1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/MemorySSA.h"
91 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
92 #include "llvm/Analysis/ProfileSummaryInfo.h"
93 #include "llvm/Analysis/ScalarEvolution.h"
94 #include "llvm/Analysis/ScalarEvolutionExpander.h"
95 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
96 #include "llvm/Analysis/TargetLibraryInfo.h"
97 #include "llvm/Analysis/TargetTransformInfo.h"
98 #include "llvm/Analysis/VectorUtils.h"
99 #include "llvm/IR/Attributes.h"
100 #include "llvm/IR/BasicBlock.h"
101 #include "llvm/IR/CFG.h"
102 #include "llvm/IR/Constant.h"
103 #include "llvm/IR/Constants.h"
104 #include "llvm/IR/DataLayout.h"
105 #include "llvm/IR/DebugInfoMetadata.h"
106 #include "llvm/IR/DebugLoc.h"
107 #include "llvm/IR/DerivedTypes.h"
108 #include "llvm/IR/DiagnosticInfo.h"
109 #include "llvm/IR/Dominators.h"
110 #include "llvm/IR/Function.h"
111 #include "llvm/IR/IRBuilder.h"
112 #include "llvm/IR/InstrTypes.h"
113 #include "llvm/IR/Instruction.h"
114 #include "llvm/IR/Instructions.h"
115 #include "llvm/IR/IntrinsicInst.h"
116 #include "llvm/IR/Intrinsics.h"
117 #include "llvm/IR/LLVMContext.h"
118 #include "llvm/IR/Metadata.h"
119 #include "llvm/IR/Module.h"
120 #include "llvm/IR/Operator.h"
121 #include "llvm/IR/Type.h"
122 #include "llvm/IR/Use.h"
123 #include "llvm/IR/User.h"
124 #include "llvm/IR/Value.h"
125 #include "llvm/IR/ValueHandle.h"
126 #include "llvm/IR/Verifier.h"
127 #include "llvm/InitializePasses.h"
128 #include "llvm/Pass.h"
129 #include "llvm/Support/Casting.h"
130 #include "llvm/Support/CommandLine.h"
131 #include "llvm/Support/Compiler.h"
132 #include "llvm/Support/Debug.h"
133 #include "llvm/Support/ErrorHandling.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/SizeOpts.h"
142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
143 #include <algorithm>
144 #include <cassert>
145 #include <cstdint>
146 #include <cstdlib>
147 #include <functional>
148 #include <iterator>
149 #include <limits>
150 #include <memory>
151 #include <string>
152 #include <tuple>
153 #include <utility>
154 
155 using namespace llvm;
156 
157 #define LV_NAME "loop-vectorize"
158 #define DEBUG_TYPE LV_NAME
159 
160 /// @{
161 /// Metadata attribute names
162 static const char *const LLVMLoopVectorizeFollowupAll =
163     "llvm.loop.vectorize.followup_all";
164 static const char *const LLVMLoopVectorizeFollowupVectorized =
165     "llvm.loop.vectorize.followup_vectorized";
166 static const char *const LLVMLoopVectorizeFollowupEpilogue =
167     "llvm.loop.vectorize.followup_epilogue";
168 /// @}
169 
170 STATISTIC(LoopsVectorized, "Number of loops vectorized");
171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
172 
173 /// Loops with a known constant trip count below this number are vectorized only
174 /// if no scalar iteration overheads are incurred.
175 static cl::opt<unsigned> TinyTripCountVectorThreshold(
176     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
177     cl::desc("Loops with a constant trip count that is smaller than this "
178              "value are vectorized only if no scalar iteration overheads "
179              "are incurred."));
180 
181 // Indicates that an epilogue is undesired, predication is preferred.
182 // This means that the vectorizer will try to fold the loop-tail (epilogue)
183 // into the loop and predicate the loop body accordingly.
184 static cl::opt<bool> PreferPredicateOverEpilog(
185     "prefer-predicate-over-epilog", cl::init(false), cl::Hidden,
186     cl::desc("Indicate that an epilogue is undesired, predication should be "
187              "used instead."));
188 
189 static cl::opt<bool> MaximizeBandwidth(
190     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
191     cl::desc("Maximize bandwidth when selecting vectorization factor which "
192              "will be determined by the smallest type in loop."));
193 
194 static cl::opt<bool> EnableInterleavedMemAccesses(
195     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
196     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
197 
198 /// An interleave-group may need masking if it resides in a block that needs
199 /// predication, or in order to mask away gaps.
200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
201     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
202     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
203 
204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
205     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
206     cl::desc("We don't interleave loops with a estimated constant trip count "
207              "below this number"));
208 
209 static cl::opt<unsigned> ForceTargetNumScalarRegs(
210     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
211     cl::desc("A flag that overrides the target's number of scalar registers."));
212 
213 static cl::opt<unsigned> ForceTargetNumVectorRegs(
214     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
215     cl::desc("A flag that overrides the target's number of vector registers."));
216 
217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
218     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
219     cl::desc("A flag that overrides the target's max interleave factor for "
220              "scalar loops."));
221 
222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
223     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
224     cl::desc("A flag that overrides the target's max interleave factor for "
225              "vectorized loops."));
226 
227 static cl::opt<unsigned> ForceTargetInstructionCost(
228     "force-target-instruction-cost", cl::init(0), cl::Hidden,
229     cl::desc("A flag that overrides the target's expected cost for "
230              "an instruction to a single constant value. Mostly "
231              "useful for getting consistent testing."));
232 
233 static cl::opt<unsigned> SmallLoopCost(
234     "small-loop-cost", cl::init(20), cl::Hidden,
235     cl::desc(
236         "The cost of a loop that is considered 'small' by the interleaver."));
237 
238 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
239     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
240     cl::desc("Enable the use of the block frequency analysis to access PGO "
241              "heuristics minimizing code growth in cold regions and being more "
242              "aggressive in hot regions."));
243 
244 // Runtime interleave loops for load/store throughput.
245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
246     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
247     cl::desc(
248         "Enable runtime interleaving until load/store ports are saturated"));
249 
250 /// The number of stores in a loop that are allowed to need predication.
251 static cl::opt<unsigned> NumberOfStoresToPredicate(
252     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
253     cl::desc("Max number of stores to be predicated behind an if."));
254 
255 static cl::opt<bool> EnableIndVarRegisterHeur(
256     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
257     cl::desc("Count the induction variable only once when interleaving"));
258 
259 static cl::opt<bool> EnableCondStoresVectorization(
260     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
261     cl::desc("Enable if predication of stores during vectorization."));
262 
263 static cl::opt<unsigned> MaxNestedScalarReductionIC(
264     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
265     cl::desc("The maximum interleave count to use when interleaving a scalar "
266              "reduction in a nested loop."));
267 
268 cl::opt<bool> EnableVPlanNativePath(
269     "enable-vplan-native-path", cl::init(false), cl::Hidden,
270     cl::desc("Enable VPlan-native vectorization path with "
271              "support for outer loop vectorization."));
272 
273 // FIXME: Remove this switch once we have divergence analysis. Currently we
274 // assume divergent non-backedge branches when this switch is true.
275 cl::opt<bool> EnableVPlanPredication(
276     "enable-vplan-predication", cl::init(false), cl::Hidden,
277     cl::desc("Enable VPlan-native vectorization path predicator with "
278              "support for outer loop vectorization."));
279 
280 // This flag enables the stress testing of the VPlan H-CFG construction in the
281 // VPlan-native vectorization path. It must be used in conjuction with
282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
283 // verification of the H-CFGs built.
284 static cl::opt<bool> VPlanBuildStressTest(
285     "vplan-build-stress-test", cl::init(false), cl::Hidden,
286     cl::desc(
287         "Build VPlan for every supported loop nest in the function and bail "
288         "out right after the build (stress test the VPlan H-CFG construction "
289         "in the VPlan-native vectorization path)."));
290 
291 cl::opt<bool> llvm::EnableLoopInterleaving(
292     "interleave-loops", cl::init(true), cl::Hidden,
293     cl::desc("Enable loop interleaving in Loop vectorization passes"));
294 cl::opt<bool> llvm::EnableLoopVectorization(
295     "vectorize-loops", cl::init(true), cl::Hidden,
296     cl::desc("Run the Loop vectorization passes"));
297 
298 /// A helper function that returns the type of loaded or stored value.
299 static Type *getMemInstValueType(Value *I) {
300   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
301          "Expected Load or Store instruction");
302   if (auto *LI = dyn_cast<LoadInst>(I))
303     return LI->getType();
304   return cast<StoreInst>(I)->getValueOperand()->getType();
305 }
306 
307 /// A helper function that returns true if the given type is irregular. The
308 /// type is irregular if its allocated size doesn't equal the store size of an
309 /// element of the corresponding vector type at the given vectorization factor.
310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
311   // Determine if an array of VF elements of type Ty is "bitcast compatible"
312   // with a <VF x Ty> vector.
313   if (VF > 1) {
314     auto *VectorTy = VectorType::get(Ty, VF);
315     return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
316   }
317 
318   // If the vectorization factor is one, we just check if an array of type Ty
319   // requires padding between elements.
320   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
321 }
322 
323 /// A helper function that returns the reciprocal of the block probability of
324 /// predicated blocks. If we return X, we are assuming the predicated block
325 /// will execute once for every X iterations of the loop header.
326 ///
327 /// TODO: We should use actual block probability here, if available. Currently,
328 ///       we always assume predicated blocks have a 50% chance of executing.
329 static unsigned getReciprocalPredBlockProb() { return 2; }
330 
331 /// A helper function that adds a 'fast' flag to floating-point operations.
332 static Value *addFastMathFlag(Value *V) {
333   if (isa<FPMathOperator>(V))
334     cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast());
335   return V;
336 }
337 
338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) {
339   if (isa<FPMathOperator>(V))
340     cast<Instruction>(V)->setFastMathFlags(FMF);
341   return V;
342 }
343 
344 /// A helper function that returns an integer or floating-point constant with
345 /// value C.
346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
347   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
348                            : ConstantFP::get(Ty, C);
349 }
350 
351 /// Returns "best known" trip count for the specified loop \p L as defined by
352 /// the following procedure:
353 ///   1) Returns exact trip count if it is known.
354 ///   2) Returns expected trip count according to profile data if any.
355 ///   3) Returns upper bound estimate if it is known.
356 ///   4) Returns None if all of the above failed.
357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
358   // Check if exact trip count is known.
359   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
360     return ExpectedTC;
361 
362   // Check if there is an expected trip count available from profile data.
363   if (LoopVectorizeWithBlockFrequency)
364     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
365       return EstimatedTC;
366 
367   // Check if upper bound estimate is known.
368   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
369     return ExpectedTC;
370 
371   return None;
372 }
373 
374 namespace llvm {
375 
376 /// InnerLoopVectorizer vectorizes loops which contain only one basic
377 /// block to a specified vectorization factor (VF).
378 /// This class performs the widening of scalars into vectors, or multiple
379 /// scalars. This class also implements the following features:
380 /// * It inserts an epilogue loop for handling loops that don't have iteration
381 ///   counts that are known to be a multiple of the vectorization factor.
382 /// * It handles the code generation for reduction variables.
383 /// * Scalarization (implementation using scalars) of un-vectorizable
384 ///   instructions.
385 /// InnerLoopVectorizer does not perform any vectorization-legality
386 /// checks, and relies on the caller to check for the different legality
387 /// aspects. The InnerLoopVectorizer relies on the
388 /// LoopVectorizationLegality class to provide information about the induction
389 /// and reduction variables that were found to a given vectorization factor.
390 class InnerLoopVectorizer {
391 public:
392   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
393                       LoopInfo *LI, DominatorTree *DT,
394                       const TargetLibraryInfo *TLI,
395                       const TargetTransformInfo *TTI, AssumptionCache *AC,
396                       OptimizationRemarkEmitter *ORE, unsigned VecWidth,
397                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
398                       LoopVectorizationCostModel *CM)
399       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
400         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
401         Builder(PSE.getSE()->getContext()),
402         VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {}
403   virtual ~InnerLoopVectorizer() = default;
404 
405   /// Create a new empty loop. Unlink the old loop and connect the new one.
406   /// Return the pre-header block of the new loop.
407   BasicBlock *createVectorizedLoopSkeleton();
408 
409   /// Widen a single instruction within the innermost loop.
410   void widenInstruction(Instruction &I, VPUser &Operands,
411                         VPTransformState &State);
412 
413   /// Widen a single call instruction within the innermost loop.
414   void widenCallInstruction(CallInst &I, VPUser &ArgOperands,
415                             VPTransformState &State);
416 
417   /// Widen a single select instruction within the innermost loop.
418   void widenSelectInstruction(SelectInst &I, bool InvariantCond);
419 
420   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
421   void fixVectorizedLoop();
422 
423   // Return true if any runtime check is added.
424   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
425 
426   /// A type for vectorized values in the new loop. Each value from the
427   /// original loop, when vectorized, is represented by UF vector values in the
428   /// new unrolled loop, where UF is the unroll factor.
429   using VectorParts = SmallVector<Value *, 2>;
430 
431   /// Vectorize a single GetElementPtrInst based on information gathered and
432   /// decisions taken during planning.
433   void widenGEP(GetElementPtrInst *GEP, unsigned UF, unsigned VF,
434                 bool IsPtrLoopInvariant, SmallBitVector &IsIndexLoopInvariant);
435 
436   /// Vectorize a single PHINode in a block. This method handles the induction
437   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
438   /// arbitrary length vectors.
439   void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
440 
441   /// A helper function to scalarize a single Instruction in the innermost loop.
442   /// Generates a sequence of scalar instances for each lane between \p MinLane
443   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
444   /// inclusive..
445   void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance,
446                             bool IfPredicateInstr);
447 
448   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
449   /// is provided, the integer induction variable will first be truncated to
450   /// the corresponding type.
451   void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
452 
453   /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
454   /// vector or scalar value on-demand if one is not yet available. When
455   /// vectorizing a loop, we visit the definition of an instruction before its
456   /// uses. When visiting the definition, we either vectorize or scalarize the
457   /// instruction, creating an entry for it in the corresponding map. (In some
458   /// cases, such as induction variables, we will create both vector and scalar
459   /// entries.) Then, as we encounter uses of the definition, we derive values
460   /// for each scalar or vector use unless such a value is already available.
461   /// For example, if we scalarize a definition and one of its uses is vector,
462   /// we build the required vector on-demand with an insertelement sequence
463   /// when visiting the use. Otherwise, if the use is scalar, we can use the
464   /// existing scalar definition.
465   ///
466   /// Return a value in the new loop corresponding to \p V from the original
467   /// loop at unroll index \p Part. If the value has already been vectorized,
468   /// the corresponding vector entry in VectorLoopValueMap is returned. If,
469   /// however, the value has a scalar entry in VectorLoopValueMap, we construct
470   /// a new vector value on-demand by inserting the scalar values into a vector
471   /// with an insertelement sequence. If the value has been neither vectorized
472   /// nor scalarized, it must be loop invariant, so we simply broadcast the
473   /// value into a vector.
474   Value *getOrCreateVectorValue(Value *V, unsigned Part);
475 
476   /// Return a value in the new loop corresponding to \p V from the original
477   /// loop at unroll and vector indices \p Instance. If the value has been
478   /// vectorized but not scalarized, the necessary extractelement instruction
479   /// will be generated.
480   Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
481 
482   /// Construct the vector value of a scalarized value \p V one lane at a time.
483   void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
484 
485   /// Try to vectorize interleaved access group \p Group with the base address
486   /// given in \p Addr, optionally masking the vector operations if \p
487   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
488   /// values in the vectorized loop.
489   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
490                                 VPTransformState &State, VPValue *Addr,
491                                 VPValue *BlockInMask = nullptr);
492 
493   /// Vectorize Load and Store instructions with the base address given in \p
494   /// Addr, optionally masking the vector operations if \p BlockInMask is
495   /// non-null. Use \p State to translate given VPValues to IR values in the
496   /// vectorized loop.
497   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
498                                   VPValue *Addr, VPValue *StoredValue,
499                                   VPValue *BlockInMask);
500 
501   /// Set the debug location in the builder using the debug location in
502   /// the instruction.
503   void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
504 
505   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
506   void fixNonInductionPHIs(void);
507 
508 protected:
509   friend class LoopVectorizationPlanner;
510 
511   /// A small list of PHINodes.
512   using PhiVector = SmallVector<PHINode *, 4>;
513 
514   /// A type for scalarized values in the new loop. Each value from the
515   /// original loop, when scalarized, is represented by UF x VF scalar values
516   /// in the new unrolled loop, where UF is the unroll factor and VF is the
517   /// vectorization factor.
518   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
519 
520   /// Set up the values of the IVs correctly when exiting the vector loop.
521   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
522                     Value *CountRoundDown, Value *EndValue,
523                     BasicBlock *MiddleBlock);
524 
525   /// Create a new induction variable inside L.
526   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
527                                    Value *Step, Instruction *DL);
528 
529   /// Handle all cross-iteration phis in the header.
530   void fixCrossIterationPHIs();
531 
532   /// Fix a first-order recurrence. This is the second phase of vectorizing
533   /// this phi node.
534   void fixFirstOrderRecurrence(PHINode *Phi);
535 
536   /// Fix a reduction cross-iteration phi. This is the second phase of
537   /// vectorizing this phi node.
538   void fixReduction(PHINode *Phi);
539 
540   /// Clear NSW/NUW flags from reduction instructions if necessary.
541   void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc);
542 
543   /// The Loop exit block may have single value PHI nodes with some
544   /// incoming value. While vectorizing we only handled real values
545   /// that were defined inside the loop and we should have one value for
546   /// each predecessor of its parent basic block. See PR14725.
547   void fixLCSSAPHIs();
548 
549   /// Iteratively sink the scalarized operands of a predicated instruction into
550   /// the block that was created for it.
551   void sinkScalarOperands(Instruction *PredInst);
552 
553   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
554   /// represented as.
555   void truncateToMinimalBitwidths();
556 
557   /// Create a broadcast instruction. This method generates a broadcast
558   /// instruction (shuffle) for loop invariant values and for the induction
559   /// value. If this is the induction variable then we extend it to N, N+1, ...
560   /// this is needed because each iteration in the loop corresponds to a SIMD
561   /// element.
562   virtual Value *getBroadcastInstrs(Value *V);
563 
564   /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
565   /// to each vector element of Val. The sequence starts at StartIndex.
566   /// \p Opcode is relevant for FP induction variable.
567   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
568                                Instruction::BinaryOps Opcode =
569                                Instruction::BinaryOpsEnd);
570 
571   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
572   /// variable on which to base the steps, \p Step is the size of the step, and
573   /// \p EntryVal is the value from the original loop that maps to the steps.
574   /// Note that \p EntryVal doesn't have to be an induction variable - it
575   /// can also be a truncate instruction.
576   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
577                         const InductionDescriptor &ID);
578 
579   /// Create a vector induction phi node based on an existing scalar one. \p
580   /// EntryVal is the value from the original loop that maps to the vector phi
581   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
582   /// truncate instruction, instead of widening the original IV, we widen a
583   /// version of the IV truncated to \p EntryVal's type.
584   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
585                                        Value *Step, Instruction *EntryVal);
586 
587   /// Returns true if an instruction \p I should be scalarized instead of
588   /// vectorized for the chosen vectorization factor.
589   bool shouldScalarizeInstruction(Instruction *I) const;
590 
591   /// Returns true if we should generate a scalar version of \p IV.
592   bool needsScalarInduction(Instruction *IV) const;
593 
594   /// If there is a cast involved in the induction variable \p ID, which should
595   /// be ignored in the vectorized loop body, this function records the
596   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
597   /// cast. We had already proved that the casted Phi is equal to the uncasted
598   /// Phi in the vectorized loop (under a runtime guard), and therefore
599   /// there is no need to vectorize the cast - the same value can be used in the
600   /// vector loop for both the Phi and the cast.
601   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
602   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
603   ///
604   /// \p EntryVal is the value from the original loop that maps to the vector
605   /// phi node and is used to distinguish what is the IV currently being
606   /// processed - original one (if \p EntryVal is a phi corresponding to the
607   /// original IV) or the "newly-created" one based on the proof mentioned above
608   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
609   /// latter case \p EntryVal is a TruncInst and we must not record anything for
610   /// that IV, but it's error-prone to expect callers of this routine to care
611   /// about that, hence this explicit parameter.
612   void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
613                                              const Instruction *EntryVal,
614                                              Value *VectorLoopValue,
615                                              unsigned Part,
616                                              unsigned Lane = UINT_MAX);
617 
618   /// Generate a shuffle sequence that will reverse the vector Vec.
619   virtual Value *reverseVector(Value *Vec);
620 
621   /// Returns (and creates if needed) the original loop trip count.
622   Value *getOrCreateTripCount(Loop *NewLoop);
623 
624   /// Returns (and creates if needed) the trip count of the widened loop.
625   Value *getOrCreateVectorTripCount(Loop *NewLoop);
626 
627   /// Returns a bitcasted value to the requested vector type.
628   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
629   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
630                                 const DataLayout &DL);
631 
632   /// Emit a bypass check to see if the vector trip count is zero, including if
633   /// it overflows.
634   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
635 
636   /// Emit a bypass check to see if all of the SCEV assumptions we've
637   /// had to make are correct.
638   void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
639 
640   /// Emit bypass checks to check any memory assumptions we may have made.
641   void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
642 
643   /// Compute the transformed value of Index at offset StartValue using step
644   /// StepValue.
645   /// For integer induction, returns StartValue + Index * StepValue.
646   /// For pointer induction, returns StartValue[Index * StepValue].
647   /// FIXME: The newly created binary instructions should contain nsw/nuw
648   /// flags, which can be found from the original scalar operations.
649   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
650                               const DataLayout &DL,
651                               const InductionDescriptor &ID) const;
652 
653   /// Add additional metadata to \p To that was not present on \p Orig.
654   ///
655   /// Currently this is used to add the noalias annotations based on the
656   /// inserted memchecks.  Use this for instructions that are *cloned* into the
657   /// vector loop.
658   void addNewMetadata(Instruction *To, const Instruction *Orig);
659 
660   /// Add metadata from one instruction to another.
661   ///
662   /// This includes both the original MDs from \p From and additional ones (\see
663   /// addNewMetadata).  Use this for *newly created* instructions in the vector
664   /// loop.
665   void addMetadata(Instruction *To, Instruction *From);
666 
667   /// Similar to the previous function but it adds the metadata to a
668   /// vector of instructions.
669   void addMetadata(ArrayRef<Value *> To, Instruction *From);
670 
671   /// The original loop.
672   Loop *OrigLoop;
673 
674   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
675   /// dynamic knowledge to simplify SCEV expressions and converts them to a
676   /// more usable form.
677   PredicatedScalarEvolution &PSE;
678 
679   /// Loop Info.
680   LoopInfo *LI;
681 
682   /// Dominator Tree.
683   DominatorTree *DT;
684 
685   /// Alias Analysis.
686   AliasAnalysis *AA;
687 
688   /// Target Library Info.
689   const TargetLibraryInfo *TLI;
690 
691   /// Target Transform Info.
692   const TargetTransformInfo *TTI;
693 
694   /// Assumption Cache.
695   AssumptionCache *AC;
696 
697   /// Interface to emit optimization remarks.
698   OptimizationRemarkEmitter *ORE;
699 
700   /// LoopVersioning.  It's only set up (non-null) if memchecks were
701   /// used.
702   ///
703   /// This is currently only used to add no-alias metadata based on the
704   /// memchecks.  The actually versioning is performed manually.
705   std::unique_ptr<LoopVersioning> LVer;
706 
707   /// The vectorization SIMD factor to use. Each vector will have this many
708   /// vector elements.
709   unsigned VF;
710 
711   /// The vectorization unroll factor to use. Each scalar is vectorized to this
712   /// many different vector instructions.
713   unsigned UF;
714 
715   /// The builder that we use
716   IRBuilder<> Builder;
717 
718   // --- Vectorization state ---
719 
720   /// The vector-loop preheader.
721   BasicBlock *LoopVectorPreHeader;
722 
723   /// The scalar-loop preheader.
724   BasicBlock *LoopScalarPreHeader;
725 
726   /// Middle Block between the vector and the scalar.
727   BasicBlock *LoopMiddleBlock;
728 
729   /// The ExitBlock of the scalar loop.
730   BasicBlock *LoopExitBlock;
731 
732   /// The vector loop body.
733   BasicBlock *LoopVectorBody;
734 
735   /// The scalar loop body.
736   BasicBlock *LoopScalarBody;
737 
738   /// A list of all bypass blocks. The first block is the entry of the loop.
739   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
740 
741   /// The new Induction variable which was added to the new block.
742   PHINode *Induction = nullptr;
743 
744   /// The induction variable of the old basic block.
745   PHINode *OldInduction = nullptr;
746 
747   /// Maps values from the original loop to their corresponding values in the
748   /// vectorized loop. A key value can map to either vector values, scalar
749   /// values or both kinds of values, depending on whether the key was
750   /// vectorized and scalarized.
751   VectorizerValueMap VectorLoopValueMap;
752 
753   /// Store instructions that were predicated.
754   SmallVector<Instruction *, 4> PredicatedInstructions;
755 
756   /// Trip count of the original loop.
757   Value *TripCount = nullptr;
758 
759   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
760   Value *VectorTripCount = nullptr;
761 
762   /// The legality analysis.
763   LoopVectorizationLegality *Legal;
764 
765   /// The profitablity analysis.
766   LoopVectorizationCostModel *Cost;
767 
768   // Record whether runtime checks are added.
769   bool AddedSafetyChecks = false;
770 
771   // Holds the end values for each induction variable. We save the end values
772   // so we can later fix-up the external users of the induction variables.
773   DenseMap<PHINode *, Value *> IVEndValues;
774 
775   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
776   // fixed up at the end of vector code generation.
777   SmallVector<PHINode *, 8> OrigPHIsToFix;
778 };
779 
780 class InnerLoopUnroller : public InnerLoopVectorizer {
781 public:
782   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
783                     LoopInfo *LI, DominatorTree *DT,
784                     const TargetLibraryInfo *TLI,
785                     const TargetTransformInfo *TTI, AssumptionCache *AC,
786                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
787                     LoopVectorizationLegality *LVL,
788                     LoopVectorizationCostModel *CM)
789       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
790                             UnrollFactor, LVL, CM) {}
791 
792 private:
793   Value *getBroadcastInstrs(Value *V) override;
794   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
795                        Instruction::BinaryOps Opcode =
796                        Instruction::BinaryOpsEnd) override;
797   Value *reverseVector(Value *Vec) override;
798 };
799 
800 } // end namespace llvm
801 
802 /// Look for a meaningful debug location on the instruction or it's
803 /// operands.
804 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
805   if (!I)
806     return I;
807 
808   DebugLoc Empty;
809   if (I->getDebugLoc() != Empty)
810     return I;
811 
812   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
813     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
814       if (OpInst->getDebugLoc() != Empty)
815         return OpInst;
816   }
817 
818   return I;
819 }
820 
821 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
822   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
823     const DILocation *DIL = Inst->getDebugLoc();
824     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
825         !isa<DbgInfoIntrinsic>(Inst)) {
826       auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF);
827       if (NewDIL)
828         B.SetCurrentDebugLocation(NewDIL.getValue());
829       else
830         LLVM_DEBUG(dbgs()
831                    << "Failed to create new discriminator: "
832                    << DIL->getFilename() << " Line: " << DIL->getLine());
833     }
834     else
835       B.SetCurrentDebugLocation(DIL);
836   } else
837     B.SetCurrentDebugLocation(DebugLoc());
838 }
839 
840 /// Write a record \p DebugMsg about vectorization failure to the debug
841 /// output stream. If \p I is passed, it is an instruction that prevents
842 /// vectorization.
843 #ifndef NDEBUG
844 static void debugVectorizationFailure(const StringRef DebugMsg,
845     Instruction *I) {
846   dbgs() << "LV: Not vectorizing: " << DebugMsg;
847   if (I != nullptr)
848     dbgs() << " " << *I;
849   else
850     dbgs() << '.';
851   dbgs() << '\n';
852 }
853 #endif
854 
855 /// Create an analysis remark that explains why vectorization failed
856 ///
857 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
858 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
859 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
860 /// the location of the remark.  \return the remark object that can be
861 /// streamed to.
862 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
863     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
864   Value *CodeRegion = TheLoop->getHeader();
865   DebugLoc DL = TheLoop->getStartLoc();
866 
867   if (I) {
868     CodeRegion = I->getParent();
869     // If there is no debug location attached to the instruction, revert back to
870     // using the loop's.
871     if (I->getDebugLoc())
872       DL = I->getDebugLoc();
873   }
874 
875   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
876   R << "loop not vectorized: ";
877   return R;
878 }
879 
880 namespace llvm {
881 
882 void reportVectorizationFailure(const StringRef DebugMsg,
883     const StringRef OREMsg, const StringRef ORETag,
884     OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) {
885   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
886   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
887   ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(),
888                 ORETag, TheLoop, I) << OREMsg);
889 }
890 
891 } // end namespace llvm
892 
893 #ifndef NDEBUG
894 /// \return string containing a file name and a line # for the given loop.
895 static std::string getDebugLocString(const Loop *L) {
896   std::string Result;
897   if (L) {
898     raw_string_ostream OS(Result);
899     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
900       LoopDbgLoc.print(OS);
901     else
902       // Just print the module name.
903       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
904     OS.flush();
905   }
906   return Result;
907 }
908 #endif
909 
910 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
911                                          const Instruction *Orig) {
912   // If the loop was versioned with memchecks, add the corresponding no-alias
913   // metadata.
914   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
915     LVer->annotateInstWithNoAlias(To, Orig);
916 }
917 
918 void InnerLoopVectorizer::addMetadata(Instruction *To,
919                                       Instruction *From) {
920   propagateMetadata(To, From);
921   addNewMetadata(To, From);
922 }
923 
924 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
925                                       Instruction *From) {
926   for (Value *V : To) {
927     if (Instruction *I = dyn_cast<Instruction>(V))
928       addMetadata(I, From);
929   }
930 }
931 
932 namespace llvm {
933 
934 // Loop vectorization cost-model hints how the scalar epilogue loop should be
935 // lowered.
936 enum ScalarEpilogueLowering {
937 
938   // The default: allowing scalar epilogues.
939   CM_ScalarEpilogueAllowed,
940 
941   // Vectorization with OptForSize: don't allow epilogues.
942   CM_ScalarEpilogueNotAllowedOptSize,
943 
944   // A special case of vectorisation with OptForSize: loops with a very small
945   // trip count are considered for vectorization under OptForSize, thereby
946   // making sure the cost of their loop body is dominant, free of runtime
947   // guards and scalar iteration overheads.
948   CM_ScalarEpilogueNotAllowedLowTripLoop,
949 
950   // Loop hint predicate indicating an epilogue is undesired.
951   CM_ScalarEpilogueNotNeededUsePredicate
952 };
953 
954 /// LoopVectorizationCostModel - estimates the expected speedups due to
955 /// vectorization.
956 /// In many cases vectorization is not profitable. This can happen because of
957 /// a number of reasons. In this class we mainly attempt to predict the
958 /// expected speedup/slowdowns due to the supported instruction set. We use the
959 /// TargetTransformInfo to query the different backends for the cost of
960 /// different operations.
961 class LoopVectorizationCostModel {
962 public:
963   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
964                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
965                              LoopVectorizationLegality *Legal,
966                              const TargetTransformInfo &TTI,
967                              const TargetLibraryInfo *TLI, DemandedBits *DB,
968                              AssumptionCache *AC,
969                              OptimizationRemarkEmitter *ORE, const Function *F,
970                              const LoopVectorizeHints *Hints,
971                              InterleavedAccessInfo &IAI)
972       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
973         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
974         Hints(Hints), InterleaveInfo(IAI) {}
975 
976   /// \return An upper bound for the vectorization factor, or None if
977   /// vectorization and interleaving should be avoided up front.
978   Optional<unsigned> computeMaxVF();
979 
980   /// \return True if runtime checks are required for vectorization, and false
981   /// otherwise.
982   bool runtimeChecksRequired();
983 
984   /// \return The most profitable vectorization factor and the cost of that VF.
985   /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
986   /// then this vectorization factor will be selected if vectorization is
987   /// possible.
988   VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
989 
990   /// Setup cost-based decisions for user vectorization factor.
991   void selectUserVectorizationFactor(unsigned UserVF) {
992     collectUniformsAndScalars(UserVF);
993     collectInstsToScalarize(UserVF);
994   }
995 
996   /// \return The size (in bits) of the smallest and widest types in the code
997   /// that needs to be vectorized. We ignore values that remain scalar such as
998   /// 64 bit loop indices.
999   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1000 
1001   /// \return The desired interleave count.
1002   /// If interleave count has been specified by metadata it will be returned.
1003   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1004   /// are the selected vectorization factor and the cost of the selected VF.
1005   unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost);
1006 
1007   /// Memory access instruction may be vectorized in more than one way.
1008   /// Form of instruction after vectorization depends on cost.
1009   /// This function takes cost-based decisions for Load/Store instructions
1010   /// and collects them in a map. This decisions map is used for building
1011   /// the lists of loop-uniform and loop-scalar instructions.
1012   /// The calculated cost is saved with widening decision in order to
1013   /// avoid redundant calculations.
1014   void setCostBasedWideningDecision(unsigned VF);
1015 
1016   /// A struct that represents some properties of the register usage
1017   /// of a loop.
1018   struct RegisterUsage {
1019     /// Holds the number of loop invariant values that are used in the loop.
1020     /// The key is ClassID of target-provided register class.
1021     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1022     /// Holds the maximum number of concurrent live intervals in the loop.
1023     /// The key is ClassID of target-provided register class.
1024     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1025   };
1026 
1027   /// \return Returns information about the register usages of the loop for the
1028   /// given vectorization factors.
1029   SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
1030 
1031   /// Collect values we want to ignore in the cost model.
1032   void collectValuesToIgnore();
1033 
1034   /// \returns The smallest bitwidth each instruction can be represented with.
1035   /// The vector equivalents of these instructions should be truncated to this
1036   /// type.
1037   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1038     return MinBWs;
1039   }
1040 
1041   /// \returns True if it is more profitable to scalarize instruction \p I for
1042   /// vectorization factor \p VF.
1043   bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
1044     assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1.");
1045 
1046     // Cost model is not run in the VPlan-native path - return conservative
1047     // result until this changes.
1048     if (EnableVPlanNativePath)
1049       return false;
1050 
1051     auto Scalars = InstsToScalarize.find(VF);
1052     assert(Scalars != InstsToScalarize.end() &&
1053            "VF not yet analyzed for scalarization profitability");
1054     return Scalars->second.find(I) != Scalars->second.end();
1055   }
1056 
1057   /// Returns true if \p I is known to be uniform after vectorization.
1058   bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
1059     if (VF == 1)
1060       return true;
1061 
1062     // Cost model is not run in the VPlan-native path - return conservative
1063     // result until this changes.
1064     if (EnableVPlanNativePath)
1065       return false;
1066 
1067     auto UniformsPerVF = Uniforms.find(VF);
1068     assert(UniformsPerVF != Uniforms.end() &&
1069            "VF not yet analyzed for uniformity");
1070     return UniformsPerVF->second.find(I) != UniformsPerVF->second.end();
1071   }
1072 
1073   /// Returns true if \p I is known to be scalar after vectorization.
1074   bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
1075     if (VF == 1)
1076       return true;
1077 
1078     // Cost model is not run in the VPlan-native path - return conservative
1079     // result until this changes.
1080     if (EnableVPlanNativePath)
1081       return false;
1082 
1083     auto ScalarsPerVF = Scalars.find(VF);
1084     assert(ScalarsPerVF != Scalars.end() &&
1085            "Scalar values are not calculated for VF");
1086     return ScalarsPerVF->second.find(I) != ScalarsPerVF->second.end();
1087   }
1088 
1089   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1090   /// for vectorization factor \p VF.
1091   bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
1092     return VF > 1 && MinBWs.find(I) != MinBWs.end() &&
1093            !isProfitableToScalarize(I, VF) &&
1094            !isScalarAfterVectorization(I, VF);
1095   }
1096 
1097   /// Decision that was taken during cost calculation for memory instruction.
1098   enum InstWidening {
1099     CM_Unknown,
1100     CM_Widen,         // For consecutive accesses with stride +1.
1101     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1102     CM_Interleave,
1103     CM_GatherScatter,
1104     CM_Scalarize
1105   };
1106 
1107   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1108   /// instruction \p I and vector width \p VF.
1109   void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
1110                            unsigned Cost) {
1111     assert(VF >= 2 && "Expected VF >=2");
1112     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1113   }
1114 
1115   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1116   /// interleaving group \p Grp and vector width \p VF.
1117   void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF,
1118                            InstWidening W, unsigned Cost) {
1119     assert(VF >= 2 && "Expected VF >=2");
1120     /// Broadcast this decicion to all instructions inside the group.
1121     /// But the cost will be assigned to one instruction only.
1122     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1123       if (auto *I = Grp->getMember(i)) {
1124         if (Grp->getInsertPos() == I)
1125           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1126         else
1127           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1128       }
1129     }
1130   }
1131 
1132   /// Return the cost model decision for the given instruction \p I and vector
1133   /// width \p VF. Return CM_Unknown if this instruction did not pass
1134   /// through the cost modeling.
1135   InstWidening getWideningDecision(Instruction *I, unsigned VF) {
1136     assert(VF >= 2 && "Expected VF >=2");
1137 
1138     // Cost model is not run in the VPlan-native path - return conservative
1139     // result until this changes.
1140     if (EnableVPlanNativePath)
1141       return CM_GatherScatter;
1142 
1143     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1144     auto Itr = WideningDecisions.find(InstOnVF);
1145     if (Itr == WideningDecisions.end())
1146       return CM_Unknown;
1147     return Itr->second.first;
1148   }
1149 
1150   /// Return the vectorization cost for the given instruction \p I and vector
1151   /// width \p VF.
1152   unsigned getWideningCost(Instruction *I, unsigned VF) {
1153     assert(VF >= 2 && "Expected VF >=2");
1154     std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1155     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1156            "The cost is not calculated");
1157     return WideningDecisions[InstOnVF].second;
1158   }
1159 
1160   /// Return True if instruction \p I is an optimizable truncate whose operand
1161   /// is an induction variable. Such a truncate will be removed by adding a new
1162   /// induction variable with the destination type.
1163   bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
1164     // If the instruction is not a truncate, return false.
1165     auto *Trunc = dyn_cast<TruncInst>(I);
1166     if (!Trunc)
1167       return false;
1168 
1169     // Get the source and destination types of the truncate.
1170     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1171     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1172 
1173     // If the truncate is free for the given types, return false. Replacing a
1174     // free truncate with an induction variable would add an induction variable
1175     // update instruction to each iteration of the loop. We exclude from this
1176     // check the primary induction variable since it will need an update
1177     // instruction regardless.
1178     Value *Op = Trunc->getOperand(0);
1179     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1180       return false;
1181 
1182     // If the truncated value is not an induction variable, return false.
1183     return Legal->isInductionPhi(Op);
1184   }
1185 
1186   /// Collects the instructions to scalarize for each predicated instruction in
1187   /// the loop.
1188   void collectInstsToScalarize(unsigned VF);
1189 
1190   /// Collect Uniform and Scalar values for the given \p VF.
1191   /// The sets depend on CM decision for Load/Store instructions
1192   /// that may be vectorized as interleave, gather-scatter or scalarized.
1193   void collectUniformsAndScalars(unsigned VF) {
1194     // Do the analysis once.
1195     if (VF == 1 || Uniforms.find(VF) != Uniforms.end())
1196       return;
1197     setCostBasedWideningDecision(VF);
1198     collectLoopUniforms(VF);
1199     collectLoopScalars(VF);
1200   }
1201 
1202   /// Returns true if the target machine supports masked store operation
1203   /// for the given \p DataType and kind of access to \p Ptr.
1204   bool isLegalMaskedStore(Type *DataType, Value *Ptr, MaybeAlign Alignment) {
1205     return Legal->isConsecutivePtr(Ptr) &&
1206            TTI.isLegalMaskedStore(DataType, Alignment);
1207   }
1208 
1209   /// Returns true if the target machine supports masked load operation
1210   /// for the given \p DataType and kind of access to \p Ptr.
1211   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, MaybeAlign Alignment) {
1212     return Legal->isConsecutivePtr(Ptr) &&
1213            TTI.isLegalMaskedLoad(DataType, Alignment);
1214   }
1215 
1216   /// Returns true if the target machine supports masked scatter operation
1217   /// for the given \p DataType.
1218   bool isLegalMaskedScatter(Type *DataType, MaybeAlign Alignment) {
1219     return TTI.isLegalMaskedScatter(DataType, Alignment);
1220   }
1221 
1222   /// Returns true if the target machine supports masked gather operation
1223   /// for the given \p DataType.
1224   bool isLegalMaskedGather(Type *DataType, MaybeAlign Alignment) {
1225     return TTI.isLegalMaskedGather(DataType, Alignment);
1226   }
1227 
1228   /// Returns true if the target machine can represent \p V as a masked gather
1229   /// or scatter operation.
1230   bool isLegalGatherOrScatter(Value *V) {
1231     bool LI = isa<LoadInst>(V);
1232     bool SI = isa<StoreInst>(V);
1233     if (!LI && !SI)
1234       return false;
1235     auto *Ty = getMemInstValueType(V);
1236     MaybeAlign Align = getLoadStoreAlignment(V);
1237     return (LI && isLegalMaskedGather(Ty, Align)) ||
1238            (SI && isLegalMaskedScatter(Ty, Align));
1239   }
1240 
1241   /// Returns true if \p I is an instruction that will be scalarized with
1242   /// predication. Such instructions include conditional stores and
1243   /// instructions that may divide by zero.
1244   /// If a non-zero VF has been calculated, we check if I will be scalarized
1245   /// predication for that VF.
1246   bool isScalarWithPredication(Instruction *I, unsigned VF = 1);
1247 
1248   // Returns true if \p I is an instruction that will be predicated either
1249   // through scalar predication or masked load/store or masked gather/scatter.
1250   // Superset of instructions that return true for isScalarWithPredication.
1251   bool isPredicatedInst(Instruction *I) {
1252     if (!blockNeedsPredication(I->getParent()))
1253       return false;
1254     // Loads and stores that need some form of masked operation are predicated
1255     // instructions.
1256     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1257       return Legal->isMaskRequired(I);
1258     return isScalarWithPredication(I);
1259   }
1260 
1261   /// Returns true if \p I is a memory instruction with consecutive memory
1262   /// access that can be widened.
1263   bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
1264 
1265   /// Returns true if \p I is a memory instruction in an interleaved-group
1266   /// of memory accesses that can be vectorized with wide vector loads/stores
1267   /// and shuffles.
1268   bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1);
1269 
1270   /// Check if \p Instr belongs to any interleaved access group.
1271   bool isAccessInterleaved(Instruction *Instr) {
1272     return InterleaveInfo.isInterleaved(Instr);
1273   }
1274 
1275   /// Get the interleaved access group that \p Instr belongs to.
1276   const InterleaveGroup<Instruction> *
1277   getInterleavedAccessGroup(Instruction *Instr) {
1278     return InterleaveInfo.getInterleaveGroup(Instr);
1279   }
1280 
1281   /// Returns true if an interleaved group requires a scalar iteration
1282   /// to handle accesses with gaps, and there is nothing preventing us from
1283   /// creating a scalar epilogue.
1284   bool requiresScalarEpilogue() const {
1285     return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue();
1286   }
1287 
1288   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1289   /// loop hint annotation.
1290   bool isScalarEpilogueAllowed() const {
1291     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1292   }
1293 
1294   /// Returns true if all loop blocks should be masked to fold tail loop.
1295   bool foldTailByMasking() const { return FoldTailByMasking; }
1296 
1297   bool blockNeedsPredication(BasicBlock *BB) {
1298     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1299   }
1300 
1301   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1302   /// with factor VF.  Return the cost of the instruction, including
1303   /// scalarization overhead if it's needed.
1304   unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF);
1305 
1306   /// Estimate cost of a call instruction CI if it were vectorized with factor
1307   /// VF. Return the cost of the instruction, including scalarization overhead
1308   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1309   /// scalarized -
1310   /// i.e. either vector version isn't available, or is too expensive.
1311   unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize);
1312 
1313   /// Invalidates decisions already taken by the cost model.
1314   void invalidateCostModelingDecisions() {
1315     WideningDecisions.clear();
1316     Uniforms.clear();
1317     Scalars.clear();
1318   }
1319 
1320 private:
1321   unsigned NumPredStores = 0;
1322 
1323   /// \return An upper bound for the vectorization factor, larger than zero.
1324   /// One is returned if vectorization should best be avoided due to cost.
1325   unsigned computeFeasibleMaxVF(unsigned ConstTripCount);
1326 
1327   /// The vectorization cost is a combination of the cost itself and a boolean
1328   /// indicating whether any of the contributing operations will actually
1329   /// operate on
1330   /// vector values after type legalization in the backend. If this latter value
1331   /// is
1332   /// false, then all operations will be scalarized (i.e. no vectorization has
1333   /// actually taken place).
1334   using VectorizationCostTy = std::pair<unsigned, bool>;
1335 
1336   /// Returns the expected execution cost. The unit of the cost does
1337   /// not matter because we use the 'cost' units to compare different
1338   /// vector widths. The cost that is returned is *not* normalized by
1339   /// the factor width.
1340   VectorizationCostTy expectedCost(unsigned VF);
1341 
1342   /// Returns the execution time cost of an instruction for a given vector
1343   /// width. Vector width of one means scalar.
1344   VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
1345 
1346   /// The cost-computation logic from getInstructionCost which provides
1347   /// the vector type as an output parameter.
1348   unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
1349 
1350   /// Calculate vectorization cost of memory instruction \p I.
1351   unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
1352 
1353   /// The cost computation for scalarized memory instruction.
1354   unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
1355 
1356   /// The cost computation for interleaving group of memory instructions.
1357   unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
1358 
1359   /// The cost computation for Gather/Scatter instruction.
1360   unsigned getGatherScatterCost(Instruction *I, unsigned VF);
1361 
1362   /// The cost computation for widening instruction \p I with consecutive
1363   /// memory access.
1364   unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
1365 
1366   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1367   /// Load: scalar load + broadcast.
1368   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1369   /// element)
1370   unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
1371 
1372   /// Estimate the overhead of scalarizing an instruction. This is a
1373   /// convenience wrapper for the type-based getScalarizationOverhead API.
1374   unsigned getScalarizationOverhead(Instruction *I, unsigned VF);
1375 
1376   /// Returns whether the instruction is a load or store and will be a emitted
1377   /// as a vector operation.
1378   bool isConsecutiveLoadOrStore(Instruction *I);
1379 
1380   /// Returns true if an artificially high cost for emulated masked memrefs
1381   /// should be used.
1382   bool useEmulatedMaskMemRefHack(Instruction *I);
1383 
1384   /// Map of scalar integer values to the smallest bitwidth they can be legally
1385   /// represented as. The vector equivalents of these values should be truncated
1386   /// to this type.
1387   MapVector<Instruction *, uint64_t> MinBWs;
1388 
1389   /// A type representing the costs for instructions if they were to be
1390   /// scalarized rather than vectorized. The entries are Instruction-Cost
1391   /// pairs.
1392   using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
1393 
1394   /// A set containing all BasicBlocks that are known to present after
1395   /// vectorization as a predicated block.
1396   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1397 
1398   /// Records whether it is allowed to have the original scalar loop execute at
1399   /// least once. This may be needed as a fallback loop in case runtime
1400   /// aliasing/dependence checks fail, or to handle the tail/remainder
1401   /// iterations when the trip count is unknown or doesn't divide by the VF,
1402   /// or as a peel-loop to handle gaps in interleave-groups.
1403   /// Under optsize and when the trip count is very small we don't allow any
1404   /// iterations to execute in the scalar loop.
1405   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1406 
1407   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1408   bool FoldTailByMasking = false;
1409 
1410   /// A map holding scalar costs for different vectorization factors. The
1411   /// presence of a cost for an instruction in the mapping indicates that the
1412   /// instruction will be scalarized when vectorizing with the associated
1413   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1414   DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
1415 
1416   /// Holds the instructions known to be uniform after vectorization.
1417   /// The data is collected per VF.
1418   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
1419 
1420   /// Holds the instructions known to be scalar after vectorization.
1421   /// The data is collected per VF.
1422   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
1423 
1424   /// Holds the instructions (address computations) that are forced to be
1425   /// scalarized.
1426   DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1427 
1428   /// Returns the expected difference in cost from scalarizing the expression
1429   /// feeding a predicated instruction \p PredInst. The instructions to
1430   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1431   /// non-negative return value implies the expression will be scalarized.
1432   /// Currently, only single-use chains are considered for scalarization.
1433   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1434                               unsigned VF);
1435 
1436   /// Collect the instructions that are uniform after vectorization. An
1437   /// instruction is uniform if we represent it with a single scalar value in
1438   /// the vectorized loop corresponding to each vector iteration. Examples of
1439   /// uniform instructions include pointer operands of consecutive or
1440   /// interleaved memory accesses. Note that although uniformity implies an
1441   /// instruction will be scalar, the reverse is not true. In general, a
1442   /// scalarized instruction will be represented by VF scalar values in the
1443   /// vectorized loop, each corresponding to an iteration of the original
1444   /// scalar loop.
1445   void collectLoopUniforms(unsigned VF);
1446 
1447   /// Collect the instructions that are scalar after vectorization. An
1448   /// instruction is scalar if it is known to be uniform or will be scalarized
1449   /// during vectorization. Non-uniform scalarized instructions will be
1450   /// represented by VF values in the vectorized loop, each corresponding to an
1451   /// iteration of the original scalar loop.
1452   void collectLoopScalars(unsigned VF);
1453 
1454   /// Keeps cost model vectorization decision and cost for instructions.
1455   /// Right now it is used for memory instructions only.
1456   using DecisionList = DenseMap<std::pair<Instruction *, unsigned>,
1457                                 std::pair<InstWidening, unsigned>>;
1458 
1459   DecisionList WideningDecisions;
1460 
1461   /// Returns true if \p V is expected to be vectorized and it needs to be
1462   /// extracted.
1463   bool needsExtract(Value *V, unsigned VF) const {
1464     Instruction *I = dyn_cast<Instruction>(V);
1465     if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I))
1466       return false;
1467 
1468     // Assume we can vectorize V (and hence we need extraction) if the
1469     // scalars are not computed yet. This can happen, because it is called
1470     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1471     // the scalars are collected. That should be a safe assumption in most
1472     // cases, because we check if the operands have vectorizable types
1473     // beforehand in LoopVectorizationLegality.
1474     return Scalars.find(VF) == Scalars.end() ||
1475            !isScalarAfterVectorization(I, VF);
1476   };
1477 
1478   /// Returns a range containing only operands needing to be extracted.
1479   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1480                                                    unsigned VF) {
1481     return SmallVector<Value *, 4>(make_filter_range(
1482         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1483   }
1484 
1485 public:
1486   /// The loop that we evaluate.
1487   Loop *TheLoop;
1488 
1489   /// Predicated scalar evolution analysis.
1490   PredicatedScalarEvolution &PSE;
1491 
1492   /// Loop Info analysis.
1493   LoopInfo *LI;
1494 
1495   /// Vectorization legality.
1496   LoopVectorizationLegality *Legal;
1497 
1498   /// Vector target information.
1499   const TargetTransformInfo &TTI;
1500 
1501   /// Target Library Info.
1502   const TargetLibraryInfo *TLI;
1503 
1504   /// Demanded bits analysis.
1505   DemandedBits *DB;
1506 
1507   /// Assumption cache.
1508   AssumptionCache *AC;
1509 
1510   /// Interface to emit optimization remarks.
1511   OptimizationRemarkEmitter *ORE;
1512 
1513   const Function *TheFunction;
1514 
1515   /// Loop Vectorize Hint.
1516   const LoopVectorizeHints *Hints;
1517 
1518   /// The interleave access information contains groups of interleaved accesses
1519   /// with the same stride and close to each other.
1520   InterleavedAccessInfo &InterleaveInfo;
1521 
1522   /// Values to ignore in the cost model.
1523   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1524 
1525   /// Values to ignore in the cost model when VF > 1.
1526   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1527 };
1528 
1529 } // end namespace llvm
1530 
1531 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
1532 // vectorization. The loop needs to be annotated with #pragma omp simd
1533 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
1534 // vector length information is not provided, vectorization is not considered
1535 // explicit. Interleave hints are not allowed either. These limitations will be
1536 // relaxed in the future.
1537 // Please, note that we are currently forced to abuse the pragma 'clang
1538 // vectorize' semantics. This pragma provides *auto-vectorization hints*
1539 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
1540 // provides *explicit vectorization hints* (LV can bypass legal checks and
1541 // assume that vectorization is legal). However, both hints are implemented
1542 // using the same metadata (llvm.loop.vectorize, processed by
1543 // LoopVectorizeHints). This will be fixed in the future when the native IR
1544 // representation for pragma 'omp simd' is introduced.
1545 static bool isExplicitVecOuterLoop(Loop *OuterLp,
1546                                    OptimizationRemarkEmitter *ORE) {
1547   assert(!OuterLp->empty() && "This is not an outer loop");
1548   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
1549 
1550   // Only outer loops with an explicit vectorization hint are supported.
1551   // Unannotated outer loops are ignored.
1552   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
1553     return false;
1554 
1555   Function *Fn = OuterLp->getHeader()->getParent();
1556   if (!Hints.allowVectorization(Fn, OuterLp,
1557                                 true /*VectorizeOnlyWhenForced*/)) {
1558     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
1559     return false;
1560   }
1561 
1562   if (Hints.getInterleave() > 1) {
1563     // TODO: Interleave support is future work.
1564     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
1565                          "outer loops.\n");
1566     Hints.emitRemarkWithHints();
1567     return false;
1568   }
1569 
1570   return true;
1571 }
1572 
1573 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
1574                                   OptimizationRemarkEmitter *ORE,
1575                                   SmallVectorImpl<Loop *> &V) {
1576   // Collect inner loops and outer loops without irreducible control flow. For
1577   // now, only collect outer loops that have explicit vectorization hints. If we
1578   // are stress testing the VPlan H-CFG construction, we collect the outermost
1579   // loop of every loop nest.
1580   if (L.empty() || VPlanBuildStressTest ||
1581       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
1582     LoopBlocksRPO RPOT(&L);
1583     RPOT.perform(LI);
1584     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
1585       V.push_back(&L);
1586       // TODO: Collect inner loops inside marked outer loops in case
1587       // vectorization fails for the outer loop. Do not invoke
1588       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
1589       // already known to be reducible. We can use an inherited attribute for
1590       // that.
1591       return;
1592     }
1593   }
1594   for (Loop *InnerL : L)
1595     collectSupportedLoops(*InnerL, LI, ORE, V);
1596 }
1597 
1598 namespace {
1599 
1600 /// The LoopVectorize Pass.
1601 struct LoopVectorize : public FunctionPass {
1602   /// Pass identification, replacement for typeid
1603   static char ID;
1604 
1605   LoopVectorizePass Impl;
1606 
1607   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
1608                          bool VectorizeOnlyWhenForced = false)
1609       : FunctionPass(ID),
1610         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
1611     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1612   }
1613 
1614   bool runOnFunction(Function &F) override {
1615     if (skipFunction(F))
1616       return false;
1617 
1618     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1619     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1620     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1621     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1622     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1623     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1624     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
1625     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1626     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1627     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1628     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
1629     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1630     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1631 
1632     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1633         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1634 
1635     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
1636                         GetLAA, *ORE, PSI).MadeAnyChange;
1637   }
1638 
1639   void getAnalysisUsage(AnalysisUsage &AU) const override {
1640     AU.addRequired<AssumptionCacheTracker>();
1641     AU.addRequired<BlockFrequencyInfoWrapperPass>();
1642     AU.addRequired<DominatorTreeWrapperPass>();
1643     AU.addRequired<LoopInfoWrapperPass>();
1644     AU.addRequired<ScalarEvolutionWrapperPass>();
1645     AU.addRequired<TargetTransformInfoWrapperPass>();
1646     AU.addRequired<AAResultsWrapperPass>();
1647     AU.addRequired<LoopAccessLegacyAnalysis>();
1648     AU.addRequired<DemandedBitsWrapperPass>();
1649     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1650     AU.addRequired<InjectTLIMappingsLegacy>();
1651 
1652     // We currently do not preserve loopinfo/dominator analyses with outer loop
1653     // vectorization. Until this is addressed, mark these analyses as preserved
1654     // only for non-VPlan-native path.
1655     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
1656     if (!EnableVPlanNativePath) {
1657       AU.addPreserved<LoopInfoWrapperPass>();
1658       AU.addPreserved<DominatorTreeWrapperPass>();
1659     }
1660 
1661     AU.addPreserved<BasicAAWrapperPass>();
1662     AU.addPreserved<GlobalsAAWrapperPass>();
1663     AU.addRequired<ProfileSummaryInfoWrapperPass>();
1664   }
1665 };
1666 
1667 } // end anonymous namespace
1668 
1669 //===----------------------------------------------------------------------===//
1670 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1671 // LoopVectorizationCostModel and LoopVectorizationPlanner.
1672 //===----------------------------------------------------------------------===//
1673 
1674 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1675   // We need to place the broadcast of invariant variables outside the loop,
1676   // but only if it's proven safe to do so. Else, broadcast will be inside
1677   // vector loop body.
1678   Instruction *Instr = dyn_cast<Instruction>(V);
1679   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
1680                      (!Instr ||
1681                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
1682   // Place the code for broadcasting invariant variables in the new preheader.
1683   IRBuilder<>::InsertPointGuard Guard(Builder);
1684   if (SafeToHoist)
1685     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1686 
1687   // Broadcast the scalar into all locations in the vector.
1688   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1689 
1690   return Shuf;
1691 }
1692 
1693 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
1694     const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
1695   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1696          "Expected either an induction phi-node or a truncate of it!");
1697   Value *Start = II.getStartValue();
1698 
1699   // Construct the initial value of the vector IV in the vector loop preheader
1700   auto CurrIP = Builder.saveIP();
1701   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1702   if (isa<TruncInst>(EntryVal)) {
1703     assert(Start->getType()->isIntegerTy() &&
1704            "Truncation requires an integer type");
1705     auto *TruncType = cast<IntegerType>(EntryVal->getType());
1706     Step = Builder.CreateTrunc(Step, TruncType);
1707     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
1708   }
1709   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
1710   Value *SteppedStart =
1711       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
1712 
1713   // We create vector phi nodes for both integer and floating-point induction
1714   // variables. Here, we determine the kind of arithmetic we will perform.
1715   Instruction::BinaryOps AddOp;
1716   Instruction::BinaryOps MulOp;
1717   if (Step->getType()->isIntegerTy()) {
1718     AddOp = Instruction::Add;
1719     MulOp = Instruction::Mul;
1720   } else {
1721     AddOp = II.getInductionOpcode();
1722     MulOp = Instruction::FMul;
1723   }
1724 
1725   // Multiply the vectorization factor by the step using integer or
1726   // floating-point arithmetic as appropriate.
1727   Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
1728   Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
1729 
1730   // Create a vector splat to use in the induction update.
1731   //
1732   // FIXME: If the step is non-constant, we create the vector splat with
1733   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
1734   //        handle a constant vector splat.
1735   Value *SplatVF =
1736       isa<Constant>(Mul)
1737           ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul))
1738           : Builder.CreateVectorSplat(VF, Mul);
1739   Builder.restoreIP(CurrIP);
1740 
1741   // We may need to add the step a number of times, depending on the unroll
1742   // factor. The last of those goes into the PHI.
1743   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
1744                                     &*LoopVectorBody->getFirstInsertionPt());
1745   VecInd->setDebugLoc(EntryVal->getDebugLoc());
1746   Instruction *LastInduction = VecInd;
1747   for (unsigned Part = 0; Part < UF; ++Part) {
1748     VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
1749 
1750     if (isa<TruncInst>(EntryVal))
1751       addMetadata(LastInduction, EntryVal);
1752     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
1753 
1754     LastInduction = cast<Instruction>(addFastMathFlag(
1755         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
1756     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
1757   }
1758 
1759   // Move the last step to the end of the latch block. This ensures consistent
1760   // placement of all induction updates.
1761   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
1762   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
1763   auto *ICmp = cast<Instruction>(Br->getCondition());
1764   LastInduction->moveBefore(ICmp);
1765   LastInduction->setName("vec.ind.next");
1766 
1767   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
1768   VecInd->addIncoming(LastInduction, LoopVectorLatch);
1769 }
1770 
1771 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
1772   return Cost->isScalarAfterVectorization(I, VF) ||
1773          Cost->isProfitableToScalarize(I, VF);
1774 }
1775 
1776 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
1777   if (shouldScalarizeInstruction(IV))
1778     return true;
1779   auto isScalarInst = [&](User *U) -> bool {
1780     auto *I = cast<Instruction>(U);
1781     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
1782   };
1783   return llvm::any_of(IV->users(), isScalarInst);
1784 }
1785 
1786 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
1787     const InductionDescriptor &ID, const Instruction *EntryVal,
1788     Value *VectorLoopVal, unsigned Part, unsigned Lane) {
1789   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1790          "Expected either an induction phi-node or a truncate of it!");
1791 
1792   // This induction variable is not the phi from the original loop but the
1793   // newly-created IV based on the proof that casted Phi is equal to the
1794   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
1795   // re-uses the same InductionDescriptor that original IV uses but we don't
1796   // have to do any recording in this case - that is done when original IV is
1797   // processed.
1798   if (isa<TruncInst>(EntryVal))
1799     return;
1800 
1801   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
1802   if (Casts.empty())
1803     return;
1804   // Only the first Cast instruction in the Casts vector is of interest.
1805   // The rest of the Casts (if exist) have no uses outside the
1806   // induction update chain itself.
1807   Instruction *CastInst = *Casts.begin();
1808   if (Lane < UINT_MAX)
1809     VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
1810   else
1811     VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
1812 }
1813 
1814 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
1815   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
1816          "Primary induction variable must have an integer type");
1817 
1818   auto II = Legal->getInductionVars().find(IV);
1819   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
1820 
1821   auto ID = II->second;
1822   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
1823 
1824   // The value from the original loop to which we are mapping the new induction
1825   // variable.
1826   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
1827 
1828   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
1829 
1830   // Generate code for the induction step. Note that induction steps are
1831   // required to be loop-invariant
1832   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
1833     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
1834            "Induction step should be loop invariant");
1835     if (PSE.getSE()->isSCEVable(IV->getType())) {
1836       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
1837       return Exp.expandCodeFor(Step, Step->getType(),
1838                                LoopVectorPreHeader->getTerminator());
1839     }
1840     return cast<SCEVUnknown>(Step)->getValue();
1841   };
1842 
1843   // The scalar value to broadcast. This is derived from the canonical
1844   // induction variable. If a truncation type is given, truncate the canonical
1845   // induction variable and step. Otherwise, derive these values from the
1846   // induction descriptor.
1847   auto CreateScalarIV = [&](Value *&Step) -> Value * {
1848     Value *ScalarIV = Induction;
1849     if (IV != OldInduction) {
1850       ScalarIV = IV->getType()->isIntegerTy()
1851                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
1852                      : Builder.CreateCast(Instruction::SIToFP, Induction,
1853                                           IV->getType());
1854       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
1855       ScalarIV->setName("offset.idx");
1856     }
1857     if (Trunc) {
1858       auto *TruncType = cast<IntegerType>(Trunc->getType());
1859       assert(Step->getType()->isIntegerTy() &&
1860              "Truncation requires an integer step");
1861       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
1862       Step = Builder.CreateTrunc(Step, TruncType);
1863     }
1864     return ScalarIV;
1865   };
1866 
1867   // Create the vector values from the scalar IV, in the absence of creating a
1868   // vector IV.
1869   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
1870     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
1871     for (unsigned Part = 0; Part < UF; ++Part) {
1872       Value *EntryPart =
1873           getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
1874       VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
1875       if (Trunc)
1876         addMetadata(EntryPart, Trunc);
1877       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
1878     }
1879   };
1880 
1881   // Now do the actual transformations, and start with creating the step value.
1882   Value *Step = CreateStepValue(ID.getStep());
1883   if (VF <= 1) {
1884     Value *ScalarIV = CreateScalarIV(Step);
1885     CreateSplatIV(ScalarIV, Step);
1886     return;
1887   }
1888 
1889   // Determine if we want a scalar version of the induction variable. This is
1890   // true if the induction variable itself is not widened, or if it has at
1891   // least one user in the loop that is not widened.
1892   auto NeedsScalarIV = needsScalarInduction(EntryVal);
1893   if (!NeedsScalarIV) {
1894     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
1895     return;
1896   }
1897 
1898   // Try to create a new independent vector induction variable. If we can't
1899   // create the phi node, we will splat the scalar induction variable in each
1900   // loop iteration.
1901   if (!shouldScalarizeInstruction(EntryVal)) {
1902     createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
1903     Value *ScalarIV = CreateScalarIV(Step);
1904     // Create scalar steps that can be used by instructions we will later
1905     // scalarize. Note that the addition of the scalar steps will not increase
1906     // the number of instructions in the loop in the common case prior to
1907     // InstCombine. We will be trading one vector extract for each scalar step.
1908     buildScalarSteps(ScalarIV, Step, EntryVal, ID);
1909     return;
1910   }
1911 
1912   // If we haven't yet vectorized the induction variable, splat the scalar
1913   // induction variable, and build the necessary step vectors.
1914   // TODO: Don't do it unless the vectorized IV is really required.
1915   Value *ScalarIV = CreateScalarIV(Step);
1916   CreateSplatIV(ScalarIV, Step);
1917   buildScalarSteps(ScalarIV, Step, EntryVal, ID);
1918 }
1919 
1920 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
1921                                           Instruction::BinaryOps BinOp) {
1922   // Create and check the types.
1923   auto *ValVTy = cast<VectorType>(Val->getType());
1924   int VLen = ValVTy->getNumElements();
1925 
1926   Type *STy = Val->getType()->getScalarType();
1927   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
1928          "Induction Step must be an integer or FP");
1929   assert(Step->getType() == STy && "Step has wrong type");
1930 
1931   SmallVector<Constant *, 8> Indices;
1932 
1933   if (STy->isIntegerTy()) {
1934     // Create a vector of consecutive numbers from zero to VF.
1935     for (int i = 0; i < VLen; ++i)
1936       Indices.push_back(ConstantInt::get(STy, StartIdx + i));
1937 
1938     // Add the consecutive indices to the vector value.
1939     Constant *Cv = ConstantVector::get(Indices);
1940     assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1941     Step = Builder.CreateVectorSplat(VLen, Step);
1942     assert(Step->getType() == Val->getType() && "Invalid step vec");
1943     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
1944     // which can be found from the original scalar operations.
1945     Step = Builder.CreateMul(Cv, Step);
1946     return Builder.CreateAdd(Val, Step, "induction");
1947   }
1948 
1949   // Floating point induction.
1950   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
1951          "Binary Opcode should be specified for FP induction");
1952   // Create a vector of consecutive numbers from zero to VF.
1953   for (int i = 0; i < VLen; ++i)
1954     Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
1955 
1956   // Add the consecutive indices to the vector value.
1957   Constant *Cv = ConstantVector::get(Indices);
1958 
1959   Step = Builder.CreateVectorSplat(VLen, Step);
1960 
1961   // Floating point operations had to be 'fast' to enable the induction.
1962   FastMathFlags Flags;
1963   Flags.setFast();
1964 
1965   Value *MulOp = Builder.CreateFMul(Cv, Step);
1966   if (isa<Instruction>(MulOp))
1967     // Have to check, MulOp may be a constant
1968     cast<Instruction>(MulOp)->setFastMathFlags(Flags);
1969 
1970   Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
1971   if (isa<Instruction>(BOp))
1972     cast<Instruction>(BOp)->setFastMathFlags(Flags);
1973   return BOp;
1974 }
1975 
1976 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
1977                                            Instruction *EntryVal,
1978                                            const InductionDescriptor &ID) {
1979   // We shouldn't have to build scalar steps if we aren't vectorizing.
1980   assert(VF > 1 && "VF should be greater than one");
1981 
1982   // Get the value type and ensure it and the step have the same integer type.
1983   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
1984   assert(ScalarIVTy == Step->getType() &&
1985          "Val and Step should have the same type");
1986 
1987   // We build scalar steps for both integer and floating-point induction
1988   // variables. Here, we determine the kind of arithmetic we will perform.
1989   Instruction::BinaryOps AddOp;
1990   Instruction::BinaryOps MulOp;
1991   if (ScalarIVTy->isIntegerTy()) {
1992     AddOp = Instruction::Add;
1993     MulOp = Instruction::Mul;
1994   } else {
1995     AddOp = ID.getInductionOpcode();
1996     MulOp = Instruction::FMul;
1997   }
1998 
1999   // Determine the number of scalars we need to generate for each unroll
2000   // iteration. If EntryVal is uniform, we only need to generate the first
2001   // lane. Otherwise, we generate all VF values.
2002   unsigned Lanes =
2003       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1
2004                                                                          : VF;
2005   // Compute the scalar steps and save the results in VectorLoopValueMap.
2006   for (unsigned Part = 0; Part < UF; ++Part) {
2007     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2008       auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
2009       auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
2010       auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
2011       VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
2012       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
2013     }
2014   }
2015 }
2016 
2017 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
2018   assert(V != Induction && "The new induction variable should not be used.");
2019   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2020   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2021 
2022   // If we have a stride that is replaced by one, do it here. Defer this for
2023   // the VPlan-native path until we start running Legal checks in that path.
2024   if (!EnableVPlanNativePath && Legal->hasStride(V))
2025     V = ConstantInt::get(V->getType(), 1);
2026 
2027   // If we have a vector mapped to this value, return it.
2028   if (VectorLoopValueMap.hasVectorValue(V, Part))
2029     return VectorLoopValueMap.getVectorValue(V, Part);
2030 
2031   // If the value has not been vectorized, check if it has been scalarized
2032   // instead. If it has been scalarized, and we actually need the value in
2033   // vector form, we will construct the vector values on demand.
2034   if (VectorLoopValueMap.hasAnyScalarValue(V)) {
2035     Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
2036 
2037     // If we've scalarized a value, that value should be an instruction.
2038     auto *I = cast<Instruction>(V);
2039 
2040     // If we aren't vectorizing, we can just copy the scalar map values over to
2041     // the vector map.
2042     if (VF == 1) {
2043       VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
2044       return ScalarValue;
2045     }
2046 
2047     // Get the last scalar instruction we generated for V and Part. If the value
2048     // is known to be uniform after vectorization, this corresponds to lane zero
2049     // of the Part unroll iteration. Otherwise, the last instruction is the one
2050     // we created for the last vector lane of the Part unroll iteration.
2051     unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
2052     auto *LastInst = cast<Instruction>(
2053         VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
2054 
2055     // Set the insert point after the last scalarized instruction. This ensures
2056     // the insertelement sequence will directly follow the scalar definitions.
2057     auto OldIP = Builder.saveIP();
2058     auto NewIP = std::next(BasicBlock::iterator(LastInst));
2059     Builder.SetInsertPoint(&*NewIP);
2060 
2061     // However, if we are vectorizing, we need to construct the vector values.
2062     // If the value is known to be uniform after vectorization, we can just
2063     // broadcast the scalar value corresponding to lane zero for each unroll
2064     // iteration. Otherwise, we construct the vector values using insertelement
2065     // instructions. Since the resulting vectors are stored in
2066     // VectorLoopValueMap, we will only generate the insertelements once.
2067     Value *VectorValue = nullptr;
2068     if (Cost->isUniformAfterVectorization(I, VF)) {
2069       VectorValue = getBroadcastInstrs(ScalarValue);
2070       VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
2071     } else {
2072       // Initialize packing with insertelements to start from undef.
2073       Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF));
2074       VectorLoopValueMap.setVectorValue(V, Part, Undef);
2075       for (unsigned Lane = 0; Lane < VF; ++Lane)
2076         packScalarIntoVectorValue(V, {Part, Lane});
2077       VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
2078     }
2079     Builder.restoreIP(OldIP);
2080     return VectorValue;
2081   }
2082 
2083   // If this scalar is unknown, assume that it is a constant or that it is
2084   // loop invariant. Broadcast V and save the value for future uses.
2085   Value *B = getBroadcastInstrs(V);
2086   VectorLoopValueMap.setVectorValue(V, Part, B);
2087   return B;
2088 }
2089 
2090 Value *
2091 InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
2092                                             const VPIteration &Instance) {
2093   // If the value is not an instruction contained in the loop, it should
2094   // already be scalar.
2095   if (OrigLoop->isLoopInvariant(V))
2096     return V;
2097 
2098   assert(Instance.Lane > 0
2099              ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
2100              : true && "Uniform values only have lane zero");
2101 
2102   // If the value from the original loop has not been vectorized, it is
2103   // represented by UF x VF scalar values in the new loop. Return the requested
2104   // scalar value.
2105   if (VectorLoopValueMap.hasScalarValue(V, Instance))
2106     return VectorLoopValueMap.getScalarValue(V, Instance);
2107 
2108   // If the value has not been scalarized, get its entry in VectorLoopValueMap
2109   // for the given unroll part. If this entry is not a vector type (i.e., the
2110   // vectorization factor is one), there is no need to generate an
2111   // extractelement instruction.
2112   auto *U = getOrCreateVectorValue(V, Instance.Part);
2113   if (!U->getType()->isVectorTy()) {
2114     assert(VF == 1 && "Value not scalarized has non-vector type");
2115     return U;
2116   }
2117 
2118   // Otherwise, the value from the original loop has been vectorized and is
2119   // represented by UF vector values. Extract and return the requested scalar
2120   // value from the appropriate vector lane.
2121   return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
2122 }
2123 
2124 void InnerLoopVectorizer::packScalarIntoVectorValue(
2125     Value *V, const VPIteration &Instance) {
2126   assert(V != Induction && "The new induction variable should not be used.");
2127   assert(!V->getType()->isVectorTy() && "Can't pack a vector");
2128   assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2129 
2130   Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
2131   Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
2132   VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
2133                                             Builder.getInt32(Instance.Lane));
2134   VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
2135 }
2136 
2137 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2138   assert(Vec->getType()->isVectorTy() && "Invalid type");
2139   SmallVector<int, 8> ShuffleMask;
2140   for (unsigned i = 0; i < VF; ++i)
2141     ShuffleMask.push_back(VF - i - 1);
2142 
2143   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2144                                      ShuffleMask, "reverse");
2145 }
2146 
2147 // Return whether we allow using masked interleave-groups (for dealing with
2148 // strided loads/stores that reside in predicated blocks, or for dealing
2149 // with gaps).
2150 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2151   // If an override option has been passed in for interleaved accesses, use it.
2152   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2153     return EnableMaskedInterleavedMemAccesses;
2154 
2155   return TTI.enableMaskedInterleavedAccessVectorization();
2156 }
2157 
2158 // Try to vectorize the interleave group that \p Instr belongs to.
2159 //
2160 // E.g. Translate following interleaved load group (factor = 3):
2161 //   for (i = 0; i < N; i+=3) {
2162 //     R = Pic[i];             // Member of index 0
2163 //     G = Pic[i+1];           // Member of index 1
2164 //     B = Pic[i+2];           // Member of index 2
2165 //     ... // do something to R, G, B
2166 //   }
2167 // To:
2168 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2169 //   %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9>   ; R elements
2170 //   %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10>  ; G elements
2171 //   %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11>  ; B elements
2172 //
2173 // Or translate following interleaved store group (factor = 3):
2174 //   for (i = 0; i < N; i+=3) {
2175 //     ... do something to R, G, B
2176 //     Pic[i]   = R;           // Member of index 0
2177 //     Pic[i+1] = G;           // Member of index 1
2178 //     Pic[i+2] = B;           // Member of index 2
2179 //   }
2180 // To:
2181 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2182 //   %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2183 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2184 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2185 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2186 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2187     const InterleaveGroup<Instruction> *Group, VPTransformState &State,
2188     VPValue *Addr, VPValue *BlockInMask) {
2189   Instruction *Instr = Group->getInsertPos();
2190   const DataLayout &DL = Instr->getModule()->getDataLayout();
2191 
2192   // Prepare for the vector type of the interleaved load/store.
2193   Type *ScalarTy = getMemInstValueType(Instr);
2194   unsigned InterleaveFactor = Group->getFactor();
2195   Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
2196 
2197   // Prepare for the new pointers.
2198   SmallVector<Value *, 2> AddrParts;
2199   unsigned Index = Group->getIndex(Instr);
2200 
2201   // TODO: extend the masked interleaved-group support to reversed access.
2202   assert((!BlockInMask || !Group->isReverse()) &&
2203          "Reversed masked interleave-group not supported.");
2204 
2205   // If the group is reverse, adjust the index to refer to the last vector lane
2206   // instead of the first. We adjust the index from the first vector lane,
2207   // rather than directly getting the pointer for lane VF - 1, because the
2208   // pointer operand of the interleaved access is supposed to be uniform. For
2209   // uniform instructions, we're only required to generate a value for the
2210   // first vector lane in each unroll iteration.
2211   if (Group->isReverse())
2212     Index += (VF - 1) * Group->getFactor();
2213 
2214   for (unsigned Part = 0; Part < UF; Part++) {
2215     Value *AddrPart = State.get(Addr, {Part, 0});
2216     setDebugLocFromInst(Builder, AddrPart);
2217 
2218     // Notice current instruction could be any index. Need to adjust the address
2219     // to the member of index 0.
2220     //
2221     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2222     //       b = A[i];       // Member of index 0
2223     // Current pointer is pointed to A[i+1], adjust it to A[i].
2224     //
2225     // E.g.  A[i+1] = a;     // Member of index 1
2226     //       A[i]   = b;     // Member of index 0
2227     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2228     // Current pointer is pointed to A[i+2], adjust it to A[i].
2229 
2230     bool InBounds = false;
2231     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2232       InBounds = gep->isInBounds();
2233     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2234     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2235 
2236     // Cast to the vector pointer type.
2237     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2238     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2239     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2240   }
2241 
2242   setDebugLocFromInst(Builder, Instr);
2243   Value *UndefVec = UndefValue::get(VecTy);
2244 
2245   Value *MaskForGaps = nullptr;
2246   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2247     MaskForGaps = createBitMaskForGaps(Builder, VF, *Group);
2248     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2249   }
2250 
2251   // Vectorize the interleaved load group.
2252   if (isa<LoadInst>(Instr)) {
2253     // For each unroll part, create a wide load for the group.
2254     SmallVector<Value *, 2> NewLoads;
2255     for (unsigned Part = 0; Part < UF; Part++) {
2256       Instruction *NewLoad;
2257       if (BlockInMask || MaskForGaps) {
2258         assert(useMaskedInterleavedAccesses(*TTI) &&
2259                "masked interleaved groups are not allowed.");
2260         Value *GroupMask = MaskForGaps;
2261         if (BlockInMask) {
2262           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2263           auto *Undefs = UndefValue::get(BlockInMaskPart->getType());
2264           Value *ShuffledMask = Builder.CreateShuffleVector(
2265               BlockInMaskPart, Undefs,
2266               createReplicatedMask(InterleaveFactor, VF), "interleaved.mask");
2267           GroupMask = MaskForGaps
2268                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2269                                                 MaskForGaps)
2270                           : ShuffledMask;
2271         }
2272         NewLoad =
2273             Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(),
2274                                      GroupMask, UndefVec, "wide.masked.vec");
2275       }
2276       else
2277         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2278                                             Group->getAlign(), "wide.vec");
2279       Group->addMetadata(NewLoad);
2280       NewLoads.push_back(NewLoad);
2281     }
2282 
2283     // For each member in the group, shuffle out the appropriate data from the
2284     // wide loads.
2285     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2286       Instruction *Member = Group->getMember(I);
2287 
2288       // Skip the gaps in the group.
2289       if (!Member)
2290         continue;
2291 
2292       auto StrideMask = createStrideMask(I, InterleaveFactor, VF);
2293       for (unsigned Part = 0; Part < UF; Part++) {
2294         Value *StridedVec = Builder.CreateShuffleVector(
2295             NewLoads[Part], UndefVec, StrideMask, "strided.vec");
2296 
2297         // If this member has different type, cast the result type.
2298         if (Member->getType() != ScalarTy) {
2299           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2300           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2301         }
2302 
2303         if (Group->isReverse())
2304           StridedVec = reverseVector(StridedVec);
2305 
2306         VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
2307       }
2308     }
2309     return;
2310   }
2311 
2312   // The sub vector type for current instruction.
2313   VectorType *SubVT = VectorType::get(ScalarTy, VF);
2314 
2315   // Vectorize the interleaved store group.
2316   for (unsigned Part = 0; Part < UF; Part++) {
2317     // Collect the stored vector from each member.
2318     SmallVector<Value *, 4> StoredVecs;
2319     for (unsigned i = 0; i < InterleaveFactor; i++) {
2320       // Interleaved store group doesn't allow a gap, so each index has a member
2321       Instruction *Member = Group->getMember(i);
2322       assert(Member && "Fail to get a member from an interleaved store group");
2323 
2324       Value *StoredVec = getOrCreateVectorValue(
2325           cast<StoreInst>(Member)->getValueOperand(), Part);
2326       if (Group->isReverse())
2327         StoredVec = reverseVector(StoredVec);
2328 
2329       // If this member has different type, cast it to a unified type.
2330 
2331       if (StoredVec->getType() != SubVT)
2332         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2333 
2334       StoredVecs.push_back(StoredVec);
2335     }
2336 
2337     // Concatenate all vectors into a wide vector.
2338     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2339 
2340     // Interleave the elements in the wide vector.
2341     Value *IVec = Builder.CreateShuffleVector(
2342         WideVec, UndefVec, createInterleaveMask(VF, InterleaveFactor),
2343         "interleaved.vec");
2344 
2345     Instruction *NewStoreInstr;
2346     if (BlockInMask) {
2347       Value *BlockInMaskPart = State.get(BlockInMask, Part);
2348       auto *Undefs = UndefValue::get(BlockInMaskPart->getType());
2349       Value *ShuffledMask = Builder.CreateShuffleVector(
2350           BlockInMaskPart, Undefs, createReplicatedMask(InterleaveFactor, VF),
2351           "interleaved.mask");
2352       NewStoreInstr = Builder.CreateMaskedStore(
2353           IVec, AddrParts[Part], Group->getAlign(), ShuffledMask);
2354     }
2355     else
2356       NewStoreInstr =
2357           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2358 
2359     Group->addMetadata(NewStoreInstr);
2360   }
2361 }
2362 
2363 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
2364                                                      VPTransformState &State,
2365                                                      VPValue *Addr,
2366                                                      VPValue *StoredValue,
2367                                                      VPValue *BlockInMask) {
2368   // Attempt to issue a wide load.
2369   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2370   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2371 
2372   assert((LI || SI) && "Invalid Load/Store instruction");
2373   assert((!SI || StoredValue) && "No stored value provided for widened store");
2374   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2375 
2376   LoopVectorizationCostModel::InstWidening Decision =
2377       Cost->getWideningDecision(Instr, VF);
2378   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2379           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2380           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2381          "CM decision is not to widen the memory instruction");
2382 
2383   Type *ScalarDataTy = getMemInstValueType(Instr);
2384   Type *DataTy = VectorType::get(ScalarDataTy, VF);
2385   // An alignment of 0 means target abi alignment. We need to use the scalar's
2386   // target abi alignment in such a case.
2387   const DataLayout &DL = Instr->getModule()->getDataLayout();
2388   const Align Alignment =
2389       DL.getValueOrABITypeAlignment(getLoadStoreAlignment(Instr), ScalarDataTy);
2390 
2391   // Determine if the pointer operand of the access is either consecutive or
2392   // reverse consecutive.
2393   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2394   bool ConsecutiveStride =
2395       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2396   bool CreateGatherScatter =
2397       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2398 
2399   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2400   // gather/scatter. Otherwise Decision should have been to Scalarize.
2401   assert((ConsecutiveStride || CreateGatherScatter) &&
2402          "The instruction should be scalarized");
2403   (void)ConsecutiveStride;
2404 
2405   VectorParts BlockInMaskParts(UF);
2406   bool isMaskRequired = BlockInMask;
2407   if (isMaskRequired)
2408     for (unsigned Part = 0; Part < UF; ++Part)
2409       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2410 
2411   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2412     // Calculate the pointer for the specific unroll-part.
2413     GetElementPtrInst *PartPtr = nullptr;
2414 
2415     bool InBounds = false;
2416     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2417       InBounds = gep->isInBounds();
2418 
2419     if (Reverse) {
2420       // If the address is consecutive but reversed, then the
2421       // wide store needs to start at the last vector element.
2422       PartPtr = cast<GetElementPtrInst>(
2423           Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF)));
2424       PartPtr->setIsInBounds(InBounds);
2425       PartPtr = cast<GetElementPtrInst>(
2426           Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF)));
2427       PartPtr->setIsInBounds(InBounds);
2428       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2429         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2430     } else {
2431       PartPtr = cast<GetElementPtrInst>(
2432           Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF)));
2433       PartPtr->setIsInBounds(InBounds);
2434     }
2435 
2436     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2437     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2438   };
2439 
2440   // Handle Stores:
2441   if (SI) {
2442     setDebugLocFromInst(Builder, SI);
2443 
2444     for (unsigned Part = 0; Part < UF; ++Part) {
2445       Instruction *NewSI = nullptr;
2446       Value *StoredVal = State.get(StoredValue, Part);
2447       if (CreateGatherScatter) {
2448         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2449         Value *VectorGep = State.get(Addr, Part);
2450         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2451                                             MaskPart);
2452       } else {
2453         if (Reverse) {
2454           // If we store to reverse consecutive memory locations, then we need
2455           // to reverse the order of elements in the stored value.
2456           StoredVal = reverseVector(StoredVal);
2457           // We don't want to update the value in the map as it might be used in
2458           // another expression. So don't call resetVectorValue(StoredVal).
2459         }
2460         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2461         if (isMaskRequired)
2462           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2463                                             BlockInMaskParts[Part]);
2464         else
2465           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2466       }
2467       addMetadata(NewSI, SI);
2468     }
2469     return;
2470   }
2471 
2472   // Handle loads.
2473   assert(LI && "Must have a load instruction");
2474   setDebugLocFromInst(Builder, LI);
2475   for (unsigned Part = 0; Part < UF; ++Part) {
2476     Value *NewLI;
2477     if (CreateGatherScatter) {
2478       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2479       Value *VectorGep = State.get(Addr, Part);
2480       NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2481                                          nullptr, "wide.masked.gather");
2482       addMetadata(NewLI, LI);
2483     } else {
2484       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0}));
2485       if (isMaskRequired)
2486         NewLI = Builder.CreateMaskedLoad(
2487             VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy),
2488             "wide.masked.load");
2489       else
2490         NewLI =
2491             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
2492 
2493       // Add metadata to the load, but setVectorValue to the reverse shuffle.
2494       addMetadata(NewLI, LI);
2495       if (Reverse)
2496         NewLI = reverseVector(NewLI);
2497     }
2498     VectorLoopValueMap.setVectorValue(Instr, Part, NewLI);
2499   }
2500 }
2501 
2502 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2503                                                const VPIteration &Instance,
2504                                                bool IfPredicateInstr) {
2505   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2506 
2507   setDebugLocFromInst(Builder, Instr);
2508 
2509   // Does this instruction return a value ?
2510   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2511 
2512   Instruction *Cloned = Instr->clone();
2513   if (!IsVoidRetTy)
2514     Cloned->setName(Instr->getName() + ".cloned");
2515 
2516   // Replace the operands of the cloned instructions with their scalar
2517   // equivalents in the new loop.
2518   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
2519     auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance);
2520     Cloned->setOperand(op, NewOp);
2521   }
2522   addNewMetadata(Cloned, Instr);
2523 
2524   // Place the cloned scalar in the new loop.
2525   Builder.Insert(Cloned);
2526 
2527   // Add the cloned scalar to the scalar map entry.
2528   VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
2529 
2530   // If we just cloned a new assumption, add it the assumption cache.
2531   if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
2532     if (II->getIntrinsicID() == Intrinsic::assume)
2533       AC->registerAssumption(II);
2534 
2535   // End if-block.
2536   if (IfPredicateInstr)
2537     PredicatedInstructions.push_back(Cloned);
2538 }
2539 
2540 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2541                                                       Value *End, Value *Step,
2542                                                       Instruction *DL) {
2543   BasicBlock *Header = L->getHeader();
2544   BasicBlock *Latch = L->getLoopLatch();
2545   // As we're just creating this loop, it's possible no latch exists
2546   // yet. If so, use the header as this will be a single block loop.
2547   if (!Latch)
2548     Latch = Header;
2549 
2550   IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2551   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
2552   setDebugLocFromInst(Builder, OldInst);
2553   auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2554 
2555   Builder.SetInsertPoint(Latch->getTerminator());
2556   setDebugLocFromInst(Builder, OldInst);
2557 
2558   // Create i+1 and fill the PHINode.
2559   Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2560   Induction->addIncoming(Start, L->getLoopPreheader());
2561   Induction->addIncoming(Next, Latch);
2562   // Create the compare.
2563   Value *ICmp = Builder.CreateICmpEQ(Next, End);
2564   Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2565 
2566   // Now we have two terminators. Remove the old one from the block.
2567   Latch->getTerminator()->eraseFromParent();
2568 
2569   return Induction;
2570 }
2571 
2572 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2573   if (TripCount)
2574     return TripCount;
2575 
2576   assert(L && "Create Trip Count for null loop.");
2577   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2578   // Find the loop boundaries.
2579   ScalarEvolution *SE = PSE.getSE();
2580   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2581   assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
2582          "Invalid loop count");
2583 
2584   Type *IdxTy = Legal->getWidestInductionType();
2585   assert(IdxTy && "No type for induction");
2586 
2587   // The exit count might have the type of i64 while the phi is i32. This can
2588   // happen if we have an induction variable that is sign extended before the
2589   // compare. The only way that we get a backedge taken count is that the
2590   // induction variable was signed and as such will not overflow. In such a case
2591   // truncation is legal.
2592   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2593       IdxTy->getPrimitiveSizeInBits())
2594     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2595   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2596 
2597   // Get the total trip count from the count by adding 1.
2598   const SCEV *ExitCount = SE->getAddExpr(
2599       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2600 
2601   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2602 
2603   // Expand the trip count and place the new instructions in the preheader.
2604   // Notice that the pre-header does not change, only the loop body.
2605   SCEVExpander Exp(*SE, DL, "induction");
2606 
2607   // Count holds the overall loop count (N).
2608   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2609                                 L->getLoopPreheader()->getTerminator());
2610 
2611   if (TripCount->getType()->isPointerTy())
2612     TripCount =
2613         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2614                                     L->getLoopPreheader()->getTerminator());
2615 
2616   return TripCount;
2617 }
2618 
2619 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2620   if (VectorTripCount)
2621     return VectorTripCount;
2622 
2623   Value *TC = getOrCreateTripCount(L);
2624   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2625 
2626   Type *Ty = TC->getType();
2627   Constant *Step = ConstantInt::get(Ty, VF * UF);
2628 
2629   // If the tail is to be folded by masking, round the number of iterations N
2630   // up to a multiple of Step instead of rounding down. This is done by first
2631   // adding Step-1 and then rounding down. Note that it's ok if this addition
2632   // overflows: the vector induction variable will eventually wrap to zero given
2633   // that it starts at zero and its Step is a power of two; the loop will then
2634   // exit, with the last early-exit vector comparison also producing all-true.
2635   if (Cost->foldTailByMasking()) {
2636     assert(isPowerOf2_32(VF * UF) &&
2637            "VF*UF must be a power of 2 when folding tail by masking");
2638     TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up");
2639   }
2640 
2641   // Now we need to generate the expression for the part of the loop that the
2642   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2643   // iterations are not required for correctness, or N - Step, otherwise. Step
2644   // is equal to the vectorization factor (number of SIMD elements) times the
2645   // unroll factor (number of SIMD instructions).
2646   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2647 
2648   // If there is a non-reversed interleaved group that may speculatively access
2649   // memory out-of-bounds, we need to ensure that there will be at least one
2650   // iteration of the scalar epilogue loop. Thus, if the step evenly divides
2651   // the trip count, we set the remainder to be equal to the step. If the step
2652   // does not evenly divide the trip count, no adjustment is necessary since
2653   // there will already be scalar iterations. Note that the minimum iterations
2654   // check ensures that N >= Step.
2655   if (VF > 1 && Cost->requiresScalarEpilogue()) {
2656     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2657     R = Builder.CreateSelect(IsZero, Step, R);
2658   }
2659 
2660   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2661 
2662   return VectorTripCount;
2663 }
2664 
2665 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2666                                                    const DataLayout &DL) {
2667   // Verify that V is a vector type with same number of elements as DstVTy.
2668   unsigned VF = DstVTy->getNumElements();
2669   VectorType *SrcVecTy = cast<VectorType>(V->getType());
2670   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2671   Type *SrcElemTy = SrcVecTy->getElementType();
2672   Type *DstElemTy = DstVTy->getElementType();
2673   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2674          "Vector elements must have same size");
2675 
2676   // Do a direct cast if element types are castable.
2677   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2678     return Builder.CreateBitOrPointerCast(V, DstVTy);
2679   }
2680   // V cannot be directly casted to desired vector type.
2681   // May happen when V is a floating point vector but DstVTy is a vector of
2682   // pointers or vice-versa. Handle this using a two-step bitcast using an
2683   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2684   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2685          "Only one type should be a pointer type");
2686   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2687          "Only one type should be a floating point type");
2688   Type *IntTy =
2689       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2690   VectorType *VecIntTy = VectorType::get(IntTy, VF);
2691   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2692   return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
2693 }
2694 
2695 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2696                                                          BasicBlock *Bypass) {
2697   Value *Count = getOrCreateTripCount(L);
2698   // Reuse existing vector loop preheader for TC checks.
2699   // Note that new preheader block is generated for vector loop.
2700   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2701   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2702 
2703   // Generate code to check if the loop's trip count is less than VF * UF, or
2704   // equal to it in case a scalar epilogue is required; this implies that the
2705   // vector trip count is zero. This check also covers the case where adding one
2706   // to the backedge-taken count overflowed leading to an incorrect trip count
2707   // of zero. In this case we will also jump to the scalar loop.
2708   auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
2709                                           : ICmpInst::ICMP_ULT;
2710 
2711   // If tail is to be folded, vector loop takes care of all iterations.
2712   Value *CheckMinIters = Builder.getFalse();
2713   if (!Cost->foldTailByMasking())
2714     CheckMinIters = Builder.CreateICmp(
2715         P, Count, ConstantInt::get(Count->getType(), VF * UF),
2716         "min.iters.check");
2717 
2718   // Create new preheader for vector loop.
2719   LoopVectorPreHeader =
2720       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2721                  "vector.ph");
2722 
2723   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2724                                DT->getNode(Bypass)->getIDom()) &&
2725          "TC check is expected to dominate Bypass");
2726 
2727   // Update dominator for Bypass & LoopExit.
2728   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2729   DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2730 
2731   ReplaceInstWithInst(
2732       TCCheckBlock->getTerminator(),
2733       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
2734   LoopBypassBlocks.push_back(TCCheckBlock);
2735 }
2736 
2737 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2738   // Reuse existing vector loop preheader for SCEV checks.
2739   // Note that new preheader block is generated for vector loop.
2740   BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader;
2741 
2742   // Generate the code to check that the SCEV assumptions that we made.
2743   // We want the new basic block to start at the first instruction in a
2744   // sequence of instructions that form a check.
2745   SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
2746                    "scev.check");
2747   Value *SCEVCheck = Exp.expandCodeForPredicate(
2748       &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator());
2749 
2750   if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2751     if (C->isZero())
2752       return;
2753 
2754   assert(!SCEVCheckBlock->getParent()->hasOptSize() &&
2755          "Cannot SCEV check stride or overflow when optimizing for size");
2756 
2757   SCEVCheckBlock->setName("vector.scevcheck");
2758   // Create new preheader for vector loop.
2759   LoopVectorPreHeader =
2760       SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI,
2761                  nullptr, "vector.ph");
2762 
2763   // Update dominator only if this is first RT check.
2764   if (LoopBypassBlocks.empty()) {
2765     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
2766     DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
2767   }
2768 
2769   ReplaceInstWithInst(
2770       SCEVCheckBlock->getTerminator(),
2771       BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck));
2772   LoopBypassBlocks.push_back(SCEVCheckBlock);
2773   AddedSafetyChecks = true;
2774 }
2775 
2776 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
2777   // VPlan-native path does not do any analysis for runtime checks currently.
2778   if (EnableVPlanNativePath)
2779     return;
2780 
2781   // Reuse existing vector loop preheader for runtime memory checks.
2782   // Note that new preheader block is generated for vector loop.
2783   BasicBlock *const MemCheckBlock = L->getLoopPreheader();
2784 
2785   // Generate the code that checks in runtime if arrays overlap. We put the
2786   // checks into a separate block to make the more common case of few elements
2787   // faster.
2788   Instruction *FirstCheckInst;
2789   Instruction *MemRuntimeCheck;
2790   std::tie(FirstCheckInst, MemRuntimeCheck) =
2791       Legal->getLAI()->addRuntimeChecks(MemCheckBlock->getTerminator());
2792   if (!MemRuntimeCheck)
2793     return;
2794 
2795   if (MemCheckBlock->getParent()->hasOptSize()) {
2796     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
2797            "Cannot emit memory checks when optimizing for size, unless forced "
2798            "to vectorize.");
2799     ORE->emit([&]() {
2800       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
2801                                         L->getStartLoc(), L->getHeader())
2802              << "Code-size may be reduced by not forcing "
2803                 "vectorization, or by source-code modifications "
2804                 "eliminating the need for runtime checks "
2805                 "(e.g., adding 'restrict').";
2806     });
2807   }
2808 
2809   MemCheckBlock->setName("vector.memcheck");
2810   // Create new preheader for vector loop.
2811   LoopVectorPreHeader =
2812       SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr,
2813                  "vector.ph");
2814 
2815   // Update dominator only if this is first RT check.
2816   if (LoopBypassBlocks.empty()) {
2817     DT->changeImmediateDominator(Bypass, MemCheckBlock);
2818     DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock);
2819   }
2820 
2821   ReplaceInstWithInst(
2822       MemCheckBlock->getTerminator(),
2823       BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck));
2824   LoopBypassBlocks.push_back(MemCheckBlock);
2825   AddedSafetyChecks = true;
2826 
2827   // We currently don't use LoopVersioning for the actual loop cloning but we
2828   // still use it to add the noalias metadata.
2829   LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
2830                                           PSE.getSE());
2831   LVer->prepareNoAliasMetadata();
2832 }
2833 
2834 Value *InnerLoopVectorizer::emitTransformedIndex(
2835     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
2836     const InductionDescriptor &ID) const {
2837 
2838   SCEVExpander Exp(*SE, DL, "induction");
2839   auto Step = ID.getStep();
2840   auto StartValue = ID.getStartValue();
2841   assert(Index->getType() == Step->getType() &&
2842          "Index type does not match StepValue type");
2843 
2844   // Note: the IR at this point is broken. We cannot use SE to create any new
2845   // SCEV and then expand it, hoping that SCEV's simplification will give us
2846   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2847   // lead to various SCEV crashes. So all we can do is to use builder and rely
2848   // on InstCombine for future simplifications. Here we handle some trivial
2849   // cases only.
2850   auto CreateAdd = [&B](Value *X, Value *Y) {
2851     assert(X->getType() == Y->getType() && "Types don't match!");
2852     if (auto *CX = dyn_cast<ConstantInt>(X))
2853       if (CX->isZero())
2854         return Y;
2855     if (auto *CY = dyn_cast<ConstantInt>(Y))
2856       if (CY->isZero())
2857         return X;
2858     return B.CreateAdd(X, Y);
2859   };
2860 
2861   auto CreateMul = [&B](Value *X, Value *Y) {
2862     assert(X->getType() == Y->getType() && "Types don't match!");
2863     if (auto *CX = dyn_cast<ConstantInt>(X))
2864       if (CX->isOne())
2865         return Y;
2866     if (auto *CY = dyn_cast<ConstantInt>(Y))
2867       if (CY->isOne())
2868         return X;
2869     return B.CreateMul(X, Y);
2870   };
2871 
2872   switch (ID.getKind()) {
2873   case InductionDescriptor::IK_IntInduction: {
2874     assert(Index->getType() == StartValue->getType() &&
2875            "Index type does not match StartValue type");
2876     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
2877       return B.CreateSub(StartValue, Index);
2878     auto *Offset = CreateMul(
2879         Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint()));
2880     return CreateAdd(StartValue, Offset);
2881   }
2882   case InductionDescriptor::IK_PtrInduction: {
2883     assert(isa<SCEVConstant>(Step) &&
2884            "Expected constant step for pointer induction");
2885     return B.CreateGEP(
2886         StartValue->getType()->getPointerElementType(), StartValue,
2887         CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(),
2888                                            &*B.GetInsertPoint())));
2889   }
2890   case InductionDescriptor::IK_FpInduction: {
2891     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2892     auto InductionBinOp = ID.getInductionBinOp();
2893     assert(InductionBinOp &&
2894            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2895             InductionBinOp->getOpcode() == Instruction::FSub) &&
2896            "Original bin op should be defined for FP induction");
2897 
2898     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
2899 
2900     // Floating point operations had to be 'fast' to enable the induction.
2901     FastMathFlags Flags;
2902     Flags.setFast();
2903 
2904     Value *MulExp = B.CreateFMul(StepValue, Index);
2905     if (isa<Instruction>(MulExp))
2906       // We have to check, the MulExp may be a constant.
2907       cast<Instruction>(MulExp)->setFastMathFlags(Flags);
2908 
2909     Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2910                                "induction");
2911     if (isa<Instruction>(BOp))
2912       cast<Instruction>(BOp)->setFastMathFlags(Flags);
2913 
2914     return BOp;
2915   }
2916   case InductionDescriptor::IK_NoInduction:
2917     return nullptr;
2918   }
2919   llvm_unreachable("invalid enum");
2920 }
2921 
2922 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
2923   /*
2924    In this function we generate a new loop. The new loop will contain
2925    the vectorized instructions while the old loop will continue to run the
2926    scalar remainder.
2927 
2928        [ ] <-- loop iteration number check.
2929     /   |
2930    /    v
2931   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
2932   |  /  |
2933   | /   v
2934   ||   [ ]     <-- vector pre header.
2935   |/    |
2936   |     v
2937   |    [  ] \
2938   |    [  ]_|   <-- vector loop.
2939   |     |
2940   |     v
2941   |   -[ ]   <--- middle-block.
2942   |  /  |
2943   | /   v
2944   -|- >[ ]     <--- new preheader.
2945    |    |
2946    |    v
2947    |   [ ] \
2948    |   [ ]_|   <-- old scalar loop to handle remainder.
2949     \   |
2950      \  v
2951       >[ ]     <-- exit block.
2952    ...
2953    */
2954 
2955   MDNode *OrigLoopID = OrigLoop->getLoopID();
2956 
2957   // Some loops have a single integer induction variable, while other loops
2958   // don't. One example is c++ iterators that often have multiple pointer
2959   // induction variables. In the code below we also support a case where we
2960   // don't have a single induction variable.
2961   //
2962   // We try to obtain an induction variable from the original loop as hard
2963   // as possible. However if we don't find one that:
2964   //   - is an integer
2965   //   - counts from zero, stepping by one
2966   //   - is the size of the widest induction variable type
2967   // then we create a new one.
2968   OldInduction = Legal->getPrimaryInduction();
2969   Type *IdxTy = Legal->getWidestInductionType();
2970 
2971   // Split the single block loop into the two loop structure described above.
2972   LoopScalarBody = OrigLoop->getHeader();
2973   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
2974   LoopExitBlock = OrigLoop->getExitBlock();
2975   assert(LoopExitBlock && "Must have an exit block");
2976   assert(LoopVectorPreHeader && "Invalid loop structure");
2977 
2978   LoopMiddleBlock =
2979       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
2980                  LI, nullptr, "middle.block");
2981   LoopScalarPreHeader =
2982       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
2983                  nullptr, "scalar.ph");
2984   // We intentionally don't let SplitBlock to update LoopInfo since
2985   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
2986   // LoopVectorBody is explicitly added to the correct place few lines later.
2987   LoopVectorBody =
2988       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
2989                  nullptr, nullptr, "vector.body");
2990 
2991   // Update dominator for loop exit.
2992   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2993 
2994   // Create and register the new vector loop.
2995   Loop *Lp = LI->AllocateLoop();
2996   Loop *ParentLoop = OrigLoop->getParentLoop();
2997 
2998   // Insert the new loop into the loop nest and register the new basic blocks
2999   // before calling any utilities such as SCEV that require valid LoopInfo.
3000   if (ParentLoop) {
3001     ParentLoop->addChildLoop(Lp);
3002   } else {
3003     LI->addTopLevelLoop(Lp);
3004   }
3005   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3006 
3007   // Find the loop boundaries.
3008   Value *Count = getOrCreateTripCount(Lp);
3009 
3010   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3011 
3012   // Now, compare the new count to zero. If it is zero skip the vector loop and
3013   // jump to the scalar loop. This check also covers the case where the
3014   // backedge-taken count is uint##_max: adding one to it will overflow leading
3015   // to an incorrect trip count of zero. In this (rare) case we will also jump
3016   // to the scalar loop.
3017   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3018 
3019   // Generate the code to check any assumptions that we've made for SCEV
3020   // expressions.
3021   emitSCEVChecks(Lp, LoopScalarPreHeader);
3022 
3023   // Generate the code that checks in runtime if arrays overlap. We put the
3024   // checks into a separate block to make the more common case of few elements
3025   // faster.
3026   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3027 
3028   // Generate the induction variable.
3029   // The loop step is equal to the vectorization factor (num of SIMD elements)
3030   // times the unroll factor (num of SIMD instructions).
3031   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3032   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
3033   Induction =
3034       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3035                               getDebugLocFromInstOrOperands(OldInduction));
3036 
3037   // We are going to resume the execution of the scalar loop.
3038   // Go over all of the induction variables that we found and fix the
3039   // PHIs that are left in the scalar version of the loop.
3040   // The starting values of PHI nodes depend on the counter of the last
3041   // iteration in the vectorized loop.
3042   // If we come from a bypass edge then we need to start from the original
3043   // start value.
3044 
3045   // This variable saves the new starting index for the scalar loop. It is used
3046   // to test if there are any tail iterations left once the vector loop has
3047   // completed.
3048   for (auto &InductionEntry : Legal->getInductionVars()) {
3049     PHINode *OrigPhi = InductionEntry.first;
3050     InductionDescriptor II = InductionEntry.second;
3051 
3052     // Create phi nodes to merge from the  backedge-taken check block.
3053     PHINode *BCResumeVal =
3054         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3055                         LoopScalarPreHeader->getTerminator());
3056     // Copy original phi DL over to the new one.
3057     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3058     Value *&EndValue = IVEndValues[OrigPhi];
3059     if (OrigPhi == OldInduction) {
3060       // We know what the end value is.
3061       EndValue = CountRoundDown;
3062     } else {
3063       IRBuilder<> B(Lp->getLoopPreheader()->getTerminator());
3064       Type *StepType = II.getStep()->getType();
3065       Instruction::CastOps CastOp =
3066           CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
3067       Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
3068       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3069       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3070       EndValue->setName("ind.end");
3071     }
3072 
3073     // The new PHI merges the original incoming value, in case of a bypass,
3074     // or the value at the end of the vectorized loop.
3075     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3076 
3077     // Fix the scalar body counter (PHI node).
3078     // The old induction's phi node in the scalar body needs the truncated
3079     // value.
3080     for (BasicBlock *BB : LoopBypassBlocks)
3081       BCResumeVal->addIncoming(II.getStartValue(), BB);
3082     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3083   }
3084 
3085   // We need the OrigLoop (scalar loop part) latch terminator to help
3086   // produce correct debug info for the middle block BB instructions.
3087   // The legality check stage guarantees that the loop will have a single
3088   // latch.
3089   assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) &&
3090          "Scalar loop latch terminator isn't a branch");
3091   BranchInst *ScalarLatchBr =
3092       cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
3093 
3094   // Add a check in the middle block to see if we have completed
3095   // all of the iterations in the first vector loop.
3096   // If (N - N%VF) == N, then we *don't* need to run the remainder.
3097   // If tail is to be folded, we know we don't need to run the remainder.
3098   Value *CmpN = Builder.getTrue();
3099   if (!Cost->foldTailByMasking()) {
3100     CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3101                            CountRoundDown, "cmp.n",
3102                            LoopMiddleBlock->getTerminator());
3103 
3104     // Here we use the same DebugLoc as the scalar loop latch branch instead
3105     // of the corresponding compare because they may have ended up with
3106     // different line numbers and we want to avoid awkward line stepping while
3107     // debugging. Eg. if the compare has got a line number inside the loop.
3108     cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc());
3109   }
3110 
3111   BranchInst *BrInst =
3112       BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN);
3113   BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc());
3114   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3115 
3116   // Get ready to start creating new instructions into the vectorized body.
3117   assert(LoopVectorPreHeader == Lp->getLoopPreheader() &&
3118          "Inconsistent vector loop preheader");
3119   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3120 
3121   Optional<MDNode *> VectorizedLoopID =
3122       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3123                                       LLVMLoopVectorizeFollowupVectorized});
3124   if (VectorizedLoopID.hasValue()) {
3125     Lp->setLoopID(VectorizedLoopID.getValue());
3126 
3127     // Do not setAlreadyVectorized if loop attributes have been defined
3128     // explicitly.
3129     return LoopVectorPreHeader;
3130   }
3131 
3132   // Keep all loop hints from the original loop on the vector loop (we'll
3133   // replace the vectorizer-specific hints below).
3134   if (MDNode *LID = OrigLoop->getLoopID())
3135     Lp->setLoopID(LID);
3136 
3137   LoopVectorizeHints Hints(Lp, true, *ORE);
3138   Hints.setAlreadyVectorized();
3139 
3140 #ifdef EXPENSIVE_CHECKS
3141   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3142   LI->verify(*DT);
3143 #endif
3144 
3145   return LoopVectorPreHeader;
3146 }
3147 
3148 // Fix up external users of the induction variable. At this point, we are
3149 // in LCSSA form, with all external PHIs that use the IV having one input value,
3150 // coming from the remainder loop. We need those PHIs to also have a correct
3151 // value for the IV when arriving directly from the middle block.
3152 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3153                                        const InductionDescriptor &II,
3154                                        Value *CountRoundDown, Value *EndValue,
3155                                        BasicBlock *MiddleBlock) {
3156   // There are two kinds of external IV usages - those that use the value
3157   // computed in the last iteration (the PHI) and those that use the penultimate
3158   // value (the value that feeds into the phi from the loop latch).
3159   // We allow both, but they, obviously, have different values.
3160 
3161   assert(OrigLoop->getExitBlock() && "Expected a single exit block");
3162 
3163   DenseMap<Value *, Value *> MissingVals;
3164 
3165   // An external user of the last iteration's value should see the value that
3166   // the remainder loop uses to initialize its own IV.
3167   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3168   for (User *U : PostInc->users()) {
3169     Instruction *UI = cast<Instruction>(U);
3170     if (!OrigLoop->contains(UI)) {
3171       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3172       MissingVals[UI] = EndValue;
3173     }
3174   }
3175 
3176   // An external user of the penultimate value need to see EndValue - Step.
3177   // The simplest way to get this is to recompute it from the constituent SCEVs,
3178   // that is Start + (Step * (CRD - 1)).
3179   for (User *U : OrigPhi->users()) {
3180     auto *UI = cast<Instruction>(U);
3181     if (!OrigLoop->contains(UI)) {
3182       const DataLayout &DL =
3183           OrigLoop->getHeader()->getModule()->getDataLayout();
3184       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3185 
3186       IRBuilder<> B(MiddleBlock->getTerminator());
3187       Value *CountMinusOne = B.CreateSub(
3188           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3189       Value *CMO =
3190           !II.getStep()->getType()->isIntegerTy()
3191               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3192                              II.getStep()->getType())
3193               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3194       CMO->setName("cast.cmo");
3195       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3196       Escape->setName("ind.escape");
3197       MissingVals[UI] = Escape;
3198     }
3199   }
3200 
3201   for (auto &I : MissingVals) {
3202     PHINode *PHI = cast<PHINode>(I.first);
3203     // One corner case we have to handle is two IVs "chasing" each-other,
3204     // that is %IV2 = phi [...], [ %IV1, %latch ]
3205     // In this case, if IV1 has an external use, we need to avoid adding both
3206     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3207     // don't already have an incoming value for the middle block.
3208     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3209       PHI->addIncoming(I.second, MiddleBlock);
3210   }
3211 }
3212 
3213 namespace {
3214 
3215 struct CSEDenseMapInfo {
3216   static bool canHandle(const Instruction *I) {
3217     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3218            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3219   }
3220 
3221   static inline Instruction *getEmptyKey() {
3222     return DenseMapInfo<Instruction *>::getEmptyKey();
3223   }
3224 
3225   static inline Instruction *getTombstoneKey() {
3226     return DenseMapInfo<Instruction *>::getTombstoneKey();
3227   }
3228 
3229   static unsigned getHashValue(const Instruction *I) {
3230     assert(canHandle(I) && "Unknown instruction!");
3231     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3232                                                            I->value_op_end()));
3233   }
3234 
3235   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3236     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3237         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3238       return LHS == RHS;
3239     return LHS->isIdenticalTo(RHS);
3240   }
3241 };
3242 
3243 } // end anonymous namespace
3244 
3245 ///Perform cse of induction variable instructions.
3246 static void cse(BasicBlock *BB) {
3247   // Perform simple cse.
3248   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3249   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3250     Instruction *In = &*I++;
3251 
3252     if (!CSEDenseMapInfo::canHandle(In))
3253       continue;
3254 
3255     // Check if we can replace this instruction with any of the
3256     // visited instructions.
3257     if (Instruction *V = CSEMap.lookup(In)) {
3258       In->replaceAllUsesWith(V);
3259       In->eraseFromParent();
3260       continue;
3261     }
3262 
3263     CSEMap[In] = In;
3264   }
3265 }
3266 
3267 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI,
3268                                                        unsigned VF,
3269                                                        bool &NeedToScalarize) {
3270   Function *F = CI->getCalledFunction();
3271   Type *ScalarRetTy = CI->getType();
3272   SmallVector<Type *, 4> Tys, ScalarTys;
3273   for (auto &ArgOp : CI->arg_operands())
3274     ScalarTys.push_back(ArgOp->getType());
3275 
3276   // Estimate cost of scalarized vector call. The source operands are assumed
3277   // to be vectors, so we need to extract individual elements from there,
3278   // execute VF scalar calls, and then gather the result into the vector return
3279   // value.
3280   unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
3281   if (VF == 1)
3282     return ScalarCallCost;
3283 
3284   // Compute corresponding vector type for return value and arguments.
3285   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3286   for (Type *ScalarTy : ScalarTys)
3287     Tys.push_back(ToVectorTy(ScalarTy, VF));
3288 
3289   // Compute costs of unpacking argument values for the scalar calls and
3290   // packing the return values to a vector.
3291   unsigned ScalarizationCost = getScalarizationOverhead(CI, VF);
3292 
3293   unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3294 
3295   // If we can't emit a vector call for this function, then the currently found
3296   // cost is the cost we need to return.
3297   NeedToScalarize = true;
3298   VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/);
3299   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3300 
3301   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3302     return Cost;
3303 
3304   // If the corresponding vector cost is cheaper, return its cost.
3305   unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
3306   if (VectorCallCost < Cost) {
3307     NeedToScalarize = false;
3308     return VectorCallCost;
3309   }
3310   return Cost;
3311 }
3312 
3313 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3314                                                             unsigned VF) {
3315   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3316   assert(ID && "Expected intrinsic call!");
3317 
3318   FastMathFlags FMF;
3319   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3320     FMF = FPMO->getFastMathFlags();
3321 
3322   SmallVector<Value *, 4> Operands(CI->arg_operands());
3323   return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF, CI);
3324 }
3325 
3326 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3327   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3328   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3329   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3330 }
3331 
3332 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3333   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3334   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3335   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3336 }
3337 
3338 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3339   // For every instruction `I` in MinBWs, truncate the operands, create a
3340   // truncated version of `I` and reextend its result. InstCombine runs
3341   // later and will remove any ext/trunc pairs.
3342   SmallPtrSet<Value *, 4> Erased;
3343   for (const auto &KV : Cost->getMinimalBitwidths()) {
3344     // If the value wasn't vectorized, we must maintain the original scalar
3345     // type. The absence of the value from VectorLoopValueMap indicates that it
3346     // wasn't vectorized.
3347     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3348       continue;
3349     for (unsigned Part = 0; Part < UF; ++Part) {
3350       Value *I = getOrCreateVectorValue(KV.first, Part);
3351       if (Erased.find(I) != Erased.end() || I->use_empty() ||
3352           !isa<Instruction>(I))
3353         continue;
3354       Type *OriginalTy = I->getType();
3355       Type *ScalarTruncatedTy =
3356           IntegerType::get(OriginalTy->getContext(), KV.second);
3357       Type *TruncatedTy = VectorType::get(
3358           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getNumElements());
3359       if (TruncatedTy == OriginalTy)
3360         continue;
3361 
3362       IRBuilder<> B(cast<Instruction>(I));
3363       auto ShrinkOperand = [&](Value *V) -> Value * {
3364         if (auto *ZI = dyn_cast<ZExtInst>(V))
3365           if (ZI->getSrcTy() == TruncatedTy)
3366             return ZI->getOperand(0);
3367         return B.CreateZExtOrTrunc(V, TruncatedTy);
3368       };
3369 
3370       // The actual instruction modification depends on the instruction type,
3371       // unfortunately.
3372       Value *NewI = nullptr;
3373       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3374         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3375                              ShrinkOperand(BO->getOperand(1)));
3376 
3377         // Any wrapping introduced by shrinking this operation shouldn't be
3378         // considered undefined behavior. So, we can't unconditionally copy
3379         // arithmetic wrapping flags to NewI.
3380         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3381       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3382         NewI =
3383             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3384                          ShrinkOperand(CI->getOperand(1)));
3385       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3386         NewI = B.CreateSelect(SI->getCondition(),
3387                               ShrinkOperand(SI->getTrueValue()),
3388                               ShrinkOperand(SI->getFalseValue()));
3389       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3390         switch (CI->getOpcode()) {
3391         default:
3392           llvm_unreachable("Unhandled cast!");
3393         case Instruction::Trunc:
3394           NewI = ShrinkOperand(CI->getOperand(0));
3395           break;
3396         case Instruction::SExt:
3397           NewI = B.CreateSExtOrTrunc(
3398               CI->getOperand(0),
3399               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3400           break;
3401         case Instruction::ZExt:
3402           NewI = B.CreateZExtOrTrunc(
3403               CI->getOperand(0),
3404               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3405           break;
3406         }
3407       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3408         auto Elements0 =
3409             cast<VectorType>(SI->getOperand(0)->getType())->getNumElements();
3410         auto *O0 = B.CreateZExtOrTrunc(
3411             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3412         auto Elements1 =
3413             cast<VectorType>(SI->getOperand(1)->getType())->getNumElements();
3414         auto *O1 = B.CreateZExtOrTrunc(
3415             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3416 
3417         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3418       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3419         // Don't do anything with the operands, just extend the result.
3420         continue;
3421       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3422         auto Elements =
3423             cast<VectorType>(IE->getOperand(0)->getType())->getNumElements();
3424         auto *O0 = B.CreateZExtOrTrunc(
3425             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3426         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3427         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3428       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3429         auto Elements =
3430             cast<VectorType>(EE->getOperand(0)->getType())->getNumElements();
3431         auto *O0 = B.CreateZExtOrTrunc(
3432             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3433         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3434       } else {
3435         // If we don't know what to do, be conservative and don't do anything.
3436         continue;
3437       }
3438 
3439       // Lastly, extend the result.
3440       NewI->takeName(cast<Instruction>(I));
3441       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3442       I->replaceAllUsesWith(Res);
3443       cast<Instruction>(I)->eraseFromParent();
3444       Erased.insert(I);
3445       VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
3446     }
3447   }
3448 
3449   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3450   for (const auto &KV : Cost->getMinimalBitwidths()) {
3451     // If the value wasn't vectorized, we must maintain the original scalar
3452     // type. The absence of the value from VectorLoopValueMap indicates that it
3453     // wasn't vectorized.
3454     if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3455       continue;
3456     for (unsigned Part = 0; Part < UF; ++Part) {
3457       Value *I = getOrCreateVectorValue(KV.first, Part);
3458       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3459       if (Inst && Inst->use_empty()) {
3460         Value *NewI = Inst->getOperand(0);
3461         Inst->eraseFromParent();
3462         VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
3463       }
3464     }
3465   }
3466 }
3467 
3468 void InnerLoopVectorizer::fixVectorizedLoop() {
3469   // Insert truncates and extends for any truncated instructions as hints to
3470   // InstCombine.
3471   if (VF > 1)
3472     truncateToMinimalBitwidths();
3473 
3474   // Fix widened non-induction PHIs by setting up the PHI operands.
3475   if (OrigPHIsToFix.size()) {
3476     assert(EnableVPlanNativePath &&
3477            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
3478     fixNonInductionPHIs();
3479   }
3480 
3481   // At this point every instruction in the original loop is widened to a
3482   // vector form. Now we need to fix the recurrences in the loop. These PHI
3483   // nodes are currently empty because we did not want to introduce cycles.
3484   // This is the second stage of vectorizing recurrences.
3485   fixCrossIterationPHIs();
3486 
3487   // Forget the original basic block.
3488   PSE.getSE()->forgetLoop(OrigLoop);
3489 
3490   // Fix-up external users of the induction variables.
3491   for (auto &Entry : Legal->getInductionVars())
3492     fixupIVUsers(Entry.first, Entry.second,
3493                  getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3494                  IVEndValues[Entry.first], LoopMiddleBlock);
3495 
3496   fixLCSSAPHIs();
3497   for (Instruction *PI : PredicatedInstructions)
3498     sinkScalarOperands(&*PI);
3499 
3500   // Remove redundant induction instructions.
3501   cse(LoopVectorBody);
3502 
3503   // Set/update profile weights for the vector and remainder loops as original
3504   // loop iterations are now distributed among them. Note that original loop
3505   // represented by LoopScalarBody becomes remainder loop after vectorization.
3506   //
3507   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3508   // end up getting slightly roughened result but that should be OK since
3509   // profile is not inherently precise anyway. Note also possible bypass of
3510   // vector code caused by legality checks is ignored, assigning all the weight
3511   // to the vector loop, optimistically.
3512   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody),
3513                                LI->getLoopFor(LoopVectorBody),
3514                                LI->getLoopFor(LoopScalarBody), VF * UF);
3515 }
3516 
3517 void InnerLoopVectorizer::fixCrossIterationPHIs() {
3518   // In order to support recurrences we need to be able to vectorize Phi nodes.
3519   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3520   // stage #2: We now need to fix the recurrences by adding incoming edges to
3521   // the currently empty PHI nodes. At this point every instruction in the
3522   // original loop is widened to a vector form so we can use them to construct
3523   // the incoming edges.
3524   for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
3525     // Handle first-order recurrences and reductions that need to be fixed.
3526     if (Legal->isFirstOrderRecurrence(&Phi))
3527       fixFirstOrderRecurrence(&Phi);
3528     else if (Legal->isReductionVariable(&Phi))
3529       fixReduction(&Phi);
3530   }
3531 }
3532 
3533 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3534   // This is the second phase of vectorizing first-order recurrences. An
3535   // overview of the transformation is described below. Suppose we have the
3536   // following loop.
3537   //
3538   //   for (int i = 0; i < n; ++i)
3539   //     b[i] = a[i] - a[i - 1];
3540   //
3541   // There is a first-order recurrence on "a". For this loop, the shorthand
3542   // scalar IR looks like:
3543   //
3544   //   scalar.ph:
3545   //     s_init = a[-1]
3546   //     br scalar.body
3547   //
3548   //   scalar.body:
3549   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3550   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3551   //     s2 = a[i]
3552   //     b[i] = s2 - s1
3553   //     br cond, scalar.body, ...
3554   //
3555   // In this example, s1 is a recurrence because it's value depends on the
3556   // previous iteration. In the first phase of vectorization, we created a
3557   // temporary value for s1. We now complete the vectorization and produce the
3558   // shorthand vector IR shown below (for VF = 4, UF = 1).
3559   //
3560   //   vector.ph:
3561   //     v_init = vector(..., ..., ..., a[-1])
3562   //     br vector.body
3563   //
3564   //   vector.body
3565   //     i = phi [0, vector.ph], [i+4, vector.body]
3566   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3567   //     v2 = a[i, i+1, i+2, i+3];
3568   //     v3 = vector(v1(3), v2(0, 1, 2))
3569   //     b[i, i+1, i+2, i+3] = v2 - v3
3570   //     br cond, vector.body, middle.block
3571   //
3572   //   middle.block:
3573   //     x = v2(3)
3574   //     br scalar.ph
3575   //
3576   //   scalar.ph:
3577   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3578   //     br scalar.body
3579   //
3580   // After execution completes the vector loop, we extract the next value of
3581   // the recurrence (x) to use as the initial value in the scalar loop.
3582 
3583   // Get the original loop preheader and single loop latch.
3584   auto *Preheader = OrigLoop->getLoopPreheader();
3585   auto *Latch = OrigLoop->getLoopLatch();
3586 
3587   // Get the initial and previous values of the scalar recurrence.
3588   auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
3589   auto *Previous = Phi->getIncomingValueForBlock(Latch);
3590 
3591   // Create a vector from the initial value.
3592   auto *VectorInit = ScalarInit;
3593   if (VF > 1) {
3594     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3595     VectorInit = Builder.CreateInsertElement(
3596         UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
3597         Builder.getInt32(VF - 1), "vector.recur.init");
3598   }
3599 
3600   // We constructed a temporary phi node in the first phase of vectorization.
3601   // This phi node will eventually be deleted.
3602   Builder.SetInsertPoint(
3603       cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
3604 
3605   // Create a phi node for the new recurrence. The current value will either be
3606   // the initial value inserted into a vector or loop-varying vector value.
3607   auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
3608   VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
3609 
3610   // Get the vectorized previous value of the last part UF - 1. It appears last
3611   // among all unrolled iterations, due to the order of their construction.
3612   Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
3613 
3614   // Find and set the insertion point after the previous value if it is an
3615   // instruction.
3616   BasicBlock::iterator InsertPt;
3617   // Note that the previous value may have been constant-folded so it is not
3618   // guaranteed to be an instruction in the vector loop.
3619   // FIXME: Loop invariant values do not form recurrences. We should deal with
3620   //        them earlier.
3621   if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart))
3622     InsertPt = LoopVectorBody->getFirstInsertionPt();
3623   else {
3624     Instruction *PreviousInst = cast<Instruction>(PreviousLastPart);
3625     if (isa<PHINode>(PreviousLastPart))
3626       // If the previous value is a phi node, we should insert after all the phi
3627       // nodes in the block containing the PHI to avoid breaking basic block
3628       // verification. Note that the basic block may be different to
3629       // LoopVectorBody, in case we predicate the loop.
3630       InsertPt = PreviousInst->getParent()->getFirstInsertionPt();
3631     else
3632       InsertPt = ++PreviousInst->getIterator();
3633   }
3634   Builder.SetInsertPoint(&*InsertPt);
3635 
3636   // We will construct a vector for the recurrence by combining the values for
3637   // the current and previous iterations. This is the required shuffle mask.
3638   SmallVector<int, 8> ShuffleMask(VF);
3639   ShuffleMask[0] = VF - 1;
3640   for (unsigned I = 1; I < VF; ++I)
3641     ShuffleMask[I] = I + VF - 1;
3642 
3643   // The vector from which to take the initial value for the current iteration
3644   // (actual or unrolled). Initially, this is the vector phi node.
3645   Value *Incoming = VecPhi;
3646 
3647   // Shuffle the current and previous vector and update the vector parts.
3648   for (unsigned Part = 0; Part < UF; ++Part) {
3649     Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
3650     Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
3651     auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart,
3652                                                          ShuffleMask)
3653                            : Incoming;
3654     PhiPart->replaceAllUsesWith(Shuffle);
3655     cast<Instruction>(PhiPart)->eraseFromParent();
3656     VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
3657     Incoming = PreviousPart;
3658   }
3659 
3660   // Fix the latch value of the new recurrence in the vector loop.
3661   VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3662 
3663   // Extract the last vector element in the middle block. This will be the
3664   // initial value for the recurrence when jumping to the scalar loop.
3665   auto *ExtractForScalar = Incoming;
3666   if (VF > 1) {
3667     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3668     ExtractForScalar = Builder.CreateExtractElement(
3669         ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
3670   }
3671   // Extract the second last element in the middle block if the
3672   // Phi is used outside the loop. We need to extract the phi itself
3673   // and not the last element (the phi update in the current iteration). This
3674   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3675   // when the scalar loop is not run at all.
3676   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3677   if (VF > 1)
3678     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3679         Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
3680   // When loop is unrolled without vectorizing, initialize
3681   // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
3682   // `Incoming`. This is analogous to the vectorized case above: extracting the
3683   // second last element when VF > 1.
3684   else if (UF > 1)
3685     ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
3686 
3687   // Fix the initial value of the original recurrence in the scalar loop.
3688   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3689   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3690   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3691     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3692     Start->addIncoming(Incoming, BB);
3693   }
3694 
3695   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3696   Phi->setName("scalar.recur");
3697 
3698   // Finally, fix users of the recurrence outside the loop. The users will need
3699   // either the last value of the scalar recurrence or the last value of the
3700   // vector recurrence we extracted in the middle block. Since the loop is in
3701   // LCSSA form, we just need to find all the phi nodes for the original scalar
3702   // recurrence in the exit block, and then add an edge for the middle block.
3703   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3704     if (LCSSAPhi.getIncomingValue(0) == Phi) {
3705       LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3706     }
3707   }
3708 }
3709 
3710 void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
3711   Constant *Zero = Builder.getInt32(0);
3712 
3713   // Get it's reduction variable descriptor.
3714   assert(Legal->isReductionVariable(Phi) &&
3715          "Unable to find the reduction variable");
3716   RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi];
3717 
3718   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3719   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3720   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3721   RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
3722     RdxDesc.getMinMaxRecurrenceKind();
3723   setDebugLocFromInst(Builder, ReductionStartValue);
3724 
3725   // We need to generate a reduction vector from the incoming scalar.
3726   // To do so, we need to generate the 'identity' vector and override
3727   // one of the elements with the incoming scalar reduction. We need
3728   // to do it in the vector-loop preheader.
3729   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3730 
3731   // This is the vector-clone of the value that leaves the loop.
3732   Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
3733 
3734   // Find the reduction identity variable. Zero for addition, or, xor,
3735   // one for multiplication, -1 for And.
3736   Value *Identity;
3737   Value *VectorStart;
3738   if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
3739       RK == RecurrenceDescriptor::RK_FloatMinMax) {
3740     // MinMax reduction have the start value as their identify.
3741     if (VF == 1) {
3742       VectorStart = Identity = ReductionStartValue;
3743     } else {
3744       VectorStart = Identity =
3745         Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
3746     }
3747   } else {
3748     // Handle other reduction kinds:
3749     Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
3750         RK, VecTy->getScalarType());
3751     if (VF == 1) {
3752       Identity = Iden;
3753       // This vector is the Identity vector where the first element is the
3754       // incoming scalar reduction.
3755       VectorStart = ReductionStartValue;
3756     } else {
3757       Identity = ConstantVector::getSplat({VF, false}, Iden);
3758 
3759       // This vector is the Identity vector where the first element is the
3760       // incoming scalar reduction.
3761       VectorStart =
3762         Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
3763     }
3764   }
3765 
3766   // Wrap flags are in general invalid after vectorization, clear them.
3767   clearReductionWrapFlags(RdxDesc);
3768 
3769   // Fix the vector-loop phi.
3770 
3771   // Reductions do not have to start at zero. They can start with
3772   // any loop invariant values.
3773   BasicBlock *Latch = OrigLoop->getLoopLatch();
3774   Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
3775 
3776   for (unsigned Part = 0; Part < UF; ++Part) {
3777     Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
3778     Value *Val = getOrCreateVectorValue(LoopVal, Part);
3779     // Make sure to add the reduction start value only to the
3780     // first unroll part.
3781     Value *StartVal = (Part == 0) ? VectorStart : Identity;
3782     cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
3783     cast<PHINode>(VecRdxPhi)
3784       ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3785   }
3786 
3787   // Before each round, move the insertion point right between
3788   // the PHIs and the values we are going to write.
3789   // This allows us to write both PHINodes and the extractelement
3790   // instructions.
3791   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3792 
3793   setDebugLocFromInst(Builder, LoopExitInst);
3794 
3795   // If tail is folded by masking, the vector value to leave the loop should be
3796   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3797   // instead of the former.
3798   if (Cost->foldTailByMasking()) {
3799     for (unsigned Part = 0; Part < UF; ++Part) {
3800       Value *VecLoopExitInst =
3801           VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3802       Value *Sel = nullptr;
3803       for (User *U : VecLoopExitInst->users()) {
3804         if (isa<SelectInst>(U)) {
3805           assert(!Sel && "Reduction exit feeding two selects");
3806           Sel = U;
3807         } else
3808           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3809       }
3810       assert(Sel && "Reduction exit feeds no select");
3811       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel);
3812     }
3813   }
3814 
3815   // If the vector reduction can be performed in a smaller type, we truncate
3816   // then extend the loop exit value to enable InstCombine to evaluate the
3817   // entire expression in the smaller type.
3818   if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
3819     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3820     Builder.SetInsertPoint(
3821         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
3822     VectorParts RdxParts(UF);
3823     for (unsigned Part = 0; Part < UF; ++Part) {
3824       RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3825       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3826       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3827                                         : Builder.CreateZExt(Trunc, VecTy);
3828       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
3829            UI != RdxParts[Part]->user_end();)
3830         if (*UI != Trunc) {
3831           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
3832           RdxParts[Part] = Extnd;
3833         } else {
3834           ++UI;
3835         }
3836     }
3837     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3838     for (unsigned Part = 0; Part < UF; ++Part) {
3839       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3840       VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
3841     }
3842   }
3843 
3844   // Reduce all of the unrolled parts into a single vector.
3845   Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
3846   unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
3847 
3848   // The middle block terminator has already been assigned a DebugLoc here (the
3849   // OrigLoop's single latch terminator). We want the whole middle block to
3850   // appear to execute on this line because: (a) it is all compiler generated,
3851   // (b) these instructions are always executed after evaluating the latch
3852   // conditional branch, and (c) other passes may add new predecessors which
3853   // terminate on this line. This is the easiest way to ensure we don't
3854   // accidentally cause an extra step back into the loop while debugging.
3855   setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator());
3856   for (unsigned Part = 1; Part < UF; ++Part) {
3857     Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3858     if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3859       // Floating point operations had to be 'fast' to enable the reduction.
3860       ReducedPartRdx = addFastMathFlag(
3861           Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
3862                               ReducedPartRdx, "bin.rdx"),
3863           RdxDesc.getFastMathFlags());
3864     else
3865       ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx,
3866                                       RdxPart);
3867   }
3868 
3869   if (VF > 1) {
3870     bool NoNaN = Legal->hasFunNoNaNAttr();
3871     ReducedPartRdx =
3872         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
3873     // If the reduction can be performed in a smaller type, we need to extend
3874     // the reduction to the wider type before we branch to the original loop.
3875     if (Phi->getType() != RdxDesc.getRecurrenceType())
3876       ReducedPartRdx =
3877         RdxDesc.isSigned()
3878         ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
3879         : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
3880   }
3881 
3882   // Create a phi node that merges control-flow from the backedge-taken check
3883   // block and the middle block.
3884   PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
3885                                         LoopScalarPreHeader->getTerminator());
3886   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
3887     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
3888   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3889 
3890   // Now, we need to fix the users of the reduction variable
3891   // inside and outside of the scalar remainder loop.
3892   // We know that the loop is in LCSSA form. We need to update the
3893   // PHI nodes in the exit blocks.
3894   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3895     // All PHINodes need to have a single entry edge, or two if
3896     // we already fixed them.
3897     assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
3898 
3899     // We found a reduction value exit-PHI. Update it with the
3900     // incoming bypass edge.
3901     if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
3902       LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
3903   } // end of the LCSSA phi scan.
3904 
3905     // Fix the scalar loop reduction variable with the incoming reduction sum
3906     // from the vector body and from the backedge value.
3907   int IncomingEdgeBlockIdx =
3908     Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
3909   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
3910   // Pick the other block.
3911   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
3912   Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
3913   Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
3914 }
3915 
3916 void InnerLoopVectorizer::clearReductionWrapFlags(
3917     RecurrenceDescriptor &RdxDesc) {
3918   RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3919   if (RK != RecurrenceDescriptor::RK_IntegerAdd &&
3920       RK != RecurrenceDescriptor::RK_IntegerMult)
3921     return;
3922 
3923   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
3924   assert(LoopExitInstr && "null loop exit instruction");
3925   SmallVector<Instruction *, 8> Worklist;
3926   SmallPtrSet<Instruction *, 8> Visited;
3927   Worklist.push_back(LoopExitInstr);
3928   Visited.insert(LoopExitInstr);
3929 
3930   while (!Worklist.empty()) {
3931     Instruction *Cur = Worklist.pop_back_val();
3932     if (isa<OverflowingBinaryOperator>(Cur))
3933       for (unsigned Part = 0; Part < UF; ++Part) {
3934         Value *V = getOrCreateVectorValue(Cur, Part);
3935         cast<Instruction>(V)->dropPoisonGeneratingFlags();
3936       }
3937 
3938     for (User *U : Cur->users()) {
3939       Instruction *UI = cast<Instruction>(U);
3940       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
3941           Visited.insert(UI).second)
3942         Worklist.push_back(UI);
3943     }
3944   }
3945 }
3946 
3947 void InnerLoopVectorizer::fixLCSSAPHIs() {
3948   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3949     if (LCSSAPhi.getNumIncomingValues() == 1) {
3950       auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
3951       // Non-instruction incoming values will have only one value.
3952       unsigned LastLane = 0;
3953       if (isa<Instruction>(IncomingValue))
3954           LastLane = Cost->isUniformAfterVectorization(
3955                          cast<Instruction>(IncomingValue), VF)
3956                          ? 0
3957                          : VF - 1;
3958       // Can be a loop invariant incoming value or the last scalar value to be
3959       // extracted from the vectorized loop.
3960       Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3961       Value *lastIncomingValue =
3962           getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane });
3963       LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
3964     }
3965   }
3966 }
3967 
3968 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
3969   // The basic block and loop containing the predicated instruction.
3970   auto *PredBB = PredInst->getParent();
3971   auto *VectorLoop = LI->getLoopFor(PredBB);
3972 
3973   // Initialize a worklist with the operands of the predicated instruction.
3974   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
3975 
3976   // Holds instructions that we need to analyze again. An instruction may be
3977   // reanalyzed if we don't yet know if we can sink it or not.
3978   SmallVector<Instruction *, 8> InstsToReanalyze;
3979 
3980   // Returns true if a given use occurs in the predicated block. Phi nodes use
3981   // their operands in their corresponding predecessor blocks.
3982   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
3983     auto *I = cast<Instruction>(U.getUser());
3984     BasicBlock *BB = I->getParent();
3985     if (auto *Phi = dyn_cast<PHINode>(I))
3986       BB = Phi->getIncomingBlock(
3987           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3988     return BB == PredBB;
3989   };
3990 
3991   // Iteratively sink the scalarized operands of the predicated instruction
3992   // into the block we created for it. When an instruction is sunk, it's
3993   // operands are then added to the worklist. The algorithm ends after one pass
3994   // through the worklist doesn't sink a single instruction.
3995   bool Changed;
3996   do {
3997     // Add the instructions that need to be reanalyzed to the worklist, and
3998     // reset the changed indicator.
3999     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4000     InstsToReanalyze.clear();
4001     Changed = false;
4002 
4003     while (!Worklist.empty()) {
4004       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4005 
4006       // We can't sink an instruction if it is a phi node, is already in the
4007       // predicated block, is not in the loop, or may have side effects.
4008       if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4009           !VectorLoop->contains(I) || I->mayHaveSideEffects())
4010         continue;
4011 
4012       // It's legal to sink the instruction if all its uses occur in the
4013       // predicated block. Otherwise, there's nothing to do yet, and we may
4014       // need to reanalyze the instruction.
4015       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4016         InstsToReanalyze.push_back(I);
4017         continue;
4018       }
4019 
4020       // Move the instruction to the beginning of the predicated block, and add
4021       // it's operands to the worklist.
4022       I->moveBefore(&*PredBB->getFirstInsertionPt());
4023       Worklist.insert(I->op_begin(), I->op_end());
4024 
4025       // The sinking may have enabled other instructions to be sunk, so we will
4026       // need to iterate.
4027       Changed = true;
4028     }
4029   } while (Changed);
4030 }
4031 
4032 void InnerLoopVectorizer::fixNonInductionPHIs() {
4033   for (PHINode *OrigPhi : OrigPHIsToFix) {
4034     PHINode *NewPhi =
4035         cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0));
4036     unsigned NumIncomingValues = OrigPhi->getNumIncomingValues();
4037 
4038     SmallVector<BasicBlock *, 2> ScalarBBPredecessors(
4039         predecessors(OrigPhi->getParent()));
4040     SmallVector<BasicBlock *, 2> VectorBBPredecessors(
4041         predecessors(NewPhi->getParent()));
4042     assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() &&
4043            "Scalar and Vector BB should have the same number of predecessors");
4044 
4045     // The insertion point in Builder may be invalidated by the time we get
4046     // here. Force the Builder insertion point to something valid so that we do
4047     // not run into issues during insertion point restore in
4048     // getOrCreateVectorValue calls below.
4049     Builder.SetInsertPoint(NewPhi);
4050 
4051     // The predecessor order is preserved and we can rely on mapping between
4052     // scalar and vector block predecessors.
4053     for (unsigned i = 0; i < NumIncomingValues; ++i) {
4054       BasicBlock *NewPredBB = VectorBBPredecessors[i];
4055 
4056       // When looking up the new scalar/vector values to fix up, use incoming
4057       // values from original phi.
4058       Value *ScIncV =
4059           OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]);
4060 
4061       // Scalar incoming value may need a broadcast
4062       Value *NewIncV = getOrCreateVectorValue(ScIncV, 0);
4063       NewPhi->addIncoming(NewIncV, NewPredBB);
4064     }
4065   }
4066 }
4067 
4068 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, unsigned UF,
4069                                    unsigned VF, bool IsPtrLoopInvariant,
4070                                    SmallBitVector &IsIndexLoopInvariant) {
4071   // Construct a vector GEP by widening the operands of the scalar GEP as
4072   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4073   // results in a vector of pointers when at least one operand of the GEP
4074   // is vector-typed. Thus, to keep the representation compact, we only use
4075   // vector-typed operands for loop-varying values.
4076 
4077   if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4078     // If we are vectorizing, but the GEP has only loop-invariant operands,
4079     // the GEP we build (by only using vector-typed operands for
4080     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4081     // produce a vector of pointers, we need to either arbitrarily pick an
4082     // operand to broadcast, or broadcast a clone of the original GEP.
4083     // Here, we broadcast a clone of the original.
4084     //
4085     // TODO: If at some point we decide to scalarize instructions having
4086     //       loop-invariant operands, this special case will no longer be
4087     //       required. We would add the scalarization decision to
4088     //       collectLoopScalars() and teach getVectorValue() to broadcast
4089     //       the lane-zero scalar value.
4090     auto *Clone = Builder.Insert(GEP->clone());
4091     for (unsigned Part = 0; Part < UF; ++Part) {
4092       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4093       VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart);
4094       addMetadata(EntryPart, GEP);
4095     }
4096   } else {
4097     // If the GEP has at least one loop-varying operand, we are sure to
4098     // produce a vector of pointers. But if we are only unrolling, we want
4099     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4100     // produce with the code below will be scalar (if VF == 1) or vector
4101     // (otherwise). Note that for the unroll-only case, we still maintain
4102     // values in the vector mapping with initVector, as we do for other
4103     // instructions.
4104     for (unsigned Part = 0; Part < UF; ++Part) {
4105       // The pointer operand of the new GEP. If it's loop-invariant, we
4106       // won't broadcast it.
4107       auto *Ptr = IsPtrLoopInvariant
4108                       ? GEP->getPointerOperand()
4109                       : getOrCreateVectorValue(GEP->getPointerOperand(), Part);
4110 
4111       // Collect all the indices for the new GEP. If any index is
4112       // loop-invariant, we won't broadcast it.
4113       SmallVector<Value *, 4> Indices;
4114       for (auto Index : enumerate(GEP->indices())) {
4115         Value *User = Index.value().get();
4116         if (IsIndexLoopInvariant[Index.index()])
4117           Indices.push_back(User);
4118         else
4119           Indices.push_back(getOrCreateVectorValue(User, Part));
4120       }
4121 
4122       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4123       // but it should be a vector, otherwise.
4124       auto *NewGEP =
4125           GEP->isInBounds()
4126               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4127                                           Indices)
4128               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4129       assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
4130              "NewGEP is not a pointer vector");
4131       VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP);
4132       addMetadata(NewGEP, GEP);
4133     }
4134   }
4135 }
4136 
4137 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
4138                                               unsigned VF) {
4139   PHINode *P = cast<PHINode>(PN);
4140   if (EnableVPlanNativePath) {
4141     // Currently we enter here in the VPlan-native path for non-induction
4142     // PHIs where all control flow is uniform. We simply widen these PHIs.
4143     // Create a vector phi with no operands - the vector phi operands will be
4144     // set at the end of vector code generation.
4145     Type *VecTy =
4146         (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
4147     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4148     VectorLoopValueMap.setVectorValue(P, 0, VecPhi);
4149     OrigPHIsToFix.push_back(P);
4150 
4151     return;
4152   }
4153 
4154   assert(PN->getParent() == OrigLoop->getHeader() &&
4155          "Non-header phis should have been handled elsewhere");
4156 
4157   // In order to support recurrences we need to be able to vectorize Phi nodes.
4158   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4159   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4160   // this value when we vectorize all of the instructions that use the PHI.
4161   if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
4162     for (unsigned Part = 0; Part < UF; ++Part) {
4163       // This is phase one of vectorizing PHIs.
4164       Type *VecTy =
4165           (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
4166       Value *EntryPart = PHINode::Create(
4167           VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4168       VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
4169     }
4170     return;
4171   }
4172 
4173   setDebugLocFromInst(Builder, P);
4174 
4175   // This PHINode must be an induction variable.
4176   // Make sure that we know about it.
4177   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4178 
4179   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4180   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4181 
4182   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4183   // which can be found from the original scalar operations.
4184   switch (II.getKind()) {
4185   case InductionDescriptor::IK_NoInduction:
4186     llvm_unreachable("Unknown induction");
4187   case InductionDescriptor::IK_IntInduction:
4188   case InductionDescriptor::IK_FpInduction:
4189     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4190   case InductionDescriptor::IK_PtrInduction: {
4191     // Handle the pointer induction variable case.
4192     assert(P->getType()->isPointerTy() && "Unexpected type.");
4193     // This is the normalized GEP that starts counting at zero.
4194     Value *PtrInd = Induction;
4195     PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
4196     // Determine the number of scalars we need to generate for each unroll
4197     // iteration. If the instruction is uniform, we only need to generate the
4198     // first lane. Otherwise, we generate all VF values.
4199     unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
4200     // These are the scalar results. Notice that we don't generate vector GEPs
4201     // because scalar GEPs result in better code.
4202     for (unsigned Part = 0; Part < UF; ++Part) {
4203       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4204         Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
4205         Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4206         Value *SclrGep =
4207             emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4208         SclrGep->setName("next.gep");
4209         VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
4210       }
4211     }
4212     return;
4213   }
4214   }
4215 }
4216 
4217 /// A helper function for checking whether an integer division-related
4218 /// instruction may divide by zero (in which case it must be predicated if
4219 /// executed conditionally in the scalar code).
4220 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4221 /// Non-zero divisors that are non compile-time constants will not be
4222 /// converted into multiplication, so we will still end up scalarizing
4223 /// the division, but can do so w/o predication.
4224 static bool mayDivideByZero(Instruction &I) {
4225   assert((I.getOpcode() == Instruction::UDiv ||
4226           I.getOpcode() == Instruction::SDiv ||
4227           I.getOpcode() == Instruction::URem ||
4228           I.getOpcode() == Instruction::SRem) &&
4229          "Unexpected instruction");
4230   Value *Divisor = I.getOperand(1);
4231   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4232   return !CInt || CInt->isZero();
4233 }
4234 
4235 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User,
4236                                            VPTransformState &State) {
4237   switch (I.getOpcode()) {
4238   case Instruction::Call:
4239   case Instruction::Br:
4240   case Instruction::PHI:
4241   case Instruction::GetElementPtr:
4242   case Instruction::Select:
4243     llvm_unreachable("This instruction is handled by a different recipe.");
4244   case Instruction::UDiv:
4245   case Instruction::SDiv:
4246   case Instruction::SRem:
4247   case Instruction::URem:
4248   case Instruction::Add:
4249   case Instruction::FAdd:
4250   case Instruction::Sub:
4251   case Instruction::FSub:
4252   case Instruction::FNeg:
4253   case Instruction::Mul:
4254   case Instruction::FMul:
4255   case Instruction::FDiv:
4256   case Instruction::FRem:
4257   case Instruction::Shl:
4258   case Instruction::LShr:
4259   case Instruction::AShr:
4260   case Instruction::And:
4261   case Instruction::Or:
4262   case Instruction::Xor: {
4263     // Just widen unops and binops.
4264     setDebugLocFromInst(Builder, &I);
4265 
4266     for (unsigned Part = 0; Part < UF; ++Part) {
4267       SmallVector<Value *, 2> Ops;
4268       for (VPValue *VPOp : User.operands())
4269         Ops.push_back(State.get(VPOp, Part));
4270 
4271       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4272 
4273       if (auto *VecOp = dyn_cast<Instruction>(V))
4274         VecOp->copyIRFlags(&I);
4275 
4276       // Use this vector value for all users of the original instruction.
4277       VectorLoopValueMap.setVectorValue(&I, Part, V);
4278       addMetadata(V, &I);
4279     }
4280 
4281     break;
4282   }
4283   case Instruction::ICmp:
4284   case Instruction::FCmp: {
4285     // Widen compares. Generate vector compares.
4286     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4287     auto *Cmp = cast<CmpInst>(&I);
4288     setDebugLocFromInst(Builder, Cmp);
4289     for (unsigned Part = 0; Part < UF; ++Part) {
4290       Value *A = State.get(User.getOperand(0), Part);
4291       Value *B = State.get(User.getOperand(1), Part);
4292       Value *C = nullptr;
4293       if (FCmp) {
4294         // Propagate fast math flags.
4295         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4296         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4297         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4298       } else {
4299         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4300       }
4301       VectorLoopValueMap.setVectorValue(&I, Part, C);
4302       addMetadata(C, &I);
4303     }
4304 
4305     break;
4306   }
4307 
4308   case Instruction::ZExt:
4309   case Instruction::SExt:
4310   case Instruction::FPToUI:
4311   case Instruction::FPToSI:
4312   case Instruction::FPExt:
4313   case Instruction::PtrToInt:
4314   case Instruction::IntToPtr:
4315   case Instruction::SIToFP:
4316   case Instruction::UIToFP:
4317   case Instruction::Trunc:
4318   case Instruction::FPTrunc:
4319   case Instruction::BitCast: {
4320     auto *CI = cast<CastInst>(&I);
4321     setDebugLocFromInst(Builder, CI);
4322 
4323     /// Vectorize casts.
4324     Type *DestTy =
4325         (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
4326 
4327     for (unsigned Part = 0; Part < UF; ++Part) {
4328       Value *A = State.get(User.getOperand(0), Part);
4329       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4330       VectorLoopValueMap.setVectorValue(&I, Part, Cast);
4331       addMetadata(Cast, &I);
4332     }
4333     break;
4334   }
4335   default:
4336     // This instruction is not vectorized by simple widening.
4337     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4338     llvm_unreachable("Unhandled instruction!");
4339   } // end of switch.
4340 }
4341 
4342 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands,
4343                                                VPTransformState &State) {
4344   assert(!isa<DbgInfoIntrinsic>(I) &&
4345          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4346   setDebugLocFromInst(Builder, &I);
4347 
4348   Module *M = I.getParent()->getParent()->getParent();
4349   auto *CI = cast<CallInst>(&I);
4350 
4351   SmallVector<Type *, 4> Tys;
4352   for (Value *ArgOperand : CI->arg_operands())
4353     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
4354 
4355   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4356 
4357   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4358   // version of the instruction.
4359   // Is it beneficial to perform intrinsic call compared to lib call?
4360   bool NeedToScalarize = false;
4361   unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4362   bool UseVectorIntrinsic =
4363       ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost;
4364   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4365          "Instruction should be scalarized elsewhere.");
4366 
4367   for (unsigned Part = 0; Part < UF; ++Part) {
4368     SmallVector<Value *, 4> Args;
4369     for (auto &I : enumerate(ArgOperands.operands())) {
4370       // Some intrinsics have a scalar argument - don't replace it with a
4371       // vector.
4372       Value *Arg;
4373       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
4374         Arg = State.get(I.value(), Part);
4375       else
4376         Arg = State.get(I.value(), {0, 0});
4377       Args.push_back(Arg);
4378     }
4379 
4380     Function *VectorF;
4381     if (UseVectorIntrinsic) {
4382       // Use vector version of the intrinsic.
4383       Type *TysForDecl[] = {CI->getType()};
4384       if (VF > 1)
4385         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4386       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4387     } else {
4388       // Use vector version of the function call.
4389       const VFShape Shape =
4390           VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/);
4391 #ifndef NDEBUG
4392         const SmallVector<VFInfo, 8> Infos = VFDatabase::getMappings(*CI);
4393         assert(std::find_if(Infos.begin(), Infos.end(),
4394                             [&Shape](const VFInfo &Info) {
4395                               return Info.Shape == Shape;
4396                             }) != Infos.end() &&
4397                "Vector function shape is missing from the database.");
4398 #endif
4399         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4400     }
4401       assert(VectorF && "Can't create vector function.");
4402 
4403       SmallVector<OperandBundleDef, 1> OpBundles;
4404       CI->getOperandBundlesAsDefs(OpBundles);
4405       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4406 
4407       if (isa<FPMathOperator>(V))
4408         V->copyFastMathFlags(CI);
4409 
4410       VectorLoopValueMap.setVectorValue(&I, Part, V);
4411       addMetadata(V, &I);
4412   }
4413 }
4414 
4415 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I,
4416                                                  bool InvariantCond) {
4417   setDebugLocFromInst(Builder, &I);
4418 
4419   // The condition can be loop invariant  but still defined inside the
4420   // loop. This means that we can't just use the original 'cond' value.
4421   // We have to take the 'vectorized' value and pick the first lane.
4422   // Instcombine will make this a no-op.
4423 
4424   auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0});
4425 
4426   for (unsigned Part = 0; Part < UF; ++Part) {
4427     Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part);
4428     Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part);
4429     Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part);
4430     Value *Sel =
4431         Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1);
4432     VectorLoopValueMap.setVectorValue(&I, Part, Sel);
4433     addMetadata(Sel, &I);
4434   }
4435 }
4436 
4437 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
4438   // We should not collect Scalars more than once per VF. Right now, this
4439   // function is called from collectUniformsAndScalars(), which already does
4440   // this check. Collecting Scalars for VF=1 does not make any sense.
4441   assert(VF >= 2 && Scalars.find(VF) == Scalars.end() &&
4442          "This function should not be visited twice for the same VF");
4443 
4444   SmallSetVector<Instruction *, 8> Worklist;
4445 
4446   // These sets are used to seed the analysis with pointers used by memory
4447   // accesses that will remain scalar.
4448   SmallSetVector<Instruction *, 8> ScalarPtrs;
4449   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4450 
4451   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4452   // The pointer operands of loads and stores will be scalar as long as the
4453   // memory access is not a gather or scatter operation. The value operand of a
4454   // store will remain scalar if the store is scalarized.
4455   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4456     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4457     assert(WideningDecision != CM_Unknown &&
4458            "Widening decision should be ready at this moment");
4459     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4460       if (Ptr == Store->getValueOperand())
4461         return WideningDecision == CM_Scalarize;
4462     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4463            "Ptr is neither a value or pointer operand");
4464     return WideningDecision != CM_GatherScatter;
4465   };
4466 
4467   // A helper that returns true if the given value is a bitcast or
4468   // getelementptr instruction contained in the loop.
4469   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4470     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4471             isa<GetElementPtrInst>(V)) &&
4472            !TheLoop->isLoopInvariant(V);
4473   };
4474 
4475   // A helper that evaluates a memory access's use of a pointer. If the use
4476   // will be a scalar use, and the pointer is only used by memory accesses, we
4477   // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4478   // PossibleNonScalarPtrs.
4479   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4480     // We only care about bitcast and getelementptr instructions contained in
4481     // the loop.
4482     if (!isLoopVaryingBitCastOrGEP(Ptr))
4483       return;
4484 
4485     // If the pointer has already been identified as scalar (e.g., if it was
4486     // also identified as uniform), there's nothing to do.
4487     auto *I = cast<Instruction>(Ptr);
4488     if (Worklist.count(I))
4489       return;
4490 
4491     // If the use of the pointer will be a scalar use, and all users of the
4492     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4493     // place the pointer in PossibleNonScalarPtrs.
4494     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4495           return isa<LoadInst>(U) || isa<StoreInst>(U);
4496         }))
4497       ScalarPtrs.insert(I);
4498     else
4499       PossibleNonScalarPtrs.insert(I);
4500   };
4501 
4502   // We seed the scalars analysis with three classes of instructions: (1)
4503   // instructions marked uniform-after-vectorization, (2) bitcast and
4504   // getelementptr instructions used by memory accesses requiring a scalar use,
4505   // and (3) pointer induction variables and their update instructions (we
4506   // currently only scalarize these).
4507   //
4508   // (1) Add to the worklist all instructions that have been identified as
4509   // uniform-after-vectorization.
4510   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4511 
4512   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4513   // memory accesses requiring a scalar use. The pointer operands of loads and
4514   // stores will be scalar as long as the memory accesses is not a gather or
4515   // scatter operation. The value operand of a store will remain scalar if the
4516   // store is scalarized.
4517   for (auto *BB : TheLoop->blocks())
4518     for (auto &I : *BB) {
4519       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4520         evaluatePtrUse(Load, Load->getPointerOperand());
4521       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4522         evaluatePtrUse(Store, Store->getPointerOperand());
4523         evaluatePtrUse(Store, Store->getValueOperand());
4524       }
4525     }
4526   for (auto *I : ScalarPtrs)
4527     if (PossibleNonScalarPtrs.find(I) == PossibleNonScalarPtrs.end()) {
4528       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4529       Worklist.insert(I);
4530     }
4531 
4532   // (3) Add to the worklist all pointer induction variables and their update
4533   // instructions.
4534   //
4535   // TODO: Once we are able to vectorize pointer induction variables we should
4536   //       no longer insert them into the worklist here.
4537   auto *Latch = TheLoop->getLoopLatch();
4538   for (auto &Induction : Legal->getInductionVars()) {
4539     auto *Ind = Induction.first;
4540     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4541     if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
4542       continue;
4543     Worklist.insert(Ind);
4544     Worklist.insert(IndUpdate);
4545     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4546     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4547                       << "\n");
4548   }
4549 
4550   // Insert the forced scalars.
4551   // FIXME: Currently widenPHIInstruction() often creates a dead vector
4552   // induction variable when the PHI user is scalarized.
4553   auto ForcedScalar = ForcedScalars.find(VF);
4554   if (ForcedScalar != ForcedScalars.end())
4555     for (auto *I : ForcedScalar->second)
4556       Worklist.insert(I);
4557 
4558   // Expand the worklist by looking through any bitcasts and getelementptr
4559   // instructions we've already identified as scalar. This is similar to the
4560   // expansion step in collectLoopUniforms(); however, here we're only
4561   // expanding to include additional bitcasts and getelementptr instructions.
4562   unsigned Idx = 0;
4563   while (Idx != Worklist.size()) {
4564     Instruction *Dst = Worklist[Idx++];
4565     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4566       continue;
4567     auto *Src = cast<Instruction>(Dst->getOperand(0));
4568     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4569           auto *J = cast<Instruction>(U);
4570           return !TheLoop->contains(J) || Worklist.count(J) ||
4571                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4572                   isScalarUse(J, Src));
4573         })) {
4574       Worklist.insert(Src);
4575       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4576     }
4577   }
4578 
4579   // An induction variable will remain scalar if all users of the induction
4580   // variable and induction variable update remain scalar.
4581   for (auto &Induction : Legal->getInductionVars()) {
4582     auto *Ind = Induction.first;
4583     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4584 
4585     // We already considered pointer induction variables, so there's no reason
4586     // to look at their users again.
4587     //
4588     // TODO: Once we are able to vectorize pointer induction variables we
4589     //       should no longer skip over them here.
4590     if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
4591       continue;
4592 
4593     // Determine if all users of the induction variable are scalar after
4594     // vectorization.
4595     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4596       auto *I = cast<Instruction>(U);
4597       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
4598     });
4599     if (!ScalarInd)
4600       continue;
4601 
4602     // Determine if all users of the induction variable update instruction are
4603     // scalar after vectorization.
4604     auto ScalarIndUpdate =
4605         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4606           auto *I = cast<Instruction>(U);
4607           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
4608         });
4609     if (!ScalarIndUpdate)
4610       continue;
4611 
4612     // The induction variable and its update instruction will remain scalar.
4613     Worklist.insert(Ind);
4614     Worklist.insert(IndUpdate);
4615     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4616     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4617                       << "\n");
4618   }
4619 
4620   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4621 }
4622 
4623 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) {
4624   if (!blockNeedsPredication(I->getParent()))
4625     return false;
4626   switch(I->getOpcode()) {
4627   default:
4628     break;
4629   case Instruction::Load:
4630   case Instruction::Store: {
4631     if (!Legal->isMaskRequired(I))
4632       return false;
4633     auto *Ptr = getLoadStorePointerOperand(I);
4634     auto *Ty = getMemInstValueType(I);
4635     // We have already decided how to vectorize this instruction, get that
4636     // result.
4637     if (VF > 1) {
4638       InstWidening WideningDecision = getWideningDecision(I, VF);
4639       assert(WideningDecision != CM_Unknown &&
4640              "Widening decision should be ready at this moment");
4641       return WideningDecision == CM_Scalarize;
4642     }
4643     const MaybeAlign Alignment = getLoadStoreAlignment(I);
4644     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4645                                 isLegalMaskedGather(Ty, Alignment))
4646                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4647                                 isLegalMaskedScatter(Ty, Alignment));
4648   }
4649   case Instruction::UDiv:
4650   case Instruction::SDiv:
4651   case Instruction::SRem:
4652   case Instruction::URem:
4653     return mayDivideByZero(*I);
4654   }
4655   return false;
4656 }
4657 
4658 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I,
4659                                                                unsigned VF) {
4660   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4661   assert(getWideningDecision(I, VF) == CM_Unknown &&
4662          "Decision should not be set yet.");
4663   auto *Group = getInterleavedAccessGroup(I);
4664   assert(Group && "Must have a group.");
4665 
4666   // If the instruction's allocated size doesn't equal it's type size, it
4667   // requires padding and will be scalarized.
4668   auto &DL = I->getModule()->getDataLayout();
4669   auto *ScalarTy = getMemInstValueType(I);
4670   if (hasIrregularType(ScalarTy, DL, VF))
4671     return false;
4672 
4673   // Check if masking is required.
4674   // A Group may need masking for one of two reasons: it resides in a block that
4675   // needs predication, or it was decided to use masking to deal with gaps.
4676   bool PredicatedAccessRequiresMasking =
4677       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
4678   bool AccessWithGapsRequiresMasking =
4679       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
4680   if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking)
4681     return true;
4682 
4683   // If masked interleaving is required, we expect that the user/target had
4684   // enabled it, because otherwise it either wouldn't have been created or
4685   // it should have been invalidated by the CostModel.
4686   assert(useMaskedInterleavedAccesses(TTI) &&
4687          "Masked interleave-groups for predicated accesses are not enabled.");
4688 
4689   auto *Ty = getMemInstValueType(I);
4690   const MaybeAlign Alignment = getLoadStoreAlignment(I);
4691   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4692                           : TTI.isLegalMaskedStore(Ty, Alignment);
4693 }
4694 
4695 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I,
4696                                                                unsigned VF) {
4697   // Get and ensure we have a valid memory instruction.
4698   LoadInst *LI = dyn_cast<LoadInst>(I);
4699   StoreInst *SI = dyn_cast<StoreInst>(I);
4700   assert((LI || SI) && "Invalid memory instruction");
4701 
4702   auto *Ptr = getLoadStorePointerOperand(I);
4703 
4704   // In order to be widened, the pointer should be consecutive, first of all.
4705   if (!Legal->isConsecutivePtr(Ptr))
4706     return false;
4707 
4708   // If the instruction is a store located in a predicated block, it will be
4709   // scalarized.
4710   if (isScalarWithPredication(I))
4711     return false;
4712 
4713   // If the instruction's allocated size doesn't equal it's type size, it
4714   // requires padding and will be scalarized.
4715   auto &DL = I->getModule()->getDataLayout();
4716   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
4717   if (hasIrregularType(ScalarTy, DL, VF))
4718     return false;
4719 
4720   return true;
4721 }
4722 
4723 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
4724   // We should not collect Uniforms more than once per VF. Right now,
4725   // this function is called from collectUniformsAndScalars(), which
4726   // already does this check. Collecting Uniforms for VF=1 does not make any
4727   // sense.
4728 
4729   assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() &&
4730          "This function should not be visited twice for the same VF");
4731 
4732   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4733   // not analyze again.  Uniforms.count(VF) will return 1.
4734   Uniforms[VF].clear();
4735 
4736   // We now know that the loop is vectorizable!
4737   // Collect instructions inside the loop that will remain uniform after
4738   // vectorization.
4739 
4740   // Global values, params and instructions outside of current loop are out of
4741   // scope.
4742   auto isOutOfScope = [&](Value *V) -> bool {
4743     Instruction *I = dyn_cast<Instruction>(V);
4744     return (!I || !TheLoop->contains(I));
4745   };
4746 
4747   SetVector<Instruction *> Worklist;
4748   BasicBlock *Latch = TheLoop->getLoopLatch();
4749 
4750   // Instructions that are scalar with predication must not be considered
4751   // uniform after vectorization, because that would create an erroneous
4752   // replicating region where only a single instance out of VF should be formed.
4753   // TODO: optimize such seldom cases if found important, see PR40816.
4754   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4755     if (isScalarWithPredication(I, VF)) {
4756       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4757                         << *I << "\n");
4758       return;
4759     }
4760     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4761     Worklist.insert(I);
4762   };
4763 
4764   // Start with the conditional branch. If the branch condition is an
4765   // instruction contained in the loop that is only used by the branch, it is
4766   // uniform.
4767   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4768   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4769     addToWorklistIfAllowed(Cmp);
4770 
4771   // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
4772   // are pointers that are treated like consecutive pointers during
4773   // vectorization. The pointer operands of interleaved accesses are an
4774   // example.
4775   SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
4776 
4777   // Holds pointer operands of instructions that are possibly non-uniform.
4778   SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
4779 
4780   auto isUniformDecision = [&](Instruction *I, unsigned VF) {
4781     InstWidening WideningDecision = getWideningDecision(I, VF);
4782     assert(WideningDecision != CM_Unknown &&
4783            "Widening decision should be ready at this moment");
4784 
4785     return (WideningDecision == CM_Widen ||
4786             WideningDecision == CM_Widen_Reverse ||
4787             WideningDecision == CM_Interleave);
4788   };
4789   // Iterate over the instructions in the loop, and collect all
4790   // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
4791   // that a consecutive-like pointer operand will be scalarized, we collect it
4792   // in PossibleNonUniformPtrs instead. We use two sets here because a single
4793   // getelementptr instruction can be used by both vectorized and scalarized
4794   // memory instructions. For example, if a loop loads and stores from the same
4795   // location, but the store is conditional, the store will be scalarized, and
4796   // the getelementptr won't remain uniform.
4797   for (auto *BB : TheLoop->blocks())
4798     for (auto &I : *BB) {
4799       // If there's no pointer operand, there's nothing to do.
4800       auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
4801       if (!Ptr)
4802         continue;
4803 
4804       // True if all users of Ptr are memory accesses that have Ptr as their
4805       // pointer operand.
4806       auto UsersAreMemAccesses =
4807           llvm::all_of(Ptr->users(), [&](User *U) -> bool {
4808             return getLoadStorePointerOperand(U) == Ptr;
4809           });
4810 
4811       // Ensure the memory instruction will not be scalarized or used by
4812       // gather/scatter, making its pointer operand non-uniform. If the pointer
4813       // operand is used by any instruction other than a memory access, we
4814       // conservatively assume the pointer operand may be non-uniform.
4815       if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
4816         PossibleNonUniformPtrs.insert(Ptr);
4817 
4818       // If the memory instruction will be vectorized and its pointer operand
4819       // is consecutive-like, or interleaving - the pointer operand should
4820       // remain uniform.
4821       else
4822         ConsecutiveLikePtrs.insert(Ptr);
4823     }
4824 
4825   // Add to the Worklist all consecutive and consecutive-like pointers that
4826   // aren't also identified as possibly non-uniform.
4827   for (auto *V : ConsecutiveLikePtrs)
4828     if (PossibleNonUniformPtrs.find(V) == PossibleNonUniformPtrs.end())
4829       addToWorklistIfAllowed(V);
4830 
4831   // Expand Worklist in topological order: whenever a new instruction
4832   // is added , its users should be already inside Worklist.  It ensures
4833   // a uniform instruction will only be used by uniform instructions.
4834   unsigned idx = 0;
4835   while (idx != Worklist.size()) {
4836     Instruction *I = Worklist[idx++];
4837 
4838     for (auto OV : I->operand_values()) {
4839       // isOutOfScope operands cannot be uniform instructions.
4840       if (isOutOfScope(OV))
4841         continue;
4842       // First order recurrence Phi's should typically be considered
4843       // non-uniform.
4844       auto *OP = dyn_cast<PHINode>(OV);
4845       if (OP && Legal->isFirstOrderRecurrence(OP))
4846         continue;
4847       // If all the users of the operand are uniform, then add the
4848       // operand into the uniform worklist.
4849       auto *OI = cast<Instruction>(OV);
4850       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4851             auto *J = cast<Instruction>(U);
4852             return Worklist.count(J) ||
4853                    (OI == getLoadStorePointerOperand(J) &&
4854                     isUniformDecision(J, VF));
4855           }))
4856         addToWorklistIfAllowed(OI);
4857     }
4858   }
4859 
4860   // Returns true if Ptr is the pointer operand of a memory access instruction
4861   // I, and I is known to not require scalarization.
4862   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4863     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4864   };
4865 
4866   // For an instruction to be added into Worklist above, all its users inside
4867   // the loop should also be in Worklist. However, this condition cannot be
4868   // true for phi nodes that form a cyclic dependence. We must process phi
4869   // nodes separately. An induction variable will remain uniform if all users
4870   // of the induction variable and induction variable update remain uniform.
4871   // The code below handles both pointer and non-pointer induction variables.
4872   for (auto &Induction : Legal->getInductionVars()) {
4873     auto *Ind = Induction.first;
4874     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4875 
4876     // Determine if all users of the induction variable are uniform after
4877     // vectorization.
4878     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4879       auto *I = cast<Instruction>(U);
4880       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4881              isVectorizedMemAccessUse(I, Ind);
4882     });
4883     if (!UniformInd)
4884       continue;
4885 
4886     // Determine if all users of the induction variable update instruction are
4887     // uniform after vectorization.
4888     auto UniformIndUpdate =
4889         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4890           auto *I = cast<Instruction>(U);
4891           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4892                  isVectorizedMemAccessUse(I, IndUpdate);
4893         });
4894     if (!UniformIndUpdate)
4895       continue;
4896 
4897     // The induction variable and its update instruction will remain uniform.
4898     addToWorklistIfAllowed(Ind);
4899     addToWorklistIfAllowed(IndUpdate);
4900   }
4901 
4902   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4903 }
4904 
4905 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4906   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4907 
4908   if (Legal->getRuntimePointerChecking()->Need) {
4909     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4910         "runtime pointer checks needed. Enable vectorization of this "
4911         "loop with '#pragma clang loop vectorize(enable)' when "
4912         "compiling with -Os/-Oz",
4913         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4914     return true;
4915   }
4916 
4917   if (!PSE.getUnionPredicate().getPredicates().empty()) {
4918     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4919         "runtime SCEV checks needed. Enable vectorization of this "
4920         "loop with '#pragma clang loop vectorize(enable)' when "
4921         "compiling with -Os/-Oz",
4922         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4923     return true;
4924   }
4925 
4926   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4927   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4928     reportVectorizationFailure("Runtime stride check is required with -Os/-Oz",
4929         "runtime stride == 1 checks needed. Enable vectorization of "
4930         "this loop with '#pragma clang loop vectorize(enable)' when "
4931         "compiling with -Os/-Oz",
4932         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4933     return true;
4934   }
4935 
4936   return false;
4937 }
4938 
4939 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF() {
4940   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
4941     // TODO: It may by useful to do since it's still likely to be dynamically
4942     // uniform if the target can skip.
4943     reportVectorizationFailure(
4944         "Not inserting runtime ptr check for divergent target",
4945         "runtime pointer checks needed. Not enabled for divergent target",
4946         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
4947     return None;
4948   }
4949 
4950   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
4951   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4952   if (TC == 1) {
4953     reportVectorizationFailure("Single iteration (non) loop",
4954         "loop trip count is one, irrelevant for vectorization",
4955         "SingleIterationLoop", ORE, TheLoop);
4956     return None;
4957   }
4958 
4959   switch (ScalarEpilogueStatus) {
4960   case CM_ScalarEpilogueAllowed:
4961     return computeFeasibleMaxVF(TC);
4962   case CM_ScalarEpilogueNotNeededUsePredicate:
4963     LLVM_DEBUG(
4964         dbgs() << "LV: vector predicate hint/switch found.\n"
4965                << "LV: Not allowing scalar epilogue, creating predicated "
4966                << "vector loop.\n");
4967     break;
4968   case CM_ScalarEpilogueNotAllowedLowTripLoop:
4969     // fallthrough as a special case of OptForSize
4970   case CM_ScalarEpilogueNotAllowedOptSize:
4971     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
4972       LLVM_DEBUG(
4973           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
4974     else
4975       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
4976                         << "count.\n");
4977 
4978     // Bail if runtime checks are required, which are not good when optimising
4979     // for size.
4980     if (runtimeChecksRequired())
4981       return None;
4982     break;
4983   }
4984 
4985   // Now try the tail folding
4986 
4987   // Invalidate interleave groups that require an epilogue if we can't mask
4988   // the interleave-group.
4989   if (!useMaskedInterleavedAccesses(TTI)) {
4990     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
4991            "No decisions should have been taken at this point");
4992     // Note: There is no need to invalidate any cost modeling decisions here, as
4993     // non where taken so far.
4994     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
4995   }
4996 
4997   unsigned MaxVF = computeFeasibleMaxVF(TC);
4998   if (TC > 0 && TC % MaxVF == 0) {
4999     // Accept MaxVF if we do not have a tail.
5000     LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5001     return MaxVF;
5002   }
5003 
5004   // If we don't know the precise trip count, or if the trip count that we
5005   // found modulo the vectorization factor is not zero, try to fold the tail
5006   // by masking.
5007   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5008   if (Legal->prepareToFoldTailByMasking()) {
5009     FoldTailByMasking = true;
5010     return MaxVF;
5011   }
5012 
5013   if (TC == 0) {
5014     reportVectorizationFailure(
5015         "Unable to calculate the loop count due to complex control flow",
5016         "unable to calculate the loop count due to complex control flow",
5017         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5018     return None;
5019   }
5020 
5021   reportVectorizationFailure(
5022       "Cannot optimize for size and vectorize at the same time.",
5023       "cannot optimize for size and vectorize at the same time. "
5024       "Enable vectorization of this loop with '#pragma clang loop "
5025       "vectorize(enable)' when compiling with -Os/-Oz",
5026       "NoTailLoopWithOptForSize", ORE, TheLoop);
5027   return None;
5028 }
5029 
5030 unsigned
5031 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) {
5032   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5033   unsigned SmallestType, WidestType;
5034   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5035   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
5036 
5037   // Get the maximum safe dependence distance in bits computed by LAA.
5038   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5039   // the memory accesses that is most restrictive (involved in the smallest
5040   // dependence distance).
5041   unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
5042 
5043   WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
5044 
5045   unsigned MaxVectorSize = WidestRegister / WidestType;
5046 
5047   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5048                     << " / " << WidestType << " bits.\n");
5049   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5050                     << WidestRegister << " bits.\n");
5051 
5052   assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements"
5053                                  " into one vector!");
5054   if (MaxVectorSize == 0) {
5055     LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
5056     MaxVectorSize = 1;
5057     return MaxVectorSize;
5058   } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
5059              isPowerOf2_32(ConstTripCount)) {
5060     // We need to clamp the VF to be the ConstTripCount. There is no point in
5061     // choosing a higher viable VF as done in the loop below.
5062     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5063                       << ConstTripCount << "\n");
5064     MaxVectorSize = ConstTripCount;
5065     return MaxVectorSize;
5066   }
5067 
5068   unsigned MaxVF = MaxVectorSize;
5069   if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) ||
5070       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5071     // Collect all viable vectorization factors larger than the default MaxVF
5072     // (i.e. MaxVectorSize).
5073     SmallVector<unsigned, 8> VFs;
5074     unsigned NewMaxVectorSize = WidestRegister / SmallestType;
5075     for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
5076       VFs.push_back(VS);
5077 
5078     // For each VF calculate its register usage.
5079     auto RUs = calculateRegisterUsage(VFs);
5080 
5081     // Select the largest VF which doesn't require more registers than existing
5082     // ones.
5083     for (int i = RUs.size() - 1; i >= 0; --i) {
5084       bool Selected = true;
5085       for (auto& pair : RUs[i].MaxLocalUsers) {
5086         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5087         if (pair.second > TargetNumRegisters)
5088           Selected = false;
5089       }
5090       if (Selected) {
5091         MaxVF = VFs[i];
5092         break;
5093       }
5094     }
5095     if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) {
5096       if (MaxVF < MinVF) {
5097         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5098                           << ") with target's minimum: " << MinVF << '\n');
5099         MaxVF = MinVF;
5100       }
5101     }
5102   }
5103   return MaxVF;
5104 }
5105 
5106 VectorizationFactor
5107 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
5108   float Cost = expectedCost(1).first;
5109   const float ScalarCost = Cost;
5110   unsigned Width = 1;
5111   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5112 
5113   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5114   if (ForceVectorization && MaxVF > 1) {
5115     // Ignore scalar width, because the user explicitly wants vectorization.
5116     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5117     // evaluation.
5118     Cost = std::numeric_limits<float>::max();
5119   }
5120 
5121   for (unsigned i = 2; i <= MaxVF; i *= 2) {
5122     // Notice that the vector loop needs to be executed less times, so
5123     // we need to divide the cost of the vector loops by the width of
5124     // the vector elements.
5125     VectorizationCostTy C = expectedCost(i);
5126     float VectorCost = C.first / (float)i;
5127     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5128                       << " costs: " << (int)VectorCost << ".\n");
5129     if (!C.second && !ForceVectorization) {
5130       LLVM_DEBUG(
5131           dbgs() << "LV: Not considering vector loop of width " << i
5132                  << " because it will not generate any vector instructions.\n");
5133       continue;
5134     }
5135     if (VectorCost < Cost) {
5136       Cost = VectorCost;
5137       Width = i;
5138     }
5139   }
5140 
5141   if (!EnableCondStoresVectorization && NumPredStores) {
5142     reportVectorizationFailure("There are conditional stores.",
5143         "store that is conditionally executed prevents vectorization",
5144         "ConditionalStore", ORE, TheLoop);
5145     Width = 1;
5146     Cost = ScalarCost;
5147   }
5148 
5149   LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5150              << "LV: Vectorization seems to be not beneficial, "
5151              << "but was forced by a user.\n");
5152   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5153   VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
5154   return Factor;
5155 }
5156 
5157 std::pair<unsigned, unsigned>
5158 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5159   unsigned MinWidth = -1U;
5160   unsigned MaxWidth = 8;
5161   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5162 
5163   // For each block.
5164   for (BasicBlock *BB : TheLoop->blocks()) {
5165     // For each instruction in the loop.
5166     for (Instruction &I : BB->instructionsWithoutDebug()) {
5167       Type *T = I.getType();
5168 
5169       // Skip ignored values.
5170       if (ValuesToIgnore.find(&I) != ValuesToIgnore.end())
5171         continue;
5172 
5173       // Only examine Loads, Stores and PHINodes.
5174       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5175         continue;
5176 
5177       // Examine PHI nodes that are reduction variables. Update the type to
5178       // account for the recurrence type.
5179       if (auto *PN = dyn_cast<PHINode>(&I)) {
5180         if (!Legal->isReductionVariable(PN))
5181           continue;
5182         RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN];
5183         T = RdxDesc.getRecurrenceType();
5184       }
5185 
5186       // Examine the stored values.
5187       if (auto *ST = dyn_cast<StoreInst>(&I))
5188         T = ST->getValueOperand()->getType();
5189 
5190       // Ignore loaded pointer types and stored pointer types that are not
5191       // vectorizable.
5192       //
5193       // FIXME: The check here attempts to predict whether a load or store will
5194       //        be vectorized. We only know this for certain after a VF has
5195       //        been selected. Here, we assume that if an access can be
5196       //        vectorized, it will be. We should also look at extending this
5197       //        optimization to non-pointer types.
5198       //
5199       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
5200           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
5201         continue;
5202 
5203       MinWidth = std::min(MinWidth,
5204                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5205       MaxWidth = std::max(MaxWidth,
5206                           (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5207     }
5208   }
5209 
5210   return {MinWidth, MaxWidth};
5211 }
5212 
5213 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF,
5214                                                            unsigned LoopCost) {
5215   // -- The interleave heuristics --
5216   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5217   // There are many micro-architectural considerations that we can't predict
5218   // at this level. For example, frontend pressure (on decode or fetch) due to
5219   // code size, or the number and capabilities of the execution ports.
5220   //
5221   // We use the following heuristics to select the interleave count:
5222   // 1. If the code has reductions, then we interleave to break the cross
5223   // iteration dependency.
5224   // 2. If the loop is really small, then we interleave to reduce the loop
5225   // overhead.
5226   // 3. We don't interleave if we think that we will spill registers to memory
5227   // due to the increased register pressure.
5228 
5229   if (!isScalarEpilogueAllowed())
5230     return 1;
5231 
5232   // We used the distance for the interleave count.
5233   if (Legal->getMaxSafeDepDistBytes() != -1U)
5234     return 1;
5235 
5236   // Do not interleave loops with a relatively small known or estimated trip
5237   // count.
5238   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5239   if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold)
5240     return 1;
5241 
5242   RegisterUsage R = calculateRegisterUsage({VF})[0];
5243   // We divide by these constants so assume that we have at least one
5244   // instruction that uses at least one register.
5245   for (auto& pair : R.MaxLocalUsers) {
5246     pair.second = std::max(pair.second, 1U);
5247   }
5248 
5249   // We calculate the interleave count using the following formula.
5250   // Subtract the number of loop invariants from the number of available
5251   // registers. These registers are used by all of the interleaved instances.
5252   // Next, divide the remaining registers by the number of registers that is
5253   // required by the loop, in order to estimate how many parallel instances
5254   // fit without causing spills. All of this is rounded down if necessary to be
5255   // a power of two. We want power of two interleave count to simplify any
5256   // addressing operations or alignment considerations.
5257   // We also want power of two interleave counts to ensure that the induction
5258   // variable of the vector loop wraps to zero, when tail is folded by masking;
5259   // this currently happens when OptForSize, in which case IC is set to 1 above.
5260   unsigned IC = UINT_MAX;
5261 
5262   for (auto& pair : R.MaxLocalUsers) {
5263     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5264     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5265                       << " registers of "
5266                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5267     if (VF == 1) {
5268       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5269         TargetNumRegisters = ForceTargetNumScalarRegs;
5270     } else {
5271       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5272         TargetNumRegisters = ForceTargetNumVectorRegs;
5273     }
5274     unsigned MaxLocalUsers = pair.second;
5275     unsigned LoopInvariantRegs = 0;
5276     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5277       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5278 
5279     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5280     // Don't count the induction variable as interleaved.
5281     if (EnableIndVarRegisterHeur) {
5282       TmpIC =
5283           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5284                         std::max(1U, (MaxLocalUsers - 1)));
5285     }
5286 
5287     IC = std::min(IC, TmpIC);
5288   }
5289 
5290   // Clamp the interleave ranges to reasonable counts.
5291   unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
5292 
5293   // Check if the user has overridden the max.
5294   if (VF == 1) {
5295     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5296       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5297   } else {
5298     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5299       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5300   }
5301 
5302   // If trip count is known or estimated compile time constant, limit the
5303   // interleave count to be less than the trip count divided by VF.
5304   if (BestKnownTC) {
5305     MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount);
5306   }
5307 
5308   // If we did not calculate the cost for VF (because the user selected the VF)
5309   // then we calculate the cost of VF here.
5310   if (LoopCost == 0)
5311     LoopCost = expectedCost(VF).first;
5312 
5313   assert(LoopCost && "Non-zero loop cost expected");
5314 
5315   // Clamp the calculated IC to be between the 1 and the max interleave count
5316   // that the target and trip count allows.
5317   if (IC > MaxInterleaveCount)
5318     IC = MaxInterleaveCount;
5319   else if (IC < 1)
5320     IC = 1;
5321 
5322   // Interleave if we vectorized this loop and there is a reduction that could
5323   // benefit from interleaving.
5324   if (VF > 1 && !Legal->getReductionVars().empty()) {
5325     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5326     return IC;
5327   }
5328 
5329   // Note that if we've already vectorized the loop we will have done the
5330   // runtime check and so interleaving won't require further checks.
5331   bool InterleavingRequiresRuntimePointerCheck =
5332       (VF == 1 && Legal->getRuntimePointerChecking()->Need);
5333 
5334   // We want to interleave small loops in order to reduce the loop overhead and
5335   // potentially expose ILP opportunities.
5336   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
5337   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
5338     // We assume that the cost overhead is 1 and we use the cost model
5339     // to estimate the cost of the loop and interleave until the cost of the
5340     // loop overhead is about 5% of the cost of the loop.
5341     unsigned SmallIC =
5342         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5343 
5344     // Interleave until store/load ports (estimated by max interleave count) are
5345     // saturated.
5346     unsigned NumStores = Legal->getNumStores();
5347     unsigned NumLoads = Legal->getNumLoads();
5348     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5349     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5350 
5351     // If we have a scalar reduction (vector reductions are already dealt with
5352     // by this point), we can increase the critical path length if the loop
5353     // we're interleaving is inside another loop. Limit, by default to 2, so the
5354     // critical path only gets increased by one reduction operation.
5355     if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) {
5356       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5357       SmallIC = std::min(SmallIC, F);
5358       StoresIC = std::min(StoresIC, F);
5359       LoadsIC = std::min(LoadsIC, F);
5360     }
5361 
5362     if (EnableLoadStoreRuntimeInterleave &&
5363         std::max(StoresIC, LoadsIC) > SmallIC) {
5364       LLVM_DEBUG(
5365           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5366       return std::max(StoresIC, LoadsIC);
5367     }
5368 
5369     LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5370     return SmallIC;
5371   }
5372 
5373   // Interleave if this is a large loop (small loops are already dealt with by
5374   // this point) that could benefit from interleaving.
5375   bool HasReductions = !Legal->getReductionVars().empty();
5376   if (TTI.enableAggressiveInterleaving(HasReductions)) {
5377     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5378     return IC;
5379   }
5380 
5381   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5382   return 1;
5383 }
5384 
5385 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5386 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
5387   // This function calculates the register usage by measuring the highest number
5388   // of values that are alive at a single location. Obviously, this is a very
5389   // rough estimation. We scan the loop in a topological order in order and
5390   // assign a number to each instruction. We use RPO to ensure that defs are
5391   // met before their users. We assume that each instruction that has in-loop
5392   // users starts an interval. We record every time that an in-loop value is
5393   // used, so we have a list of the first and last occurrences of each
5394   // instruction. Next, we transpose this data structure into a multi map that
5395   // holds the list of intervals that *end* at a specific location. This multi
5396   // map allows us to perform a linear search. We scan the instructions linearly
5397   // and record each time that a new interval starts, by placing it in a set.
5398   // If we find this value in the multi-map then we remove it from the set.
5399   // The max register usage is the maximum size of the set.
5400   // We also search for instructions that are defined outside the loop, but are
5401   // used inside the loop. We need this number separately from the max-interval
5402   // usage number because when we unroll, loop-invariant values do not take
5403   // more register.
5404   LoopBlocksDFS DFS(TheLoop);
5405   DFS.perform(LI);
5406 
5407   RegisterUsage RU;
5408 
5409   // Each 'key' in the map opens a new interval. The values
5410   // of the map are the index of the 'last seen' usage of the
5411   // instruction that is the key.
5412   using IntervalMap = DenseMap<Instruction *, unsigned>;
5413 
5414   // Maps instruction to its index.
5415   SmallVector<Instruction *, 64> IdxToInstr;
5416   // Marks the end of each interval.
5417   IntervalMap EndPoint;
5418   // Saves the list of instruction indices that are used in the loop.
5419   SmallPtrSet<Instruction *, 8> Ends;
5420   // Saves the list of values that are used in the loop but are
5421   // defined outside the loop, such as arguments and constants.
5422   SmallPtrSet<Value *, 8> LoopInvariants;
5423 
5424   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5425     for (Instruction &I : BB->instructionsWithoutDebug()) {
5426       IdxToInstr.push_back(&I);
5427 
5428       // Save the end location of each USE.
5429       for (Value *U : I.operands()) {
5430         auto *Instr = dyn_cast<Instruction>(U);
5431 
5432         // Ignore non-instruction values such as arguments, constants, etc.
5433         if (!Instr)
5434           continue;
5435 
5436         // If this instruction is outside the loop then record it and continue.
5437         if (!TheLoop->contains(Instr)) {
5438           LoopInvariants.insert(Instr);
5439           continue;
5440         }
5441 
5442         // Overwrite previous end points.
5443         EndPoint[Instr] = IdxToInstr.size();
5444         Ends.insert(Instr);
5445       }
5446     }
5447   }
5448 
5449   // Saves the list of intervals that end with the index in 'key'.
5450   using InstrList = SmallVector<Instruction *, 2>;
5451   DenseMap<unsigned, InstrList> TransposeEnds;
5452 
5453   // Transpose the EndPoints to a list of values that end at each index.
5454   for (auto &Interval : EndPoint)
5455     TransposeEnds[Interval.second].push_back(Interval.first);
5456 
5457   SmallPtrSet<Instruction *, 8> OpenIntervals;
5458 
5459   // Get the size of the widest register.
5460   unsigned MaxSafeDepDist = -1U;
5461   if (Legal->getMaxSafeDepDistBytes() != -1U)
5462     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5463   unsigned WidestRegister =
5464       std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
5465   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5466 
5467   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5468   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5469 
5470   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5471 
5472   // A lambda that gets the register usage for the given type and VF.
5473   auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
5474     if (Ty->isTokenTy())
5475       return 0U;
5476     unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
5477     return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
5478   };
5479 
5480   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5481     Instruction *I = IdxToInstr[i];
5482 
5483     // Remove all of the instructions that end at this location.
5484     InstrList &List = TransposeEnds[i];
5485     for (Instruction *ToRemove : List)
5486       OpenIntervals.erase(ToRemove);
5487 
5488     // Ignore instructions that are never used within the loop.
5489     if (Ends.find(I) == Ends.end())
5490       continue;
5491 
5492     // Skip ignored values.
5493     if (ValuesToIgnore.find(I) != ValuesToIgnore.end())
5494       continue;
5495 
5496     // For each VF find the maximum usage of registers.
5497     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5498       // Count the number of live intervals.
5499       SmallMapVector<unsigned, unsigned, 4> RegUsage;
5500 
5501       if (VFs[j] == 1) {
5502         for (auto Inst : OpenIntervals) {
5503           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5504           if (RegUsage.find(ClassID) == RegUsage.end())
5505             RegUsage[ClassID] = 1;
5506           else
5507             RegUsage[ClassID] += 1;
5508         }
5509       } else {
5510         collectUniformsAndScalars(VFs[j]);
5511         for (auto Inst : OpenIntervals) {
5512           // Skip ignored values for VF > 1.
5513           if (VecValuesToIgnore.find(Inst) != VecValuesToIgnore.end())
5514             continue;
5515           if (isScalarAfterVectorization(Inst, VFs[j])) {
5516             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5517             if (RegUsage.find(ClassID) == RegUsage.end())
5518               RegUsage[ClassID] = 1;
5519             else
5520               RegUsage[ClassID] += 1;
5521           } else {
5522             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
5523             if (RegUsage.find(ClassID) == RegUsage.end())
5524               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
5525             else
5526               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
5527           }
5528         }
5529       }
5530 
5531       for (auto& pair : RegUsage) {
5532         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
5533           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
5534         else
5535           MaxUsages[j][pair.first] = pair.second;
5536       }
5537     }
5538 
5539     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
5540                       << OpenIntervals.size() << '\n');
5541 
5542     // Add the current instruction to the list of open intervals.
5543     OpenIntervals.insert(I);
5544   }
5545 
5546   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
5547     SmallMapVector<unsigned, unsigned, 4> Invariant;
5548 
5549     for (auto Inst : LoopInvariants) {
5550       unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
5551       unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType());
5552       if (Invariant.find(ClassID) == Invariant.end())
5553         Invariant[ClassID] = Usage;
5554       else
5555         Invariant[ClassID] += Usage;
5556     }
5557 
5558     LLVM_DEBUG({
5559       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
5560       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
5561              << " item\n";
5562       for (const auto &pair : MaxUsages[i]) {
5563         dbgs() << "LV(REG): RegisterClass: "
5564                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5565                << " registers\n";
5566       }
5567       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
5568              << " item\n";
5569       for (const auto &pair : Invariant) {
5570         dbgs() << "LV(REG): RegisterClass: "
5571                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
5572                << " registers\n";
5573       }
5574     });
5575 
5576     RU.LoopInvariantRegs = Invariant;
5577     RU.MaxLocalUsers = MaxUsages[i];
5578     RUs[i] = RU;
5579   }
5580 
5581   return RUs;
5582 }
5583 
5584 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
5585   // TODO: Cost model for emulated masked load/store is completely
5586   // broken. This hack guides the cost model to use an artificially
5587   // high enough value to practically disable vectorization with such
5588   // operations, except where previously deployed legality hack allowed
5589   // using very low cost values. This is to avoid regressions coming simply
5590   // from moving "masked load/store" check from legality to cost model.
5591   // Masked Load/Gather emulation was previously never allowed.
5592   // Limited number of Masked Store/Scatter emulation was allowed.
5593   assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction");
5594   return isa<LoadInst>(I) ||
5595          (isa<StoreInst>(I) &&
5596           NumPredStores > NumberOfStoresToPredicate);
5597 }
5598 
5599 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
5600   // If we aren't vectorizing the loop, or if we've already collected the
5601   // instructions to scalarize, there's nothing to do. Collection may already
5602   // have occurred if we have a user-selected VF and are now computing the
5603   // expected cost for interleaving.
5604   if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end())
5605     return;
5606 
5607   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
5608   // not profitable to scalarize any instructions, the presence of VF in the
5609   // map will indicate that we've analyzed it already.
5610   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
5611 
5612   // Find all the instructions that are scalar with predication in the loop and
5613   // determine if it would be better to not if-convert the blocks they are in.
5614   // If so, we also record the instructions to scalarize.
5615   for (BasicBlock *BB : TheLoop->blocks()) {
5616     if (!blockNeedsPredication(BB))
5617       continue;
5618     for (Instruction &I : *BB)
5619       if (isScalarWithPredication(&I)) {
5620         ScalarCostsTy ScalarCosts;
5621         // Do not apply discount logic if hacked cost is needed
5622         // for emulated masked memrefs.
5623         if (!useEmulatedMaskMemRefHack(&I) &&
5624             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
5625           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
5626         // Remember that BB will remain after vectorization.
5627         PredicatedBBsAfterVectorization.insert(BB);
5628       }
5629   }
5630 }
5631 
5632 int LoopVectorizationCostModel::computePredInstDiscount(
5633     Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
5634     unsigned VF) {
5635   assert(!isUniformAfterVectorization(PredInst, VF) &&
5636          "Instruction marked uniform-after-vectorization will be predicated");
5637 
5638   // Initialize the discount to zero, meaning that the scalar version and the
5639   // vector version cost the same.
5640   int Discount = 0;
5641 
5642   // Holds instructions to analyze. The instructions we visit are mapped in
5643   // ScalarCosts. Those instructions are the ones that would be scalarized if
5644   // we find that the scalar version costs less.
5645   SmallVector<Instruction *, 8> Worklist;
5646 
5647   // Returns true if the given instruction can be scalarized.
5648   auto canBeScalarized = [&](Instruction *I) -> bool {
5649     // We only attempt to scalarize instructions forming a single-use chain
5650     // from the original predicated block that would otherwise be vectorized.
5651     // Although not strictly necessary, we give up on instructions we know will
5652     // already be scalar to avoid traversing chains that are unlikely to be
5653     // beneficial.
5654     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
5655         isScalarAfterVectorization(I, VF))
5656       return false;
5657 
5658     // If the instruction is scalar with predication, it will be analyzed
5659     // separately. We ignore it within the context of PredInst.
5660     if (isScalarWithPredication(I))
5661       return false;
5662 
5663     // If any of the instruction's operands are uniform after vectorization,
5664     // the instruction cannot be scalarized. This prevents, for example, a
5665     // masked load from being scalarized.
5666     //
5667     // We assume we will only emit a value for lane zero of an instruction
5668     // marked uniform after vectorization, rather than VF identical values.
5669     // Thus, if we scalarize an instruction that uses a uniform, we would
5670     // create uses of values corresponding to the lanes we aren't emitting code
5671     // for. This behavior can be changed by allowing getScalarValue to clone
5672     // the lane zero values for uniforms rather than asserting.
5673     for (Use &U : I->operands())
5674       if (auto *J = dyn_cast<Instruction>(U.get()))
5675         if (isUniformAfterVectorization(J, VF))
5676           return false;
5677 
5678     // Otherwise, we can scalarize the instruction.
5679     return true;
5680   };
5681 
5682   // Compute the expected cost discount from scalarizing the entire expression
5683   // feeding the predicated instruction. We currently only consider expressions
5684   // that are single-use instruction chains.
5685   Worklist.push_back(PredInst);
5686   while (!Worklist.empty()) {
5687     Instruction *I = Worklist.pop_back_val();
5688 
5689     // If we've already analyzed the instruction, there's nothing to do.
5690     if (ScalarCosts.find(I) != ScalarCosts.end())
5691       continue;
5692 
5693     // Compute the cost of the vector instruction. Note that this cost already
5694     // includes the scalarization overhead of the predicated instruction.
5695     unsigned VectorCost = getInstructionCost(I, VF).first;
5696 
5697     // Compute the cost of the scalarized instruction. This cost is the cost of
5698     // the instruction as if it wasn't if-converted and instead remained in the
5699     // predicated block. We will scale this cost by block probability after
5700     // computing the scalarization overhead.
5701     unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
5702 
5703     // Compute the scalarization overhead of needed insertelement instructions
5704     // and phi nodes.
5705     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
5706       ScalarCost +=
5707           TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF),
5708                                        APInt::getAllOnesValue(VF), true, false);
5709       ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI);
5710     }
5711 
5712     // Compute the scalarization overhead of needed extractelement
5713     // instructions. For each of the instruction's operands, if the operand can
5714     // be scalarized, add it to the worklist; otherwise, account for the
5715     // overhead.
5716     for (Use &U : I->operands())
5717       if (auto *J = dyn_cast<Instruction>(U.get())) {
5718         assert(VectorType::isValidElementType(J->getType()) &&
5719                "Instruction has non-scalar type");
5720         if (canBeScalarized(J))
5721           Worklist.push_back(J);
5722         else if (needsExtract(J, VF))
5723           ScalarCost += TTI.getScalarizationOverhead(
5724               ToVectorTy(J->getType(), VF), APInt::getAllOnesValue(VF), false,
5725               true);
5726       }
5727 
5728     // Scale the total scalar cost by block probability.
5729     ScalarCost /= getReciprocalPredBlockProb();
5730 
5731     // Compute the discount. A non-negative discount means the vector version
5732     // of the instruction costs more, and scalarizing would be beneficial.
5733     Discount += VectorCost - ScalarCost;
5734     ScalarCosts[I] = ScalarCost;
5735   }
5736 
5737   return Discount;
5738 }
5739 
5740 LoopVectorizationCostModel::VectorizationCostTy
5741 LoopVectorizationCostModel::expectedCost(unsigned VF) {
5742   VectorizationCostTy Cost;
5743 
5744   // For each block.
5745   for (BasicBlock *BB : TheLoop->blocks()) {
5746     VectorizationCostTy BlockCost;
5747 
5748     // For each instruction in the old loop.
5749     for (Instruction &I : BB->instructionsWithoutDebug()) {
5750       // Skip ignored values.
5751       if (ValuesToIgnore.find(&I) != ValuesToIgnore.end() ||
5752           (VF > 1 && VecValuesToIgnore.find(&I) != VecValuesToIgnore.end()))
5753         continue;
5754 
5755       VectorizationCostTy C = getInstructionCost(&I, VF);
5756 
5757       // Check if we should override the cost.
5758       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5759         C.first = ForceTargetInstructionCost;
5760 
5761       BlockCost.first += C.first;
5762       BlockCost.second |= C.second;
5763       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
5764                         << " for VF " << VF << " For instruction: " << I
5765                         << '\n');
5766     }
5767 
5768     // If we are vectorizing a predicated block, it will have been
5769     // if-converted. This means that the block's instructions (aside from
5770     // stores and instructions that may divide by zero) will now be
5771     // unconditionally executed. For the scalar case, we may not always execute
5772     // the predicated block. Thus, scale the block's cost by the probability of
5773     // executing it.
5774     if (VF == 1 && blockNeedsPredication(BB))
5775       BlockCost.first /= getReciprocalPredBlockProb();
5776 
5777     Cost.first += BlockCost.first;
5778     Cost.second |= BlockCost.second;
5779   }
5780 
5781   return Cost;
5782 }
5783 
5784 /// Gets Address Access SCEV after verifying that the access pattern
5785 /// is loop invariant except the induction variable dependence.
5786 ///
5787 /// This SCEV can be sent to the Target in order to estimate the address
5788 /// calculation cost.
5789 static const SCEV *getAddressAccessSCEV(
5790               Value *Ptr,
5791               LoopVectorizationLegality *Legal,
5792               PredicatedScalarEvolution &PSE,
5793               const Loop *TheLoop) {
5794 
5795   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5796   if (!Gep)
5797     return nullptr;
5798 
5799   // We are looking for a gep with all loop invariant indices except for one
5800   // which should be an induction variable.
5801   auto SE = PSE.getSE();
5802   unsigned NumOperands = Gep->getNumOperands();
5803   for (unsigned i = 1; i < NumOperands; ++i) {
5804     Value *Opd = Gep->getOperand(i);
5805     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5806         !Legal->isInductionVariable(Opd))
5807       return nullptr;
5808   }
5809 
5810   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
5811   return PSE.getSCEV(Ptr);
5812 }
5813 
5814 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5815   return Legal->hasStride(I->getOperand(0)) ||
5816          Legal->hasStride(I->getOperand(1));
5817 }
5818 
5819 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5820                                                                  unsigned VF) {
5821   assert(VF > 1 && "Scalarization cost of instruction implies vectorization.");
5822   Type *ValTy = getMemInstValueType(I);
5823   auto SE = PSE.getSE();
5824 
5825   unsigned AS = getLoadStoreAddressSpace(I);
5826   Value *Ptr = getLoadStorePointerOperand(I);
5827   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
5828 
5829   // Figure out whether the access is strided and get the stride value
5830   // if it's known in compile time
5831   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5832 
5833   // Get the cost of the scalar memory instruction and address computation.
5834   unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
5835 
5836   // Don't pass *I here, since it is scalar but will actually be part of a
5837   // vectorized loop where the user of it is a vectorized instruction.
5838   const MaybeAlign Alignment = getLoadStoreAlignment(I);
5839   Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
5840                                    Alignment, AS);
5841 
5842   // Get the overhead of the extractelement and insertelement instructions
5843   // we might create due to scalarization.
5844   Cost += getScalarizationOverhead(I, VF);
5845 
5846   // If we have a predicated store, it may not be executed for each vector
5847   // lane. Scale the cost by the probability of executing the predicated
5848   // block.
5849   if (isPredicatedInst(I)) {
5850     Cost /= getReciprocalPredBlockProb();
5851 
5852     if (useEmulatedMaskMemRefHack(I))
5853       // Artificially setting to a high enough value to practically disable
5854       // vectorization with such operations.
5855       Cost = 3000000;
5856   }
5857 
5858   return Cost;
5859 }
5860 
5861 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5862                                                              unsigned VF) {
5863   Type *ValTy = getMemInstValueType(I);
5864   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5865   Value *Ptr = getLoadStorePointerOperand(I);
5866   unsigned AS = getLoadStoreAddressSpace(I);
5867   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
5868 
5869   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5870          "Stride should be 1 or -1 for consecutive memory access");
5871   const MaybeAlign Alignment = getLoadStoreAlignment(I);
5872   unsigned Cost = 0;
5873   if (Legal->isMaskRequired(I))
5874     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy,
5875                                       Alignment ? Alignment->value() : 0, AS);
5876   else
5877     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I);
5878 
5879   bool Reverse = ConsecutiveStride < 0;
5880   if (Reverse)
5881     Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5882   return Cost;
5883 }
5884 
5885 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5886                                                          unsigned VF) {
5887   Type *ValTy = getMemInstValueType(I);
5888   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5889   const MaybeAlign Alignment = getLoadStoreAlignment(I);
5890   unsigned AS = getLoadStoreAddressSpace(I);
5891   if (isa<LoadInst>(I)) {
5892     return TTI.getAddressComputationCost(ValTy) +
5893            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) +
5894            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
5895   }
5896   StoreInst *SI = cast<StoreInst>(I);
5897 
5898   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
5899   return TTI.getAddressComputationCost(ValTy) +
5900          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS) +
5901          (isLoopInvariantStoreValue
5902               ? 0
5903               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
5904                                        VF - 1));
5905 }
5906 
5907 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5908                                                           unsigned VF) {
5909   Type *ValTy = getMemInstValueType(I);
5910   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5911   const MaybeAlign Alignment = getLoadStoreAlignment(I);
5912   Value *Ptr = getLoadStorePointerOperand(I);
5913 
5914   return TTI.getAddressComputationCost(VectorTy) +
5915          TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
5916                                     Legal->isMaskRequired(I),
5917                                     Alignment ? Alignment->value() : 0, I);
5918 }
5919 
5920 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5921                                                             unsigned VF) {
5922   Type *ValTy = getMemInstValueType(I);
5923   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
5924   unsigned AS = getLoadStoreAddressSpace(I);
5925 
5926   auto Group = getInterleavedAccessGroup(I);
5927   assert(Group && "Fail to get an interleaved access group.");
5928 
5929   unsigned InterleaveFactor = Group->getFactor();
5930   VectorType *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5931 
5932   // Holds the indices of existing members in an interleaved load group.
5933   // An interleaved store group doesn't need this as it doesn't allow gaps.
5934   SmallVector<unsigned, 4> Indices;
5935   if (isa<LoadInst>(I)) {
5936     for (unsigned i = 0; i < InterleaveFactor; i++)
5937       if (Group->getMember(i))
5938         Indices.push_back(i);
5939   }
5940 
5941   // Calculate the cost of the whole interleaved group.
5942   bool UseMaskForGaps =
5943       Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed();
5944   unsigned Cost = TTI.getInterleavedMemoryOpCost(
5945       I->getOpcode(), WideVecTy, Group->getFactor(), Indices,
5946       Group->getAlign().value(), AS, Legal->isMaskRequired(I), UseMaskForGaps);
5947 
5948   if (Group->isReverse()) {
5949     // TODO: Add support for reversed masked interleaved access.
5950     assert(!Legal->isMaskRequired(I) &&
5951            "Reverse masked interleaved access not supported.");
5952     Cost += Group->getNumMembers() *
5953             TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5954   }
5955   return Cost;
5956 }
5957 
5958 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5959                                                               unsigned VF) {
5960   // Calculate scalar cost only. Vectorization cost should be ready at this
5961   // moment.
5962   if (VF == 1) {
5963     Type *ValTy = getMemInstValueType(I);
5964     const MaybeAlign Alignment = getLoadStoreAlignment(I);
5965     unsigned AS = getLoadStoreAddressSpace(I);
5966 
5967     return TTI.getAddressComputationCost(ValTy) +
5968            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I);
5969   }
5970   return getWideningCost(I, VF);
5971 }
5972 
5973 LoopVectorizationCostModel::VectorizationCostTy
5974 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
5975   // If we know that this instruction will remain uniform, check the cost of
5976   // the scalar version.
5977   if (isUniformAfterVectorization(I, VF))
5978     VF = 1;
5979 
5980   if (VF > 1 && isProfitableToScalarize(I, VF))
5981     return VectorizationCostTy(InstsToScalarize[VF][I], false);
5982 
5983   // Forced scalars do not have any scalarization overhead.
5984   auto ForcedScalar = ForcedScalars.find(VF);
5985   if (VF > 1 && ForcedScalar != ForcedScalars.end()) {
5986     auto InstSet = ForcedScalar->second;
5987     if (InstSet.find(I) != InstSet.end())
5988       return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false);
5989   }
5990 
5991   Type *VectorTy;
5992   unsigned C = getInstructionCost(I, VF, VectorTy);
5993 
5994   bool TypeNotScalarized =
5995       VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF;
5996   return VectorizationCostTy(C, TypeNotScalarized);
5997 }
5998 
5999 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6000                                                               unsigned VF) {
6001 
6002   if (VF == 1)
6003     return 0;
6004 
6005   unsigned Cost = 0;
6006   Type *RetTy = ToVectorTy(I->getType(), VF);
6007   if (!RetTy->isVoidTy() &&
6008       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6009     Cost += TTI.getScalarizationOverhead(RetTy, APInt::getAllOnesValue(VF),
6010                                          true, false);
6011 
6012   // Some targets keep addresses scalar.
6013   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6014     return Cost;
6015 
6016   // Some targets support efficient element stores.
6017   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6018     return Cost;
6019 
6020   // Collect operands to consider.
6021   CallInst *CI = dyn_cast<CallInst>(I);
6022   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
6023 
6024   // Skip operands that do not require extraction/scalarization and do not incur
6025   // any overhead.
6026   return Cost + TTI.getOperandsScalarizationOverhead(
6027                     filterExtractingOperands(Ops, VF), VF);
6028 }
6029 
6030 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
6031   if (VF == 1)
6032     return;
6033   NumPredStores = 0;
6034   for (BasicBlock *BB : TheLoop->blocks()) {
6035     // For each instruction in the old loop.
6036     for (Instruction &I : *BB) {
6037       Value *Ptr =  getLoadStorePointerOperand(&I);
6038       if (!Ptr)
6039         continue;
6040 
6041       // TODO: We should generate better code and update the cost model for
6042       // predicated uniform stores. Today they are treated as any other
6043       // predicated store (see added test cases in
6044       // invariant-store-vectorization.ll).
6045       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
6046         NumPredStores++;
6047 
6048       if (Legal->isUniform(Ptr) &&
6049           // Conditional loads and stores should be scalarized and predicated.
6050           // isScalarWithPredication cannot be used here since masked
6051           // gather/scatters are not considered scalar with predication.
6052           !Legal->blockNeedsPredication(I.getParent())) {
6053         // TODO: Avoid replicating loads and stores instead of
6054         // relying on instcombine to remove them.
6055         // Load: Scalar load + broadcast
6056         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6057         unsigned Cost = getUniformMemOpCost(&I, VF);
6058         setWideningDecision(&I, VF, CM_Scalarize, Cost);
6059         continue;
6060       }
6061 
6062       // We assume that widening is the best solution when possible.
6063       if (memoryInstructionCanBeWidened(&I, VF)) {
6064         unsigned Cost = getConsecutiveMemOpCost(&I, VF);
6065         int ConsecutiveStride =
6066                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
6067         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6068                "Expected consecutive stride.");
6069         InstWidening Decision =
6070             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6071         setWideningDecision(&I, VF, Decision, Cost);
6072         continue;
6073       }
6074 
6075       // Choose between Interleaving, Gather/Scatter or Scalarization.
6076       unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
6077       unsigned NumAccesses = 1;
6078       if (isAccessInterleaved(&I)) {
6079         auto Group = getInterleavedAccessGroup(&I);
6080         assert(Group && "Fail to get an interleaved access group.");
6081 
6082         // Make one decision for the whole group.
6083         if (getWideningDecision(&I, VF) != CM_Unknown)
6084           continue;
6085 
6086         NumAccesses = Group->getNumMembers();
6087         if (interleavedAccessCanBeWidened(&I, VF))
6088           InterleaveCost = getInterleaveGroupCost(&I, VF);
6089       }
6090 
6091       unsigned GatherScatterCost =
6092           isLegalGatherOrScatter(&I)
6093               ? getGatherScatterCost(&I, VF) * NumAccesses
6094               : std::numeric_limits<unsigned>::max();
6095 
6096       unsigned ScalarizationCost =
6097           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6098 
6099       // Choose better solution for the current VF,
6100       // write down this decision and use it during vectorization.
6101       unsigned Cost;
6102       InstWidening Decision;
6103       if (InterleaveCost <= GatherScatterCost &&
6104           InterleaveCost < ScalarizationCost) {
6105         Decision = CM_Interleave;
6106         Cost = InterleaveCost;
6107       } else if (GatherScatterCost < ScalarizationCost) {
6108         Decision = CM_GatherScatter;
6109         Cost = GatherScatterCost;
6110       } else {
6111         Decision = CM_Scalarize;
6112         Cost = ScalarizationCost;
6113       }
6114       // If the instructions belongs to an interleave group, the whole group
6115       // receives the same decision. The whole group receives the cost, but
6116       // the cost will actually be assigned to one instruction.
6117       if (auto Group = getInterleavedAccessGroup(&I))
6118         setWideningDecision(Group, VF, Decision, Cost);
6119       else
6120         setWideningDecision(&I, VF, Decision, Cost);
6121     }
6122   }
6123 
6124   // Make sure that any load of address and any other address computation
6125   // remains scalar unless there is gather/scatter support. This avoids
6126   // inevitable extracts into address registers, and also has the benefit of
6127   // activating LSR more, since that pass can't optimize vectorized
6128   // addresses.
6129   if (TTI.prefersVectorizedAddressing())
6130     return;
6131 
6132   // Start with all scalar pointer uses.
6133   SmallPtrSet<Instruction *, 8> AddrDefs;
6134   for (BasicBlock *BB : TheLoop->blocks())
6135     for (Instruction &I : *BB) {
6136       Instruction *PtrDef =
6137         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6138       if (PtrDef && TheLoop->contains(PtrDef) &&
6139           getWideningDecision(&I, VF) != CM_GatherScatter)
6140         AddrDefs.insert(PtrDef);
6141     }
6142 
6143   // Add all instructions used to generate the addresses.
6144   SmallVector<Instruction *, 4> Worklist;
6145   for (auto *I : AddrDefs)
6146     Worklist.push_back(I);
6147   while (!Worklist.empty()) {
6148     Instruction *I = Worklist.pop_back_val();
6149     for (auto &Op : I->operands())
6150       if (auto *InstOp = dyn_cast<Instruction>(Op))
6151         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6152             AddrDefs.insert(InstOp).second)
6153           Worklist.push_back(InstOp);
6154   }
6155 
6156   for (auto *I : AddrDefs) {
6157     if (isa<LoadInst>(I)) {
6158       // Setting the desired widening decision should ideally be handled in
6159       // by cost functions, but since this involves the task of finding out
6160       // if the loaded register is involved in an address computation, it is
6161       // instead changed here when we know this is the case.
6162       InstWidening Decision = getWideningDecision(I, VF);
6163       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6164         // Scalarize a widened load of address.
6165         setWideningDecision(I, VF, CM_Scalarize,
6166                             (VF * getMemoryInstructionCost(I, 1)));
6167       else if (auto Group = getInterleavedAccessGroup(I)) {
6168         // Scalarize an interleave group of address loads.
6169         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6170           if (Instruction *Member = Group->getMember(I))
6171             setWideningDecision(Member, VF, CM_Scalarize,
6172                                 (VF * getMemoryInstructionCost(Member, 1)));
6173         }
6174       }
6175     } else
6176       // Make sure I gets scalarized and a cost estimate without
6177       // scalarization overhead.
6178       ForcedScalars[VF].insert(I);
6179   }
6180 }
6181 
6182 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6183                                                         unsigned VF,
6184                                                         Type *&VectorTy) {
6185   Type *RetTy = I->getType();
6186   if (canTruncateToMinimalBitwidth(I, VF))
6187     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6188   VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
6189   auto SE = PSE.getSE();
6190 
6191   // TODO: We need to estimate the cost of intrinsic calls.
6192   switch (I->getOpcode()) {
6193   case Instruction::GetElementPtr:
6194     // We mark this instruction as zero-cost because the cost of GEPs in
6195     // vectorized code depends on whether the corresponding memory instruction
6196     // is scalarized or not. Therefore, we handle GEPs with the memory
6197     // instruction cost.
6198     return 0;
6199   case Instruction::Br: {
6200     // In cases of scalarized and predicated instructions, there will be VF
6201     // predicated blocks in the vectorized loop. Each branch around these
6202     // blocks requires also an extract of its vector compare i1 element.
6203     bool ScalarPredicatedBB = false;
6204     BranchInst *BI = cast<BranchInst>(I);
6205     if (VF > 1 && BI->isConditional() &&
6206         (PredicatedBBsAfterVectorization.find(BI->getSuccessor(0)) !=
6207              PredicatedBBsAfterVectorization.end() ||
6208          PredicatedBBsAfterVectorization.find(BI->getSuccessor(1)) !=
6209              PredicatedBBsAfterVectorization.end()))
6210       ScalarPredicatedBB = true;
6211 
6212     if (ScalarPredicatedBB) {
6213       // Return cost for branches around scalarized and predicated blocks.
6214       Type *Vec_i1Ty =
6215           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6216       return (TTI.getScalarizationOverhead(Vec_i1Ty, APInt::getAllOnesValue(VF),
6217                                            false, true) +
6218               (TTI.getCFInstrCost(Instruction::Br) * VF));
6219     } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
6220       // The back-edge branch will remain, as will all scalar branches.
6221       return TTI.getCFInstrCost(Instruction::Br);
6222     else
6223       // This branch will be eliminated by if-conversion.
6224       return 0;
6225     // Note: We currently assume zero cost for an unconditional branch inside
6226     // a predicated block since it will become a fall-through, although we
6227     // may decide in the future to call TTI for all branches.
6228   }
6229   case Instruction::PHI: {
6230     auto *Phi = cast<PHINode>(I);
6231 
6232     // First-order recurrences are replaced by vector shuffles inside the loop.
6233     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
6234     if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
6235       return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
6236                                 cast<VectorType>(VectorTy), VF - 1,
6237                                 VectorType::get(RetTy, 1));
6238 
6239     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6240     // converted into select instructions. We require N - 1 selects per phi
6241     // node, where N is the number of incoming values.
6242     if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
6243       return (Phi->getNumIncomingValues() - 1) *
6244              TTI.getCmpSelInstrCost(
6245                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
6246                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF));
6247 
6248     return TTI.getCFInstrCost(Instruction::PHI);
6249   }
6250   case Instruction::UDiv:
6251   case Instruction::SDiv:
6252   case Instruction::URem:
6253   case Instruction::SRem:
6254     // If we have a predicated instruction, it may not be executed for each
6255     // vector lane. Get the scalarization cost and scale this amount by the
6256     // probability of executing the predicated block. If the instruction is not
6257     // predicated, we fall through to the next case.
6258     if (VF > 1 && isScalarWithPredication(I)) {
6259       unsigned Cost = 0;
6260 
6261       // These instructions have a non-void type, so account for the phi nodes
6262       // that we will create. This cost is likely to be zero. The phi node
6263       // cost, if any, should be scaled by the block probability because it
6264       // models a copy at the end of each predicated block.
6265       Cost += VF * TTI.getCFInstrCost(Instruction::PHI);
6266 
6267       // The cost of the non-predicated instruction.
6268       Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy);
6269 
6270       // The cost of insertelement and extractelement instructions needed for
6271       // scalarization.
6272       Cost += getScalarizationOverhead(I, VF);
6273 
6274       // Scale the cost by the probability of executing the predicated blocks.
6275       // This assumes the predicated block for each vector lane is equally
6276       // likely.
6277       return Cost / getReciprocalPredBlockProb();
6278     }
6279     LLVM_FALLTHROUGH;
6280   case Instruction::Add:
6281   case Instruction::FAdd:
6282   case Instruction::Sub:
6283   case Instruction::FSub:
6284   case Instruction::Mul:
6285   case Instruction::FMul:
6286   case Instruction::FDiv:
6287   case Instruction::FRem:
6288   case Instruction::Shl:
6289   case Instruction::LShr:
6290   case Instruction::AShr:
6291   case Instruction::And:
6292   case Instruction::Or:
6293   case Instruction::Xor: {
6294     // Since we will replace the stride by 1 the multiplication should go away.
6295     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
6296       return 0;
6297     // Certain instructions can be cheaper to vectorize if they have a constant
6298     // second vector operand. One example of this are shifts on x86.
6299     Value *Op2 = I->getOperand(1);
6300     TargetTransformInfo::OperandValueProperties Op2VP;
6301     TargetTransformInfo::OperandValueKind Op2VK =
6302         TTI.getOperandInfo(Op2, Op2VP);
6303     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
6304       Op2VK = TargetTransformInfo::OK_UniformValue;
6305 
6306     SmallVector<const Value *, 4> Operands(I->operand_values());
6307     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6308     return N * TTI.getArithmeticInstrCost(
6309                    I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue,
6310                    Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
6311   }
6312   case Instruction::FNeg: {
6313     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6314     return N * TTI.getArithmeticInstrCost(
6315                    I->getOpcode(), VectorTy, TargetTransformInfo::OK_AnyValue,
6316                    TargetTransformInfo::OK_AnyValue,
6317                    TargetTransformInfo::OP_None, TargetTransformInfo::OP_None,
6318                    I->getOperand(0), I);
6319   }
6320   case Instruction::Select: {
6321     SelectInst *SI = cast<SelectInst>(I);
6322     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6323     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6324     Type *CondTy = SI->getCondition()->getType();
6325     if (!ScalarCond)
6326       CondTy = VectorType::get(CondTy, VF);
6327 
6328     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I);
6329   }
6330   case Instruction::ICmp:
6331   case Instruction::FCmp: {
6332     Type *ValTy = I->getOperand(0)->getType();
6333     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6334     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6335       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
6336     VectorTy = ToVectorTy(ValTy, VF);
6337     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I);
6338   }
6339   case Instruction::Store:
6340   case Instruction::Load: {
6341     unsigned Width = VF;
6342     if (Width > 1) {
6343       InstWidening Decision = getWideningDecision(I, Width);
6344       assert(Decision != CM_Unknown &&
6345              "CM decision should be taken at this point");
6346       if (Decision == CM_Scalarize)
6347         Width = 1;
6348     }
6349     VectorTy = ToVectorTy(getMemInstValueType(I), Width);
6350     return getMemoryInstructionCost(I, VF);
6351   }
6352   case Instruction::ZExt:
6353   case Instruction::SExt:
6354   case Instruction::FPToUI:
6355   case Instruction::FPToSI:
6356   case Instruction::FPExt:
6357   case Instruction::PtrToInt:
6358   case Instruction::IntToPtr:
6359   case Instruction::SIToFP:
6360   case Instruction::UIToFP:
6361   case Instruction::Trunc:
6362   case Instruction::FPTrunc:
6363   case Instruction::BitCast: {
6364     // We optimize the truncation of induction variables having constant
6365     // integer steps. The cost of these truncations is the same as the scalar
6366     // operation.
6367     if (isOptimizableIVTruncate(I, VF)) {
6368       auto *Trunc = cast<TruncInst>(I);
6369       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6370                                   Trunc->getSrcTy(), Trunc);
6371     }
6372 
6373     Type *SrcScalarTy = I->getOperand(0)->getType();
6374     Type *SrcVecTy =
6375         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6376     if (canTruncateToMinimalBitwidth(I, VF)) {
6377       // This cast is going to be shrunk. This may remove the cast or it might
6378       // turn it into slightly different cast. For example, if MinBW == 16,
6379       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
6380       //
6381       // Calculate the modified src and dest types.
6382       Type *MinVecTy = VectorTy;
6383       if (I->getOpcode() == Instruction::Trunc) {
6384         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
6385         VectorTy =
6386             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6387       } else if (I->getOpcode() == Instruction::ZExt ||
6388                  I->getOpcode() == Instruction::SExt) {
6389         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
6390         VectorTy =
6391             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6392       }
6393     }
6394 
6395     unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6396     return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I);
6397   }
6398   case Instruction::Call: {
6399     bool NeedToScalarize;
6400     CallInst *CI = cast<CallInst>(I);
6401     unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
6402     if (getVectorIntrinsicIDForCall(CI, TLI))
6403       return std::min(CallCost, getVectorIntrinsicCost(CI, VF));
6404     return CallCost;
6405   }
6406   default:
6407     // The cost of executing VF copies of the scalar instruction. This opcode
6408     // is unknown. Assume that it is the same as 'mul'.
6409     return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) +
6410            getScalarizationOverhead(I, VF);
6411   } // end of switch.
6412 }
6413 
6414 char LoopVectorize::ID = 0;
6415 
6416 static const char lv_name[] = "Loop Vectorization";
6417 
6418 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
6419 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6420 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
6421 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6422 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
6423 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6424 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
6425 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6426 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6427 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6428 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
6429 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6430 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
6431 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
6432 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
6433 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
6434 
6435 namespace llvm {
6436 
6437 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
6438 
6439 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
6440                               bool VectorizeOnlyWhenForced) {
6441   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
6442 }
6443 
6444 } // end namespace llvm
6445 
6446 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6447   // Check if the pointer operand of a load or store instruction is
6448   // consecutive.
6449   if (auto *Ptr = getLoadStorePointerOperand(Inst))
6450     return Legal->isConsecutivePtr(Ptr);
6451   return false;
6452 }
6453 
6454 void LoopVectorizationCostModel::collectValuesToIgnore() {
6455   // Ignore ephemeral values.
6456   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
6457 
6458   // Ignore type-promoting instructions we identified during reduction
6459   // detection.
6460   for (auto &Reduction : Legal->getReductionVars()) {
6461     RecurrenceDescriptor &RedDes = Reduction.second;
6462     SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6463     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6464   }
6465   // Ignore type-casting instructions we identified during induction
6466   // detection.
6467   for (auto &Induction : Legal->getInductionVars()) {
6468     InductionDescriptor &IndDes = Induction.second;
6469     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6470     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6471   }
6472 }
6473 
6474 // TODO: we could return a pair of values that specify the max VF and
6475 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
6476 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
6477 // doesn't have a cost model that can choose which plan to execute if
6478 // more than one is generated.
6479 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
6480                                  LoopVectorizationCostModel &CM) {
6481   unsigned WidestType;
6482   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
6483   return WidestVectorRegBits / WidestType;
6484 }
6485 
6486 VectorizationFactor
6487 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) {
6488   unsigned VF = UserVF;
6489   // Outer loop handling: They may require CFG and instruction level
6490   // transformations before even evaluating whether vectorization is profitable.
6491   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6492   // the vectorization pipeline.
6493   if (!OrigLoop->empty()) {
6494     // If the user doesn't provide a vectorization factor, determine a
6495     // reasonable one.
6496     if (!UserVF) {
6497       VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM);
6498       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
6499 
6500       // Make sure we have a VF > 1 for stress testing.
6501       if (VPlanBuildStressTest && VF < 2) {
6502         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
6503                           << "overriding computed VF.\n");
6504         VF = 4;
6505       }
6506     }
6507     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6508     assert(isPowerOf2_32(VF) && "VF needs to be a power of two");
6509     LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF
6510                       << " to build VPlans.\n");
6511     buildVPlans(VF, VF);
6512 
6513     // For VPlan build stress testing, we bail out after VPlan construction.
6514     if (VPlanBuildStressTest)
6515       return VectorizationFactor::Disabled();
6516 
6517     return {VF, 0};
6518   }
6519 
6520   LLVM_DEBUG(
6521       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6522                 "VPlan-native path.\n");
6523   return VectorizationFactor::Disabled();
6524 }
6525 
6526 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF) {
6527   assert(OrigLoop->empty() && "Inner loop expected.");
6528   Optional<unsigned> MaybeMaxVF = CM.computeMaxVF();
6529   if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved.
6530     return None;
6531 
6532   // Invalidate interleave groups if all blocks of loop will be predicated.
6533   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
6534       !useMaskedInterleavedAccesses(*TTI)) {
6535     LLVM_DEBUG(
6536         dbgs()
6537         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
6538            "which requires masked-interleaved support.\n");
6539     if (CM.InterleaveInfo.invalidateGroups())
6540       // Invalidating interleave groups also requires invalidating all decisions
6541       // based on them, which includes widening decisions and uniform and scalar
6542       // values.
6543       CM.invalidateCostModelingDecisions();
6544   }
6545 
6546   if (UserVF) {
6547     LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6548     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
6549     // Collect the instructions (and their associated costs) that will be more
6550     // profitable to scalarize.
6551     CM.selectUserVectorizationFactor(UserVF);
6552     buildVPlansWithVPRecipes(UserVF, UserVF);
6553     LLVM_DEBUG(printPlans(dbgs()));
6554     return {{UserVF, 0}};
6555   }
6556 
6557   unsigned MaxVF = MaybeMaxVF.getValue();
6558   assert(MaxVF != 0 && "MaxVF is zero.");
6559 
6560   for (unsigned VF = 1; VF <= MaxVF; VF *= 2) {
6561     // Collect Uniform and Scalar instructions after vectorization with VF.
6562     CM.collectUniformsAndScalars(VF);
6563 
6564     // Collect the instructions (and their associated costs) that will be more
6565     // profitable to scalarize.
6566     if (VF > 1)
6567       CM.collectInstsToScalarize(VF);
6568   }
6569 
6570   buildVPlansWithVPRecipes(1, MaxVF);
6571   LLVM_DEBUG(printPlans(dbgs()));
6572   if (MaxVF == 1)
6573     return VectorizationFactor::Disabled();
6574 
6575   // Select the optimal vectorization factor.
6576   return CM.selectVectorizationFactor(MaxVF);
6577 }
6578 
6579 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) {
6580   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
6581                     << '\n');
6582   BestVF = VF;
6583   BestUF = UF;
6584 
6585   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
6586     return !Plan->hasVF(VF);
6587   });
6588   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
6589 }
6590 
6591 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
6592                                            DominatorTree *DT) {
6593   // Perform the actual loop transformation.
6594 
6595   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
6596   VPCallbackILV CallbackILV(ILV);
6597 
6598   VPTransformState State{BestVF, BestUF,      LI,
6599                          DT,     ILV.Builder, ILV.VectorLoopValueMap,
6600                          &ILV,   CallbackILV};
6601   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
6602   State.TripCount = ILV.getOrCreateTripCount(nullptr);
6603   State.CanonicalIV = ILV.Induction;
6604 
6605   //===------------------------------------------------===//
6606   //
6607   // Notice: any optimization or new instruction that go
6608   // into the code below should also be implemented in
6609   // the cost-model.
6610   //
6611   //===------------------------------------------------===//
6612 
6613   // 2. Copy and widen instructions from the old loop into the new loop.
6614   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
6615   VPlans.front()->execute(&State);
6616 
6617   // 3. Fix the vectorized code: take care of header phi's, live-outs,
6618   //    predication, updating analyses.
6619   ILV.fixVectorizedLoop();
6620 }
6621 
6622 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
6623     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
6624   BasicBlock *Latch = OrigLoop->getLoopLatch();
6625 
6626   // We create new control-flow for the vectorized loop, so the original
6627   // condition will be dead after vectorization if it's only used by the
6628   // branch.
6629   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
6630   if (Cmp && Cmp->hasOneUse())
6631     DeadInstructions.insert(Cmp);
6632 
6633   // We create new "steps" for induction variable updates to which the original
6634   // induction variables map. An original update instruction will be dead if
6635   // all its users except the induction variable are dead.
6636   for (auto &Induction : Legal->getInductionVars()) {
6637     PHINode *Ind = Induction.first;
6638     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
6639     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
6640           return U == Ind || DeadInstructions.find(cast<Instruction>(U)) !=
6641                                  DeadInstructions.end();
6642         }))
6643       DeadInstructions.insert(IndUpdate);
6644 
6645     // We record as "Dead" also the type-casting instructions we had identified
6646     // during induction analysis. We don't need any handling for them in the
6647     // vectorized loop because we have proven that, under a proper runtime
6648     // test guarding the vectorized loop, the value of the phi, and the casted
6649     // value of the phi, are the same. The last instruction in this casting chain
6650     // will get its scalar/vector/widened def from the scalar/vector/widened def
6651     // of the respective phi node. Any other casts in the induction def-use chain
6652     // have no other uses outside the phi update chain, and will be ignored.
6653     InductionDescriptor &IndDes = Induction.second;
6654     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6655     DeadInstructions.insert(Casts.begin(), Casts.end());
6656   }
6657 }
6658 
6659 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
6660 
6661 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
6662 
6663 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
6664                                         Instruction::BinaryOps BinOp) {
6665   // When unrolling and the VF is 1, we only need to add a simple scalar.
6666   Type *Ty = Val->getType();
6667   assert(!Ty->isVectorTy() && "Val must be a scalar");
6668 
6669   if (Ty->isFloatingPointTy()) {
6670     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
6671 
6672     // Floating point operations had to be 'fast' to enable the unrolling.
6673     Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
6674     return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
6675   }
6676   Constant *C = ConstantInt::get(Ty, StartIdx);
6677   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
6678 }
6679 
6680 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
6681   SmallVector<Metadata *, 4> MDs;
6682   // Reserve first location for self reference to the LoopID metadata node.
6683   MDs.push_back(nullptr);
6684   bool IsUnrollMetadata = false;
6685   MDNode *LoopID = L->getLoopID();
6686   if (LoopID) {
6687     // First find existing loop unrolling disable metadata.
6688     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
6689       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
6690       if (MD) {
6691         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
6692         IsUnrollMetadata =
6693             S && S->getString().startswith("llvm.loop.unroll.disable");
6694       }
6695       MDs.push_back(LoopID->getOperand(i));
6696     }
6697   }
6698 
6699   if (!IsUnrollMetadata) {
6700     // Add runtime unroll disable metadata.
6701     LLVMContext &Context = L->getHeader()->getContext();
6702     SmallVector<Metadata *, 1> DisableOperands;
6703     DisableOperands.push_back(
6704         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
6705     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
6706     MDs.push_back(DisableNode);
6707     MDNode *NewLoopID = MDNode::get(Context, MDs);
6708     // Set operand 0 to refer to the loop id itself.
6709     NewLoopID->replaceOperandWith(0, NewLoopID);
6710     L->setLoopID(NewLoopID);
6711   }
6712 }
6713 
6714 bool LoopVectorizationPlanner::getDecisionAndClampRange(
6715     const std::function<bool(unsigned)> &Predicate, VFRange &Range) {
6716   assert(Range.End > Range.Start && "Trying to test an empty VF range.");
6717   bool PredicateAtRangeStart = Predicate(Range.Start);
6718 
6719   for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2)
6720     if (Predicate(TmpVF) != PredicateAtRangeStart) {
6721       Range.End = TmpVF;
6722       break;
6723     }
6724 
6725   return PredicateAtRangeStart;
6726 }
6727 
6728 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
6729 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
6730 /// of VF's starting at a given VF and extending it as much as possible. Each
6731 /// vectorization decision can potentially shorten this sub-range during
6732 /// buildVPlan().
6733 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) {
6734   for (unsigned VF = MinVF; VF < MaxVF + 1;) {
6735     VFRange SubRange = {VF, MaxVF + 1};
6736     VPlans.push_back(buildVPlan(SubRange));
6737     VF = SubRange.End;
6738   }
6739 }
6740 
6741 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
6742                                          VPlanPtr &Plan) {
6743   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
6744 
6745   // Look for cached value.
6746   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
6747   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
6748   if (ECEntryIt != EdgeMaskCache.end())
6749     return ECEntryIt->second;
6750 
6751   VPValue *SrcMask = createBlockInMask(Src, Plan);
6752 
6753   // The terminator has to be a branch inst!
6754   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
6755   assert(BI && "Unexpected terminator found");
6756 
6757   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
6758     return EdgeMaskCache[Edge] = SrcMask;
6759 
6760   VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
6761   assert(EdgeMask && "No Edge Mask found for condition");
6762 
6763   if (BI->getSuccessor(0) != Dst)
6764     EdgeMask = Builder.createNot(EdgeMask);
6765 
6766   if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
6767     EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
6768 
6769   return EdgeMaskCache[Edge] = EdgeMask;
6770 }
6771 
6772 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
6773   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
6774 
6775   // Look for cached value.
6776   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
6777   if (BCEntryIt != BlockMaskCache.end())
6778     return BCEntryIt->second;
6779 
6780   // All-one mask is modelled as no-mask following the convention for masked
6781   // load/store/gather/scatter. Initialize BlockMask to no-mask.
6782   VPValue *BlockMask = nullptr;
6783 
6784   if (OrigLoop->getHeader() == BB) {
6785     if (!CM.blockNeedsPredication(BB))
6786       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
6787 
6788     // Introduce the early-exit compare IV <= BTC to form header block mask.
6789     // This is used instead of IV < TC because TC may wrap, unlike BTC.
6790     // Start by constructing the desired canonical IV.
6791     VPValue *IV = nullptr;
6792     if (Legal->getPrimaryInduction())
6793       IV = Plan->getVPValue(Legal->getPrimaryInduction());
6794     else {
6795       auto IVRecipe = new VPWidenCanonicalIVRecipe();
6796       Builder.getInsertBlock()->appendRecipe(IVRecipe);
6797       IV = IVRecipe->getVPValue();
6798     }
6799     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
6800     BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
6801     return BlockMaskCache[BB] = BlockMask;
6802   }
6803 
6804   // This is the block mask. We OR all incoming edges.
6805   for (auto *Predecessor : predecessors(BB)) {
6806     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
6807     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
6808       return BlockMaskCache[BB] = EdgeMask;
6809 
6810     if (!BlockMask) { // BlockMask has its initialized nullptr value.
6811       BlockMask = EdgeMask;
6812       continue;
6813     }
6814 
6815     BlockMask = Builder.createOr(BlockMask, EdgeMask);
6816   }
6817 
6818   return BlockMaskCache[BB] = BlockMask;
6819 }
6820 
6821 VPWidenMemoryInstructionRecipe *
6822 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
6823                                   VPlanPtr &Plan) {
6824   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
6825          "Must be called with either a load or store");
6826 
6827   auto willWiden = [&](unsigned VF) -> bool {
6828     if (VF == 1)
6829       return false;
6830     LoopVectorizationCostModel::InstWidening Decision =
6831         CM.getWideningDecision(I, VF);
6832     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
6833            "CM decision should be taken at this point.");
6834     if (Decision == LoopVectorizationCostModel::CM_Interleave)
6835       return true;
6836     if (CM.isScalarAfterVectorization(I, VF) ||
6837         CM.isProfitableToScalarize(I, VF))
6838       return false;
6839     return Decision != LoopVectorizationCostModel::CM_Scalarize;
6840   };
6841 
6842   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6843     return nullptr;
6844 
6845   VPValue *Mask = nullptr;
6846   if (Legal->isMaskRequired(I))
6847     Mask = createBlockInMask(I->getParent(), Plan);
6848 
6849   VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I));
6850   if (LoadInst *Load = dyn_cast<LoadInst>(I))
6851     return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask);
6852 
6853   StoreInst *Store = cast<StoreInst>(I);
6854   VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand());
6855   return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask);
6856 }
6857 
6858 VPWidenIntOrFpInductionRecipe *
6859 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const {
6860   // Check if this is an integer or fp induction. If so, build the recipe that
6861   // produces its scalar and vector values.
6862   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
6863   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
6864       II.getKind() == InductionDescriptor::IK_FpInduction)
6865     return new VPWidenIntOrFpInductionRecipe(Phi);
6866 
6867   return nullptr;
6868 }
6869 
6870 VPWidenIntOrFpInductionRecipe *
6871 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I,
6872                                                 VFRange &Range) const {
6873   // Optimize the special case where the source is a constant integer
6874   // induction variable. Notice that we can only optimize the 'trunc' case
6875   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
6876   // (c) other casts depend on pointer size.
6877 
6878   // Determine whether \p K is a truncation based on an induction variable that
6879   // can be optimized.
6880   auto isOptimizableIVTruncate =
6881       [&](Instruction *K) -> std::function<bool(unsigned)> {
6882     return
6883         [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); };
6884   };
6885 
6886   if (LoopVectorizationPlanner::getDecisionAndClampRange(
6887           isOptimizableIVTruncate(I), Range))
6888     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
6889                                              I);
6890   return nullptr;
6891 }
6892 
6893 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) {
6894   // We know that all PHIs in non-header blocks are converted into selects, so
6895   // we don't have to worry about the insertion order and we can just use the
6896   // builder. At this point we generate the predication tree. There may be
6897   // duplications since this is a simple recursive scan, but future
6898   // optimizations will clean it up.
6899 
6900   SmallVector<VPValue *, 2> Operands;
6901   unsigned NumIncoming = Phi->getNumIncomingValues();
6902   for (unsigned In = 0; In < NumIncoming; In++) {
6903     VPValue *EdgeMask =
6904       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
6905     assert((EdgeMask || NumIncoming == 1) &&
6906            "Multiple predecessors with one having a full mask");
6907     Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In)));
6908     if (EdgeMask)
6909       Operands.push_back(EdgeMask);
6910   }
6911   return new VPBlendRecipe(Phi, Operands);
6912 }
6913 
6914 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range,
6915                                                    VPlan &Plan) const {
6916 
6917   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
6918       [this, CI](unsigned VF) { return CM.isScalarWithPredication(CI, VF); },
6919       Range);
6920 
6921   if (IsPredicated)
6922     return nullptr;
6923 
6924   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6925   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
6926              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect))
6927     return nullptr;
6928 
6929   auto willWiden = [&](unsigned VF) -> bool {
6930     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6931     // The following case may be scalarized depending on the VF.
6932     // The flag shows whether we use Intrinsic or a usual Call for vectorized
6933     // version of the instruction.
6934     // Is it beneficial to perform intrinsic call compared to lib call?
6935     bool NeedToScalarize = false;
6936     unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
6937     bool UseVectorIntrinsic =
6938         ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost;
6939     return UseVectorIntrinsic || !NeedToScalarize;
6940   };
6941 
6942   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6943     return nullptr;
6944 
6945   return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands()));
6946 }
6947 
6948 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
6949   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
6950          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
6951   // Instruction should be widened, unless it is scalar after vectorization,
6952   // scalarization is profitable or it is predicated.
6953   auto WillScalarize = [this, I](unsigned VF) -> bool {
6954     return CM.isScalarAfterVectorization(I, VF) ||
6955            CM.isProfitableToScalarize(I, VF) ||
6956            CM.isScalarWithPredication(I, VF);
6957   };
6958   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
6959                                                              Range);
6960 }
6961 
6962 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const {
6963   auto IsVectorizableOpcode = [](unsigned Opcode) {
6964     switch (Opcode) {
6965     case Instruction::Add:
6966     case Instruction::And:
6967     case Instruction::AShr:
6968     case Instruction::BitCast:
6969     case Instruction::FAdd:
6970     case Instruction::FCmp:
6971     case Instruction::FDiv:
6972     case Instruction::FMul:
6973     case Instruction::FNeg:
6974     case Instruction::FPExt:
6975     case Instruction::FPToSI:
6976     case Instruction::FPToUI:
6977     case Instruction::FPTrunc:
6978     case Instruction::FRem:
6979     case Instruction::FSub:
6980     case Instruction::ICmp:
6981     case Instruction::IntToPtr:
6982     case Instruction::LShr:
6983     case Instruction::Mul:
6984     case Instruction::Or:
6985     case Instruction::PtrToInt:
6986     case Instruction::SDiv:
6987     case Instruction::Select:
6988     case Instruction::SExt:
6989     case Instruction::Shl:
6990     case Instruction::SIToFP:
6991     case Instruction::SRem:
6992     case Instruction::Sub:
6993     case Instruction::Trunc:
6994     case Instruction::UDiv:
6995     case Instruction::UIToFP:
6996     case Instruction::URem:
6997     case Instruction::Xor:
6998     case Instruction::ZExt:
6999       return true;
7000     }
7001     return false;
7002   };
7003 
7004   if (!IsVectorizableOpcode(I->getOpcode()))
7005     return nullptr;
7006 
7007   // Success: widen this instruction.
7008   return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands()));
7009 }
7010 
7011 VPBasicBlock *VPRecipeBuilder::handleReplication(
7012     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
7013     DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
7014     VPlanPtr &Plan) {
7015   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
7016       [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); },
7017       Range);
7018 
7019   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
7020       [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range);
7021 
7022   auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated);
7023   setRecipe(I, Recipe);
7024 
7025   // Find if I uses a predicated instruction. If so, it will use its scalar
7026   // value. Avoid hoisting the insert-element which packs the scalar value into
7027   // a vector value, as that happens iff all users use the vector value.
7028   for (auto &Op : I->operands())
7029     if (auto *PredInst = dyn_cast<Instruction>(Op))
7030       if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
7031         PredInst2Recipe[PredInst]->setAlsoPack(false);
7032 
7033   // Finalize the recipe for Instr, first if it is not predicated.
7034   if (!IsPredicated) {
7035     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
7036     VPBB->appendRecipe(Recipe);
7037     return VPBB;
7038   }
7039   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
7040   assert(VPBB->getSuccessors().empty() &&
7041          "VPBB has successors when handling predicated replication.");
7042   // Record predicated instructions for above packing optimizations.
7043   PredInst2Recipe[I] = Recipe;
7044   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
7045   VPBlockUtils::insertBlockAfter(Region, VPBB);
7046   auto *RegSucc = new VPBasicBlock();
7047   VPBlockUtils::insertBlockAfter(RegSucc, Region);
7048   return RegSucc;
7049 }
7050 
7051 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
7052                                                       VPRecipeBase *PredRecipe,
7053                                                       VPlanPtr &Plan) {
7054   // Instructions marked for predication are replicated and placed under an
7055   // if-then construct to prevent side-effects.
7056 
7057   // Generate recipes to compute the block mask for this region.
7058   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
7059 
7060   // Build the triangular if-then region.
7061   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
7062   assert(Instr->getParent() && "Predicated instruction not in any basic block");
7063   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
7064   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
7065   auto *PHIRecipe =
7066       Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
7067   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
7068   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
7069   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
7070 
7071   // Note: first set Entry as region entry and then connect successors starting
7072   // from it in order, to propagate the "parent" of each VPBasicBlock.
7073   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
7074   VPBlockUtils::connectBlocks(Pred, Exit);
7075 
7076   return Region;
7077 }
7078 
7079 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
7080                                                       VFRange &Range,
7081                                                       VPlanPtr &Plan) {
7082   // First, check for specific widening recipes that deal with calls, memory
7083   // operations, inductions and Phi nodes.
7084   if (auto *CI = dyn_cast<CallInst>(Instr))
7085     return tryToWidenCall(CI, Range, *Plan);
7086 
7087   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
7088     return tryToWidenMemory(Instr, Range, Plan);
7089 
7090   VPRecipeBase *Recipe;
7091   if (auto Phi = dyn_cast<PHINode>(Instr)) {
7092     if (Phi->getParent() != OrigLoop->getHeader())
7093       return tryToBlend(Phi, Plan);
7094     if ((Recipe = tryToOptimizeInductionPHI(Phi)))
7095       return Recipe;
7096     return new VPWidenPHIRecipe(Phi);
7097     return new VPWidenPHIRecipe(Phi);
7098   }
7099 
7100   if (isa<TruncInst>(Instr) &&
7101       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range)))
7102     return Recipe;
7103 
7104   if (!shouldWiden(Instr, Range))
7105     return nullptr;
7106 
7107   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
7108     return new VPWidenGEPRecipe(GEP, OrigLoop);
7109 
7110   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
7111     bool InvariantCond =
7112         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
7113     return new VPWidenSelectRecipe(*SI, InvariantCond);
7114   }
7115 
7116   return tryToWiden(Instr, *Plan);
7117 }
7118 
7119 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF,
7120                                                         unsigned MaxVF) {
7121   assert(OrigLoop->empty() && "Inner loop expected.");
7122 
7123   // Collect conditions feeding internal conditional branches; they need to be
7124   // represented in VPlan for it to model masking.
7125   SmallPtrSet<Value *, 1> NeedDef;
7126 
7127   auto *Latch = OrigLoop->getLoopLatch();
7128   for (BasicBlock *BB : OrigLoop->blocks()) {
7129     if (BB == Latch)
7130       continue;
7131     BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
7132     if (Branch && Branch->isConditional())
7133       NeedDef.insert(Branch->getCondition());
7134   }
7135 
7136   // If the tail is to be folded by masking, the primary induction variable, if
7137   // exists needs to be represented in VPlan for it to model early-exit masking.
7138   // Also, both the Phi and the live-out instruction of each reduction are
7139   // required in order to introduce a select between them in VPlan.
7140   if (CM.foldTailByMasking()) {
7141     if (Legal->getPrimaryInduction())
7142       NeedDef.insert(Legal->getPrimaryInduction());
7143     for (auto &Reduction : Legal->getReductionVars()) {
7144       NeedDef.insert(Reduction.first);
7145       NeedDef.insert(Reduction.second.getLoopExitInstr());
7146     }
7147   }
7148 
7149   // Collect instructions from the original loop that will become trivially dead
7150   // in the vectorized loop. We don't need to vectorize these instructions. For
7151   // example, original induction update instructions can become dead because we
7152   // separately emit induction "steps" when generating code for the new loop.
7153   // Similarly, we create a new latch condition when setting up the structure
7154   // of the new loop, so the old one can become dead.
7155   SmallPtrSet<Instruction *, 4> DeadInstructions;
7156   collectTriviallyDeadInstructions(DeadInstructions);
7157 
7158   // Add assume instructions we need to drop to DeadInstructions, to prevent
7159   // them from being added to the VPlan.
7160   // TODO: We only need to drop assumes in blocks that get flattend. If the
7161   // control flow is preserved, we should keep them.
7162   auto &ConditionalAssumes = Legal->getConditionalAssumes();
7163   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
7164 
7165   DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
7166   // Dead instructions do not need sinking. Remove them from SinkAfter.
7167   for (Instruction *I : DeadInstructions)
7168     SinkAfter.erase(I);
7169 
7170   for (unsigned VF = MinVF; VF < MaxVF + 1;) {
7171     VFRange SubRange = {VF, MaxVF + 1};
7172     VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef,
7173                                              DeadInstructions, SinkAfter));
7174     VF = SubRange.End;
7175   }
7176 }
7177 
7178 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
7179     VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef,
7180     SmallPtrSetImpl<Instruction *> &DeadInstructions,
7181     const DenseMap<Instruction *, Instruction *> &SinkAfter) {
7182 
7183   // Hold a mapping from predicated instructions to their recipes, in order to
7184   // fix their AlsoPack behavior if a user is determined to replicate and use a
7185   // scalar instead of vector value.
7186   DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
7187 
7188   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
7189 
7190   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
7191 
7192   // ---------------------------------------------------------------------------
7193   // Pre-construction: record ingredients whose recipes we'll need to further
7194   // process after constructing the initial VPlan.
7195   // ---------------------------------------------------------------------------
7196 
7197   // Mark instructions we'll need to sink later and their targets as
7198   // ingredients whose recipe we'll need to record.
7199   for (auto &Entry : SinkAfter) {
7200     RecipeBuilder.recordRecipeOf(Entry.first);
7201     RecipeBuilder.recordRecipeOf(Entry.second);
7202   }
7203 
7204   // For each interleave group which is relevant for this (possibly trimmed)
7205   // Range, add it to the set of groups to be later applied to the VPlan and add
7206   // placeholders for its members' Recipes which we'll be replacing with a
7207   // single VPInterleaveRecipe.
7208   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
7209     auto applyIG = [IG, this](unsigned VF) -> bool {
7210       return (VF >= 2 && // Query is illegal for VF == 1
7211               CM.getWideningDecision(IG->getInsertPos(), VF) ==
7212                   LoopVectorizationCostModel::CM_Interleave);
7213     };
7214     if (!getDecisionAndClampRange(applyIG, Range))
7215       continue;
7216     InterleaveGroups.insert(IG);
7217     for (unsigned i = 0; i < IG->getFactor(); i++)
7218       if (Instruction *Member = IG->getMember(i))
7219         RecipeBuilder.recordRecipeOf(Member);
7220   };
7221 
7222   // ---------------------------------------------------------------------------
7223   // Build initial VPlan: Scan the body of the loop in a topological order to
7224   // visit each basic block after having visited its predecessor basic blocks.
7225   // ---------------------------------------------------------------------------
7226 
7227   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
7228   auto Plan = std::make_unique<VPlan>();
7229   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
7230   Plan->setEntry(VPBB);
7231 
7232   // Represent values that will have defs inside VPlan.
7233   for (Value *V : NeedDef)
7234     Plan->addVPValue(V);
7235 
7236   // Scan the body of the loop in a topological order to visit each basic block
7237   // after having visited its predecessor basic blocks.
7238   LoopBlocksDFS DFS(OrigLoop);
7239   DFS.perform(LI);
7240 
7241   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
7242     // Relevant instructions from basic block BB will be grouped into VPRecipe
7243     // ingredients and fill a new VPBasicBlock.
7244     unsigned VPBBsForBB = 0;
7245     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
7246     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
7247     VPBB = FirstVPBBForBB;
7248     Builder.setInsertPoint(VPBB);
7249 
7250     // Introduce each ingredient into VPlan.
7251     // TODO: Model and preserve debug instrinsics in VPlan.
7252     for (Instruction &I : BB->instructionsWithoutDebug()) {
7253       Instruction *Instr = &I;
7254 
7255       // First filter out irrelevant instructions, to ensure no recipes are
7256       // built for them.
7257       if (isa<BranchInst>(Instr) ||
7258           DeadInstructions.find(Instr) != DeadInstructions.end())
7259         continue;
7260 
7261       if (auto Recipe =
7262               RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) {
7263         RecipeBuilder.setRecipe(Instr, Recipe);
7264         VPBB->appendRecipe(Recipe);
7265         continue;
7266       }
7267 
7268       // Otherwise, if all widening options failed, Instruction is to be
7269       // replicated. This may create a successor for VPBB.
7270       VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication(
7271           Instr, Range, VPBB, PredInst2Recipe, Plan);
7272       if (NextVPBB != VPBB) {
7273         VPBB = NextVPBB;
7274         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
7275                                     : "");
7276       }
7277     }
7278   }
7279 
7280   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
7281   // may also be empty, such as the last one VPBB, reflecting original
7282   // basic-blocks with no recipes.
7283   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
7284   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
7285   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
7286   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
7287   delete PreEntry;
7288 
7289   // ---------------------------------------------------------------------------
7290   // Transform initial VPlan: Apply previously taken decisions, in order, to
7291   // bring the VPlan to its final state.
7292   // ---------------------------------------------------------------------------
7293 
7294   // Apply Sink-After legal constraints.
7295   for (auto &Entry : SinkAfter) {
7296     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
7297     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
7298     Sink->moveAfter(Target);
7299   }
7300 
7301   // Interleave memory: for each Interleave Group we marked earlier as relevant
7302   // for this VPlan, replace the Recipes widening its memory instructions with a
7303   // single VPInterleaveRecipe at its insertion point.
7304   for (auto IG : InterleaveGroups) {
7305     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
7306         RecipeBuilder.getRecipe(IG->getInsertPos()));
7307     (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask()))
7308         ->insertBefore(Recipe);
7309 
7310     for (unsigned i = 0; i < IG->getFactor(); ++i)
7311       if (Instruction *Member = IG->getMember(i)) {
7312         RecipeBuilder.getRecipe(Member)->eraseFromParent();
7313       }
7314   }
7315 
7316   // Finally, if tail is folded by masking, introduce selects between the phi
7317   // and the live-out instruction of each reduction, at the end of the latch.
7318   if (CM.foldTailByMasking()) {
7319     Builder.setInsertPoint(VPBB);
7320     auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
7321     for (auto &Reduction : Legal->getReductionVars()) {
7322       VPValue *Phi = Plan->getVPValue(Reduction.first);
7323       VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr());
7324       Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi});
7325     }
7326   }
7327 
7328   std::string PlanName;
7329   raw_string_ostream RSO(PlanName);
7330   unsigned VF = Range.Start;
7331   Plan->addVF(VF);
7332   RSO << "Initial VPlan for VF={" << VF;
7333   for (VF *= 2; VF < Range.End; VF *= 2) {
7334     Plan->addVF(VF);
7335     RSO << "," << VF;
7336   }
7337   RSO << "},UF>=1";
7338   RSO.flush();
7339   Plan->setName(PlanName);
7340 
7341   return Plan;
7342 }
7343 
7344 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
7345   // Outer loop handling: They may require CFG and instruction level
7346   // transformations before even evaluating whether vectorization is profitable.
7347   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7348   // the vectorization pipeline.
7349   assert(!OrigLoop->empty());
7350   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7351 
7352   // Create new empty VPlan
7353   auto Plan = std::make_unique<VPlan>();
7354 
7355   // Build hierarchical CFG
7356   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
7357   HCFGBuilder.buildHierarchicalCFG();
7358 
7359   for (unsigned VF = Range.Start; VF < Range.End; VF *= 2)
7360     Plan->addVF(VF);
7361 
7362   if (EnableVPlanPredication) {
7363     VPlanPredicator VPP(*Plan);
7364     VPP.predicate();
7365 
7366     // Avoid running transformation to recipes until masked code generation in
7367     // VPlan-native path is in place.
7368     return Plan;
7369   }
7370 
7371   SmallPtrSet<Instruction *, 1> DeadInstructions;
7372   VPlanTransforms::VPInstructionsToVPRecipes(
7373       OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions);
7374   return Plan;
7375 }
7376 
7377 Value* LoopVectorizationPlanner::VPCallbackILV::
7378 getOrCreateVectorValues(Value *V, unsigned Part) {
7379       return ILV.getOrCreateVectorValue(V, Part);
7380 }
7381 
7382 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue(
7383     Value *V, const VPIteration &Instance) {
7384   return ILV.getOrCreateScalarValue(V, Instance);
7385 }
7386 
7387 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
7388                                VPSlotTracker &SlotTracker) const {
7389   O << " +\n"
7390     << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
7391   IG->getInsertPos()->printAsOperand(O, false);
7392   O << ", ";
7393   getAddr()->printAsOperand(O, SlotTracker);
7394   VPValue *Mask = getMask();
7395   if (Mask) {
7396     O << ", ";
7397     Mask->printAsOperand(O, SlotTracker);
7398   }
7399   O << "\\l\"";
7400   for (unsigned i = 0; i < IG->getFactor(); ++i)
7401     if (Instruction *I = IG->getMember(i))
7402       O << " +\n"
7403         << Indent << "\"  " << VPlanIngredient(I) << " " << i << "\\l\"";
7404 }
7405 
7406 void VPWidenCallRecipe::execute(VPTransformState &State) {
7407   State.ILV->widenCallInstruction(Ingredient, User, State);
7408 }
7409 
7410 void VPWidenSelectRecipe::execute(VPTransformState &State) {
7411   State.ILV->widenSelectInstruction(Ingredient, InvariantCond);
7412 }
7413 
7414 void VPWidenRecipe::execute(VPTransformState &State) {
7415   State.ILV->widenInstruction(Ingredient, User, State);
7416 }
7417 
7418 void VPWidenGEPRecipe::execute(VPTransformState &State) {
7419   State.ILV->widenGEP(GEP, State.UF, State.VF, IsPtrLoopInvariant,
7420                       IsIndexLoopInvariant);
7421 }
7422 
7423 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
7424   assert(!State.Instance && "Int or FP induction being replicated.");
7425   State.ILV->widenIntOrFpInduction(IV, Trunc);
7426 }
7427 
7428 void VPWidenPHIRecipe::execute(VPTransformState &State) {
7429   State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
7430 }
7431 
7432 void VPBlendRecipe::execute(VPTransformState &State) {
7433   State.ILV->setDebugLocFromInst(State.Builder, Phi);
7434   // We know that all PHIs in non-header blocks are converted into
7435   // selects, so we don't have to worry about the insertion order and we
7436   // can just use the builder.
7437   // At this point we generate the predication tree. There may be
7438   // duplications since this is a simple recursive scan, but future
7439   // optimizations will clean it up.
7440 
7441   unsigned NumIncoming = getNumIncomingValues();
7442 
7443   // Generate a sequence of selects of the form:
7444   // SELECT(Mask3, In3,
7445   //        SELECT(Mask2, In2,
7446   //               SELECT(Mask1, In1,
7447   //                      In0)))
7448   // Note that Mask0 is never used: lanes for which no path reaches this phi and
7449   // are essentially undef are taken from In0.
7450   InnerLoopVectorizer::VectorParts Entry(State.UF);
7451   for (unsigned In = 0; In < NumIncoming; ++In) {
7452     for (unsigned Part = 0; Part < State.UF; ++Part) {
7453       // We might have single edge PHIs (blocks) - use an identity
7454       // 'select' for the first PHI operand.
7455       Value *In0 = State.get(getIncomingValue(In), Part);
7456       if (In == 0)
7457         Entry[Part] = In0; // Initialize with the first incoming value.
7458       else {
7459         // Select between the current value and the previous incoming edge
7460         // based on the incoming mask.
7461         Value *Cond = State.get(getMask(In), Part);
7462         Entry[Part] =
7463             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
7464       }
7465     }
7466   }
7467   for (unsigned Part = 0; Part < State.UF; ++Part)
7468     State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
7469 }
7470 
7471 void VPInterleaveRecipe::execute(VPTransformState &State) {
7472   assert(!State.Instance && "Interleave group being replicated.");
7473   State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask());
7474 }
7475 
7476 void VPReplicateRecipe::execute(VPTransformState &State) {
7477   if (State.Instance) { // Generate a single instance.
7478     State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated);
7479     // Insert scalar instance packing it into a vector.
7480     if (AlsoPack && State.VF > 1) {
7481       // If we're constructing lane 0, initialize to start from undef.
7482       if (State.Instance->Lane == 0) {
7483         Value *Undef =
7484             UndefValue::get(VectorType::get(Ingredient->getType(), State.VF));
7485         State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
7486       }
7487       State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
7488     }
7489     return;
7490   }
7491 
7492   // Generate scalar instances for all VF lanes of all UF parts, unless the
7493   // instruction is uniform inwhich case generate only the first lane for each
7494   // of the UF parts.
7495   unsigned EndLane = IsUniform ? 1 : State.VF;
7496   for (unsigned Part = 0; Part < State.UF; ++Part)
7497     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
7498       State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated);
7499 }
7500 
7501 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
7502   assert(State.Instance && "Branch on Mask works only on single instance.");
7503 
7504   unsigned Part = State.Instance->Part;
7505   unsigned Lane = State.Instance->Lane;
7506 
7507   Value *ConditionBit = nullptr;
7508   if (!User) // Block in mask is all-one.
7509     ConditionBit = State.Builder.getTrue();
7510   else {
7511     VPValue *BlockInMask = User->getOperand(0);
7512     ConditionBit = State.get(BlockInMask, Part);
7513     if (ConditionBit->getType()->isVectorTy())
7514       ConditionBit = State.Builder.CreateExtractElement(
7515           ConditionBit, State.Builder.getInt32(Lane));
7516   }
7517 
7518   // Replace the temporary unreachable terminator with a new conditional branch,
7519   // whose two destinations will be set later when they are created.
7520   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
7521   assert(isa<UnreachableInst>(CurrentTerminator) &&
7522          "Expected to replace unreachable terminator with conditional branch.");
7523   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
7524   CondBr->setSuccessor(0, nullptr);
7525   ReplaceInstWithInst(CurrentTerminator, CondBr);
7526 }
7527 
7528 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
7529   assert(State.Instance && "Predicated instruction PHI works per instance.");
7530   Instruction *ScalarPredInst = cast<Instruction>(
7531       State.ValueMap.getScalarValue(PredInst, *State.Instance));
7532   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
7533   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
7534   assert(PredicatingBB && "Predicated block has no single predecessor.");
7535 
7536   // By current pack/unpack logic we need to generate only a single phi node: if
7537   // a vector value for the predicated instruction exists at this point it means
7538   // the instruction has vector users only, and a phi for the vector value is
7539   // needed. In this case the recipe of the predicated instruction is marked to
7540   // also do that packing, thereby "hoisting" the insert-element sequence.
7541   // Otherwise, a phi node for the scalar value is needed.
7542   unsigned Part = State.Instance->Part;
7543   if (State.ValueMap.hasVectorValue(PredInst, Part)) {
7544     Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
7545     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
7546     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
7547     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
7548     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
7549     State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
7550   } else {
7551     Type *PredInstType = PredInst->getType();
7552     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
7553     Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
7554     Phi->addIncoming(ScalarPredInst, PredicatedBB);
7555     State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
7556   }
7557 }
7558 
7559 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
7560   VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr;
7561   State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue,
7562                                         getMask());
7563 }
7564 
7565 // Determine how to lower the scalar epilogue, which depends on 1) optimising
7566 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
7567 // predication, and 4) a TTI hook that analyses whether the loop is suitable
7568 // for predication.
7569 static ScalarEpilogueLowering getScalarEpilogueLowering(
7570     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
7571     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
7572     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
7573     LoopVectorizationLegality &LVL) {
7574   bool OptSize =
7575       F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
7576                                                      PGSOQueryType::IRPass);
7577   // 1) OptSize takes precedence over all other options, i.e. if this is set,
7578   // don't look at hints or options, and don't request a scalar epilogue.
7579   if (OptSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled)
7580     return CM_ScalarEpilogueNotAllowedOptSize;
7581 
7582   bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() &&
7583                               !PreferPredicateOverEpilog;
7584 
7585   // 2) Next, if disabling predication is requested on the command line, honour
7586   // this and request a scalar epilogue.
7587   if (PredicateOptDisabled)
7588     return CM_ScalarEpilogueAllowed;
7589 
7590   // 3) and 4) look if enabling predication is requested on the command line,
7591   // with a loop hint, or if the TTI hook indicates this is profitable, request
7592   // predication .
7593   if (PreferPredicateOverEpilog ||
7594       Hints.getPredicate() == LoopVectorizeHints::FK_Enabled ||
7595       (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
7596                                         LVL.getLAI()) &&
7597        Hints.getPredicate() != LoopVectorizeHints::FK_Disabled))
7598     return CM_ScalarEpilogueNotNeededUsePredicate;
7599 
7600   return CM_ScalarEpilogueAllowed;
7601 }
7602 
7603 // Process the loop in the VPlan-native vectorization path. This path builds
7604 // VPlan upfront in the vectorization pipeline, which allows to apply
7605 // VPlan-to-VPlan transformations from the very beginning without modifying the
7606 // input LLVM IR.
7607 static bool processLoopInVPlanNativePath(
7608     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
7609     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
7610     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
7611     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
7612     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) {
7613 
7614   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
7615   Function *F = L->getHeader()->getParent();
7616   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
7617 
7618   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
7619       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
7620 
7621   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
7622                                 &Hints, IAI);
7623   // Use the planner for outer loop vectorization.
7624   // TODO: CM is not used at this point inside the planner. Turn CM into an
7625   // optional argument if we don't need it in the future.
7626   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE);
7627 
7628   // Get user vectorization factor.
7629   const unsigned UserVF = Hints.getWidth();
7630 
7631   // Plan how to best vectorize, return the best VF and its cost.
7632   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
7633 
7634   // If we are stress testing VPlan builds, do not attempt to generate vector
7635   // code. Masked vector code generation support will follow soon.
7636   // Also, do not attempt to vectorize if no vector code will be produced.
7637   if (VPlanBuildStressTest || EnableVPlanPredication ||
7638       VectorizationFactor::Disabled() == VF)
7639     return false;
7640 
7641   LVP.setBestPlan(VF.Width, 1);
7642 
7643   InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
7644                          &CM);
7645   LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
7646                     << L->getHeader()->getParent()->getName() << "\"\n");
7647   LVP.executePlan(LB, DT);
7648 
7649   // Mark the loop as already vectorized to avoid vectorizing again.
7650   Hints.setAlreadyVectorized();
7651 
7652   LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent()));
7653   return true;
7654 }
7655 
7656 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
7657     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
7658                                !EnableLoopInterleaving),
7659       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
7660                               !EnableLoopVectorization) {}
7661 
7662 bool LoopVectorizePass::processLoop(Loop *L) {
7663   assert((EnableVPlanNativePath || L->empty()) &&
7664          "VPlan-native path is not enabled. Only process inner loops.");
7665 
7666 #ifndef NDEBUG
7667   const std::string DebugLocStr = getDebugLocString(L);
7668 #endif /* NDEBUG */
7669 
7670   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
7671                     << L->getHeader()->getParent()->getName() << "\" from "
7672                     << DebugLocStr << "\n");
7673 
7674   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
7675 
7676   LLVM_DEBUG(
7677       dbgs() << "LV: Loop hints:"
7678              << " force="
7679              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
7680                      ? "disabled"
7681                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
7682                             ? "enabled"
7683                             : "?"))
7684              << " width=" << Hints.getWidth()
7685              << " unroll=" << Hints.getInterleave() << "\n");
7686 
7687   // Function containing loop
7688   Function *F = L->getHeader()->getParent();
7689 
7690   // Looking at the diagnostic output is the only way to determine if a loop
7691   // was vectorized (other than looking at the IR or machine code), so it
7692   // is important to generate an optimization remark for each loop. Most of
7693   // these messages are generated as OptimizationRemarkAnalysis. Remarks
7694   // generated as OptimizationRemark and OptimizationRemarkMissed are
7695   // less verbose reporting vectorized loops and unvectorized loops that may
7696   // benefit from vectorization, respectively.
7697 
7698   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
7699     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
7700     return false;
7701   }
7702 
7703   PredicatedScalarEvolution PSE(*SE, *L);
7704 
7705   // Check if it is legal to vectorize the loop.
7706   LoopVectorizationRequirements Requirements(*ORE);
7707   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
7708                                 &Requirements, &Hints, DB, AC);
7709   if (!LVL.canVectorize(EnableVPlanNativePath)) {
7710     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
7711     Hints.emitRemarkWithHints();
7712     return false;
7713   }
7714 
7715   // Check the function attributes and profiles to find out if this function
7716   // should be optimized for size.
7717   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
7718       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
7719 
7720   // Entrance to the VPlan-native vectorization path. Outer loops are processed
7721   // here. They may require CFG and instruction level transformations before
7722   // even evaluating whether vectorization is profitable. Since we cannot modify
7723   // the incoming IR, we need to build VPlan upfront in the vectorization
7724   // pipeline.
7725   if (!L->empty())
7726     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
7727                                         ORE, BFI, PSI, Hints);
7728 
7729   assert(L->empty() && "Inner loop expected.");
7730 
7731   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
7732   // count by optimizing for size, to minimize overheads.
7733   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
7734   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
7735     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
7736                       << "This loop is worth vectorizing only if no scalar "
7737                       << "iteration overheads are incurred.");
7738     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
7739       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
7740     else {
7741       LLVM_DEBUG(dbgs() << "\n");
7742       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
7743     }
7744   }
7745 
7746   // Check the function attributes to see if implicit floats are allowed.
7747   // FIXME: This check doesn't seem possibly correct -- what if the loop is
7748   // an integer loop and the vector instructions selected are purely integer
7749   // vector instructions?
7750   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
7751     reportVectorizationFailure(
7752         "Can't vectorize when the NoImplicitFloat attribute is used",
7753         "loop not vectorized due to NoImplicitFloat attribute",
7754         "NoImplicitFloat", ORE, L);
7755     Hints.emitRemarkWithHints();
7756     return false;
7757   }
7758 
7759   // Check if the target supports potentially unsafe FP vectorization.
7760   // FIXME: Add a check for the type of safety issue (denormal, signaling)
7761   // for the target we're vectorizing for, to make sure none of the
7762   // additional fp-math flags can help.
7763   if (Hints.isPotentiallyUnsafe() &&
7764       TTI->isFPVectorizationPotentiallyUnsafe()) {
7765     reportVectorizationFailure(
7766         "Potentially unsafe FP op prevents vectorization",
7767         "loop not vectorized due to unsafe FP support.",
7768         "UnsafeFP", ORE, L);
7769     Hints.emitRemarkWithHints();
7770     return false;
7771   }
7772 
7773   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
7774   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
7775 
7776   // If an override option has been passed in for interleaved accesses, use it.
7777   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
7778     UseInterleaved = EnableInterleavedMemAccesses;
7779 
7780   // Analyze interleaved memory accesses.
7781   if (UseInterleaved) {
7782     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
7783   }
7784 
7785   // Use the cost model.
7786   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
7787                                 F, &Hints, IAI);
7788   CM.collectValuesToIgnore();
7789 
7790   // Use the planner for vectorization.
7791   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE);
7792 
7793   // Get user vectorization factor.
7794   unsigned UserVF = Hints.getWidth();
7795 
7796   // Plan how to best vectorize, return the best VF and its cost.
7797   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF);
7798 
7799   VectorizationFactor VF = VectorizationFactor::Disabled();
7800   unsigned IC = 1;
7801   unsigned UserIC = Hints.getInterleave();
7802 
7803   if (MaybeVF) {
7804     VF = *MaybeVF;
7805     // Select the interleave count.
7806     IC = CM.selectInterleaveCount(VF.Width, VF.Cost);
7807   }
7808 
7809   // Identify the diagnostic messages that should be produced.
7810   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
7811   bool VectorizeLoop = true, InterleaveLoop = true;
7812   if (Requirements.doesNotMeet(F, L, Hints)) {
7813     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
7814                          "requirements.\n");
7815     Hints.emitRemarkWithHints();
7816     return false;
7817   }
7818 
7819   if (VF.Width == 1) {
7820     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
7821     VecDiagMsg = std::make_pair(
7822         "VectorizationNotBeneficial",
7823         "the cost-model indicates that vectorization is not beneficial");
7824     VectorizeLoop = false;
7825   }
7826 
7827   if (!MaybeVF && UserIC > 1) {
7828     // Tell the user interleaving was avoided up-front, despite being explicitly
7829     // requested.
7830     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
7831                          "interleaving should be avoided up front\n");
7832     IntDiagMsg = std::make_pair(
7833         "InterleavingAvoided",
7834         "Ignoring UserIC, because interleaving was avoided up front");
7835     InterleaveLoop = false;
7836   } else if (IC == 1 && UserIC <= 1) {
7837     // Tell the user interleaving is not beneficial.
7838     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
7839     IntDiagMsg = std::make_pair(
7840         "InterleavingNotBeneficial",
7841         "the cost-model indicates that interleaving is not beneficial");
7842     InterleaveLoop = false;
7843     if (UserIC == 1) {
7844       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
7845       IntDiagMsg.second +=
7846           " and is explicitly disabled or interleave count is set to 1";
7847     }
7848   } else if (IC > 1 && UserIC == 1) {
7849     // Tell the user interleaving is beneficial, but it explicitly disabled.
7850     LLVM_DEBUG(
7851         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
7852     IntDiagMsg = std::make_pair(
7853         "InterleavingBeneficialButDisabled",
7854         "the cost-model indicates that interleaving is beneficial "
7855         "but is explicitly disabled or interleave count is set to 1");
7856     InterleaveLoop = false;
7857   }
7858 
7859   // Override IC if user provided an interleave count.
7860   IC = UserIC > 0 ? UserIC : IC;
7861 
7862   // Emit diagnostic messages, if any.
7863   const char *VAPassName = Hints.vectorizeAnalysisPassName();
7864   if (!VectorizeLoop && !InterleaveLoop) {
7865     // Do not vectorize or interleaving the loop.
7866     ORE->emit([&]() {
7867       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
7868                                       L->getStartLoc(), L->getHeader())
7869              << VecDiagMsg.second;
7870     });
7871     ORE->emit([&]() {
7872       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
7873                                       L->getStartLoc(), L->getHeader())
7874              << IntDiagMsg.second;
7875     });
7876     return false;
7877   } else if (!VectorizeLoop && InterleaveLoop) {
7878     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7879     ORE->emit([&]() {
7880       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
7881                                         L->getStartLoc(), L->getHeader())
7882              << VecDiagMsg.second;
7883     });
7884   } else if (VectorizeLoop && !InterleaveLoop) {
7885     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7886                       << ") in " << DebugLocStr << '\n');
7887     ORE->emit([&]() {
7888       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
7889                                         L->getStartLoc(), L->getHeader())
7890              << IntDiagMsg.second;
7891     });
7892   } else if (VectorizeLoop && InterleaveLoop) {
7893     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7894                       << ") in " << DebugLocStr << '\n');
7895     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7896   }
7897 
7898   LVP.setBestPlan(VF.Width, IC);
7899 
7900   using namespace ore;
7901   bool DisableRuntimeUnroll = false;
7902   MDNode *OrigLoopID = L->getLoopID();
7903 
7904   if (!VectorizeLoop) {
7905     assert(IC > 1 && "interleave count should not be 1 or 0");
7906     // If we decided that it is not legal to vectorize the loop, then
7907     // interleave it.
7908     InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
7909                                &CM);
7910     LVP.executePlan(Unroller, DT);
7911 
7912     ORE->emit([&]() {
7913       return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
7914                                 L->getHeader())
7915              << "interleaved loop (interleaved count: "
7916              << NV("InterleaveCount", IC) << ")";
7917     });
7918   } else {
7919     // If we decided that it is *legal* to vectorize the loop, then do it.
7920     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
7921                            &LVL, &CM);
7922     LVP.executePlan(LB, DT);
7923     ++LoopsVectorized;
7924 
7925     // Add metadata to disable runtime unrolling a scalar loop when there are
7926     // no runtime checks about strides and memory. A scalar loop that is
7927     // rarely used is not worth unrolling.
7928     if (!LB.areSafetyChecksAdded())
7929       DisableRuntimeUnroll = true;
7930 
7931     // Report the vectorization decision.
7932     ORE->emit([&]() {
7933       return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
7934                                 L->getHeader())
7935              << "vectorized loop (vectorization width: "
7936              << NV("VectorizationFactor", VF.Width)
7937              << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
7938     });
7939   }
7940 
7941   Optional<MDNode *> RemainderLoopID =
7942       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7943                                       LLVMLoopVectorizeFollowupEpilogue});
7944   if (RemainderLoopID.hasValue()) {
7945     L->setLoopID(RemainderLoopID.getValue());
7946   } else {
7947     if (DisableRuntimeUnroll)
7948       AddRuntimeUnrollDisableMetaData(L);
7949 
7950     // Mark the loop as already vectorized to avoid vectorizing again.
7951     Hints.setAlreadyVectorized();
7952   }
7953 
7954   LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent()));
7955   return true;
7956 }
7957 
7958 LoopVectorizeResult LoopVectorizePass::runImpl(
7959     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
7960     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
7961     DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
7962     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
7963     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
7964   SE = &SE_;
7965   LI = &LI_;
7966   TTI = &TTI_;
7967   DT = &DT_;
7968   BFI = &BFI_;
7969   TLI = TLI_;
7970   AA = &AA_;
7971   AC = &AC_;
7972   GetLAA = &GetLAA_;
7973   DB = &DB_;
7974   ORE = &ORE_;
7975   PSI = PSI_;
7976 
7977   // Don't attempt if
7978   // 1. the target claims to have no vector registers, and
7979   // 2. interleaving won't help ILP.
7980   //
7981   // The second condition is necessary because, even if the target has no
7982   // vector registers, loop vectorization may still enable scalar
7983   // interleaving.
7984   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
7985       TTI->getMaxInterleaveFactor(1) < 2)
7986     return LoopVectorizeResult(false, false);
7987 
7988   bool Changed = false, CFGChanged = false;
7989 
7990   // The vectorizer requires loops to be in simplified form.
7991   // Since simplification may add new inner loops, it has to run before the
7992   // legality and profitability checks. This means running the loop vectorizer
7993   // will simplify all loops, regardless of whether anything end up being
7994   // vectorized.
7995   for (auto &L : *LI)
7996     Changed |= CFGChanged |=
7997         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
7998 
7999   // Build up a worklist of inner-loops to vectorize. This is necessary as
8000   // the act of vectorizing or partially unrolling a loop creates new loops
8001   // and can invalidate iterators across the loops.
8002   SmallVector<Loop *, 8> Worklist;
8003 
8004   for (Loop *L : *LI)
8005     collectSupportedLoops(*L, LI, ORE, Worklist);
8006 
8007   LoopsAnalyzed += Worklist.size();
8008 
8009   // Now walk the identified inner loops.
8010   while (!Worklist.empty()) {
8011     Loop *L = Worklist.pop_back_val();
8012 
8013     // For the inner loops we actually process, form LCSSA to simplify the
8014     // transform.
8015     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
8016 
8017     Changed |= CFGChanged |= processLoop(L);
8018   }
8019 
8020   // Process each loop nest in the function.
8021   return LoopVectorizeResult(Changed, CFGChanged);
8022 }
8023 
8024 PreservedAnalyses LoopVectorizePass::run(Function &F,
8025                                          FunctionAnalysisManager &AM) {
8026     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
8027     auto &LI = AM.getResult<LoopAnalysis>(F);
8028     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
8029     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
8030     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
8031     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
8032     auto &AA = AM.getResult<AAManager>(F);
8033     auto &AC = AM.getResult<AssumptionAnalysis>(F);
8034     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
8035     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8036     MemorySSA *MSSA = EnableMSSALoopDependency
8037                           ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
8038                           : nullptr;
8039 
8040     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
8041     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
8042         [&](Loop &L) -> const LoopAccessInfo & {
8043       LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA};
8044       return LAM.getResult<LoopAccessAnalysis>(L, AR);
8045     };
8046     const ModuleAnalysisManager &MAM =
8047         AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
8048     ProfileSummaryInfo *PSI =
8049         MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
8050     LoopVectorizeResult Result =
8051         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
8052     if (!Result.MadeAnyChange)
8053       return PreservedAnalyses::all();
8054     PreservedAnalyses PA;
8055 
8056     // We currently do not preserve loopinfo/dominator analyses with outer loop
8057     // vectorization. Until this is addressed, mark these analyses as preserved
8058     // only for non-VPlan-native path.
8059     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
8060     if (!EnableVPlanNativePath) {
8061       PA.preserve<LoopAnalysis>();
8062       PA.preserve<DominatorTreeAnalysis>();
8063     }
8064     PA.preserve<BasicAA>();
8065     PA.preserve<GlobalsAA>();
8066     if (!Result.MadeCFGChange)
8067       PA.preserveSet<CFGAnalyses>();
8068     return PA;
8069 }
8070