(); 7190 for (auto &Op : I->operands()) 7191 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7192 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7193 AddrDefs.insert(InstOp).second) 7194 Worklist.push_back(InstOp); 7195 } 7196 7197 for (auto *I : AddrDefs) { 7198 if (isa<LoadInst>(I)) { 7199 // Setting the desired widening decision should ideally be handled in 7200 // by cost functions, but since this involves the task of finding out 7201 // if the loaded register is involved in an address computation, it is 7202 // instead changed here when we know this is the case. 7203 InstWidening Decision = getWideningDecision(I, VF); 7204 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7205 // Scalarize a widened load of address. 7206 setWideningDecision( 7207 I, VF, CM_Scalarize, 7208 (VF.getKnownMinValue() * 7209 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7210 else if (auto Group = getInterleavedAccessGroup(I)) { 7211 // Scalarize an interleave group of address loads. 7212 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7213 if (Instruction *Member = Group->getMember(I)) 7214 setWideningDecision( 7215 Member, VF, CM_Scalarize, 7216 (VF.getKnownMinValue() * 7217 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7218 } 7219 } 7220 } else 7221 // Make sure I gets scalarized and a cost estimate without 7222 // scalarization overhead. 7223 ForcedScalars[VF].insert(I); 7224 } 7225 } 7226 7227 InstructionCost 7228 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7229 Type *&VectorTy) { 7230 Type *RetTy = I->getType(); 7231 if (canTruncateToMinimalBitwidth(I, VF)) 7232 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7233 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7234 auto SE = PSE.getSE(); 7235 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7236 7237 // TODO: We need to estimate the cost of intrinsic calls. 7238 switch (I->getOpcode()) { 7239 case Instruction::GetElementPtr: 7240 // We mark this instruction as zero-cost because the cost of GEPs in 7241 // vectorized code depends on whether the corresponding memory instruction 7242 // is scalarized or not. Therefore, we handle GEPs with the memory 7243 // instruction cost. 7244 return 0; 7245 case Instruction::Br: { 7246 // In cases of scalarized and predicated instructions, there will be VF 7247 // predicated blocks in the vectorized loop. Each branch around these 7248 // blocks requires also an extract of its vector compare i1 element. 7249 bool ScalarPredicatedBB = false; 7250 BranchInst *BI = cast<BranchInst>(I); 7251 if (VF.isVector() && BI->isConditional() && 7252 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7253 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7254 ScalarPredicatedBB = true; 7255 7256 if (ScalarPredicatedBB) { 7257 // Return cost for branches around scalarized and predicated blocks. 7258 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7259 auto *Vec_i1Ty = 7260 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7261 return (TTI.getScalarizationOverhead( 7262 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7263 false, true) + 7264 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7265 VF.getKnownMinValue())); 7266 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7267 // The back-edge branch will remain, as will all scalar branches. 7268 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7269 else 7270 // This branch will be eliminated by if-conversion. 7271 return 0; 7272 // Note: We currently assume zero cost for an unconditional branch inside 7273 // a predicated block since it will become a fall-through, although we 7274 // may decide in the future to call TTI for all branches. 7275 } 7276 case Instruction::PHI: { 7277 auto *Phi = cast<PHINode>(I); 7278 7279 // First-order recurrences are replaced by vector shuffles inside the loop. 7280 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7281 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7282 return TTI.getShuffleCost( 7283 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7284 VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7285 7286 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7287 // converted into select instructions. We require N - 1 selects per phi 7288 // node, where N is the number of incoming values. 7289 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7290 return (Phi->getNumIncomingValues() - 1) * 7291 TTI.getCmpSelInstrCost( 7292 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7293 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7294 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7295 7296 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7297 } 7298 case Instruction::UDiv: 7299 case Instruction::SDiv: 7300 case Instruction::URem: 7301 case Instruction::SRem: 7302 // If we have a predicated instruction, it may not be executed for each 7303 // vector lane. Get the scalarization cost and scale this amount by the 7304 // probability of executing the predicated block. If the instruction is not 7305 // predicated, we fall through to the next case. 7306 if (VF.isVector() && isScalarWithPredication(I)) { 7307 InstructionCost Cost = 0; 7308 7309 // These instructions have a non-void type, so account for the phi nodes 7310 // that we will create. This cost is likely to be zero. The phi node 7311 // cost, if any, should be scaled by the block probability because it 7312 // models a copy at the end of each predicated block. 7313 Cost += VF.getKnownMinValue() * 7314 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7315 7316 // The cost of the non-predicated instruction. 7317 Cost += VF.getKnownMinValue() * 7318 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7319 7320 // The cost of insertelement and extractelement instructions needed for 7321 // scalarization. 7322 Cost += getScalarizationOverhead(I, VF); 7323 7324 // Scale the cost by the probability of executing the predicated blocks. 7325 // This assumes the predicated block for each vector lane is equally 7326 // likely. 7327 return Cost / getReciprocalPredBlockProb(); 7328 } 7329 LLVM_FALLTHROUGH; 7330 case Instruction::Add: 7331 case Instruction::FAdd: 7332 case Instruction::Sub: 7333 case Instruction::FSub: 7334 case Instruction::Mul: 7335 case Instruction::FMul: 7336 case Instruction::FDiv: 7337 case Instruction::FRem: 7338 case Instruction::Shl: 7339 case Instruction::LShr: 7340 case Instruction::AShr: 7341 case Instruction::And: 7342 case Instruction::Or: 7343 case Instruction::Xor: { 7344 // Since we will replace the stride by 1 the multiplication should go away. 7345 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7346 return 0; 7347 7348 // Detect reduction patterns 7349 InstructionCost RedCost; 7350 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7351 .isValid()) 7352 return RedCost; 7353 7354 // Certain instructions can be cheaper to vectorize if they have a constant 7355 // second vector operand. One example of this are shifts on x86. 7356 Value *Op2 = I->getOperand(1); 7357 TargetTransformInfo::OperandValueProperties Op2VP; 7358 TargetTransformInfo::OperandValueKind Op2VK = 7359 TTI.getOperandInfo(Op2, Op2VP); 7360 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7361 Op2VK = TargetTransformInfo::OK_UniformValue; 7362 7363 SmallVector<const Value *, 4> Operands(I->operand_values()); 7364 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7365 return N * TTI.getArithmeticInstrCost( 7366 I->getOpcode(), VectorTy, CostKind, 7367 TargetTransformInfo::OK_AnyValue, 7368 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7369 } 7370 case Instruction::FNeg: { 7371 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 7372 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7373 return N * TTI.getArithmeticInstrCost( 7374 I->getOpcode(), VectorTy, CostKind, 7375 TargetTransformInfo::OK_AnyValue, 7376 TargetTransformInfo::OK_AnyValue, 7377 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 7378 I->getOperand(0), I); 7379 } 7380 case Instruction::Select: { 7381 SelectInst *SI = cast<SelectInst>(I); 7382 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7383 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7384 Type *CondTy = SI->getCondition()->getType(); 7385 if (!ScalarCond) 7386 CondTy = VectorType::get(CondTy, VF); 7387 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7388 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7389 } 7390 case Instruction::ICmp: 7391 case Instruction::FCmp: { 7392 Type *ValTy = I->getOperand(0)->getType(); 7393 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7394 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7395 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7396 VectorTy = ToVectorTy(ValTy, VF); 7397 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7398 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7399 } 7400 case Instruction::Store: 7401 case Instruction::Load: { 7402 ElementCount Width = VF; 7403 if (Width.isVector()) { 7404 InstWidening Decision = getWideningDecision(I, Width); 7405 assert(Decision != CM_Unknown && 7406 "CM decision should be taken at this point"); 7407 if (Decision == CM_Scalarize) 7408 Width = ElementCount::getFixed(1); 7409 } 7410 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7411 return getMemoryInstructionCost(I, VF); 7412 } 7413 case Instruction::ZExt: 7414 case Instruction::SExt: 7415 case Instruction::FPToUI: 7416 case Instruction::FPToSI: 7417 case Instruction::FPExt: 7418 case Instruction::PtrToInt: 7419 case Instruction::IntToPtr: 7420 case Instruction::SIToFP: 7421 case Instruction::UIToFP: 7422 case Instruction::Trunc: 7423 case Instruction::FPTrunc: 7424 case Instruction::BitCast: { 7425 // Computes the CastContextHint from a Load/Store instruction. 7426 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7427 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7428 "Expected a load or a store!"); 7429 7430 if (VF.isScalar() || !TheLoop->contains(I)) 7431 return TTI::CastContextHint::Normal; 7432 7433 switch (getWideningDecision(I, VF)) { 7434 case LoopVectorizationCostModel::CM_GatherScatter: 7435 return TTI::CastContextHint::GatherScatter; 7436 case LoopVectorizationCostModel::CM_Interleave: 7437 return TTI::CastContextHint::Interleave; 7438 case LoopVectorizationCostModel::CM_Scalarize: 7439 case LoopVectorizationCostModel::CM_Widen: 7440 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7441 : TTI::CastContextHint::Normal; 7442 case LoopVectorizationCostModel::CM_Widen_Reverse: 7443 return TTI::CastContextHint::Reversed; 7444 case LoopVectorizationCostModel::CM_Unknown: 7445 llvm_unreachable("Instr did not go through cost modelling?"); 7446 } 7447 7448 llvm_unreachable("Unhandled case!"); 7449 }; 7450 7451 unsigned Opcode = I->getOpcode(); 7452 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7453 // For Trunc, the context is the only user, which must be a StoreInst. 7454 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7455 if (I->hasOneUse()) 7456 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7457 CCH = ComputeCCH(Store); 7458 } 7459 // For Z/Sext, the context is the operand, which must be a LoadInst. 7460 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7461 Opcode == Instruction::FPExt) { 7462 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7463 CCH = ComputeCCH(Load); 7464 } 7465 7466 // We optimize the truncation of induction variables having constant 7467 // integer steps. The cost of these truncations is the same as the scalar 7468 // operation. 7469 if (isOptimizableIVTruncate(I, VF)) { 7470 auto *Trunc = cast<TruncInst>(I); 7471 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7472 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7473 } 7474 7475 // Detect reduction patterns 7476 InstructionCost RedCost; 7477 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7478 .isValid()) 7479 return RedCost; 7480 7481 Type *SrcScalarTy = I->getOperand(0)->getType(); 7482 Type *SrcVecTy = 7483 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7484 if (canTruncateToMinimalBitwidth(I, VF)) { 7485 // This cast is going to be shrunk. This may remove the cast or it might 7486 // turn it into slightly different cast. For example, if MinBW == 16, 7487 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7488 // 7489 // Calculate the modified src and dest types. 7490 Type *MinVecTy = VectorTy; 7491 if (Opcode == Instruction::Trunc) { 7492 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7493 VectorTy = 7494 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7495 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7496 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7497 VectorTy = 7498 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7499 } 7500 } 7501 7502 unsigned N; 7503 if (isScalarAfterVectorization(I, VF)) { 7504 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 7505 N = VF.getKnownMinValue(); 7506 } else 7507 N = 1; 7508 return N * 7509 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7510 } 7511 case Instruction::Call: { 7512 bool NeedToScalarize; 7513 CallInst *CI = cast<CallInst>(I); 7514 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7515 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7516 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7517 return std::min(CallCost, IntrinsicCost); 7518 } 7519 return CallCost; 7520 } 7521 case Instruction::ExtractValue: 7522 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7523 default: 7524 // The cost of executing VF copies of the scalar instruction. This opcode 7525 // is unknown. Assume that it is the same as 'mul'. 7526 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 7527 Instruction::Mul, VectorTy, CostKind) + 7528 getScalarizationOverhead(I, VF); 7529 } // end of switch. 7530 } 7531 7532 char LoopVectorize::ID = 0; 7533 7534 static const char lv_name[] = "Loop Vectorization"; 7535 7536 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7537 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7538 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7539 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7540 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7541 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7542 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7543 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7544 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7545 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7546 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7547 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7548 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7549 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7550 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7551 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7552 7553 namespace llvm { 7554 7555 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7556 7557 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7558 bool VectorizeOnlyWhenForced) { 7559 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7560 } 7561 7562 } // end namespace llvm 7563 7564 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7565 // Check if the pointer operand of a load or store instruction is 7566 // consecutive. 7567 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7568 return Legal->isConsecutivePtr(Ptr); 7569 return false; 7570 } 7571 7572 void LoopVectorizationCostModel::collectValuesToIgnore() { 7573 // Ignore ephemeral values. 7574 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7575 7576 // Ignore type-promoting instructions we identified during reduction 7577 // detection. 7578 for (auto &Reduction : Legal->getReductionVars()) { 7579 RecurrenceDescriptor &RedDes = Reduction.second; 7580 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7581 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7582 } 7583 // Ignore type-casting instructions we identified during induction 7584 // detection. 7585 for (auto &Induction : Legal->getInductionVars()) { 7586 InductionDescriptor &IndDes = Induction.second; 7587 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7588 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7589 } 7590 } 7591 7592 void LoopVectorizationCostModel::collectInLoopReductions() { 7593 for (auto &Reduction : Legal->getReductionVars()) { 7594 PHINode *Phi = Reduction.first; 7595 RecurrenceDescriptor &RdxDesc = Reduction.second; 7596 7597 // We don't collect reductions that are type promoted (yet). 7598 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7599 continue; 7600 7601 // If the target would prefer this reduction to happen "in-loop", then we 7602 // want to record it as such. 7603 unsigned Opcode = RdxDesc.getOpcode(); 7604 if (!PreferInLoopReductions && 7605 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7606 TargetTransformInfo::ReductionFlags())) 7607 continue; 7608 7609 // Check that we can correctly put the reductions into the loop, by 7610 // finding the chain of operations that leads from the phi to the loop 7611 // exit value. 7612 SmallVector<Instruction *, 4> ReductionOperations = 7613 RdxDesc.getReductionOpChain(Phi, TheLoop); 7614 bool InLoop = !ReductionOperations.empty(); 7615 if (InLoop) { 7616 InLoopReductionChains[Phi] = ReductionOperations; 7617 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7618 Instruction *LastChain = Phi; 7619 for (auto *I : ReductionOperations) { 7620 InLoopReductionImmediateChains[I] = LastChain; 7621 LastChain = I; 7622 } 7623 } 7624 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7625 << " reduction for phi: " << *Phi << "\n"); 7626 } 7627 } 7628 7629 // TODO: we could return a pair of values that specify the max VF and 7630 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7631 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7632 // doesn't have a cost model that can choose which plan to execute if 7633 // more than one is generated. 7634 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7635 LoopVectorizationCostModel &CM) { 7636 unsigned WidestType; 7637 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7638 return WidestVectorRegBits / WidestType; 7639 } 7640 7641 VectorizationFactor 7642 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7643 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7644 ElementCount VF = UserVF; 7645 // Outer loop handling: They may require CFG and instruction level 7646 // transformations before even evaluating whether vectorization is profitable. 7647 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7648 // the vectorization pipeline. 7649 if (!OrigLoop->isInnermost()) { 7650 // If the user doesn't provide a vectorization factor, determine a 7651 // reasonable one. 7652 if (UserVF.isZero()) { 7653 VF = ElementCount::getFixed( 7654 determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM)); 7655 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7656 7657 // Make sure we have a VF > 1 for stress testing. 7658 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7659 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7660 << "overriding computed VF.\n"); 7661 VF = ElementCount::getFixed(4); 7662 } 7663 } 7664 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7665 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7666 "VF needs to be a power of two"); 7667 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7668 << "VF " << VF << " to build VPlans.\n"); 7669 buildVPlans(VF, VF); 7670 7671 // For VPlan build stress testing, we bail out after VPlan construction. 7672 if (VPlanBuildStressTest) 7673 return VectorizationFactor::Disabled(); 7674 7675 return {VF, 0 /*Cost*/}; 7676 } 7677 7678 LLVM_DEBUG( 7679 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7680 "VPlan-native path.\n"); 7681 return VectorizationFactor::Disabled(); 7682 } 7683 7684 Optional<VectorizationFactor> 7685 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7686 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7687 Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 7688 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 7689 return None; 7690 7691 // Invalidate interleave groups if all blocks of loop will be predicated. 7692 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7693 !useMaskedInterleavedAccesses(*TTI)) { 7694 LLVM_DEBUG( 7695 dbgs() 7696 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7697 "which requires masked-interleaved support.\n"); 7698 if (CM.InterleaveInfo.invalidateGroups()) 7699 // Invalidating interleave groups also requires invalidating all decisions 7700 // based on them, which includes widening decisions and uniform and scalar 7701 // values. 7702 CM.invalidateCostModelingDecisions(); 7703 } 7704 7705 ElementCount MaxVF = MaybeMaxVF.getValue(); 7706 assert(MaxVF.isNonZero() && "MaxVF is zero."); 7707 7708 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxVF); 7709 if (!UserVF.isZero() && 7710 (UserVFIsLegal || (UserVF.isScalable() && MaxVF.isScalable()))) { 7711 // FIXME: MaxVF is temporarily used inplace of UserVF for illegal scalable 7712 // VFs here, this should be reverted to only use legal UserVFs once the 7713 // loop below supports scalable VFs. 7714 ElementCount VF = UserVFIsLegal ? UserVF : MaxVF; 7715 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max") 7716 << " VF " << VF << ".\n"); 7717 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7718 "VF needs to be a power of two"); 7719 // Collect the instructions (and their associated costs) that will be more 7720 // profitable to scalarize. 7721 CM.selectUserVectorizationFactor(VF); 7722 CM.collectInLoopReductions(); 7723 buildVPlansWithVPRecipes(VF, VF); 7724 LLVM_DEBUG(printPlans(dbgs())); 7725 return {{VF, 0}}; 7726 } 7727 7728 assert(!MaxVF.isScalable() && 7729 "Scalable vectors not yet supported beyond this point"); 7730 7731 for (ElementCount VF = ElementCount::getFixed(1); 7732 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7733 // Collect Uniform and Scalar instructions after vectorization with VF. 7734 CM.collectUniformsAndScalars(VF); 7735 7736 // Collect the instructions (and their associated costs) that will be more 7737 // profitable to scalarize. 7738 if (VF.isVector()) 7739 CM.collectInstsToScalarize(VF); 7740 } 7741 7742 CM.collectInLoopReductions(); 7743 7744 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 7745 LLVM_DEBUG(printPlans(dbgs())); 7746 if (MaxVF.isScalar()) 7747 return VectorizationFactor::Disabled(); 7748 7749 // Select the optimal vectorization factor. 7750 return CM.selectVectorizationFactor(MaxVF); 7751 } 7752 7753 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7754 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7755 << '\n'); 7756 BestVF = VF; 7757 BestUF = UF; 7758 7759 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7760 return !Plan->hasVF(VF); 7761 }); 7762 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7763 } 7764 7765 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7766 DominatorTree *DT) { 7767 // Perform the actual loop transformation. 7768 7769 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7770 VPCallbackILV CallbackILV(ILV); 7771 7772 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7773 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7774 7775 VPTransformState State{*BestVF, BestUF, 7776 LI, DT, 7777 ILV.Builder, ILV.VectorLoopValueMap, 7778 &ILV, VPlans.front().get(), 7779 CallbackILV}; 7780 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7781 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7782 State.CanonicalIV = ILV.Induction; 7783 7784 ILV.printDebugTracesAtStart(); 7785 7786 //===------------------------------------------------===// 7787 // 7788 // Notice: any optimization or new instruction that go 7789 // into the code below should also be implemented in 7790 // the cost-model. 7791 // 7792 //===------------------------------------------------===// 7793 7794 // 2. Copy and widen instructions from the old loop into the new loop. 7795 VPlans.front()->execute(&State); 7796 7797 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7798 // predication, updating analyses. 7799 ILV.fixVectorizedLoop(State); 7800 7801 ILV.printDebugTracesAtEnd(); 7802 } 7803 7804 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7805 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7806 7807 // We create new control-flow for the vectorized loop, so the original exit 7808 // conditions will be dead after vectorization if it's only used by the 7809 // terminator 7810 SmallVector<BasicBlock*> ExitingBlocks; 7811 OrigLoop->getExitingBlocks(ExitingBlocks); 7812 for (auto *BB : ExitingBlocks) { 7813 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7814 if (!Cmp || !Cmp->hasOneUse()) 7815 continue; 7816 7817 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7818 if (!DeadInstructions.insert(Cmp).second) 7819 continue; 7820 7821 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7822 // TODO: can recurse through operands in general 7823 for (Value *Op : Cmp->operands()) { 7824 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7825 DeadInstructions.insert(cast<Instruction>(Op)); 7826 } 7827 } 7828 7829 // We create new "steps" for induction variable updates to which the original 7830 // induction variables map. An original update instruction will be dead if 7831 // all its users except the induction variable are dead. 7832 auto *Latch = OrigLoop->getLoopLatch(); 7833 for (auto &Induction : Legal->getInductionVars()) { 7834 PHINode *Ind = Induction.first; 7835 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7836 7837 // If the tail is to be folded by masking, the primary induction variable, 7838 // if exists, isn't dead: it will be used for masking. Don't kill it. 7839 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7840 continue; 7841 7842 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7843 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7844 })) 7845 DeadInstructions.insert(IndUpdate); 7846 7847 // We record as "Dead" also the type-casting instructions we had identified 7848 // during induction analysis. We don't need any handling for them in the 7849 // vectorized loop because we have proven that, under a proper runtime 7850 // test guarding the vectorized loop, the value of the phi, and the casted 7851 // value of the phi, are the same. The last instruction in this casting chain 7852 // will get its scalar/vector/widened def from the scalar/vector/widened def 7853 // of the respective phi node. Any other casts in the induction def-use chain 7854 // have no other uses outside the phi update chain, and will be ignored. 7855 InductionDescriptor &IndDes = Induction.second; 7856 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7857 DeadInstructions.insert(Casts.begin(), Casts.end()); 7858 } 7859 } 7860 7861 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7862 7863 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7864 7865 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7866 Instruction::BinaryOps BinOp) { 7867 // When unrolling and the VF is 1, we only need to add a simple scalar. 7868 Type *Ty = Val->getType(); 7869 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7870 7871 if (Ty->isFloatingPointTy()) { 7872 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7873 7874 // Floating point operations had to be 'fast' to enable the unrolling. 7875 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7876 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7877 } 7878 Constant *C = ConstantInt::get(Ty, StartIdx); 7879 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7880 } 7881 7882 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7883 SmallVector<Metadata *, 4> MDs; 7884 // Reserve first location for self reference to the LoopID metadata node. 7885 MDs.push_back(nullptr); 7886 bool IsUnrollMetadata = false; 7887 MDNode *LoopID = L->getLoopID(); 7888 if (LoopID) { 7889 // First find existing loop unrolling disable metadata. 7890 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7891 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7892 if (MD) { 7893 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7894 IsUnrollMetadata = 7895 S && S->getString().startswith("llvm.loop.unroll.disable"); 7896 } 7897 MDs.push_back(LoopID->getOperand(i)); 7898 } 7899 } 7900 7901 if (!IsUnrollMetadata) { 7902 // Add runtime unroll disable metadata. 7903 LLVMContext &Context = L->getHeader()->getContext(); 7904 SmallVector<Metadata *, 1> DisableOperands; 7905 DisableOperands.push_back( 7906 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7907 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7908 MDs.push_back(DisableNode); 7909 MDNode *NewLoopID = MDNode::get(Context, MDs); 7910 // Set operand 0 to refer to the loop id itself. 7911 NewLoopID->replaceOperandWith(0, NewLoopID); 7912 L->setLoopID(NewLoopID); 7913 } 7914 } 7915 7916 //===--------------------------------------------------------------------===// 7917 // EpilogueVectorizerMainLoop 7918 //===--------------------------------------------------------------------===// 7919 7920 /// This function is partially responsible for generating the control flow 7921 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7922 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7923 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7924 Loop *Lp = createVectorLoopSkeleton(""); 7925 7926 // Generate the code to check the minimum iteration count of the vector 7927 // epilogue (see below). 7928 EPI.EpilogueIterationCountCheck = 7929 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 7930 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7931 7932 // Generate the code to check any assumptions that we've made for SCEV 7933 // expressions. 7934 BasicBlock *SavedPreHeader = LoopVectorPreHeader; 7935 emitSCEVChecks(Lp, LoopScalarPreHeader); 7936 7937 // If a safety check was generated save it. 7938 if (SavedPreHeader != LoopVectorPreHeader) 7939 EPI.SCEVSafetyCheck = SavedPreHeader; 7940 7941 // Generate the code that checks at runtime if arrays overlap. We put the 7942 // checks into a separate block to make the more common case of few elements 7943 // faster. 7944 SavedPreHeader = LoopVectorPreHeader; 7945 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 7946 7947 // If a safety check was generated save/overwite it. 7948 if (SavedPreHeader != LoopVectorPreHeader) 7949 EPI.MemSafetyCheck = SavedPreHeader; 7950 7951 // Generate the iteration count check for the main loop, *after* the check 7952 // for the epilogue loop, so that the path-length is shorter for the case 7953 // that goes directly through the vector epilogue. The longer-path length for 7954 // the main loop is compensated for, by the gain from vectorizing the larger 7955 // trip count. Note: the branch will get updated later on when we vectorize 7956 // the epilogue. 7957 EPI.MainLoopIterationCountCheck = 7958 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 7959 7960 // Generate the induction variable. 7961 OldInduction = Legal->getPrimaryInduction(); 7962 Type *IdxTy = Legal->getWidestInductionType(); 7963 Value *StartIdx = ConstantInt::get(IdxTy, 0); 7964 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 7965 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 7966 EPI.VectorTripCount = CountRoundDown; 7967 Induction = 7968 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 7969 getDebugLocFromInstOrOperands(OldInduction)); 7970 7971 // Skip induction resume value creation here because they will be created in 7972 // the second pass. If we created them here, they wouldn't be used anyway, 7973 // because the vplan in the second pass still contains the inductions from the 7974 // original loop. 7975 7976 return completeLoopSkeleton(Lp, OrigLoopID); 7977 } 7978 7979 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7980 LLVM_DEBUG({ 7981 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7982 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 7983 << ", Main Loop UF:" << EPI.MainLoopUF 7984 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 7985 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7986 }); 7987 } 7988 7989 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7990 DEBUG_WITH_TYPE(VerboseDebug, { 7991 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 7992 }); 7993 } 7994 7995 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 7996 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 7997 assert(L && "Expected valid Loop."); 7998 assert(Bypass && "Expected valid bypass basic block."); 7999 unsigned VFactor = 8000 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 8001 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8002 Value *Count = getOrCreateTripCount(L); 8003 // Reuse existing vector loop preheader for TC checks. 8004 // Note that new preheader block is generated for vector loop. 8005 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8006 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8007 8008 // Generate code to check if the loop's trip count is less than VF * UF of the 8009 // main vector loop. 8010 auto P = 8011 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8012 8013 Value *CheckMinIters = Builder.CreateICmp( 8014 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8015 "min.iters.check"); 8016 8017 if (!ForEpilogue) 8018 TCCheckBlock->setName("vector.main.loop.iter.check"); 8019 8020 // Create new preheader for vector loop. 8021 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8022 DT, LI, nullptr, "vector.ph"); 8023 8024 if (ForEpilogue) { 8025 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8026 DT->getNode(Bypass)->getIDom()) && 8027 "TC check is expected to dominate Bypass"); 8028 8029 // Update dominator for Bypass & LoopExit. 8030 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8031 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8032 8033 LoopBypassBlocks.push_back(TCCheckBlock); 8034 8035 // Save the trip count so we don't have to regenerate it in the 8036 // vec.epilog.iter.check. This is safe to do because the trip count 8037 // generated here dominates the vector epilog iter check. 8038 EPI.TripCount = Count; 8039 } 8040 8041 ReplaceInstWithInst( 8042 TCCheckBlock->getTerminator(), 8043 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8044 8045 return TCCheckBlock; 8046 } 8047 8048 //===--------------------------------------------------------------------===// 8049 // EpilogueVectorizerEpilogueLoop 8050 //===--------------------------------------------------------------------===// 8051 8052 /// This function is partially responsible for generating the control flow 8053 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8054 BasicBlock * 8055 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8056 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8057 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8058 8059 // Now, compare the remaining count and if there aren't enough iterations to 8060 // execute the vectorized epilogue skip to the scalar part. 8061 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8062 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8063 LoopVectorPreHeader = 8064 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8065 LI, nullptr, "vec.epilog.ph"); 8066 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8067 VecEpilogueIterationCountCheck); 8068 8069 // Adjust the control flow taking the state info from the main loop 8070 // vectorization into account. 8071 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8072 "expected this to be saved from the previous pass."); 8073 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8074 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8075 8076 DT->changeImmediateDominator(LoopVectorPreHeader, 8077 EPI.MainLoopIterationCountCheck); 8078 8079 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8080 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8081 8082 if (EPI.SCEVSafetyCheck) 8083 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8084 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8085 if (EPI.MemSafetyCheck) 8086 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8087 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8088 8089 DT->changeImmediateDominator( 8090 VecEpilogueIterationCountCheck, 8091 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8092 8093 DT->changeImmediateDominator(LoopScalarPreHeader, 8094 EPI.EpilogueIterationCountCheck); 8095 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 8096 8097 // Keep track of bypass blocks, as they feed start values to the induction 8098 // phis in the scalar loop preheader. 8099 if (EPI.SCEVSafetyCheck) 8100 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8101 if (EPI.MemSafetyCheck) 8102 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8103 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8104 8105 // Generate a resume induction for the vector epilogue and put it in the 8106 // vector epilogue preheader 8107 Type *IdxTy = Legal->getWidestInductionType(); 8108 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8109 LoopVectorPreHeader->getFirstNonPHI()); 8110 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8111 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8112 EPI.MainLoopIterationCountCheck); 8113 8114 // Generate the induction variable. 8115 OldInduction = Legal->getPrimaryInduction(); 8116 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8117 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8118 Value *StartIdx = EPResumeVal; 8119 Induction = 8120 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8121 getDebugLocFromInstOrOperands(OldInduction)); 8122 8123 // Generate induction resume values. These variables save the new starting 8124 // indexes for the scalar loop. They are used to test if there are any tail 8125 // iterations left once the vector loop has completed. 8126 // Note that when the vectorized epilogue is skipped due to iteration count 8127 // check, then the resume value for the induction variable comes from 8128 // the trip count of the main vector loop, hence passing the AdditionalBypass 8129 // argument. 8130 createInductionResumeValues(Lp, CountRoundDown, 8131 {VecEpilogueIterationCountCheck, 8132 EPI.VectorTripCount} /* AdditionalBypass */); 8133 8134 AddRuntimeUnrollDisableMetaData(Lp); 8135 return completeLoopSkeleton(Lp, OrigLoopID); 8136 } 8137 8138 BasicBlock * 8139 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8140 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8141 8142 assert(EPI.TripCount && 8143 "Expected trip count to have been safed in the first pass."); 8144 assert( 8145 (!isa<Instruction>(EPI.TripCount) || 8146 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8147 "saved trip count does not dominate insertion point."); 8148 Value *TC = EPI.TripCount; 8149 IRBuilder<> Builder(Insert->getTerminator()); 8150 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8151 8152 // Generate code to check if the loop's trip count is less than VF * UF of the 8153 // vector epilogue loop. 8154 auto P = 8155 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8156 8157 Value *CheckMinIters = Builder.CreateICmp( 8158 P, Count, 8159 ConstantInt::get(Count->getType(), 8160 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8161 "min.epilog.iters.check"); 8162 8163 ReplaceInstWithInst( 8164 Insert->getTerminator(), 8165 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8166 8167 LoopBypassBlocks.push_back(Insert); 8168 return Insert; 8169 } 8170 8171 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8172 LLVM_DEBUG({ 8173 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8174 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8175 << ", Main Loop UF:" << EPI.MainLoopUF 8176 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8177 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8178 }); 8179 } 8180 8181 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8182 DEBUG_WITH_TYPE(VerboseDebug, { 8183 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8184 }); 8185 } 8186 8187 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8188 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8189 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8190 bool PredicateAtRangeStart = Predicate(Range.Start); 8191 8192 for (ElementCount TmpVF = Range.Start * 2; 8193 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8194 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8195 Range.End = TmpVF; 8196 break; 8197 } 8198 8199 return PredicateAtRangeStart; 8200 } 8201 8202 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8203 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8204 /// of VF's starting at a given VF and extending it as much as possible. Each 8205 /// vectorization decision can potentially shorten this sub-range during 8206 /// buildVPlan(). 8207 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8208 ElementCount MaxVF) { 8209 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8210 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8211 VFRange SubRange = {VF, MaxVFPlusOne}; 8212 VPlans.push_back(buildVPlan(SubRange)); 8213 VF = SubRange.End; 8214 } 8215 } 8216 8217 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8218 VPlanPtr &Plan) { 8219 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8220 8221 // Look for cached value. 8222 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8223 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8224 if (ECEntryIt != EdgeMaskCache.end()) 8225 return ECEntryIt->second; 8226 8227 VPValue *SrcMask = createBlockInMask(Src, Plan); 8228 8229 // The terminator has to be a branch inst! 8230 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8231 assert(BI && "Unexpected terminator found"); 8232 8233 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8234 return EdgeMaskCache[Edge] = SrcMask; 8235 8236 // If source is an exiting block, we know the exit edge is dynamically dead 8237 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8238 // adding uses of an otherwise potentially dead instruction. 8239 if (OrigLoop->isLoopExiting(Src)) 8240 return EdgeMaskCache[Edge] = SrcMask; 8241 8242 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8243 assert(EdgeMask && "No Edge Mask found for condition"); 8244 8245 if (BI->getSuccessor(0) != Dst) 8246 EdgeMask = Builder.createNot(EdgeMask); 8247 8248 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 8249 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 8250 8251 return EdgeMaskCache[Edge] = EdgeMask; 8252 } 8253 8254 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8255 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8256 8257 // Look for cached value. 8258 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8259 if (BCEntryIt != BlockMaskCache.end()) 8260 return BCEntryIt->second; 8261 8262 // All-one mask is modelled as no-mask following the convention for masked 8263 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8264 VPValue *BlockMask = nullptr; 8265 8266 if (OrigLoop->getHeader() == BB) { 8267 if (!CM.blockNeedsPredication(BB)) 8268 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8269 8270 // Create the block in mask as the first non-phi instruction in the block. 8271 VPBuilder::InsertPointGuard Guard(Builder); 8272 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8273 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8274 8275 // Introduce the early-exit compare IV <= BTC to form header block mask. 8276 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8277 // Start by constructing the desired canonical IV. 8278 VPValue *IV = nullptr; 8279 if (Legal->getPrimaryInduction()) 8280 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8281 else { 8282 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8283 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8284 IV = IVRecipe->getVPValue(); 8285 } 8286 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8287 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8288 8289 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8290 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8291 // as a second argument, we only pass the IV here and extract the 8292 // tripcount from the transform state where codegen of the VP instructions 8293 // happen. 8294 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8295 } else { 8296 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8297 } 8298 return BlockMaskCache[BB] = BlockMask; 8299 } 8300 8301 // This is the block mask. We OR all incoming edges. 8302 for (auto *Predecessor : predecessors(BB)) { 8303 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8304 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8305 return BlockMaskCache[BB] = EdgeMask; 8306 8307 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8308 BlockMask = EdgeMask; 8309 continue; 8310 } 8311 8312 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8313 } 8314 8315 return BlockMaskCache[BB] = BlockMask; 8316 } 8317 8318 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 8319 VPlanPtr &Plan) { 8320 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8321 "Must be called with either a load or store"); 8322 8323 auto willWiden = [&](ElementCount VF) -> bool { 8324 if (VF.isScalar()) 8325 return false; 8326 LoopVectorizationCostModel::InstWidening Decision = 8327 CM.getWideningDecision(I, VF); 8328 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8329 "CM decision should be taken at this point."); 8330 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8331 return true; 8332 if (CM.isScalarAfterVectorization(I, VF) || 8333 CM.isProfitableToScalarize(I, VF)) 8334 return false; 8335 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8336 }; 8337 8338 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8339 return nullptr; 8340 8341 VPValue *Mask = nullptr; 8342 if (Legal->isMaskRequired(I)) 8343 Mask = createBlockInMask(I->getParent(), Plan); 8344 8345 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 8346 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8347 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 8348 8349 StoreInst *Store = cast<StoreInst>(I); 8350 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 8351 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 8352 } 8353 8354 VPWidenIntOrFpInductionRecipe * 8355 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, VPlan &Plan) const { 8356 // Check if this is an integer or fp induction. If so, build the recipe that 8357 // produces its scalar and vector values. 8358 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8359 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8360 II.getKind() == InductionDescriptor::IK_FpInduction) { 8361 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8362 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8363 return new VPWidenIntOrFpInductionRecipe( 8364 Phi, Start, Casts.empty() ? nullptr : Casts.front()); 8365 } 8366 8367 return nullptr; 8368 } 8369 8370 VPWidenIntOrFpInductionRecipe * 8371 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, VFRange &Range, 8372 VPlan &Plan) const { 8373 // Optimize the special case where the source is a constant integer 8374 // induction variable. Notice that we can only optimize the 'trunc' case 8375 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8376 // (c) other casts depend on pointer size. 8377 8378 // Determine whether \p K is a truncation based on an induction variable that 8379 // can be optimized. 8380 auto isOptimizableIVTruncate = 8381 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8382 return [=](ElementCount VF) -> bool { 8383 return CM.isOptimizableIVTruncate(K, VF); 8384 }; 8385 }; 8386 8387 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8388 isOptimizableIVTruncate(I), Range)) { 8389 8390 InductionDescriptor II = 8391 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8392 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8393 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8394 Start, nullptr, I); 8395 } 8396 return nullptr; 8397 } 8398 8399 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 8400 // We know that all PHIs in non-header blocks are converted into selects, so 8401 // we don't have to worry about the insertion order and we can just use the 8402 // builder. At this point we generate the predication tree. There may be 8403 // duplications since this is a simple recursive scan, but future 8404 // optimizations will clean it up. 8405 8406 SmallVector<VPValue *, 2> Operands; 8407 unsigned NumIncoming = Phi->getNumIncomingValues(); 8408 for (unsigned In = 0; In < NumIncoming; In++) { 8409 VPValue *EdgeMask = 8410 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8411 assert((EdgeMask || NumIncoming == 1) && 8412 "Multiple predecessors with one having a full mask"); 8413 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 8414 if (EdgeMask) 8415 Operands.push_back(EdgeMask); 8416 } 8417 return new VPBlendRecipe(Phi, Operands); 8418 } 8419 8420 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 8421 VPlan &Plan) const { 8422 8423 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8424 [this, CI](ElementCount VF) { 8425 return CM.isScalarWithPredication(CI, VF); 8426 }, 8427 Range); 8428 8429 if (IsPredicated) 8430 return nullptr; 8431 8432 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8433 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8434 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8435 ID == Intrinsic::pseudoprobe || 8436 ID == Intrinsic::experimental_noalias_scope_decl)) 8437 return nullptr; 8438 8439 auto willWiden = [&](ElementCount VF) -> bool { 8440 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8441 // The following case may be scalarized depending on the VF. 8442 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8443 // version of the instruction. 8444 // Is it beneficial to perform intrinsic call compared to lib call? 8445 bool NeedToScalarize = false; 8446 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8447 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8448 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8449 assert(IntrinsicCost.isValid() && CallCost.isValid() && 8450 "Cannot have invalid costs while widening"); 8451 return UseVectorIntrinsic || !NeedToScalarize; 8452 }; 8453 8454 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8455 return nullptr; 8456 8457 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 8458 } 8459 8460 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8461 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8462 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8463 // Instruction should be widened, unless it is scalar after vectorization, 8464 // scalarization is profitable or it is predicated. 8465 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8466 return CM.isScalarAfterVectorization(I, VF) || 8467 CM.isProfitableToScalarize(I, VF) || 8468 CM.isScalarWithPredication(I, VF); 8469 }; 8470 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8471 Range); 8472 } 8473 8474 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 8475 auto IsVectorizableOpcode = [](unsigned Opcode) { 8476 switch (Opcode) { 8477 case Instruction::Add: 8478 case Instruction::And: 8479 case Instruction::AShr: 8480 case Instruction::BitCast: 8481 case Instruction::FAdd: 8482 case Instruction::FCmp: 8483 case Instruction::FDiv: 8484 case Instruction::FMul: 8485 case Instruction::FNeg: 8486 case Instruction::FPExt: 8487 case Instruction::FPToSI: 8488 case Instruction::FPToUI: 8489 case Instruction::FPTrunc: 8490 case Instruction::FRem: 8491 case Instruction::FSub: 8492 case Instruction::ICmp: 8493 case Instruction::IntToPtr: 8494 case Instruction::LShr: 8495 case Instruction::Mul: 8496 case Instruction::Or: 8497 case Instruction::PtrToInt: 8498 case Instruction::SDiv: 8499 case Instruction::Select: 8500 case Instruction::SExt: 8501 case Instruction::Shl: 8502 case Instruction::SIToFP: 8503 case Instruction::SRem: 8504 case Instruction::Sub: 8505 case Instruction::Trunc: 8506 case Instruction::UDiv: 8507 case Instruction::UIToFP: 8508 case Instruction::URem: 8509 case Instruction::Xor: 8510 case Instruction::ZExt: 8511 return true; 8512 } 8513 return false; 8514 }; 8515 8516 if (!IsVectorizableOpcode(I->getOpcode())) 8517 return nullptr; 8518 8519 // Success: widen this instruction. 8520 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 8521 } 8522 8523 VPBasicBlock *VPRecipeBuilder::handleReplication( 8524 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8525 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 8526 VPlanPtr &Plan) { 8527 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8528 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8529 Range); 8530 8531 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8532 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 8533 Range); 8534 8535 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8536 IsUniform, IsPredicated); 8537 setRecipe(I, Recipe); 8538 Plan->addVPValue(I, Recipe); 8539 8540 // Find if I uses a predicated instruction. If so, it will use its scalar 8541 // value. Avoid hoisting the insert-element which packs the scalar value into 8542 // a vector value, as that happens iff all users use the vector value. 8543 for (auto &Op : I->operands()) 8544 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8545 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8546 PredInst2Recipe[PredInst]->setAlsoPack(false); 8547 8548 // Finalize the recipe for Instr, first if it is not predicated. 8549 if (!IsPredicated) { 8550 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8551 VPBB->appendRecipe(Recipe); 8552 return VPBB; 8553 } 8554 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8555 assert(VPBB->getSuccessors().empty() && 8556 "VPBB has successors when handling predicated replication."); 8557 // Record predicated instructions for above packing optimizations. 8558 PredInst2Recipe[I] = Recipe; 8559 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8560 VPBlockUtils::insertBlockAfter(Region, VPBB); 8561 auto *RegSucc = new VPBasicBlock(); 8562 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8563 return RegSucc; 8564 } 8565 8566 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8567 VPRecipeBase *PredRecipe, 8568 VPlanPtr &Plan) { 8569 // Instructions marked for predication are replicated and placed under an 8570 // if-then construct to prevent side-effects. 8571 8572 // Generate recipes to compute the block mask for this region. 8573 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8574 8575 // Build the triangular if-then region. 8576 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8577 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8578 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8579 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8580 auto *PHIRecipe = Instr->getType()->isVoidTy() 8581 ? nullptr 8582 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8583 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8584 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8585 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8586 8587 // Note: first set Entry as region entry and then connect successors starting 8588 // from it in order, to propagate the "parent" of each VPBasicBlock. 8589 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8590 VPBlockUtils::connectBlocks(Pred, Exit); 8591 8592 return Region; 8593 } 8594 8595 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8596 VFRange &Range, 8597 VPlanPtr &Plan) { 8598 // First, check for specific widening recipes that deal with calls, memory 8599 // operations, inductions and Phi nodes. 8600 if (auto *CI = dyn_cast<CallInst>(Instr)) 8601 return tryToWidenCall(CI, Range, *Plan); 8602 8603 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8604 return tryToWidenMemory(Instr, Range, Plan); 8605 8606 VPRecipeBase *Recipe; 8607 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8608 if (Phi->getParent() != OrigLoop->getHeader()) 8609 return tryToBlend(Phi, Plan); 8610 if ((Recipe = tryToOptimizeInductionPHI(Phi, *Plan))) 8611 return Recipe; 8612 8613 if (Legal->isReductionVariable(Phi)) { 8614 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8615 VPValue *StartV = 8616 Plan->getOrAddVPValue(RdxDesc.getRecurrenceStartValue()); 8617 return new VPWidenPHIRecipe(Phi, RdxDesc, *StartV); 8618 } 8619 8620 return new VPWidenPHIRecipe(Phi); 8621 } 8622 8623 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate( 8624 cast<TruncInst>(Instr), Range, *Plan))) 8625 return Recipe; 8626 8627 if (!shouldWiden(Instr, Range)) 8628 return nullptr; 8629 8630 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8631 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 8632 OrigLoop); 8633 8634 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8635 bool InvariantCond = 8636 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8637 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 8638 InvariantCond); 8639 } 8640 8641 return tryToWiden(Instr, *Plan); 8642 } 8643 8644 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8645 ElementCount MaxVF) { 8646 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8647 8648 // Collect instructions from the original loop that will become trivially dead 8649 // in the vectorized loop. We don't need to vectorize these instructions. For 8650 // example, original induction update instructions can become dead because we 8651 // separately emit induction "steps" when generating code for the new loop. 8652 // Similarly, we create a new latch condition when setting up the structure 8653 // of the new loop, so the old one can become dead. 8654 SmallPtrSet<Instruction *, 4> DeadInstructions; 8655 collectTriviallyDeadInstructions(DeadInstructions); 8656 8657 // Add assume instructions we need to drop to DeadInstructions, to prevent 8658 // them from being added to the VPlan. 8659 // TODO: We only need to drop assumes in blocks that get flattend. If the 8660 // control flow is preserved, we should keep them. 8661 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8662 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8663 8664 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8665 // Dead instructions do not need sinking. Remove them from SinkAfter. 8666 for (Instruction *I : DeadInstructions) 8667 SinkAfter.erase(I); 8668 8669 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8670 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8671 VFRange SubRange = {VF, MaxVFPlusOne}; 8672 VPlans.push_back( 8673 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8674 VF = SubRange.End; 8675 } 8676 } 8677 8678 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8679 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8680 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 8681 8682 // Hold a mapping from predicated instructions to their recipes, in order to 8683 // fix their AlsoPack behavior if a user is determined to replicate and use a 8684 // scalar instead of vector value. 8685 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8686 8687 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8688 8689 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8690 8691 // --------------------------------------------------------------------------- 8692 // Pre-construction: record ingredients whose recipes we'll need to further 8693 // process after constructing the initial VPlan. 8694 // --------------------------------------------------------------------------- 8695 8696 // Mark instructions we'll need to sink later and their targets as 8697 // ingredients whose recipe we'll need to record. 8698 for (auto &Entry : SinkAfter) { 8699 RecipeBuilder.recordRecipeOf(Entry.first); 8700 RecipeBuilder.recordRecipeOf(Entry.second); 8701 } 8702 for (auto &Reduction : CM.getInLoopReductionChains()) { 8703 PHINode *Phi = Reduction.first; 8704 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 8705 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8706 8707 RecipeBuilder.recordRecipeOf(Phi); 8708 for (auto &R : ReductionOperations) { 8709 RecipeBuilder.recordRecipeOf(R); 8710 // For min/max reducitons, where we have a pair of icmp/select, we also 8711 // need to record the ICmp recipe, so it can be removed later. 8712 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8713 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8714 } 8715 } 8716 8717 // For each interleave group which is relevant for this (possibly trimmed) 8718 // Range, add it to the set of groups to be later applied to the VPlan and add 8719 // placeholders for its members' Recipes which we'll be replacing with a 8720 // single VPInterleaveRecipe. 8721 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8722 auto applyIG = [IG, this](ElementCount VF) -> bool { 8723 return (VF.isVector() && // Query is illegal for VF == 1 8724 CM.getWideningDecision(IG->getInsertPos(), VF) == 8725 LoopVectorizationCostModel::CM_Interleave); 8726 }; 8727 if (!getDecisionAndClampRange(applyIG, Range)) 8728 continue; 8729 InterleaveGroups.insert(IG); 8730 for (unsigned i = 0; i < IG->getFactor(); i++) 8731 if (Instruction *Member = IG->getMember(i)) 8732 RecipeBuilder.recordRecipeOf(Member); 8733 }; 8734 8735 // --------------------------------------------------------------------------- 8736 // Build initial VPlan: Scan the body of the loop in a topological order to 8737 // visit each basic block after having visited its predecessor basic blocks. 8738 // --------------------------------------------------------------------------- 8739 8740 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8741 auto Plan = std::make_unique<VPlan>(); 8742 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8743 Plan->setEntry(VPBB); 8744 8745 // Scan the body of the loop in a topological order to visit each basic block 8746 // after having visited its predecessor basic blocks. 8747 LoopBlocksDFS DFS(OrigLoop); 8748 DFS.perform(LI); 8749 8750 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8751 // Relevant instructions from basic block BB will be grouped into VPRecipe 8752 // ingredients and fill a new VPBasicBlock. 8753 unsigned VPBBsForBB = 0; 8754 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8755 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 8756 VPBB = FirstVPBBForBB; 8757 Builder.setInsertPoint(VPBB); 8758 8759 // Introduce each ingredient into VPlan. 8760 // TODO: Model and preserve debug instrinsics in VPlan. 8761 for (Instruction &I : BB->instructionsWithoutDebug()) { 8762 Instruction *Instr = &I; 8763 8764 // First filter out irrelevant instructions, to ensure no recipes are 8765 // built for them. 8766 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8767 continue; 8768 8769 if (auto Recipe = 8770 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 8771 for (auto *Def : Recipe->definedValues()) { 8772 auto *UV = Def->getUnderlyingValue(); 8773 Plan->addVPValue(UV, Def); 8774 } 8775 8776 RecipeBuilder.setRecipe(Instr, Recipe); 8777 VPBB->appendRecipe(Recipe); 8778 continue; 8779 } 8780 8781 // Otherwise, if all widening options failed, Instruction is to be 8782 // replicated. This may create a successor for VPBB. 8783 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 8784 Instr, Range, VPBB, PredInst2Recipe, Plan); 8785 if (NextVPBB != VPBB) { 8786 VPBB = NextVPBB; 8787 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8788 : ""); 8789 } 8790 } 8791 } 8792 8793 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8794 // may also be empty, such as the last one VPBB, reflecting original 8795 // basic-blocks with no recipes. 8796 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8797 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8798 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8799 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 8800 delete PreEntry; 8801 8802 // --------------------------------------------------------------------------- 8803 // Transform initial VPlan: Apply previously taken decisions, in order, to 8804 // bring the VPlan to its final state. 8805 // --------------------------------------------------------------------------- 8806 8807 // Apply Sink-After legal constraints. 8808 for (auto &Entry : SinkAfter) { 8809 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8810 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8811 // If the target is in a replication region, make sure to move Sink to the 8812 // block after it, not into the replication region itself. 8813 if (auto *Region = 8814 dyn_cast_or_null<VPRegionBlock>(Target->getParent()->getParent())) { 8815 if (Region->isReplicator()) { 8816 assert(Region->getNumSuccessors() == 1 && "Expected SESE region!"); 8817 VPBasicBlock *NextBlock = 8818 cast<VPBasicBlock>(Region->getSuccessors().front()); 8819 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8820 continue; 8821 } 8822 } 8823 Sink->moveAfter(Target); 8824 } 8825 8826 // Interleave memory: for each Interleave Group we marked earlier as relevant 8827 // for this VPlan, replace the Recipes widening its memory instructions with a 8828 // single VPInterleaveRecipe at its insertion point. 8829 for (auto IG : InterleaveGroups) { 8830 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 8831 RecipeBuilder.getRecipe(IG->getInsertPos())); 8832 SmallVector<VPValue *, 4> StoredValues; 8833 for (unsigned i = 0; i < IG->getFactor(); ++i) 8834 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 8835 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 8836 8837 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 8838 Recipe->getMask()); 8839 VPIG->insertBefore(Recipe); 8840 unsigned J = 0; 8841 for (unsigned i = 0; i < IG->getFactor(); ++i) 8842 if (Instruction *Member = IG->getMember(i)) { 8843 if (!Member->getType()->isVoidTy()) { 8844 VPValue *OriginalV = Plan->getVPValue(Member); 8845 Plan->removeVPValueFor(Member); 8846 Plan->addVPValue(Member, VPIG->getVPValue(J)); 8847 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 8848 J++; 8849 } 8850 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 8851 } 8852 } 8853 8854 // Adjust the recipes for any inloop reductions. 8855 if (Range.Start.isVector()) 8856 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 8857 8858 // Finally, if tail is folded by masking, introduce selects between the phi 8859 // and the live-out instruction of each reduction, at the end of the latch. 8860 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 8861 Builder.setInsertPoint(VPBB); 8862 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 8863 for (auto &Reduction : Legal->getReductionVars()) { 8864 if (CM.isInLoopReduction(Reduction.first)) 8865 continue; 8866 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 8867 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 8868 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 8869 } 8870 } 8871 8872 std::string PlanName; 8873 raw_string_ostream RSO(PlanName); 8874 ElementCount VF = Range.Start; 8875 Plan->addVF(VF); 8876 RSO << "Initial VPlan for VF={" << VF; 8877 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 8878 Plan->addVF(VF); 8879 RSO << "," << VF; 8880 } 8881 RSO << "},UF>=1"; 8882 RSO.flush(); 8883 Plan->setName(PlanName); 8884 8885 return Plan; 8886 } 8887 8888 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 8889 // Outer loop handling: They may require CFG and instruction level 8890 // transformations before even evaluating whether vectorization is profitable. 8891 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8892 // the vectorization pipeline. 8893 assert(!OrigLoop->isInnermost()); 8894 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8895 8896 // Create new empty VPlan 8897 auto Plan = std::make_unique<VPlan>(); 8898 8899 // Build hierarchical CFG 8900 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 8901 HCFGBuilder.buildHierarchicalCFG(); 8902 8903 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 8904 VF *= 2) 8905 Plan->addVF(VF); 8906 8907 if (EnableVPlanPredication) { 8908 VPlanPredicator VPP(*Plan); 8909 VPP.predicate(); 8910 8911 // Avoid running transformation to recipes until masked code generation in 8912 // VPlan-native path is in place. 8913 return Plan; 8914 } 8915 8916 SmallPtrSet<Instruction *, 1> DeadInstructions; 8917 VPlanTransforms::VPInstructionsToVPRecipes( 8918 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 8919 return Plan; 8920 } 8921 8922 // Adjust the recipes for any inloop reductions. The chain of instructions 8923 // leading from the loop exit instr to the phi need to be converted to 8924 // reductions, with one operand being vector and the other being the scalar 8925 // reduction chain. 8926 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 8927 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 8928 for (auto &Reduction : CM.getInLoopReductionChains()) { 8929 PHINode *Phi = Reduction.first; 8930 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8931 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8932 8933 // ReductionOperations are orders top-down from the phi's use to the 8934 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 8935 // which of the two operands will remain scalar and which will be reduced. 8936 // For minmax the chain will be the select instructions. 8937 Instruction *Chain = Phi; 8938 for (Instruction *R : ReductionOperations) { 8939 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 8940 RecurKind Kind = RdxDesc.getRecurrenceKind(); 8941 8942 VPValue *ChainOp = Plan->getVPValue(Chain); 8943 unsigned FirstOpId; 8944 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 8945 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 8946 "Expected to replace a VPWidenSelectSC"); 8947 FirstOpId = 1; 8948 } else { 8949 assert(isa<VPWidenRecipe>(WidenRecipe) && 8950 "Expected to replace a VPWidenSC"); 8951 FirstOpId = 0; 8952 } 8953 unsigned VecOpId = 8954 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 8955 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 8956 8957 auto *CondOp = CM.foldTailByMasking() 8958 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 8959 : nullptr; 8960 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 8961 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 8962 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 8963 Plan->removeVPValueFor(R); 8964 Plan->addVPValue(R, RedRecipe); 8965 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 8966 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 8967 WidenRecipe->eraseFromParent(); 8968 8969 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 8970 VPRecipeBase *CompareRecipe = 8971 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 8972 assert(isa<VPWidenRecipe>(CompareRecipe) && 8973 "Expected to replace a VPWidenSC"); 8974 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 8975 "Expected no remaining users"); 8976 CompareRecipe->eraseFromParent(); 8977 } 8978 Chain = R; 8979 } 8980 } 8981 } 8982 8983 Value* LoopVectorizationPlanner::VPCallbackILV:: 8984 getOrCreateVectorValues(Value *V, unsigned Part) { 8985 return ILV.getOrCreateVectorValue(V, Part); 8986 } 8987 8988 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 8989 Value *V, const VPIteration &Instance) { 8990 return ILV.getOrCreateScalarValue(V, Instance); 8991 } 8992 8993 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 8994 VPSlotTracker &SlotTracker) const { 8995 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8996 IG->getInsertPos()->printAsOperand(O, false); 8997 O << ", "; 8998 getAddr()->printAsOperand(O, SlotTracker); 8999 VPValue *Mask = getMask(); 9000 if (Mask) { 9001 O << ", "; 9002 Mask->printAsOperand(O, SlotTracker); 9003 } 9004 for (unsigned i = 0; i < IG->getFactor(); ++i) 9005 if (Instruction *I = IG->getMember(i)) 9006 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 9007 } 9008 9009 void VPWidenCallRecipe::execute(VPTransformState &State) { 9010 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9011 *this, State); 9012 } 9013 9014 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9015 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9016 this, *this, InvariantCond, State); 9017 } 9018 9019 void VPWidenRecipe::execute(VPTransformState &State) { 9020 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9021 } 9022 9023 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9024 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9025 *this, State.UF, State.VF, IsPtrLoopInvariant, 9026 IsIndexLoopInvariant, State); 9027 } 9028 9029 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9030 assert(!State.Instance && "Int or FP induction being replicated."); 9031 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9032 getTruncInst(), getVPValue(0), 9033 getCastValue(), State); 9034 } 9035 9036 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9037 Value *StartV = 9038 getStartValue() ? getStartValue()->getLiveInIRValue() : nullptr; 9039 State.ILV->widenPHIInstruction(Phi, RdxDesc, StartV, State.UF, State.VF); 9040 } 9041 9042 void VPBlendRecipe::execute(VPTransformState &State) { 9043 State.ILV->setDebugLocFromInst(State.Builder, Phi); 9044 // We know that all PHIs in non-header blocks are converted into 9045 // selects, so we don't have to worry about the insertion order and we 9046 // can just use the builder. 9047 // At this point we generate the predication tree. There may be 9048 // duplications since this is a simple recursive scan, but future 9049 // optimizations will clean it up. 9050 9051 unsigned NumIncoming = getNumIncomingValues(); 9052 9053 // Generate a sequence of selects of the form: 9054 // SELECT(Mask3, In3, 9055 // SELECT(Mask2, In2, 9056 // SELECT(Mask1, In1, 9057 // In0))) 9058 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9059 // are essentially undef are taken from In0. 9060 InnerLoopVectorizer::VectorParts Entry(State.UF); 9061 for (unsigned In = 0; In < NumIncoming; ++In) { 9062 for (unsigned Part = 0; Part < State.UF; ++Part) { 9063 // We might have single edge PHIs (blocks) - use an identity 9064 // 'select' for the first PHI operand. 9065 Value *In0 = State.get(getIncomingValue(In), Part); 9066 if (In == 0) 9067 Entry[Part] = In0; // Initialize with the first incoming value. 9068 else { 9069 // Select between the current value and the previous incoming edge 9070 // based on the incoming mask. 9071 Value *Cond = State.get(getMask(In), Part); 9072 Entry[Part] = 9073 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9074 } 9075 } 9076 } 9077 for (unsigned Part = 0; Part < State.UF; ++Part) 9078 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 9079 } 9080 9081 void VPInterleaveRecipe::execute(VPTransformState &State) { 9082 assert(!State.Instance && "Interleave group being replicated."); 9083 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9084 getStoredValues(), getMask()); 9085 } 9086 9087 void VPReductionRecipe::execute(VPTransformState &State) { 9088 assert(!State.Instance && "Reduction being replicated."); 9089 for (unsigned Part = 0; Part < State.UF; ++Part) { 9090 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9091 Value *NewVecOp = State.get(getVecOp(), Part); 9092 if (VPValue *Cond = getCondOp()) { 9093 Value *NewCond = State.get(Cond, Part); 9094 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9095 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9096 Kind, VecTy->getElementType()); 9097 Constant *IdenVec = 9098 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9099 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9100 NewVecOp = Select; 9101 } 9102 Value *NewRed = 9103 createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9104 Value *PrevInChain = State.get(getChainOp(), Part); 9105 Value *NextInChain; 9106 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9107 NextInChain = 9108 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9109 NewRed, PrevInChain); 9110 } else { 9111 NextInChain = State.Builder.CreateBinOp( 9112 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9113 PrevInChain); 9114 } 9115 State.set(this, getUnderlyingInstr(), NextInChain, Part); 9116 } 9117 } 9118 9119 void VPReplicateRecipe::execute(VPTransformState &State) { 9120 if (State.Instance) { // Generate a single instance. 9121 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9122 State.ILV->scalarizeInstruction(getUnderlyingInstr(), *this, 9123 *State.Instance, IsPredicated, State); 9124 // Insert scalar instance packing it into a vector. 9125 if (AlsoPack && State.VF.isVector()) { 9126 // If we're constructing lane 0, initialize to start from poison. 9127 if (State.Instance->Lane == 0) { 9128 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9129 Value *Poison = PoisonValue::get( 9130 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9131 State.ValueMap.setVectorValue(getUnderlyingInstr(), 9132 State.Instance->Part, Poison); 9133 } 9134 State.ILV->packScalarIntoVectorValue(getUnderlyingInstr(), 9135 *State.Instance); 9136 } 9137 return; 9138 } 9139 9140 // Generate scalar instances for all VF lanes of all UF parts, unless the 9141 // instruction is uniform inwhich case generate only the first lane for each 9142 // of the UF parts. 9143 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9144 assert((!State.VF.isScalable() || IsUniform) && 9145 "Can't scalarize a scalable vector"); 9146 for (unsigned Part = 0; Part < State.UF; ++Part) 9147 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9148 State.ILV->scalarizeInstruction(getUnderlyingInstr(), *this, 9149 VPIteration(Part, Lane), IsPredicated, 9150 State); 9151 } 9152 9153 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9154 assert(State.Instance && "Branch on Mask works only on single instance."); 9155 9156 unsigned Part = State.Instance->Part; 9157 unsigned Lane = State.Instance->Lane; 9158 9159 Value *ConditionBit = nullptr; 9160 VPValue *BlockInMask = getMask(); 9161 if (BlockInMask) { 9162 ConditionBit = State.get(BlockInMask, Part); 9163 if (ConditionBit->getType()->isVectorTy()) 9164 ConditionBit = State.Builder.CreateExtractElement( 9165 ConditionBit, State.Builder.getInt32(Lane)); 9166 } else // Block in mask is all-one. 9167 ConditionBit = State.Builder.getTrue(); 9168 9169 // Replace the temporary unreachable terminator with a new conditional branch, 9170 // whose two destinations will be set later when they are created. 9171 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9172 assert(isa<UnreachableInst>(CurrentTerminator) && 9173 "Expected to replace unreachable terminator with conditional branch."); 9174 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9175 CondBr->setSuccessor(0, nullptr); 9176 ReplaceInstWithInst(CurrentTerminator, CondBr); 9177 } 9178 9179 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9180 assert(State.Instance && "Predicated instruction PHI works per instance."); 9181 Instruction *ScalarPredInst = 9182 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9183 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9184 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9185 assert(PredicatingBB && "Predicated block has no single predecessor."); 9186 9187 // By current pack/unpack logic we need to generate only a single phi node: if 9188 // a vector value for the predicated instruction exists at this point it means 9189 // the instruction has vector users only, and a phi for the vector value is 9190 // needed. In this case the recipe of the predicated instruction is marked to 9191 // also do that packing, thereby "hoisting" the insert-element sequence. 9192 // Otherwise, a phi node for the scalar value is needed. 9193 unsigned Part = State.Instance->Part; 9194 Instruction *PredInst = 9195 cast<Instruction>(getOperand(0)->getUnderlyingValue()); 9196 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 9197 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 9198 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9199 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9200 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9201 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9202 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 9203 } else { 9204 Type *PredInstType = PredInst->getType(); 9205 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9206 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), PredicatingBB); 9207 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9208 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 9209 } 9210 } 9211 9212 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9213 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9214 State.ILV->vectorizeMemoryInstruction(&Ingredient, State, 9215 StoredValue ? nullptr : getVPValue(), 9216 getAddr(), StoredValue, getMask()); 9217 } 9218 9219 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9220 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9221 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9222 // for predication. 9223 static ScalarEpilogueLowering getScalarEpilogueLowering( 9224 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9225 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9226 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9227 LoopVectorizationLegality &LVL) { 9228 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9229 // don't look at hints or options, and don't request a scalar epilogue. 9230 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9231 // LoopAccessInfo (due to code dependency and not being able to reliably get 9232 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9233 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9234 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9235 // back to the old way and vectorize with versioning when forced. See D81345.) 9236 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9237 PGSOQueryType::IRPass) && 9238 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9239 return CM_ScalarEpilogueNotAllowedOptSize; 9240 9241 // 2) If set, obey the directives 9242 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9243 switch (PreferPredicateOverEpilogue) { 9244 case PreferPredicateTy::ScalarEpilogue: 9245 return CM_ScalarEpilogueAllowed; 9246 case PreferPredicateTy::PredicateElseScalarEpilogue: 9247 return CM_ScalarEpilogueNotNeededUsePredicate; 9248 case PreferPredicateTy::PredicateOrDontVectorize: 9249 return CM_ScalarEpilogueNotAllowedUsePredicate; 9250 }; 9251 } 9252 9253 // 3) If set, obey the hints 9254 switch (Hints.getPredicate()) { 9255 case LoopVectorizeHints::FK_Enabled: 9256 return CM_ScalarEpilogueNotNeededUsePredicate; 9257 case LoopVectorizeHints::FK_Disabled: 9258 return CM_ScalarEpilogueAllowed; 9259 }; 9260 9261 // 4) if the TTI hook indicates this is profitable, request predication. 9262 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9263 LVL.getLAI())) 9264 return CM_ScalarEpilogueNotNeededUsePredicate; 9265 9266 return CM_ScalarEpilogueAllowed; 9267 } 9268 9269 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V, 9270 const VPIteration &Instance) { 9271 set(Def, V, Instance); 9272 ILV->setScalarValue(IRDef, Instance, V); 9273 } 9274 9275 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V, 9276 unsigned Part) { 9277 set(Def, V, Part); 9278 ILV->setVectorValue(IRDef, Part, V); 9279 } 9280 9281 void VPTransformState::reset(VPValue *Def, Value *IRDef, Value *V, 9282 unsigned Part) { 9283 set(Def, V, Part); 9284 ILV->resetVectorValue(IRDef, Part, V); 9285 } 9286 9287 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9288 // If Values have been set for this Def return the one relevant for \p Part. 9289 if (hasVectorValue(Def, Part)) 9290 return Data.PerPartOutput[Def][Part]; 9291 9292 // TODO: Remove the callback once all scalar recipes are managed using 9293 // VPValues. 9294 if (!hasScalarValue(Def, {Part, 0})) 9295 return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part); 9296 9297 Value *ScalarValue = get(Def, {Part, 0}); 9298 // If we aren't vectorizing, we can just copy the scalar map values over 9299 // to the vector map. 9300 if (VF.isScalar()) { 9301 set(Def, ScalarValue, Part); 9302 return ScalarValue; 9303 } 9304 9305 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9306 bool IsUniform = RepR && RepR->isUniform(); 9307 9308 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9309 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9310 9311 // Set the insert point after the last scalarized instruction. This 9312 // ensures the insertelement sequence will directly follow the scalar 9313 // definitions. 9314 auto OldIP = Builder.saveIP(); 9315 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 9316 Builder.SetInsertPoint(&*NewIP); 9317 9318 // However, if we are vectorizing, we need to construct the vector values. 9319 // If the value is known to be uniform after vectorization, we can just 9320 // broadcast the scalar value corresponding to lane zero for each unroll 9321 // iteration. Otherwise, we construct the vector values using 9322 // insertelement instructions. Since the resulting vectors are stored in 9323 // VectorLoopValueMap, we will only generate the insertelements once. 9324 Value *VectorValue = nullptr; 9325 if (IsUniform) { 9326 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9327 set(Def, VectorValue, Part); 9328 } else { 9329 // Initialize packing with insertelements to start from undef. 9330 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9331 Value *Undef = UndefValue::get(VectorType::get(LastInst->getType(), VF)); 9332 set(Def, Undef, Part); 9333 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9334 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9335 VectorValue = get(Def, Part); 9336 } 9337 Builder.restoreIP(OldIP); 9338 return VectorValue; 9339 } 9340 9341 // Process the loop in the VPlan-native vectorization path. This path builds 9342 // VPlan upfront in the vectorization pipeline, which allows to apply 9343 // VPlan-to-VPlan transformations from the very beginning without modifying the 9344 // input LLVM IR. 9345 static bool processLoopInVPlanNativePath( 9346 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9347 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9348 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9349 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9350 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 9351 9352 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9353 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9354 return false; 9355 } 9356 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9357 Function *F = L->getHeader()->getParent(); 9358 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9359 9360 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9361 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9362 9363 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9364 &Hints, IAI); 9365 // Use the planner for outer loop vectorization. 9366 // TODO: CM is not used at this point inside the planner. Turn CM into an 9367 // optional argument if we don't need it in the future. 9368 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 9369 9370 // Get user vectorization factor. 9371 ElementCount UserVF = Hints.getWidth(); 9372 9373 // Plan how to best vectorize, return the best VF and its cost. 9374 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9375 9376 // If we are stress testing VPlan builds, do not attempt to generate vector 9377 // code. Masked vector code generation support will follow soon. 9378 // Also, do not attempt to vectorize if no vector code will be produced. 9379 if (VPlanBuildStressTest || EnableVPlanPredication || 9380 VectorizationFactor::Disabled() == VF) 9381 return false; 9382 9383 LVP.setBestPlan(VF.Width, 1); 9384 9385 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9386 &CM, BFI, PSI); 9387 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9388 << L->getHeader()->getParent()->getName() << "\"\n"); 9389 LVP.executePlan(LB, DT); 9390 9391 // Mark the loop as already vectorized to avoid vectorizing again. 9392 Hints.setAlreadyVectorized(); 9393 9394 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9395 return true; 9396 } 9397 9398 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9399 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9400 !EnableLoopInterleaving), 9401 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9402 !EnableLoopVectorization) {} 9403 9404 bool LoopVectorizePass::processLoop(Loop *L) { 9405 assert((EnableVPlanNativePath || L->isInnermost()) && 9406 "VPlan-native path is not enabled. Only process inner loops."); 9407 9408 #ifndef NDEBUG 9409 const std::string DebugLocStr = getDebugLocString(L); 9410 #endif /* NDEBUG */ 9411 9412 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9413 << L->getHeader()->getParent()->getName() << "\" from " 9414 << DebugLocStr << "\n"); 9415 9416 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9417 9418 LLVM_DEBUG( 9419 dbgs() << "LV: Loop hints:" 9420 << " force=" 9421 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9422 ? "disabled" 9423 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9424 ? "enabled" 9425 : "?")) 9426 << " width=" << Hints.getWidth() 9427 << " unroll=" << Hints.getInterleave() << "\n"); 9428 9429 // Function containing loop 9430 Function *F = L->getHeader()->getParent(); 9431 9432 // Looking at the diagnostic output is the only way to determine if a loop 9433 // was vectorized (other than looking at the IR or machine code), so it 9434 // is important to generate an optimization remark for each loop. Most of 9435 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9436 // generated as OptimizationRemark and OptimizationRemarkMissed are 9437 // less verbose reporting vectorized loops and unvectorized loops that may 9438 // benefit from vectorization, respectively. 9439 9440 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9441 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9442 return false; 9443 } 9444 9445 PredicatedScalarEvolution PSE(*SE, *L); 9446 9447 // Check if it is legal to vectorize the loop. 9448 LoopVectorizationRequirements Requirements(*ORE); 9449 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9450 &Requirements, &Hints, DB, AC, BFI, PSI); 9451 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9452 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9453 Hints.emitRemarkWithHints(); 9454 return false; 9455 } 9456 9457 // Check the function attributes and profiles to find out if this function 9458 // should be optimized for size. 9459 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9460 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9461 9462 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9463 // here. They may require CFG and instruction level transformations before 9464 // even evaluating whether vectorization is profitable. Since we cannot modify 9465 // the incoming IR, we need to build VPlan upfront in the vectorization 9466 // pipeline. 9467 if (!L->isInnermost()) 9468 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9469 ORE, BFI, PSI, Hints); 9470 9471 assert(L->isInnermost() && "Inner loop expected."); 9472 9473 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9474 // count by optimizing for size, to minimize overheads. 9475 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9476 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9477 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9478 << "This loop is worth vectorizing only if no scalar " 9479 << "iteration overheads are incurred."); 9480 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9481 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 9482 else { 9483 LLVM_DEBUG(dbgs() << "\n"); 9484 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 9485 } 9486 } 9487 9488 // Check the function attributes to see if implicit floats are allowed. 9489 // FIXME: This check doesn't seem possibly correct -- what if the loop is 9490 // an integer loop and the vector instructions selected are purely integer 9491 // vector instructions? 9492 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 9493 reportVectorizationFailure( 9494 "Can't vectorize when the NoImplicitFloat attribute is used", 9495 "loop not vectorized due to NoImplicitFloat attribute", 9496 "NoImplicitFloat", ORE, L); 9497 Hints.emitRemarkWithHints(); 9498 return false; 9499 } 9500 9501 // Check if the target supports potentially unsafe FP vectorization. 9502 // FIXME: Add a check for the type of safety issue (denormal, signaling) 9503 // for the target we're vectorizing for, to make sure none of the 9504 // additional fp-math flags can help. 9505 if (Hints.isPotentiallyUnsafe() && 9506 TTI->isFPVectorizationPotentiallyUnsafe()) { 9507 reportVectorizationFailure( 9508 "Potentially unsafe FP op prevents vectorization", 9509 "loop not vectorized due to unsafe FP support.", 9510 "UnsafeFP", ORE, L); 9511 Hints.emitRemarkWithHints(); 9512 return false; 9513 } 9514 9515 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 9516 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 9517 9518 // If an override option has been passed in for interleaved accesses, use it. 9519 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 9520 UseInterleaved = EnableInterleavedMemAccesses; 9521 9522 // Analyze interleaved memory accesses. 9523 if (UseInterleaved) { 9524 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 9525 } 9526 9527 // Use the cost model. 9528 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 9529 F, &Hints, IAI); 9530 CM.collectValuesToIgnore(); 9531 9532 // Use the planner for vectorization. 9533 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 9534 9535 // Get user vectorization factor and interleave count. 9536 ElementCount UserVF = Hints.getWidth(); 9537 unsigned UserIC = Hints.getInterleave(); 9538 9539 // Plan how to best vectorize, return the best VF and its cost. 9540 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 9541 9542 VectorizationFactor VF = VectorizationFactor::Disabled(); 9543 unsigned IC = 1; 9544 9545 if (MaybeVF) { 9546 VF = *MaybeVF; 9547 // Select the interleave count. 9548 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 9549 } 9550 9551 // Identify the diagnostic messages that should be produced. 9552 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 9553 bool VectorizeLoop = true, InterleaveLoop = true; 9554 if (Requirements.doesNotMeet(F, L, Hints)) { 9555 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 9556 "requirements.\n"); 9557 Hints.emitRemarkWithHints(); 9558 return false; 9559 } 9560 9561 if (VF.Width.isScalar()) { 9562 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 9563 VecDiagMsg = std::make_pair( 9564 "VectorizationNotBeneficial", 9565 "the cost-model indicates that vectorization is not beneficial"); 9566 VectorizeLoop = false; 9567 } 9568 9569 if (!MaybeVF && UserIC > 1) { 9570 // Tell the user interleaving was avoided up-front, despite being explicitly 9571 // requested. 9572 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 9573 "interleaving should be avoided up front\n"); 9574 IntDiagMsg = std::make_pair( 9575 "InterleavingAvoided", 9576 "Ignoring UserIC, because interleaving was avoided up front"); 9577 InterleaveLoop = false; 9578 } else if (IC == 1 && UserIC <= 1) { 9579 // Tell the user interleaving is not beneficial. 9580 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 9581 IntDiagMsg = std::make_pair( 9582 "InterleavingNotBeneficial", 9583 "the cost-model indicates that interleaving is not beneficial"); 9584 InterleaveLoop = false; 9585 if (UserIC == 1) { 9586 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 9587 IntDiagMsg.second += 9588 " and is explicitly disabled or interleave count is set to 1"; 9589 } 9590 } else if (IC > 1 && UserIC == 1) { 9591 // Tell the user interleaving is beneficial, but it explicitly disabled. 9592 LLVM_DEBUG( 9593 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 9594 IntDiagMsg = std::make_pair( 9595 "InterleavingBeneficialButDisabled", 9596 "the cost-model indicates that interleaving is beneficial " 9597 "but is explicitly disabled or interleave count is set to 1"); 9598 InterleaveLoop = false; 9599 } 9600 9601 // Override IC if user provided an interleave count. 9602 IC = UserIC > 0 ? UserIC : IC; 9603 9604 // Emit diagnostic messages, if any. 9605 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 9606 if (!VectorizeLoop && !InterleaveLoop) { 9607 // Do not vectorize or interleaving the loop. 9608 ORE->emit([&]() { 9609 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 9610 L->getStartLoc(), L->getHeader()) 9611 << VecDiagMsg.second; 9612 }); 9613 ORE->emit([&]() { 9614 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 9615 L->getStartLoc(), L->getHeader()) 9616 << IntDiagMsg.second; 9617 }); 9618 return false; 9619 } else if (!VectorizeLoop && InterleaveLoop) { 9620 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9621 ORE->emit([&]() { 9622 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 9623 L->getStartLoc(), L->getHeader()) 9624 << VecDiagMsg.second; 9625 }); 9626 } else if (VectorizeLoop && !InterleaveLoop) { 9627 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9628 << ") in " << DebugLocStr << '\n'); 9629 ORE->emit([&]() { 9630 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 9631 L->getStartLoc(), L->getHeader()) 9632 << IntDiagMsg.second; 9633 }); 9634 } else if (VectorizeLoop && InterleaveLoop) { 9635 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9636 << ") in " << DebugLocStr << '\n'); 9637 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9638 } 9639 9640 LVP.setBestPlan(VF.Width, IC); 9641 9642 using namespace ore; 9643 bool DisableRuntimeUnroll = false; 9644 MDNode *OrigLoopID = L->getLoopID(); 9645 9646 if (!VectorizeLoop) { 9647 assert(IC > 1 && "interleave count should not be 1 or 0"); 9648 // If we decided that it is not legal to vectorize the loop, then 9649 // interleave it. 9650 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 9651 BFI, PSI); 9652 LVP.executePlan(Unroller, DT); 9653 9654 ORE->emit([&]() { 9655 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 9656 L->getHeader()) 9657 << "interleaved loop (interleaved count: " 9658 << NV("InterleaveCount", IC) << ")"; 9659 }); 9660 } else { 9661 // If we decided that it is *legal* to vectorize the loop, then do it. 9662 9663 // Consider vectorizing the epilogue too if it's profitable. 9664 VectorizationFactor EpilogueVF = 9665 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 9666 if (EpilogueVF.Width.isVector()) { 9667 9668 // The first pass vectorizes the main loop and creates a scalar epilogue 9669 // to be vectorized by executing the plan (potentially with a different 9670 // factor) again shortly afterwards. 9671 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 9672 EpilogueVF.Width.getKnownMinValue(), 1); 9673 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, EPI, 9674 &LVL, &CM, BFI, PSI); 9675 9676 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 9677 LVP.executePlan(MainILV, DT); 9678 ++LoopsVectorized; 9679 9680 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9681 formLCSSARecursively(*L, *DT, LI, SE); 9682 9683 // Second pass vectorizes the epilogue and adjusts the control flow 9684 // edges from the first pass. 9685 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 9686 EPI.MainLoopVF = EPI.EpilogueVF; 9687 EPI.MainLoopUF = EPI.EpilogueUF; 9688 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 9689 ORE, EPI, &LVL, &CM, BFI, PSI); 9690 LVP.executePlan(EpilogILV, DT); 9691 ++LoopsEpilogueVectorized; 9692 9693 if (!MainILV.areSafetyChecksAdded()) 9694 DisableRuntimeUnroll = true; 9695 } else { 9696 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 9697 &LVL, &CM, BFI, PSI); 9698 LVP.executePlan(LB, DT); 9699 ++LoopsVectorized; 9700 9701 // Add metadata to disable runtime unrolling a scalar loop when there are 9702 // no runtime checks about strides and memory. A scalar loop that is 9703 // rarely used is not worth unrolling. 9704 if (!LB.areSafetyChecksAdded()) 9705 DisableRuntimeUnroll = true; 9706 } 9707 9708 // Report the vectorization decision. 9709 ORE->emit([&]() { 9710 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 9711 L->getHeader()) 9712 << "vectorized loop (vectorization width: " 9713 << NV("VectorizationFactor", VF.Width) 9714 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 9715 }); 9716 } 9717 9718 Optional<MDNode *> RemainderLoopID = 9719 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 9720 LLVMLoopVectorizeFollowupEpilogue}); 9721 if (RemainderLoopID.hasValue()) { 9722 L->setLoopID(RemainderLoopID.getValue()); 9723 } else { 9724 if (DisableRuntimeUnroll) 9725 AddRuntimeUnrollDisableMetaData(L); 9726 9727 // Mark the loop as already vectorized to avoid vectorizing again. 9728 Hints.setAlreadyVectorized(); 9729 } 9730 9731 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9732 return true; 9733 } 9734 9735 LoopVectorizeResult LoopVectorizePass::runImpl( 9736 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 9737 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 9738 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 9739 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 9740 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 9741 SE = &SE_; 9742 LI = &LI_; 9743 TTI = &TTI_; 9744 DT = &DT_; 9745 BFI = &BFI_; 9746 TLI = TLI_; 9747 AA = &AA_; 9748 AC = &AC_; 9749 GetLAA = &GetLAA_; 9750 DB = &DB_; 9751 ORE = &ORE_; 9752 PSI = PSI_; 9753 9754 // Don't attempt if 9755 // 1. the target claims to have no vector registers, and 9756 // 2. interleaving won't help ILP. 9757 // 9758 // The second condition is necessary because, even if the target has no 9759 // vector registers, loop vectorization may still enable scalar 9760 // interleaving. 9761 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 9762 TTI->getMaxInterleaveFactor(1) < 2) 9763 return LoopVectorizeResult(false, false); 9764 9765 bool Changed = false, CFGChanged = false; 9766 9767 // The vectorizer requires loops to be in simplified form. 9768 // Since simplification may add new inner loops, it has to run before the 9769 // legality and profitability checks. This means running the loop vectorizer 9770 // will simplify all loops, regardless of whether anything end up being 9771 // vectorized. 9772 for (auto &L : *LI) 9773 Changed |= CFGChanged |= 9774 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9775 9776 // Build up a worklist of inner-loops to vectorize. This is necessary as 9777 // the act of vectorizing or partially unrolling a loop creates new loops 9778 // and can invalidate iterators across the loops. 9779 SmallVector<Loop *, 8> Worklist; 9780 9781 for (Loop *L : *LI) 9782 collectSupportedLoops(*L, LI, ORE, Worklist); 9783 9784 LoopsAnalyzed += Worklist.size(); 9785 9786 // Now walk the identified inner loops. 9787 while (!Worklist.empty()) { 9788 Loop *L = Worklist.pop_back_val(); 9789 9790 // For the inner loops we actually process, form LCSSA to simplify the 9791 // transform. 9792 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 9793 9794 Changed |= CFGChanged |= processLoop(L); 9795 } 9796 9797 // Process each loop nest in the function. 9798 return LoopVectorizeResult(Changed, CFGChanged); 9799 } 9800 9801 PreservedAnalyses LoopVectorizePass::run(Function &F, 9802 FunctionAnalysisManager &AM) { 9803 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 9804 auto &LI = AM.getResult<LoopAnalysis>(F); 9805 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 9806 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 9807 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 9808 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 9809 auto &AA = AM.getResult<AAManager>(F); 9810 auto &AC = AM.getResult<AssumptionAnalysis>(F); 9811 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 9812 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9813 MemorySSA *MSSA = EnableMSSALoopDependency 9814 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 9815 : nullptr; 9816 9817 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 9818 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 9819 [&](Loop &L) -> const LoopAccessInfo & { 9820 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 9821 TLI, TTI, nullptr, MSSA}; 9822 return LAM.getResult<LoopAccessAnalysis>(L, AR); 9823 }; 9824 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 9825 ProfileSummaryInfo *PSI = 9826 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 9827 LoopVectorizeResult Result = 9828 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 9829 if (!Result.MadeAnyChange) 9830 return PreservedAnalyses::all(); 9831 PreservedAnalyses PA; 9832 9833 // We currently do not preserve loopinfo/dominator analyses with outer loop 9834 // vectorization. Until this is addressed, mark these analyses as preserved 9835 // only for non-VPlan-native path. 9836 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 9837 if (!EnableVPlanNativePath) { 9838 PA.preserve<LoopAnalysis>(); 9839 PA.preserve<DominatorTreeAnalysis>(); 9840 } 9841 PA.preserve<BasicAA>(); 9842 PA.preserve<GlobalsAA>(); 9843 if (!Result.MadeCFGChange) 9844 PA.preserveSet<CFGAnalyses>(); 9845 return PA; 9846 } 9847