1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "LoopVectorizationPlanner.h" 51 #include "llvm/ADT/APInt.h" 52 #include "llvm/ADT/ArrayRef.h" 53 #include "llvm/ADT/DenseMap.h" 54 #include "llvm/ADT/DenseMapInfo.h" 55 #include "llvm/ADT/Hashing.h" 56 #include "llvm/ADT/MapVector.h" 57 #include "llvm/ADT/None.h" 58 #include "llvm/ADT/Optional.h" 59 #include "llvm/ADT/SCCIterator.h" 60 #include "llvm/ADT/STLExtras.h" 61 #include "llvm/ADT/SetVector.h" 62 #include "llvm/ADT/SmallPtrSet.h" 63 #include "llvm/ADT/SmallSet.h" 64 #include "llvm/ADT/SmallVector.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/ADT/StringRef.h" 67 #include "llvm/ADT/Twine.h" 68 #include "llvm/ADT/iterator_range.h" 69 #include "llvm/Analysis/AssumptionCache.h" 70 #include "llvm/Analysis/BasicAliasAnalysis.h" 71 #include "llvm/Analysis/BlockFrequencyInfo.h" 72 #include "llvm/Analysis/CodeMetrics.h" 73 #include "llvm/Analysis/DemandedBits.h" 74 #include "llvm/Analysis/GlobalsModRef.h" 75 #include "llvm/Analysis/LoopAccessAnalysis.h" 76 #include "llvm/Analysis/LoopAnalysisManager.h" 77 #include "llvm/Analysis/LoopInfo.h" 78 #include "llvm/Analysis/LoopIterator.h" 79 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 80 #include "llvm/Analysis/ScalarEvolution.h" 81 #include "llvm/Analysis/ScalarEvolutionExpander.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/TargetTransformInfo.h" 85 #include "llvm/Analysis/VectorUtils.h" 86 #include "llvm/IR/Attributes.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/Constant.h" 90 #include "llvm/IR/Constants.h" 91 #include "llvm/IR/DataLayout.h" 92 #include "llvm/IR/DebugInfoMetadata.h" 93 #include "llvm/IR/DebugLoc.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/DiagnosticInfo.h" 96 #include "llvm/IR/Dominators.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/IRBuilder.h" 99 #include "llvm/IR/InstrTypes.h" 100 #include "llvm/IR/Instruction.h" 101 #include "llvm/IR/Instructions.h" 102 #include "llvm/IR/IntrinsicInst.h" 103 #include "llvm/IR/Intrinsics.h" 104 #include "llvm/IR/LLVMContext.h" 105 #include "llvm/IR/Metadata.h" 106 #include "llvm/IR/Module.h" 107 #include "llvm/IR/Operator.h" 108 #include "llvm/IR/Type.h" 109 #include "llvm/IR/Use.h" 110 #include "llvm/IR/User.h" 111 #include "llvm/IR/Value.h" 112 #include "llvm/IR/ValueHandle.h" 113 #include "llvm/IR/Verifier.h" 114 #include "llvm/Pass.h" 115 #include "llvm/Support/Casting.h" 116 #include "llvm/Support/CommandLine.h" 117 #include "llvm/Support/Compiler.h" 118 #include "llvm/Support/Debug.h" 119 #include "llvm/Support/ErrorHandling.h" 120 #include "llvm/Support/MathExtras.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 123 #include "llvm/Transforms/Utils/LoopSimplify.h" 124 #include "llvm/Transforms/Utils/LoopUtils.h" 125 #include "llvm/Transforms/Utils/LoopVersioning.h" 126 #include <algorithm> 127 #include <cassert> 128 #include <cstdint> 129 #include <cstdlib> 130 #include <functional> 131 #include <iterator> 132 #include <limits> 133 #include <memory> 134 #include <string> 135 #include <tuple> 136 #include <utility> 137 #include <vector> 138 139 using namespace llvm; 140 141 #define LV_NAME "loop-vectorize" 142 #define DEBUG_TYPE LV_NAME 143 144 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 145 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 146 147 static cl::opt<bool> 148 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 149 cl::desc("Enable if-conversion during vectorization.")); 150 151 /// Loops with a known constant trip count below this number are vectorized only 152 /// if no scalar iteration overheads are incurred. 153 static cl::opt<unsigned> TinyTripCountVectorThreshold( 154 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 155 cl::desc("Loops with a constant trip count that is smaller than this " 156 "value are vectorized only if no scalar iteration overheads " 157 "are incurred.")); 158 159 static cl::opt<bool> MaximizeBandwidth( 160 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 161 cl::desc("Maximize bandwidth when selecting vectorization factor which " 162 "will be determined by the smallest type in loop.")); 163 164 static cl::opt<bool> EnableInterleavedMemAccesses( 165 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 166 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 167 168 /// Maximum factor for an interleaved memory access. 169 static cl::opt<unsigned> MaxInterleaveGroupFactor( 170 "max-interleave-group-factor", cl::Hidden, 171 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 172 cl::init(8)); 173 174 /// We don't interleave loops with a known constant trip count below this 175 /// number. 176 static const unsigned TinyTripCountInterleaveThreshold = 128; 177 178 static cl::opt<unsigned> ForceTargetNumScalarRegs( 179 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 180 cl::desc("A flag that overrides the target's number of scalar registers.")); 181 182 static cl::opt<unsigned> ForceTargetNumVectorRegs( 183 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 184 cl::desc("A flag that overrides the target's number of vector registers.")); 185 186 /// Maximum vectorization interleave count. 187 static const unsigned MaxInterleaveFactor = 16; 188 189 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 190 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 191 cl::desc("A flag that overrides the target's max interleave factor for " 192 "scalar loops.")); 193 194 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 195 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 196 cl::desc("A flag that overrides the target's max interleave factor for " 197 "vectorized loops.")); 198 199 static cl::opt<unsigned> ForceTargetInstructionCost( 200 "force-target-instruction-cost", cl::init(0), cl::Hidden, 201 cl::desc("A flag that overrides the target's expected cost for " 202 "an instruction to a single constant value. Mostly " 203 "useful for getting consistent testing.")); 204 205 static cl::opt<unsigned> SmallLoopCost( 206 "small-loop-cost", cl::init(20), cl::Hidden, 207 cl::desc( 208 "The cost of a loop that is considered 'small' by the interleaver.")); 209 210 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 211 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 212 cl::desc("Enable the use of the block frequency analysis to access PGO " 213 "heuristics minimizing code growth in cold regions and being more " 214 "aggressive in hot regions.")); 215 216 // Runtime interleave loops for load/store throughput. 217 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 218 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 219 cl::desc( 220 "Enable runtime interleaving until load/store ports are saturated")); 221 222 /// The number of stores in a loop that are allowed to need predication. 223 static cl::opt<unsigned> NumberOfStoresToPredicate( 224 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 225 cl::desc("Max number of stores to be predicated behind an if.")); 226 227 static cl::opt<bool> EnableIndVarRegisterHeur( 228 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 229 cl::desc("Count the induction variable only once when interleaving")); 230 231 static cl::opt<bool> EnableCondStoresVectorization( 232 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 233 cl::desc("Enable if predication of stores during vectorization.")); 234 235 static cl::opt<unsigned> MaxNestedScalarReductionIC( 236 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 237 cl::desc("The maximum interleave count to use when interleaving a scalar " 238 "reduction in a nested loop.")); 239 240 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 241 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 242 cl::desc("The maximum allowed number of runtime memory checks with a " 243 "vectorize(enable) pragma.")); 244 245 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 246 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 247 cl::desc("The maximum number of SCEV checks allowed.")); 248 249 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 250 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 251 cl::desc("The maximum number of SCEV checks allowed with a " 252 "vectorize(enable) pragma")); 253 254 /// Create an analysis remark that explains why vectorization failed 255 /// 256 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 257 /// RemarkName is the identifier for the remark. If \p I is passed it is an 258 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 259 /// the location of the remark. \return the remark object that can be 260 /// streamed to. 261 static OptimizationRemarkAnalysis 262 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 263 Instruction *I = nullptr) { 264 Value *CodeRegion = TheLoop->getHeader(); 265 DebugLoc DL = TheLoop->getStartLoc(); 266 267 if (I) { 268 CodeRegion = I->getParent(); 269 // If there is no debug location attached to the instruction, revert back to 270 // using the loop's. 271 if (I->getDebugLoc()) 272 DL = I->getDebugLoc(); 273 } 274 275 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 276 R << "loop not vectorized: "; 277 return R; 278 } 279 280 namespace { 281 282 class LoopVectorizationRequirements; 283 284 } // end anonymous namespace 285 286 /// Returns true if the given loop body has a cycle, excluding the loop 287 /// itself. 288 static bool hasCyclesInLoopBody(const Loop &L) { 289 if (!L.empty()) 290 return true; 291 292 for (const auto &SCC : 293 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 294 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 295 if (SCC.size() > 1) { 296 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 297 DEBUG(L.dump()); 298 return true; 299 } 300 } 301 return false; 302 } 303 304 /// A helper function for converting Scalar types to vector types. 305 /// If the incoming type is void, we return void. If the VF is 1, we return 306 /// the scalar type. 307 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 308 if (Scalar->isVoidTy() || VF == 1) 309 return Scalar; 310 return VectorType::get(Scalar, VF); 311 } 312 313 // FIXME: The following helper functions have multiple implementations 314 // in the project. They can be effectively organized in a common Load/Store 315 // utilities unit. 316 317 /// A helper function that returns the pointer operand of a load or store 318 /// instruction. 319 static Value *getPointerOperand(Value *I) { 320 if (auto *LI = dyn_cast<LoadInst>(I)) 321 return LI->getPointerOperand(); 322 if (auto *SI = dyn_cast<StoreInst>(I)) 323 return SI->getPointerOperand(); 324 return nullptr; 325 } 326 327 /// A helper function that returns the type of loaded or stored value. 328 static Type *getMemInstValueType(Value *I) { 329 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 330 "Expected Load or Store instruction"); 331 if (auto *LI = dyn_cast<LoadInst>(I)) 332 return LI->getType(); 333 return cast<StoreInst>(I)->getValueOperand()->getType(); 334 } 335 336 /// A helper function that returns the alignment of load or store instruction. 337 static unsigned getMemInstAlignment(Value *I) { 338 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 339 "Expected Load or Store instruction"); 340 if (auto *LI = dyn_cast<LoadInst>(I)) 341 return LI->getAlignment(); 342 return cast<StoreInst>(I)->getAlignment(); 343 } 344 345 /// A helper function that returns the address space of the pointer operand of 346 /// load or store instruction. 347 static unsigned getMemInstAddressSpace(Value *I) { 348 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 349 "Expected Load or Store instruction"); 350 if (auto *LI = dyn_cast<LoadInst>(I)) 351 return LI->getPointerAddressSpace(); 352 return cast<StoreInst>(I)->getPointerAddressSpace(); 353 } 354 355 /// A helper function that returns true if the given type is irregular. The 356 /// type is irregular if its allocated size doesn't equal the store size of an 357 /// element of the corresponding vector type at the given vectorization factor. 358 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 359 // Determine if an array of VF elements of type Ty is "bitcast compatible" 360 // with a <VF x Ty> vector. 361 if (VF > 1) { 362 auto *VectorTy = VectorType::get(Ty, VF); 363 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 364 } 365 366 // If the vectorization factor is one, we just check if an array of type Ty 367 // requires padding between elements. 368 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 369 } 370 371 /// A helper function that returns the reciprocal of the block probability of 372 /// predicated blocks. If we return X, we are assuming the predicated block 373 /// will execute once for for every X iterations of the loop header. 374 /// 375 /// TODO: We should use actual block probability here, if available. Currently, 376 /// we always assume predicated blocks have a 50% chance of executing. 377 static unsigned getReciprocalPredBlockProb() { return 2; } 378 379 /// A helper function that adds a 'fast' flag to floating-point operations. 380 static Value *addFastMathFlag(Value *V) { 381 if (isa<FPMathOperator>(V)) { 382 FastMathFlags Flags; 383 Flags.setFast(); 384 cast<Instruction>(V)->setFastMathFlags(Flags); 385 } 386 return V; 387 } 388 389 /// A helper function that returns an integer or floating-point constant with 390 /// value C. 391 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 392 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 393 : ConstantFP::get(Ty, C); 394 } 395 396 namespace llvm { 397 398 /// InnerLoopVectorizer vectorizes loops which contain only one basic 399 /// block to a specified vectorization factor (VF). 400 /// This class performs the widening of scalars into vectors, or multiple 401 /// scalars. This class also implements the following features: 402 /// * It inserts an epilogue loop for handling loops that don't have iteration 403 /// counts that are known to be a multiple of the vectorization factor. 404 /// * It handles the code generation for reduction variables. 405 /// * Scalarization (implementation using scalars) of un-vectorizable 406 /// instructions. 407 /// InnerLoopVectorizer does not perform any vectorization-legality 408 /// checks, and relies on the caller to check for the different legality 409 /// aspects. The InnerLoopVectorizer relies on the 410 /// LoopVectorizationLegality class to provide information about the induction 411 /// and reduction variables that were found to a given vectorization factor. 412 class InnerLoopVectorizer { 413 public: 414 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 415 LoopInfo *LI, DominatorTree *DT, 416 const TargetLibraryInfo *TLI, 417 const TargetTransformInfo *TTI, AssumptionCache *AC, 418 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 419 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 420 LoopVectorizationCostModel *CM) 421 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 422 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 423 Builder(PSE.getSE()->getContext()), 424 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 425 virtual ~InnerLoopVectorizer() = default; 426 427 /// Create a new empty loop. Unlink the old loop and connect the new one. 428 /// Return the pre-header block of the new loop. 429 BasicBlock *createVectorizedLoopSkeleton(); 430 431 /// Widen a single instruction within the innermost loop. 432 void widenInstruction(Instruction &I); 433 434 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 435 void fixVectorizedLoop(); 436 437 // Return true if any runtime check is added. 438 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 439 440 /// A type for vectorized values in the new loop. Each value from the 441 /// original loop, when vectorized, is represented by UF vector values in the 442 /// new unrolled loop, where UF is the unroll factor. 443 using VectorParts = SmallVector<Value *, 2>; 444 445 /// Vectorize a single PHINode in a block. This method handles the induction 446 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 447 /// arbitrary length vectors. 448 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 449 450 /// A helper function to scalarize a single Instruction in the innermost loop. 451 /// Generates a sequence of scalar instances for each lane between \p MinLane 452 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 453 /// inclusive.. 454 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 455 bool IfPredicateInstr); 456 457 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 458 /// is provided, the integer induction variable will first be truncated to 459 /// the corresponding type. 460 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 461 462 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 463 /// vector or scalar value on-demand if one is not yet available. When 464 /// vectorizing a loop, we visit the definition of an instruction before its 465 /// uses. When visiting the definition, we either vectorize or scalarize the 466 /// instruction, creating an entry for it in the corresponding map. (In some 467 /// cases, such as induction variables, we will create both vector and scalar 468 /// entries.) Then, as we encounter uses of the definition, we derive values 469 /// for each scalar or vector use unless such a value is already available. 470 /// For example, if we scalarize a definition and one of its uses is vector, 471 /// we build the required vector on-demand with an insertelement sequence 472 /// when visiting the use. Otherwise, if the use is scalar, we can use the 473 /// existing scalar definition. 474 /// 475 /// Return a value in the new loop corresponding to \p V from the original 476 /// loop at unroll index \p Part. If the value has already been vectorized, 477 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 478 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 479 /// a new vector value on-demand by inserting the scalar values into a vector 480 /// with an insertelement sequence. If the value has been neither vectorized 481 /// nor scalarized, it must be loop invariant, so we simply broadcast the 482 /// value into a vector. 483 Value *getOrCreateVectorValue(Value *V, unsigned Part); 484 485 /// Return a value in the new loop corresponding to \p V from the original 486 /// loop at unroll and vector indices \p Instance. If the value has been 487 /// vectorized but not scalarized, the necessary extractelement instruction 488 /// will be generated. 489 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 490 491 /// Construct the vector value of a scalarized value \p V one lane at a time. 492 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 493 494 /// Try to vectorize the interleaved access group that \p Instr belongs to. 495 void vectorizeInterleaveGroup(Instruction *Instr); 496 497 /// Vectorize Load and Store instructions, optionally masking the vector 498 /// operations if \p BlockInMask is non-null. 499 void vectorizeMemoryInstruction(Instruction *Instr, 500 VectorParts *BlockInMask = nullptr); 501 502 /// \brief Set the debug location in the builder using the debug location in 503 /// the instruction. 504 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 505 506 protected: 507 friend class LoopVectorizationPlanner; 508 509 /// A small list of PHINodes. 510 using PhiVector = SmallVector<PHINode *, 4>; 511 512 /// A type for scalarized values in the new loop. Each value from the 513 /// original loop, when scalarized, is represented by UF x VF scalar values 514 /// in the new unrolled loop, where UF is the unroll factor and VF is the 515 /// vectorization factor. 516 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 517 518 /// Set up the values of the IVs correctly when exiting the vector loop. 519 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 520 Value *CountRoundDown, Value *EndValue, 521 BasicBlock *MiddleBlock); 522 523 /// Create a new induction variable inside L. 524 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 525 Value *Step, Instruction *DL); 526 527 /// Handle all cross-iteration phis in the header. 528 void fixCrossIterationPHIs(); 529 530 /// Fix a first-order recurrence. This is the second phase of vectorizing 531 /// this phi node. 532 void fixFirstOrderRecurrence(PHINode *Phi); 533 534 /// Fix a reduction cross-iteration phi. This is the second phase of 535 /// vectorizing this phi node. 536 void fixReduction(PHINode *Phi); 537 538 /// \brief The Loop exit block may have single value PHI nodes with some 539 /// incoming value. While vectorizing we only handled real values 540 /// that were defined inside the loop and we should have one value for 541 /// each predecessor of its parent basic block. See PR14725. 542 void fixLCSSAPHIs(); 543 544 /// Iteratively sink the scalarized operands of a predicated instruction into 545 /// the block that was created for it. 546 void sinkScalarOperands(Instruction *PredInst); 547 548 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 549 /// represented as. 550 void truncateToMinimalBitwidths(); 551 552 /// Insert the new loop to the loop hierarchy and pass manager 553 /// and update the analysis passes. 554 void updateAnalysis(); 555 556 /// Create a broadcast instruction. This method generates a broadcast 557 /// instruction (shuffle) for loop invariant values and for the induction 558 /// value. If this is the induction variable then we extend it to N, N+1, ... 559 /// this is needed because each iteration in the loop corresponds to a SIMD 560 /// element. 561 virtual Value *getBroadcastInstrs(Value *V); 562 563 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 564 /// to each vector element of Val. The sequence starts at StartIndex. 565 /// \p Opcode is relevant for FP induction variable. 566 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 567 Instruction::BinaryOps Opcode = 568 Instruction::BinaryOpsEnd); 569 570 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 571 /// variable on which to base the steps, \p Step is the size of the step, and 572 /// \p EntryVal is the value from the original loop that maps to the steps. 573 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 574 /// can be a truncate instruction). 575 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 576 const InductionDescriptor &ID); 577 578 /// Create a vector induction phi node based on an existing scalar one. \p 579 /// EntryVal is the value from the original loop that maps to the vector phi 580 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 581 /// truncate instruction, instead of widening the original IV, we widen a 582 /// version of the IV truncated to \p EntryVal's type. 583 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 584 Value *Step, Instruction *EntryVal); 585 586 /// Returns true if an instruction \p I should be scalarized instead of 587 /// vectorized for the chosen vectorization factor. 588 bool shouldScalarizeInstruction(Instruction *I) const; 589 590 /// Returns true if we should generate a scalar version of \p IV. 591 bool needsScalarInduction(Instruction *IV) const; 592 593 /// If there is a cast involved in the induction variable \p ID, which should 594 /// be ignored in the vectorized loop body, this function records the 595 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 596 /// cast. We had already proved that the casted Phi is equal to the uncasted 597 /// Phi in the vectorized loop (under a runtime guard), and therefore 598 /// there is no need to vectorize the cast - the same value can be used in the 599 /// vector loop for both the Phi and the cast. 600 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 601 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 602 void recordVectorLoopValueForInductionCast (const InductionDescriptor &ID, 603 Value *VectorLoopValue, 604 unsigned Part, 605 unsigned Lane = UINT_MAX); 606 607 /// Generate a shuffle sequence that will reverse the vector Vec. 608 virtual Value *reverseVector(Value *Vec); 609 610 /// Returns (and creates if needed) the original loop trip count. 611 Value *getOrCreateTripCount(Loop *NewLoop); 612 613 /// Returns (and creates if needed) the trip count of the widened loop. 614 Value *getOrCreateVectorTripCount(Loop *NewLoop); 615 616 /// Returns a bitcasted value to the requested vector type. 617 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 618 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 619 const DataLayout &DL); 620 621 /// Emit a bypass check to see if the vector trip count is zero, including if 622 /// it overflows. 623 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 624 625 /// Emit a bypass check to see if all of the SCEV assumptions we've 626 /// had to make are correct. 627 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 628 629 /// Emit bypass checks to check any memory assumptions we may have made. 630 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 631 632 /// Add additional metadata to \p To that was not present on \p Orig. 633 /// 634 /// Currently this is used to add the noalias annotations based on the 635 /// inserted memchecks. Use this for instructions that are *cloned* into the 636 /// vector loop. 637 void addNewMetadata(Instruction *To, const Instruction *Orig); 638 639 /// Add metadata from one instruction to another. 640 /// 641 /// This includes both the original MDs from \p From and additional ones (\see 642 /// addNewMetadata). Use this for *newly created* instructions in the vector 643 /// loop. 644 void addMetadata(Instruction *To, Instruction *From); 645 646 /// \brief Similar to the previous function but it adds the metadata to a 647 /// vector of instructions. 648 void addMetadata(ArrayRef<Value *> To, Instruction *From); 649 650 /// The original loop. 651 Loop *OrigLoop; 652 653 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 654 /// dynamic knowledge to simplify SCEV expressions and converts them to a 655 /// more usable form. 656 PredicatedScalarEvolution &PSE; 657 658 /// Loop Info. 659 LoopInfo *LI; 660 661 /// Dominator Tree. 662 DominatorTree *DT; 663 664 /// Alias Analysis. 665 AliasAnalysis *AA; 666 667 /// Target Library Info. 668 const TargetLibraryInfo *TLI; 669 670 /// Target Transform Info. 671 const TargetTransformInfo *TTI; 672 673 /// Assumption Cache. 674 AssumptionCache *AC; 675 676 /// Interface to emit optimization remarks. 677 OptimizationRemarkEmitter *ORE; 678 679 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 680 /// used. 681 /// 682 /// This is currently only used to add no-alias metadata based on the 683 /// memchecks. The actually versioning is performed manually. 684 std::unique_ptr<LoopVersioning> LVer; 685 686 /// The vectorization SIMD factor to use. Each vector will have this many 687 /// vector elements. 688 unsigned VF; 689 690 /// The vectorization unroll factor to use. Each scalar is vectorized to this 691 /// many different vector instructions. 692 unsigned UF; 693 694 /// The builder that we use 695 IRBuilder<> Builder; 696 697 // --- Vectorization state --- 698 699 /// The vector-loop preheader. 700 BasicBlock *LoopVectorPreHeader; 701 702 /// The scalar-loop preheader. 703 BasicBlock *LoopScalarPreHeader; 704 705 /// Middle Block between the vector and the scalar. 706 BasicBlock *LoopMiddleBlock; 707 708 /// The ExitBlock of the scalar loop. 709 BasicBlock *LoopExitBlock; 710 711 /// The vector loop body. 712 BasicBlock *LoopVectorBody; 713 714 /// The scalar loop body. 715 BasicBlock *LoopScalarBody; 716 717 /// A list of all bypass blocks. The first block is the entry of the loop. 718 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 719 720 /// The new Induction variable which was added to the new block. 721 PHINode *Induction = nullptr; 722 723 /// The induction variable of the old basic block. 724 PHINode *OldInduction = nullptr; 725 726 /// Maps values from the original loop to their corresponding values in the 727 /// vectorized loop. A key value can map to either vector values, scalar 728 /// values or both kinds of values, depending on whether the key was 729 /// vectorized and scalarized. 730 VectorizerValueMap VectorLoopValueMap; 731 732 /// Store instructions that were predicated. 733 SmallVector<Instruction *, 4> PredicatedInstructions; 734 735 /// Trip count of the original loop. 736 Value *TripCount = nullptr; 737 738 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 739 Value *VectorTripCount = nullptr; 740 741 /// The legality analysis. 742 LoopVectorizationLegality *Legal; 743 744 /// The profitablity analysis. 745 LoopVectorizationCostModel *Cost; 746 747 // Record whether runtime checks are added. 748 bool AddedSafetyChecks = false; 749 750 // Holds the end values for each induction variable. We save the end values 751 // so we can later fix-up the external users of the induction variables. 752 DenseMap<PHINode *, Value *> IVEndValues; 753 }; 754 755 class InnerLoopUnroller : public InnerLoopVectorizer { 756 public: 757 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 758 LoopInfo *LI, DominatorTree *DT, 759 const TargetLibraryInfo *TLI, 760 const TargetTransformInfo *TTI, AssumptionCache *AC, 761 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 762 LoopVectorizationLegality *LVL, 763 LoopVectorizationCostModel *CM) 764 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 765 UnrollFactor, LVL, CM) {} 766 767 private: 768 Value *getBroadcastInstrs(Value *V) override; 769 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 770 Instruction::BinaryOps Opcode = 771 Instruction::BinaryOpsEnd) override; 772 Value *reverseVector(Value *Vec) override; 773 }; 774 775 } // end namespace llvm 776 777 /// \brief Look for a meaningful debug location on the instruction or it's 778 /// operands. 779 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 780 if (!I) 781 return I; 782 783 DebugLoc Empty; 784 if (I->getDebugLoc() != Empty) 785 return I; 786 787 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 788 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 789 if (OpInst->getDebugLoc() != Empty) 790 return OpInst; 791 } 792 793 return I; 794 } 795 796 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 797 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 798 const DILocation *DIL = Inst->getDebugLoc(); 799 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 800 !isa<DbgInfoIntrinsic>(Inst)) 801 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 802 else 803 B.SetCurrentDebugLocation(DIL); 804 } else 805 B.SetCurrentDebugLocation(DebugLoc()); 806 } 807 808 #ifndef NDEBUG 809 /// \return string containing a file name and a line # for the given loop. 810 static std::string getDebugLocString(const Loop *L) { 811 std::string Result; 812 if (L) { 813 raw_string_ostream OS(Result); 814 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 815 LoopDbgLoc.print(OS); 816 else 817 // Just print the module name. 818 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 819 OS.flush(); 820 } 821 return Result; 822 } 823 #endif 824 825 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 826 const Instruction *Orig) { 827 // If the loop was versioned with memchecks, add the corresponding no-alias 828 // metadata. 829 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 830 LVer->annotateInstWithNoAlias(To, Orig); 831 } 832 833 void InnerLoopVectorizer::addMetadata(Instruction *To, 834 Instruction *From) { 835 propagateMetadata(To, From); 836 addNewMetadata(To, From); 837 } 838 839 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 840 Instruction *From) { 841 for (Value *V : To) { 842 if (Instruction *I = dyn_cast<Instruction>(V)) 843 addMetadata(I, From); 844 } 845 } 846 847 namespace llvm { 848 849 /// \brief The group of interleaved loads/stores sharing the same stride and 850 /// close to each other. 851 /// 852 /// Each member in this group has an index starting from 0, and the largest 853 /// index should be less than interleaved factor, which is equal to the absolute 854 /// value of the access's stride. 855 /// 856 /// E.g. An interleaved load group of factor 4: 857 /// for (unsigned i = 0; i < 1024; i+=4) { 858 /// a = A[i]; // Member of index 0 859 /// b = A[i+1]; // Member of index 1 860 /// d = A[i+3]; // Member of index 3 861 /// ... 862 /// } 863 /// 864 /// An interleaved store group of factor 4: 865 /// for (unsigned i = 0; i < 1024; i+=4) { 866 /// ... 867 /// A[i] = a; // Member of index 0 868 /// A[i+1] = b; // Member of index 1 869 /// A[i+2] = c; // Member of index 2 870 /// A[i+3] = d; // Member of index 3 871 /// } 872 /// 873 /// Note: the interleaved load group could have gaps (missing members), but 874 /// the interleaved store group doesn't allow gaps. 875 class InterleaveGroup { 876 public: 877 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 878 : Align(Align), InsertPos(Instr) { 879 assert(Align && "The alignment should be non-zero"); 880 881 Factor = std::abs(Stride); 882 assert(Factor > 1 && "Invalid interleave factor"); 883 884 Reverse = Stride < 0; 885 Members[0] = Instr; 886 } 887 888 bool isReverse() const { return Reverse; } 889 unsigned getFactor() const { return Factor; } 890 unsigned getAlignment() const { return Align; } 891 unsigned getNumMembers() const { return Members.size(); } 892 893 /// \brief Try to insert a new member \p Instr with index \p Index and 894 /// alignment \p NewAlign. The index is related to the leader and it could be 895 /// negative if it is the new leader. 896 /// 897 /// \returns false if the instruction doesn't belong to the group. 898 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 899 assert(NewAlign && "The new member's alignment should be non-zero"); 900 901 int Key = Index + SmallestKey; 902 903 // Skip if there is already a member with the same index. 904 if (Members.count(Key)) 905 return false; 906 907 if (Key > LargestKey) { 908 // The largest index is always less than the interleave factor. 909 if (Index >= static_cast<int>(Factor)) 910 return false; 911 912 LargestKey = Key; 913 } else if (Key < SmallestKey) { 914 // The largest index is always less than the interleave factor. 915 if (LargestKey - Key >= static_cast<int>(Factor)) 916 return false; 917 918 SmallestKey = Key; 919 } 920 921 // It's always safe to select the minimum alignment. 922 Align = std::min(Align, NewAlign); 923 Members[Key] = Instr; 924 return true; 925 } 926 927 /// \brief Get the member with the given index \p Index 928 /// 929 /// \returns nullptr if contains no such member. 930 Instruction *getMember(unsigned Index) const { 931 int Key = SmallestKey + Index; 932 if (!Members.count(Key)) 933 return nullptr; 934 935 return Members.find(Key)->second; 936 } 937 938 /// \brief Get the index for the given member. Unlike the key in the member 939 /// map, the index starts from 0. 940 unsigned getIndex(Instruction *Instr) const { 941 for (auto I : Members) 942 if (I.second == Instr) 943 return I.first - SmallestKey; 944 945 llvm_unreachable("InterleaveGroup contains no such member"); 946 } 947 948 Instruction *getInsertPos() const { return InsertPos; } 949 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 950 951 /// Add metadata (e.g. alias info) from the instructions in this group to \p 952 /// NewInst. 953 /// 954 /// FIXME: this function currently does not add noalias metadata a'la 955 /// addNewMedata. To do that we need to compute the intersection of the 956 /// noalias info from all members. 957 void addMetadata(Instruction *NewInst) const { 958 SmallVector<Value *, 4> VL; 959 std::transform(Members.begin(), Members.end(), std::back_inserter(VL), 960 [](std::pair<int, Instruction *> p) { return p.second; }); 961 propagateMetadata(NewInst, VL); 962 } 963 964 private: 965 unsigned Factor; // Interleave Factor. 966 bool Reverse; 967 unsigned Align; 968 DenseMap<int, Instruction *> Members; 969 int SmallestKey = 0; 970 int LargestKey = 0; 971 972 // To avoid breaking dependences, vectorized instructions of an interleave 973 // group should be inserted at either the first load or the last store in 974 // program order. 975 // 976 // E.g. %even = load i32 // Insert Position 977 // %add = add i32 %even // Use of %even 978 // %odd = load i32 979 // 980 // store i32 %even 981 // %odd = add i32 // Def of %odd 982 // store i32 %odd // Insert Position 983 Instruction *InsertPos; 984 }; 985 } // end namespace llvm 986 987 namespace { 988 989 /// \brief Drive the analysis of interleaved memory accesses in the loop. 990 /// 991 /// Use this class to analyze interleaved accesses only when we can vectorize 992 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 993 /// on interleaved accesses is unsafe. 994 /// 995 /// The analysis collects interleave groups and records the relationships 996 /// between the member and the group in a map. 997 class InterleavedAccessInfo { 998 public: 999 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 1000 DominatorTree *DT, LoopInfo *LI) 1001 : PSE(PSE), TheLoop(L), DT(DT), LI(LI) {} 1002 1003 ~InterleavedAccessInfo() { 1004 SmallSet<InterleaveGroup *, 4> DelSet; 1005 // Avoid releasing a pointer twice. 1006 for (auto &I : InterleaveGroupMap) 1007 DelSet.insert(I.second); 1008 for (auto *Ptr : DelSet) 1009 delete Ptr; 1010 } 1011 1012 /// \brief Analyze the interleaved accesses and collect them in interleave 1013 /// groups. Substitute symbolic strides using \p Strides. 1014 void analyzeInterleaving(const ValueToValueMap &Strides); 1015 1016 /// \brief Check if \p Instr belongs to any interleave group. 1017 bool isInterleaved(Instruction *Instr) const { 1018 return InterleaveGroupMap.count(Instr); 1019 } 1020 1021 /// \brief Get the interleave group that \p Instr belongs to. 1022 /// 1023 /// \returns nullptr if doesn't have such group. 1024 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 1025 if (InterleaveGroupMap.count(Instr)) 1026 return InterleaveGroupMap.find(Instr)->second; 1027 return nullptr; 1028 } 1029 1030 /// \brief Returns true if an interleaved group that may access memory 1031 /// out-of-bounds requires a scalar epilogue iteration for correctness. 1032 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 1033 1034 /// \brief Initialize the LoopAccessInfo used for dependence checking. 1035 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 1036 1037 private: 1038 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 1039 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 1040 /// The interleaved access analysis can also add new predicates (for example 1041 /// by versioning strides of pointers). 1042 PredicatedScalarEvolution &PSE; 1043 1044 Loop *TheLoop; 1045 DominatorTree *DT; 1046 LoopInfo *LI; 1047 const LoopAccessInfo *LAI = nullptr; 1048 1049 /// True if the loop may contain non-reversed interleaved groups with 1050 /// out-of-bounds accesses. We ensure we don't speculatively access memory 1051 /// out-of-bounds by executing at least one scalar epilogue iteration. 1052 bool RequiresScalarEpilogue = false; 1053 1054 /// Holds the relationships between the members and the interleave group. 1055 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1056 1057 /// Holds dependences among the memory accesses in the loop. It maps a source 1058 /// access to a set of dependent sink accesses. 1059 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1060 1061 /// \brief The descriptor for a strided memory access. 1062 struct StrideDescriptor { 1063 StrideDescriptor() = default; 1064 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1065 unsigned Align) 1066 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1067 1068 // The access's stride. It is negative for a reverse access. 1069 int64_t Stride = 0; 1070 1071 // The scalar expression of this access. 1072 const SCEV *Scev = nullptr; 1073 1074 // The size of the memory object. 1075 uint64_t Size = 0; 1076 1077 // The alignment of this access. 1078 unsigned Align = 0; 1079 }; 1080 1081 /// \brief A type for holding instructions and their stride descriptors. 1082 using StrideEntry = std::pair<Instruction *, StrideDescriptor>; 1083 1084 /// \brief Create a new interleave group with the given instruction \p Instr, 1085 /// stride \p Stride and alignment \p Align. 1086 /// 1087 /// \returns the newly created interleave group. 1088 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1089 unsigned Align) { 1090 assert(!InterleaveGroupMap.count(Instr) && 1091 "Already in an interleaved access group"); 1092 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1093 return InterleaveGroupMap[Instr]; 1094 } 1095 1096 /// \brief Release the group and remove all the relationships. 1097 void releaseGroup(InterleaveGroup *Group) { 1098 for (unsigned i = 0; i < Group->getFactor(); i++) 1099 if (Instruction *Member = Group->getMember(i)) 1100 InterleaveGroupMap.erase(Member); 1101 1102 delete Group; 1103 } 1104 1105 /// \brief Collect all the accesses with a constant stride in program order. 1106 void collectConstStrideAccesses( 1107 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1108 const ValueToValueMap &Strides); 1109 1110 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1111 static bool isStrided(int Stride) { 1112 unsigned Factor = std::abs(Stride); 1113 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1114 } 1115 1116 /// \brief Returns true if \p BB is a predicated block. 1117 bool isPredicated(BasicBlock *BB) const { 1118 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1119 } 1120 1121 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1122 bool areDependencesValid() const { 1123 return LAI && LAI->getDepChecker().getDependences(); 1124 } 1125 1126 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1127 /// necessary, when constructing interleaved groups. 1128 /// 1129 /// \p A must precede \p B in program order. We return false if reordering is 1130 /// not necessary or is prevented because \p A and \p B may be dependent. 1131 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1132 StrideEntry *B) const { 1133 // Code motion for interleaved accesses can potentially hoist strided loads 1134 // and sink strided stores. The code below checks the legality of the 1135 // following two conditions: 1136 // 1137 // 1. Potentially moving a strided load (B) before any store (A) that 1138 // precedes B, or 1139 // 1140 // 2. Potentially moving a strided store (A) after any load or store (B) 1141 // that A precedes. 1142 // 1143 // It's legal to reorder A and B if we know there isn't a dependence from A 1144 // to B. Note that this determination is conservative since some 1145 // dependences could potentially be reordered safely. 1146 1147 // A is potentially the source of a dependence. 1148 auto *Src = A->first; 1149 auto SrcDes = A->second; 1150 1151 // B is potentially the sink of a dependence. 1152 auto *Sink = B->first; 1153 auto SinkDes = B->second; 1154 1155 // Code motion for interleaved accesses can't violate WAR dependences. 1156 // Thus, reordering is legal if the source isn't a write. 1157 if (!Src->mayWriteToMemory()) 1158 return true; 1159 1160 // At least one of the accesses must be strided. 1161 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1162 return true; 1163 1164 // If dependence information is not available from LoopAccessInfo, 1165 // conservatively assume the instructions can't be reordered. 1166 if (!areDependencesValid()) 1167 return false; 1168 1169 // If we know there is a dependence from source to sink, assume the 1170 // instructions can't be reordered. Otherwise, reordering is legal. 1171 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1172 } 1173 1174 /// \brief Collect the dependences from LoopAccessInfo. 1175 /// 1176 /// We process the dependences once during the interleaved access analysis to 1177 /// enable constant-time dependence queries. 1178 void collectDependences() { 1179 if (!areDependencesValid()) 1180 return; 1181 auto *Deps = LAI->getDepChecker().getDependences(); 1182 for (auto Dep : *Deps) 1183 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1184 } 1185 }; 1186 1187 /// Utility class for getting and setting loop vectorizer hints in the form 1188 /// of loop metadata. 1189 /// This class keeps a number of loop annotations locally (as member variables) 1190 /// and can, upon request, write them back as metadata on the loop. It will 1191 /// initially scan the loop for existing metadata, and will update the local 1192 /// values based on information in the loop. 1193 /// We cannot write all values to metadata, as the mere presence of some info, 1194 /// for example 'force', means a decision has been made. So, we need to be 1195 /// careful NOT to add them if the user hasn't specifically asked so. 1196 class LoopVectorizeHints { 1197 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED }; 1198 1199 /// Hint - associates name and validation with the hint value. 1200 struct Hint { 1201 const char *Name; 1202 unsigned Value; // This may have to change for non-numeric values. 1203 HintKind Kind; 1204 1205 Hint(const char *Name, unsigned Value, HintKind Kind) 1206 : Name(Name), Value(Value), Kind(Kind) {} 1207 1208 bool validate(unsigned Val) { 1209 switch (Kind) { 1210 case HK_WIDTH: 1211 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1212 case HK_UNROLL: 1213 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1214 case HK_FORCE: 1215 return (Val <= 1); 1216 case HK_ISVECTORIZED: 1217 return (Val==0 || Val==1); 1218 } 1219 return false; 1220 } 1221 }; 1222 1223 /// Vectorization width. 1224 Hint Width; 1225 1226 /// Vectorization interleave factor. 1227 Hint Interleave; 1228 1229 /// Vectorization forced 1230 Hint Force; 1231 1232 /// Already Vectorized 1233 Hint IsVectorized; 1234 1235 /// Return the loop metadata prefix. 1236 static StringRef Prefix() { return "llvm.loop."; } 1237 1238 /// True if there is any unsafe math in the loop. 1239 bool PotentiallyUnsafe = false; 1240 1241 public: 1242 enum ForceKind { 1243 FK_Undefined = -1, ///< Not selected. 1244 FK_Disabled = 0, ///< Forcing disabled. 1245 FK_Enabled = 1, ///< Forcing enabled. 1246 }; 1247 1248 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1249 OptimizationRemarkEmitter &ORE) 1250 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1251 HK_WIDTH), 1252 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1253 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1254 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 1255 // Populate values with existing loop metadata. 1256 getHintsFromMetadata(); 1257 1258 // force-vector-interleave overrides DisableInterleaving. 1259 if (VectorizerParams::isInterleaveForced()) 1260 Interleave.Value = VectorizerParams::VectorizationInterleave; 1261 1262 if (IsVectorized.Value != 1) 1263 // If the vectorization width and interleaving count are both 1 then 1264 // consider the loop to have been already vectorized because there's 1265 // nothing more that we can do. 1266 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 1267 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1268 << "LV: Interleaving disabled by the pass manager\n"); 1269 } 1270 1271 /// Mark the loop L as already vectorized by setting the width to 1. 1272 void setAlreadyVectorized() { 1273 IsVectorized.Value = 1; 1274 Hint Hints[] = {IsVectorized}; 1275 writeHintsToMetadata(Hints); 1276 } 1277 1278 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1279 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1280 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1281 emitRemarkWithHints(); 1282 return false; 1283 } 1284 1285 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1286 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1287 emitRemarkWithHints(); 1288 return false; 1289 } 1290 1291 if (getIsVectorized() == 1) { 1292 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1293 // FIXME: Add interleave.disable metadata. This will allow 1294 // vectorize.disable to be used without disabling the pass and errors 1295 // to differentiate between disabled vectorization and a width of 1. 1296 ORE.emit([&]() { 1297 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1298 "AllDisabled", L->getStartLoc(), 1299 L->getHeader()) 1300 << "loop not vectorized: vectorization and interleaving are " 1301 "explicitly disabled, or the loop has already been " 1302 "vectorized"; 1303 }); 1304 return false; 1305 } 1306 1307 return true; 1308 } 1309 1310 /// Dumps all the hint information. 1311 void emitRemarkWithHints() const { 1312 using namespace ore; 1313 1314 ORE.emit([&]() { 1315 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1316 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1317 TheLoop->getStartLoc(), 1318 TheLoop->getHeader()) 1319 << "loop not vectorized: vectorization is explicitly disabled"; 1320 else { 1321 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1322 TheLoop->getStartLoc(), 1323 TheLoop->getHeader()); 1324 R << "loop not vectorized"; 1325 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1326 R << " (Force=" << NV("Force", true); 1327 if (Width.Value != 0) 1328 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1329 if (Interleave.Value != 0) 1330 R << ", Interleave Count=" 1331 << NV("InterleaveCount", Interleave.Value); 1332 R << ")"; 1333 } 1334 return R; 1335 } 1336 }); 1337 } 1338 1339 unsigned getWidth() const { return Width.Value; } 1340 unsigned getInterleave() const { return Interleave.Value; } 1341 unsigned getIsVectorized() const { return IsVectorized.Value; } 1342 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1343 1344 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1345 /// pass name to force the frontend to print the diagnostic. 1346 const char *vectorizeAnalysisPassName() const { 1347 if (getWidth() == 1) 1348 return LV_NAME; 1349 if (getForce() == LoopVectorizeHints::FK_Disabled) 1350 return LV_NAME; 1351 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1352 return LV_NAME; 1353 return OptimizationRemarkAnalysis::AlwaysPrint; 1354 } 1355 1356 bool allowReordering() const { 1357 // When enabling loop hints are provided we allow the vectorizer to change 1358 // the order of operations that is given by the scalar loop. This is not 1359 // enabled by default because can be unsafe or inefficient. For example, 1360 // reordering floating-point operations will change the way round-off 1361 // error accumulates in the loop. 1362 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1363 } 1364 1365 bool isPotentiallyUnsafe() const { 1366 // Avoid FP vectorization if the target is unsure about proper support. 1367 // This may be related to the SIMD unit in the target not handling 1368 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1369 // Otherwise, a sequence of vectorized loops, even without reduction, 1370 // could lead to different end results on the destination vectors. 1371 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1372 } 1373 1374 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1375 1376 private: 1377 /// Find hints specified in the loop metadata and update local values. 1378 void getHintsFromMetadata() { 1379 MDNode *LoopID = TheLoop->getLoopID(); 1380 if (!LoopID) 1381 return; 1382 1383 // First operand should refer to the loop id itself. 1384 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1385 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1386 1387 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1388 const MDString *S = nullptr; 1389 SmallVector<Metadata *, 4> Args; 1390 1391 // The expected hint is either a MDString or a MDNode with the first 1392 // operand a MDString. 1393 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1394 if (!MD || MD->getNumOperands() == 0) 1395 continue; 1396 S = dyn_cast<MDString>(MD->getOperand(0)); 1397 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1398 Args.push_back(MD->getOperand(i)); 1399 } else { 1400 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1401 assert(Args.size() == 0 && "too many arguments for MDString"); 1402 } 1403 1404 if (!S) 1405 continue; 1406 1407 // Check if the hint starts with the loop metadata prefix. 1408 StringRef Name = S->getString(); 1409 if (Args.size() == 1) 1410 setHint(Name, Args[0]); 1411 } 1412 } 1413 1414 /// Checks string hint with one operand and set value if valid. 1415 void setHint(StringRef Name, Metadata *Arg) { 1416 if (!Name.startswith(Prefix())) 1417 return; 1418 Name = Name.substr(Prefix().size(), StringRef::npos); 1419 1420 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1421 if (!C) 1422 return; 1423 unsigned Val = C->getZExtValue(); 1424 1425 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 1426 for (auto H : Hints) { 1427 if (Name == H->Name) { 1428 if (H->validate(Val)) 1429 H->Value = Val; 1430 else 1431 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1432 break; 1433 } 1434 } 1435 } 1436 1437 /// Create a new hint from name / value pair. 1438 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1439 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1440 Metadata *MDs[] = {MDString::get(Context, Name), 1441 ConstantAsMetadata::get( 1442 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1443 return MDNode::get(Context, MDs); 1444 } 1445 1446 /// Matches metadata with hint name. 1447 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1448 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1449 if (!Name) 1450 return false; 1451 1452 for (auto H : HintTypes) 1453 if (Name->getString().endswith(H.Name)) 1454 return true; 1455 return false; 1456 } 1457 1458 /// Sets current hints into loop metadata, keeping other values intact. 1459 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1460 if (HintTypes.empty()) 1461 return; 1462 1463 // Reserve the first element to LoopID (see below). 1464 SmallVector<Metadata *, 4> MDs(1); 1465 // If the loop already has metadata, then ignore the existing operands. 1466 MDNode *LoopID = TheLoop->getLoopID(); 1467 if (LoopID) { 1468 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1469 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1470 // If node in update list, ignore old value. 1471 if (!matchesHintMetadataName(Node, HintTypes)) 1472 MDs.push_back(Node); 1473 } 1474 } 1475 1476 // Now, add the missing hints. 1477 for (auto H : HintTypes) 1478 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1479 1480 // Replace current metadata node with new one. 1481 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1482 MDNode *NewLoopID = MDNode::get(Context, MDs); 1483 // Set operand 0 to refer to the loop id itself. 1484 NewLoopID->replaceOperandWith(0, NewLoopID); 1485 1486 TheLoop->setLoopID(NewLoopID); 1487 } 1488 1489 /// The loop these hints belong to. 1490 const Loop *TheLoop; 1491 1492 /// Interface to emit optimization remarks. 1493 OptimizationRemarkEmitter &ORE; 1494 }; 1495 1496 } // end anonymous namespace 1497 1498 static void emitMissedWarning(Function *F, Loop *L, 1499 const LoopVectorizeHints &LH, 1500 OptimizationRemarkEmitter *ORE) { 1501 LH.emitRemarkWithHints(); 1502 1503 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1504 if (LH.getWidth() != 1) 1505 ORE->emit(DiagnosticInfoOptimizationFailure( 1506 DEBUG_TYPE, "FailedRequestedVectorization", 1507 L->getStartLoc(), L->getHeader()) 1508 << "loop not vectorized: " 1509 << "failed explicitly specified loop vectorization"); 1510 else if (LH.getInterleave() != 1) 1511 ORE->emit(DiagnosticInfoOptimizationFailure( 1512 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1513 L->getHeader()) 1514 << "loop not interleaved: " 1515 << "failed explicitly specified loop interleaving"); 1516 } 1517 } 1518 1519 namespace llvm { 1520 1521 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1522 /// to what vectorization factor. 1523 /// This class does not look at the profitability of vectorization, only the 1524 /// legality. This class has two main kinds of checks: 1525 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1526 /// will change the order of memory accesses in a way that will change the 1527 /// correctness of the program. 1528 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1529 /// checks for a number of different conditions, such as the availability of a 1530 /// single induction variable, that all types are supported and vectorize-able, 1531 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1532 /// This class is also used by InnerLoopVectorizer for identifying 1533 /// induction variable and the different reduction variables. 1534 class LoopVectorizationLegality { 1535 public: 1536 LoopVectorizationLegality( 1537 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1538 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1539 const TargetTransformInfo *TTI, 1540 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1541 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1542 LoopVectorizeHints *H) 1543 : TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), GetLAA(GetLAA), 1544 ORE(ORE), InterleaveInfo(PSE, L, DT, LI), Requirements(R), Hints(H) {} 1545 1546 /// ReductionList contains the reduction descriptors for all 1547 /// of the reductions that were found in the loop. 1548 using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>; 1549 1550 /// InductionList saves induction variables and maps them to the 1551 /// induction descriptor. 1552 using InductionList = MapVector<PHINode *, InductionDescriptor>; 1553 1554 /// RecurrenceSet contains the phi nodes that are recurrences other than 1555 /// inductions and reductions. 1556 using RecurrenceSet = SmallPtrSet<const PHINode *, 8>; 1557 1558 /// Returns true if it is legal to vectorize this loop. 1559 /// This does not mean that it is profitable to vectorize this 1560 /// loop, only that it is legal to do so. 1561 bool canVectorize(); 1562 1563 /// Returns the primary induction variable. 1564 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1565 1566 /// Returns the reduction variables found in the loop. 1567 ReductionList *getReductionVars() { return &Reductions; } 1568 1569 /// Returns the induction variables found in the loop. 1570 InductionList *getInductionVars() { return &Inductions; } 1571 1572 /// Return the first-order recurrences found in the loop. 1573 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1574 1575 /// Return the set of instructions to sink to handle first-order recurrences. 1576 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1577 1578 /// Returns the widest induction type. 1579 Type *getWidestInductionType() { return WidestIndTy; } 1580 1581 /// Returns True if V is a Phi node of an induction variable in this loop. 1582 bool isInductionPhi(const Value *V); 1583 1584 /// Returns True if V is a cast that is part of an induction def-use chain, 1585 /// and had been proven to be redundant under a runtime guard (in other 1586 /// words, the cast has the same SCEV expression as the induction phi). 1587 bool isCastedInductionVariable(const Value *V); 1588 1589 /// Returns True if V can be considered as an induction variable in this 1590 /// loop. V can be the induction phi, or some redundant cast in the def-use 1591 /// chain of the inducion phi. 1592 bool isInductionVariable(const Value *V); 1593 1594 /// Returns True if PN is a reduction variable in this loop. 1595 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1596 1597 /// Returns True if Phi is a first-order recurrence in this loop. 1598 bool isFirstOrderRecurrence(const PHINode *Phi); 1599 1600 /// Return true if the block BB needs to be predicated in order for the loop 1601 /// to be vectorized. 1602 bool blockNeedsPredication(BasicBlock *BB); 1603 1604 /// Check if this pointer is consecutive when vectorizing. This happens 1605 /// when the last index of the GEP is the induction variable, or that the 1606 /// pointer itself is an induction variable. 1607 /// This check allows us to vectorize A[idx] into a wide load/store. 1608 /// Returns: 1609 /// 0 - Stride is unknown or non-consecutive. 1610 /// 1 - Address is consecutive. 1611 /// -1 - Address is consecutive, and decreasing. 1612 /// NOTE: This method must only be used before modifying the original scalar 1613 /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965). 1614 int isConsecutivePtr(Value *Ptr); 1615 1616 /// Returns true if the value V is uniform within the loop. 1617 bool isUniform(Value *V); 1618 1619 /// Returns the information that we collected about runtime memory check. 1620 const RuntimePointerChecking *getRuntimePointerChecking() const { 1621 return LAI->getRuntimePointerChecking(); 1622 } 1623 1624 const LoopAccessInfo *getLAI() const { return LAI; } 1625 1626 /// \brief Check if \p Instr belongs to any interleaved access group. 1627 bool isAccessInterleaved(Instruction *Instr) { 1628 return InterleaveInfo.isInterleaved(Instr); 1629 } 1630 1631 /// \brief Get the interleaved access group that \p Instr belongs to. 1632 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1633 return InterleaveInfo.getInterleaveGroup(Instr); 1634 } 1635 1636 /// \brief Returns true if an interleaved group requires a scalar iteration 1637 /// to handle accesses with gaps. 1638 bool requiresScalarEpilogue() const { 1639 return InterleaveInfo.requiresScalarEpilogue(); 1640 } 1641 1642 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1643 1644 uint64_t getMaxSafeRegisterWidth() const { 1645 return LAI->getDepChecker().getMaxSafeRegisterWidth(); 1646 } 1647 1648 bool hasStride(Value *V) { return LAI->hasStride(V); } 1649 1650 /// Returns true if the target machine supports masked store operation 1651 /// for the given \p DataType and kind of access to \p Ptr. 1652 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1653 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1654 } 1655 1656 /// Returns true if the target machine supports masked load operation 1657 /// for the given \p DataType and kind of access to \p Ptr. 1658 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1659 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1660 } 1661 1662 /// Returns true if the target machine supports masked scatter operation 1663 /// for the given \p DataType. 1664 bool isLegalMaskedScatter(Type *DataType) { 1665 return TTI->isLegalMaskedScatter(DataType); 1666 } 1667 1668 /// Returns true if the target machine supports masked gather operation 1669 /// for the given \p DataType. 1670 bool isLegalMaskedGather(Type *DataType) { 1671 return TTI->isLegalMaskedGather(DataType); 1672 } 1673 1674 /// Returns true if the target machine can represent \p V as a masked gather 1675 /// or scatter operation. 1676 bool isLegalGatherOrScatter(Value *V) { 1677 auto *LI = dyn_cast<LoadInst>(V); 1678 auto *SI = dyn_cast<StoreInst>(V); 1679 if (!LI && !SI) 1680 return false; 1681 auto *Ptr = getPointerOperand(V); 1682 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1683 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1684 } 1685 1686 /// Returns true if vector representation of the instruction \p I 1687 /// requires mask. 1688 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1689 1690 unsigned getNumStores() const { return LAI->getNumStores(); } 1691 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1692 unsigned getNumPredStores() const { return NumPredStores; } 1693 1694 /// Returns true if \p I is an instruction that will be scalarized with 1695 /// predication. Such instructions include conditional stores and 1696 /// instructions that may divide by zero. 1697 bool isScalarWithPredication(Instruction *I); 1698 1699 /// Returns true if \p I is a memory instruction with consecutive memory 1700 /// access that can be widened. 1701 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1702 1703 // Returns true if the NoNaN attribute is set on the function. 1704 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1705 1706 private: 1707 /// Check if a single basic block loop is vectorizable. 1708 /// At this point we know that this is a loop with a constant trip count 1709 /// and we only need to check individual instructions. 1710 bool canVectorizeInstrs(); 1711 1712 /// When we vectorize loops we may change the order in which 1713 /// we read and write from memory. This method checks if it is 1714 /// legal to vectorize the code, considering only memory constrains. 1715 /// Returns true if the loop is vectorizable 1716 bool canVectorizeMemory(); 1717 1718 /// Return true if we can vectorize this loop using the IF-conversion 1719 /// transformation. 1720 bool canVectorizeWithIfConvert(); 1721 1722 /// Return true if all of the instructions in the block can be speculatively 1723 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1724 /// and we know that we can read from them without segfault. 1725 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1726 1727 /// Updates the vectorization state by adding \p Phi to the inductions list. 1728 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1729 /// better choice for the main induction than the existing one. 1730 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1731 SmallPtrSetImpl<Value *> &AllowedExit); 1732 1733 /// Create an analysis remark that explains why vectorization failed 1734 /// 1735 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1736 /// an instruction that prevents vectorization. Otherwise the loop is used 1737 /// for the location of the remark. \return the remark object that can be 1738 /// streamed to. 1739 OptimizationRemarkAnalysis 1740 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1741 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1742 RemarkName, TheLoop, I); 1743 } 1744 1745 /// \brief If an access has a symbolic strides, this maps the pointer value to 1746 /// the stride symbol. 1747 const ValueToValueMap *getSymbolicStrides() { 1748 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1749 // it's collected. This happens from canVectorizeWithIfConvert, when the 1750 // pointer is checked to reference consecutive elements suitable for a 1751 // masked access. 1752 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1753 } 1754 1755 unsigned NumPredStores = 0; 1756 1757 /// The loop that we evaluate. 1758 Loop *TheLoop; 1759 1760 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1761 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1762 /// of existing SCEV assumptions. The analysis will also add a minimal set 1763 /// of new predicates if this is required to enable vectorization and 1764 /// unrolling. 1765 PredicatedScalarEvolution &PSE; 1766 1767 /// Target Library Info. 1768 TargetLibraryInfo *TLI; 1769 1770 /// Target Transform Info 1771 const TargetTransformInfo *TTI; 1772 1773 /// Dominator Tree. 1774 DominatorTree *DT; 1775 1776 // LoopAccess analysis. 1777 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1778 1779 // And the loop-accesses info corresponding to this loop. This pointer is 1780 // null until canVectorizeMemory sets it up. 1781 const LoopAccessInfo *LAI = nullptr; 1782 1783 /// Interface to emit optimization remarks. 1784 OptimizationRemarkEmitter *ORE; 1785 1786 /// The interleave access information contains groups of interleaved accesses 1787 /// with the same stride and close to each other. 1788 InterleavedAccessInfo InterleaveInfo; 1789 1790 // --- vectorization state --- // 1791 1792 /// Holds the primary induction variable. This is the counter of the 1793 /// loop. 1794 PHINode *PrimaryInduction = nullptr; 1795 1796 /// Holds the reduction variables. 1797 ReductionList Reductions; 1798 1799 /// Holds all of the induction variables that we found in the loop. 1800 /// Notice that inductions don't need to start at zero and that induction 1801 /// variables can be pointers. 1802 InductionList Inductions; 1803 1804 /// Holds all the casts that participate in the update chain of the induction 1805 /// variables, and that have been proven to be redundant (possibly under a 1806 /// runtime guard). These casts can be ignored when creating the vectorized 1807 /// loop body. 1808 SmallPtrSet<Instruction *, 4> InductionCastsToIgnore; 1809 1810 /// Holds the phi nodes that are first-order recurrences. 1811 RecurrenceSet FirstOrderRecurrences; 1812 1813 /// Holds instructions that need to sink past other instructions to handle 1814 /// first-order recurrences. 1815 DenseMap<Instruction *, Instruction *> SinkAfter; 1816 1817 /// Holds the widest induction type encountered. 1818 Type *WidestIndTy = nullptr; 1819 1820 /// Allowed outside users. This holds the induction and reduction 1821 /// vars which can be accessed from outside the loop. 1822 SmallPtrSet<Value *, 4> AllowedExit; 1823 1824 /// Can we assume the absence of NaNs. 1825 bool HasFunNoNaNAttr = false; 1826 1827 /// Vectorization requirements that will go through late-evaluation. 1828 LoopVectorizationRequirements *Requirements; 1829 1830 /// Used to emit an analysis of any legality issues. 1831 LoopVectorizeHints *Hints; 1832 1833 /// While vectorizing these instructions we have to generate a 1834 /// call to the appropriate masked intrinsic 1835 SmallPtrSet<const Instruction *, 8> MaskedOp; 1836 }; 1837 1838 /// LoopVectorizationCostModel - estimates the expected speedups due to 1839 /// vectorization. 1840 /// In many cases vectorization is not profitable. This can happen because of 1841 /// a number of reasons. In this class we mainly attempt to predict the 1842 /// expected speedup/slowdowns due to the supported instruction set. We use the 1843 /// TargetTransformInfo to query the different backends for the cost of 1844 /// different operations. 1845 class LoopVectorizationCostModel { 1846 public: 1847 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1848 LoopInfo *LI, LoopVectorizationLegality *Legal, 1849 const TargetTransformInfo &TTI, 1850 const TargetLibraryInfo *TLI, DemandedBits *DB, 1851 AssumptionCache *AC, 1852 OptimizationRemarkEmitter *ORE, const Function *F, 1853 const LoopVectorizeHints *Hints) 1854 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1855 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1856 1857 /// \return An upper bound for the vectorization factor, or None if 1858 /// vectorization should be avoided up front. 1859 Optional<unsigned> computeMaxVF(bool OptForSize); 1860 1861 /// \return The most profitable vectorization factor and the cost of that VF. 1862 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1863 /// then this vectorization factor will be selected if vectorization is 1864 /// possible. 1865 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1866 1867 /// Setup cost-based decisions for user vectorization factor. 1868 void selectUserVectorizationFactor(unsigned UserVF) { 1869 collectUniformsAndScalars(UserVF); 1870 collectInstsToScalarize(UserVF); 1871 } 1872 1873 /// \return The size (in bits) of the smallest and widest types in the code 1874 /// that needs to be vectorized. We ignore values that remain scalar such as 1875 /// 64 bit loop indices. 1876 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1877 1878 /// \return The desired interleave count. 1879 /// If interleave count has been specified by metadata it will be returned. 1880 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1881 /// are the selected vectorization factor and the cost of the selected VF. 1882 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1883 unsigned LoopCost); 1884 1885 /// Memory access instruction may be vectorized in more than one way. 1886 /// Form of instruction after vectorization depends on cost. 1887 /// This function takes cost-based decisions for Load/Store instructions 1888 /// and collects them in a map. This decisions map is used for building 1889 /// the lists of loop-uniform and loop-scalar instructions. 1890 /// The calculated cost is saved with widening decision in order to 1891 /// avoid redundant calculations. 1892 void setCostBasedWideningDecision(unsigned VF); 1893 1894 /// \brief A struct that represents some properties of the register usage 1895 /// of a loop. 1896 struct RegisterUsage { 1897 /// Holds the number of loop invariant values that are used in the loop. 1898 unsigned LoopInvariantRegs; 1899 1900 /// Holds the maximum number of concurrent live intervals in the loop. 1901 unsigned MaxLocalUsers; 1902 1903 /// Holds the number of instructions in the loop. 1904 unsigned NumInstructions; 1905 }; 1906 1907 /// \return Returns information about the register usages of the loop for the 1908 /// given vectorization factors. 1909 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1910 1911 /// Collect values we want to ignore in the cost model. 1912 void collectValuesToIgnore(); 1913 1914 /// \returns The smallest bitwidth each instruction can be represented with. 1915 /// The vector equivalents of these instructions should be truncated to this 1916 /// type. 1917 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1918 return MinBWs; 1919 } 1920 1921 /// \returns True if it is more profitable to scalarize instruction \p I for 1922 /// vectorization factor \p VF. 1923 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1924 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1925 auto Scalars = InstsToScalarize.find(VF); 1926 assert(Scalars != InstsToScalarize.end() && 1927 "VF not yet analyzed for scalarization profitability"); 1928 return Scalars->second.count(I); 1929 } 1930 1931 /// Returns true if \p I is known to be uniform after vectorization. 1932 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1933 if (VF == 1) 1934 return true; 1935 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1936 auto UniformsPerVF = Uniforms.find(VF); 1937 return UniformsPerVF->second.count(I); 1938 } 1939 1940 /// Returns true if \p I is known to be scalar after vectorization. 1941 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1942 if (VF == 1) 1943 return true; 1944 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1945 auto ScalarsPerVF = Scalars.find(VF); 1946 return ScalarsPerVF->second.count(I); 1947 } 1948 1949 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1950 /// for vectorization factor \p VF. 1951 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1952 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1953 !isScalarAfterVectorization(I, VF); 1954 } 1955 1956 /// Decision that was taken during cost calculation for memory instruction. 1957 enum InstWidening { 1958 CM_Unknown, 1959 CM_Widen, // For consecutive accesses with stride +1. 1960 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1961 CM_Interleave, 1962 CM_GatherScatter, 1963 CM_Scalarize 1964 }; 1965 1966 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1967 /// instruction \p I and vector width \p VF. 1968 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1969 unsigned Cost) { 1970 assert(VF >= 2 && "Expected VF >=2"); 1971 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1972 } 1973 1974 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1975 /// interleaving group \p Grp and vector width \p VF. 1976 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1977 InstWidening W, unsigned Cost) { 1978 assert(VF >= 2 && "Expected VF >=2"); 1979 /// Broadcast this decicion to all instructions inside the group. 1980 /// But the cost will be assigned to one instruction only. 1981 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1982 if (auto *I = Grp->getMember(i)) { 1983 if (Grp->getInsertPos() == I) 1984 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1985 else 1986 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1987 } 1988 } 1989 } 1990 1991 /// Return the cost model decision for the given instruction \p I and vector 1992 /// width \p VF. Return CM_Unknown if this instruction did not pass 1993 /// through the cost modeling. 1994 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1995 assert(VF >= 2 && "Expected VF >=2"); 1996 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1997 auto Itr = WideningDecisions.find(InstOnVF); 1998 if (Itr == WideningDecisions.end()) 1999 return CM_Unknown; 2000 return Itr->second.first; 2001 } 2002 2003 /// Return the vectorization cost for the given instruction \p I and vector 2004 /// width \p VF. 2005 unsigned getWideningCost(Instruction *I, unsigned VF) { 2006 assert(VF >= 2 && "Expected VF >=2"); 2007 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 2008 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 2009 return WideningDecisions[InstOnVF].second; 2010 } 2011 2012 /// Return True if instruction \p I is an optimizable truncate whose operand 2013 /// is an induction variable. Such a truncate will be removed by adding a new 2014 /// induction variable with the destination type. 2015 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 2016 // If the instruction is not a truncate, return false. 2017 auto *Trunc = dyn_cast<TruncInst>(I); 2018 if (!Trunc) 2019 return false; 2020 2021 // Get the source and destination types of the truncate. 2022 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 2023 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 2024 2025 // If the truncate is free for the given types, return false. Replacing a 2026 // free truncate with an induction variable would add an induction variable 2027 // update instruction to each iteration of the loop. We exclude from this 2028 // check the primary induction variable since it will need an update 2029 // instruction regardless. 2030 Value *Op = Trunc->getOperand(0); 2031 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 2032 return false; 2033 2034 // If the truncated value is not an induction variable, return false. 2035 return Legal->isInductionPhi(Op); 2036 } 2037 2038 /// Collects the instructions to scalarize for each predicated instruction in 2039 /// the loop. 2040 void collectInstsToScalarize(unsigned VF); 2041 2042 /// Collect Uniform and Scalar values for the given \p VF. 2043 /// The sets depend on CM decision for Load/Store instructions 2044 /// that may be vectorized as interleave, gather-scatter or scalarized. 2045 void collectUniformsAndScalars(unsigned VF) { 2046 // Do the analysis once. 2047 if (VF == 1 || Uniforms.count(VF)) 2048 return; 2049 setCostBasedWideningDecision(VF); 2050 collectLoopUniforms(VF); 2051 collectLoopScalars(VF); 2052 } 2053 2054 private: 2055 /// \return An upper bound for the vectorization factor, larger than zero. 2056 /// One is returned if vectorization should best be avoided due to cost. 2057 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 2058 2059 /// The vectorization cost is a combination of the cost itself and a boolean 2060 /// indicating whether any of the contributing operations will actually 2061 /// operate on 2062 /// vector values after type legalization in the backend. If this latter value 2063 /// is 2064 /// false, then all operations will be scalarized (i.e. no vectorization has 2065 /// actually taken place). 2066 using VectorizationCostTy = std::pair<unsigned, bool>; 2067 2068 /// Returns the expected execution cost. The unit of the cost does 2069 /// not matter because we use the 'cost' units to compare different 2070 /// vector widths. The cost that is returned is *not* normalized by 2071 /// the factor width. 2072 VectorizationCostTy expectedCost(unsigned VF); 2073 2074 /// Returns the execution time cost of an instruction for a given vector 2075 /// width. Vector width of one means scalar. 2076 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 2077 2078 /// The cost-computation logic from getInstructionCost which provides 2079 /// the vector type as an output parameter. 2080 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 2081 2082 /// Calculate vectorization cost of memory instruction \p I. 2083 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 2084 2085 /// The cost computation for scalarized memory instruction. 2086 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 2087 2088 /// The cost computation for interleaving group of memory instructions. 2089 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 2090 2091 /// The cost computation for Gather/Scatter instruction. 2092 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 2093 2094 /// The cost computation for widening instruction \p I with consecutive 2095 /// memory access. 2096 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 2097 2098 /// The cost calculation for Load instruction \p I with uniform pointer - 2099 /// scalar load + broadcast. 2100 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2101 2102 /// Returns whether the instruction is a load or store and will be a emitted 2103 /// as a vector operation. 2104 bool isConsecutiveLoadOrStore(Instruction *I); 2105 2106 /// Create an analysis remark that explains why vectorization failed 2107 /// 2108 /// \p RemarkName is the identifier for the remark. \return the remark object 2109 /// that can be streamed to. 2110 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2111 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2112 RemarkName, TheLoop); 2113 } 2114 2115 /// Map of scalar integer values to the smallest bitwidth they can be legally 2116 /// represented as. The vector equivalents of these values should be truncated 2117 /// to this type. 2118 MapVector<Instruction *, uint64_t> MinBWs; 2119 2120 /// A type representing the costs for instructions if they were to be 2121 /// scalarized rather than vectorized. The entries are Instruction-Cost 2122 /// pairs. 2123 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 2124 2125 /// A set containing all BasicBlocks that are known to present after 2126 /// vectorization as a predicated block. 2127 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2128 2129 /// A map holding scalar costs for different vectorization factors. The 2130 /// presence of a cost for an instruction in the mapping indicates that the 2131 /// instruction will be scalarized when vectorizing with the associated 2132 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2133 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2134 2135 /// Holds the instructions known to be uniform after vectorization. 2136 /// The data is collected per VF. 2137 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2138 2139 /// Holds the instructions known to be scalar after vectorization. 2140 /// The data is collected per VF. 2141 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2142 2143 /// Holds the instructions (address computations) that are forced to be 2144 /// scalarized. 2145 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2146 2147 /// Returns the expected difference in cost from scalarizing the expression 2148 /// feeding a predicated instruction \p PredInst. The instructions to 2149 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2150 /// non-negative return value implies the expression will be scalarized. 2151 /// Currently, only single-use chains are considered for scalarization. 2152 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2153 unsigned VF); 2154 2155 /// Collect the instructions that are uniform after vectorization. An 2156 /// instruction is uniform if we represent it with a single scalar value in 2157 /// the vectorized loop corresponding to each vector iteration. Examples of 2158 /// uniform instructions include pointer operands of consecutive or 2159 /// interleaved memory accesses. Note that although uniformity implies an 2160 /// instruction will be scalar, the reverse is not true. In general, a 2161 /// scalarized instruction will be represented by VF scalar values in the 2162 /// vectorized loop, each corresponding to an iteration of the original 2163 /// scalar loop. 2164 void collectLoopUniforms(unsigned VF); 2165 2166 /// Collect the instructions that are scalar after vectorization. An 2167 /// instruction is scalar if it is known to be uniform or will be scalarized 2168 /// during vectorization. Non-uniform scalarized instructions will be 2169 /// represented by VF values in the vectorized loop, each corresponding to an 2170 /// iteration of the original scalar loop. 2171 void collectLoopScalars(unsigned VF); 2172 2173 /// Keeps cost model vectorization decision and cost for instructions. 2174 /// Right now it is used for memory instructions only. 2175 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 2176 std::pair<InstWidening, unsigned>>; 2177 2178 DecisionList WideningDecisions; 2179 2180 public: 2181 /// The loop that we evaluate. 2182 Loop *TheLoop; 2183 2184 /// Predicated scalar evolution analysis. 2185 PredicatedScalarEvolution &PSE; 2186 2187 /// Loop Info analysis. 2188 LoopInfo *LI; 2189 2190 /// Vectorization legality. 2191 LoopVectorizationLegality *Legal; 2192 2193 /// Vector target information. 2194 const TargetTransformInfo &TTI; 2195 2196 /// Target Library Info. 2197 const TargetLibraryInfo *TLI; 2198 2199 /// Demanded bits analysis. 2200 DemandedBits *DB; 2201 2202 /// Assumption cache. 2203 AssumptionCache *AC; 2204 2205 /// Interface to emit optimization remarks. 2206 OptimizationRemarkEmitter *ORE; 2207 2208 const Function *TheFunction; 2209 2210 /// Loop Vectorize Hint. 2211 const LoopVectorizeHints *Hints; 2212 2213 /// Values to ignore in the cost model. 2214 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2215 2216 /// Values to ignore in the cost model when VF > 1. 2217 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2218 }; 2219 2220 } // end namespace llvm 2221 2222 namespace { 2223 2224 /// \brief This holds vectorization requirements that must be verified late in 2225 /// the process. The requirements are set by legalize and costmodel. Once 2226 /// vectorization has been determined to be possible and profitable the 2227 /// requirements can be verified by looking for metadata or compiler options. 2228 /// For example, some loops require FP commutativity which is only allowed if 2229 /// vectorization is explicitly specified or if the fast-math compiler option 2230 /// has been provided. 2231 /// Late evaluation of these requirements allows helpful diagnostics to be 2232 /// composed that tells the user what need to be done to vectorize the loop. For 2233 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2234 /// evaluation should be used only when diagnostics can generated that can be 2235 /// followed by a non-expert user. 2236 class LoopVectorizationRequirements { 2237 public: 2238 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {} 2239 2240 void addUnsafeAlgebraInst(Instruction *I) { 2241 // First unsafe algebra instruction. 2242 if (!UnsafeAlgebraInst) 2243 UnsafeAlgebraInst = I; 2244 } 2245 2246 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2247 2248 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2249 const char *PassName = Hints.vectorizeAnalysisPassName(); 2250 bool Failed = false; 2251 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2252 ORE.emit([&]() { 2253 return OptimizationRemarkAnalysisFPCommute( 2254 PassName, "CantReorderFPOps", 2255 UnsafeAlgebraInst->getDebugLoc(), 2256 UnsafeAlgebraInst->getParent()) 2257 << "loop not vectorized: cannot prove it is safe to reorder " 2258 "floating-point operations"; 2259 }); 2260 Failed = true; 2261 } 2262 2263 // Test if runtime memcheck thresholds are exceeded. 2264 bool PragmaThresholdReached = 2265 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2266 bool ThresholdReached = 2267 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2268 if ((ThresholdReached && !Hints.allowReordering()) || 2269 PragmaThresholdReached) { 2270 ORE.emit([&]() { 2271 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2272 L->getStartLoc(), 2273 L->getHeader()) 2274 << "loop not vectorized: cannot prove it is safe to reorder " 2275 "memory operations"; 2276 }); 2277 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2278 Failed = true; 2279 } 2280 2281 return Failed; 2282 } 2283 2284 private: 2285 unsigned NumRuntimePointerChecks = 0; 2286 Instruction *UnsafeAlgebraInst = nullptr; 2287 2288 /// Interface to emit optimization remarks. 2289 OptimizationRemarkEmitter &ORE; 2290 }; 2291 2292 } // end anonymous namespace 2293 2294 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2295 if (L.empty()) { 2296 if (!hasCyclesInLoopBody(L)) 2297 V.push_back(&L); 2298 return; 2299 } 2300 for (Loop *InnerL : L) 2301 addAcyclicInnerLoop(*InnerL, V); 2302 } 2303 2304 namespace { 2305 2306 /// The LoopVectorize Pass. 2307 struct LoopVectorize : public FunctionPass { 2308 /// Pass identification, replacement for typeid 2309 static char ID; 2310 2311 LoopVectorizePass Impl; 2312 2313 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2314 : FunctionPass(ID) { 2315 Impl.DisableUnrolling = NoUnrolling; 2316 Impl.AlwaysVectorize = AlwaysVectorize; 2317 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2318 } 2319 2320 bool runOnFunction(Function &F) override { 2321 if (skipFunction(F)) 2322 return false; 2323 2324 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2325 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2326 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2327 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2328 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2329 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2330 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2331 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2332 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2333 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2334 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2335 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2336 2337 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2338 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2339 2340 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2341 GetLAA, *ORE); 2342 } 2343 2344 void getAnalysisUsage(AnalysisUsage &AU) const override { 2345 AU.addRequired<AssumptionCacheTracker>(); 2346 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2347 AU.addRequired<DominatorTreeWrapperPass>(); 2348 AU.addRequired<LoopInfoWrapperPass>(); 2349 AU.addRequired<ScalarEvolutionWrapperPass>(); 2350 AU.addRequired<TargetTransformInfoWrapperPass>(); 2351 AU.addRequired<AAResultsWrapperPass>(); 2352 AU.addRequired<LoopAccessLegacyAnalysis>(); 2353 AU.addRequired<DemandedBitsWrapperPass>(); 2354 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2355 AU.addPreserved<LoopInfoWrapperPass>(); 2356 AU.addPreserved<DominatorTreeWrapperPass>(); 2357 AU.addPreserved<BasicAAWrapperPass>(); 2358 AU.addPreserved<GlobalsAAWrapperPass>(); 2359 } 2360 }; 2361 2362 } // end anonymous namespace 2363 2364 //===----------------------------------------------------------------------===// 2365 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2366 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2367 //===----------------------------------------------------------------------===// 2368 2369 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2370 // We need to place the broadcast of invariant variables outside the loop. 2371 Instruction *Instr = dyn_cast<Instruction>(V); 2372 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2373 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2374 2375 // Place the code for broadcasting invariant variables in the new preheader. 2376 IRBuilder<>::InsertPointGuard Guard(Builder); 2377 if (Invariant) 2378 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2379 2380 // Broadcast the scalar into all locations in the vector. 2381 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2382 2383 return Shuf; 2384 } 2385 2386 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2387 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2388 Value *Start = II.getStartValue(); 2389 2390 // Construct the initial value of the vector IV in the vector loop preheader 2391 auto CurrIP = Builder.saveIP(); 2392 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2393 if (isa<TruncInst>(EntryVal)) { 2394 assert(Start->getType()->isIntegerTy() && 2395 "Truncation requires an integer type"); 2396 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2397 Step = Builder.CreateTrunc(Step, TruncType); 2398 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2399 } 2400 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2401 Value *SteppedStart = 2402 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2403 2404 // We create vector phi nodes for both integer and floating-point induction 2405 // variables. Here, we determine the kind of arithmetic we will perform. 2406 Instruction::BinaryOps AddOp; 2407 Instruction::BinaryOps MulOp; 2408 if (Step->getType()->isIntegerTy()) { 2409 AddOp = Instruction::Add; 2410 MulOp = Instruction::Mul; 2411 } else { 2412 AddOp = II.getInductionOpcode(); 2413 MulOp = Instruction::FMul; 2414 } 2415 2416 // Multiply the vectorization factor by the step using integer or 2417 // floating-point arithmetic as appropriate. 2418 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2419 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2420 2421 // Create a vector splat to use in the induction update. 2422 // 2423 // FIXME: If the step is non-constant, we create the vector splat with 2424 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2425 // handle a constant vector splat. 2426 Value *SplatVF = isa<Constant>(Mul) 2427 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2428 : Builder.CreateVectorSplat(VF, Mul); 2429 Builder.restoreIP(CurrIP); 2430 2431 // We may need to add the step a number of times, depending on the unroll 2432 // factor. The last of those goes into the PHI. 2433 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2434 &*LoopVectorBody->getFirstInsertionPt()); 2435 Instruction *LastInduction = VecInd; 2436 for (unsigned Part = 0; Part < UF; ++Part) { 2437 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2438 recordVectorLoopValueForInductionCast(II, LastInduction, Part); 2439 if (isa<TruncInst>(EntryVal)) 2440 addMetadata(LastInduction, EntryVal); 2441 LastInduction = cast<Instruction>(addFastMathFlag( 2442 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2443 } 2444 2445 // Move the last step to the end of the latch block. This ensures consistent 2446 // placement of all induction updates. 2447 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2448 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2449 auto *ICmp = cast<Instruction>(Br->getCondition()); 2450 LastInduction->moveBefore(ICmp); 2451 LastInduction->setName("vec.ind.next"); 2452 2453 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2454 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2455 } 2456 2457 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2458 return Cost->isScalarAfterVectorization(I, VF) || 2459 Cost->isProfitableToScalarize(I, VF); 2460 } 2461 2462 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2463 if (shouldScalarizeInstruction(IV)) 2464 return true; 2465 auto isScalarInst = [&](User *U) -> bool { 2466 auto *I = cast<Instruction>(U); 2467 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2468 }; 2469 return llvm::any_of(IV->users(), isScalarInst); 2470 } 2471 2472 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2473 const InductionDescriptor &ID, Value *VectorLoopVal, unsigned Part, 2474 unsigned Lane) { 2475 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2476 if (Casts.empty()) 2477 return; 2478 // Only the first Cast instruction in the Casts vector is of interest. 2479 // The rest of the Casts (if exist) have no uses outside the 2480 // induction update chain itself. 2481 Instruction *CastInst = *Casts.begin(); 2482 if (Lane < UINT_MAX) 2483 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 2484 else 2485 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 2486 } 2487 2488 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2489 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2490 "Primary induction variable must have an integer type"); 2491 2492 auto II = Legal->getInductionVars()->find(IV); 2493 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2494 2495 auto ID = II->second; 2496 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2497 2498 // The scalar value to broadcast. This will be derived from the canonical 2499 // induction variable. 2500 Value *ScalarIV = nullptr; 2501 2502 // The value from the original loop to which we are mapping the new induction 2503 // variable. 2504 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2505 2506 // True if we have vectorized the induction variable. 2507 auto VectorizedIV = false; 2508 2509 // Determine if we want a scalar version of the induction variable. This is 2510 // true if the induction variable itself is not widened, or if it has at 2511 // least one user in the loop that is not widened. 2512 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2513 2514 // Generate code for the induction step. Note that induction steps are 2515 // required to be loop-invariant 2516 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2517 "Induction step should be loop invariant"); 2518 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2519 Value *Step = nullptr; 2520 if (PSE.getSE()->isSCEVable(IV->getType())) { 2521 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2522 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2523 LoopVectorPreHeader->getTerminator()); 2524 } else { 2525 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2526 } 2527 2528 // Try to create a new independent vector induction variable. If we can't 2529 // create the phi node, we will splat the scalar induction variable in each 2530 // loop iteration. 2531 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2532 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2533 VectorizedIV = true; 2534 } 2535 2536 // If we haven't yet vectorized the induction variable, or if we will create 2537 // a scalar one, we need to define the scalar induction variable and step 2538 // values. If we were given a truncation type, truncate the canonical 2539 // induction variable and step. Otherwise, derive these values from the 2540 // induction descriptor. 2541 if (!VectorizedIV || NeedsScalarIV) { 2542 ScalarIV = Induction; 2543 if (IV != OldInduction) { 2544 ScalarIV = IV->getType()->isIntegerTy() 2545 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2546 : Builder.CreateCast(Instruction::SIToFP, Induction, 2547 IV->getType()); 2548 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2549 ScalarIV->setName("offset.idx"); 2550 } 2551 if (Trunc) { 2552 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2553 assert(Step->getType()->isIntegerTy() && 2554 "Truncation requires an integer step"); 2555 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2556 Step = Builder.CreateTrunc(Step, TruncType); 2557 } 2558 } 2559 2560 // If we haven't yet vectorized the induction variable, splat the scalar 2561 // induction variable, and build the necessary step vectors. 2562 if (!VectorizedIV) { 2563 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2564 for (unsigned Part = 0; Part < UF; ++Part) { 2565 Value *EntryPart = 2566 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2567 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2568 recordVectorLoopValueForInductionCast(ID, EntryPart, Part); 2569 if (Trunc) 2570 addMetadata(EntryPart, Trunc); 2571 } 2572 } 2573 2574 // If an induction variable is only used for counting loop iterations or 2575 // calculating addresses, it doesn't need to be widened. Create scalar steps 2576 // that can be used by instructions we will later scalarize. Note that the 2577 // addition of the scalar steps will not increase the number of instructions 2578 // in the loop in the common case prior to InstCombine. We will be trading 2579 // one vector extract for each scalar step. 2580 if (NeedsScalarIV) 2581 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2582 } 2583 2584 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2585 Instruction::BinaryOps BinOp) { 2586 // Create and check the types. 2587 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2588 int VLen = Val->getType()->getVectorNumElements(); 2589 2590 Type *STy = Val->getType()->getScalarType(); 2591 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2592 "Induction Step must be an integer or FP"); 2593 assert(Step->getType() == STy && "Step has wrong type"); 2594 2595 SmallVector<Constant *, 8> Indices; 2596 2597 if (STy->isIntegerTy()) { 2598 // Create a vector of consecutive numbers from zero to VF. 2599 for (int i = 0; i < VLen; ++i) 2600 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2601 2602 // Add the consecutive indices to the vector value. 2603 Constant *Cv = ConstantVector::get(Indices); 2604 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2605 Step = Builder.CreateVectorSplat(VLen, Step); 2606 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2607 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2608 // which can be found from the original scalar operations. 2609 Step = Builder.CreateMul(Cv, Step); 2610 return Builder.CreateAdd(Val, Step, "induction"); 2611 } 2612 2613 // Floating point induction. 2614 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2615 "Binary Opcode should be specified for FP induction"); 2616 // Create a vector of consecutive numbers from zero to VF. 2617 for (int i = 0; i < VLen; ++i) 2618 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2619 2620 // Add the consecutive indices to the vector value. 2621 Constant *Cv = ConstantVector::get(Indices); 2622 2623 Step = Builder.CreateVectorSplat(VLen, Step); 2624 2625 // Floating point operations had to be 'fast' to enable the induction. 2626 FastMathFlags Flags; 2627 Flags.setFast(); 2628 2629 Value *MulOp = Builder.CreateFMul(Cv, Step); 2630 if (isa<Instruction>(MulOp)) 2631 // Have to check, MulOp may be a constant 2632 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2633 2634 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2635 if (isa<Instruction>(BOp)) 2636 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2637 return BOp; 2638 } 2639 2640 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2641 Value *EntryVal, 2642 const InductionDescriptor &ID) { 2643 // We shouldn't have to build scalar steps if we aren't vectorizing. 2644 assert(VF > 1 && "VF should be greater than one"); 2645 2646 // Get the value type and ensure it and the step have the same integer type. 2647 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2648 assert(ScalarIVTy == Step->getType() && 2649 "Val and Step should have the same type"); 2650 2651 // We build scalar steps for both integer and floating-point induction 2652 // variables. Here, we determine the kind of arithmetic we will perform. 2653 Instruction::BinaryOps AddOp; 2654 Instruction::BinaryOps MulOp; 2655 if (ScalarIVTy->isIntegerTy()) { 2656 AddOp = Instruction::Add; 2657 MulOp = Instruction::Mul; 2658 } else { 2659 AddOp = ID.getInductionOpcode(); 2660 MulOp = Instruction::FMul; 2661 } 2662 2663 // Determine the number of scalars we need to generate for each unroll 2664 // iteration. If EntryVal is uniform, we only need to generate the first 2665 // lane. Otherwise, we generate all VF values. 2666 unsigned Lanes = 2667 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2668 : VF; 2669 // Compute the scalar steps and save the results in VectorLoopValueMap. 2670 for (unsigned Part = 0; Part < UF; ++Part) { 2671 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2672 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2673 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2674 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2675 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2676 recordVectorLoopValueForInductionCast(ID, Add, Part, Lane); 2677 } 2678 } 2679 } 2680 2681 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2682 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2683 ValueToValueMap(); 2684 2685 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2686 if (Stride == 1 || Stride == -1) 2687 return Stride; 2688 return 0; 2689 } 2690 2691 bool LoopVectorizationLegality::isUniform(Value *V) { 2692 return LAI->isUniform(V); 2693 } 2694 2695 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2696 assert(V != Induction && "The new induction variable should not be used."); 2697 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2698 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2699 2700 // If we have a stride that is replaced by one, do it here. 2701 if (Legal->hasStride(V)) 2702 V = ConstantInt::get(V->getType(), 1); 2703 2704 // If we have a vector mapped to this value, return it. 2705 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2706 return VectorLoopValueMap.getVectorValue(V, Part); 2707 2708 // If the value has not been vectorized, check if it has been scalarized 2709 // instead. If it has been scalarized, and we actually need the value in 2710 // vector form, we will construct the vector values on demand. 2711 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2712 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2713 2714 // If we've scalarized a value, that value should be an instruction. 2715 auto *I = cast<Instruction>(V); 2716 2717 // If we aren't vectorizing, we can just copy the scalar map values over to 2718 // the vector map. 2719 if (VF == 1) { 2720 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2721 return ScalarValue; 2722 } 2723 2724 // Get the last scalar instruction we generated for V and Part. If the value 2725 // is known to be uniform after vectorization, this corresponds to lane zero 2726 // of the Part unroll iteration. Otherwise, the last instruction is the one 2727 // we created for the last vector lane of the Part unroll iteration. 2728 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2729 auto *LastInst = cast<Instruction>( 2730 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2731 2732 // Set the insert point after the last scalarized instruction. This ensures 2733 // the insertelement sequence will directly follow the scalar definitions. 2734 auto OldIP = Builder.saveIP(); 2735 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2736 Builder.SetInsertPoint(&*NewIP); 2737 2738 // However, if we are vectorizing, we need to construct the vector values. 2739 // If the value is known to be uniform after vectorization, we can just 2740 // broadcast the scalar value corresponding to lane zero for each unroll 2741 // iteration. Otherwise, we construct the vector values using insertelement 2742 // instructions. Since the resulting vectors are stored in 2743 // VectorLoopValueMap, we will only generate the insertelements once. 2744 Value *VectorValue = nullptr; 2745 if (Cost->isUniformAfterVectorization(I, VF)) { 2746 VectorValue = getBroadcastInstrs(ScalarValue); 2747 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2748 } else { 2749 // Initialize packing with insertelements to start from undef. 2750 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2751 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2752 for (unsigned Lane = 0; Lane < VF; ++Lane) 2753 packScalarIntoVectorValue(V, {Part, Lane}); 2754 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2755 } 2756 Builder.restoreIP(OldIP); 2757 return VectorValue; 2758 } 2759 2760 // If this scalar is unknown, assume that it is a constant or that it is 2761 // loop invariant. Broadcast V and save the value for future uses. 2762 Value *B = getBroadcastInstrs(V); 2763 VectorLoopValueMap.setVectorValue(V, Part, B); 2764 return B; 2765 } 2766 2767 Value * 2768 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2769 const VPIteration &Instance) { 2770 // If the value is not an instruction contained in the loop, it should 2771 // already be scalar. 2772 if (OrigLoop->isLoopInvariant(V)) 2773 return V; 2774 2775 assert(Instance.Lane > 0 2776 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2777 : true && "Uniform values only have lane zero"); 2778 2779 // If the value from the original loop has not been vectorized, it is 2780 // represented by UF x VF scalar values in the new loop. Return the requested 2781 // scalar value. 2782 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2783 return VectorLoopValueMap.getScalarValue(V, Instance); 2784 2785 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2786 // for the given unroll part. If this entry is not a vector type (i.e., the 2787 // vectorization factor is one), there is no need to generate an 2788 // extractelement instruction. 2789 auto *U = getOrCreateVectorValue(V, Instance.Part); 2790 if (!U->getType()->isVectorTy()) { 2791 assert(VF == 1 && "Value not scalarized has non-vector type"); 2792 return U; 2793 } 2794 2795 // Otherwise, the value from the original loop has been vectorized and is 2796 // represented by UF vector values. Extract and return the requested scalar 2797 // value from the appropriate vector lane. 2798 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2799 } 2800 2801 void InnerLoopVectorizer::packScalarIntoVectorValue( 2802 Value *V, const VPIteration &Instance) { 2803 assert(V != Induction && "The new induction variable should not be used."); 2804 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2805 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2806 2807 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2808 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2809 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2810 Builder.getInt32(Instance.Lane)); 2811 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2812 } 2813 2814 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2815 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2816 SmallVector<Constant *, 8> ShuffleMask; 2817 for (unsigned i = 0; i < VF; ++i) 2818 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2819 2820 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2821 ConstantVector::get(ShuffleMask), 2822 "reverse"); 2823 } 2824 2825 // Try to vectorize the interleave group that \p Instr belongs to. 2826 // 2827 // E.g. Translate following interleaved load group (factor = 3): 2828 // for (i = 0; i < N; i+=3) { 2829 // R = Pic[i]; // Member of index 0 2830 // G = Pic[i+1]; // Member of index 1 2831 // B = Pic[i+2]; // Member of index 2 2832 // ... // do something to R, G, B 2833 // } 2834 // To: 2835 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2836 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2837 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2838 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2839 // 2840 // Or translate following interleaved store group (factor = 3): 2841 // for (i = 0; i < N; i+=3) { 2842 // ... do something to R, G, B 2843 // Pic[i] = R; // Member of index 0 2844 // Pic[i+1] = G; // Member of index 1 2845 // Pic[i+2] = B; // Member of index 2 2846 // } 2847 // To: 2848 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2849 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2850 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2851 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2852 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2853 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2854 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2855 assert(Group && "Fail to get an interleaved access group."); 2856 2857 // Skip if current instruction is not the insert position. 2858 if (Instr != Group->getInsertPos()) 2859 return; 2860 2861 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2862 Value *Ptr = getPointerOperand(Instr); 2863 2864 // Prepare for the vector type of the interleaved load/store. 2865 Type *ScalarTy = getMemInstValueType(Instr); 2866 unsigned InterleaveFactor = Group->getFactor(); 2867 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2868 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2869 2870 // Prepare for the new pointers. 2871 setDebugLocFromInst(Builder, Ptr); 2872 SmallVector<Value *, 2> NewPtrs; 2873 unsigned Index = Group->getIndex(Instr); 2874 2875 // If the group is reverse, adjust the index to refer to the last vector lane 2876 // instead of the first. We adjust the index from the first vector lane, 2877 // rather than directly getting the pointer for lane VF - 1, because the 2878 // pointer operand of the interleaved access is supposed to be uniform. For 2879 // uniform instructions, we're only required to generate a value for the 2880 // first vector lane in each unroll iteration. 2881 if (Group->isReverse()) 2882 Index += (VF - 1) * Group->getFactor(); 2883 2884 for (unsigned Part = 0; Part < UF; Part++) { 2885 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2886 2887 // Notice current instruction could be any index. Need to adjust the address 2888 // to the member of index 0. 2889 // 2890 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2891 // b = A[i]; // Member of index 0 2892 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2893 // 2894 // E.g. A[i+1] = a; // Member of index 1 2895 // A[i] = b; // Member of index 0 2896 // A[i+2] = c; // Member of index 2 (Current instruction) 2897 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2898 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2899 2900 // Cast to the vector pointer type. 2901 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2902 } 2903 2904 setDebugLocFromInst(Builder, Instr); 2905 Value *UndefVec = UndefValue::get(VecTy); 2906 2907 // Vectorize the interleaved load group. 2908 if (isa<LoadInst>(Instr)) { 2909 // For each unroll part, create a wide load for the group. 2910 SmallVector<Value *, 2> NewLoads; 2911 for (unsigned Part = 0; Part < UF; Part++) { 2912 auto *NewLoad = Builder.CreateAlignedLoad( 2913 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2914 Group->addMetadata(NewLoad); 2915 NewLoads.push_back(NewLoad); 2916 } 2917 2918 // For each member in the group, shuffle out the appropriate data from the 2919 // wide loads. 2920 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2921 Instruction *Member = Group->getMember(I); 2922 2923 // Skip the gaps in the group. 2924 if (!Member) 2925 continue; 2926 2927 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2928 for (unsigned Part = 0; Part < UF; Part++) { 2929 Value *StridedVec = Builder.CreateShuffleVector( 2930 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2931 2932 // If this member has different type, cast the result type. 2933 if (Member->getType() != ScalarTy) { 2934 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2935 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2936 } 2937 2938 if (Group->isReverse()) 2939 StridedVec = reverseVector(StridedVec); 2940 2941 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2942 } 2943 } 2944 return; 2945 } 2946 2947 // The sub vector type for current instruction. 2948 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2949 2950 // Vectorize the interleaved store group. 2951 for (unsigned Part = 0; Part < UF; Part++) { 2952 // Collect the stored vector from each member. 2953 SmallVector<Value *, 4> StoredVecs; 2954 for (unsigned i = 0; i < InterleaveFactor; i++) { 2955 // Interleaved store group doesn't allow a gap, so each index has a member 2956 Instruction *Member = Group->getMember(i); 2957 assert(Member && "Fail to get a member from an interleaved store group"); 2958 2959 Value *StoredVec = getOrCreateVectorValue( 2960 cast<StoreInst>(Member)->getValueOperand(), Part); 2961 if (Group->isReverse()) 2962 StoredVec = reverseVector(StoredVec); 2963 2964 // If this member has different type, cast it to a unified type. 2965 2966 if (StoredVec->getType() != SubVT) 2967 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2968 2969 StoredVecs.push_back(StoredVec); 2970 } 2971 2972 // Concatenate all vectors into a wide vector. 2973 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2974 2975 // Interleave the elements in the wide vector. 2976 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2977 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2978 "interleaved.vec"); 2979 2980 Instruction *NewStoreInstr = 2981 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2982 2983 Group->addMetadata(NewStoreInstr); 2984 } 2985 } 2986 2987 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2988 VectorParts *BlockInMask) { 2989 // Attempt to issue a wide load. 2990 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2991 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2992 2993 assert((LI || SI) && "Invalid Load/Store instruction"); 2994 2995 LoopVectorizationCostModel::InstWidening Decision = 2996 Cost->getWideningDecision(Instr, VF); 2997 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 2998 "CM decision should be taken at this point"); 2999 if (Decision == LoopVectorizationCostModel::CM_Interleave) 3000 return vectorizeInterleaveGroup(Instr); 3001 3002 Type *ScalarDataTy = getMemInstValueType(Instr); 3003 Type *DataTy = VectorType::get(ScalarDataTy, VF); 3004 Value *Ptr = getPointerOperand(Instr); 3005 unsigned Alignment = getMemInstAlignment(Instr); 3006 // An alignment of 0 means target abi alignment. We need to use the scalar's 3007 // target abi alignment in such a case. 3008 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3009 if (!Alignment) 3010 Alignment = DL.getABITypeAlignment(ScalarDataTy); 3011 unsigned AddressSpace = getMemInstAddressSpace(Instr); 3012 3013 // Determine if the pointer operand of the access is either consecutive or 3014 // reverse consecutive. 3015 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 3016 bool ConsecutiveStride = 3017 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 3018 bool CreateGatherScatter = 3019 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3020 3021 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3022 // gather/scatter. Otherwise Decision should have been to Scalarize. 3023 assert((ConsecutiveStride || CreateGatherScatter) && 3024 "The instruction should be scalarized"); 3025 3026 // Handle consecutive loads/stores. 3027 if (ConsecutiveStride) 3028 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 3029 3030 VectorParts Mask; 3031 bool isMaskRequired = BlockInMask; 3032 if (isMaskRequired) 3033 Mask = *BlockInMask; 3034 3035 // Handle Stores: 3036 if (SI) { 3037 assert(!Legal->isUniform(SI->getPointerOperand()) && 3038 "We do not allow storing to uniform addresses"); 3039 setDebugLocFromInst(Builder, SI); 3040 3041 for (unsigned Part = 0; Part < UF; ++Part) { 3042 Instruction *NewSI = nullptr; 3043 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3044 if (CreateGatherScatter) { 3045 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3046 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3047 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3048 MaskPart); 3049 } else { 3050 // Calculate the pointer for the specific unroll-part. 3051 Value *PartPtr = 3052 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3053 3054 if (Reverse) { 3055 // If we store to reverse consecutive memory locations, then we need 3056 // to reverse the order of elements in the stored value. 3057 StoredVal = reverseVector(StoredVal); 3058 // We don't want to update the value in the map as it might be used in 3059 // another expression. So don't call resetVectorValue(StoredVal). 3060 3061 // If the address is consecutive but reversed, then the 3062 // wide store needs to start at the last vector element. 3063 PartPtr = 3064 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3065 PartPtr = 3066 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3067 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3068 Mask[Part] = reverseVector(Mask[Part]); 3069 } 3070 3071 Value *VecPtr = 3072 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3073 3074 if (isMaskRequired) 3075 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3076 Mask[Part]); 3077 else 3078 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3079 } 3080 addMetadata(NewSI, SI); 3081 } 3082 return; 3083 } 3084 3085 // Handle loads. 3086 assert(LI && "Must have a load instruction"); 3087 setDebugLocFromInst(Builder, LI); 3088 for (unsigned Part = 0; Part < UF; ++Part) { 3089 Value *NewLI; 3090 if (CreateGatherScatter) { 3091 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr; 3092 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3093 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3094 nullptr, "wide.masked.gather"); 3095 addMetadata(NewLI, LI); 3096 } else { 3097 // Calculate the pointer for the specific unroll-part. 3098 Value *PartPtr = 3099 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3100 3101 if (Reverse) { 3102 // If the address is consecutive but reversed, then the 3103 // wide load needs to start at the last vector element. 3104 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3105 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3106 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 3107 Mask[Part] = reverseVector(Mask[Part]); 3108 } 3109 3110 Value *VecPtr = 3111 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3112 if (isMaskRequired) 3113 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3114 UndefValue::get(DataTy), 3115 "wide.masked.load"); 3116 else 3117 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3118 3119 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3120 addMetadata(NewLI, LI); 3121 if (Reverse) 3122 NewLI = reverseVector(NewLI); 3123 } 3124 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3125 } 3126 } 3127 3128 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3129 const VPIteration &Instance, 3130 bool IfPredicateInstr) { 3131 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3132 3133 setDebugLocFromInst(Builder, Instr); 3134 3135 // Does this instruction return a value ? 3136 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3137 3138 Instruction *Cloned = Instr->clone(); 3139 if (!IsVoidRetTy) 3140 Cloned->setName(Instr->getName() + ".cloned"); 3141 3142 // Replace the operands of the cloned instructions with their scalar 3143 // equivalents in the new loop. 3144 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3145 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 3146 Cloned->setOperand(op, NewOp); 3147 } 3148 addNewMetadata(Cloned, Instr); 3149 3150 // Place the cloned scalar in the new loop. 3151 Builder.Insert(Cloned); 3152 3153 // Add the cloned scalar to the scalar map entry. 3154 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 3155 3156 // If we just cloned a new assumption, add it the assumption cache. 3157 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3158 if (II->getIntrinsicID() == Intrinsic::assume) 3159 AC->registerAssumption(II); 3160 3161 // End if-block. 3162 if (IfPredicateInstr) 3163 PredicatedInstructions.push_back(Cloned); 3164 } 3165 3166 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3167 Value *End, Value *Step, 3168 Instruction *DL) { 3169 BasicBlock *Header = L->getHeader(); 3170 BasicBlock *Latch = L->getLoopLatch(); 3171 // As we're just creating this loop, it's possible no latch exists 3172 // yet. If so, use the header as this will be a single block loop. 3173 if (!Latch) 3174 Latch = Header; 3175 3176 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3177 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3178 setDebugLocFromInst(Builder, OldInst); 3179 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3180 3181 Builder.SetInsertPoint(Latch->getTerminator()); 3182 setDebugLocFromInst(Builder, OldInst); 3183 3184 // Create i+1 and fill the PHINode. 3185 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3186 Induction->addIncoming(Start, L->getLoopPreheader()); 3187 Induction->addIncoming(Next, Latch); 3188 // Create the compare. 3189 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3190 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3191 3192 // Now we have two terminators. Remove the old one from the block. 3193 Latch->getTerminator()->eraseFromParent(); 3194 3195 return Induction; 3196 } 3197 3198 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3199 if (TripCount) 3200 return TripCount; 3201 3202 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3203 // Find the loop boundaries. 3204 ScalarEvolution *SE = PSE.getSE(); 3205 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3206 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3207 "Invalid loop count"); 3208 3209 Type *IdxTy = Legal->getWidestInductionType(); 3210 3211 // The exit count might have the type of i64 while the phi is i32. This can 3212 // happen if we have an induction variable that is sign extended before the 3213 // compare. The only way that we get a backedge taken count is that the 3214 // induction variable was signed and as such will not overflow. In such a case 3215 // truncation is legal. 3216 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3217 IdxTy->getPrimitiveSizeInBits()) 3218 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3219 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3220 3221 // Get the total trip count from the count by adding 1. 3222 const SCEV *ExitCount = SE->getAddExpr( 3223 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3224 3225 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3226 3227 // Expand the trip count and place the new instructions in the preheader. 3228 // Notice that the pre-header does not change, only the loop body. 3229 SCEVExpander Exp(*SE, DL, "induction"); 3230 3231 // Count holds the overall loop count (N). 3232 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3233 L->getLoopPreheader()->getTerminator()); 3234 3235 if (TripCount->getType()->isPointerTy()) 3236 TripCount = 3237 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3238 L->getLoopPreheader()->getTerminator()); 3239 3240 return TripCount; 3241 } 3242 3243 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3244 if (VectorTripCount) 3245 return VectorTripCount; 3246 3247 Value *TC = getOrCreateTripCount(L); 3248 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3249 3250 // Now we need to generate the expression for the part of the loop that the 3251 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3252 // iterations are not required for correctness, or N - Step, otherwise. Step 3253 // is equal to the vectorization factor (number of SIMD elements) times the 3254 // unroll factor (number of SIMD instructions). 3255 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3256 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3257 3258 // If there is a non-reversed interleaved group that may speculatively access 3259 // memory out-of-bounds, we need to ensure that there will be at least one 3260 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3261 // the trip count, we set the remainder to be equal to the step. If the step 3262 // does not evenly divide the trip count, no adjustment is necessary since 3263 // there will already be scalar iterations. Note that the minimum iterations 3264 // check ensures that N >= Step. 3265 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3266 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3267 R = Builder.CreateSelect(IsZero, Step, R); 3268 } 3269 3270 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3271 3272 return VectorTripCount; 3273 } 3274 3275 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3276 const DataLayout &DL) { 3277 // Verify that V is a vector type with same number of elements as DstVTy. 3278 unsigned VF = DstVTy->getNumElements(); 3279 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 3280 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3281 Type *SrcElemTy = SrcVecTy->getElementType(); 3282 Type *DstElemTy = DstVTy->getElementType(); 3283 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3284 "Vector elements must have same size"); 3285 3286 // Do a direct cast if element types are castable. 3287 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3288 return Builder.CreateBitOrPointerCast(V, DstVTy); 3289 } 3290 // V cannot be directly casted to desired vector type. 3291 // May happen when V is a floating point vector but DstVTy is a vector of 3292 // pointers or vice-versa. Handle this using a two-step bitcast using an 3293 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3294 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3295 "Only one type should be a pointer type"); 3296 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3297 "Only one type should be a floating point type"); 3298 Type *IntTy = 3299 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3300 VectorType *VecIntTy = VectorType::get(IntTy, VF); 3301 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3302 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 3303 } 3304 3305 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3306 BasicBlock *Bypass) { 3307 Value *Count = getOrCreateTripCount(L); 3308 BasicBlock *BB = L->getLoopPreheader(); 3309 IRBuilder<> Builder(BB->getTerminator()); 3310 3311 // Generate code to check if the loop's trip count is less than VF * UF, or 3312 // equal to it in case a scalar epilogue is required; this implies that the 3313 // vector trip count is zero. This check also covers the case where adding one 3314 // to the backedge-taken count overflowed leading to an incorrect trip count 3315 // of zero. In this case we will also jump to the scalar loop. 3316 auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3317 : ICmpInst::ICMP_ULT; 3318 Value *CheckMinIters = Builder.CreateICmp( 3319 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3320 3321 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3322 // Update dominator tree immediately if the generated block is a 3323 // LoopBypassBlock because SCEV expansions to generate loop bypass 3324 // checks may query it before the current function is finished. 3325 DT->addNewBlock(NewBB, BB); 3326 if (L->getParentLoop()) 3327 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3328 ReplaceInstWithInst(BB->getTerminator(), 3329 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3330 LoopBypassBlocks.push_back(BB); 3331 } 3332 3333 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3334 BasicBlock *BB = L->getLoopPreheader(); 3335 3336 // Generate the code to check that the SCEV assumptions that we made. 3337 // We want the new basic block to start at the first instruction in a 3338 // sequence of instructions that form a check. 3339 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3340 "scev.check"); 3341 Value *SCEVCheck = 3342 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3343 3344 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3345 if (C->isZero()) 3346 return; 3347 3348 // Create a new block containing the stride check. 3349 BB->setName("vector.scevcheck"); 3350 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3351 // Update dominator tree immediately if the generated block is a 3352 // LoopBypassBlock because SCEV expansions to generate loop bypass 3353 // checks may query it before the current function is finished. 3354 DT->addNewBlock(NewBB, BB); 3355 if (L->getParentLoop()) 3356 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3357 ReplaceInstWithInst(BB->getTerminator(), 3358 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3359 LoopBypassBlocks.push_back(BB); 3360 AddedSafetyChecks = true; 3361 } 3362 3363 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3364 BasicBlock *BB = L->getLoopPreheader(); 3365 3366 // Generate the code that checks in runtime if arrays overlap. We put the 3367 // checks into a separate block to make the more common case of few elements 3368 // faster. 3369 Instruction *FirstCheckInst; 3370 Instruction *MemRuntimeCheck; 3371 std::tie(FirstCheckInst, MemRuntimeCheck) = 3372 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3373 if (!MemRuntimeCheck) 3374 return; 3375 3376 // Create a new block containing the memory check. 3377 BB->setName("vector.memcheck"); 3378 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3379 // Update dominator tree immediately if the generated block is a 3380 // LoopBypassBlock because SCEV expansions to generate loop bypass 3381 // checks may query it before the current function is finished. 3382 DT->addNewBlock(NewBB, BB); 3383 if (L->getParentLoop()) 3384 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3385 ReplaceInstWithInst(BB->getTerminator(), 3386 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3387 LoopBypassBlocks.push_back(BB); 3388 AddedSafetyChecks = true; 3389 3390 // We currently don't use LoopVersioning for the actual loop cloning but we 3391 // still use it to add the noalias metadata. 3392 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3393 PSE.getSE()); 3394 LVer->prepareNoAliasMetadata(); 3395 } 3396 3397 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3398 /* 3399 In this function we generate a new loop. The new loop will contain 3400 the vectorized instructions while the old loop will continue to run the 3401 scalar remainder. 3402 3403 [ ] <-- loop iteration number check. 3404 / | 3405 / v 3406 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3407 | / | 3408 | / v 3409 || [ ] <-- vector pre header. 3410 |/ | 3411 | v 3412 | [ ] \ 3413 | [ ]_| <-- vector loop. 3414 | | 3415 | v 3416 | -[ ] <--- middle-block. 3417 | / | 3418 | / v 3419 -|- >[ ] <--- new preheader. 3420 | | 3421 | v 3422 | [ ] \ 3423 | [ ]_| <-- old scalar loop to handle remainder. 3424 \ | 3425 \ v 3426 >[ ] <-- exit block. 3427 ... 3428 */ 3429 3430 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3431 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3432 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3433 assert(VectorPH && "Invalid loop structure"); 3434 assert(ExitBlock && "Must have an exit block"); 3435 3436 // Some loops have a single integer induction variable, while other loops 3437 // don't. One example is c++ iterators that often have multiple pointer 3438 // induction variables. In the code below we also support a case where we 3439 // don't have a single induction variable. 3440 // 3441 // We try to obtain an induction variable from the original loop as hard 3442 // as possible. However if we don't find one that: 3443 // - is an integer 3444 // - counts from zero, stepping by one 3445 // - is the size of the widest induction variable type 3446 // then we create a new one. 3447 OldInduction = Legal->getPrimaryInduction(); 3448 Type *IdxTy = Legal->getWidestInductionType(); 3449 3450 // Split the single block loop into the two loop structure described above. 3451 BasicBlock *VecBody = 3452 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3453 BasicBlock *MiddleBlock = 3454 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3455 BasicBlock *ScalarPH = 3456 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3457 3458 // Create and register the new vector loop. 3459 Loop *Lp = LI->AllocateLoop(); 3460 Loop *ParentLoop = OrigLoop->getParentLoop(); 3461 3462 // Insert the new loop into the loop nest and register the new basic blocks 3463 // before calling any utilities such as SCEV that require valid LoopInfo. 3464 if (ParentLoop) { 3465 ParentLoop->addChildLoop(Lp); 3466 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3467 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3468 } else { 3469 LI->addTopLevelLoop(Lp); 3470 } 3471 Lp->addBasicBlockToLoop(VecBody, *LI); 3472 3473 // Find the loop boundaries. 3474 Value *Count = getOrCreateTripCount(Lp); 3475 3476 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3477 3478 // Now, compare the new count to zero. If it is zero skip the vector loop and 3479 // jump to the scalar loop. This check also covers the case where the 3480 // backedge-taken count is uint##_max: adding one to it will overflow leading 3481 // to an incorrect trip count of zero. In this (rare) case we will also jump 3482 // to the scalar loop. 3483 emitMinimumIterationCountCheck(Lp, ScalarPH); 3484 3485 // Generate the code to check any assumptions that we've made for SCEV 3486 // expressions. 3487 emitSCEVChecks(Lp, ScalarPH); 3488 3489 // Generate the code that checks in runtime if arrays overlap. We put the 3490 // checks into a separate block to make the more common case of few elements 3491 // faster. 3492 emitMemRuntimeChecks(Lp, ScalarPH); 3493 3494 // Generate the induction variable. 3495 // The loop step is equal to the vectorization factor (num of SIMD elements) 3496 // times the unroll factor (num of SIMD instructions). 3497 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3498 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3499 Induction = 3500 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3501 getDebugLocFromInstOrOperands(OldInduction)); 3502 3503 // We are going to resume the execution of the scalar loop. 3504 // Go over all of the induction variables that we found and fix the 3505 // PHIs that are left in the scalar version of the loop. 3506 // The starting values of PHI nodes depend on the counter of the last 3507 // iteration in the vectorized loop. 3508 // If we come from a bypass edge then we need to start from the original 3509 // start value. 3510 3511 // This variable saves the new starting index for the scalar loop. It is used 3512 // to test if there are any tail iterations left once the vector loop has 3513 // completed. 3514 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3515 for (auto &InductionEntry : *List) { 3516 PHINode *OrigPhi = InductionEntry.first; 3517 InductionDescriptor II = InductionEntry.second; 3518 3519 // Create phi nodes to merge from the backedge-taken check block. 3520 PHINode *BCResumeVal = PHINode::Create( 3521 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3522 Value *&EndValue = IVEndValues[OrigPhi]; 3523 if (OrigPhi == OldInduction) { 3524 // We know what the end value is. 3525 EndValue = CountRoundDown; 3526 } else { 3527 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3528 Type *StepType = II.getStep()->getType(); 3529 Instruction::CastOps CastOp = 3530 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3531 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3532 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3533 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3534 EndValue->setName("ind.end"); 3535 } 3536 3537 // The new PHI merges the original incoming value, in case of a bypass, 3538 // or the value at the end of the vectorized loop. 3539 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3540 3541 // Fix the scalar body counter (PHI node). 3542 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3543 3544 // The old induction's phi node in the scalar body needs the truncated 3545 // value. 3546 for (BasicBlock *BB : LoopBypassBlocks) 3547 BCResumeVal->addIncoming(II.getStartValue(), BB); 3548 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3549 } 3550 3551 // Add a check in the middle block to see if we have completed 3552 // all of the iterations in the first vector loop. 3553 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3554 Value *CmpN = 3555 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3556 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3557 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3558 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3559 3560 // Get ready to start creating new instructions into the vectorized body. 3561 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3562 3563 // Save the state. 3564 LoopVectorPreHeader = Lp->getLoopPreheader(); 3565 LoopScalarPreHeader = ScalarPH; 3566 LoopMiddleBlock = MiddleBlock; 3567 LoopExitBlock = ExitBlock; 3568 LoopVectorBody = VecBody; 3569 LoopScalarBody = OldBasicBlock; 3570 3571 // Keep all loop hints from the original loop on the vector loop (we'll 3572 // replace the vectorizer-specific hints below). 3573 if (MDNode *LID = OrigLoop->getLoopID()) 3574 Lp->setLoopID(LID); 3575 3576 LoopVectorizeHints Hints(Lp, true, *ORE); 3577 Hints.setAlreadyVectorized(); 3578 3579 return LoopVectorPreHeader; 3580 } 3581 3582 // Fix up external users of the induction variable. At this point, we are 3583 // in LCSSA form, with all external PHIs that use the IV having one input value, 3584 // coming from the remainder loop. We need those PHIs to also have a correct 3585 // value for the IV when arriving directly from the middle block. 3586 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3587 const InductionDescriptor &II, 3588 Value *CountRoundDown, Value *EndValue, 3589 BasicBlock *MiddleBlock) { 3590 // There are two kinds of external IV usages - those that use the value 3591 // computed in the last iteration (the PHI) and those that use the penultimate 3592 // value (the value that feeds into the phi from the loop latch). 3593 // We allow both, but they, obviously, have different values. 3594 3595 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3596 3597 DenseMap<Value *, Value *> MissingVals; 3598 3599 // An external user of the last iteration's value should see the value that 3600 // the remainder loop uses to initialize its own IV. 3601 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3602 for (User *U : PostInc->users()) { 3603 Instruction *UI = cast<Instruction>(U); 3604 if (!OrigLoop->contains(UI)) { 3605 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3606 MissingVals[UI] = EndValue; 3607 } 3608 } 3609 3610 // An external user of the penultimate value need to see EndValue - Step. 3611 // The simplest way to get this is to recompute it from the constituent SCEVs, 3612 // that is Start + (Step * (CRD - 1)). 3613 for (User *U : OrigPhi->users()) { 3614 auto *UI = cast<Instruction>(U); 3615 if (!OrigLoop->contains(UI)) { 3616 const DataLayout &DL = 3617 OrigLoop->getHeader()->getModule()->getDataLayout(); 3618 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3619 3620 IRBuilder<> B(MiddleBlock->getTerminator()); 3621 Value *CountMinusOne = B.CreateSub( 3622 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3623 Value *CMO = 3624 !II.getStep()->getType()->isIntegerTy() 3625 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3626 II.getStep()->getType()) 3627 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3628 CMO->setName("cast.cmo"); 3629 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3630 Escape->setName("ind.escape"); 3631 MissingVals[UI] = Escape; 3632 } 3633 } 3634 3635 for (auto &I : MissingVals) { 3636 PHINode *PHI = cast<PHINode>(I.first); 3637 // One corner case we have to handle is two IVs "chasing" each-other, 3638 // that is %IV2 = phi [...], [ %IV1, %latch ] 3639 // In this case, if IV1 has an external use, we need to avoid adding both 3640 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3641 // don't already have an incoming value for the middle block. 3642 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3643 PHI->addIncoming(I.second, MiddleBlock); 3644 } 3645 } 3646 3647 namespace { 3648 3649 struct CSEDenseMapInfo { 3650 static bool canHandle(const Instruction *I) { 3651 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3652 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3653 } 3654 3655 static inline Instruction *getEmptyKey() { 3656 return DenseMapInfo<Instruction *>::getEmptyKey(); 3657 } 3658 3659 static inline Instruction *getTombstoneKey() { 3660 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3661 } 3662 3663 static unsigned getHashValue(const Instruction *I) { 3664 assert(canHandle(I) && "Unknown instruction!"); 3665 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3666 I->value_op_end())); 3667 } 3668 3669 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3670 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3671 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3672 return LHS == RHS; 3673 return LHS->isIdenticalTo(RHS); 3674 } 3675 }; 3676 3677 } // end anonymous namespace 3678 3679 ///\brief Perform cse of induction variable instructions. 3680 static void cse(BasicBlock *BB) { 3681 // Perform simple cse. 3682 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3683 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3684 Instruction *In = &*I++; 3685 3686 if (!CSEDenseMapInfo::canHandle(In)) 3687 continue; 3688 3689 // Check if we can replace this instruction with any of the 3690 // visited instructions. 3691 if (Instruction *V = CSEMap.lookup(In)) { 3692 In->replaceAllUsesWith(V); 3693 In->eraseFromParent(); 3694 continue; 3695 } 3696 3697 CSEMap[In] = In; 3698 } 3699 } 3700 3701 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3702 /// convenience wrapper for the type-based getScalarizationOverhead API. 3703 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3704 const TargetTransformInfo &TTI) { 3705 if (VF == 1) 3706 return 0; 3707 3708 unsigned Cost = 0; 3709 Type *RetTy = ToVectorTy(I->getType(), VF); 3710 if (!RetTy->isVoidTy() && 3711 (!isa<LoadInst>(I) || 3712 !TTI.supportsEfficientVectorElementLoadStore())) 3713 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3714 3715 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3716 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3717 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3718 } 3719 else if (!isa<StoreInst>(I) || 3720 !TTI.supportsEfficientVectorElementLoadStore()) { 3721 SmallVector<const Value *, 4> Operands(I->operand_values()); 3722 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3723 } 3724 3725 return Cost; 3726 } 3727 3728 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3729 // Return the cost of the instruction, including scalarization overhead if it's 3730 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3731 // i.e. either vector version isn't available, or is too expensive. 3732 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3733 const TargetTransformInfo &TTI, 3734 const TargetLibraryInfo *TLI, 3735 bool &NeedToScalarize) { 3736 Function *F = CI->getCalledFunction(); 3737 StringRef FnName = CI->getCalledFunction()->getName(); 3738 Type *ScalarRetTy = CI->getType(); 3739 SmallVector<Type *, 4> Tys, ScalarTys; 3740 for (auto &ArgOp : CI->arg_operands()) 3741 ScalarTys.push_back(ArgOp->getType()); 3742 3743 // Estimate cost of scalarized vector call. The source operands are assumed 3744 // to be vectors, so we need to extract individual elements from there, 3745 // execute VF scalar calls, and then gather the result into the vector return 3746 // value. 3747 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3748 if (VF == 1) 3749 return ScalarCallCost; 3750 3751 // Compute corresponding vector type for return value and arguments. 3752 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3753 for (Type *ScalarTy : ScalarTys) 3754 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3755 3756 // Compute costs of unpacking argument values for the scalar calls and 3757 // packing the return values to a vector. 3758 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3759 3760 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3761 3762 // If we can't emit a vector call for this function, then the currently found 3763 // cost is the cost we need to return. 3764 NeedToScalarize = true; 3765 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3766 return Cost; 3767 3768 // If the corresponding vector cost is cheaper, return its cost. 3769 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3770 if (VectorCallCost < Cost) { 3771 NeedToScalarize = false; 3772 return VectorCallCost; 3773 } 3774 return Cost; 3775 } 3776 3777 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3778 // factor VF. Return the cost of the instruction, including scalarization 3779 // overhead if it's needed. 3780 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3781 const TargetTransformInfo &TTI, 3782 const TargetLibraryInfo *TLI) { 3783 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3784 assert(ID && "Expected intrinsic call!"); 3785 3786 FastMathFlags FMF; 3787 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3788 FMF = FPMO->getFastMathFlags(); 3789 3790 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3791 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3792 } 3793 3794 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3795 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3796 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3797 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3798 } 3799 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3800 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3801 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3802 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3803 } 3804 3805 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3806 // For every instruction `I` in MinBWs, truncate the operands, create a 3807 // truncated version of `I` and reextend its result. InstCombine runs 3808 // later and will remove any ext/trunc pairs. 3809 SmallPtrSet<Value *, 4> Erased; 3810 for (const auto &KV : Cost->getMinimalBitwidths()) { 3811 // If the value wasn't vectorized, we must maintain the original scalar 3812 // type. The absence of the value from VectorLoopValueMap indicates that it 3813 // wasn't vectorized. 3814 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3815 continue; 3816 for (unsigned Part = 0; Part < UF; ++Part) { 3817 Value *I = getOrCreateVectorValue(KV.first, Part); 3818 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3819 continue; 3820 Type *OriginalTy = I->getType(); 3821 Type *ScalarTruncatedTy = 3822 IntegerType::get(OriginalTy->getContext(), KV.second); 3823 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3824 OriginalTy->getVectorNumElements()); 3825 if (TruncatedTy == OriginalTy) 3826 continue; 3827 3828 IRBuilder<> B(cast<Instruction>(I)); 3829 auto ShrinkOperand = [&](Value *V) -> Value * { 3830 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3831 if (ZI->getSrcTy() == TruncatedTy) 3832 return ZI->getOperand(0); 3833 return B.CreateZExtOrTrunc(V, TruncatedTy); 3834 }; 3835 3836 // The actual instruction modification depends on the instruction type, 3837 // unfortunately. 3838 Value *NewI = nullptr; 3839 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3840 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3841 ShrinkOperand(BO->getOperand(1))); 3842 3843 // Any wrapping introduced by shrinking this operation shouldn't be 3844 // considered undefined behavior. So, we can't unconditionally copy 3845 // arithmetic wrapping flags to NewI. 3846 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3847 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3848 NewI = 3849 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3850 ShrinkOperand(CI->getOperand(1))); 3851 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3852 NewI = B.CreateSelect(SI->getCondition(), 3853 ShrinkOperand(SI->getTrueValue()), 3854 ShrinkOperand(SI->getFalseValue())); 3855 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3856 switch (CI->getOpcode()) { 3857 default: 3858 llvm_unreachable("Unhandled cast!"); 3859 case Instruction::Trunc: 3860 NewI = ShrinkOperand(CI->getOperand(0)); 3861 break; 3862 case Instruction::SExt: 3863 NewI = B.CreateSExtOrTrunc( 3864 CI->getOperand(0), 3865 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3866 break; 3867 case Instruction::ZExt: 3868 NewI = B.CreateZExtOrTrunc( 3869 CI->getOperand(0), 3870 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3871 break; 3872 } 3873 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3874 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3875 auto *O0 = B.CreateZExtOrTrunc( 3876 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3877 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3878 auto *O1 = B.CreateZExtOrTrunc( 3879 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3880 3881 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3882 } else if (isa<LoadInst>(I)) { 3883 // Don't do anything with the operands, just extend the result. 3884 continue; 3885 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3886 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3887 auto *O0 = B.CreateZExtOrTrunc( 3888 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3889 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3890 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3891 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3892 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3893 auto *O0 = B.CreateZExtOrTrunc( 3894 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3895 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3896 } else { 3897 llvm_unreachable("Unhandled instruction type!"); 3898 } 3899 3900 // Lastly, extend the result. 3901 NewI->takeName(cast<Instruction>(I)); 3902 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3903 I->replaceAllUsesWith(Res); 3904 cast<Instruction>(I)->eraseFromParent(); 3905 Erased.insert(I); 3906 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3907 } 3908 } 3909 3910 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3911 for (const auto &KV : Cost->getMinimalBitwidths()) { 3912 // If the value wasn't vectorized, we must maintain the original scalar 3913 // type. The absence of the value from VectorLoopValueMap indicates that it 3914 // wasn't vectorized. 3915 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3916 continue; 3917 for (unsigned Part = 0; Part < UF; ++Part) { 3918 Value *I = getOrCreateVectorValue(KV.first, Part); 3919 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3920 if (Inst && Inst->use_empty()) { 3921 Value *NewI = Inst->getOperand(0); 3922 Inst->eraseFromParent(); 3923 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3924 } 3925 } 3926 } 3927 } 3928 3929 void InnerLoopVectorizer::fixVectorizedLoop() { 3930 // Insert truncates and extends for any truncated instructions as hints to 3931 // InstCombine. 3932 if (VF > 1) 3933 truncateToMinimalBitwidths(); 3934 3935 // At this point every instruction in the original loop is widened to a 3936 // vector form. Now we need to fix the recurrences in the loop. These PHI 3937 // nodes are currently empty because we did not want to introduce cycles. 3938 // This is the second stage of vectorizing recurrences. 3939 fixCrossIterationPHIs(); 3940 3941 // Update the dominator tree. 3942 // 3943 // FIXME: After creating the structure of the new loop, the dominator tree is 3944 // no longer up-to-date, and it remains that way until we update it 3945 // here. An out-of-date dominator tree is problematic for SCEV, 3946 // because SCEVExpander uses it to guide code generation. The 3947 // vectorizer use SCEVExpanders in several places. Instead, we should 3948 // keep the dominator tree up-to-date as we go. 3949 updateAnalysis(); 3950 3951 // Fix-up external users of the induction variables. 3952 for (auto &Entry : *Legal->getInductionVars()) 3953 fixupIVUsers(Entry.first, Entry.second, 3954 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3955 IVEndValues[Entry.first], LoopMiddleBlock); 3956 3957 fixLCSSAPHIs(); 3958 for (Instruction *PI : PredicatedInstructions) 3959 sinkScalarOperands(&*PI); 3960 3961 // Remove redundant induction instructions. 3962 cse(LoopVectorBody); 3963 } 3964 3965 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3966 // In order to support recurrences we need to be able to vectorize Phi nodes. 3967 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3968 // stage #2: We now need to fix the recurrences by adding incoming edges to 3969 // the currently empty PHI nodes. At this point every instruction in the 3970 // original loop is widened to a vector form so we can use them to construct 3971 // the incoming edges. 3972 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3973 // Handle first-order recurrences and reductions that need to be fixed. 3974 if (Legal->isFirstOrderRecurrence(&Phi)) 3975 fixFirstOrderRecurrence(&Phi); 3976 else if (Legal->isReductionVariable(&Phi)) 3977 fixReduction(&Phi); 3978 } 3979 } 3980 3981 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3982 // This is the second phase of vectorizing first-order recurrences. An 3983 // overview of the transformation is described below. Suppose we have the 3984 // following loop. 3985 // 3986 // for (int i = 0; i < n; ++i) 3987 // b[i] = a[i] - a[i - 1]; 3988 // 3989 // There is a first-order recurrence on "a". For this loop, the shorthand 3990 // scalar IR looks like: 3991 // 3992 // scalar.ph: 3993 // s_init = a[-1] 3994 // br scalar.body 3995 // 3996 // scalar.body: 3997 // i = phi [0, scalar.ph], [i+1, scalar.body] 3998 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3999 // s2 = a[i] 4000 // b[i] = s2 - s1 4001 // br cond, scalar.body, ... 4002 // 4003 // In this example, s1 is a recurrence because it's value depends on the 4004 // previous iteration. In the first phase of vectorization, we created a 4005 // temporary value for s1. We now complete the vectorization and produce the 4006 // shorthand vector IR shown below (for VF = 4, UF = 1). 4007 // 4008 // vector.ph: 4009 // v_init = vector(..., ..., ..., a[-1]) 4010 // br vector.body 4011 // 4012 // vector.body 4013 // i = phi [0, vector.ph], [i+4, vector.body] 4014 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4015 // v2 = a[i, i+1, i+2, i+3]; 4016 // v3 = vector(v1(3), v2(0, 1, 2)) 4017 // b[i, i+1, i+2, i+3] = v2 - v3 4018 // br cond, vector.body, middle.block 4019 // 4020 // middle.block: 4021 // x = v2(3) 4022 // br scalar.ph 4023 // 4024 // scalar.ph: 4025 // s_init = phi [x, middle.block], [a[-1], otherwise] 4026 // br scalar.body 4027 // 4028 // After execution completes the vector loop, we extract the next value of 4029 // the recurrence (x) to use as the initial value in the scalar loop. 4030 4031 // Get the original loop preheader and single loop latch. 4032 auto *Preheader = OrigLoop->getLoopPreheader(); 4033 auto *Latch = OrigLoop->getLoopLatch(); 4034 4035 // Get the initial and previous values of the scalar recurrence. 4036 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4037 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4038 4039 // Create a vector from the initial value. 4040 auto *VectorInit = ScalarInit; 4041 if (VF > 1) { 4042 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4043 VectorInit = Builder.CreateInsertElement( 4044 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4045 Builder.getInt32(VF - 1), "vector.recur.init"); 4046 } 4047 4048 // We constructed a temporary phi node in the first phase of vectorization. 4049 // This phi node will eventually be deleted. 4050 Builder.SetInsertPoint( 4051 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4052 4053 // Create a phi node for the new recurrence. The current value will either be 4054 // the initial value inserted into a vector or loop-varying vector value. 4055 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4056 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4057 4058 // Get the vectorized previous value of the last part UF - 1. It appears last 4059 // among all unrolled iterations, due to the order of their construction. 4060 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4061 4062 // Set the insertion point after the previous value if it is an instruction. 4063 // Note that the previous value may have been constant-folded so it is not 4064 // guaranteed to be an instruction in the vector loop. Also, if the previous 4065 // value is a phi node, we should insert after all the phi nodes to avoid 4066 // breaking basic block verification. 4067 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4068 isa<PHINode>(PreviousLastPart)) 4069 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4070 else 4071 Builder.SetInsertPoint( 4072 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4073 4074 // We will construct a vector for the recurrence by combining the values for 4075 // the current and previous iterations. This is the required shuffle mask. 4076 SmallVector<Constant *, 8> ShuffleMask(VF); 4077 ShuffleMask[0] = Builder.getInt32(VF - 1); 4078 for (unsigned I = 1; I < VF; ++I) 4079 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4080 4081 // The vector from which to take the initial value for the current iteration 4082 // (actual or unrolled). Initially, this is the vector phi node. 4083 Value *Incoming = VecPhi; 4084 4085 // Shuffle the current and previous vector and update the vector parts. 4086 for (unsigned Part = 0; Part < UF; ++Part) { 4087 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4088 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4089 auto *Shuffle = 4090 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4091 ConstantVector::get(ShuffleMask)) 4092 : Incoming; 4093 PhiPart->replaceAllUsesWith(Shuffle); 4094 cast<Instruction>(PhiPart)->eraseFromParent(); 4095 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4096 Incoming = PreviousPart; 4097 } 4098 4099 // Fix the latch value of the new recurrence in the vector loop. 4100 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4101 4102 // Extract the last vector element in the middle block. This will be the 4103 // initial value for the recurrence when jumping to the scalar loop. 4104 auto *ExtractForScalar = Incoming; 4105 if (VF > 1) { 4106 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4107 ExtractForScalar = Builder.CreateExtractElement( 4108 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4109 } 4110 // Extract the second last element in the middle block if the 4111 // Phi is used outside the loop. We need to extract the phi itself 4112 // and not the last element (the phi update in the current iteration). This 4113 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4114 // when the scalar loop is not run at all. 4115 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4116 if (VF > 1) 4117 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4118 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4119 // When loop is unrolled without vectorizing, initialize 4120 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4121 // `Incoming`. This is analogous to the vectorized case above: extracting the 4122 // second last element when VF > 1. 4123 else if (UF > 1) 4124 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4125 4126 // Fix the initial value of the original recurrence in the scalar loop. 4127 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4128 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4129 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4130 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4131 Start->addIncoming(Incoming, BB); 4132 } 4133 4134 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4135 Phi->setName("scalar.recur"); 4136 4137 // Finally, fix users of the recurrence outside the loop. The users will need 4138 // either the last value of the scalar recurrence or the last value of the 4139 // vector recurrence we extracted in the middle block. Since the loop is in 4140 // LCSSA form, we just need to find the phi node for the original scalar 4141 // recurrence in the exit block, and then add an edge for the middle block. 4142 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4143 if (LCSSAPhi.getIncomingValue(0) == Phi) { 4144 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4145 break; 4146 } 4147 } 4148 } 4149 4150 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4151 Constant *Zero = Builder.getInt32(0); 4152 4153 // Get it's reduction variable descriptor. 4154 assert(Legal->isReductionVariable(Phi) && 4155 "Unable to find the reduction variable"); 4156 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4157 4158 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4159 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4160 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4161 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4162 RdxDesc.getMinMaxRecurrenceKind(); 4163 setDebugLocFromInst(Builder, ReductionStartValue); 4164 4165 // We need to generate a reduction vector from the incoming scalar. 4166 // To do so, we need to generate the 'identity' vector and override 4167 // one of the elements with the incoming scalar reduction. We need 4168 // to do it in the vector-loop preheader. 4169 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4170 4171 // This is the vector-clone of the value that leaves the loop. 4172 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4173 4174 // Find the reduction identity variable. Zero for addition, or, xor, 4175 // one for multiplication, -1 for And. 4176 Value *Identity; 4177 Value *VectorStart; 4178 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4179 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4180 // MinMax reduction have the start value as their identify. 4181 if (VF == 1) { 4182 VectorStart = Identity = ReductionStartValue; 4183 } else { 4184 VectorStart = Identity = 4185 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4186 } 4187 } else { 4188 // Handle other reduction kinds: 4189 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4190 RK, VecTy->getScalarType()); 4191 if (VF == 1) { 4192 Identity = Iden; 4193 // This vector is the Identity vector where the first element is the 4194 // incoming scalar reduction. 4195 VectorStart = ReductionStartValue; 4196 } else { 4197 Identity = ConstantVector::getSplat(VF, Iden); 4198 4199 // This vector is the Identity vector where the first element is the 4200 // incoming scalar reduction. 4201 VectorStart = 4202 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4203 } 4204 } 4205 4206 // Fix the vector-loop phi. 4207 4208 // Reductions do not have to start at zero. They can start with 4209 // any loop invariant values. 4210 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4211 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4212 for (unsigned Part = 0; Part < UF; ++Part) { 4213 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4214 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4215 // Make sure to add the reduction stat value only to the 4216 // first unroll part. 4217 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4218 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4219 cast<PHINode>(VecRdxPhi) 4220 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4221 } 4222 4223 // Before each round, move the insertion point right between 4224 // the PHIs and the values we are going to write. 4225 // This allows us to write both PHINodes and the extractelement 4226 // instructions. 4227 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4228 4229 setDebugLocFromInst(Builder, LoopExitInst); 4230 4231 // If the vector reduction can be performed in a smaller type, we truncate 4232 // then extend the loop exit value to enable InstCombine to evaluate the 4233 // entire expression in the smaller type. 4234 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4235 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4236 Builder.SetInsertPoint( 4237 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4238 VectorParts RdxParts(UF); 4239 for (unsigned Part = 0; Part < UF; ++Part) { 4240 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4241 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4242 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4243 : Builder.CreateZExt(Trunc, VecTy); 4244 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4245 UI != RdxParts[Part]->user_end();) 4246 if (*UI != Trunc) { 4247 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4248 RdxParts[Part] = Extnd; 4249 } else { 4250 ++UI; 4251 } 4252 } 4253 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4254 for (unsigned Part = 0; Part < UF; ++Part) { 4255 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4256 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4257 } 4258 } 4259 4260 // Reduce all of the unrolled parts into a single vector. 4261 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4262 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4263 setDebugLocFromInst(Builder, ReducedPartRdx); 4264 for (unsigned Part = 1; Part < UF; ++Part) { 4265 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4266 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4267 // Floating point operations had to be 'fast' to enable the reduction. 4268 ReducedPartRdx = addFastMathFlag( 4269 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4270 ReducedPartRdx, "bin.rdx")); 4271 else 4272 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4273 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4274 } 4275 4276 if (VF > 1) { 4277 bool NoNaN = Legal->hasFunNoNaNAttr(); 4278 ReducedPartRdx = 4279 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4280 // If the reduction can be performed in a smaller type, we need to extend 4281 // the reduction to the wider type before we branch to the original loop. 4282 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4283 ReducedPartRdx = 4284 RdxDesc.isSigned() 4285 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4286 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4287 } 4288 4289 // Create a phi node that merges control-flow from the backedge-taken check 4290 // block and the middle block. 4291 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4292 LoopScalarPreHeader->getTerminator()); 4293 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4294 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4295 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4296 4297 // Now, we need to fix the users of the reduction variable 4298 // inside and outside of the scalar remainder loop. 4299 // We know that the loop is in LCSSA form. We need to update the 4300 // PHI nodes in the exit blocks. 4301 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4302 // All PHINodes need to have a single entry edge, or two if 4303 // we already fixed them. 4304 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4305 4306 // We found a reduction value exit-PHI. Update it with the 4307 // incoming bypass edge. 4308 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 4309 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4310 } // end of the LCSSA phi scan. 4311 4312 // Fix the scalar loop reduction variable with the incoming reduction sum 4313 // from the vector body and from the backedge value. 4314 int IncomingEdgeBlockIdx = 4315 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4316 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4317 // Pick the other block. 4318 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4319 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4320 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4321 } 4322 4323 void InnerLoopVectorizer::fixLCSSAPHIs() { 4324 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4325 if (LCSSAPhi.getNumIncomingValues() == 1) { 4326 assert(OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) && 4327 "Incoming value isn't loop invariant"); 4328 LCSSAPhi.addIncoming(LCSSAPhi.getIncomingValue(0), LoopMiddleBlock); 4329 } 4330 } 4331 } 4332 4333 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4334 // The basic block and loop containing the predicated instruction. 4335 auto *PredBB = PredInst->getParent(); 4336 auto *VectorLoop = LI->getLoopFor(PredBB); 4337 4338 // Initialize a worklist with the operands of the predicated instruction. 4339 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4340 4341 // Holds instructions that we need to analyze again. An instruction may be 4342 // reanalyzed if we don't yet know if we can sink it or not. 4343 SmallVector<Instruction *, 8> InstsToReanalyze; 4344 4345 // Returns true if a given use occurs in the predicated block. Phi nodes use 4346 // their operands in their corresponding predecessor blocks. 4347 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4348 auto *I = cast<Instruction>(U.getUser()); 4349 BasicBlock *BB = I->getParent(); 4350 if (auto *Phi = dyn_cast<PHINode>(I)) 4351 BB = Phi->getIncomingBlock( 4352 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4353 return BB == PredBB; 4354 }; 4355 4356 // Iteratively sink the scalarized operands of the predicated instruction 4357 // into the block we created for it. When an instruction is sunk, it's 4358 // operands are then added to the worklist. The algorithm ends after one pass 4359 // through the worklist doesn't sink a single instruction. 4360 bool Changed; 4361 do { 4362 // Add the instructions that need to be reanalyzed to the worklist, and 4363 // reset the changed indicator. 4364 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4365 InstsToReanalyze.clear(); 4366 Changed = false; 4367 4368 while (!Worklist.empty()) { 4369 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4370 4371 // We can't sink an instruction if it is a phi node, is already in the 4372 // predicated block, is not in the loop, or may have side effects. 4373 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4374 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4375 continue; 4376 4377 // It's legal to sink the instruction if all its uses occur in the 4378 // predicated block. Otherwise, there's nothing to do yet, and we may 4379 // need to reanalyze the instruction. 4380 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4381 InstsToReanalyze.push_back(I); 4382 continue; 4383 } 4384 4385 // Move the instruction to the beginning of the predicated block, and add 4386 // it's operands to the worklist. 4387 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4388 Worklist.insert(I->op_begin(), I->op_end()); 4389 4390 // The sinking may have enabled other instructions to be sunk, so we will 4391 // need to iterate. 4392 Changed = true; 4393 } 4394 } while (Changed); 4395 } 4396 4397 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4398 unsigned VF) { 4399 assert(PN->getParent() == OrigLoop->getHeader() && 4400 "Non-header phis should have been handled elsewhere"); 4401 4402 PHINode *P = cast<PHINode>(PN); 4403 // In order to support recurrences we need to be able to vectorize Phi nodes. 4404 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4405 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4406 // this value when we vectorize all of the instructions that use the PHI. 4407 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4408 for (unsigned Part = 0; Part < UF; ++Part) { 4409 // This is phase one of vectorizing PHIs. 4410 Type *VecTy = 4411 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4412 Value *EntryPart = PHINode::Create( 4413 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4414 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4415 } 4416 return; 4417 } 4418 4419 setDebugLocFromInst(Builder, P); 4420 4421 // This PHINode must be an induction variable. 4422 // Make sure that we know about it. 4423 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4424 4425 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4426 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4427 4428 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4429 // which can be found from the original scalar operations. 4430 switch (II.getKind()) { 4431 case InductionDescriptor::IK_NoInduction: 4432 llvm_unreachable("Unknown induction"); 4433 case InductionDescriptor::IK_IntInduction: 4434 case InductionDescriptor::IK_FpInduction: 4435 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4436 case InductionDescriptor::IK_PtrInduction: { 4437 // Handle the pointer induction variable case. 4438 assert(P->getType()->isPointerTy() && "Unexpected type."); 4439 // This is the normalized GEP that starts counting at zero. 4440 Value *PtrInd = Induction; 4441 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4442 // Determine the number of scalars we need to generate for each unroll 4443 // iteration. If the instruction is uniform, we only need to generate the 4444 // first lane. Otherwise, we generate all VF values. 4445 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4446 // These are the scalar results. Notice that we don't generate vector GEPs 4447 // because scalar GEPs result in better code. 4448 for (unsigned Part = 0; Part < UF; ++Part) { 4449 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4450 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4451 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4452 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4453 SclrGep->setName("next.gep"); 4454 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4455 } 4456 } 4457 return; 4458 } 4459 } 4460 } 4461 4462 /// A helper function for checking whether an integer division-related 4463 /// instruction may divide by zero (in which case it must be predicated if 4464 /// executed conditionally in the scalar code). 4465 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4466 /// Non-zero divisors that are non compile-time constants will not be 4467 /// converted into multiplication, so we will still end up scalarizing 4468 /// the division, but can do so w/o predication. 4469 static bool mayDivideByZero(Instruction &I) { 4470 assert((I.getOpcode() == Instruction::UDiv || 4471 I.getOpcode() == Instruction::SDiv || 4472 I.getOpcode() == Instruction::URem || 4473 I.getOpcode() == Instruction::SRem) && 4474 "Unexpected instruction"); 4475 Value *Divisor = I.getOperand(1); 4476 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4477 return !CInt || CInt->isZero(); 4478 } 4479 4480 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4481 switch (I.getOpcode()) { 4482 case Instruction::Br: 4483 case Instruction::PHI: 4484 llvm_unreachable("This instruction is handled by a different recipe."); 4485 case Instruction::GetElementPtr: { 4486 // Construct a vector GEP by widening the operands of the scalar GEP as 4487 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4488 // results in a vector of pointers when at least one operand of the GEP 4489 // is vector-typed. Thus, to keep the representation compact, we only use 4490 // vector-typed operands for loop-varying values. 4491 auto *GEP = cast<GetElementPtrInst>(&I); 4492 4493 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4494 // If we are vectorizing, but the GEP has only loop-invariant operands, 4495 // the GEP we build (by only using vector-typed operands for 4496 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4497 // produce a vector of pointers, we need to either arbitrarily pick an 4498 // operand to broadcast, or broadcast a clone of the original GEP. 4499 // Here, we broadcast a clone of the original. 4500 // 4501 // TODO: If at some point we decide to scalarize instructions having 4502 // loop-invariant operands, this special case will no longer be 4503 // required. We would add the scalarization decision to 4504 // collectLoopScalars() and teach getVectorValue() to broadcast 4505 // the lane-zero scalar value. 4506 auto *Clone = Builder.Insert(GEP->clone()); 4507 for (unsigned Part = 0; Part < UF; ++Part) { 4508 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4509 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4510 addMetadata(EntryPart, GEP); 4511 } 4512 } else { 4513 // If the GEP has at least one loop-varying operand, we are sure to 4514 // produce a vector of pointers. But if we are only unrolling, we want 4515 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4516 // produce with the code below will be scalar (if VF == 1) or vector 4517 // (otherwise). Note that for the unroll-only case, we still maintain 4518 // values in the vector mapping with initVector, as we do for other 4519 // instructions. 4520 for (unsigned Part = 0; Part < UF; ++Part) { 4521 // The pointer operand of the new GEP. If it's loop-invariant, we 4522 // won't broadcast it. 4523 auto *Ptr = 4524 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4525 ? GEP->getPointerOperand() 4526 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4527 4528 // Collect all the indices for the new GEP. If any index is 4529 // loop-invariant, we won't broadcast it. 4530 SmallVector<Value *, 4> Indices; 4531 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4532 if (OrigLoop->isLoopInvariant(U.get())) 4533 Indices.push_back(U.get()); 4534 else 4535 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4536 } 4537 4538 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4539 // but it should be a vector, otherwise. 4540 auto *NewGEP = GEP->isInBounds() 4541 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4542 : Builder.CreateGEP(Ptr, Indices); 4543 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4544 "NewGEP is not a pointer vector"); 4545 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4546 addMetadata(NewGEP, GEP); 4547 } 4548 } 4549 4550 break; 4551 } 4552 case Instruction::UDiv: 4553 case Instruction::SDiv: 4554 case Instruction::SRem: 4555 case Instruction::URem: 4556 case Instruction::Add: 4557 case Instruction::FAdd: 4558 case Instruction::Sub: 4559 case Instruction::FSub: 4560 case Instruction::Mul: 4561 case Instruction::FMul: 4562 case Instruction::FDiv: 4563 case Instruction::FRem: 4564 case Instruction::Shl: 4565 case Instruction::LShr: 4566 case Instruction::AShr: 4567 case Instruction::And: 4568 case Instruction::Or: 4569 case Instruction::Xor: { 4570 // Just widen binops. 4571 auto *BinOp = cast<BinaryOperator>(&I); 4572 setDebugLocFromInst(Builder, BinOp); 4573 4574 for (unsigned Part = 0; Part < UF; ++Part) { 4575 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4576 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4577 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4578 4579 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4580 VecOp->copyIRFlags(BinOp); 4581 4582 // Use this vector value for all users of the original instruction. 4583 VectorLoopValueMap.setVectorValue(&I, Part, V); 4584 addMetadata(V, BinOp); 4585 } 4586 4587 break; 4588 } 4589 case Instruction::Select: { 4590 // Widen selects. 4591 // If the selector is loop invariant we can create a select 4592 // instruction with a scalar condition. Otherwise, use vector-select. 4593 auto *SE = PSE.getSE(); 4594 bool InvariantCond = 4595 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4596 setDebugLocFromInst(Builder, &I); 4597 4598 // The condition can be loop invariant but still defined inside the 4599 // loop. This means that we can't just use the original 'cond' value. 4600 // We have to take the 'vectorized' value and pick the first lane. 4601 // Instcombine will make this a no-op. 4602 4603 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4604 4605 for (unsigned Part = 0; Part < UF; ++Part) { 4606 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4607 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4608 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4609 Value *Sel = 4610 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4611 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4612 addMetadata(Sel, &I); 4613 } 4614 4615 break; 4616 } 4617 4618 case Instruction::ICmp: 4619 case Instruction::FCmp: { 4620 // Widen compares. Generate vector compares. 4621 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4622 auto *Cmp = dyn_cast<CmpInst>(&I); 4623 setDebugLocFromInst(Builder, Cmp); 4624 for (unsigned Part = 0; Part < UF; ++Part) { 4625 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4626 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4627 Value *C = nullptr; 4628 if (FCmp) { 4629 // Propagate fast math flags. 4630 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4631 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4632 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4633 } else { 4634 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4635 } 4636 VectorLoopValueMap.setVectorValue(&I, Part, C); 4637 addMetadata(C, &I); 4638 } 4639 4640 break; 4641 } 4642 4643 case Instruction::ZExt: 4644 case Instruction::SExt: 4645 case Instruction::FPToUI: 4646 case Instruction::FPToSI: 4647 case Instruction::FPExt: 4648 case Instruction::PtrToInt: 4649 case Instruction::IntToPtr: 4650 case Instruction::SIToFP: 4651 case Instruction::UIToFP: 4652 case Instruction::Trunc: 4653 case Instruction::FPTrunc: 4654 case Instruction::BitCast: { 4655 auto *CI = dyn_cast<CastInst>(&I); 4656 setDebugLocFromInst(Builder, CI); 4657 4658 /// Vectorize casts. 4659 Type *DestTy = 4660 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4661 4662 for (unsigned Part = 0; Part < UF; ++Part) { 4663 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4664 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4665 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4666 addMetadata(Cast, &I); 4667 } 4668 break; 4669 } 4670 4671 case Instruction::Call: { 4672 // Ignore dbg intrinsics. 4673 if (isa<DbgInfoIntrinsic>(I)) 4674 break; 4675 setDebugLocFromInst(Builder, &I); 4676 4677 Module *M = I.getParent()->getParent()->getParent(); 4678 auto *CI = cast<CallInst>(&I); 4679 4680 StringRef FnName = CI->getCalledFunction()->getName(); 4681 Function *F = CI->getCalledFunction(); 4682 Type *RetTy = ToVectorTy(CI->getType(), VF); 4683 SmallVector<Type *, 4> Tys; 4684 for (Value *ArgOperand : CI->arg_operands()) 4685 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4686 4687 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4688 4689 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4690 // version of the instruction. 4691 // Is it beneficial to perform intrinsic call compared to lib call? 4692 bool NeedToScalarize; 4693 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4694 bool UseVectorIntrinsic = 4695 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4696 assert((UseVectorIntrinsic || !NeedToScalarize) && 4697 "Instruction should be scalarized elsewhere."); 4698 4699 for (unsigned Part = 0; Part < UF; ++Part) { 4700 SmallVector<Value *, 4> Args; 4701 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4702 Value *Arg = CI->getArgOperand(i); 4703 // Some intrinsics have a scalar argument - don't replace it with a 4704 // vector. 4705 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4706 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4707 Args.push_back(Arg); 4708 } 4709 4710 Function *VectorF; 4711 if (UseVectorIntrinsic) { 4712 // Use vector version of the intrinsic. 4713 Type *TysForDecl[] = {CI->getType()}; 4714 if (VF > 1) 4715 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4716 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4717 } else { 4718 // Use vector version of the library call. 4719 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4720 assert(!VFnName.empty() && "Vector function name is empty."); 4721 VectorF = M->getFunction(VFnName); 4722 if (!VectorF) { 4723 // Generate a declaration 4724 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4725 VectorF = 4726 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4727 VectorF->copyAttributesFrom(F); 4728 } 4729 } 4730 assert(VectorF && "Can't create vector function."); 4731 4732 SmallVector<OperandBundleDef, 1> OpBundles; 4733 CI->getOperandBundlesAsDefs(OpBundles); 4734 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4735 4736 if (isa<FPMathOperator>(V)) 4737 V->copyFastMathFlags(CI); 4738 4739 VectorLoopValueMap.setVectorValue(&I, Part, V); 4740 addMetadata(V, &I); 4741 } 4742 4743 break; 4744 } 4745 4746 default: 4747 // This instruction is not vectorized by simple widening. 4748 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4749 llvm_unreachable("Unhandled instruction!"); 4750 } // end of switch. 4751 } 4752 4753 void InnerLoopVectorizer::updateAnalysis() { 4754 // Forget the original basic block. 4755 PSE.getSE()->forgetLoop(OrigLoop); 4756 4757 // Update the dominator tree information. 4758 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4759 "Entry does not dominate exit."); 4760 4761 DT->addNewBlock(LoopMiddleBlock, 4762 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4763 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4764 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4765 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4766 DEBUG(DT->verifyDomTree()); 4767 } 4768 4769 /// \brief Check whether it is safe to if-convert this phi node. 4770 /// 4771 /// Phi nodes with constant expressions that can trap are not safe to if 4772 /// convert. 4773 static bool canIfConvertPHINodes(BasicBlock *BB) { 4774 for (PHINode &Phi : BB->phis()) { 4775 for (Value *V : Phi.incoming_values()) 4776 if (auto *C = dyn_cast<Constant>(V)) 4777 if (C->canTrap()) 4778 return false; 4779 } 4780 return true; 4781 } 4782 4783 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4784 if (!EnableIfConversion) { 4785 ORE->emit(createMissedAnalysis("IfConversionDisabled") 4786 << "if-conversion is disabled"); 4787 return false; 4788 } 4789 4790 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4791 4792 // A list of pointers that we can safely read and write to. 4793 SmallPtrSet<Value *, 8> SafePointes; 4794 4795 // Collect safe addresses. 4796 for (BasicBlock *BB : TheLoop->blocks()) { 4797 if (blockNeedsPredication(BB)) 4798 continue; 4799 4800 for (Instruction &I : *BB) 4801 if (auto *Ptr = getPointerOperand(&I)) 4802 SafePointes.insert(Ptr); 4803 } 4804 4805 // Collect the blocks that need predication. 4806 BasicBlock *Header = TheLoop->getHeader(); 4807 for (BasicBlock *BB : TheLoop->blocks()) { 4808 // We don't support switch statements inside loops. 4809 if (!isa<BranchInst>(BB->getTerminator())) { 4810 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 4811 << "loop contains a switch statement"); 4812 return false; 4813 } 4814 4815 // We must be able to predicate all blocks that need to be predicated. 4816 if (blockNeedsPredication(BB)) { 4817 if (!blockCanBePredicated(BB, SafePointes)) { 4818 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4819 << "control flow cannot be substituted for a select"); 4820 return false; 4821 } 4822 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4823 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4824 << "control flow cannot be substituted for a select"); 4825 return false; 4826 } 4827 } 4828 4829 // We can if-convert this loop. 4830 return true; 4831 } 4832 4833 bool LoopVectorizationLegality::canVectorize() { 4834 // Store the result and return it at the end instead of exiting early, in case 4835 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 4836 bool Result = true; 4837 4838 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 4839 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4840 // be canonicalized. 4841 if (!TheLoop->getLoopPreheader()) { 4842 DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n"); 4843 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4844 << "loop control flow is not understood by vectorizer"); 4845 if (DoExtraAnalysis) 4846 Result = false; 4847 else 4848 return false; 4849 } 4850 4851 // FIXME: The code is currently dead, since the loop gets sent to 4852 // LoopVectorizationLegality is already an innermost loop. 4853 // 4854 // We can only vectorize innermost loops. 4855 if (!TheLoop->empty()) { 4856 ORE->emit(createMissedAnalysis("NotInnermostLoop") 4857 << "loop is not the innermost loop"); 4858 if (DoExtraAnalysis) 4859 Result = false; 4860 else 4861 return false; 4862 } 4863 4864 // We must have a single backedge. 4865 if (TheLoop->getNumBackEdges() != 1) { 4866 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4867 << "loop control flow is not understood by vectorizer"); 4868 if (DoExtraAnalysis) 4869 Result = false; 4870 else 4871 return false; 4872 } 4873 4874 // We must have a single exiting block. 4875 if (!TheLoop->getExitingBlock()) { 4876 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4877 << "loop control flow is not understood by vectorizer"); 4878 if (DoExtraAnalysis) 4879 Result = false; 4880 else 4881 return false; 4882 } 4883 4884 // We only handle bottom-tested loops, i.e. loop in which the condition is 4885 // checked at the end of each iteration. With that we can assume that all 4886 // instructions in the loop are executed the same number of times. 4887 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4888 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4889 << "loop control flow is not understood by vectorizer"); 4890 if (DoExtraAnalysis) 4891 Result = false; 4892 else 4893 return false; 4894 } 4895 4896 // We need to have a loop header. 4897 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4898 << '\n'); 4899 4900 // Check if we can if-convert non-single-bb loops. 4901 unsigned NumBlocks = TheLoop->getNumBlocks(); 4902 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4903 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4904 if (DoExtraAnalysis) 4905 Result = false; 4906 else 4907 return false; 4908 } 4909 4910 // Check if we can vectorize the instructions and CFG in this loop. 4911 if (!canVectorizeInstrs()) { 4912 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4913 if (DoExtraAnalysis) 4914 Result = false; 4915 else 4916 return false; 4917 } 4918 4919 // Go over each instruction and look at memory deps. 4920 if (!canVectorizeMemory()) { 4921 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4922 if (DoExtraAnalysis) 4923 Result = false; 4924 else 4925 return false; 4926 } 4927 4928 DEBUG(dbgs() << "LV: We can vectorize this loop" 4929 << (LAI->getRuntimePointerChecking()->Need 4930 ? " (with a runtime bound check)" 4931 : "") 4932 << "!\n"); 4933 4934 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4935 4936 // If an override option has been passed in for interleaved accesses, use it. 4937 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4938 UseInterleaved = EnableInterleavedMemAccesses; 4939 4940 // Analyze interleaved memory accesses. 4941 if (UseInterleaved) 4942 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 4943 4944 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4945 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4946 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4947 4948 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4949 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 4950 << "Too many SCEV assumptions need to be made and checked " 4951 << "at runtime"); 4952 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4953 if (DoExtraAnalysis) 4954 Result = false; 4955 else 4956 return false; 4957 } 4958 4959 // Okay! We've done all the tests. If any have failed, return false. Otherwise 4960 // we can vectorize, and at this point we don't have any other mem analysis 4961 // which may limit our maximum vectorization factor, so just return true with 4962 // no restrictions. 4963 return Result; 4964 } 4965 4966 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4967 if (Ty->isPointerTy()) 4968 return DL.getIntPtrType(Ty); 4969 4970 // It is possible that char's or short's overflow when we ask for the loop's 4971 // trip count, work around this by changing the type size. 4972 if (Ty->getScalarSizeInBits() < 32) 4973 return Type::getInt32Ty(Ty->getContext()); 4974 4975 return Ty; 4976 } 4977 4978 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4979 Ty0 = convertPointerToIntegerType(DL, Ty0); 4980 Ty1 = convertPointerToIntegerType(DL, Ty1); 4981 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4982 return Ty0; 4983 return Ty1; 4984 } 4985 4986 /// \brief Check that the instruction has outside loop users and is not an 4987 /// identified reduction variable. 4988 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4989 SmallPtrSetImpl<Value *> &AllowedExit) { 4990 // Reduction and Induction instructions are allowed to have exit users. All 4991 // other instructions must not have external users. 4992 if (!AllowedExit.count(Inst)) 4993 // Check that all of the users of the loop are inside the BB. 4994 for (User *U : Inst->users()) { 4995 Instruction *UI = cast<Instruction>(U); 4996 // This user may be a reduction exit value. 4997 if (!TheLoop->contains(UI)) { 4998 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4999 return true; 5000 } 5001 } 5002 return false; 5003 } 5004 5005 void LoopVectorizationLegality::addInductionPhi( 5006 PHINode *Phi, const InductionDescriptor &ID, 5007 SmallPtrSetImpl<Value *> &AllowedExit) { 5008 Inductions[Phi] = ID; 5009 5010 // In case this induction also comes with casts that we know we can ignore 5011 // in the vectorized loop body, record them here. All casts could be recorded 5012 // here for ignoring, but suffices to record only the first (as it is the 5013 // only one that may bw used outside the cast sequence). 5014 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 5015 if (!Casts.empty()) 5016 InductionCastsToIgnore.insert(*Casts.begin()); 5017 5018 Type *PhiTy = Phi->getType(); 5019 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5020 5021 // Get the widest type. 5022 if (!PhiTy->isFloatingPointTy()) { 5023 if (!WidestIndTy) 5024 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5025 else 5026 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5027 } 5028 5029 // Int inductions are special because we only allow one IV. 5030 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5031 ID.getConstIntStepValue() && 5032 ID.getConstIntStepValue()->isOne() && 5033 isa<Constant>(ID.getStartValue()) && 5034 cast<Constant>(ID.getStartValue())->isNullValue()) { 5035 5036 // Use the phi node with the widest type as induction. Use the last 5037 // one if there are multiple (no good reason for doing this other 5038 // than it is expedient). We've checked that it begins at zero and 5039 // steps by one, so this is a canonical induction variable. 5040 if (!PrimaryInduction || PhiTy == WidestIndTy) 5041 PrimaryInduction = Phi; 5042 } 5043 5044 // Both the PHI node itself, and the "post-increment" value feeding 5045 // back into the PHI node may have external users. 5046 // We can allow those uses, except if the SCEVs we have for them rely 5047 // on predicates that only hold within the loop, since allowing the exit 5048 // currently means re-using this SCEV outside the loop. 5049 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5050 AllowedExit.insert(Phi); 5051 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5052 } 5053 5054 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5055 } 5056 5057 bool LoopVectorizationLegality::canVectorizeInstrs() { 5058 BasicBlock *Header = TheLoop->getHeader(); 5059 5060 // Look for the attribute signaling the absence of NaNs. 5061 Function &F = *Header->getParent(); 5062 HasFunNoNaNAttr = 5063 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5064 5065 // For each block in the loop. 5066 for (BasicBlock *BB : TheLoop->blocks()) { 5067 // Scan the instructions in the block and look for hazards. 5068 for (Instruction &I : *BB) { 5069 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5070 Type *PhiTy = Phi->getType(); 5071 // Check that this PHI type is allowed. 5072 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5073 !PhiTy->isPointerTy()) { 5074 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5075 << "loop control flow is not understood by vectorizer"); 5076 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5077 return false; 5078 } 5079 5080 // If this PHINode is not in the header block, then we know that we 5081 // can convert it to select during if-conversion. No need to check if 5082 // the PHIs in this block are induction or reduction variables. 5083 if (BB != Header) { 5084 // Check that this instruction has no outside users or is an 5085 // identified reduction value with an outside user. 5086 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5087 continue; 5088 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5089 << "value could not be identified as " 5090 "an induction or reduction variable"); 5091 return false; 5092 } 5093 5094 // We only allow if-converted PHIs with exactly two incoming values. 5095 if (Phi->getNumIncomingValues() != 2) { 5096 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5097 << "control flow not understood by vectorizer"); 5098 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5099 return false; 5100 } 5101 5102 RecurrenceDescriptor RedDes; 5103 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5104 if (RedDes.hasUnsafeAlgebra()) 5105 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5106 AllowedExit.insert(RedDes.getLoopExitInstr()); 5107 Reductions[Phi] = RedDes; 5108 continue; 5109 } 5110 5111 InductionDescriptor ID; 5112 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5113 addInductionPhi(Phi, ID, AllowedExit); 5114 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5115 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5116 continue; 5117 } 5118 5119 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5120 SinkAfter, DT)) { 5121 FirstOrderRecurrences.insert(Phi); 5122 continue; 5123 } 5124 5125 // As a last resort, coerce the PHI to a AddRec expression 5126 // and re-try classifying it a an induction PHI. 5127 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5128 addInductionPhi(Phi, ID, AllowedExit); 5129 continue; 5130 } 5131 5132 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5133 << "value that could not be identified as " 5134 "reduction is used outside the loop"); 5135 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5136 return false; 5137 } // end of PHI handling 5138 5139 // We handle calls that: 5140 // * Are debug info intrinsics. 5141 // * Have a mapping to an IR intrinsic. 5142 // * Have a vector version available. 5143 auto *CI = dyn_cast<CallInst>(&I); 5144 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5145 !isa<DbgInfoIntrinsic>(CI) && 5146 !(CI->getCalledFunction() && TLI && 5147 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5148 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5149 << "call instruction cannot be vectorized"); 5150 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5151 return false; 5152 } 5153 5154 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5155 // second argument is the same (i.e. loop invariant) 5156 if (CI && hasVectorInstrinsicScalarOpd( 5157 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5158 auto *SE = PSE.getSE(); 5159 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5160 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5161 << "intrinsic instruction cannot be vectorized"); 5162 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5163 return false; 5164 } 5165 } 5166 5167 // Check that the instruction return type is vectorizable. 5168 // Also, we can't vectorize extractelement instructions. 5169 if ((!VectorType::isValidElementType(I.getType()) && 5170 !I.getType()->isVoidTy()) || 5171 isa<ExtractElementInst>(I)) { 5172 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5173 << "instruction return type cannot be vectorized"); 5174 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5175 return false; 5176 } 5177 5178 // Check that the stored type is vectorizable. 5179 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5180 Type *T = ST->getValueOperand()->getType(); 5181 if (!VectorType::isValidElementType(T)) { 5182 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5183 << "store instruction cannot be vectorized"); 5184 return false; 5185 } 5186 5187 // FP instructions can allow unsafe algebra, thus vectorizable by 5188 // non-IEEE-754 compliant SIMD units. 5189 // This applies to floating-point math operations and calls, not memory 5190 // operations, shuffles, or casts, as they don't change precision or 5191 // semantics. 5192 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5193 !I.isFast()) { 5194 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5195 Hints->setPotentiallyUnsafe(); 5196 } 5197 5198 // Reduction instructions are allowed to have exit users. 5199 // All other instructions must not have external users. 5200 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5201 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5202 << "value cannot be used outside the loop"); 5203 return false; 5204 } 5205 } // next instr. 5206 } 5207 5208 if (!PrimaryInduction) { 5209 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5210 if (Inductions.empty()) { 5211 ORE->emit(createMissedAnalysis("NoInductionVariable") 5212 << "loop induction variable could not be identified"); 5213 return false; 5214 } 5215 } 5216 5217 // Now we know the widest induction type, check if our found induction 5218 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5219 // will create another. 5220 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5221 PrimaryInduction = nullptr; 5222 5223 return true; 5224 } 5225 5226 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5227 // We should not collect Scalars more than once per VF. Right now, this 5228 // function is called from collectUniformsAndScalars(), which already does 5229 // this check. Collecting Scalars for VF=1 does not make any sense. 5230 assert(VF >= 2 && !Scalars.count(VF) && 5231 "This function should not be visited twice for the same VF"); 5232 5233 SmallSetVector<Instruction *, 8> Worklist; 5234 5235 // These sets are used to seed the analysis with pointers used by memory 5236 // accesses that will remain scalar. 5237 SmallSetVector<Instruction *, 8> ScalarPtrs; 5238 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5239 5240 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5241 // The pointer operands of loads and stores will be scalar as long as the 5242 // memory access is not a gather or scatter operation. The value operand of a 5243 // store will remain scalar if the store is scalarized. 5244 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5245 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5246 assert(WideningDecision != CM_Unknown && 5247 "Widening decision should be ready at this moment"); 5248 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5249 if (Ptr == Store->getValueOperand()) 5250 return WideningDecision == CM_Scalarize; 5251 assert(Ptr == getPointerOperand(MemAccess) && 5252 "Ptr is neither a value or pointer operand"); 5253 return WideningDecision != CM_GatherScatter; 5254 }; 5255 5256 // A helper that returns true if the given value is a bitcast or 5257 // getelementptr instruction contained in the loop. 5258 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5259 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5260 isa<GetElementPtrInst>(V)) && 5261 !TheLoop->isLoopInvariant(V); 5262 }; 5263 5264 // A helper that evaluates a memory access's use of a pointer. If the use 5265 // will be a scalar use, and the pointer is only used by memory accesses, we 5266 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5267 // PossibleNonScalarPtrs. 5268 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5269 // We only care about bitcast and getelementptr instructions contained in 5270 // the loop. 5271 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5272 return; 5273 5274 // If the pointer has already been identified as scalar (e.g., if it was 5275 // also identified as uniform), there's nothing to do. 5276 auto *I = cast<Instruction>(Ptr); 5277 if (Worklist.count(I)) 5278 return; 5279 5280 // If the use of the pointer will be a scalar use, and all users of the 5281 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5282 // place the pointer in PossibleNonScalarPtrs. 5283 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5284 return isa<LoadInst>(U) || isa<StoreInst>(U); 5285 })) 5286 ScalarPtrs.insert(I); 5287 else 5288 PossibleNonScalarPtrs.insert(I); 5289 }; 5290 5291 // We seed the scalars analysis with three classes of instructions: (1) 5292 // instructions marked uniform-after-vectorization, (2) bitcast and 5293 // getelementptr instructions used by memory accesses requiring a scalar use, 5294 // and (3) pointer induction variables and their update instructions (we 5295 // currently only scalarize these). 5296 // 5297 // (1) Add to the worklist all instructions that have been identified as 5298 // uniform-after-vectorization. 5299 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5300 5301 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5302 // memory accesses requiring a scalar use. The pointer operands of loads and 5303 // stores will be scalar as long as the memory accesses is not a gather or 5304 // scatter operation. The value operand of a store will remain scalar if the 5305 // store is scalarized. 5306 for (auto *BB : TheLoop->blocks()) 5307 for (auto &I : *BB) { 5308 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5309 evaluatePtrUse(Load, Load->getPointerOperand()); 5310 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5311 evaluatePtrUse(Store, Store->getPointerOperand()); 5312 evaluatePtrUse(Store, Store->getValueOperand()); 5313 } 5314 } 5315 for (auto *I : ScalarPtrs) 5316 if (!PossibleNonScalarPtrs.count(I)) { 5317 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5318 Worklist.insert(I); 5319 } 5320 5321 // (3) Add to the worklist all pointer induction variables and their update 5322 // instructions. 5323 // 5324 // TODO: Once we are able to vectorize pointer induction variables we should 5325 // no longer insert them into the worklist here. 5326 auto *Latch = TheLoop->getLoopLatch(); 5327 for (auto &Induction : *Legal->getInductionVars()) { 5328 auto *Ind = Induction.first; 5329 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5330 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5331 continue; 5332 Worklist.insert(Ind); 5333 Worklist.insert(IndUpdate); 5334 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5335 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5336 } 5337 5338 // Insert the forced scalars. 5339 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5340 // induction variable when the PHI user is scalarized. 5341 if (ForcedScalars.count(VF)) 5342 for (auto *I : ForcedScalars.find(VF)->second) 5343 Worklist.insert(I); 5344 5345 // Expand the worklist by looking through any bitcasts and getelementptr 5346 // instructions we've already identified as scalar. This is similar to the 5347 // expansion step in collectLoopUniforms(); however, here we're only 5348 // expanding to include additional bitcasts and getelementptr instructions. 5349 unsigned Idx = 0; 5350 while (Idx != Worklist.size()) { 5351 Instruction *Dst = Worklist[Idx++]; 5352 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5353 continue; 5354 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5355 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5356 auto *J = cast<Instruction>(U); 5357 return !TheLoop->contains(J) || Worklist.count(J) || 5358 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5359 isScalarUse(J, Src)); 5360 })) { 5361 Worklist.insert(Src); 5362 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5363 } 5364 } 5365 5366 // An induction variable will remain scalar if all users of the induction 5367 // variable and induction variable update remain scalar. 5368 for (auto &Induction : *Legal->getInductionVars()) { 5369 auto *Ind = Induction.first; 5370 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5371 5372 // We already considered pointer induction variables, so there's no reason 5373 // to look at their users again. 5374 // 5375 // TODO: Once we are able to vectorize pointer induction variables we 5376 // should no longer skip over them here. 5377 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5378 continue; 5379 5380 // Determine if all users of the induction variable are scalar after 5381 // vectorization. 5382 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5383 auto *I = cast<Instruction>(U); 5384 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5385 }); 5386 if (!ScalarInd) 5387 continue; 5388 5389 // Determine if all users of the induction variable update instruction are 5390 // scalar after vectorization. 5391 auto ScalarIndUpdate = 5392 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5393 auto *I = cast<Instruction>(U); 5394 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5395 }); 5396 if (!ScalarIndUpdate) 5397 continue; 5398 5399 // The induction variable and its update instruction will remain scalar. 5400 Worklist.insert(Ind); 5401 Worklist.insert(IndUpdate); 5402 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5403 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5404 } 5405 5406 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5407 } 5408 5409 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5410 if (!blockNeedsPredication(I->getParent())) 5411 return false; 5412 switch(I->getOpcode()) { 5413 default: 5414 break; 5415 case Instruction::Store: 5416 return !isMaskRequired(I); 5417 case Instruction::UDiv: 5418 case Instruction::SDiv: 5419 case Instruction::SRem: 5420 case Instruction::URem: 5421 return mayDivideByZero(*I); 5422 } 5423 return false; 5424 } 5425 5426 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5427 unsigned VF) { 5428 // Get and ensure we have a valid memory instruction. 5429 LoadInst *LI = dyn_cast<LoadInst>(I); 5430 StoreInst *SI = dyn_cast<StoreInst>(I); 5431 assert((LI || SI) && "Invalid memory instruction"); 5432 5433 auto *Ptr = getPointerOperand(I); 5434 5435 // In order to be widened, the pointer should be consecutive, first of all. 5436 if (!isConsecutivePtr(Ptr)) 5437 return false; 5438 5439 // If the instruction is a store located in a predicated block, it will be 5440 // scalarized. 5441 if (isScalarWithPredication(I)) 5442 return false; 5443 5444 // If the instruction's allocated size doesn't equal it's type size, it 5445 // requires padding and will be scalarized. 5446 auto &DL = I->getModule()->getDataLayout(); 5447 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5448 if (hasIrregularType(ScalarTy, DL, VF)) 5449 return false; 5450 5451 return true; 5452 } 5453 5454 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5455 // We should not collect Uniforms more than once per VF. Right now, 5456 // this function is called from collectUniformsAndScalars(), which 5457 // already does this check. Collecting Uniforms for VF=1 does not make any 5458 // sense. 5459 5460 assert(VF >= 2 && !Uniforms.count(VF) && 5461 "This function should not be visited twice for the same VF"); 5462 5463 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5464 // not analyze again. Uniforms.count(VF) will return 1. 5465 Uniforms[VF].clear(); 5466 5467 // We now know that the loop is vectorizable! 5468 // Collect instructions inside the loop that will remain uniform after 5469 // vectorization. 5470 5471 // Global values, params and instructions outside of current loop are out of 5472 // scope. 5473 auto isOutOfScope = [&](Value *V) -> bool { 5474 Instruction *I = dyn_cast<Instruction>(V); 5475 return (!I || !TheLoop->contains(I)); 5476 }; 5477 5478 SetVector<Instruction *> Worklist; 5479 BasicBlock *Latch = TheLoop->getLoopLatch(); 5480 5481 // Start with the conditional branch. If the branch condition is an 5482 // instruction contained in the loop that is only used by the branch, it is 5483 // uniform. 5484 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5485 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5486 Worklist.insert(Cmp); 5487 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5488 } 5489 5490 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5491 // are pointers that are treated like consecutive pointers during 5492 // vectorization. The pointer operands of interleaved accesses are an 5493 // example. 5494 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5495 5496 // Holds pointer operands of instructions that are possibly non-uniform. 5497 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5498 5499 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5500 InstWidening WideningDecision = getWideningDecision(I, VF); 5501 assert(WideningDecision != CM_Unknown && 5502 "Widening decision should be ready at this moment"); 5503 5504 return (WideningDecision == CM_Widen || 5505 WideningDecision == CM_Widen_Reverse || 5506 WideningDecision == CM_Interleave); 5507 }; 5508 // Iterate over the instructions in the loop, and collect all 5509 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5510 // that a consecutive-like pointer operand will be scalarized, we collect it 5511 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5512 // getelementptr instruction can be used by both vectorized and scalarized 5513 // memory instructions. For example, if a loop loads and stores from the same 5514 // location, but the store is conditional, the store will be scalarized, and 5515 // the getelementptr won't remain uniform. 5516 for (auto *BB : TheLoop->blocks()) 5517 for (auto &I : *BB) { 5518 // If there's no pointer operand, there's nothing to do. 5519 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5520 if (!Ptr) 5521 continue; 5522 5523 // True if all users of Ptr are memory accesses that have Ptr as their 5524 // pointer operand. 5525 auto UsersAreMemAccesses = 5526 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 5527 return getPointerOperand(U) == Ptr; 5528 }); 5529 5530 // Ensure the memory instruction will not be scalarized or used by 5531 // gather/scatter, making its pointer operand non-uniform. If the pointer 5532 // operand is used by any instruction other than a memory access, we 5533 // conservatively assume the pointer operand may be non-uniform. 5534 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5535 PossibleNonUniformPtrs.insert(Ptr); 5536 5537 // If the memory instruction will be vectorized and its pointer operand 5538 // is consecutive-like, or interleaving - the pointer operand should 5539 // remain uniform. 5540 else 5541 ConsecutiveLikePtrs.insert(Ptr); 5542 } 5543 5544 // Add to the Worklist all consecutive and consecutive-like pointers that 5545 // aren't also identified as possibly non-uniform. 5546 for (auto *V : ConsecutiveLikePtrs) 5547 if (!PossibleNonUniformPtrs.count(V)) { 5548 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5549 Worklist.insert(V); 5550 } 5551 5552 // Expand Worklist in topological order: whenever a new instruction 5553 // is added , its users should be either already inside Worklist, or 5554 // out of scope. It ensures a uniform instruction will only be used 5555 // by uniform instructions or out of scope instructions. 5556 unsigned idx = 0; 5557 while (idx != Worklist.size()) { 5558 Instruction *I = Worklist[idx++]; 5559 5560 for (auto OV : I->operand_values()) { 5561 if (isOutOfScope(OV)) 5562 continue; 5563 auto *OI = cast<Instruction>(OV); 5564 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5565 auto *J = cast<Instruction>(U); 5566 return !TheLoop->contains(J) || Worklist.count(J) || 5567 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5568 })) { 5569 Worklist.insert(OI); 5570 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5571 } 5572 } 5573 } 5574 5575 // Returns true if Ptr is the pointer operand of a memory access instruction 5576 // I, and I is known to not require scalarization. 5577 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5578 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5579 }; 5580 5581 // For an instruction to be added into Worklist above, all its users inside 5582 // the loop should also be in Worklist. However, this condition cannot be 5583 // true for phi nodes that form a cyclic dependence. We must process phi 5584 // nodes separately. An induction variable will remain uniform if all users 5585 // of the induction variable and induction variable update remain uniform. 5586 // The code below handles both pointer and non-pointer induction variables. 5587 for (auto &Induction : *Legal->getInductionVars()) { 5588 auto *Ind = Induction.first; 5589 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5590 5591 // Determine if all users of the induction variable are uniform after 5592 // vectorization. 5593 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5594 auto *I = cast<Instruction>(U); 5595 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5596 isVectorizedMemAccessUse(I, Ind); 5597 }); 5598 if (!UniformInd) 5599 continue; 5600 5601 // Determine if all users of the induction variable update instruction are 5602 // uniform after vectorization. 5603 auto UniformIndUpdate = 5604 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5605 auto *I = cast<Instruction>(U); 5606 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5607 isVectorizedMemAccessUse(I, IndUpdate); 5608 }); 5609 if (!UniformIndUpdate) 5610 continue; 5611 5612 // The induction variable and its update instruction will remain uniform. 5613 Worklist.insert(Ind); 5614 Worklist.insert(IndUpdate); 5615 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5616 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5617 } 5618 5619 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5620 } 5621 5622 bool LoopVectorizationLegality::canVectorizeMemory() { 5623 LAI = &(*GetLAA)(*TheLoop); 5624 InterleaveInfo.setLAI(LAI); 5625 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5626 if (LAR) { 5627 ORE->emit([&]() { 5628 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 5629 "loop not vectorized: ", *LAR); 5630 }); 5631 } 5632 if (!LAI->canVectorizeMemory()) 5633 return false; 5634 5635 if (LAI->hasStoreToLoopInvariantAddress()) { 5636 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5637 << "write to a loop invariant address could not be vectorized"); 5638 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5639 return false; 5640 } 5641 5642 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5643 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5644 5645 return true; 5646 } 5647 5648 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 5649 Value *In0 = const_cast<Value *>(V); 5650 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5651 if (!PN) 5652 return false; 5653 5654 return Inductions.count(PN); 5655 } 5656 5657 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 5658 auto *Inst = dyn_cast<Instruction>(V); 5659 return (Inst && InductionCastsToIgnore.count(Inst)); 5660 } 5661 5662 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5663 return isInductionPhi(V) || isCastedInductionVariable(V); 5664 } 5665 5666 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5667 return FirstOrderRecurrences.count(Phi); 5668 } 5669 5670 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5671 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5672 } 5673 5674 bool LoopVectorizationLegality::blockCanBePredicated( 5675 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5676 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5677 5678 for (Instruction &I : *BB) { 5679 // Check that we don't have a constant expression that can trap as operand. 5680 for (Value *Operand : I.operands()) { 5681 if (auto *C = dyn_cast<Constant>(Operand)) 5682 if (C->canTrap()) 5683 return false; 5684 } 5685 // We might be able to hoist the load. 5686 if (I.mayReadFromMemory()) { 5687 auto *LI = dyn_cast<LoadInst>(&I); 5688 if (!LI) 5689 return false; 5690 if (!SafePtrs.count(LI->getPointerOperand())) { 5691 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5692 isLegalMaskedGather(LI->getType())) { 5693 MaskedOp.insert(LI); 5694 continue; 5695 } 5696 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5697 if (IsAnnotatedParallel) 5698 continue; 5699 return false; 5700 } 5701 } 5702 5703 if (I.mayWriteToMemory()) { 5704 auto *SI = dyn_cast<StoreInst>(&I); 5705 // We only support predication of stores in basic blocks with one 5706 // predecessor. 5707 if (!SI) 5708 return false; 5709 5710 // Build a masked store if it is legal for the target. 5711 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5712 SI->getPointerOperand()) || 5713 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5714 MaskedOp.insert(SI); 5715 continue; 5716 } 5717 5718 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5719 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5720 5721 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5722 !isSinglePredecessor) 5723 return false; 5724 } 5725 if (I.mayThrow()) 5726 return false; 5727 } 5728 5729 return true; 5730 } 5731 5732 void InterleavedAccessInfo::collectConstStrideAccesses( 5733 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5734 const ValueToValueMap &Strides) { 5735 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5736 5737 // Since it's desired that the load/store instructions be maintained in 5738 // "program order" for the interleaved access analysis, we have to visit the 5739 // blocks in the loop in reverse postorder (i.e., in a topological order). 5740 // Such an ordering will ensure that any load/store that may be executed 5741 // before a second load/store will precede the second load/store in 5742 // AccessStrideInfo. 5743 LoopBlocksDFS DFS(TheLoop); 5744 DFS.perform(LI); 5745 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5746 for (auto &I : *BB) { 5747 auto *LI = dyn_cast<LoadInst>(&I); 5748 auto *SI = dyn_cast<StoreInst>(&I); 5749 if (!LI && !SI) 5750 continue; 5751 5752 Value *Ptr = getPointerOperand(&I); 5753 // We don't check wrapping here because we don't know yet if Ptr will be 5754 // part of a full group or a group with gaps. Checking wrapping for all 5755 // pointers (even those that end up in groups with no gaps) will be overly 5756 // conservative. For full groups, wrapping should be ok since if we would 5757 // wrap around the address space we would do a memory access at nullptr 5758 // even without the transformation. The wrapping checks are therefore 5759 // deferred until after we've formed the interleaved groups. 5760 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5761 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5762 5763 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5764 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5765 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5766 5767 // An alignment of 0 means target ABI alignment. 5768 unsigned Align = getMemInstAlignment(&I); 5769 if (!Align) 5770 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5771 5772 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5773 } 5774 } 5775 5776 // Analyze interleaved accesses and collect them into interleaved load and 5777 // store groups. 5778 // 5779 // When generating code for an interleaved load group, we effectively hoist all 5780 // loads in the group to the location of the first load in program order. When 5781 // generating code for an interleaved store group, we sink all stores to the 5782 // location of the last store. This code motion can change the order of load 5783 // and store instructions and may break dependences. 5784 // 5785 // The code generation strategy mentioned above ensures that we won't violate 5786 // any write-after-read (WAR) dependences. 5787 // 5788 // E.g., for the WAR dependence: a = A[i]; // (1) 5789 // A[i] = b; // (2) 5790 // 5791 // The store group of (2) is always inserted at or below (2), and the load 5792 // group of (1) is always inserted at or above (1). Thus, the instructions will 5793 // never be reordered. All other dependences are checked to ensure the 5794 // correctness of the instruction reordering. 5795 // 5796 // The algorithm visits all memory accesses in the loop in bottom-up program 5797 // order. Program order is established by traversing the blocks in the loop in 5798 // reverse postorder when collecting the accesses. 5799 // 5800 // We visit the memory accesses in bottom-up order because it can simplify the 5801 // construction of store groups in the presence of write-after-write (WAW) 5802 // dependences. 5803 // 5804 // E.g., for the WAW dependence: A[i] = a; // (1) 5805 // A[i] = b; // (2) 5806 // A[i + 1] = c; // (3) 5807 // 5808 // We will first create a store group with (3) and (2). (1) can't be added to 5809 // this group because it and (2) are dependent. However, (1) can be grouped 5810 // with other accesses that may precede it in program order. Note that a 5811 // bottom-up order does not imply that WAW dependences should not be checked. 5812 void InterleavedAccessInfo::analyzeInterleaving( 5813 const ValueToValueMap &Strides) { 5814 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5815 5816 // Holds all accesses with a constant stride. 5817 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5818 collectConstStrideAccesses(AccessStrideInfo, Strides); 5819 5820 if (AccessStrideInfo.empty()) 5821 return; 5822 5823 // Collect the dependences in the loop. 5824 collectDependences(); 5825 5826 // Holds all interleaved store groups temporarily. 5827 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5828 // Holds all interleaved load groups temporarily. 5829 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5830 5831 // Search in bottom-up program order for pairs of accesses (A and B) that can 5832 // form interleaved load or store groups. In the algorithm below, access A 5833 // precedes access B in program order. We initialize a group for B in the 5834 // outer loop of the algorithm, and then in the inner loop, we attempt to 5835 // insert each A into B's group if: 5836 // 5837 // 1. A and B have the same stride, 5838 // 2. A and B have the same memory object size, and 5839 // 3. A belongs in B's group according to its distance from B. 5840 // 5841 // Special care is taken to ensure group formation will not break any 5842 // dependences. 5843 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5844 BI != E; ++BI) { 5845 Instruction *B = BI->first; 5846 StrideDescriptor DesB = BI->second; 5847 5848 // Initialize a group for B if it has an allowable stride. Even if we don't 5849 // create a group for B, we continue with the bottom-up algorithm to ensure 5850 // we don't break any of B's dependences. 5851 InterleaveGroup *Group = nullptr; 5852 if (isStrided(DesB.Stride)) { 5853 Group = getInterleaveGroup(B); 5854 if (!Group) { 5855 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5856 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5857 } 5858 if (B->mayWriteToMemory()) 5859 StoreGroups.insert(Group); 5860 else 5861 LoadGroups.insert(Group); 5862 } 5863 5864 for (auto AI = std::next(BI); AI != E; ++AI) { 5865 Instruction *A = AI->first; 5866 StrideDescriptor DesA = AI->second; 5867 5868 // Our code motion strategy implies that we can't have dependences 5869 // between accesses in an interleaved group and other accesses located 5870 // between the first and last member of the group. Note that this also 5871 // means that a group can't have more than one member at a given offset. 5872 // The accesses in a group can have dependences with other accesses, but 5873 // we must ensure we don't extend the boundaries of the group such that 5874 // we encompass those dependent accesses. 5875 // 5876 // For example, assume we have the sequence of accesses shown below in a 5877 // stride-2 loop: 5878 // 5879 // (1, 2) is a group | A[i] = a; // (1) 5880 // | A[i-1] = b; // (2) | 5881 // A[i-3] = c; // (3) 5882 // A[i] = d; // (4) | (2, 4) is not a group 5883 // 5884 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5885 // but not with (4). If we did, the dependent access (3) would be within 5886 // the boundaries of the (2, 4) group. 5887 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5888 // If a dependence exists and A is already in a group, we know that A 5889 // must be a store since A precedes B and WAR dependences are allowed. 5890 // Thus, A would be sunk below B. We release A's group to prevent this 5891 // illegal code motion. A will then be free to form another group with 5892 // instructions that precede it. 5893 if (isInterleaved(A)) { 5894 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 5895 StoreGroups.remove(StoreGroup); 5896 releaseGroup(StoreGroup); 5897 } 5898 5899 // If a dependence exists and A is not already in a group (or it was 5900 // and we just released it), B might be hoisted above A (if B is a 5901 // load) or another store might be sunk below A (if B is a store). In 5902 // either case, we can't add additional instructions to B's group. B 5903 // will only form a group with instructions that it precedes. 5904 break; 5905 } 5906 5907 // At this point, we've checked for illegal code motion. If either A or B 5908 // isn't strided, there's nothing left to do. 5909 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 5910 continue; 5911 5912 // Ignore A if it's already in a group or isn't the same kind of memory 5913 // operation as B. 5914 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5915 continue; 5916 5917 // Check rules 1 and 2. Ignore A if its stride or size is different from 5918 // that of B. 5919 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 5920 continue; 5921 5922 // Ignore A if the memory object of A and B don't belong to the same 5923 // address space 5924 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 5925 continue; 5926 5927 // Calculate the distance from A to B. 5928 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 5929 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 5930 if (!DistToB) 5931 continue; 5932 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 5933 5934 // Check rule 3. Ignore A if its distance to B is not a multiple of the 5935 // size. 5936 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 5937 continue; 5938 5939 // Ignore A if either A or B is in a predicated block. Although we 5940 // currently prevent group formation for predicated accesses, we may be 5941 // able to relax this limitation in the future once we handle more 5942 // complicated blocks. 5943 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 5944 continue; 5945 5946 // The index of A is the index of B plus A's distance to B in multiples 5947 // of the size. 5948 int IndexA = 5949 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 5950 5951 // Try to insert A into B's group. 5952 if (Group->insertMember(A, IndexA, DesA.Align)) { 5953 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 5954 << " into the interleave group with" << *B << '\n'); 5955 InterleaveGroupMap[A] = Group; 5956 5957 // Set the first load in program order as the insert position. 5958 if (A->mayReadFromMemory()) 5959 Group->setInsertPos(A); 5960 } 5961 } // Iteration over A accesses. 5962 } // Iteration over B accesses. 5963 5964 // Remove interleaved store groups with gaps. 5965 for (InterleaveGroup *Group : StoreGroups) 5966 if (Group->getNumMembers() != Group->getFactor()) { 5967 DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due " 5968 "to gaps.\n"); 5969 releaseGroup(Group); 5970 } 5971 // Remove interleaved groups with gaps (currently only loads) whose memory 5972 // accesses may wrap around. We have to revisit the getPtrStride analysis, 5973 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 5974 // not check wrapping (see documentation there). 5975 // FORNOW we use Assume=false; 5976 // TODO: Change to Assume=true but making sure we don't exceed the threshold 5977 // of runtime SCEV assumptions checks (thereby potentially failing to 5978 // vectorize altogether). 5979 // Additional optional optimizations: 5980 // TODO: If we are peeling the loop and we know that the first pointer doesn't 5981 // wrap then we can deduce that all pointers in the group don't wrap. 5982 // This means that we can forcefully peel the loop in order to only have to 5983 // check the first pointer for no-wrap. When we'll change to use Assume=true 5984 // we'll only need at most one runtime check per interleaved group. 5985 for (InterleaveGroup *Group : LoadGroups) { 5986 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 5987 // load would wrap around the address space we would do a memory access at 5988 // nullptr even without the transformation. 5989 if (Group->getNumMembers() == Group->getFactor()) 5990 continue; 5991 5992 // Case 2: If first and last members of the group don't wrap this implies 5993 // that all the pointers in the group don't wrap. 5994 // So we check only group member 0 (which is always guaranteed to exist), 5995 // and group member Factor - 1; If the latter doesn't exist we rely on 5996 // peeling (if it is a non-reveresed accsess -- see Case 3). 5997 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 5998 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 5999 /*ShouldCheckWrap=*/true)) { 6000 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6001 "first group member potentially pointer-wrapping.\n"); 6002 releaseGroup(Group); 6003 continue; 6004 } 6005 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6006 if (LastMember) { 6007 Value *LastMemberPtr = getPointerOperand(LastMember); 6008 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6009 /*ShouldCheckWrap=*/true)) { 6010 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6011 "last group member potentially pointer-wrapping.\n"); 6012 releaseGroup(Group); 6013 } 6014 } else { 6015 // Case 3: A non-reversed interleaved load group with gaps: We need 6016 // to execute at least one scalar epilogue iteration. This will ensure 6017 // we don't speculatively access memory out-of-bounds. We only need 6018 // to look for a member at index factor - 1, since every group must have 6019 // a member at index zero. 6020 if (Group->isReverse()) { 6021 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6022 "a reverse access with gaps.\n"); 6023 releaseGroup(Group); 6024 continue; 6025 } 6026 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6027 RequiresScalarEpilogue = true; 6028 } 6029 } 6030 } 6031 6032 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6033 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6034 ORE->emit(createMissedAnalysis("ConditionalStore") 6035 << "store that is conditionally executed prevents vectorization"); 6036 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6037 return None; 6038 } 6039 6040 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 6041 // TODO: It may by useful to do since it's still likely to be dynamically 6042 // uniform if the target can skip. 6043 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 6044 6045 ORE->emit( 6046 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 6047 << "runtime pointer checks needed. Not enabled for divergent target"); 6048 6049 return None; 6050 } 6051 6052 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6053 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6054 return computeFeasibleMaxVF(OptForSize, TC); 6055 6056 if (Legal->getRuntimePointerChecking()->Need) { 6057 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6058 << "runtime pointer checks needed. Enable vectorization of this " 6059 "loop with '#pragma clang loop vectorize(enable)' when " 6060 "compiling with -Os/-Oz"); 6061 DEBUG(dbgs() 6062 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6063 return None; 6064 } 6065 6066 // If we optimize the program for size, avoid creating the tail loop. 6067 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6068 6069 // If we don't know the precise trip count, don't try to vectorize. 6070 if (TC < 2) { 6071 ORE->emit( 6072 createMissedAnalysis("UnknownLoopCountComplexCFG") 6073 << "unable to calculate the loop count due to complex control flow"); 6074 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6075 return None; 6076 } 6077 6078 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 6079 6080 if (TC % MaxVF != 0) { 6081 // If the trip count that we found modulo the vectorization factor is not 6082 // zero then we require a tail. 6083 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6084 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6085 // smaller MaxVF that does not require a scalar epilog. 6086 6087 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6088 << "cannot optimize for size and vectorize at the " 6089 "same time. Enable vectorization of this loop " 6090 "with '#pragma clang loop vectorize(enable)' " 6091 "when compiling with -Os/-Oz"); 6092 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6093 return None; 6094 } 6095 6096 return MaxVF; 6097 } 6098 6099 unsigned 6100 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 6101 unsigned ConstTripCount) { 6102 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6103 unsigned SmallestType, WidestType; 6104 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6105 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6106 6107 // Get the maximum safe dependence distance in bits computed by LAA. 6108 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 6109 // the memory accesses that is most restrictive (involved in the smallest 6110 // dependence distance). 6111 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 6112 6113 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 6114 6115 unsigned MaxVectorSize = WidestRegister / WidestType; 6116 6117 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6118 << WidestType << " bits.\n"); 6119 DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegister 6120 << " bits.\n"); 6121 6122 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6123 " into one vector!"); 6124 if (MaxVectorSize == 0) { 6125 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6126 MaxVectorSize = 1; 6127 return MaxVectorSize; 6128 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 6129 isPowerOf2_32(ConstTripCount)) { 6130 // We need to clamp the VF to be the ConstTripCount. There is no point in 6131 // choosing a higher viable VF as done in the loop below. 6132 DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 6133 << ConstTripCount << "\n"); 6134 MaxVectorSize = ConstTripCount; 6135 return MaxVectorSize; 6136 } 6137 6138 unsigned MaxVF = MaxVectorSize; 6139 if (MaximizeBandwidth && !OptForSize) { 6140 // Collect all viable vectorization factors larger than the default MaxVF 6141 // (i.e. MaxVectorSize). 6142 SmallVector<unsigned, 8> VFs; 6143 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6144 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 6145 VFs.push_back(VS); 6146 6147 // For each VF calculate its register usage. 6148 auto RUs = calculateRegisterUsage(VFs); 6149 6150 // Select the largest VF which doesn't require more registers than existing 6151 // ones. 6152 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6153 for (int i = RUs.size() - 1; i >= 0; --i) { 6154 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6155 MaxVF = VFs[i]; 6156 break; 6157 } 6158 } 6159 } 6160 return MaxVF; 6161 } 6162 6163 VectorizationFactor 6164 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6165 float Cost = expectedCost(1).first; 6166 #ifndef NDEBUG 6167 const float ScalarCost = Cost; 6168 #endif /* NDEBUG */ 6169 unsigned Width = 1; 6170 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6171 6172 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6173 // Ignore scalar width, because the user explicitly wants vectorization. 6174 if (ForceVectorization && MaxVF > 1) { 6175 Width = 2; 6176 Cost = expectedCost(Width).first / (float)Width; 6177 } 6178 6179 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6180 // Notice that the vector loop needs to be executed less times, so 6181 // we need to divide the cost of the vector loops by the width of 6182 // the vector elements. 6183 VectorizationCostTy C = expectedCost(i); 6184 float VectorCost = C.first / (float)i; 6185 DEBUG(dbgs() << "LV: Vector loop of width " << i 6186 << " costs: " << (int)VectorCost << ".\n"); 6187 if (!C.second && !ForceVectorization) { 6188 DEBUG( 6189 dbgs() << "LV: Not considering vector loop of width " << i 6190 << " because it will not generate any vector instructions.\n"); 6191 continue; 6192 } 6193 if (VectorCost < Cost) { 6194 Cost = VectorCost; 6195 Width = i; 6196 } 6197 } 6198 6199 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6200 << "LV: Vectorization seems to be not beneficial, " 6201 << "but was forced by a user.\n"); 6202 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6203 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6204 return Factor; 6205 } 6206 6207 std::pair<unsigned, unsigned> 6208 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6209 unsigned MinWidth = -1U; 6210 unsigned MaxWidth = 8; 6211 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6212 6213 // For each block. 6214 for (BasicBlock *BB : TheLoop->blocks()) { 6215 // For each instruction in the loop. 6216 for (Instruction &I : *BB) { 6217 Type *T = I.getType(); 6218 6219 // Skip ignored values. 6220 if (ValuesToIgnore.count(&I)) 6221 continue; 6222 6223 // Only examine Loads, Stores and PHINodes. 6224 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6225 continue; 6226 6227 // Examine PHI nodes that are reduction variables. Update the type to 6228 // account for the recurrence type. 6229 if (auto *PN = dyn_cast<PHINode>(&I)) { 6230 if (!Legal->isReductionVariable(PN)) 6231 continue; 6232 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6233 T = RdxDesc.getRecurrenceType(); 6234 } 6235 6236 // Examine the stored values. 6237 if (auto *ST = dyn_cast<StoreInst>(&I)) 6238 T = ST->getValueOperand()->getType(); 6239 6240 // Ignore loaded pointer types and stored pointer types that are not 6241 // vectorizable. 6242 // 6243 // FIXME: The check here attempts to predict whether a load or store will 6244 // be vectorized. We only know this for certain after a VF has 6245 // been selected. Here, we assume that if an access can be 6246 // vectorized, it will be. We should also look at extending this 6247 // optimization to non-pointer types. 6248 // 6249 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6250 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6251 continue; 6252 6253 MinWidth = std::min(MinWidth, 6254 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6255 MaxWidth = std::max(MaxWidth, 6256 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6257 } 6258 } 6259 6260 return {MinWidth, MaxWidth}; 6261 } 6262 6263 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6264 unsigned VF, 6265 unsigned LoopCost) { 6266 // -- The interleave heuristics -- 6267 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6268 // There are many micro-architectural considerations that we can't predict 6269 // at this level. For example, frontend pressure (on decode or fetch) due to 6270 // code size, or the number and capabilities of the execution ports. 6271 // 6272 // We use the following heuristics to select the interleave count: 6273 // 1. If the code has reductions, then we interleave to break the cross 6274 // iteration dependency. 6275 // 2. If the loop is really small, then we interleave to reduce the loop 6276 // overhead. 6277 // 3. We don't interleave if we think that we will spill registers to memory 6278 // due to the increased register pressure. 6279 6280 // When we optimize for size, we don't interleave. 6281 if (OptForSize) 6282 return 1; 6283 6284 // We used the distance for the interleave count. 6285 if (Legal->getMaxSafeDepDistBytes() != -1U) 6286 return 1; 6287 6288 // Do not interleave loops with a relatively small trip count. 6289 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6290 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6291 return 1; 6292 6293 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6294 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6295 << " registers\n"); 6296 6297 if (VF == 1) { 6298 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6299 TargetNumRegisters = ForceTargetNumScalarRegs; 6300 } else { 6301 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6302 TargetNumRegisters = ForceTargetNumVectorRegs; 6303 } 6304 6305 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6306 // We divide by these constants so assume that we have at least one 6307 // instruction that uses at least one register. 6308 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6309 R.NumInstructions = std::max(R.NumInstructions, 1U); 6310 6311 // We calculate the interleave count using the following formula. 6312 // Subtract the number of loop invariants from the number of available 6313 // registers. These registers are used by all of the interleaved instances. 6314 // Next, divide the remaining registers by the number of registers that is 6315 // required by the loop, in order to estimate how many parallel instances 6316 // fit without causing spills. All of this is rounded down if necessary to be 6317 // a power of two. We want power of two interleave count to simplify any 6318 // addressing operations or alignment considerations. 6319 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6320 R.MaxLocalUsers); 6321 6322 // Don't count the induction variable as interleaved. 6323 if (EnableIndVarRegisterHeur) 6324 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6325 std::max(1U, (R.MaxLocalUsers - 1))); 6326 6327 // Clamp the interleave ranges to reasonable counts. 6328 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6329 6330 // Check if the user has overridden the max. 6331 if (VF == 1) { 6332 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6333 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6334 } else { 6335 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6336 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6337 } 6338 6339 // If we did not calculate the cost for VF (because the user selected the VF) 6340 // then we calculate the cost of VF here. 6341 if (LoopCost == 0) 6342 LoopCost = expectedCost(VF).first; 6343 6344 // Clamp the calculated IC to be between the 1 and the max interleave count 6345 // that the target allows. 6346 if (IC > MaxInterleaveCount) 6347 IC = MaxInterleaveCount; 6348 else if (IC < 1) 6349 IC = 1; 6350 6351 // Interleave if we vectorized this loop and there is a reduction that could 6352 // benefit from interleaving. 6353 if (VF > 1 && !Legal->getReductionVars()->empty()) { 6354 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6355 return IC; 6356 } 6357 6358 // Note that if we've already vectorized the loop we will have done the 6359 // runtime check and so interleaving won't require further checks. 6360 bool InterleavingRequiresRuntimePointerCheck = 6361 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6362 6363 // We want to interleave small loops in order to reduce the loop overhead and 6364 // potentially expose ILP opportunities. 6365 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6366 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6367 // We assume that the cost overhead is 1 and we use the cost model 6368 // to estimate the cost of the loop and interleave until the cost of the 6369 // loop overhead is about 5% of the cost of the loop. 6370 unsigned SmallIC = 6371 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6372 6373 // Interleave until store/load ports (estimated by max interleave count) are 6374 // saturated. 6375 unsigned NumStores = Legal->getNumStores(); 6376 unsigned NumLoads = Legal->getNumLoads(); 6377 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6378 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6379 6380 // If we have a scalar reduction (vector reductions are already dealt with 6381 // by this point), we can increase the critical path length if the loop 6382 // we're interleaving is inside another loop. Limit, by default to 2, so the 6383 // critical path only gets increased by one reduction operation. 6384 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) { 6385 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6386 SmallIC = std::min(SmallIC, F); 6387 StoresIC = std::min(StoresIC, F); 6388 LoadsIC = std::min(LoadsIC, F); 6389 } 6390 6391 if (EnableLoadStoreRuntimeInterleave && 6392 std::max(StoresIC, LoadsIC) > SmallIC) { 6393 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6394 return std::max(StoresIC, LoadsIC); 6395 } 6396 6397 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6398 return SmallIC; 6399 } 6400 6401 // Interleave if this is a large loop (small loops are already dealt with by 6402 // this point) that could benefit from interleaving. 6403 bool HasReductions = !Legal->getReductionVars()->empty(); 6404 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6405 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6406 return IC; 6407 } 6408 6409 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6410 return 1; 6411 } 6412 6413 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6414 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6415 // This function calculates the register usage by measuring the highest number 6416 // of values that are alive at a single location. Obviously, this is a very 6417 // rough estimation. We scan the loop in a topological order in order and 6418 // assign a number to each instruction. We use RPO to ensure that defs are 6419 // met before their users. We assume that each instruction that has in-loop 6420 // users starts an interval. We record every time that an in-loop value is 6421 // used, so we have a list of the first and last occurrences of each 6422 // instruction. Next, we transpose this data structure into a multi map that 6423 // holds the list of intervals that *end* at a specific location. This multi 6424 // map allows us to perform a linear search. We scan the instructions linearly 6425 // and record each time that a new interval starts, by placing it in a set. 6426 // If we find this value in the multi-map then we remove it from the set. 6427 // The max register usage is the maximum size of the set. 6428 // We also search for instructions that are defined outside the loop, but are 6429 // used inside the loop. We need this number separately from the max-interval 6430 // usage number because when we unroll, loop-invariant values do not take 6431 // more register. 6432 LoopBlocksDFS DFS(TheLoop); 6433 DFS.perform(LI); 6434 6435 RegisterUsage RU; 6436 RU.NumInstructions = 0; 6437 6438 // Each 'key' in the map opens a new interval. The values 6439 // of the map are the index of the 'last seen' usage of the 6440 // instruction that is the key. 6441 using IntervalMap = DenseMap<Instruction *, unsigned>; 6442 6443 // Maps instruction to its index. 6444 DenseMap<unsigned, Instruction *> IdxToInstr; 6445 // Marks the end of each interval. 6446 IntervalMap EndPoint; 6447 // Saves the list of instruction indices that are used in the loop. 6448 SmallSet<Instruction *, 8> Ends; 6449 // Saves the list of values that are used in the loop but are 6450 // defined outside the loop, such as arguments and constants. 6451 SmallPtrSet<Value *, 8> LoopInvariants; 6452 6453 unsigned Index = 0; 6454 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6455 RU.NumInstructions += BB->size(); 6456 for (Instruction &I : *BB) { 6457 IdxToInstr[Index++] = &I; 6458 6459 // Save the end location of each USE. 6460 for (Value *U : I.operands()) { 6461 auto *Instr = dyn_cast<Instruction>(U); 6462 6463 // Ignore non-instruction values such as arguments, constants, etc. 6464 if (!Instr) 6465 continue; 6466 6467 // If this instruction is outside the loop then record it and continue. 6468 if (!TheLoop->contains(Instr)) { 6469 LoopInvariants.insert(Instr); 6470 continue; 6471 } 6472 6473 // Overwrite previous end points. 6474 EndPoint[Instr] = Index; 6475 Ends.insert(Instr); 6476 } 6477 } 6478 } 6479 6480 // Saves the list of intervals that end with the index in 'key'. 6481 using InstrList = SmallVector<Instruction *, 2>; 6482 DenseMap<unsigned, InstrList> TransposeEnds; 6483 6484 // Transpose the EndPoints to a list of values that end at each index. 6485 for (auto &Interval : EndPoint) 6486 TransposeEnds[Interval.second].push_back(Interval.first); 6487 6488 SmallSet<Instruction *, 8> OpenIntervals; 6489 6490 // Get the size of the widest register. 6491 unsigned MaxSafeDepDist = -1U; 6492 if (Legal->getMaxSafeDepDistBytes() != -1U) 6493 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6494 unsigned WidestRegister = 6495 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6496 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6497 6498 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6499 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6500 6501 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6502 6503 // A lambda that gets the register usage for the given type and VF. 6504 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6505 if (Ty->isTokenTy()) 6506 return 0U; 6507 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6508 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6509 }; 6510 6511 for (unsigned int i = 0; i < Index; ++i) { 6512 Instruction *I = IdxToInstr[i]; 6513 6514 // Remove all of the instructions that end at this location. 6515 InstrList &List = TransposeEnds[i]; 6516 for (Instruction *ToRemove : List) 6517 OpenIntervals.erase(ToRemove); 6518 6519 // Ignore instructions that are never used within the loop. 6520 if (!Ends.count(I)) 6521 continue; 6522 6523 // Skip ignored values. 6524 if (ValuesToIgnore.count(I)) 6525 continue; 6526 6527 // For each VF find the maximum usage of registers. 6528 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6529 if (VFs[j] == 1) { 6530 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6531 continue; 6532 } 6533 collectUniformsAndScalars(VFs[j]); 6534 // Count the number of live intervals. 6535 unsigned RegUsage = 0; 6536 for (auto Inst : OpenIntervals) { 6537 // Skip ignored values for VF > 1. 6538 if (VecValuesToIgnore.count(Inst) || 6539 isScalarAfterVectorization(Inst, VFs[j])) 6540 continue; 6541 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6542 } 6543 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6544 } 6545 6546 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6547 << OpenIntervals.size() << '\n'); 6548 6549 // Add the current instruction to the list of open intervals. 6550 OpenIntervals.insert(I); 6551 } 6552 6553 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6554 unsigned Invariant = 0; 6555 if (VFs[i] == 1) 6556 Invariant = LoopInvariants.size(); 6557 else { 6558 for (auto Inst : LoopInvariants) 6559 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6560 } 6561 6562 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6563 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6564 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6565 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6566 6567 RU.LoopInvariantRegs = Invariant; 6568 RU.MaxLocalUsers = MaxUsages[i]; 6569 RUs[i] = RU; 6570 } 6571 6572 return RUs; 6573 } 6574 6575 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6576 // If we aren't vectorizing the loop, or if we've already collected the 6577 // instructions to scalarize, there's nothing to do. Collection may already 6578 // have occurred if we have a user-selected VF and are now computing the 6579 // expected cost for interleaving. 6580 if (VF < 2 || InstsToScalarize.count(VF)) 6581 return; 6582 6583 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6584 // not profitable to scalarize any instructions, the presence of VF in the 6585 // map will indicate that we've analyzed it already. 6586 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6587 6588 // Find all the instructions that are scalar with predication in the loop and 6589 // determine if it would be better to not if-convert the blocks they are in. 6590 // If so, we also record the instructions to scalarize. 6591 for (BasicBlock *BB : TheLoop->blocks()) { 6592 if (!Legal->blockNeedsPredication(BB)) 6593 continue; 6594 for (Instruction &I : *BB) 6595 if (Legal->isScalarWithPredication(&I)) { 6596 ScalarCostsTy ScalarCosts; 6597 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6598 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6599 6600 // Remember that BB will remain after vectorization. 6601 PredicatedBBsAfterVectorization.insert(BB); 6602 } 6603 } 6604 } 6605 6606 int LoopVectorizationCostModel::computePredInstDiscount( 6607 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6608 unsigned VF) { 6609 assert(!isUniformAfterVectorization(PredInst, VF) && 6610 "Instruction marked uniform-after-vectorization will be predicated"); 6611 6612 // Initialize the discount to zero, meaning that the scalar version and the 6613 // vector version cost the same. 6614 int Discount = 0; 6615 6616 // Holds instructions to analyze. The instructions we visit are mapped in 6617 // ScalarCosts. Those instructions are the ones that would be scalarized if 6618 // we find that the scalar version costs less. 6619 SmallVector<Instruction *, 8> Worklist; 6620 6621 // Returns true if the given instruction can be scalarized. 6622 auto canBeScalarized = [&](Instruction *I) -> bool { 6623 // We only attempt to scalarize instructions forming a single-use chain 6624 // from the original predicated block that would otherwise be vectorized. 6625 // Although not strictly necessary, we give up on instructions we know will 6626 // already be scalar to avoid traversing chains that are unlikely to be 6627 // beneficial. 6628 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6629 isScalarAfterVectorization(I, VF)) 6630 return false; 6631 6632 // If the instruction is scalar with predication, it will be analyzed 6633 // separately. We ignore it within the context of PredInst. 6634 if (Legal->isScalarWithPredication(I)) 6635 return false; 6636 6637 // If any of the instruction's operands are uniform after vectorization, 6638 // the instruction cannot be scalarized. This prevents, for example, a 6639 // masked load from being scalarized. 6640 // 6641 // We assume we will only emit a value for lane zero of an instruction 6642 // marked uniform after vectorization, rather than VF identical values. 6643 // Thus, if we scalarize an instruction that uses a uniform, we would 6644 // create uses of values corresponding to the lanes we aren't emitting code 6645 // for. This behavior can be changed by allowing getScalarValue to clone 6646 // the lane zero values for uniforms rather than asserting. 6647 for (Use &U : I->operands()) 6648 if (auto *J = dyn_cast<Instruction>(U.get())) 6649 if (isUniformAfterVectorization(J, VF)) 6650 return false; 6651 6652 // Otherwise, we can scalarize the instruction. 6653 return true; 6654 }; 6655 6656 // Returns true if an operand that cannot be scalarized must be extracted 6657 // from a vector. We will account for this scalarization overhead below. Note 6658 // that the non-void predicated instructions are placed in their own blocks, 6659 // and their return values are inserted into vectors. Thus, an extract would 6660 // still be required. 6661 auto needsExtract = [&](Instruction *I) -> bool { 6662 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6663 }; 6664 6665 // Compute the expected cost discount from scalarizing the entire expression 6666 // feeding the predicated instruction. We currently only consider expressions 6667 // that are single-use instruction chains. 6668 Worklist.push_back(PredInst); 6669 while (!Worklist.empty()) { 6670 Instruction *I = Worklist.pop_back_val(); 6671 6672 // If we've already analyzed the instruction, there's nothing to do. 6673 if (ScalarCosts.count(I)) 6674 continue; 6675 6676 // Compute the cost of the vector instruction. Note that this cost already 6677 // includes the scalarization overhead of the predicated instruction. 6678 unsigned VectorCost = getInstructionCost(I, VF).first; 6679 6680 // Compute the cost of the scalarized instruction. This cost is the cost of 6681 // the instruction as if it wasn't if-converted and instead remained in the 6682 // predicated block. We will scale this cost by block probability after 6683 // computing the scalarization overhead. 6684 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6685 6686 // Compute the scalarization overhead of needed insertelement instructions 6687 // and phi nodes. 6688 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6689 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6690 true, false); 6691 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6692 } 6693 6694 // Compute the scalarization overhead of needed extractelement 6695 // instructions. For each of the instruction's operands, if the operand can 6696 // be scalarized, add it to the worklist; otherwise, account for the 6697 // overhead. 6698 for (Use &U : I->operands()) 6699 if (auto *J = dyn_cast<Instruction>(U.get())) { 6700 assert(VectorType::isValidElementType(J->getType()) && 6701 "Instruction has non-scalar type"); 6702 if (canBeScalarized(J)) 6703 Worklist.push_back(J); 6704 else if (needsExtract(J)) 6705 ScalarCost += TTI.getScalarizationOverhead( 6706 ToVectorTy(J->getType(),VF), false, true); 6707 } 6708 6709 // Scale the total scalar cost by block probability. 6710 ScalarCost /= getReciprocalPredBlockProb(); 6711 6712 // Compute the discount. A non-negative discount means the vector version 6713 // of the instruction costs more, and scalarizing would be beneficial. 6714 Discount += VectorCost - ScalarCost; 6715 ScalarCosts[I] = ScalarCost; 6716 } 6717 6718 return Discount; 6719 } 6720 6721 LoopVectorizationCostModel::VectorizationCostTy 6722 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6723 VectorizationCostTy Cost; 6724 6725 // For each block. 6726 for (BasicBlock *BB : TheLoop->blocks()) { 6727 VectorizationCostTy BlockCost; 6728 6729 // For each instruction in the old loop. 6730 for (Instruction &I : *BB) { 6731 // Skip dbg intrinsics. 6732 if (isa<DbgInfoIntrinsic>(I)) 6733 continue; 6734 6735 // Skip ignored values. 6736 if (ValuesToIgnore.count(&I) || 6737 (VF > 1 && VecValuesToIgnore.count(&I))) 6738 continue; 6739 6740 VectorizationCostTy C = getInstructionCost(&I, VF); 6741 6742 // Check if we should override the cost. 6743 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6744 C.first = ForceTargetInstructionCost; 6745 6746 BlockCost.first += C.first; 6747 BlockCost.second |= C.second; 6748 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6749 << VF << " For instruction: " << I << '\n'); 6750 } 6751 6752 // If we are vectorizing a predicated block, it will have been 6753 // if-converted. This means that the block's instructions (aside from 6754 // stores and instructions that may divide by zero) will now be 6755 // unconditionally executed. For the scalar case, we may not always execute 6756 // the predicated block. Thus, scale the block's cost by the probability of 6757 // executing it. 6758 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6759 BlockCost.first /= getReciprocalPredBlockProb(); 6760 6761 Cost.first += BlockCost.first; 6762 Cost.second |= BlockCost.second; 6763 } 6764 6765 return Cost; 6766 } 6767 6768 /// \brief Gets Address Access SCEV after verifying that the access pattern 6769 /// is loop invariant except the induction variable dependence. 6770 /// 6771 /// This SCEV can be sent to the Target in order to estimate the address 6772 /// calculation cost. 6773 static const SCEV *getAddressAccessSCEV( 6774 Value *Ptr, 6775 LoopVectorizationLegality *Legal, 6776 PredicatedScalarEvolution &PSE, 6777 const Loop *TheLoop) { 6778 6779 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6780 if (!Gep) 6781 return nullptr; 6782 6783 // We are looking for a gep with all loop invariant indices except for one 6784 // which should be an induction variable. 6785 auto SE = PSE.getSE(); 6786 unsigned NumOperands = Gep->getNumOperands(); 6787 for (unsigned i = 1; i < NumOperands; ++i) { 6788 Value *Opd = Gep->getOperand(i); 6789 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6790 !Legal->isInductionVariable(Opd)) 6791 return nullptr; 6792 } 6793 6794 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6795 return PSE.getSCEV(Ptr); 6796 } 6797 6798 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6799 return Legal->hasStride(I->getOperand(0)) || 6800 Legal->hasStride(I->getOperand(1)); 6801 } 6802 6803 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6804 unsigned VF) { 6805 Type *ValTy = getMemInstValueType(I); 6806 auto SE = PSE.getSE(); 6807 6808 unsigned Alignment = getMemInstAlignment(I); 6809 unsigned AS = getMemInstAddressSpace(I); 6810 Value *Ptr = getPointerOperand(I); 6811 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6812 6813 // Figure out whether the access is strided and get the stride value 6814 // if it's known in compile time 6815 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6816 6817 // Get the cost of the scalar memory instruction and address computation. 6818 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6819 6820 Cost += VF * 6821 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6822 AS, I); 6823 6824 // Get the overhead of the extractelement and insertelement instructions 6825 // we might create due to scalarization. 6826 Cost += getScalarizationOverhead(I, VF, TTI); 6827 6828 // If we have a predicated store, it may not be executed for each vector 6829 // lane. Scale the cost by the probability of executing the predicated 6830 // block. 6831 if (Legal->isScalarWithPredication(I)) 6832 Cost /= getReciprocalPredBlockProb(); 6833 6834 return Cost; 6835 } 6836 6837 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6838 unsigned VF) { 6839 Type *ValTy = getMemInstValueType(I); 6840 Type *VectorTy = ToVectorTy(ValTy, VF); 6841 unsigned Alignment = getMemInstAlignment(I); 6842 Value *Ptr = getPointerOperand(I); 6843 unsigned AS = getMemInstAddressSpace(I); 6844 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6845 6846 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6847 "Stride should be 1 or -1 for consecutive memory access"); 6848 unsigned Cost = 0; 6849 if (Legal->isMaskRequired(I)) 6850 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6851 else 6852 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 6853 6854 bool Reverse = ConsecutiveStride < 0; 6855 if (Reverse) 6856 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6857 return Cost; 6858 } 6859 6860 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6861 unsigned VF) { 6862 LoadInst *LI = cast<LoadInst>(I); 6863 Type *ValTy = LI->getType(); 6864 Type *VectorTy = ToVectorTy(ValTy, VF); 6865 unsigned Alignment = LI->getAlignment(); 6866 unsigned AS = LI->getPointerAddressSpace(); 6867 6868 return TTI.getAddressComputationCost(ValTy) + 6869 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 6870 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6871 } 6872 6873 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6874 unsigned VF) { 6875 Type *ValTy = getMemInstValueType(I); 6876 Type *VectorTy = ToVectorTy(ValTy, VF); 6877 unsigned Alignment = getMemInstAlignment(I); 6878 Value *Ptr = getPointerOperand(I); 6879 6880 return TTI.getAddressComputationCost(VectorTy) + 6881 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6882 Legal->isMaskRequired(I), Alignment); 6883 } 6884 6885 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6886 unsigned VF) { 6887 Type *ValTy = getMemInstValueType(I); 6888 Type *VectorTy = ToVectorTy(ValTy, VF); 6889 unsigned AS = getMemInstAddressSpace(I); 6890 6891 auto Group = Legal->getInterleavedAccessGroup(I); 6892 assert(Group && "Fail to get an interleaved access group."); 6893 6894 unsigned InterleaveFactor = Group->getFactor(); 6895 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6896 6897 // Holds the indices of existing members in an interleaved load group. 6898 // An interleaved store group doesn't need this as it doesn't allow gaps. 6899 SmallVector<unsigned, 4> Indices; 6900 if (isa<LoadInst>(I)) { 6901 for (unsigned i = 0; i < InterleaveFactor; i++) 6902 if (Group->getMember(i)) 6903 Indices.push_back(i); 6904 } 6905 6906 // Calculate the cost of the whole interleaved group. 6907 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 6908 Group->getFactor(), Indices, 6909 Group->getAlignment(), AS); 6910 6911 if (Group->isReverse()) 6912 Cost += Group->getNumMembers() * 6913 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6914 return Cost; 6915 } 6916 6917 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6918 unsigned VF) { 6919 // Calculate scalar cost only. Vectorization cost should be ready at this 6920 // moment. 6921 if (VF == 1) { 6922 Type *ValTy = getMemInstValueType(I); 6923 unsigned Alignment = getMemInstAlignment(I); 6924 unsigned AS = getMemInstAddressSpace(I); 6925 6926 return TTI.getAddressComputationCost(ValTy) + 6927 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 6928 } 6929 return getWideningCost(I, VF); 6930 } 6931 6932 LoopVectorizationCostModel::VectorizationCostTy 6933 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6934 // If we know that this instruction will remain uniform, check the cost of 6935 // the scalar version. 6936 if (isUniformAfterVectorization(I, VF)) 6937 VF = 1; 6938 6939 if (VF > 1 && isProfitableToScalarize(I, VF)) 6940 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6941 6942 // Forced scalars do not have any scalarization overhead. 6943 if (VF > 1 && ForcedScalars.count(VF) && 6944 ForcedScalars.find(VF)->second.count(I)) 6945 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 6946 6947 Type *VectorTy; 6948 unsigned C = getInstructionCost(I, VF, VectorTy); 6949 6950 bool TypeNotScalarized = 6951 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 6952 return VectorizationCostTy(C, TypeNotScalarized); 6953 } 6954 6955 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6956 if (VF == 1) 6957 return; 6958 for (BasicBlock *BB : TheLoop->blocks()) { 6959 // For each instruction in the old loop. 6960 for (Instruction &I : *BB) { 6961 Value *Ptr = getPointerOperand(&I); 6962 if (!Ptr) 6963 continue; 6964 6965 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 6966 // Scalar load + broadcast 6967 unsigned Cost = getUniformMemOpCost(&I, VF); 6968 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6969 continue; 6970 } 6971 6972 // We assume that widening is the best solution when possible. 6973 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 6974 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6975 int ConsecutiveStride = Legal->isConsecutivePtr(getPointerOperand(&I)); 6976 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6977 "Expected consecutive stride."); 6978 InstWidening Decision = 6979 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6980 setWideningDecision(&I, VF, Decision, Cost); 6981 continue; 6982 } 6983 6984 // Choose between Interleaving, Gather/Scatter or Scalarization. 6985 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6986 unsigned NumAccesses = 1; 6987 if (Legal->isAccessInterleaved(&I)) { 6988 auto Group = Legal->getInterleavedAccessGroup(&I); 6989 assert(Group && "Fail to get an interleaved access group."); 6990 6991 // Make one decision for the whole group. 6992 if (getWideningDecision(&I, VF) != CM_Unknown) 6993 continue; 6994 6995 NumAccesses = Group->getNumMembers(); 6996 InterleaveCost = getInterleaveGroupCost(&I, VF); 6997 } 6998 6999 unsigned GatherScatterCost = 7000 Legal->isLegalGatherOrScatter(&I) 7001 ? getGatherScatterCost(&I, VF) * NumAccesses 7002 : std::numeric_limits<unsigned>::max(); 7003 7004 unsigned ScalarizationCost = 7005 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7006 7007 // Choose better solution for the current VF, 7008 // write down this decision and use it during vectorization. 7009 unsigned Cost; 7010 InstWidening Decision; 7011 if (InterleaveCost <= GatherScatterCost && 7012 InterleaveCost < ScalarizationCost) { 7013 Decision = CM_Interleave; 7014 Cost = InterleaveCost; 7015 } else if (GatherScatterCost < ScalarizationCost) { 7016 Decision = CM_GatherScatter; 7017 Cost = GatherScatterCost; 7018 } else { 7019 Decision = CM_Scalarize; 7020 Cost = ScalarizationCost; 7021 } 7022 // If the instructions belongs to an interleave group, the whole group 7023 // receives the same decision. The whole group receives the cost, but 7024 // the cost will actually be assigned to one instruction. 7025 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7026 setWideningDecision(Group, VF, Decision, Cost); 7027 else 7028 setWideningDecision(&I, VF, Decision, Cost); 7029 } 7030 } 7031 7032 // Make sure that any load of address and any other address computation 7033 // remains scalar unless there is gather/scatter support. This avoids 7034 // inevitable extracts into address registers, and also has the benefit of 7035 // activating LSR more, since that pass can't optimize vectorized 7036 // addresses. 7037 if (TTI.prefersVectorizedAddressing()) 7038 return; 7039 7040 // Start with all scalar pointer uses. 7041 SmallPtrSet<Instruction *, 8> AddrDefs; 7042 for (BasicBlock *BB : TheLoop->blocks()) 7043 for (Instruction &I : *BB) { 7044 Instruction *PtrDef = 7045 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7046 if (PtrDef && TheLoop->contains(PtrDef) && 7047 getWideningDecision(&I, VF) != CM_GatherScatter) 7048 AddrDefs.insert(PtrDef); 7049 } 7050 7051 // Add all instructions used to generate the addresses. 7052 SmallVector<Instruction *, 4> Worklist; 7053 for (auto *I : AddrDefs) 7054 Worklist.push_back(I); 7055 while (!Worklist.empty()) { 7056 Instruction *I = Worklist.pop_back_val(); 7057 for (auto &Op : I->operands()) 7058 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7059 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7060 AddrDefs.insert(InstOp).second) 7061 Worklist.push_back(InstOp); 7062 } 7063 7064 for (auto *I : AddrDefs) { 7065 if (isa<LoadInst>(I)) { 7066 // Setting the desired widening decision should ideally be handled in 7067 // by cost functions, but since this involves the task of finding out 7068 // if the loaded register is involved in an address computation, it is 7069 // instead changed here when we know this is the case. 7070 InstWidening Decision = getWideningDecision(I, VF); 7071 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7072 // Scalarize a widened load of address. 7073 setWideningDecision(I, VF, CM_Scalarize, 7074 (VF * getMemoryInstructionCost(I, 1))); 7075 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7076 // Scalarize an interleave group of address loads. 7077 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7078 if (Instruction *Member = Group->getMember(I)) 7079 setWideningDecision(Member, VF, CM_Scalarize, 7080 (VF * getMemoryInstructionCost(Member, 1))); 7081 } 7082 } 7083 } else 7084 // Make sure I gets scalarized and a cost estimate without 7085 // scalarization overhead. 7086 ForcedScalars[VF].insert(I); 7087 } 7088 } 7089 7090 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7091 unsigned VF, 7092 Type *&VectorTy) { 7093 Type *RetTy = I->getType(); 7094 if (canTruncateToMinimalBitwidth(I, VF)) 7095 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7096 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7097 auto SE = PSE.getSE(); 7098 7099 // TODO: We need to estimate the cost of intrinsic calls. 7100 switch (I->getOpcode()) { 7101 case Instruction::GetElementPtr: 7102 // We mark this instruction as zero-cost because the cost of GEPs in 7103 // vectorized code depends on whether the corresponding memory instruction 7104 // is scalarized or not. Therefore, we handle GEPs with the memory 7105 // instruction cost. 7106 return 0; 7107 case Instruction::Br: { 7108 // In cases of scalarized and predicated instructions, there will be VF 7109 // predicated blocks in the vectorized loop. Each branch around these 7110 // blocks requires also an extract of its vector compare i1 element. 7111 bool ScalarPredicatedBB = false; 7112 BranchInst *BI = cast<BranchInst>(I); 7113 if (VF > 1 && BI->isConditional() && 7114 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7115 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7116 ScalarPredicatedBB = true; 7117 7118 if (ScalarPredicatedBB) { 7119 // Return cost for branches around scalarized and predicated blocks. 7120 Type *Vec_i1Ty = 7121 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7122 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7123 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7124 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7125 // The back-edge branch will remain, as will all scalar branches. 7126 return TTI.getCFInstrCost(Instruction::Br); 7127 else 7128 // This branch will be eliminated by if-conversion. 7129 return 0; 7130 // Note: We currently assume zero cost for an unconditional branch inside 7131 // a predicated block since it will become a fall-through, although we 7132 // may decide in the future to call TTI for all branches. 7133 } 7134 case Instruction::PHI: { 7135 auto *Phi = cast<PHINode>(I); 7136 7137 // First-order recurrences are replaced by vector shuffles inside the loop. 7138 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7139 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7140 VectorTy, VF - 1, VectorTy); 7141 7142 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7143 // converted into select instructions. We require N - 1 selects per phi 7144 // node, where N is the number of incoming values. 7145 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7146 return (Phi->getNumIncomingValues() - 1) * 7147 TTI.getCmpSelInstrCost( 7148 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7149 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7150 7151 return TTI.getCFInstrCost(Instruction::PHI); 7152 } 7153 case Instruction::UDiv: 7154 case Instruction::SDiv: 7155 case Instruction::URem: 7156 case Instruction::SRem: 7157 // If we have a predicated instruction, it may not be executed for each 7158 // vector lane. Get the scalarization cost and scale this amount by the 7159 // probability of executing the predicated block. If the instruction is not 7160 // predicated, we fall through to the next case. 7161 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7162 unsigned Cost = 0; 7163 7164 // These instructions have a non-void type, so account for the phi nodes 7165 // that we will create. This cost is likely to be zero. The phi node 7166 // cost, if any, should be scaled by the block probability because it 7167 // models a copy at the end of each predicated block. 7168 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7169 7170 // The cost of the non-predicated instruction. 7171 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7172 7173 // The cost of insertelement and extractelement instructions needed for 7174 // scalarization. 7175 Cost += getScalarizationOverhead(I, VF, TTI); 7176 7177 // Scale the cost by the probability of executing the predicated blocks. 7178 // This assumes the predicated block for each vector lane is equally 7179 // likely. 7180 return Cost / getReciprocalPredBlockProb(); 7181 } 7182 LLVM_FALLTHROUGH; 7183 case Instruction::Add: 7184 case Instruction::FAdd: 7185 case Instruction::Sub: 7186 case Instruction::FSub: 7187 case Instruction::Mul: 7188 case Instruction::FMul: 7189 case Instruction::FDiv: 7190 case Instruction::FRem: 7191 case Instruction::Shl: 7192 case Instruction::LShr: 7193 case Instruction::AShr: 7194 case Instruction::And: 7195 case Instruction::Or: 7196 case Instruction::Xor: { 7197 // Since we will replace the stride by 1 the multiplication should go away. 7198 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7199 return 0; 7200 // Certain instructions can be cheaper to vectorize if they have a constant 7201 // second vector operand. One example of this are shifts on x86. 7202 TargetTransformInfo::OperandValueKind Op1VK = 7203 TargetTransformInfo::OK_AnyValue; 7204 TargetTransformInfo::OperandValueKind Op2VK = 7205 TargetTransformInfo::OK_AnyValue; 7206 TargetTransformInfo::OperandValueProperties Op1VP = 7207 TargetTransformInfo::OP_None; 7208 TargetTransformInfo::OperandValueProperties Op2VP = 7209 TargetTransformInfo::OP_None; 7210 Value *Op2 = I->getOperand(1); 7211 7212 // Check for a splat or for a non uniform vector of constants. 7213 if (isa<ConstantInt>(Op2)) { 7214 ConstantInt *CInt = cast<ConstantInt>(Op2); 7215 if (CInt && CInt->getValue().isPowerOf2()) 7216 Op2VP = TargetTransformInfo::OP_PowerOf2; 7217 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7218 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7219 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7220 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7221 if (SplatValue) { 7222 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7223 if (CInt && CInt->getValue().isPowerOf2()) 7224 Op2VP = TargetTransformInfo::OP_PowerOf2; 7225 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7226 } 7227 } else if (Legal->isUniform(Op2)) { 7228 Op2VK = TargetTransformInfo::OK_UniformValue; 7229 } 7230 SmallVector<const Value *, 4> Operands(I->operand_values()); 7231 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7232 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7233 Op2VK, Op1VP, Op2VP, Operands); 7234 } 7235 case Instruction::Select: { 7236 SelectInst *SI = cast<SelectInst>(I); 7237 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7238 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7239 Type *CondTy = SI->getCondition()->getType(); 7240 if (!ScalarCond) 7241 CondTy = VectorType::get(CondTy, VF); 7242 7243 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7244 } 7245 case Instruction::ICmp: 7246 case Instruction::FCmp: { 7247 Type *ValTy = I->getOperand(0)->getType(); 7248 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7249 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7250 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7251 VectorTy = ToVectorTy(ValTy, VF); 7252 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7253 } 7254 case Instruction::Store: 7255 case Instruction::Load: { 7256 unsigned Width = VF; 7257 if (Width > 1) { 7258 InstWidening Decision = getWideningDecision(I, Width); 7259 assert(Decision != CM_Unknown && 7260 "CM decision should be taken at this point"); 7261 if (Decision == CM_Scalarize) 7262 Width = 1; 7263 } 7264 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7265 return getMemoryInstructionCost(I, VF); 7266 } 7267 case Instruction::ZExt: 7268 case Instruction::SExt: 7269 case Instruction::FPToUI: 7270 case Instruction::FPToSI: 7271 case Instruction::FPExt: 7272 case Instruction::PtrToInt: 7273 case Instruction::IntToPtr: 7274 case Instruction::SIToFP: 7275 case Instruction::UIToFP: 7276 case Instruction::Trunc: 7277 case Instruction::FPTrunc: 7278 case Instruction::BitCast: { 7279 // We optimize the truncation of induction variables having constant 7280 // integer steps. The cost of these truncations is the same as the scalar 7281 // operation. 7282 if (isOptimizableIVTruncate(I, VF)) { 7283 auto *Trunc = cast<TruncInst>(I); 7284 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7285 Trunc->getSrcTy(), Trunc); 7286 } 7287 7288 Type *SrcScalarTy = I->getOperand(0)->getType(); 7289 Type *SrcVecTy = 7290 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7291 if (canTruncateToMinimalBitwidth(I, VF)) { 7292 // This cast is going to be shrunk. This may remove the cast or it might 7293 // turn it into slightly different cast. For example, if MinBW == 16, 7294 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7295 // 7296 // Calculate the modified src and dest types. 7297 Type *MinVecTy = VectorTy; 7298 if (I->getOpcode() == Instruction::Trunc) { 7299 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7300 VectorTy = 7301 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7302 } else if (I->getOpcode() == Instruction::ZExt || 7303 I->getOpcode() == Instruction::SExt) { 7304 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7305 VectorTy = 7306 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7307 } 7308 } 7309 7310 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7311 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7312 } 7313 case Instruction::Call: { 7314 bool NeedToScalarize; 7315 CallInst *CI = cast<CallInst>(I); 7316 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7317 if (getVectorIntrinsicIDForCall(CI, TLI)) 7318 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7319 return CallCost; 7320 } 7321 default: 7322 // The cost of executing VF copies of the scalar instruction. This opcode 7323 // is unknown. Assume that it is the same as 'mul'. 7324 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7325 getScalarizationOverhead(I, VF, TTI); 7326 } // end of switch. 7327 } 7328 7329 char LoopVectorize::ID = 0; 7330 7331 static const char lv_name[] = "Loop Vectorization"; 7332 7333 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7334 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7335 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7336 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7337 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7338 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7339 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7340 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7341 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7342 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7343 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7344 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7345 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7346 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7347 7348 namespace llvm { 7349 7350 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7351 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7352 } 7353 7354 } // end namespace llvm 7355 7356 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7357 // Check if the pointer operand of a load or store instruction is 7358 // consecutive. 7359 if (auto *Ptr = getPointerOperand(Inst)) 7360 return Legal->isConsecutivePtr(Ptr); 7361 return false; 7362 } 7363 7364 void LoopVectorizationCostModel::collectValuesToIgnore() { 7365 // Ignore ephemeral values. 7366 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7367 7368 // Ignore type-promoting instructions we identified during reduction 7369 // detection. 7370 for (auto &Reduction : *Legal->getReductionVars()) { 7371 RecurrenceDescriptor &RedDes = Reduction.second; 7372 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7373 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7374 } 7375 // Ignore type-casting instructions we identified during induction 7376 // detection. 7377 for (auto &Induction : *Legal->getInductionVars()) { 7378 InductionDescriptor &IndDes = Induction.second; 7379 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7380 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7381 } 7382 } 7383 7384 VectorizationFactor 7385 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7386 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7387 const VectorizationFactor NoVectorization = {1U, 0U}; 7388 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7389 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7390 return NoVectorization; 7391 7392 if (UserVF) { 7393 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7394 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7395 // Collect the instructions (and their associated costs) that will be more 7396 // profitable to scalarize. 7397 CM.selectUserVectorizationFactor(UserVF); 7398 buildVPlans(UserVF, UserVF); 7399 DEBUG(printPlans(dbgs())); 7400 return {UserVF, 0}; 7401 } 7402 7403 unsigned MaxVF = MaybeMaxVF.getValue(); 7404 assert(MaxVF != 0 && "MaxVF is zero."); 7405 7406 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7407 // Collect Uniform and Scalar instructions after vectorization with VF. 7408 CM.collectUniformsAndScalars(VF); 7409 7410 // Collect the instructions (and their associated costs) that will be more 7411 // profitable to scalarize. 7412 if (VF > 1) 7413 CM.collectInstsToScalarize(VF); 7414 } 7415 7416 buildVPlans(1, MaxVF); 7417 DEBUG(printPlans(dbgs())); 7418 if (MaxVF == 1) 7419 return NoVectorization; 7420 7421 // Select the optimal vectorization factor. 7422 return CM.selectVectorizationFactor(MaxVF); 7423 } 7424 7425 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 7426 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n'); 7427 BestVF = VF; 7428 BestUF = UF; 7429 7430 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7431 return !Plan->hasVF(VF); 7432 }); 7433 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7434 } 7435 7436 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7437 DominatorTree *DT) { 7438 // Perform the actual loop transformation. 7439 7440 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7441 VPCallbackILV CallbackILV(ILV); 7442 7443 VPTransformState State{BestVF, BestUF, LI, 7444 DT, ILV.Builder, ILV.VectorLoopValueMap, 7445 &ILV, CallbackILV}; 7446 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7447 7448 //===------------------------------------------------===// 7449 // 7450 // Notice: any optimization or new instruction that go 7451 // into the code below should also be implemented in 7452 // the cost-model. 7453 // 7454 //===------------------------------------------------===// 7455 7456 // 2. Copy and widen instructions from the old loop into the new loop. 7457 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7458 VPlans.front()->execute(&State); 7459 7460 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7461 // predication, updating analyses. 7462 ILV.fixVectorizedLoop(); 7463 } 7464 7465 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7466 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7467 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7468 7469 // We create new control-flow for the vectorized loop, so the original 7470 // condition will be dead after vectorization if it's only used by the 7471 // branch. 7472 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7473 if (Cmp && Cmp->hasOneUse()) 7474 DeadInstructions.insert(Cmp); 7475 7476 // We create new "steps" for induction variable updates to which the original 7477 // induction variables map. An original update instruction will be dead if 7478 // all its users except the induction variable are dead. 7479 for (auto &Induction : *Legal->getInductionVars()) { 7480 PHINode *Ind = Induction.first; 7481 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7482 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7483 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7484 })) 7485 DeadInstructions.insert(IndUpdate); 7486 7487 // We record as "Dead" also the type-casting instructions we had identified 7488 // during induction analysis. We don't need any handling for them in the 7489 // vectorized loop because we have proven that, under a proper runtime 7490 // test guarding the vectorized loop, the value of the phi, and the casted 7491 // value of the phi, are the same. The last instruction in this casting chain 7492 // will get its scalar/vector/widened def from the scalar/vector/widened def 7493 // of the respective phi node. Any other casts in the induction def-use chain 7494 // have no other uses outside the phi update chain, and will be ignored. 7495 InductionDescriptor &IndDes = Induction.second; 7496 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7497 DeadInstructions.insert(Casts.begin(), Casts.end()); 7498 } 7499 } 7500 7501 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7502 7503 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7504 7505 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7506 Instruction::BinaryOps BinOp) { 7507 // When unrolling and the VF is 1, we only need to add a simple scalar. 7508 Type *Ty = Val->getType(); 7509 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7510 7511 if (Ty->isFloatingPointTy()) { 7512 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7513 7514 // Floating point operations had to be 'fast' to enable the unrolling. 7515 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7516 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7517 } 7518 Constant *C = ConstantInt::get(Ty, StartIdx); 7519 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7520 } 7521 7522 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7523 SmallVector<Metadata *, 4> MDs; 7524 // Reserve first location for self reference to the LoopID metadata node. 7525 MDs.push_back(nullptr); 7526 bool IsUnrollMetadata = false; 7527 MDNode *LoopID = L->getLoopID(); 7528 if (LoopID) { 7529 // First find existing loop unrolling disable metadata. 7530 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7531 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7532 if (MD) { 7533 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7534 IsUnrollMetadata = 7535 S && S->getString().startswith("llvm.loop.unroll.disable"); 7536 } 7537 MDs.push_back(LoopID->getOperand(i)); 7538 } 7539 } 7540 7541 if (!IsUnrollMetadata) { 7542 // Add runtime unroll disable metadata. 7543 LLVMContext &Context = L->getHeader()->getContext(); 7544 SmallVector<Metadata *, 1> DisableOperands; 7545 DisableOperands.push_back( 7546 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7547 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7548 MDs.push_back(DisableNode); 7549 MDNode *NewLoopID = MDNode::get(Context, MDs); 7550 // Set operand 0 to refer to the loop id itself. 7551 NewLoopID->replaceOperandWith(0, NewLoopID); 7552 L->setLoopID(NewLoopID); 7553 } 7554 } 7555 7556 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7557 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 7558 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7559 bool PredicateAtRangeStart = Predicate(Range.Start); 7560 7561 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7562 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7563 Range.End = TmpVF; 7564 break; 7565 } 7566 7567 return PredicateAtRangeStart; 7568 } 7569 7570 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7571 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7572 /// of VF's starting at a given VF and extending it as much as possible. Each 7573 /// vectorization decision can potentially shorten this sub-range during 7574 /// buildVPlan(). 7575 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 7576 7577 // Collect conditions feeding internal conditional branches; they need to be 7578 // represented in VPlan for it to model masking. 7579 SmallPtrSet<Value *, 1> NeedDef; 7580 7581 auto *Latch = OrigLoop->getLoopLatch(); 7582 for (BasicBlock *BB : OrigLoop->blocks()) { 7583 if (BB == Latch) 7584 continue; 7585 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7586 if (Branch && Branch->isConditional()) 7587 NeedDef.insert(Branch->getCondition()); 7588 } 7589 7590 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7591 VFRange SubRange = {VF, MaxVF + 1}; 7592 VPlans.push_back(buildVPlan(SubRange, NeedDef)); 7593 VF = SubRange.End; 7594 } 7595 } 7596 7597 VPValue *LoopVectorizationPlanner::createEdgeMask(BasicBlock *Src, 7598 BasicBlock *Dst, 7599 VPlanPtr &Plan) { 7600 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7601 7602 // Look for cached value. 7603 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7604 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7605 if (ECEntryIt != EdgeMaskCache.end()) 7606 return ECEntryIt->second; 7607 7608 VPValue *SrcMask = createBlockInMask(Src, Plan); 7609 7610 // The terminator has to be a branch inst! 7611 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7612 assert(BI && "Unexpected terminator found"); 7613 7614 if (!BI->isConditional()) 7615 return EdgeMaskCache[Edge] = SrcMask; 7616 7617 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 7618 assert(EdgeMask && "No Edge Mask found for condition"); 7619 7620 if (BI->getSuccessor(0) != Dst) 7621 EdgeMask = Builder.createNot(EdgeMask); 7622 7623 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 7624 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 7625 7626 return EdgeMaskCache[Edge] = EdgeMask; 7627 } 7628 7629 VPValue *LoopVectorizationPlanner::createBlockInMask(BasicBlock *BB, 7630 VPlanPtr &Plan) { 7631 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 7632 7633 // Look for cached value. 7634 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 7635 if (BCEntryIt != BlockMaskCache.end()) 7636 return BCEntryIt->second; 7637 7638 // All-one mask is modelled as no-mask following the convention for masked 7639 // load/store/gather/scatter. Initialize BlockMask to no-mask. 7640 VPValue *BlockMask = nullptr; 7641 7642 // Loop incoming mask is all-one. 7643 if (OrigLoop->getHeader() == BB) 7644 return BlockMaskCache[BB] = BlockMask; 7645 7646 // This is the block mask. We OR all incoming edges. 7647 for (auto *Predecessor : predecessors(BB)) { 7648 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 7649 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 7650 return BlockMaskCache[BB] = EdgeMask; 7651 7652 if (!BlockMask) { // BlockMask has its initialized nullptr value. 7653 BlockMask = EdgeMask; 7654 continue; 7655 } 7656 7657 BlockMask = Builder.createOr(BlockMask, EdgeMask); 7658 } 7659 7660 return BlockMaskCache[BB] = BlockMask; 7661 } 7662 7663 VPInterleaveRecipe * 7664 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 7665 VFRange &Range) { 7666 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(I); 7667 if (!IG) 7668 return nullptr; 7669 7670 // Now check if IG is relevant for VF's in the given range. 7671 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 7672 return [=](unsigned VF) -> bool { 7673 return (VF >= 2 && // Query is illegal for VF == 1 7674 CM.getWideningDecision(I, VF) == 7675 LoopVectorizationCostModel::CM_Interleave); 7676 }; 7677 }; 7678 if (!getDecisionAndClampRange(isIGMember(I), Range)) 7679 return nullptr; 7680 7681 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 7682 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 7683 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 7684 assert(I == IG->getInsertPos() && 7685 "Generating a recipe for an adjunct member of an interleave group"); 7686 7687 return new VPInterleaveRecipe(IG); 7688 } 7689 7690 VPWidenMemoryInstructionRecipe * 7691 LoopVectorizationPlanner::tryToWidenMemory(Instruction *I, VFRange &Range, 7692 VPlanPtr &Plan) { 7693 if (!isa<LoadInst>(I) && !isa<StoreInst>(I)) 7694 return nullptr; 7695 7696 auto willWiden = [&](unsigned VF) -> bool { 7697 if (VF == 1) 7698 return false; 7699 if (CM.isScalarAfterVectorization(I, VF) || 7700 CM.isProfitableToScalarize(I, VF)) 7701 return false; 7702 LoopVectorizationCostModel::InstWidening Decision = 7703 CM.getWideningDecision(I, VF); 7704 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 7705 "CM decision should be taken at this point."); 7706 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 7707 "Interleave memory opportunity should be caught earlier."); 7708 return Decision != LoopVectorizationCostModel::CM_Scalarize; 7709 }; 7710 7711 if (!getDecisionAndClampRange(willWiden, Range)) 7712 return nullptr; 7713 7714 VPValue *Mask = nullptr; 7715 if (Legal->isMaskRequired(I)) 7716 Mask = createBlockInMask(I->getParent(), Plan); 7717 7718 return new VPWidenMemoryInstructionRecipe(*I, Mask); 7719 } 7720 7721 VPWidenIntOrFpInductionRecipe * 7722 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 7723 VFRange &Range) { 7724 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 7725 // Check if this is an integer or fp induction. If so, build the recipe that 7726 // produces its scalar and vector values. 7727 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 7728 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7729 II.getKind() == InductionDescriptor::IK_FpInduction) 7730 return new VPWidenIntOrFpInductionRecipe(Phi); 7731 7732 return nullptr; 7733 } 7734 7735 // Optimize the special case where the source is a constant integer 7736 // induction variable. Notice that we can only optimize the 'trunc' case 7737 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7738 // (c) other casts depend on pointer size. 7739 7740 // Determine whether \p K is a truncation based on an induction variable that 7741 // can be optimized. 7742 auto isOptimizableIVTruncate = 7743 [&](Instruction *K) -> std::function<bool(unsigned)> { 7744 return 7745 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 7746 }; 7747 7748 if (isa<TruncInst>(I) && 7749 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 7750 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7751 cast<TruncInst>(I)); 7752 return nullptr; 7753 } 7754 7755 VPBlendRecipe * 7756 LoopVectorizationPlanner::tryToBlend(Instruction *I, VPlanPtr &Plan) { 7757 PHINode *Phi = dyn_cast<PHINode>(I); 7758 if (!Phi || Phi->getParent() == OrigLoop->getHeader()) 7759 return nullptr; 7760 7761 // We know that all PHIs in non-header blocks are converted into selects, so 7762 // we don't have to worry about the insertion order and we can just use the 7763 // builder. At this point we generate the predication tree. There may be 7764 // duplications since this is a simple recursive scan, but future 7765 // optimizations will clean it up. 7766 7767 SmallVector<VPValue *, 2> Masks; 7768 unsigned NumIncoming = Phi->getNumIncomingValues(); 7769 for (unsigned In = 0; In < NumIncoming; In++) { 7770 VPValue *EdgeMask = 7771 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 7772 assert((EdgeMask || NumIncoming == 1) && 7773 "Multiple predecessors with one having a full mask"); 7774 if (EdgeMask) 7775 Masks.push_back(EdgeMask); 7776 } 7777 return new VPBlendRecipe(Phi, Masks); 7778 } 7779 7780 bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB, 7781 VFRange &Range) { 7782 if (Legal->isScalarWithPredication(I)) 7783 return false; 7784 7785 auto IsVectorizableOpcode = [](unsigned Opcode) { 7786 switch (Opcode) { 7787 case Instruction::Add: 7788 case Instruction::And: 7789 case Instruction::AShr: 7790 case Instruction::BitCast: 7791 case Instruction::Br: 7792 case Instruction::Call: 7793 case Instruction::FAdd: 7794 case Instruction::FCmp: 7795 case Instruction::FDiv: 7796 case Instruction::FMul: 7797 case Instruction::FPExt: 7798 case Instruction::FPToSI: 7799 case Instruction::FPToUI: 7800 case Instruction::FPTrunc: 7801 case Instruction::FRem: 7802 case Instruction::FSub: 7803 case Instruction::GetElementPtr: 7804 case Instruction::ICmp: 7805 case Instruction::IntToPtr: 7806 case Instruction::Load: 7807 case Instruction::LShr: 7808 case Instruction::Mul: 7809 case Instruction::Or: 7810 case Instruction::PHI: 7811 case Instruction::PtrToInt: 7812 case Instruction::SDiv: 7813 case Instruction::Select: 7814 case Instruction::SExt: 7815 case Instruction::Shl: 7816 case Instruction::SIToFP: 7817 case Instruction::SRem: 7818 case Instruction::Store: 7819 case Instruction::Sub: 7820 case Instruction::Trunc: 7821 case Instruction::UDiv: 7822 case Instruction::UIToFP: 7823 case Instruction::URem: 7824 case Instruction::Xor: 7825 case Instruction::ZExt: 7826 return true; 7827 } 7828 return false; 7829 }; 7830 7831 if (!IsVectorizableOpcode(I->getOpcode())) 7832 return false; 7833 7834 if (CallInst *CI = dyn_cast<CallInst>(I)) { 7835 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7836 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 7837 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 7838 return false; 7839 } 7840 7841 auto willWiden = [&](unsigned VF) -> bool { 7842 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 7843 CM.isProfitableToScalarize(I, VF))) 7844 return false; 7845 if (CallInst *CI = dyn_cast<CallInst>(I)) { 7846 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7847 // The following case may be scalarized depending on the VF. 7848 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7849 // version of the instruction. 7850 // Is it beneficial to perform intrinsic call compared to lib call? 7851 bool NeedToScalarize; 7852 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 7853 bool UseVectorIntrinsic = 7854 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 7855 return UseVectorIntrinsic || !NeedToScalarize; 7856 } 7857 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 7858 assert(CM.getWideningDecision(I, VF) == 7859 LoopVectorizationCostModel::CM_Scalarize && 7860 "Memory widening decisions should have been taken care by now"); 7861 return false; 7862 } 7863 return true; 7864 }; 7865 7866 if (!getDecisionAndClampRange(willWiden, Range)) 7867 return false; 7868 7869 // Success: widen this instruction. We optimize the common case where 7870 // consecutive instructions can be represented by a single recipe. 7871 if (!VPBB->empty()) { 7872 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back()); 7873 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 7874 return true; 7875 } 7876 7877 VPBB->appendRecipe(new VPWidenRecipe(I)); 7878 return true; 7879 } 7880 7881 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 7882 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7883 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7884 VPlanPtr &Plan) { 7885 bool IsUniform = getDecisionAndClampRange( 7886 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 7887 Range); 7888 7889 bool IsPredicated = Legal->isScalarWithPredication(I); 7890 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 7891 7892 // Find if I uses a predicated instruction. If so, it will use its scalar 7893 // value. Avoid hoisting the insert-element which packs the scalar value into 7894 // a vector value, as that happens iff all users use the vector value. 7895 for (auto &Op : I->operands()) 7896 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7897 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7898 PredInst2Recipe[PredInst]->setAlsoPack(false); 7899 7900 // Finalize the recipe for Instr, first if it is not predicated. 7901 if (!IsPredicated) { 7902 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7903 VPBB->appendRecipe(Recipe); 7904 return VPBB; 7905 } 7906 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7907 assert(VPBB->getSuccessors().empty() && 7908 "VPBB has successors when handling predicated replication."); 7909 // Record predicated instructions for above packing optimizations. 7910 PredInst2Recipe[I] = Recipe; 7911 VPBlockBase *Region = 7912 VPBB->setOneSuccessor(createReplicateRegion(I, Recipe, Plan)); 7913 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock())); 7914 } 7915 7916 VPRegionBlock * 7917 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 7918 VPRecipeBase *PredRecipe, 7919 VPlanPtr &Plan) { 7920 // Instructions marked for predication are replicated and placed under an 7921 // if-then construct to prevent side-effects. 7922 7923 // Generate recipes to compute the block mask for this region. 7924 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7925 7926 // Build the triangular if-then region. 7927 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7928 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7929 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7930 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7931 auto *PHIRecipe = 7932 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7933 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7934 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7935 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7936 7937 // Note: first set Entry as region entry and then connect successors starting 7938 // from it in order, to propagate the "parent" of each VPBasicBlock. 7939 Entry->setTwoSuccessors(Pred, Exit); 7940 Pred->setOneSuccessor(Exit); 7941 7942 return Region; 7943 } 7944 7945 LoopVectorizationPlanner::VPlanPtr 7946 LoopVectorizationPlanner::buildVPlan(VFRange &Range, 7947 const SmallPtrSetImpl<Value *> &NeedDef) { 7948 EdgeMaskCache.clear(); 7949 BlockMaskCache.clear(); 7950 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7951 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 7952 7953 // Collect instructions from the original loop that will become trivially dead 7954 // in the vectorized loop. We don't need to vectorize these instructions. For 7955 // example, original induction update instructions can become dead because we 7956 // separately emit induction "steps" when generating code for the new loop. 7957 // Similarly, we create a new latch condition when setting up the structure 7958 // of the new loop, so the old one can become dead. 7959 SmallPtrSet<Instruction *, 4> DeadInstructions; 7960 collectTriviallyDeadInstructions(DeadInstructions); 7961 7962 // Hold a mapping from predicated instructions to their recipes, in order to 7963 // fix their AlsoPack behavior if a user is determined to replicate and use a 7964 // scalar instead of vector value. 7965 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7966 7967 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7968 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7969 auto Plan = llvm::make_unique<VPlan>(VPBB); 7970 7971 // Represent values that will have defs inside VPlan. 7972 for (Value *V : NeedDef) 7973 Plan->addVPValue(V); 7974 7975 // Scan the body of the loop in a topological order to visit each basic block 7976 // after having visited its predecessor basic blocks. 7977 LoopBlocksDFS DFS(OrigLoop); 7978 DFS.perform(LI); 7979 7980 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7981 // Relevant instructions from basic block BB will be grouped into VPRecipe 7982 // ingredients and fill a new VPBasicBlock. 7983 unsigned VPBBsForBB = 0; 7984 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7985 VPBB->setOneSuccessor(FirstVPBBForBB); 7986 VPBB = FirstVPBBForBB; 7987 Builder.setInsertPoint(VPBB); 7988 7989 std::vector<Instruction *> Ingredients; 7990 7991 // Organize the ingredients to vectorize from current basic block in the 7992 // right order. 7993 for (Instruction &I : *BB) { 7994 Instruction *Instr = &I; 7995 7996 // First filter out irrelevant instructions, to ensure no recipes are 7997 // built for them. 7998 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) || 7999 DeadInstructions.count(Instr)) 8000 continue; 8001 8002 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 8003 // member of the IG, do not construct any Recipe for it. 8004 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(Instr); 8005 if (IG && Instr != IG->getInsertPos() && 8006 Range.Start >= 2 && // Query is illegal for VF == 1 8007 CM.getWideningDecision(Instr, Range.Start) == 8008 LoopVectorizationCostModel::CM_Interleave) { 8009 if (SinkAfterInverse.count(Instr)) 8010 Ingredients.push_back(SinkAfterInverse.find(Instr)->second); 8011 continue; 8012 } 8013 8014 // Move instructions to handle first-order recurrences, step 1: avoid 8015 // handling this instruction until after we've handled the instruction it 8016 // should follow. 8017 auto SAIt = SinkAfter.find(Instr); 8018 if (SAIt != SinkAfter.end()) { 8019 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second 8020 << " to vectorize a 1st order recurrence.\n"); 8021 SinkAfterInverse[SAIt->second] = Instr; 8022 continue; 8023 } 8024 8025 Ingredients.push_back(Instr); 8026 8027 // Move instructions to handle first-order recurrences, step 2: push the 8028 // instruction to be sunk at its insertion point. 8029 auto SAInvIt = SinkAfterInverse.find(Instr); 8030 if (SAInvIt != SinkAfterInverse.end()) 8031 Ingredients.push_back(SAInvIt->second); 8032 } 8033 8034 // Introduce each ingredient into VPlan. 8035 for (Instruction *Instr : Ingredients) { 8036 VPRecipeBase *Recipe = nullptr; 8037 8038 // Check if Instr should belong to an interleave memory recipe, or already 8039 // does. In the latter case Instr is irrelevant. 8040 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 8041 VPBB->appendRecipe(Recipe); 8042 continue; 8043 } 8044 8045 // Check if Instr is a memory operation that should be widened. 8046 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) { 8047 VPBB->appendRecipe(Recipe); 8048 continue; 8049 } 8050 8051 // Check if Instr should form some PHI recipe. 8052 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 8053 VPBB->appendRecipe(Recipe); 8054 continue; 8055 } 8056 if ((Recipe = tryToBlend(Instr, Plan))) { 8057 VPBB->appendRecipe(Recipe); 8058 continue; 8059 } 8060 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 8061 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 8062 continue; 8063 } 8064 8065 // Check if Instr is to be widened by a general VPWidenRecipe, after 8066 // having first checked for specific widening recipes that deal with 8067 // Interleave Groups, Inductions and Phi nodes. 8068 if (tryToWiden(Instr, VPBB, Range)) 8069 continue; 8070 8071 // Otherwise, if all widening options failed, Instruction is to be 8072 // replicated. This may create a successor for VPBB. 8073 VPBasicBlock *NextVPBB = 8074 handleReplication(Instr, Range, VPBB, PredInst2Recipe, Plan); 8075 if (NextVPBB != VPBB) { 8076 VPBB = NextVPBB; 8077 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8078 : ""); 8079 } 8080 } 8081 } 8082 8083 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8084 // may also be empty, such as the last one VPBB, reflecting original 8085 // basic-blocks with no recipes. 8086 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8087 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8088 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8089 PreEntry->disconnectSuccessor(Entry); 8090 delete PreEntry; 8091 8092 std::string PlanName; 8093 raw_string_ostream RSO(PlanName); 8094 unsigned VF = Range.Start; 8095 Plan->addVF(VF); 8096 RSO << "Initial VPlan for VF={" << VF; 8097 for (VF *= 2; VF < Range.End; VF *= 2) { 8098 Plan->addVF(VF); 8099 RSO << "," << VF; 8100 } 8101 RSO << "},UF>=1"; 8102 RSO.flush(); 8103 Plan->setName(PlanName); 8104 8105 return Plan; 8106 } 8107 8108 Value* LoopVectorizationPlanner::VPCallbackILV:: 8109 getOrCreateVectorValues(Value *V, unsigned Part) { 8110 return ILV.getOrCreateVectorValue(V, Part); 8111 } 8112 8113 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 8114 O << " +\n" 8115 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8116 IG->getInsertPos()->printAsOperand(O, false); 8117 O << "\\l\""; 8118 for (unsigned i = 0; i < IG->getFactor(); ++i) 8119 if (Instruction *I = IG->getMember(i)) 8120 O << " +\n" 8121 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 8122 } 8123 8124 void VPWidenRecipe::execute(VPTransformState &State) { 8125 for (auto &Instr : make_range(Begin, End)) 8126 State.ILV->widenInstruction(Instr); 8127 } 8128 8129 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 8130 assert(!State.Instance && "Int or FP induction being replicated."); 8131 State.ILV->widenIntOrFpInduction(IV, Trunc); 8132 } 8133 8134 void VPWidenPHIRecipe::execute(VPTransformState &State) { 8135 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 8136 } 8137 8138 void VPBlendRecipe::execute(VPTransformState &State) { 8139 State.ILV->setDebugLocFromInst(State.Builder, Phi); 8140 // We know that all PHIs in non-header blocks are converted into 8141 // selects, so we don't have to worry about the insertion order and we 8142 // can just use the builder. 8143 // At this point we generate the predication tree. There may be 8144 // duplications since this is a simple recursive scan, but future 8145 // optimizations will clean it up. 8146 8147 unsigned NumIncoming = Phi->getNumIncomingValues(); 8148 8149 assert((User || NumIncoming == 1) && 8150 "Multiple predecessors with predecessors having a full mask"); 8151 // Generate a sequence of selects of the form: 8152 // SELECT(Mask3, In3, 8153 // SELECT(Mask2, In2, 8154 // ( ...))) 8155 InnerLoopVectorizer::VectorParts Entry(State.UF); 8156 for (unsigned In = 0; In < NumIncoming; ++In) { 8157 for (unsigned Part = 0; Part < State.UF; ++Part) { 8158 // We might have single edge PHIs (blocks) - use an identity 8159 // 'select' for the first PHI operand. 8160 Value *In0 = 8161 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part); 8162 if (In == 0) 8163 Entry[Part] = In0; // Initialize with the first incoming value. 8164 else { 8165 // Select between the current value and the previous incoming edge 8166 // based on the incoming mask. 8167 Value *Cond = State.get(User->getOperand(In), Part); 8168 Entry[Part] = 8169 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 8170 } 8171 } 8172 } 8173 for (unsigned Part = 0; Part < State.UF; ++Part) 8174 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 8175 } 8176 8177 void VPInterleaveRecipe::execute(VPTransformState &State) { 8178 assert(!State.Instance && "Interleave group being replicated."); 8179 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 8180 } 8181 8182 void VPReplicateRecipe::execute(VPTransformState &State) { 8183 if (State.Instance) { // Generate a single instance. 8184 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 8185 // Insert scalar instance packing it into a vector. 8186 if (AlsoPack && State.VF > 1) { 8187 // If we're constructing lane 0, initialize to start from undef. 8188 if (State.Instance->Lane == 0) { 8189 Value *Undef = 8190 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8191 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8192 } 8193 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8194 } 8195 return; 8196 } 8197 8198 // Generate scalar instances for all VF lanes of all UF parts, unless the 8199 // instruction is uniform inwhich case generate only the first lane for each 8200 // of the UF parts. 8201 unsigned EndLane = IsUniform ? 1 : State.VF; 8202 for (unsigned Part = 0; Part < State.UF; ++Part) 8203 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8204 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 8205 } 8206 8207 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8208 assert(State.Instance && "Branch on Mask works only on single instance."); 8209 8210 unsigned Part = State.Instance->Part; 8211 unsigned Lane = State.Instance->Lane; 8212 8213 Value *ConditionBit = nullptr; 8214 if (!User) // Block in mask is all-one. 8215 ConditionBit = State.Builder.getTrue(); 8216 else { 8217 VPValue *BlockInMask = User->getOperand(0); 8218 ConditionBit = State.get(BlockInMask, Part); 8219 if (ConditionBit->getType()->isVectorTy()) 8220 ConditionBit = State.Builder.CreateExtractElement( 8221 ConditionBit, State.Builder.getInt32(Lane)); 8222 } 8223 8224 // Replace the temporary unreachable terminator with a new conditional branch, 8225 // whose two destinations will be set later when they are created. 8226 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8227 assert(isa<UnreachableInst>(CurrentTerminator) && 8228 "Expected to replace unreachable terminator with conditional branch."); 8229 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8230 CondBr->setSuccessor(0, nullptr); 8231 ReplaceInstWithInst(CurrentTerminator, CondBr); 8232 } 8233 8234 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8235 assert(State.Instance && "Predicated instruction PHI works per instance."); 8236 Instruction *ScalarPredInst = cast<Instruction>( 8237 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8238 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8239 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8240 assert(PredicatingBB && "Predicated block has no single predecessor."); 8241 8242 // By current pack/unpack logic we need to generate only a single phi node: if 8243 // a vector value for the predicated instruction exists at this point it means 8244 // the instruction has vector users only, and a phi for the vector value is 8245 // needed. In this case the recipe of the predicated instruction is marked to 8246 // also do that packing, thereby "hoisting" the insert-element sequence. 8247 // Otherwise, a phi node for the scalar value is needed. 8248 unsigned Part = State.Instance->Part; 8249 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8250 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8251 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8252 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8253 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8254 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8255 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8256 } else { 8257 Type *PredInstType = PredInst->getType(); 8258 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8259 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8260 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8261 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8262 } 8263 } 8264 8265 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 8266 if (!User) 8267 return State.ILV->vectorizeMemoryInstruction(&Instr); 8268 8269 // Last (and currently only) operand is a mask. 8270 InnerLoopVectorizer::VectorParts MaskValues(State.UF); 8271 VPValue *Mask = User->getOperand(User->getNumOperands() - 1); 8272 for (unsigned Part = 0; Part < State.UF; ++Part) 8273 MaskValues[Part] = State.get(Mask, Part); 8274 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues); 8275 } 8276 8277 bool LoopVectorizePass::processLoop(Loop *L) { 8278 assert(L->empty() && "Only process inner loops."); 8279 8280 #ifndef NDEBUG 8281 const std::string DebugLocStr = getDebugLocString(L); 8282 #endif /* NDEBUG */ 8283 8284 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8285 << L->getHeader()->getParent()->getName() << "\" from " 8286 << DebugLocStr << "\n"); 8287 8288 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 8289 8290 DEBUG(dbgs() << "LV: Loop hints:" 8291 << " force=" 8292 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8293 ? "disabled" 8294 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8295 ? "enabled" 8296 : "?")) 8297 << " width=" << Hints.getWidth() 8298 << " unroll=" << Hints.getInterleave() << "\n"); 8299 8300 // Function containing loop 8301 Function *F = L->getHeader()->getParent(); 8302 8303 // Looking at the diagnostic output is the only way to determine if a loop 8304 // was vectorized (other than looking at the IR or machine code), so it 8305 // is important to generate an optimization remark for each loop. Most of 8306 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8307 // generated as OptimizationRemark and OptimizationRemarkMissed are 8308 // less verbose reporting vectorized loops and unvectorized loops that may 8309 // benefit from vectorization, respectively. 8310 8311 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 8312 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8313 return false; 8314 } 8315 8316 PredicatedScalarEvolution PSE(*SE, *L); 8317 8318 // Check if it is legal to vectorize the loop. 8319 LoopVectorizationRequirements Requirements(*ORE); 8320 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 8321 &Requirements, &Hints); 8322 if (!LVL.canVectorize()) { 8323 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8324 emitMissedWarning(F, L, Hints, ORE); 8325 return false; 8326 } 8327 8328 // Check the function attributes to find out if this function should be 8329 // optimized for size. 8330 bool OptForSize = 8331 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 8332 8333 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8334 // count by optimizing for size, to minimize overheads. 8335 unsigned ExpectedTC = SE->getSmallConstantMaxTripCount(L); 8336 bool HasExpectedTC = (ExpectedTC > 0); 8337 8338 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 8339 auto EstimatedTC = getLoopEstimatedTripCount(L); 8340 if (EstimatedTC) { 8341 ExpectedTC = *EstimatedTC; 8342 HasExpectedTC = true; 8343 } 8344 } 8345 8346 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 8347 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8348 << "This loop is worth vectorizing only if no scalar " 8349 << "iteration overheads are incurred."); 8350 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8351 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8352 else { 8353 DEBUG(dbgs() << "\n"); 8354 // Loops with a very small trip count are considered for vectorization 8355 // under OptForSize, thereby making sure the cost of their loop body is 8356 // dominant, free of runtime guards and scalar iteration overheads. 8357 OptForSize = true; 8358 } 8359 } 8360 8361 // Check the function attributes to see if implicit floats are allowed. 8362 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8363 // an integer loop and the vector instructions selected are purely integer 8364 // vector instructions? 8365 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8366 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 8367 "attribute is used.\n"); 8368 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 8369 "NoImplicitFloat", L) 8370 << "loop not vectorized due to NoImplicitFloat attribute"); 8371 emitMissedWarning(F, L, Hints, ORE); 8372 return false; 8373 } 8374 8375 // Check if the target supports potentially unsafe FP vectorization. 8376 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8377 // for the target we're vectorizing for, to make sure none of the 8378 // additional fp-math flags can help. 8379 if (Hints.isPotentiallyUnsafe() && 8380 TTI->isFPVectorizationPotentiallyUnsafe()) { 8381 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 8382 ORE->emit( 8383 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 8384 << "loop not vectorized due to unsafe FP support."); 8385 emitMissedWarning(F, L, Hints, ORE); 8386 return false; 8387 } 8388 8389 // Use the cost model. 8390 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 8391 &Hints); 8392 CM.collectValuesToIgnore(); 8393 8394 // Use the planner for vectorization. 8395 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 8396 8397 // Get user vectorization factor. 8398 unsigned UserVF = Hints.getWidth(); 8399 8400 // Plan how to best vectorize, return the best VF and its cost. 8401 VectorizationFactor VF = LVP.plan(OptForSize, UserVF); 8402 8403 // Select the interleave count. 8404 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 8405 8406 // Get user interleave count. 8407 unsigned UserIC = Hints.getInterleave(); 8408 8409 // Identify the diagnostic messages that should be produced. 8410 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8411 bool VectorizeLoop = true, InterleaveLoop = true; 8412 if (Requirements.doesNotMeet(F, L, Hints)) { 8413 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8414 "requirements.\n"); 8415 emitMissedWarning(F, L, Hints, ORE); 8416 return false; 8417 } 8418 8419 if (VF.Width == 1) { 8420 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8421 VecDiagMsg = std::make_pair( 8422 "VectorizationNotBeneficial", 8423 "the cost-model indicates that vectorization is not beneficial"); 8424 VectorizeLoop = false; 8425 } 8426 8427 if (IC == 1 && UserIC <= 1) { 8428 // Tell the user interleaving is not beneficial. 8429 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8430 IntDiagMsg = std::make_pair( 8431 "InterleavingNotBeneficial", 8432 "the cost-model indicates that interleaving is not beneficial"); 8433 InterleaveLoop = false; 8434 if (UserIC == 1) { 8435 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8436 IntDiagMsg.second += 8437 " and is explicitly disabled or interleave count is set to 1"; 8438 } 8439 } else if (IC > 1 && UserIC == 1) { 8440 // Tell the user interleaving is beneficial, but it explicitly disabled. 8441 DEBUG(dbgs() 8442 << "LV: Interleaving is beneficial but is explicitly disabled."); 8443 IntDiagMsg = std::make_pair( 8444 "InterleavingBeneficialButDisabled", 8445 "the cost-model indicates that interleaving is beneficial " 8446 "but is explicitly disabled or interleave count is set to 1"); 8447 InterleaveLoop = false; 8448 } 8449 8450 // Override IC if user provided an interleave count. 8451 IC = UserIC > 0 ? UserIC : IC; 8452 8453 // Emit diagnostic messages, if any. 8454 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8455 if (!VectorizeLoop && !InterleaveLoop) { 8456 // Do not vectorize or interleaving the loop. 8457 ORE->emit([&]() { 8458 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8459 L->getStartLoc(), L->getHeader()) 8460 << VecDiagMsg.second; 8461 }); 8462 ORE->emit([&]() { 8463 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8464 L->getStartLoc(), L->getHeader()) 8465 << IntDiagMsg.second; 8466 }); 8467 return false; 8468 } else if (!VectorizeLoop && InterleaveLoop) { 8469 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8470 ORE->emit([&]() { 8471 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8472 L->getStartLoc(), L->getHeader()) 8473 << VecDiagMsg.second; 8474 }); 8475 } else if (VectorizeLoop && !InterleaveLoop) { 8476 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8477 << DebugLocStr << '\n'); 8478 ORE->emit([&]() { 8479 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8480 L->getStartLoc(), L->getHeader()) 8481 << IntDiagMsg.second; 8482 }); 8483 } else if (VectorizeLoop && InterleaveLoop) { 8484 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8485 << DebugLocStr << '\n'); 8486 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8487 } 8488 8489 LVP.setBestPlan(VF.Width, IC); 8490 8491 using namespace ore; 8492 8493 if (!VectorizeLoop) { 8494 assert(IC > 1 && "interleave count should not be 1 or 0"); 8495 // If we decided that it is not legal to vectorize the loop, then 8496 // interleave it. 8497 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 8498 &CM); 8499 LVP.executePlan(Unroller, DT); 8500 8501 ORE->emit([&]() { 8502 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8503 L->getHeader()) 8504 << "interleaved loop (interleaved count: " 8505 << NV("InterleaveCount", IC) << ")"; 8506 }); 8507 } else { 8508 // If we decided that it is *legal* to vectorize the loop, then do it. 8509 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8510 &LVL, &CM); 8511 LVP.executePlan(LB, DT); 8512 ++LoopsVectorized; 8513 8514 // Add metadata to disable runtime unrolling a scalar loop when there are 8515 // no runtime checks about strides and memory. A scalar loop that is 8516 // rarely used is not worth unrolling. 8517 if (!LB.areSafetyChecksAdded()) 8518 AddRuntimeUnrollDisableMetaData(L); 8519 8520 // Report the vectorization decision. 8521 ORE->emit([&]() { 8522 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8523 L->getHeader()) 8524 << "vectorized loop (vectorization width: " 8525 << NV("VectorizationFactor", VF.Width) 8526 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8527 }); 8528 } 8529 8530 // Mark the loop as already vectorized to avoid vectorizing again. 8531 Hints.setAlreadyVectorized(); 8532 8533 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8534 return true; 8535 } 8536 8537 bool LoopVectorizePass::runImpl( 8538 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8539 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8540 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8541 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8542 OptimizationRemarkEmitter &ORE_) { 8543 SE = &SE_; 8544 LI = &LI_; 8545 TTI = &TTI_; 8546 DT = &DT_; 8547 BFI = &BFI_; 8548 TLI = TLI_; 8549 AA = &AA_; 8550 AC = &AC_; 8551 GetLAA = &GetLAA_; 8552 DB = &DB_; 8553 ORE = &ORE_; 8554 8555 // Don't attempt if 8556 // 1. the target claims to have no vector registers, and 8557 // 2. interleaving won't help ILP. 8558 // 8559 // The second condition is necessary because, even if the target has no 8560 // vector registers, loop vectorization may still enable scalar 8561 // interleaving. 8562 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8563 return false; 8564 8565 bool Changed = false; 8566 8567 // The vectorizer requires loops to be in simplified form. 8568 // Since simplification may add new inner loops, it has to run before the 8569 // legality and profitability checks. This means running the loop vectorizer 8570 // will simplify all loops, regardless of whether anything end up being 8571 // vectorized. 8572 for (auto &L : *LI) 8573 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8574 8575 // Build up a worklist of inner-loops to vectorize. This is necessary as 8576 // the act of vectorizing or partially unrolling a loop creates new loops 8577 // and can invalidate iterators across the loops. 8578 SmallVector<Loop *, 8> Worklist; 8579 8580 for (Loop *L : *LI) 8581 addAcyclicInnerLoop(*L, Worklist); 8582 8583 LoopsAnalyzed += Worklist.size(); 8584 8585 // Now walk the identified inner loops. 8586 while (!Worklist.empty()) { 8587 Loop *L = Worklist.pop_back_val(); 8588 8589 // For the inner loops we actually process, form LCSSA to simplify the 8590 // transform. 8591 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8592 8593 Changed |= processLoop(L); 8594 } 8595 8596 // Process each loop nest in the function. 8597 return Changed; 8598 } 8599 8600 PreservedAnalyses LoopVectorizePass::run(Function &F, 8601 FunctionAnalysisManager &AM) { 8602 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8603 auto &LI = AM.getResult<LoopAnalysis>(F); 8604 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8605 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8606 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8607 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8608 auto &AA = AM.getResult<AAManager>(F); 8609 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8610 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8611 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8612 8613 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8614 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8615 [&](Loop &L) -> const LoopAccessInfo & { 8616 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr}; 8617 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8618 }; 8619 bool Changed = 8620 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8621 if (!Changed) 8622 return PreservedAnalyses::all(); 8623 PreservedAnalyses PA; 8624 PA.preserve<LoopAnalysis>(); 8625 PA.preserve<DominatorTreeAnalysis>(); 8626 PA.preserve<BasicAA>(); 8627 PA.preserve<GlobalsAA>(); 8628 return PA; 8629 } 8630