1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanTransforms.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 90 #include "llvm/Analysis/ProfileSummaryInfo.h" 91 #include "llvm/Analysis/ScalarEvolution.h" 92 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 93 #include "llvm/Analysis/TargetLibraryInfo.h" 94 #include "llvm/Analysis/TargetTransformInfo.h" 95 #include "llvm/Analysis/ValueTracking.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/Metadata.h" 116 #include "llvm/IR/Module.h" 117 #include "llvm/IR/Operator.h" 118 #include "llvm/IR/PatternMatch.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <functional> 147 #include <iterator> 148 #include <limits> 149 #include <map> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 #ifndef NDEBUG 161 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 162 #endif 163 164 /// @{ 165 /// Metadata attribute names 166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 167 const char LLVMLoopVectorizeFollowupVectorized[] = 168 "llvm.loop.vectorize.followup_vectorized"; 169 const char LLVMLoopVectorizeFollowupEpilogue[] = 170 "llvm.loop.vectorize.followup_epilogue"; 171 /// @} 172 173 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 176 177 static cl::opt<bool> EnableEpilogueVectorization( 178 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 179 cl::desc("Enable vectorization of epilogue loops.")); 180 181 static cl::opt<unsigned> EpilogueVectorizationForceVF( 182 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 183 cl::desc("When epilogue vectorization is enabled, and a value greater than " 184 "1 is specified, forces the given VF for all applicable epilogue " 185 "loops.")); 186 187 static cl::opt<unsigned> EpilogueVectorizationMinVF( 188 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 189 cl::desc("Only loops with vectorization factor equal to or larger than " 190 "the specified value are considered for epilogue vectorization.")); 191 192 /// Loops with a known constant trip count below this number are vectorized only 193 /// if no scalar iteration overheads are incurred. 194 static cl::opt<unsigned> TinyTripCountVectorThreshold( 195 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 196 cl::desc("Loops with a constant trip count that is smaller than this " 197 "value are vectorized only if no scalar iteration overheads " 198 "are incurred.")); 199 200 static cl::opt<unsigned> VectorizeMemoryCheckThreshold( 201 "vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 202 cl::desc("The maximum allowed number of runtime memory checks")); 203 204 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 205 // that predication is preferred, and this lists all options. I.e., the 206 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 207 // and predicate the instructions accordingly. If tail-folding fails, there are 208 // different fallback strategies depending on these values: 209 namespace PreferPredicateTy { 210 enum Option { 211 ScalarEpilogue = 0, 212 PredicateElseScalarEpilogue, 213 PredicateOrDontVectorize 214 }; 215 } // namespace PreferPredicateTy 216 217 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 218 "prefer-predicate-over-epilogue", 219 cl::init(PreferPredicateTy::ScalarEpilogue), 220 cl::Hidden, 221 cl::desc("Tail-folding and predication preferences over creating a scalar " 222 "epilogue loop."), 223 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 224 "scalar-epilogue", 225 "Don't tail-predicate loops, create scalar epilogue"), 226 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 227 "predicate-else-scalar-epilogue", 228 "prefer tail-folding, create scalar epilogue if tail " 229 "folding fails."), 230 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 231 "predicate-dont-vectorize", 232 "prefers tail-folding, don't attempt vectorization if " 233 "tail-folding fails."))); 234 235 static cl::opt<bool> MaximizeBandwidth( 236 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 237 cl::desc("Maximize bandwidth when selecting vectorization factor which " 238 "will be determined by the smallest type in loop.")); 239 240 static cl::opt<bool> EnableInterleavedMemAccesses( 241 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 242 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 243 244 /// An interleave-group may need masking if it resides in a block that needs 245 /// predication, or in order to mask away gaps. 246 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 247 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 248 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 249 250 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 251 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 252 cl::desc("We don't interleave loops with a estimated constant trip count " 253 "below this number")); 254 255 static cl::opt<unsigned> ForceTargetNumScalarRegs( 256 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 257 cl::desc("A flag that overrides the target's number of scalar registers.")); 258 259 static cl::opt<unsigned> ForceTargetNumVectorRegs( 260 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 261 cl::desc("A flag that overrides the target's number of vector registers.")); 262 263 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 264 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 265 cl::desc("A flag that overrides the target's max interleave factor for " 266 "scalar loops.")); 267 268 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 269 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 270 cl::desc("A flag that overrides the target's max interleave factor for " 271 "vectorized loops.")); 272 273 static cl::opt<unsigned> ForceTargetInstructionCost( 274 "force-target-instruction-cost", cl::init(0), cl::Hidden, 275 cl::desc("A flag that overrides the target's expected cost for " 276 "an instruction to a single constant value. Mostly " 277 "useful for getting consistent testing.")); 278 279 static cl::opt<bool> ForceTargetSupportsScalableVectors( 280 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 281 cl::desc( 282 "Pretend that scalable vectors are supported, even if the target does " 283 "not support them. This flag should only be used for testing.")); 284 285 static cl::opt<unsigned> SmallLoopCost( 286 "small-loop-cost", cl::init(20), cl::Hidden, 287 cl::desc( 288 "The cost of a loop that is considered 'small' by the interleaver.")); 289 290 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 291 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 292 cl::desc("Enable the use of the block frequency analysis to access PGO " 293 "heuristics minimizing code growth in cold regions and being more " 294 "aggressive in hot regions.")); 295 296 // Runtime interleave loops for load/store throughput. 297 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 298 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 299 cl::desc( 300 "Enable runtime interleaving until load/store ports are saturated")); 301 302 /// Interleave small loops with scalar reductions. 303 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 304 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 305 cl::desc("Enable interleaving for loops with small iteration counts that " 306 "contain scalar reductions to expose ILP.")); 307 308 /// The number of stores in a loop that are allowed to need predication. 309 static cl::opt<unsigned> NumberOfStoresToPredicate( 310 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 311 cl::desc("Max number of stores to be predicated behind an if.")); 312 313 static cl::opt<bool> EnableIndVarRegisterHeur( 314 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 315 cl::desc("Count the induction variable only once when interleaving")); 316 317 static cl::opt<bool> EnableCondStoresVectorization( 318 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 319 cl::desc("Enable if predication of stores during vectorization.")); 320 321 static cl::opt<unsigned> MaxNestedScalarReductionIC( 322 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 323 cl::desc("The maximum interleave count to use when interleaving a scalar " 324 "reduction in a nested loop.")); 325 326 static cl::opt<bool> 327 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 328 cl::Hidden, 329 cl::desc("Prefer in-loop vector reductions, " 330 "overriding the targets preference.")); 331 332 static cl::opt<bool> ForceOrderedReductions( 333 "force-ordered-reductions", cl::init(false), cl::Hidden, 334 cl::desc("Enable the vectorisation of loops with in-order (strict) " 335 "FP reductions")); 336 337 static cl::opt<bool> PreferPredicatedReductionSelect( 338 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 339 cl::desc( 340 "Prefer predicating a reduction operation over an after loop select.")); 341 342 cl::opt<bool> EnableVPlanNativePath( 343 "enable-vplan-native-path", cl::init(false), cl::Hidden, 344 cl::desc("Enable VPlan-native vectorization path with " 345 "support for outer loop vectorization.")); 346 347 // This flag enables the stress testing of the VPlan H-CFG construction in the 348 // VPlan-native vectorization path. It must be used in conjuction with 349 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 350 // verification of the H-CFGs built. 351 static cl::opt<bool> VPlanBuildStressTest( 352 "vplan-build-stress-test", cl::init(false), cl::Hidden, 353 cl::desc( 354 "Build VPlan for every supported loop nest in the function and bail " 355 "out right after the build (stress test the VPlan H-CFG construction " 356 "in the VPlan-native vectorization path).")); 357 358 cl::opt<bool> llvm::EnableLoopInterleaving( 359 "interleave-loops", cl::init(true), cl::Hidden, 360 cl::desc("Enable loop interleaving in Loop vectorization passes")); 361 cl::opt<bool> llvm::EnableLoopVectorization( 362 "vectorize-loops", cl::init(true), cl::Hidden, 363 cl::desc("Run the Loop vectorization passes")); 364 365 cl::opt<bool> PrintVPlansInDotFormat( 366 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 367 cl::desc("Use dot format instead of plain text when dumping VPlans")); 368 369 /// A helper function that returns true if the given type is irregular. The 370 /// type is irregular if its allocated size doesn't equal the store size of an 371 /// element of the corresponding vector type. 372 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 373 // Determine if an array of N elements of type Ty is "bitcast compatible" 374 // with a <N x Ty> vector. 375 // This is only true if there is no padding between the array elements. 376 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 377 } 378 379 /// A helper function that returns the reciprocal of the block probability of 380 /// predicated blocks. If we return X, we are assuming the predicated block 381 /// will execute once for every X iterations of the loop header. 382 /// 383 /// TODO: We should use actual block probability here, if available. Currently, 384 /// we always assume predicated blocks have a 50% chance of executing. 385 static unsigned getReciprocalPredBlockProb() { return 2; } 386 387 /// A helper function that returns an integer or floating-point constant with 388 /// value C. 389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 390 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 391 : ConstantFP::get(Ty, C); 392 } 393 394 /// Returns "best known" trip count for the specified loop \p L as defined by 395 /// the following procedure: 396 /// 1) Returns exact trip count if it is known. 397 /// 2) Returns expected trip count according to profile data if any. 398 /// 3) Returns upper bound estimate if it is known. 399 /// 4) Returns None if all of the above failed. 400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 401 // Check if exact trip count is known. 402 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 403 return ExpectedTC; 404 405 // Check if there is an expected trip count available from profile data. 406 if (LoopVectorizeWithBlockFrequency) 407 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 408 return EstimatedTC; 409 410 // Check if upper bound estimate is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 412 return ExpectedTC; 413 414 return None; 415 } 416 417 // Forward declare GeneratedRTChecks. 418 class GeneratedRTChecks; 419 420 namespace llvm { 421 422 AnalysisKey ShouldRunExtraVectorPasses::Key; 423 424 /// InnerLoopVectorizer vectorizes loops which contain only one basic 425 /// block to a specified vectorization factor (VF). 426 /// This class performs the widening of scalars into vectors, or multiple 427 /// scalars. This class also implements the following features: 428 /// * It inserts an epilogue loop for handling loops that don't have iteration 429 /// counts that are known to be a multiple of the vectorization factor. 430 /// * It handles the code generation for reduction variables. 431 /// * Scalarization (implementation using scalars) of un-vectorizable 432 /// instructions. 433 /// InnerLoopVectorizer does not perform any vectorization-legality 434 /// checks, and relies on the caller to check for the different legality 435 /// aspects. The InnerLoopVectorizer relies on the 436 /// LoopVectorizationLegality class to provide information about the induction 437 /// and reduction variables that were found to a given vectorization factor. 438 class InnerLoopVectorizer { 439 public: 440 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 441 LoopInfo *LI, DominatorTree *DT, 442 const TargetLibraryInfo *TLI, 443 const TargetTransformInfo *TTI, AssumptionCache *AC, 444 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 445 ElementCount MinProfitableTripCount, 446 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 447 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 448 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 449 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 450 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 451 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 452 PSI(PSI), RTChecks(RTChecks) { 453 // Query this against the original loop and save it here because the profile 454 // of the original loop header may change as the transformation happens. 455 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 456 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 457 458 if (MinProfitableTripCount.isZero()) 459 this->MinProfitableTripCount = VecWidth; 460 else 461 this->MinProfitableTripCount = MinProfitableTripCount; 462 } 463 464 virtual ~InnerLoopVectorizer() = default; 465 466 /// Create a new empty loop that will contain vectorized instructions later 467 /// on, while the old loop will be used as the scalar remainder. Control flow 468 /// is generated around the vectorized (and scalar epilogue) loops consisting 469 /// of various checks and bypasses. Return the pre-header block of the new 470 /// loop and the start value for the canonical induction, if it is != 0. The 471 /// latter is the case when vectorizing the epilogue loop. In the case of 472 /// epilogue vectorization, this function is overriden to handle the more 473 /// complex control flow around the loops. 474 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 475 476 /// Widen a single call instruction within the innermost loop. 477 void widenCallInstruction(CallInst &CI, VPValue *Def, VPUser &ArgOperands, 478 VPTransformState &State); 479 480 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 481 void fixVectorizedLoop(VPTransformState &State, VPlan &Plan); 482 483 // Return true if any runtime check is added. 484 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 485 486 /// A type for vectorized values in the new loop. Each value from the 487 /// original loop, when vectorized, is represented by UF vector values in the 488 /// new unrolled loop, where UF is the unroll factor. 489 using VectorParts = SmallVector<Value *, 2>; 490 491 /// A helper function to scalarize a single Instruction in the innermost loop. 492 /// Generates a sequence of scalar instances for each lane between \p MinLane 493 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 494 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 495 /// Instr's operands. 496 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 497 const VPIteration &Instance, bool IfPredicateInstr, 498 VPTransformState &State); 499 500 /// Construct the vector value of a scalarized value \p V one lane at a time. 501 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 502 VPTransformState &State); 503 504 /// Try to vectorize interleaved access group \p Group with the base address 505 /// given in \p Addr, optionally masking the vector operations if \p 506 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 507 /// values in the vectorized loop. 508 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 509 ArrayRef<VPValue *> VPDefs, 510 VPTransformState &State, VPValue *Addr, 511 ArrayRef<VPValue *> StoredValues, 512 VPValue *BlockInMask = nullptr); 513 514 /// Fix the non-induction PHIs in \p Plan. 515 void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State); 516 517 /// Returns true if the reordering of FP operations is not allowed, but we are 518 /// able to vectorize with strict in-order reductions for the given RdxDesc. 519 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 520 521 /// Create a broadcast instruction. This method generates a broadcast 522 /// instruction (shuffle) for loop invariant values and for the induction 523 /// value. If this is the induction variable then we extend it to N, N+1, ... 524 /// this is needed because each iteration in the loop corresponds to a SIMD 525 /// element. 526 virtual Value *getBroadcastInstrs(Value *V); 527 528 // Returns the resume value (bc.merge.rdx) for a reduction as 529 // generated by fixReduction. 530 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 531 532 protected: 533 friend class LoopVectorizationPlanner; 534 535 /// A small list of PHINodes. 536 using PhiVector = SmallVector<PHINode *, 4>; 537 538 /// A type for scalarized values in the new loop. Each value from the 539 /// original loop, when scalarized, is represented by UF x VF scalar values 540 /// in the new unrolled loop, where UF is the unroll factor and VF is the 541 /// vectorization factor. 542 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 543 544 /// Set up the values of the IVs correctly when exiting the vector loop. 545 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 546 Value *VectorTripCount, Value *EndValue, 547 BasicBlock *MiddleBlock, BasicBlock *VectorHeader, 548 VPlan &Plan); 549 550 /// Handle all cross-iteration phis in the header. 551 void fixCrossIterationPHIs(VPTransformState &State); 552 553 /// Create the exit value of first order recurrences in the middle block and 554 /// update their users. 555 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 556 VPTransformState &State); 557 558 /// Create code for the loop exit value of the reduction. 559 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 560 561 /// Clear NSW/NUW flags from reduction instructions if necessary. 562 void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 563 VPTransformState &State); 564 565 /// Iteratively sink the scalarized operands of a predicated instruction into 566 /// the block that was created for it. 567 void sinkScalarOperands(Instruction *PredInst); 568 569 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 570 /// represented as. 571 void truncateToMinimalBitwidths(VPTransformState &State); 572 573 /// Returns (and creates if needed) the original loop trip count. 574 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 575 576 /// Returns (and creates if needed) the trip count of the widened loop. 577 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 578 579 /// Returns a bitcasted value to the requested vector type. 580 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 581 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 582 const DataLayout &DL); 583 584 /// Emit a bypass check to see if the vector trip count is zero, including if 585 /// it overflows. 586 void emitIterationCountCheck(BasicBlock *Bypass); 587 588 /// Emit a bypass check to see if all of the SCEV assumptions we've 589 /// had to make are correct. Returns the block containing the checks or 590 /// nullptr if no checks have been added. 591 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 592 593 /// Emit bypass checks to check any memory assumptions we may have made. 594 /// Returns the block containing the checks or nullptr if no checks have been 595 /// added. 596 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 597 598 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 599 /// vector loop preheader, middle block and scalar preheader. 600 void createVectorLoopSkeleton(StringRef Prefix); 601 602 /// Create new phi nodes for the induction variables to resume iteration count 603 /// in the scalar epilogue, from where the vectorized loop left off. 604 /// In cases where the loop skeleton is more complicated (eg. epilogue 605 /// vectorization) and the resume values can come from an additional bypass 606 /// block, the \p AdditionalBypass pair provides information about the bypass 607 /// block and the end value on the edge from bypass to this loop. 608 void createInductionResumeValues( 609 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 610 611 /// Complete the loop skeleton by adding debug MDs, creating appropriate 612 /// conditional branches in the middle block, preparing the builder and 613 /// running the verifier. Return the preheader of the completed vector loop. 614 BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID); 615 616 /// Collect poison-generating recipes that may generate a poison value that is 617 /// used after vectorization, even when their operands are not poison. Those 618 /// recipes meet the following conditions: 619 /// * Contribute to the address computation of a recipe generating a widen 620 /// memory load/store (VPWidenMemoryInstructionRecipe or 621 /// VPInterleaveRecipe). 622 /// * Such a widen memory load/store has at least one underlying Instruction 623 /// that is in a basic block that needs predication and after vectorization 624 /// the generated instruction won't be predicated. 625 void collectPoisonGeneratingRecipes(VPTransformState &State); 626 627 /// Allow subclasses to override and print debug traces before/after vplan 628 /// execution, when trace information is requested. 629 virtual void printDebugTracesAtStart(){}; 630 virtual void printDebugTracesAtEnd(){}; 631 632 /// The original loop. 633 Loop *OrigLoop; 634 635 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 636 /// dynamic knowledge to simplify SCEV expressions and converts them to a 637 /// more usable form. 638 PredicatedScalarEvolution &PSE; 639 640 /// Loop Info. 641 LoopInfo *LI; 642 643 /// Dominator Tree. 644 DominatorTree *DT; 645 646 /// Alias Analysis. 647 AAResults *AA; 648 649 /// Target Library Info. 650 const TargetLibraryInfo *TLI; 651 652 /// Target Transform Info. 653 const TargetTransformInfo *TTI; 654 655 /// Assumption Cache. 656 AssumptionCache *AC; 657 658 /// Interface to emit optimization remarks. 659 OptimizationRemarkEmitter *ORE; 660 661 /// The vectorization SIMD factor to use. Each vector will have this many 662 /// vector elements. 663 ElementCount VF; 664 665 ElementCount MinProfitableTripCount; 666 667 /// The vectorization unroll factor to use. Each scalar is vectorized to this 668 /// many different vector instructions. 669 unsigned UF; 670 671 /// The builder that we use 672 IRBuilder<> Builder; 673 674 // --- Vectorization state --- 675 676 /// The vector-loop preheader. 677 BasicBlock *LoopVectorPreHeader; 678 679 /// The scalar-loop preheader. 680 BasicBlock *LoopScalarPreHeader; 681 682 /// Middle Block between the vector and the scalar. 683 BasicBlock *LoopMiddleBlock; 684 685 /// The unique ExitBlock of the scalar loop if one exists. Note that 686 /// there can be multiple exiting edges reaching this block. 687 BasicBlock *LoopExitBlock; 688 689 /// The scalar loop body. 690 BasicBlock *LoopScalarBody; 691 692 /// A list of all bypass blocks. The first block is the entry of the loop. 693 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 694 695 /// Store instructions that were predicated. 696 SmallVector<Instruction *, 4> PredicatedInstructions; 697 698 /// Trip count of the original loop. 699 Value *TripCount = nullptr; 700 701 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 702 Value *VectorTripCount = nullptr; 703 704 /// The legality analysis. 705 LoopVectorizationLegality *Legal; 706 707 /// The profitablity analysis. 708 LoopVectorizationCostModel *Cost; 709 710 // Record whether runtime checks are added. 711 bool AddedSafetyChecks = false; 712 713 // Holds the end values for each induction variable. We save the end values 714 // so we can later fix-up the external users of the induction variables. 715 DenseMap<PHINode *, Value *> IVEndValues; 716 717 /// BFI and PSI are used to check for profile guided size optimizations. 718 BlockFrequencyInfo *BFI; 719 ProfileSummaryInfo *PSI; 720 721 // Whether this loop should be optimized for size based on profile guided size 722 // optimizatios. 723 bool OptForSizeBasedOnProfile; 724 725 /// Structure to hold information about generated runtime checks, responsible 726 /// for cleaning the checks, if vectorization turns out unprofitable. 727 GeneratedRTChecks &RTChecks; 728 729 // Holds the resume values for reductions in the loops, used to set the 730 // correct start value of reduction PHIs when vectorizing the epilogue. 731 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 732 ReductionResumeValues; 733 }; 734 735 class InnerLoopUnroller : public InnerLoopVectorizer { 736 public: 737 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 738 LoopInfo *LI, DominatorTree *DT, 739 const TargetLibraryInfo *TLI, 740 const TargetTransformInfo *TTI, AssumptionCache *AC, 741 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 742 LoopVectorizationLegality *LVL, 743 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 744 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 745 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 746 ElementCount::getFixed(1), 747 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 748 BFI, PSI, Check) {} 749 750 private: 751 Value *getBroadcastInstrs(Value *V) override; 752 }; 753 754 /// Encapsulate information regarding vectorization of a loop and its epilogue. 755 /// This information is meant to be updated and used across two stages of 756 /// epilogue vectorization. 757 struct EpilogueLoopVectorizationInfo { 758 ElementCount MainLoopVF = ElementCount::getFixed(0); 759 unsigned MainLoopUF = 0; 760 ElementCount EpilogueVF = ElementCount::getFixed(0); 761 unsigned EpilogueUF = 0; 762 BasicBlock *MainLoopIterationCountCheck = nullptr; 763 BasicBlock *EpilogueIterationCountCheck = nullptr; 764 BasicBlock *SCEVSafetyCheck = nullptr; 765 BasicBlock *MemSafetyCheck = nullptr; 766 Value *TripCount = nullptr; 767 Value *VectorTripCount = nullptr; 768 769 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 770 ElementCount EVF, unsigned EUF) 771 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 772 assert(EUF == 1 && 773 "A high UF for the epilogue loop is likely not beneficial."); 774 } 775 }; 776 777 /// An extension of the inner loop vectorizer that creates a skeleton for a 778 /// vectorized loop that has its epilogue (residual) also vectorized. 779 /// The idea is to run the vplan on a given loop twice, firstly to setup the 780 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 781 /// from the first step and vectorize the epilogue. This is achieved by 782 /// deriving two concrete strategy classes from this base class and invoking 783 /// them in succession from the loop vectorizer planner. 784 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 785 public: 786 InnerLoopAndEpilogueVectorizer( 787 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 788 DominatorTree *DT, const TargetLibraryInfo *TLI, 789 const TargetTransformInfo *TTI, AssumptionCache *AC, 790 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 791 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 792 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 793 GeneratedRTChecks &Checks) 794 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 795 EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL, 796 CM, BFI, PSI, Checks), 797 EPI(EPI) {} 798 799 // Override this function to handle the more complex control flow around the 800 // three loops. 801 std::pair<BasicBlock *, Value *> 802 createVectorizedLoopSkeleton() final override { 803 return createEpilogueVectorizedLoopSkeleton(); 804 } 805 806 /// The interface for creating a vectorized skeleton using one of two 807 /// different strategies, each corresponding to one execution of the vplan 808 /// as described above. 809 virtual std::pair<BasicBlock *, Value *> 810 createEpilogueVectorizedLoopSkeleton() = 0; 811 812 /// Holds and updates state information required to vectorize the main loop 813 /// and its epilogue in two separate passes. This setup helps us avoid 814 /// regenerating and recomputing runtime safety checks. It also helps us to 815 /// shorten the iteration-count-check path length for the cases where the 816 /// iteration count of the loop is so small that the main vector loop is 817 /// completely skipped. 818 EpilogueLoopVectorizationInfo &EPI; 819 }; 820 821 /// A specialized derived class of inner loop vectorizer that performs 822 /// vectorization of *main* loops in the process of vectorizing loops and their 823 /// epilogues. 824 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 825 public: 826 EpilogueVectorizerMainLoop( 827 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 828 DominatorTree *DT, const TargetLibraryInfo *TLI, 829 const TargetTransformInfo *TTI, AssumptionCache *AC, 830 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 831 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 832 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 833 GeneratedRTChecks &Check) 834 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 835 EPI, LVL, CM, BFI, PSI, Check) {} 836 /// Implements the interface for creating a vectorized skeleton using the 837 /// *main loop* strategy (ie the first pass of vplan execution). 838 std::pair<BasicBlock *, Value *> 839 createEpilogueVectorizedLoopSkeleton() final override; 840 841 protected: 842 /// Emits an iteration count bypass check once for the main loop (when \p 843 /// ForEpilogue is false) and once for the epilogue loop (when \p 844 /// ForEpilogue is true). 845 BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue); 846 void printDebugTracesAtStart() override; 847 void printDebugTracesAtEnd() override; 848 }; 849 850 // A specialized derived class of inner loop vectorizer that performs 851 // vectorization of *epilogue* loops in the process of vectorizing loops and 852 // their epilogues. 853 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 854 public: 855 EpilogueVectorizerEpilogueLoop( 856 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 857 DominatorTree *DT, const TargetLibraryInfo *TLI, 858 const TargetTransformInfo *TTI, AssumptionCache *AC, 859 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 860 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 861 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 862 GeneratedRTChecks &Checks) 863 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 864 EPI, LVL, CM, BFI, PSI, Checks) { 865 TripCount = EPI.TripCount; 866 } 867 /// Implements the interface for creating a vectorized skeleton using the 868 /// *epilogue loop* strategy (ie the second pass of vplan execution). 869 std::pair<BasicBlock *, Value *> 870 createEpilogueVectorizedLoopSkeleton() final override; 871 872 protected: 873 /// Emits an iteration count bypass check after the main vector loop has 874 /// finished to see if there are any iterations left to execute by either 875 /// the vector epilogue or the scalar epilogue. 876 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 877 BasicBlock *Bypass, 878 BasicBlock *Insert); 879 void printDebugTracesAtStart() override; 880 void printDebugTracesAtEnd() override; 881 }; 882 } // end namespace llvm 883 884 /// Look for a meaningful debug location on the instruction or it's 885 /// operands. 886 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 887 if (!I) 888 return I; 889 890 DebugLoc Empty; 891 if (I->getDebugLoc() != Empty) 892 return I; 893 894 for (Use &Op : I->operands()) { 895 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 896 if (OpInst->getDebugLoc() != Empty) 897 return OpInst; 898 } 899 900 return I; 901 } 902 903 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 904 /// is passed, the message relates to that particular instruction. 905 #ifndef NDEBUG 906 static void debugVectorizationMessage(const StringRef Prefix, 907 const StringRef DebugMsg, 908 Instruction *I) { 909 dbgs() << "LV: " << Prefix << DebugMsg; 910 if (I != nullptr) 911 dbgs() << " " << *I; 912 else 913 dbgs() << '.'; 914 dbgs() << '\n'; 915 } 916 #endif 917 918 /// Create an analysis remark that explains why vectorization failed 919 /// 920 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 921 /// RemarkName is the identifier for the remark. If \p I is passed it is an 922 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 923 /// the location of the remark. \return the remark object that can be 924 /// streamed to. 925 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 926 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 927 Value *CodeRegion = TheLoop->getHeader(); 928 DebugLoc DL = TheLoop->getStartLoc(); 929 930 if (I) { 931 CodeRegion = I->getParent(); 932 // If there is no debug location attached to the instruction, revert back to 933 // using the loop's. 934 if (I->getDebugLoc()) 935 DL = I->getDebugLoc(); 936 } 937 938 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 939 } 940 941 namespace llvm { 942 943 /// Return a value for Step multiplied by VF. 944 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 945 int64_t Step) { 946 assert(Ty->isIntegerTy() && "Expected an integer step"); 947 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 948 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 949 } 950 951 /// Return the runtime value for VF. 952 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 953 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 954 return VF.isScalable() ? B.CreateVScale(EC) : EC; 955 } 956 957 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 958 ElementCount VF) { 959 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 960 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 961 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 962 return B.CreateUIToFP(RuntimeVF, FTy); 963 } 964 965 void reportVectorizationFailure(const StringRef DebugMsg, 966 const StringRef OREMsg, const StringRef ORETag, 967 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 968 Instruction *I) { 969 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 970 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 971 ORE->emit( 972 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 973 << "loop not vectorized: " << OREMsg); 974 } 975 976 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 977 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 978 Instruction *I) { 979 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 980 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 981 ORE->emit( 982 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 983 << Msg); 984 } 985 986 } // end namespace llvm 987 988 #ifndef NDEBUG 989 /// \return string containing a file name and a line # for the given loop. 990 static std::string getDebugLocString(const Loop *L) { 991 std::string Result; 992 if (L) { 993 raw_string_ostream OS(Result); 994 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 995 LoopDbgLoc.print(OS); 996 else 997 // Just print the module name. 998 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 999 OS.flush(); 1000 } 1001 return Result; 1002 } 1003 #endif 1004 1005 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1006 VPTransformState &State) { 1007 1008 // Collect recipes in the backward slice of `Root` that may generate a poison 1009 // value that is used after vectorization. 1010 SmallPtrSet<VPRecipeBase *, 16> Visited; 1011 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1012 SmallVector<VPRecipeBase *, 16> Worklist; 1013 Worklist.push_back(Root); 1014 1015 // Traverse the backward slice of Root through its use-def chain. 1016 while (!Worklist.empty()) { 1017 VPRecipeBase *CurRec = Worklist.back(); 1018 Worklist.pop_back(); 1019 1020 if (!Visited.insert(CurRec).second) 1021 continue; 1022 1023 // Prune search if we find another recipe generating a widen memory 1024 // instruction. Widen memory instructions involved in address computation 1025 // will lead to gather/scatter instructions, which don't need to be 1026 // handled. 1027 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1028 isa<VPInterleaveRecipe>(CurRec) || 1029 isa<VPScalarIVStepsRecipe>(CurRec) || 1030 isa<VPCanonicalIVPHIRecipe>(CurRec) || 1031 isa<VPActiveLaneMaskPHIRecipe>(CurRec)) 1032 continue; 1033 1034 // This recipe contributes to the address computation of a widen 1035 // load/store. Collect recipe if its underlying instruction has 1036 // poison-generating flags. 1037 Instruction *Instr = CurRec->getUnderlyingInstr(); 1038 if (Instr && Instr->hasPoisonGeneratingFlags()) 1039 State.MayGeneratePoisonRecipes.insert(CurRec); 1040 1041 // Add new definitions to the worklist. 1042 for (VPValue *operand : CurRec->operands()) 1043 if (VPDef *OpDef = operand->getDef()) 1044 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1045 } 1046 }); 1047 1048 // Traverse all the recipes in the VPlan and collect the poison-generating 1049 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1050 // VPInterleaveRecipe. 1051 auto Iter = depth_first( 1052 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1053 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1054 for (VPRecipeBase &Recipe : *VPBB) { 1055 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1056 Instruction &UnderlyingInstr = WidenRec->getIngredient(); 1057 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1058 if (AddrDef && WidenRec->isConsecutive() && 1059 Legal->blockNeedsPredication(UnderlyingInstr.getParent())) 1060 collectPoisonGeneratingInstrsInBackwardSlice( 1061 cast<VPRecipeBase>(AddrDef)); 1062 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1063 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1064 if (AddrDef) { 1065 // Check if any member of the interleave group needs predication. 1066 const InterleaveGroup<Instruction> *InterGroup = 1067 InterleaveRec->getInterleaveGroup(); 1068 bool NeedPredication = false; 1069 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1070 I < NumMembers; ++I) { 1071 Instruction *Member = InterGroup->getMember(I); 1072 if (Member) 1073 NeedPredication |= 1074 Legal->blockNeedsPredication(Member->getParent()); 1075 } 1076 1077 if (NeedPredication) 1078 collectPoisonGeneratingInstrsInBackwardSlice( 1079 cast<VPRecipeBase>(AddrDef)); 1080 } 1081 } 1082 } 1083 } 1084 } 1085 1086 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1087 const RecurrenceDescriptor &RdxDesc) { 1088 auto It = ReductionResumeValues.find(&RdxDesc); 1089 assert(It != ReductionResumeValues.end() && 1090 "Expected to find a resume value for the reduction."); 1091 return It->second; 1092 } 1093 1094 namespace llvm { 1095 1096 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1097 // lowered. 1098 enum ScalarEpilogueLowering { 1099 1100 // The default: allowing scalar epilogues. 1101 CM_ScalarEpilogueAllowed, 1102 1103 // Vectorization with OptForSize: don't allow epilogues. 1104 CM_ScalarEpilogueNotAllowedOptSize, 1105 1106 // A special case of vectorisation with OptForSize: loops with a very small 1107 // trip count are considered for vectorization under OptForSize, thereby 1108 // making sure the cost of their loop body is dominant, free of runtime 1109 // guards and scalar iteration overheads. 1110 CM_ScalarEpilogueNotAllowedLowTripLoop, 1111 1112 // Loop hint predicate indicating an epilogue is undesired. 1113 CM_ScalarEpilogueNotNeededUsePredicate, 1114 1115 // Directive indicating we must either tail fold or not vectorize 1116 CM_ScalarEpilogueNotAllowedUsePredicate 1117 }; 1118 1119 /// ElementCountComparator creates a total ordering for ElementCount 1120 /// for the purposes of using it in a set structure. 1121 struct ElementCountComparator { 1122 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1123 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1124 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1125 } 1126 }; 1127 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1128 1129 /// LoopVectorizationCostModel - estimates the expected speedups due to 1130 /// vectorization. 1131 /// In many cases vectorization is not profitable. This can happen because of 1132 /// a number of reasons. In this class we mainly attempt to predict the 1133 /// expected speedup/slowdowns due to the supported instruction set. We use the 1134 /// TargetTransformInfo to query the different backends for the cost of 1135 /// different operations. 1136 class LoopVectorizationCostModel { 1137 public: 1138 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1139 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1140 LoopVectorizationLegality *Legal, 1141 const TargetTransformInfo &TTI, 1142 const TargetLibraryInfo *TLI, DemandedBits *DB, 1143 AssumptionCache *AC, 1144 OptimizationRemarkEmitter *ORE, const Function *F, 1145 const LoopVectorizeHints *Hints, 1146 InterleavedAccessInfo &IAI) 1147 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1148 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1149 Hints(Hints), InterleaveInfo(IAI) {} 1150 1151 /// \return An upper bound for the vectorization factors (both fixed and 1152 /// scalable). If the factors are 0, vectorization and interleaving should be 1153 /// avoided up front. 1154 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1155 1156 /// \return True if runtime checks are required for vectorization, and false 1157 /// otherwise. 1158 bool runtimeChecksRequired(); 1159 1160 /// \return The most profitable vectorization factor and the cost of that VF. 1161 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1162 /// then this vectorization factor will be selected if vectorization is 1163 /// possible. 1164 VectorizationFactor 1165 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1166 1167 VectorizationFactor 1168 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1169 const LoopVectorizationPlanner &LVP); 1170 1171 /// Setup cost-based decisions for user vectorization factor. 1172 /// \return true if the UserVF is a feasible VF to be chosen. 1173 bool selectUserVectorizationFactor(ElementCount UserVF) { 1174 collectUniformsAndScalars(UserVF); 1175 collectInstsToScalarize(UserVF); 1176 return expectedCost(UserVF).first.isValid(); 1177 } 1178 1179 /// \return The size (in bits) of the smallest and widest types in the code 1180 /// that needs to be vectorized. We ignore values that remain scalar such as 1181 /// 64 bit loop indices. 1182 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1183 1184 /// \return The desired interleave count. 1185 /// If interleave count has been specified by metadata it will be returned. 1186 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1187 /// are the selected vectorization factor and the cost of the selected VF. 1188 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1189 1190 /// Memory access instruction may be vectorized in more than one way. 1191 /// Form of instruction after vectorization depends on cost. 1192 /// This function takes cost-based decisions for Load/Store instructions 1193 /// and collects them in a map. This decisions map is used for building 1194 /// the lists of loop-uniform and loop-scalar instructions. 1195 /// The calculated cost is saved with widening decision in order to 1196 /// avoid redundant calculations. 1197 void setCostBasedWideningDecision(ElementCount VF); 1198 1199 /// A struct that represents some properties of the register usage 1200 /// of a loop. 1201 struct RegisterUsage { 1202 /// Holds the number of loop invariant values that are used in the loop. 1203 /// The key is ClassID of target-provided register class. 1204 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1205 /// Holds the maximum number of concurrent live intervals in the loop. 1206 /// The key is ClassID of target-provided register class. 1207 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1208 }; 1209 1210 /// \return Returns information about the register usages of the loop for the 1211 /// given vectorization factors. 1212 SmallVector<RegisterUsage, 8> 1213 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1214 1215 /// Collect values we want to ignore in the cost model. 1216 void collectValuesToIgnore(); 1217 1218 /// Collect all element types in the loop for which widening is needed. 1219 void collectElementTypesForWidening(); 1220 1221 /// Split reductions into those that happen in the loop, and those that happen 1222 /// outside. In loop reductions are collected into InLoopReductionChains. 1223 void collectInLoopReductions(); 1224 1225 /// Returns true if we should use strict in-order reductions for the given 1226 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1227 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1228 /// of FP operations. 1229 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const { 1230 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1231 } 1232 1233 /// \returns The smallest bitwidth each instruction can be represented with. 1234 /// The vector equivalents of these instructions should be truncated to this 1235 /// type. 1236 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1237 return MinBWs; 1238 } 1239 1240 /// \returns True if it is more profitable to scalarize instruction \p I for 1241 /// vectorization factor \p VF. 1242 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1243 assert(VF.isVector() && 1244 "Profitable to scalarize relevant only for VF > 1."); 1245 1246 // Cost model is not run in the VPlan-native path - return conservative 1247 // result until this changes. 1248 if (EnableVPlanNativePath) 1249 return false; 1250 1251 auto Scalars = InstsToScalarize.find(VF); 1252 assert(Scalars != InstsToScalarize.end() && 1253 "VF not yet analyzed for scalarization profitability"); 1254 return Scalars->second.find(I) != Scalars->second.end(); 1255 } 1256 1257 /// Returns true if \p I is known to be uniform after vectorization. 1258 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1259 if (VF.isScalar()) 1260 return true; 1261 1262 // Cost model is not run in the VPlan-native path - return conservative 1263 // result until this changes. 1264 if (EnableVPlanNativePath) 1265 return false; 1266 1267 auto UniformsPerVF = Uniforms.find(VF); 1268 assert(UniformsPerVF != Uniforms.end() && 1269 "VF not yet analyzed for uniformity"); 1270 return UniformsPerVF->second.count(I); 1271 } 1272 1273 /// Returns true if \p I is known to be scalar after vectorization. 1274 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1275 if (VF.isScalar()) 1276 return true; 1277 1278 // Cost model is not run in the VPlan-native path - return conservative 1279 // result until this changes. 1280 if (EnableVPlanNativePath) 1281 return false; 1282 1283 auto ScalarsPerVF = Scalars.find(VF); 1284 assert(ScalarsPerVF != Scalars.end() && 1285 "Scalar values are not calculated for VF"); 1286 return ScalarsPerVF->second.count(I); 1287 } 1288 1289 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1290 /// for vectorization factor \p VF. 1291 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1292 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1293 !isProfitableToScalarize(I, VF) && 1294 !isScalarAfterVectorization(I, VF); 1295 } 1296 1297 /// Decision that was taken during cost calculation for memory instruction. 1298 enum InstWidening { 1299 CM_Unknown, 1300 CM_Widen, // For consecutive accesses with stride +1. 1301 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1302 CM_Interleave, 1303 CM_GatherScatter, 1304 CM_Scalarize 1305 }; 1306 1307 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1308 /// instruction \p I and vector width \p VF. 1309 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1310 InstructionCost Cost) { 1311 assert(VF.isVector() && "Expected VF >=2"); 1312 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1313 } 1314 1315 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1316 /// interleaving group \p Grp and vector width \p VF. 1317 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1318 ElementCount VF, InstWidening W, 1319 InstructionCost Cost) { 1320 assert(VF.isVector() && "Expected VF >=2"); 1321 /// Broadcast this decicion to all instructions inside the group. 1322 /// But the cost will be assigned to one instruction only. 1323 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1324 if (auto *I = Grp->getMember(i)) { 1325 if (Grp->getInsertPos() == I) 1326 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1327 else 1328 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1329 } 1330 } 1331 } 1332 1333 /// Return the cost model decision for the given instruction \p I and vector 1334 /// width \p VF. Return CM_Unknown if this instruction did not pass 1335 /// through the cost modeling. 1336 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1337 assert(VF.isVector() && "Expected VF to be a vector VF"); 1338 // Cost model is not run in the VPlan-native path - return conservative 1339 // result until this changes. 1340 if (EnableVPlanNativePath) 1341 return CM_GatherScatter; 1342 1343 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1344 auto Itr = WideningDecisions.find(InstOnVF); 1345 if (Itr == WideningDecisions.end()) 1346 return CM_Unknown; 1347 return Itr->second.first; 1348 } 1349 1350 /// Return the vectorization cost for the given instruction \p I and vector 1351 /// width \p VF. 1352 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1353 assert(VF.isVector() && "Expected VF >=2"); 1354 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1355 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1356 "The cost is not calculated"); 1357 return WideningDecisions[InstOnVF].second; 1358 } 1359 1360 /// Return True if instruction \p I is an optimizable truncate whose operand 1361 /// is an induction variable. Such a truncate will be removed by adding a new 1362 /// induction variable with the destination type. 1363 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1364 // If the instruction is not a truncate, return false. 1365 auto *Trunc = dyn_cast<TruncInst>(I); 1366 if (!Trunc) 1367 return false; 1368 1369 // Get the source and destination types of the truncate. 1370 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1371 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1372 1373 // If the truncate is free for the given types, return false. Replacing a 1374 // free truncate with an induction variable would add an induction variable 1375 // update instruction to each iteration of the loop. We exclude from this 1376 // check the primary induction variable since it will need an update 1377 // instruction regardless. 1378 Value *Op = Trunc->getOperand(0); 1379 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1380 return false; 1381 1382 // If the truncated value is not an induction variable, return false. 1383 return Legal->isInductionPhi(Op); 1384 } 1385 1386 /// Collects the instructions to scalarize for each predicated instruction in 1387 /// the loop. 1388 void collectInstsToScalarize(ElementCount VF); 1389 1390 /// Collect Uniform and Scalar values for the given \p VF. 1391 /// The sets depend on CM decision for Load/Store instructions 1392 /// that may be vectorized as interleave, gather-scatter or scalarized. 1393 void collectUniformsAndScalars(ElementCount VF) { 1394 // Do the analysis once. 1395 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1396 return; 1397 setCostBasedWideningDecision(VF); 1398 collectLoopUniforms(VF); 1399 collectLoopScalars(VF); 1400 } 1401 1402 /// Returns true if the target machine supports masked store operation 1403 /// for the given \p DataType and kind of access to \p Ptr. 1404 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1405 return Legal->isConsecutivePtr(DataType, Ptr) && 1406 TTI.isLegalMaskedStore(DataType, Alignment); 1407 } 1408 1409 /// Returns true if the target machine supports masked load operation 1410 /// for the given \p DataType and kind of access to \p Ptr. 1411 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1412 return Legal->isConsecutivePtr(DataType, Ptr) && 1413 TTI.isLegalMaskedLoad(DataType, Alignment); 1414 } 1415 1416 /// Returns true if the target machine can represent \p V as a masked gather 1417 /// or scatter operation. 1418 bool isLegalGatherOrScatter(Value *V, 1419 ElementCount VF = ElementCount::getFixed(1)) { 1420 bool LI = isa<LoadInst>(V); 1421 bool SI = isa<StoreInst>(V); 1422 if (!LI && !SI) 1423 return false; 1424 auto *Ty = getLoadStoreType(V); 1425 Align Align = getLoadStoreAlignment(V); 1426 if (VF.isVector()) 1427 Ty = VectorType::get(Ty, VF); 1428 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1429 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1430 } 1431 1432 /// Returns true if the target machine supports all of the reduction 1433 /// variables found for the given VF. 1434 bool canVectorizeReductions(ElementCount VF) const { 1435 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1436 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1437 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1438 })); 1439 } 1440 1441 /// Returns true if \p I is an instruction that will be scalarized with 1442 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1443 /// instructions include conditional stores and instructions that may divide 1444 /// by zero. 1445 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1446 1447 // Returns true if \p I is an instruction that will be predicated either 1448 // through scalar predication or masked load/store or masked gather/scatter. 1449 // \p VF is the vectorization factor that will be used to vectorize \p I. 1450 // Superset of instructions that return true for isScalarWithPredication. 1451 bool isPredicatedInst(Instruction *I, ElementCount VF) { 1452 // When we know the load's address is loop invariant and the instruction 1453 // in the original scalar loop was unconditionally executed then we 1454 // don't need to mark it as a predicated instruction. Tail folding may 1455 // introduce additional predication, but we're guaranteed to always have 1456 // at least one active lane. We call Legal->blockNeedsPredication here 1457 // because it doesn't query tail-folding. 1458 if (Legal->isUniformMemOp(*I) && isa<LoadInst>(I) && 1459 !Legal->blockNeedsPredication(I->getParent())) 1460 return false; 1461 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1462 return false; 1463 // Loads and stores that need some form of masked operation are predicated 1464 // instructions. 1465 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1466 return Legal->isMaskRequired(I); 1467 return isScalarWithPredication(I, VF); 1468 } 1469 1470 /// Returns true if \p I is a memory instruction with consecutive memory 1471 /// access that can be widened. 1472 bool 1473 memoryInstructionCanBeWidened(Instruction *I, 1474 ElementCount VF = ElementCount::getFixed(1)); 1475 1476 /// Returns true if \p I is a memory instruction in an interleaved-group 1477 /// of memory accesses that can be vectorized with wide vector loads/stores 1478 /// and shuffles. 1479 bool 1480 interleavedAccessCanBeWidened(Instruction *I, 1481 ElementCount VF = ElementCount::getFixed(1)); 1482 1483 /// Check if \p Instr belongs to any interleaved access group. 1484 bool isAccessInterleaved(Instruction *Instr) { 1485 return InterleaveInfo.isInterleaved(Instr); 1486 } 1487 1488 /// Get the interleaved access group that \p Instr belongs to. 1489 const InterleaveGroup<Instruction> * 1490 getInterleavedAccessGroup(Instruction *Instr) { 1491 return InterleaveInfo.getInterleaveGroup(Instr); 1492 } 1493 1494 /// Returns true if we're required to use a scalar epilogue for at least 1495 /// the final iteration of the original loop. 1496 bool requiresScalarEpilogue(ElementCount VF) const { 1497 if (!isScalarEpilogueAllowed()) 1498 return false; 1499 // If we might exit from anywhere but the latch, must run the exiting 1500 // iteration in scalar form. 1501 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1502 return true; 1503 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1504 } 1505 1506 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1507 /// loop hint annotation. 1508 bool isScalarEpilogueAllowed() const { 1509 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1510 } 1511 1512 /// Returns true if all loop blocks should be masked to fold tail loop. 1513 bool foldTailByMasking() const { return FoldTailByMasking; } 1514 1515 /// Returns true if were tail-folding and want to use the active lane mask 1516 /// for vector loop control flow. 1517 bool useActiveLaneMaskForControlFlow() const { 1518 return FoldTailByMasking && 1519 TTI.emitGetActiveLaneMask() == PredicationStyle::DataAndControlFlow; 1520 } 1521 1522 /// Returns true if the instructions in this block requires predication 1523 /// for any reason, e.g. because tail folding now requires a predicate 1524 /// or because the block in the original loop was predicated. 1525 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1526 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1527 } 1528 1529 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1530 /// nodes to the chain of instructions representing the reductions. Uses a 1531 /// MapVector to ensure deterministic iteration order. 1532 using ReductionChainMap = 1533 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1534 1535 /// Return the chain of instructions representing an inloop reduction. 1536 const ReductionChainMap &getInLoopReductionChains() const { 1537 return InLoopReductionChains; 1538 } 1539 1540 /// Returns true if the Phi is part of an inloop reduction. 1541 bool isInLoopReduction(PHINode *Phi) const { 1542 return InLoopReductionChains.count(Phi); 1543 } 1544 1545 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1546 /// with factor VF. Return the cost of the instruction, including 1547 /// scalarization overhead if it's needed. 1548 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1549 1550 /// Estimate cost of a call instruction CI if it were vectorized with factor 1551 /// VF. Return the cost of the instruction, including scalarization overhead 1552 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1553 /// scalarized - 1554 /// i.e. either vector version isn't available, or is too expensive. 1555 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1556 bool &NeedToScalarize) const; 1557 1558 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1559 /// that of B. 1560 bool isMoreProfitable(const VectorizationFactor &A, 1561 const VectorizationFactor &B) const; 1562 1563 /// Invalidates decisions already taken by the cost model. 1564 void invalidateCostModelingDecisions() { 1565 WideningDecisions.clear(); 1566 Uniforms.clear(); 1567 Scalars.clear(); 1568 } 1569 1570 /// Convenience function that returns the value of vscale_range iff 1571 /// vscale_range.min == vscale_range.max or otherwise returns the value 1572 /// returned by the corresponding TLI method. 1573 Optional<unsigned> getVScaleForTuning() const; 1574 1575 private: 1576 unsigned NumPredStores = 0; 1577 1578 /// \return An upper bound for the vectorization factors for both 1579 /// fixed and scalable vectorization, where the minimum-known number of 1580 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1581 /// disabled or unsupported, then the scalable part will be equal to 1582 /// ElementCount::getScalable(0). 1583 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1584 ElementCount UserVF, 1585 bool FoldTailByMasking); 1586 1587 /// \return the maximized element count based on the targets vector 1588 /// registers and the loop trip-count, but limited to a maximum safe VF. 1589 /// This is a helper function of computeFeasibleMaxVF. 1590 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1591 unsigned SmallestType, 1592 unsigned WidestType, 1593 ElementCount MaxSafeVF, 1594 bool FoldTailByMasking); 1595 1596 /// \return the maximum legal scalable VF, based on the safe max number 1597 /// of elements. 1598 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1599 1600 /// The vectorization cost is a combination of the cost itself and a boolean 1601 /// indicating whether any of the contributing operations will actually 1602 /// operate on vector values after type legalization in the backend. If this 1603 /// latter value is false, then all operations will be scalarized (i.e. no 1604 /// vectorization has actually taken place). 1605 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1606 1607 /// Returns the expected execution cost. The unit of the cost does 1608 /// not matter because we use the 'cost' units to compare different 1609 /// vector widths. The cost that is returned is *not* normalized by 1610 /// the factor width. If \p Invalid is not nullptr, this function 1611 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1612 /// each instruction that has an Invalid cost for the given VF. 1613 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1614 VectorizationCostTy 1615 expectedCost(ElementCount VF, 1616 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1617 1618 /// Returns the execution time cost of an instruction for a given vector 1619 /// width. Vector width of one means scalar. 1620 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1621 1622 /// The cost-computation logic from getInstructionCost which provides 1623 /// the vector type as an output parameter. 1624 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1625 Type *&VectorTy); 1626 1627 /// Return the cost of instructions in an inloop reduction pattern, if I is 1628 /// part of that pattern. 1629 Optional<InstructionCost> 1630 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1631 TTI::TargetCostKind CostKind); 1632 1633 /// Calculate vectorization cost of memory instruction \p I. 1634 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1635 1636 /// The cost computation for scalarized memory instruction. 1637 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1638 1639 /// The cost computation for interleaving group of memory instructions. 1640 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1641 1642 /// The cost computation for Gather/Scatter instruction. 1643 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1644 1645 /// The cost computation for widening instruction \p I with consecutive 1646 /// memory access. 1647 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1648 1649 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1650 /// Load: scalar load + broadcast. 1651 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1652 /// element) 1653 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1654 1655 /// Estimate the overhead of scalarizing an instruction. This is a 1656 /// convenience wrapper for the type-based getScalarizationOverhead API. 1657 InstructionCost getScalarizationOverhead(Instruction *I, 1658 ElementCount VF) const; 1659 1660 /// Returns whether the instruction is a load or store and will be a emitted 1661 /// as a vector operation. 1662 bool isConsecutiveLoadOrStore(Instruction *I); 1663 1664 /// Returns true if an artificially high cost for emulated masked memrefs 1665 /// should be used. 1666 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1667 1668 /// Map of scalar integer values to the smallest bitwidth they can be legally 1669 /// represented as. The vector equivalents of these values should be truncated 1670 /// to this type. 1671 MapVector<Instruction *, uint64_t> MinBWs; 1672 1673 /// A type representing the costs for instructions if they were to be 1674 /// scalarized rather than vectorized. The entries are Instruction-Cost 1675 /// pairs. 1676 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1677 1678 /// A set containing all BasicBlocks that are known to present after 1679 /// vectorization as a predicated block. 1680 DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>> 1681 PredicatedBBsAfterVectorization; 1682 1683 /// Records whether it is allowed to have the original scalar loop execute at 1684 /// least once. This may be needed as a fallback loop in case runtime 1685 /// aliasing/dependence checks fail, or to handle the tail/remainder 1686 /// iterations when the trip count is unknown or doesn't divide by the VF, 1687 /// or as a peel-loop to handle gaps in interleave-groups. 1688 /// Under optsize and when the trip count is very small we don't allow any 1689 /// iterations to execute in the scalar loop. 1690 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1691 1692 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1693 bool FoldTailByMasking = false; 1694 1695 /// A map holding scalar costs for different vectorization factors. The 1696 /// presence of a cost for an instruction in the mapping indicates that the 1697 /// instruction will be scalarized when vectorizing with the associated 1698 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1699 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1700 1701 /// Holds the instructions known to be uniform after vectorization. 1702 /// The data is collected per VF. 1703 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1704 1705 /// Holds the instructions known to be scalar after vectorization. 1706 /// The data is collected per VF. 1707 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1708 1709 /// Holds the instructions (address computations) that are forced to be 1710 /// scalarized. 1711 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1712 1713 /// PHINodes of the reductions that should be expanded in-loop along with 1714 /// their associated chains of reduction operations, in program order from top 1715 /// (PHI) to bottom 1716 ReductionChainMap InLoopReductionChains; 1717 1718 /// A Map of inloop reduction operations and their immediate chain operand. 1719 /// FIXME: This can be removed once reductions can be costed correctly in 1720 /// vplan. This was added to allow quick lookup to the inloop operations, 1721 /// without having to loop through InLoopReductionChains. 1722 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1723 1724 /// Returns the expected difference in cost from scalarizing the expression 1725 /// feeding a predicated instruction \p PredInst. The instructions to 1726 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1727 /// non-negative return value implies the expression will be scalarized. 1728 /// Currently, only single-use chains are considered for scalarization. 1729 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1730 ElementCount VF); 1731 1732 /// Collect the instructions that are uniform after vectorization. An 1733 /// instruction is uniform if we represent it with a single scalar value in 1734 /// the vectorized loop corresponding to each vector iteration. Examples of 1735 /// uniform instructions include pointer operands of consecutive or 1736 /// interleaved memory accesses. Note that although uniformity implies an 1737 /// instruction will be scalar, the reverse is not true. In general, a 1738 /// scalarized instruction will be represented by VF scalar values in the 1739 /// vectorized loop, each corresponding to an iteration of the original 1740 /// scalar loop. 1741 void collectLoopUniforms(ElementCount VF); 1742 1743 /// Collect the instructions that are scalar after vectorization. An 1744 /// instruction is scalar if it is known to be uniform or will be scalarized 1745 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1746 /// to the list if they are used by a load/store instruction that is marked as 1747 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1748 /// VF values in the vectorized loop, each corresponding to an iteration of 1749 /// the original scalar loop. 1750 void collectLoopScalars(ElementCount VF); 1751 1752 /// Keeps cost model vectorization decision and cost for instructions. 1753 /// Right now it is used for memory instructions only. 1754 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1755 std::pair<InstWidening, InstructionCost>>; 1756 1757 DecisionList WideningDecisions; 1758 1759 /// Returns true if \p V is expected to be vectorized and it needs to be 1760 /// extracted. 1761 bool needsExtract(Value *V, ElementCount VF) const { 1762 Instruction *I = dyn_cast<Instruction>(V); 1763 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1764 TheLoop->isLoopInvariant(I)) 1765 return false; 1766 1767 // Assume we can vectorize V (and hence we need extraction) if the 1768 // scalars are not computed yet. This can happen, because it is called 1769 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1770 // the scalars are collected. That should be a safe assumption in most 1771 // cases, because we check if the operands have vectorizable types 1772 // beforehand in LoopVectorizationLegality. 1773 return Scalars.find(VF) == Scalars.end() || 1774 !isScalarAfterVectorization(I, VF); 1775 }; 1776 1777 /// Returns a range containing only operands needing to be extracted. 1778 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1779 ElementCount VF) const { 1780 return SmallVector<Value *, 4>(make_filter_range( 1781 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1782 } 1783 1784 /// Determines if we have the infrastructure to vectorize loop \p L and its 1785 /// epilogue, assuming the main loop is vectorized by \p VF. 1786 bool isCandidateForEpilogueVectorization(const Loop &L, 1787 const ElementCount VF) const; 1788 1789 /// Returns true if epilogue vectorization is considered profitable, and 1790 /// false otherwise. 1791 /// \p VF is the vectorization factor chosen for the original loop. 1792 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1793 1794 public: 1795 /// The loop that we evaluate. 1796 Loop *TheLoop; 1797 1798 /// Predicated scalar evolution analysis. 1799 PredicatedScalarEvolution &PSE; 1800 1801 /// Loop Info analysis. 1802 LoopInfo *LI; 1803 1804 /// Vectorization legality. 1805 LoopVectorizationLegality *Legal; 1806 1807 /// Vector target information. 1808 const TargetTransformInfo &TTI; 1809 1810 /// Target Library Info. 1811 const TargetLibraryInfo *TLI; 1812 1813 /// Demanded bits analysis. 1814 DemandedBits *DB; 1815 1816 /// Assumption cache. 1817 AssumptionCache *AC; 1818 1819 /// Interface to emit optimization remarks. 1820 OptimizationRemarkEmitter *ORE; 1821 1822 const Function *TheFunction; 1823 1824 /// Loop Vectorize Hint. 1825 const LoopVectorizeHints *Hints; 1826 1827 /// The interleave access information contains groups of interleaved accesses 1828 /// with the same stride and close to each other. 1829 InterleavedAccessInfo &InterleaveInfo; 1830 1831 /// Values to ignore in the cost model. 1832 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1833 1834 /// Values to ignore in the cost model when VF > 1. 1835 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1836 1837 /// All element types found in the loop. 1838 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1839 1840 /// Profitable vector factors. 1841 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1842 }; 1843 } // end namespace llvm 1844 1845 /// Helper struct to manage generating runtime checks for vectorization. 1846 /// 1847 /// The runtime checks are created up-front in temporary blocks to allow better 1848 /// estimating the cost and un-linked from the existing IR. After deciding to 1849 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1850 /// temporary blocks are completely removed. 1851 class GeneratedRTChecks { 1852 /// Basic block which contains the generated SCEV checks, if any. 1853 BasicBlock *SCEVCheckBlock = nullptr; 1854 1855 /// The value representing the result of the generated SCEV checks. If it is 1856 /// nullptr, either no SCEV checks have been generated or they have been used. 1857 Value *SCEVCheckCond = nullptr; 1858 1859 /// Basic block which contains the generated memory runtime checks, if any. 1860 BasicBlock *MemCheckBlock = nullptr; 1861 1862 /// The value representing the result of the generated memory runtime checks. 1863 /// If it is nullptr, either no memory runtime checks have been generated or 1864 /// they have been used. 1865 Value *MemRuntimeCheckCond = nullptr; 1866 1867 DominatorTree *DT; 1868 LoopInfo *LI; 1869 TargetTransformInfo *TTI; 1870 1871 SCEVExpander SCEVExp; 1872 SCEVExpander MemCheckExp; 1873 1874 bool CostTooHigh = false; 1875 1876 public: 1877 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1878 TargetTransformInfo *TTI, const DataLayout &DL) 1879 : DT(DT), LI(LI), TTI(TTI), SCEVExp(SE, DL, "scev.check"), 1880 MemCheckExp(SE, DL, "scev.check") {} 1881 1882 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1883 /// accurately estimate the cost of the runtime checks. The blocks are 1884 /// un-linked from the IR and is added back during vector code generation. If 1885 /// there is no vector code generation, the check blocks are removed 1886 /// completely. 1887 void Create(Loop *L, const LoopAccessInfo &LAI, 1888 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) { 1889 1890 // Hard cutoff to limit compile-time increase in case a very large number of 1891 // runtime checks needs to be generated. 1892 // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to 1893 // profile info. 1894 CostTooHigh = 1895 LAI.getNumRuntimePointerChecks() > VectorizeMemoryCheckThreshold; 1896 if (CostTooHigh) 1897 return; 1898 1899 BasicBlock *LoopHeader = L->getHeader(); 1900 BasicBlock *Preheader = L->getLoopPreheader(); 1901 1902 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1903 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1904 // may be used by SCEVExpander. The blocks will be un-linked from their 1905 // predecessors and removed from LI & DT at the end of the function. 1906 if (!UnionPred.isAlwaysTrue()) { 1907 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1908 nullptr, "vector.scevcheck"); 1909 1910 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1911 &UnionPred, SCEVCheckBlock->getTerminator()); 1912 } 1913 1914 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1915 if (RtPtrChecking.Need) { 1916 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1917 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1918 "vector.memcheck"); 1919 1920 auto DiffChecks = RtPtrChecking.getDiffChecks(); 1921 if (DiffChecks) { 1922 Value *RuntimeVF = nullptr; 1923 MemRuntimeCheckCond = addDiffRuntimeChecks( 1924 MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp, 1925 [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) { 1926 if (!RuntimeVF) 1927 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF); 1928 return RuntimeVF; 1929 }, 1930 IC); 1931 } else { 1932 MemRuntimeCheckCond = 1933 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1934 RtPtrChecking.getChecks(), MemCheckExp); 1935 } 1936 assert(MemRuntimeCheckCond && 1937 "no RT checks generated although RtPtrChecking " 1938 "claimed checks are required"); 1939 } 1940 1941 if (!MemCheckBlock && !SCEVCheckBlock) 1942 return; 1943 1944 // Unhook the temporary block with the checks, update various places 1945 // accordingly. 1946 if (SCEVCheckBlock) 1947 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1948 if (MemCheckBlock) 1949 MemCheckBlock->replaceAllUsesWith(Preheader); 1950 1951 if (SCEVCheckBlock) { 1952 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1953 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1954 Preheader->getTerminator()->eraseFromParent(); 1955 } 1956 if (MemCheckBlock) { 1957 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1958 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1959 Preheader->getTerminator()->eraseFromParent(); 1960 } 1961 1962 DT->changeImmediateDominator(LoopHeader, Preheader); 1963 if (MemCheckBlock) { 1964 DT->eraseNode(MemCheckBlock); 1965 LI->removeBlock(MemCheckBlock); 1966 } 1967 if (SCEVCheckBlock) { 1968 DT->eraseNode(SCEVCheckBlock); 1969 LI->removeBlock(SCEVCheckBlock); 1970 } 1971 } 1972 1973 InstructionCost getCost() { 1974 if (SCEVCheckBlock || MemCheckBlock) 1975 LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n"); 1976 1977 if (CostTooHigh) { 1978 InstructionCost Cost; 1979 Cost.setInvalid(); 1980 LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n"); 1981 return Cost; 1982 } 1983 1984 InstructionCost RTCheckCost = 0; 1985 if (SCEVCheckBlock) 1986 for (Instruction &I : *SCEVCheckBlock) { 1987 if (SCEVCheckBlock->getTerminator() == &I) 1988 continue; 1989 InstructionCost C = 1990 TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); 1991 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); 1992 RTCheckCost += C; 1993 } 1994 if (MemCheckBlock) 1995 for (Instruction &I : *MemCheckBlock) { 1996 if (MemCheckBlock->getTerminator() == &I) 1997 continue; 1998 InstructionCost C = 1999 TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); 2000 LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n"); 2001 RTCheckCost += C; 2002 } 2003 2004 if (SCEVCheckBlock || MemCheckBlock) 2005 LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost 2006 << "\n"); 2007 2008 return RTCheckCost; 2009 } 2010 2011 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2012 /// unused. 2013 ~GeneratedRTChecks() { 2014 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2015 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2016 if (!SCEVCheckCond) 2017 SCEVCleaner.markResultUsed(); 2018 2019 if (!MemRuntimeCheckCond) 2020 MemCheckCleaner.markResultUsed(); 2021 2022 if (MemRuntimeCheckCond) { 2023 auto &SE = *MemCheckExp.getSE(); 2024 // Memory runtime check generation creates compares that use expanded 2025 // values. Remove them before running the SCEVExpanderCleaners. 2026 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2027 if (MemCheckExp.isInsertedInstruction(&I)) 2028 continue; 2029 SE.forgetValue(&I); 2030 I.eraseFromParent(); 2031 } 2032 } 2033 MemCheckCleaner.cleanup(); 2034 SCEVCleaner.cleanup(); 2035 2036 if (SCEVCheckCond) 2037 SCEVCheckBlock->eraseFromParent(); 2038 if (MemRuntimeCheckCond) 2039 MemCheckBlock->eraseFromParent(); 2040 } 2041 2042 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2043 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2044 /// depending on the generated condition. 2045 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2046 BasicBlock *LoopVectorPreHeader, 2047 BasicBlock *LoopExitBlock) { 2048 if (!SCEVCheckCond) 2049 return nullptr; 2050 2051 Value *Cond = SCEVCheckCond; 2052 // Mark the check as used, to prevent it from being removed during cleanup. 2053 SCEVCheckCond = nullptr; 2054 if (auto *C = dyn_cast<ConstantInt>(Cond)) 2055 if (C->isZero()) 2056 return nullptr; 2057 2058 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2059 2060 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2061 // Create new preheader for vector loop. 2062 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2063 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2064 2065 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2066 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2067 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2068 SCEVCheckBlock); 2069 2070 DT->addNewBlock(SCEVCheckBlock, Pred); 2071 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2072 2073 ReplaceInstWithInst(SCEVCheckBlock->getTerminator(), 2074 BranchInst::Create(Bypass, LoopVectorPreHeader, Cond)); 2075 return SCEVCheckBlock; 2076 } 2077 2078 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2079 /// the branches to branch to the vector preheader or \p Bypass, depending on 2080 /// the generated condition. 2081 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2082 BasicBlock *LoopVectorPreHeader) { 2083 // Check if we generated code that checks in runtime if arrays overlap. 2084 if (!MemRuntimeCheckCond) 2085 return nullptr; 2086 2087 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2088 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2089 MemCheckBlock); 2090 2091 DT->addNewBlock(MemCheckBlock, Pred); 2092 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2093 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2094 2095 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2096 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2097 2098 ReplaceInstWithInst( 2099 MemCheckBlock->getTerminator(), 2100 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2101 MemCheckBlock->getTerminator()->setDebugLoc( 2102 Pred->getTerminator()->getDebugLoc()); 2103 2104 // Mark the check as used, to prevent it from being removed during cleanup. 2105 MemRuntimeCheckCond = nullptr; 2106 return MemCheckBlock; 2107 } 2108 }; 2109 2110 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2111 // vectorization. The loop needs to be annotated with #pragma omp simd 2112 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2113 // vector length information is not provided, vectorization is not considered 2114 // explicit. Interleave hints are not allowed either. These limitations will be 2115 // relaxed in the future. 2116 // Please, note that we are currently forced to abuse the pragma 'clang 2117 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2118 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2119 // provides *explicit vectorization hints* (LV can bypass legal checks and 2120 // assume that vectorization is legal). However, both hints are implemented 2121 // using the same metadata (llvm.loop.vectorize, processed by 2122 // LoopVectorizeHints). This will be fixed in the future when the native IR 2123 // representation for pragma 'omp simd' is introduced. 2124 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2125 OptimizationRemarkEmitter *ORE) { 2126 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2127 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2128 2129 // Only outer loops with an explicit vectorization hint are supported. 2130 // Unannotated outer loops are ignored. 2131 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2132 return false; 2133 2134 Function *Fn = OuterLp->getHeader()->getParent(); 2135 if (!Hints.allowVectorization(Fn, OuterLp, 2136 true /*VectorizeOnlyWhenForced*/)) { 2137 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2138 return false; 2139 } 2140 2141 if (Hints.getInterleave() > 1) { 2142 // TODO: Interleave support is future work. 2143 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2144 "outer loops.\n"); 2145 Hints.emitRemarkWithHints(); 2146 return false; 2147 } 2148 2149 return true; 2150 } 2151 2152 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2153 OptimizationRemarkEmitter *ORE, 2154 SmallVectorImpl<Loop *> &V) { 2155 // Collect inner loops and outer loops without irreducible control flow. For 2156 // now, only collect outer loops that have explicit vectorization hints. If we 2157 // are stress testing the VPlan H-CFG construction, we collect the outermost 2158 // loop of every loop nest. 2159 if (L.isInnermost() || VPlanBuildStressTest || 2160 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2161 LoopBlocksRPO RPOT(&L); 2162 RPOT.perform(LI); 2163 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2164 V.push_back(&L); 2165 // TODO: Collect inner loops inside marked outer loops in case 2166 // vectorization fails for the outer loop. Do not invoke 2167 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2168 // already known to be reducible. We can use an inherited attribute for 2169 // that. 2170 return; 2171 } 2172 } 2173 for (Loop *InnerL : L) 2174 collectSupportedLoops(*InnerL, LI, ORE, V); 2175 } 2176 2177 namespace { 2178 2179 /// The LoopVectorize Pass. 2180 struct LoopVectorize : public FunctionPass { 2181 /// Pass identification, replacement for typeid 2182 static char ID; 2183 2184 LoopVectorizePass Impl; 2185 2186 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2187 bool VectorizeOnlyWhenForced = false) 2188 : FunctionPass(ID), 2189 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2190 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2191 } 2192 2193 bool runOnFunction(Function &F) override { 2194 if (skipFunction(F)) 2195 return false; 2196 2197 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2198 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2199 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2200 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2201 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2202 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2203 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2204 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2205 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2206 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2207 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2208 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2209 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2210 2211 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2212 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2213 2214 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2215 GetLAA, *ORE, PSI).MadeAnyChange; 2216 } 2217 2218 void getAnalysisUsage(AnalysisUsage &AU) const override { 2219 AU.addRequired<AssumptionCacheTracker>(); 2220 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2221 AU.addRequired<DominatorTreeWrapperPass>(); 2222 AU.addRequired<LoopInfoWrapperPass>(); 2223 AU.addRequired<ScalarEvolutionWrapperPass>(); 2224 AU.addRequired<TargetTransformInfoWrapperPass>(); 2225 AU.addRequired<AAResultsWrapperPass>(); 2226 AU.addRequired<LoopAccessLegacyAnalysis>(); 2227 AU.addRequired<DemandedBitsWrapperPass>(); 2228 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2229 AU.addRequired<InjectTLIMappingsLegacy>(); 2230 2231 // We currently do not preserve loopinfo/dominator analyses with outer loop 2232 // vectorization. Until this is addressed, mark these analyses as preserved 2233 // only for non-VPlan-native path. 2234 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2235 if (!EnableVPlanNativePath) { 2236 AU.addPreserved<LoopInfoWrapperPass>(); 2237 AU.addPreserved<DominatorTreeWrapperPass>(); 2238 } 2239 2240 AU.addPreserved<BasicAAWrapperPass>(); 2241 AU.addPreserved<GlobalsAAWrapperPass>(); 2242 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2243 } 2244 }; 2245 2246 } // end anonymous namespace 2247 2248 //===----------------------------------------------------------------------===// 2249 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2250 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2251 //===----------------------------------------------------------------------===// 2252 2253 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2254 // We need to place the broadcast of invariant variables outside the loop, 2255 // but only if it's proven safe to do so. Else, broadcast will be inside 2256 // vector loop body. 2257 Instruction *Instr = dyn_cast<Instruction>(V); 2258 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2259 (!Instr || 2260 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2261 // Place the code for broadcasting invariant variables in the new preheader. 2262 IRBuilder<>::InsertPointGuard Guard(Builder); 2263 if (SafeToHoist) 2264 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2265 2266 // Broadcast the scalar into all locations in the vector. 2267 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2268 2269 return Shuf; 2270 } 2271 2272 /// This function adds 2273 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2274 /// to each vector element of Val. The sequence starts at StartIndex. 2275 /// \p Opcode is relevant for FP induction variable. 2276 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2277 Instruction::BinaryOps BinOp, ElementCount VF, 2278 IRBuilderBase &Builder) { 2279 assert(VF.isVector() && "only vector VFs are supported"); 2280 2281 // Create and check the types. 2282 auto *ValVTy = cast<VectorType>(Val->getType()); 2283 ElementCount VLen = ValVTy->getElementCount(); 2284 2285 Type *STy = Val->getType()->getScalarType(); 2286 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2287 "Induction Step must be an integer or FP"); 2288 assert(Step->getType() == STy && "Step has wrong type"); 2289 2290 SmallVector<Constant *, 8> Indices; 2291 2292 // Create a vector of consecutive numbers from zero to VF. 2293 VectorType *InitVecValVTy = ValVTy; 2294 if (STy->isFloatingPointTy()) { 2295 Type *InitVecValSTy = 2296 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2297 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2298 } 2299 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2300 2301 // Splat the StartIdx 2302 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2303 2304 if (STy->isIntegerTy()) { 2305 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2306 Step = Builder.CreateVectorSplat(VLen, Step); 2307 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2308 // FIXME: The newly created binary instructions should contain nsw/nuw 2309 // flags, which can be found from the original scalar operations. 2310 Step = Builder.CreateMul(InitVec, Step); 2311 return Builder.CreateAdd(Val, Step, "induction"); 2312 } 2313 2314 // Floating point induction. 2315 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2316 "Binary Opcode should be specified for FP induction"); 2317 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2318 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2319 2320 Step = Builder.CreateVectorSplat(VLen, Step); 2321 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2322 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2323 } 2324 2325 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2326 /// variable on which to base the steps, \p Step is the size of the step. 2327 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2328 const InductionDescriptor &ID, VPValue *Def, 2329 VPTransformState &State) { 2330 IRBuilderBase &Builder = State.Builder; 2331 // We shouldn't have to build scalar steps if we aren't vectorizing. 2332 assert(State.VF.isVector() && "VF should be greater than one"); 2333 // Get the value type and ensure it and the step have the same integer type. 2334 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2335 assert(ScalarIVTy == Step->getType() && 2336 "Val and Step should have the same type"); 2337 2338 // We build scalar steps for both integer and floating-point induction 2339 // variables. Here, we determine the kind of arithmetic we will perform. 2340 Instruction::BinaryOps AddOp; 2341 Instruction::BinaryOps MulOp; 2342 if (ScalarIVTy->isIntegerTy()) { 2343 AddOp = Instruction::Add; 2344 MulOp = Instruction::Mul; 2345 } else { 2346 AddOp = ID.getInductionOpcode(); 2347 MulOp = Instruction::FMul; 2348 } 2349 2350 // Determine the number of scalars we need to generate for each unroll 2351 // iteration. 2352 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2353 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2354 // Compute the scalar steps and save the results in State. 2355 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2356 ScalarIVTy->getScalarSizeInBits()); 2357 Type *VecIVTy = nullptr; 2358 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2359 if (!FirstLaneOnly && State.VF.isScalable()) { 2360 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2361 UnitStepVec = 2362 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2363 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2364 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2365 } 2366 2367 for (unsigned Part = 0; Part < State.UF; ++Part) { 2368 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2369 2370 if (!FirstLaneOnly && State.VF.isScalable()) { 2371 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2372 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2373 if (ScalarIVTy->isFloatingPointTy()) 2374 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2375 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2376 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2377 State.set(Def, Add, Part); 2378 // It's useful to record the lane values too for the known minimum number 2379 // of elements so we do those below. This improves the code quality when 2380 // trying to extract the first element, for example. 2381 } 2382 2383 if (ScalarIVTy->isFloatingPointTy()) 2384 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2385 2386 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2387 Value *StartIdx = Builder.CreateBinOp( 2388 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2389 // The step returned by `createStepForVF` is a runtime-evaluated value 2390 // when VF is scalable. Otherwise, it should be folded into a Constant. 2391 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2392 "Expected StartIdx to be folded to a constant when VF is not " 2393 "scalable"); 2394 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2395 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2396 State.set(Def, Add, VPIteration(Part, Lane)); 2397 } 2398 } 2399 } 2400 2401 // Generate code for the induction step. Note that induction steps are 2402 // required to be loop-invariant 2403 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2404 Instruction *InsertBefore, 2405 Loop *OrigLoop = nullptr) { 2406 const DataLayout &DL = SE.getDataLayout(); 2407 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2408 "Induction step should be loop invariant"); 2409 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2410 return E->getValue(); 2411 2412 SCEVExpander Exp(SE, DL, "induction"); 2413 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2414 } 2415 2416 /// Compute the transformed value of Index at offset StartValue using step 2417 /// StepValue. 2418 /// For integer induction, returns StartValue + Index * StepValue. 2419 /// For pointer induction, returns StartValue[Index * StepValue]. 2420 /// FIXME: The newly created binary instructions should contain nsw/nuw 2421 /// flags, which can be found from the original scalar operations. 2422 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2423 Value *StartValue, Value *Step, 2424 const InductionDescriptor &ID) { 2425 assert(Index->getType()->getScalarType() == Step->getType() && 2426 "Index scalar type does not match StepValue type"); 2427 2428 // Note: the IR at this point is broken. We cannot use SE to create any new 2429 // SCEV and then expand it, hoping that SCEV's simplification will give us 2430 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2431 // lead to various SCEV crashes. So all we can do is to use builder and rely 2432 // on InstCombine for future simplifications. Here we handle some trivial 2433 // cases only. 2434 auto CreateAdd = [&B](Value *X, Value *Y) { 2435 assert(X->getType() == Y->getType() && "Types don't match!"); 2436 if (auto *CX = dyn_cast<ConstantInt>(X)) 2437 if (CX->isZero()) 2438 return Y; 2439 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2440 if (CY->isZero()) 2441 return X; 2442 return B.CreateAdd(X, Y); 2443 }; 2444 2445 // We allow X to be a vector type, in which case Y will potentially be 2446 // splatted into a vector with the same element count. 2447 auto CreateMul = [&B](Value *X, Value *Y) { 2448 assert(X->getType()->getScalarType() == Y->getType() && 2449 "Types don't match!"); 2450 if (auto *CX = dyn_cast<ConstantInt>(X)) 2451 if (CX->isOne()) 2452 return Y; 2453 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2454 if (CY->isOne()) 2455 return X; 2456 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2457 if (XVTy && !isa<VectorType>(Y->getType())) 2458 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2459 return B.CreateMul(X, Y); 2460 }; 2461 2462 switch (ID.getKind()) { 2463 case InductionDescriptor::IK_IntInduction: { 2464 assert(!isa<VectorType>(Index->getType()) && 2465 "Vector indices not supported for integer inductions yet"); 2466 assert(Index->getType() == StartValue->getType() && 2467 "Index type does not match StartValue type"); 2468 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2469 return B.CreateSub(StartValue, Index); 2470 auto *Offset = CreateMul(Index, Step); 2471 return CreateAdd(StartValue, Offset); 2472 } 2473 case InductionDescriptor::IK_PtrInduction: { 2474 assert(isa<Constant>(Step) && 2475 "Expected constant step for pointer induction"); 2476 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2477 } 2478 case InductionDescriptor::IK_FpInduction: { 2479 assert(!isa<VectorType>(Index->getType()) && 2480 "Vector indices not supported for FP inductions yet"); 2481 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2482 auto InductionBinOp = ID.getInductionBinOp(); 2483 assert(InductionBinOp && 2484 (InductionBinOp->getOpcode() == Instruction::FAdd || 2485 InductionBinOp->getOpcode() == Instruction::FSub) && 2486 "Original bin op should be defined for FP induction"); 2487 2488 Value *MulExp = B.CreateFMul(Step, Index); 2489 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2490 "induction"); 2491 } 2492 case InductionDescriptor::IK_NoInduction: 2493 return nullptr; 2494 } 2495 llvm_unreachable("invalid enum"); 2496 } 2497 2498 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2499 const VPIteration &Instance, 2500 VPTransformState &State) { 2501 Value *ScalarInst = State.get(Def, Instance); 2502 Value *VectorValue = State.get(Def, Instance.Part); 2503 VectorValue = Builder.CreateInsertElement( 2504 VectorValue, ScalarInst, 2505 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2506 State.set(Def, VectorValue, Instance.Part); 2507 } 2508 2509 // Return whether we allow using masked interleave-groups (for dealing with 2510 // strided loads/stores that reside in predicated blocks, or for dealing 2511 // with gaps). 2512 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2513 // If an override option has been passed in for interleaved accesses, use it. 2514 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2515 return EnableMaskedInterleavedMemAccesses; 2516 2517 return TTI.enableMaskedInterleavedAccessVectorization(); 2518 } 2519 2520 // Try to vectorize the interleave group that \p Instr belongs to. 2521 // 2522 // E.g. Translate following interleaved load group (factor = 3): 2523 // for (i = 0; i < N; i+=3) { 2524 // R = Pic[i]; // Member of index 0 2525 // G = Pic[i+1]; // Member of index 1 2526 // B = Pic[i+2]; // Member of index 2 2527 // ... // do something to R, G, B 2528 // } 2529 // To: 2530 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2531 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2532 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2533 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2534 // 2535 // Or translate following interleaved store group (factor = 3): 2536 // for (i = 0; i < N; i+=3) { 2537 // ... do something to R, G, B 2538 // Pic[i] = R; // Member of index 0 2539 // Pic[i+1] = G; // Member of index 1 2540 // Pic[i+2] = B; // Member of index 2 2541 // } 2542 // To: 2543 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2544 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2545 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2546 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2547 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2548 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2549 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2550 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2551 VPValue *BlockInMask) { 2552 Instruction *Instr = Group->getInsertPos(); 2553 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2554 2555 // Prepare for the vector type of the interleaved load/store. 2556 Type *ScalarTy = getLoadStoreType(Instr); 2557 unsigned InterleaveFactor = Group->getFactor(); 2558 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2559 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2560 2561 // Prepare for the new pointers. 2562 SmallVector<Value *, 2> AddrParts; 2563 unsigned Index = Group->getIndex(Instr); 2564 2565 // TODO: extend the masked interleaved-group support to reversed access. 2566 assert((!BlockInMask || !Group->isReverse()) && 2567 "Reversed masked interleave-group not supported."); 2568 2569 // If the group is reverse, adjust the index to refer to the last vector lane 2570 // instead of the first. We adjust the index from the first vector lane, 2571 // rather than directly getting the pointer for lane VF - 1, because the 2572 // pointer operand of the interleaved access is supposed to be uniform. For 2573 // uniform instructions, we're only required to generate a value for the 2574 // first vector lane in each unroll iteration. 2575 if (Group->isReverse()) 2576 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2577 2578 for (unsigned Part = 0; Part < UF; Part++) { 2579 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2580 State.setDebugLocFromInst(AddrPart); 2581 2582 // Notice current instruction could be any index. Need to adjust the address 2583 // to the member of index 0. 2584 // 2585 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2586 // b = A[i]; // Member of index 0 2587 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2588 // 2589 // E.g. A[i+1] = a; // Member of index 1 2590 // A[i] = b; // Member of index 0 2591 // A[i+2] = c; // Member of index 2 (Current instruction) 2592 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2593 2594 bool InBounds = false; 2595 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2596 InBounds = gep->isInBounds(); 2597 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2598 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2599 2600 // Cast to the vector pointer type. 2601 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2602 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2603 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2604 } 2605 2606 State.setDebugLocFromInst(Instr); 2607 Value *PoisonVec = PoisonValue::get(VecTy); 2608 2609 Value *MaskForGaps = nullptr; 2610 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2611 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2612 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2613 } 2614 2615 // Vectorize the interleaved load group. 2616 if (isa<LoadInst>(Instr)) { 2617 // For each unroll part, create a wide load for the group. 2618 SmallVector<Value *, 2> NewLoads; 2619 for (unsigned Part = 0; Part < UF; Part++) { 2620 Instruction *NewLoad; 2621 if (BlockInMask || MaskForGaps) { 2622 assert(useMaskedInterleavedAccesses(*TTI) && 2623 "masked interleaved groups are not allowed."); 2624 Value *GroupMask = MaskForGaps; 2625 if (BlockInMask) { 2626 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2627 Value *ShuffledMask = Builder.CreateShuffleVector( 2628 BlockInMaskPart, 2629 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2630 "interleaved.mask"); 2631 GroupMask = MaskForGaps 2632 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2633 MaskForGaps) 2634 : ShuffledMask; 2635 } 2636 NewLoad = 2637 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2638 GroupMask, PoisonVec, "wide.masked.vec"); 2639 } 2640 else 2641 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2642 Group->getAlign(), "wide.vec"); 2643 Group->addMetadata(NewLoad); 2644 NewLoads.push_back(NewLoad); 2645 } 2646 2647 // For each member in the group, shuffle out the appropriate data from the 2648 // wide loads. 2649 unsigned J = 0; 2650 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2651 Instruction *Member = Group->getMember(I); 2652 2653 // Skip the gaps in the group. 2654 if (!Member) 2655 continue; 2656 2657 auto StrideMask = 2658 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2659 for (unsigned Part = 0; Part < UF; Part++) { 2660 Value *StridedVec = Builder.CreateShuffleVector( 2661 NewLoads[Part], StrideMask, "strided.vec"); 2662 2663 // If this member has different type, cast the result type. 2664 if (Member->getType() != ScalarTy) { 2665 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2666 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2667 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2668 } 2669 2670 if (Group->isReverse()) 2671 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2672 2673 State.set(VPDefs[J], StridedVec, Part); 2674 } 2675 ++J; 2676 } 2677 return; 2678 } 2679 2680 // The sub vector type for current instruction. 2681 auto *SubVT = VectorType::get(ScalarTy, VF); 2682 2683 // Vectorize the interleaved store group. 2684 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2685 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2686 "masked interleaved groups are not allowed."); 2687 assert((!MaskForGaps || !VF.isScalable()) && 2688 "masking gaps for scalable vectors is not yet supported."); 2689 for (unsigned Part = 0; Part < UF; Part++) { 2690 // Collect the stored vector from each member. 2691 SmallVector<Value *, 4> StoredVecs; 2692 for (unsigned i = 0; i < InterleaveFactor; i++) { 2693 assert((Group->getMember(i) || MaskForGaps) && 2694 "Fail to get a member from an interleaved store group"); 2695 Instruction *Member = Group->getMember(i); 2696 2697 // Skip the gaps in the group. 2698 if (!Member) { 2699 Value *Undef = PoisonValue::get(SubVT); 2700 StoredVecs.push_back(Undef); 2701 continue; 2702 } 2703 2704 Value *StoredVec = State.get(StoredValues[i], Part); 2705 2706 if (Group->isReverse()) 2707 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2708 2709 // If this member has different type, cast it to a unified type. 2710 2711 if (StoredVec->getType() != SubVT) 2712 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2713 2714 StoredVecs.push_back(StoredVec); 2715 } 2716 2717 // Concatenate all vectors into a wide vector. 2718 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2719 2720 // Interleave the elements in the wide vector. 2721 Value *IVec = Builder.CreateShuffleVector( 2722 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2723 "interleaved.vec"); 2724 2725 Instruction *NewStoreInstr; 2726 if (BlockInMask || MaskForGaps) { 2727 Value *GroupMask = MaskForGaps; 2728 if (BlockInMask) { 2729 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2730 Value *ShuffledMask = Builder.CreateShuffleVector( 2731 BlockInMaskPart, 2732 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2733 "interleaved.mask"); 2734 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2735 ShuffledMask, MaskForGaps) 2736 : ShuffledMask; 2737 } 2738 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2739 Group->getAlign(), GroupMask); 2740 } else 2741 NewStoreInstr = 2742 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2743 2744 Group->addMetadata(NewStoreInstr); 2745 } 2746 } 2747 2748 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2749 VPReplicateRecipe *RepRecipe, 2750 const VPIteration &Instance, 2751 bool IfPredicateInstr, 2752 VPTransformState &State) { 2753 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2754 2755 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2756 // the first lane and part. 2757 if (isa<NoAliasScopeDeclInst>(Instr)) 2758 if (!Instance.isFirstIteration()) 2759 return; 2760 2761 // Does this instruction return a value ? 2762 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2763 2764 Instruction *Cloned = Instr->clone(); 2765 if (!IsVoidRetTy) 2766 Cloned->setName(Instr->getName() + ".cloned"); 2767 2768 // If the scalarized instruction contributes to the address computation of a 2769 // widen masked load/store which was in a basic block that needed predication 2770 // and is not predicated after vectorization, we can't propagate 2771 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2772 // instruction could feed a poison value to the base address of the widen 2773 // load/store. 2774 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2775 Cloned->dropPoisonGeneratingFlags(); 2776 2777 if (Instr->getDebugLoc()) 2778 State.setDebugLocFromInst(Instr); 2779 2780 // Replace the operands of the cloned instructions with their scalar 2781 // equivalents in the new loop. 2782 for (auto &I : enumerate(RepRecipe->operands())) { 2783 auto InputInstance = Instance; 2784 VPValue *Operand = I.value(); 2785 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2786 if (OperandR && OperandR->isUniform()) 2787 InputInstance.Lane = VPLane::getFirstLane(); 2788 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2789 } 2790 State.addNewMetadata(Cloned, Instr); 2791 2792 // Place the cloned scalar in the new loop. 2793 State.Builder.Insert(Cloned); 2794 2795 State.set(RepRecipe, Cloned, Instance); 2796 2797 // If we just cloned a new assumption, add it the assumption cache. 2798 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2799 AC->registerAssumption(II); 2800 2801 // End if-block. 2802 if (IfPredicateInstr) 2803 PredicatedInstructions.push_back(Cloned); 2804 } 2805 2806 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2807 if (TripCount) 2808 return TripCount; 2809 2810 assert(InsertBlock); 2811 IRBuilder<> Builder(InsertBlock->getTerminator()); 2812 // Find the loop boundaries. 2813 ScalarEvolution *SE = PSE.getSE(); 2814 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2815 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2816 "Invalid loop count"); 2817 2818 Type *IdxTy = Legal->getWidestInductionType(); 2819 assert(IdxTy && "No type for induction"); 2820 2821 // The exit count might have the type of i64 while the phi is i32. This can 2822 // happen if we have an induction variable that is sign extended before the 2823 // compare. The only way that we get a backedge taken count is that the 2824 // induction variable was signed and as such will not overflow. In such a case 2825 // truncation is legal. 2826 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2827 IdxTy->getPrimitiveSizeInBits()) 2828 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2829 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2830 2831 // Get the total trip count from the count by adding 1. 2832 const SCEV *ExitCount = SE->getAddExpr( 2833 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2834 2835 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2836 2837 // Expand the trip count and place the new instructions in the preheader. 2838 // Notice that the pre-header does not change, only the loop body. 2839 SCEVExpander Exp(*SE, DL, "induction"); 2840 2841 // Count holds the overall loop count (N). 2842 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2843 InsertBlock->getTerminator()); 2844 2845 if (TripCount->getType()->isPointerTy()) 2846 TripCount = 2847 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2848 InsertBlock->getTerminator()); 2849 2850 return TripCount; 2851 } 2852 2853 Value * 2854 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2855 if (VectorTripCount) 2856 return VectorTripCount; 2857 2858 Value *TC = getOrCreateTripCount(InsertBlock); 2859 IRBuilder<> Builder(InsertBlock->getTerminator()); 2860 2861 Type *Ty = TC->getType(); 2862 // This is where we can make the step a runtime constant. 2863 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2864 2865 // If the tail is to be folded by masking, round the number of iterations N 2866 // up to a multiple of Step instead of rounding down. This is done by first 2867 // adding Step-1 and then rounding down. Note that it's ok if this addition 2868 // overflows: the vector induction variable will eventually wrap to zero given 2869 // that it starts at zero and its Step is a power of two; the loop will then 2870 // exit, with the last early-exit vector comparison also producing all-true. 2871 // For scalable vectors the VF is not guaranteed to be a power of 2, but this 2872 // is accounted for in emitIterationCountCheck that adds an overflow check. 2873 if (Cost->foldTailByMasking()) { 2874 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2875 "VF*UF must be a power of 2 when folding tail by masking"); 2876 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2877 TC = Builder.CreateAdd( 2878 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2879 } 2880 2881 // Now we need to generate the expression for the part of the loop that the 2882 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2883 // iterations are not required for correctness, or N - Step, otherwise. Step 2884 // is equal to the vectorization factor (number of SIMD elements) times the 2885 // unroll factor (number of SIMD instructions). 2886 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2887 2888 // There are cases where we *must* run at least one iteration in the remainder 2889 // loop. See the cost model for when this can happen. If the step evenly 2890 // divides the trip count, we set the remainder to be equal to the step. If 2891 // the step does not evenly divide the trip count, no adjustment is necessary 2892 // since there will already be scalar iterations. Note that the minimum 2893 // iterations check ensures that N >= Step. 2894 if (Cost->requiresScalarEpilogue(VF)) { 2895 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2896 R = Builder.CreateSelect(IsZero, Step, R); 2897 } 2898 2899 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2900 2901 return VectorTripCount; 2902 } 2903 2904 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2905 const DataLayout &DL) { 2906 // Verify that V is a vector type with same number of elements as DstVTy. 2907 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2908 unsigned VF = DstFVTy->getNumElements(); 2909 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2910 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2911 Type *SrcElemTy = SrcVecTy->getElementType(); 2912 Type *DstElemTy = DstFVTy->getElementType(); 2913 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2914 "Vector elements must have same size"); 2915 2916 // Do a direct cast if element types are castable. 2917 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2918 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2919 } 2920 // V cannot be directly casted to desired vector type. 2921 // May happen when V is a floating point vector but DstVTy is a vector of 2922 // pointers or vice-versa. Handle this using a two-step bitcast using an 2923 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2924 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2925 "Only one type should be a pointer type"); 2926 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2927 "Only one type should be a floating point type"); 2928 Type *IntTy = 2929 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2930 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2931 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2932 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2933 } 2934 2935 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) { 2936 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2937 // Reuse existing vector loop preheader for TC checks. 2938 // Note that new preheader block is generated for vector loop. 2939 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2940 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2941 2942 // Generate code to check if the loop's trip count is less than VF * UF, or 2943 // equal to it in case a scalar epilogue is required; this implies that the 2944 // vector trip count is zero. This check also covers the case where adding one 2945 // to the backedge-taken count overflowed leading to an incorrect trip count 2946 // of zero. In this case we will also jump to the scalar loop. 2947 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2948 : ICmpInst::ICMP_ULT; 2949 2950 // If tail is to be folded, vector loop takes care of all iterations. 2951 Type *CountTy = Count->getType(); 2952 Value *CheckMinIters = Builder.getFalse(); 2953 auto CreateStep = [&]() -> Value * { 2954 // Create step with max(MinProTripCount, UF * VF). 2955 if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue()) 2956 return createStepForVF(Builder, CountTy, VF, UF); 2957 2958 Value *MinProfTC = 2959 createStepForVF(Builder, CountTy, MinProfitableTripCount, 1); 2960 if (!VF.isScalable()) 2961 return MinProfTC; 2962 return Builder.CreateBinaryIntrinsic( 2963 Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF)); 2964 }; 2965 2966 if (!Cost->foldTailByMasking()) 2967 CheckMinIters = 2968 Builder.CreateICmp(P, Count, CreateStep(), "min.iters.check"); 2969 else if (VF.isScalable()) { 2970 // vscale is not necessarily a power-of-2, which means we cannot guarantee 2971 // an overflow to zero when updating induction variables and so an 2972 // additional overflow check is required before entering the vector loop. 2973 2974 // Get the maximum unsigned value for the type. 2975 Value *MaxUIntTripCount = 2976 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask()); 2977 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count); 2978 2979 // Don't execute the vector loop if (UMax - n) < (VF * UF). 2980 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep()); 2981 } 2982 2983 // Create new preheader for vector loop. 2984 LoopVectorPreHeader = 2985 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2986 "vector.ph"); 2987 2988 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2989 DT->getNode(Bypass)->getIDom()) && 2990 "TC check is expected to dominate Bypass"); 2991 2992 // Update dominator for Bypass & LoopExit (if needed). 2993 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2994 if (!Cost->requiresScalarEpilogue(VF)) 2995 // If there is an epilogue which must run, there's no edge from the 2996 // middle block to exit blocks and thus no need to update the immediate 2997 // dominator of the exit blocks. 2998 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2999 3000 ReplaceInstWithInst( 3001 TCCheckBlock->getTerminator(), 3002 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3003 LoopBypassBlocks.push_back(TCCheckBlock); 3004 } 3005 3006 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3007 BasicBlock *const SCEVCheckBlock = 3008 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3009 if (!SCEVCheckBlock) 3010 return nullptr; 3011 3012 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3013 (OptForSizeBasedOnProfile && 3014 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3015 "Cannot SCEV check stride or overflow when optimizing for size"); 3016 3017 3018 // Update dominator only if this is first RT check. 3019 if (LoopBypassBlocks.empty()) { 3020 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3021 if (!Cost->requiresScalarEpilogue(VF)) 3022 // If there is an epilogue which must run, there's no edge from the 3023 // middle block to exit blocks and thus no need to update the immediate 3024 // dominator of the exit blocks. 3025 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3026 } 3027 3028 LoopBypassBlocks.push_back(SCEVCheckBlock); 3029 AddedSafetyChecks = true; 3030 return SCEVCheckBlock; 3031 } 3032 3033 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3034 // VPlan-native path does not do any analysis for runtime checks currently. 3035 if (EnableVPlanNativePath) 3036 return nullptr; 3037 3038 BasicBlock *const MemCheckBlock = 3039 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3040 3041 // Check if we generated code that checks in runtime if arrays overlap. We put 3042 // the checks into a separate block to make the more common case of few 3043 // elements faster. 3044 if (!MemCheckBlock) 3045 return nullptr; 3046 3047 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3048 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3049 "Cannot emit memory checks when optimizing for size, unless forced " 3050 "to vectorize."); 3051 ORE->emit([&]() { 3052 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3053 OrigLoop->getStartLoc(), 3054 OrigLoop->getHeader()) 3055 << "Code-size may be reduced by not forcing " 3056 "vectorization, or by source-code modifications " 3057 "eliminating the need for runtime checks " 3058 "(e.g., adding 'restrict')."; 3059 }); 3060 } 3061 3062 LoopBypassBlocks.push_back(MemCheckBlock); 3063 3064 AddedSafetyChecks = true; 3065 3066 return MemCheckBlock; 3067 } 3068 3069 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3070 LoopScalarBody = OrigLoop->getHeader(); 3071 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3072 assert(LoopVectorPreHeader && "Invalid loop structure"); 3073 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3074 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3075 "multiple exit loop without required epilogue?"); 3076 3077 LoopMiddleBlock = 3078 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3079 LI, nullptr, Twine(Prefix) + "middle.block"); 3080 LoopScalarPreHeader = 3081 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3082 nullptr, Twine(Prefix) + "scalar.ph"); 3083 3084 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3085 3086 // Set up the middle block terminator. Two cases: 3087 // 1) If we know that we must execute the scalar epilogue, emit an 3088 // unconditional branch. 3089 // 2) Otherwise, we must have a single unique exit block (due to how we 3090 // implement the multiple exit case). In this case, set up a conditonal 3091 // branch from the middle block to the loop scalar preheader, and the 3092 // exit block. completeLoopSkeleton will update the condition to use an 3093 // iteration check, if required to decide whether to execute the remainder. 3094 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3095 BranchInst::Create(LoopScalarPreHeader) : 3096 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3097 Builder.getTrue()); 3098 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3099 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3100 3101 // Update dominator for loop exit. During skeleton creation, only the vector 3102 // pre-header and the middle block are created. The vector loop is entirely 3103 // created during VPlan exection. 3104 if (!Cost->requiresScalarEpilogue(VF)) 3105 // If there is an epilogue which must run, there's no edge from the 3106 // middle block to exit blocks and thus no need to update the immediate 3107 // dominator of the exit blocks. 3108 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3109 } 3110 3111 void InnerLoopVectorizer::createInductionResumeValues( 3112 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3113 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3114 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3115 "Inconsistent information about additional bypass."); 3116 3117 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3118 assert(VectorTripCount && "Expected valid arguments"); 3119 // We are going to resume the execution of the scalar loop. 3120 // Go over all of the induction variables that we found and fix the 3121 // PHIs that are left in the scalar version of the loop. 3122 // The starting values of PHI nodes depend on the counter of the last 3123 // iteration in the vectorized loop. 3124 // If we come from a bypass edge then we need to start from the original 3125 // start value. 3126 Instruction *OldInduction = Legal->getPrimaryInduction(); 3127 for (auto &InductionEntry : Legal->getInductionVars()) { 3128 PHINode *OrigPhi = InductionEntry.first; 3129 InductionDescriptor II = InductionEntry.second; 3130 3131 Value *&EndValue = IVEndValues[OrigPhi]; 3132 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3133 if (OrigPhi == OldInduction) { 3134 // We know what the end value is. 3135 EndValue = VectorTripCount; 3136 } else { 3137 IRBuilder<> B(LoopVectorPreHeader->getTerminator()); 3138 3139 // Fast-math-flags propagate from the original induction instruction. 3140 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3141 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3142 3143 Type *StepType = II.getStep()->getType(); 3144 Instruction::CastOps CastOp = 3145 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3146 Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc"); 3147 Value *Step = 3148 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3149 EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3150 EndValue->setName("ind.end"); 3151 3152 // Compute the end value for the additional bypass (if applicable). 3153 if (AdditionalBypass.first) { 3154 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3155 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3156 StepType, true); 3157 Value *Step = 3158 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3159 VTC = 3160 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc"); 3161 EndValueFromAdditionalBypass = 3162 emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3163 EndValueFromAdditionalBypass->setName("ind.end"); 3164 } 3165 } 3166 3167 // Create phi nodes to merge from the backedge-taken check block. 3168 PHINode *BCResumeVal = 3169 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3170 LoopScalarPreHeader->getTerminator()); 3171 // Copy original phi DL over to the new one. 3172 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3173 3174 // The new PHI merges the original incoming value, in case of a bypass, 3175 // or the value at the end of the vectorized loop. 3176 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3177 3178 // Fix the scalar body counter (PHI node). 3179 // The old induction's phi node in the scalar body needs the truncated 3180 // value. 3181 for (BasicBlock *BB : LoopBypassBlocks) 3182 BCResumeVal->addIncoming(II.getStartValue(), BB); 3183 3184 if (AdditionalBypass.first) 3185 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3186 EndValueFromAdditionalBypass); 3187 3188 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3189 } 3190 } 3191 3192 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) { 3193 // The trip counts should be cached by now. 3194 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 3195 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3196 3197 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3198 3199 // Add a check in the middle block to see if we have completed 3200 // all of the iterations in the first vector loop. Three cases: 3201 // 1) If we require a scalar epilogue, there is no conditional branch as 3202 // we unconditionally branch to the scalar preheader. Do nothing. 3203 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3204 // Thus if tail is to be folded, we know we don't need to run the 3205 // remainder and we can use the previous value for the condition (true). 3206 // 3) Otherwise, construct a runtime check. 3207 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3208 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3209 Count, VectorTripCount, "cmp.n", 3210 LoopMiddleBlock->getTerminator()); 3211 3212 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3213 // of the corresponding compare because they may have ended up with 3214 // different line numbers and we want to avoid awkward line stepping while 3215 // debugging. Eg. if the compare has got a line number inside the loop. 3216 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3217 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3218 } 3219 3220 #ifdef EXPENSIVE_CHECKS 3221 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3222 #endif 3223 3224 return LoopVectorPreHeader; 3225 } 3226 3227 std::pair<BasicBlock *, Value *> 3228 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3229 /* 3230 In this function we generate a new loop. The new loop will contain 3231 the vectorized instructions while the old loop will continue to run the 3232 scalar remainder. 3233 3234 [ ] <-- loop iteration number check. 3235 / | 3236 / v 3237 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3238 | / | 3239 | / v 3240 || [ ] <-- vector pre header. 3241 |/ | 3242 | v 3243 | [ ] \ 3244 | [ ]_| <-- vector loop (created during VPlan execution). 3245 | | 3246 | v 3247 \ -[ ] <--- middle-block. 3248 \/ | 3249 /\ v 3250 | ->[ ] <--- new preheader. 3251 | | 3252 (opt) v <-- edge from middle to exit iff epilogue is not required. 3253 | [ ] \ 3254 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3255 \ | 3256 \ v 3257 >[ ] <-- exit block(s). 3258 ... 3259 */ 3260 3261 // Get the metadata of the original loop before it gets modified. 3262 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3263 3264 // Workaround! Compute the trip count of the original loop and cache it 3265 // before we start modifying the CFG. This code has a systemic problem 3266 // wherein it tries to run analysis over partially constructed IR; this is 3267 // wrong, and not simply for SCEV. The trip count of the original loop 3268 // simply happens to be prone to hitting this in practice. In theory, we 3269 // can hit the same issue for any SCEV, or ValueTracking query done during 3270 // mutation. See PR49900. 3271 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3272 3273 // Create an empty vector loop, and prepare basic blocks for the runtime 3274 // checks. 3275 createVectorLoopSkeleton(""); 3276 3277 // Now, compare the new count to zero. If it is zero skip the vector loop and 3278 // jump to the scalar loop. This check also covers the case where the 3279 // backedge-taken count is uint##_max: adding one to it will overflow leading 3280 // to an incorrect trip count of zero. In this (rare) case we will also jump 3281 // to the scalar loop. 3282 emitIterationCountCheck(LoopScalarPreHeader); 3283 3284 // Generate the code to check any assumptions that we've made for SCEV 3285 // expressions. 3286 emitSCEVChecks(LoopScalarPreHeader); 3287 3288 // Generate the code that checks in runtime if arrays overlap. We put the 3289 // checks into a separate block to make the more common case of few elements 3290 // faster. 3291 emitMemRuntimeChecks(LoopScalarPreHeader); 3292 3293 // Emit phis for the new starting index of the scalar loop. 3294 createInductionResumeValues(); 3295 3296 return {completeLoopSkeleton(OrigLoopID), nullptr}; 3297 } 3298 3299 // Fix up external users of the induction variable. At this point, we are 3300 // in LCSSA form, with all external PHIs that use the IV having one input value, 3301 // coming from the remainder loop. We need those PHIs to also have a correct 3302 // value for the IV when arriving directly from the middle block. 3303 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3304 const InductionDescriptor &II, 3305 Value *VectorTripCount, Value *EndValue, 3306 BasicBlock *MiddleBlock, 3307 BasicBlock *VectorHeader, VPlan &Plan) { 3308 // There are two kinds of external IV usages - those that use the value 3309 // computed in the last iteration (the PHI) and those that use the penultimate 3310 // value (the value that feeds into the phi from the loop latch). 3311 // We allow both, but they, obviously, have different values. 3312 3313 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3314 3315 DenseMap<Value *, Value *> MissingVals; 3316 3317 // An external user of the last iteration's value should see the value that 3318 // the remainder loop uses to initialize its own IV. 3319 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3320 for (User *U : PostInc->users()) { 3321 Instruction *UI = cast<Instruction>(U); 3322 if (!OrigLoop->contains(UI)) { 3323 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3324 MissingVals[UI] = EndValue; 3325 } 3326 } 3327 3328 // An external user of the penultimate value need to see EndValue - Step. 3329 // The simplest way to get this is to recompute it from the constituent SCEVs, 3330 // that is Start + (Step * (CRD - 1)). 3331 for (User *U : OrigPhi->users()) { 3332 auto *UI = cast<Instruction>(U); 3333 if (!OrigLoop->contains(UI)) { 3334 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3335 3336 IRBuilder<> B(MiddleBlock->getTerminator()); 3337 3338 // Fast-math-flags propagate from the original induction instruction. 3339 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3340 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3341 3342 Value *CountMinusOne = B.CreateSub( 3343 VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1)); 3344 Value *CMO = 3345 !II.getStep()->getType()->isIntegerTy() 3346 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3347 II.getStep()->getType()) 3348 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3349 CMO->setName("cast.cmo"); 3350 3351 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3352 VectorHeader->getTerminator()); 3353 Value *Escape = 3354 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3355 Escape->setName("ind.escape"); 3356 MissingVals[UI] = Escape; 3357 } 3358 } 3359 3360 for (auto &I : MissingVals) { 3361 PHINode *PHI = cast<PHINode>(I.first); 3362 // One corner case we have to handle is two IVs "chasing" each-other, 3363 // that is %IV2 = phi [...], [ %IV1, %latch ] 3364 // In this case, if IV1 has an external use, we need to avoid adding both 3365 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3366 // don't already have an incoming value for the middle block. 3367 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) { 3368 PHI->addIncoming(I.second, MiddleBlock); 3369 Plan.removeLiveOut(PHI); 3370 } 3371 } 3372 } 3373 3374 namespace { 3375 3376 struct CSEDenseMapInfo { 3377 static bool canHandle(const Instruction *I) { 3378 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3379 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3380 } 3381 3382 static inline Instruction *getEmptyKey() { 3383 return DenseMapInfo<Instruction *>::getEmptyKey(); 3384 } 3385 3386 static inline Instruction *getTombstoneKey() { 3387 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3388 } 3389 3390 static unsigned getHashValue(const Instruction *I) { 3391 assert(canHandle(I) && "Unknown instruction!"); 3392 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3393 I->value_op_end())); 3394 } 3395 3396 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3397 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3398 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3399 return LHS == RHS; 3400 return LHS->isIdenticalTo(RHS); 3401 } 3402 }; 3403 3404 } // end anonymous namespace 3405 3406 ///Perform cse of induction variable instructions. 3407 static void cse(BasicBlock *BB) { 3408 // Perform simple cse. 3409 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3410 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3411 if (!CSEDenseMapInfo::canHandle(&In)) 3412 continue; 3413 3414 // Check if we can replace this instruction with any of the 3415 // visited instructions. 3416 if (Instruction *V = CSEMap.lookup(&In)) { 3417 In.replaceAllUsesWith(V); 3418 In.eraseFromParent(); 3419 continue; 3420 } 3421 3422 CSEMap[&In] = &In; 3423 } 3424 } 3425 3426 InstructionCost 3427 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3428 bool &NeedToScalarize) const { 3429 Function *F = CI->getCalledFunction(); 3430 Type *ScalarRetTy = CI->getType(); 3431 SmallVector<Type *, 4> Tys, ScalarTys; 3432 for (auto &ArgOp : CI->args()) 3433 ScalarTys.push_back(ArgOp->getType()); 3434 3435 // Estimate cost of scalarized vector call. The source operands are assumed 3436 // to be vectors, so we need to extract individual elements from there, 3437 // execute VF scalar calls, and then gather the result into the vector return 3438 // value. 3439 InstructionCost ScalarCallCost = 3440 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3441 if (VF.isScalar()) 3442 return ScalarCallCost; 3443 3444 // Compute corresponding vector type for return value and arguments. 3445 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3446 for (Type *ScalarTy : ScalarTys) 3447 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3448 3449 // Compute costs of unpacking argument values for the scalar calls and 3450 // packing the return values to a vector. 3451 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3452 3453 InstructionCost Cost = 3454 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3455 3456 // If we can't emit a vector call for this function, then the currently found 3457 // cost is the cost we need to return. 3458 NeedToScalarize = true; 3459 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3460 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3461 3462 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3463 return Cost; 3464 3465 // If the corresponding vector cost is cheaper, return its cost. 3466 InstructionCost VectorCallCost = 3467 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3468 if (VectorCallCost < Cost) { 3469 NeedToScalarize = false; 3470 Cost = VectorCallCost; 3471 } 3472 return Cost; 3473 } 3474 3475 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3476 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3477 return Elt; 3478 return VectorType::get(Elt, VF); 3479 } 3480 3481 InstructionCost 3482 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3483 ElementCount VF) const { 3484 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3485 assert(ID && "Expected intrinsic call!"); 3486 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3487 FastMathFlags FMF; 3488 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3489 FMF = FPMO->getFastMathFlags(); 3490 3491 SmallVector<const Value *> Arguments(CI->args()); 3492 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3493 SmallVector<Type *> ParamTys; 3494 std::transform(FTy->param_begin(), FTy->param_end(), 3495 std::back_inserter(ParamTys), 3496 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3497 3498 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3499 dyn_cast<IntrinsicInst>(CI)); 3500 return TTI.getIntrinsicInstrCost(CostAttrs, 3501 TargetTransformInfo::TCK_RecipThroughput); 3502 } 3503 3504 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3505 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3506 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3507 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3508 } 3509 3510 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3511 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3512 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3513 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3514 } 3515 3516 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3517 // For every instruction `I` in MinBWs, truncate the operands, create a 3518 // truncated version of `I` and reextend its result. InstCombine runs 3519 // later and will remove any ext/trunc pairs. 3520 SmallPtrSet<Value *, 4> Erased; 3521 for (const auto &KV : Cost->getMinimalBitwidths()) { 3522 // If the value wasn't vectorized, we must maintain the original scalar 3523 // type. The absence of the value from State indicates that it 3524 // wasn't vectorized. 3525 // FIXME: Should not rely on getVPValue at this point. 3526 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3527 if (!State.hasAnyVectorValue(Def)) 3528 continue; 3529 for (unsigned Part = 0; Part < UF; ++Part) { 3530 Value *I = State.get(Def, Part); 3531 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3532 continue; 3533 Type *OriginalTy = I->getType(); 3534 Type *ScalarTruncatedTy = 3535 IntegerType::get(OriginalTy->getContext(), KV.second); 3536 auto *TruncatedTy = VectorType::get( 3537 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3538 if (TruncatedTy == OriginalTy) 3539 continue; 3540 3541 IRBuilder<> B(cast<Instruction>(I)); 3542 auto ShrinkOperand = [&](Value *V) -> Value * { 3543 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3544 if (ZI->getSrcTy() == TruncatedTy) 3545 return ZI->getOperand(0); 3546 return B.CreateZExtOrTrunc(V, TruncatedTy); 3547 }; 3548 3549 // The actual instruction modification depends on the instruction type, 3550 // unfortunately. 3551 Value *NewI = nullptr; 3552 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3553 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3554 ShrinkOperand(BO->getOperand(1))); 3555 3556 // Any wrapping introduced by shrinking this operation shouldn't be 3557 // considered undefined behavior. So, we can't unconditionally copy 3558 // arithmetic wrapping flags to NewI. 3559 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3560 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3561 NewI = 3562 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3563 ShrinkOperand(CI->getOperand(1))); 3564 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3565 NewI = B.CreateSelect(SI->getCondition(), 3566 ShrinkOperand(SI->getTrueValue()), 3567 ShrinkOperand(SI->getFalseValue())); 3568 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3569 switch (CI->getOpcode()) { 3570 default: 3571 llvm_unreachable("Unhandled cast!"); 3572 case Instruction::Trunc: 3573 NewI = ShrinkOperand(CI->getOperand(0)); 3574 break; 3575 case Instruction::SExt: 3576 NewI = B.CreateSExtOrTrunc( 3577 CI->getOperand(0), 3578 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3579 break; 3580 case Instruction::ZExt: 3581 NewI = B.CreateZExtOrTrunc( 3582 CI->getOperand(0), 3583 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3584 break; 3585 } 3586 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3587 auto Elements0 = 3588 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3589 auto *O0 = B.CreateZExtOrTrunc( 3590 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3591 auto Elements1 = 3592 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3593 auto *O1 = B.CreateZExtOrTrunc( 3594 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3595 3596 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3597 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3598 // Don't do anything with the operands, just extend the result. 3599 continue; 3600 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3601 auto Elements = 3602 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3603 auto *O0 = B.CreateZExtOrTrunc( 3604 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3605 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3606 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3607 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3608 auto Elements = 3609 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3610 auto *O0 = B.CreateZExtOrTrunc( 3611 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3612 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3613 } else { 3614 // If we don't know what to do, be conservative and don't do anything. 3615 continue; 3616 } 3617 3618 // Lastly, extend the result. 3619 NewI->takeName(cast<Instruction>(I)); 3620 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3621 I->replaceAllUsesWith(Res); 3622 cast<Instruction>(I)->eraseFromParent(); 3623 Erased.insert(I); 3624 State.reset(Def, Res, Part); 3625 } 3626 } 3627 3628 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3629 for (const auto &KV : Cost->getMinimalBitwidths()) { 3630 // If the value wasn't vectorized, we must maintain the original scalar 3631 // type. The absence of the value from State indicates that it 3632 // wasn't vectorized. 3633 // FIXME: Should not rely on getVPValue at this point. 3634 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3635 if (!State.hasAnyVectorValue(Def)) 3636 continue; 3637 for (unsigned Part = 0; Part < UF; ++Part) { 3638 Value *I = State.get(Def, Part); 3639 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3640 if (Inst && Inst->use_empty()) { 3641 Value *NewI = Inst->getOperand(0); 3642 Inst->eraseFromParent(); 3643 State.reset(Def, NewI, Part); 3644 } 3645 } 3646 } 3647 } 3648 3649 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State, 3650 VPlan &Plan) { 3651 // Insert truncates and extends for any truncated instructions as hints to 3652 // InstCombine. 3653 if (VF.isVector()) 3654 truncateToMinimalBitwidths(State); 3655 3656 // Fix widened non-induction PHIs by setting up the PHI operands. 3657 if (EnableVPlanNativePath) 3658 fixNonInductionPHIs(Plan, State); 3659 3660 // At this point every instruction in the original loop is widened to a 3661 // vector form. Now we need to fix the recurrences in the loop. These PHI 3662 // nodes are currently empty because we did not want to introduce cycles. 3663 // This is the second stage of vectorizing recurrences. 3664 fixCrossIterationPHIs(State); 3665 3666 // Forget the original basic block. 3667 PSE.getSE()->forgetLoop(OrigLoop); 3668 3669 VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock(); 3670 Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]); 3671 if (Cost->requiresScalarEpilogue(VF)) { 3672 // No edge from the middle block to the unique exit block has been inserted 3673 // and there is nothing to fix from vector loop; phis should have incoming 3674 // from scalar loop only. 3675 Plan.clearLiveOuts(); 3676 } else { 3677 // If we inserted an edge from the middle block to the unique exit block, 3678 // update uses outside the loop (phis) to account for the newly inserted 3679 // edge. 3680 3681 // Fix-up external users of the induction variables. 3682 for (auto &Entry : Legal->getInductionVars()) 3683 fixupIVUsers(Entry.first, Entry.second, 3684 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3685 IVEndValues[Entry.first], LoopMiddleBlock, 3686 VectorLoop->getHeader(), Plan); 3687 } 3688 3689 // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated 3690 // in the exit block, so update the builder. 3691 State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI()); 3692 for (auto &KV : Plan.getLiveOuts()) 3693 KV.second->fixPhi(Plan, State); 3694 3695 for (Instruction *PI : PredicatedInstructions) 3696 sinkScalarOperands(&*PI); 3697 3698 // Remove redundant induction instructions. 3699 cse(VectorLoop->getHeader()); 3700 3701 // Set/update profile weights for the vector and remainder loops as original 3702 // loop iterations are now distributed among them. Note that original loop 3703 // represented by LoopScalarBody becomes remainder loop after vectorization. 3704 // 3705 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3706 // end up getting slightly roughened result but that should be OK since 3707 // profile is not inherently precise anyway. Note also possible bypass of 3708 // vector code caused by legality checks is ignored, assigning all the weight 3709 // to the vector loop, optimistically. 3710 // 3711 // For scalable vectorization we can't know at compile time how many iterations 3712 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3713 // vscale of '1'. 3714 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3715 LI->getLoopFor(LoopScalarBody), 3716 VF.getKnownMinValue() * UF); 3717 } 3718 3719 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3720 // In order to support recurrences we need to be able to vectorize Phi nodes. 3721 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3722 // stage #2: We now need to fix the recurrences by adding incoming edges to 3723 // the currently empty PHI nodes. At this point every instruction in the 3724 // original loop is widened to a vector form so we can use them to construct 3725 // the incoming edges. 3726 VPBasicBlock *Header = 3727 State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); 3728 for (VPRecipeBase &R : Header->phis()) { 3729 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3730 fixReduction(ReductionPhi, State); 3731 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3732 fixFirstOrderRecurrence(FOR, State); 3733 } 3734 } 3735 3736 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3737 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3738 // This is the second phase of vectorizing first-order recurrences. An 3739 // overview of the transformation is described below. Suppose we have the 3740 // following loop. 3741 // 3742 // for (int i = 0; i < n; ++i) 3743 // b[i] = a[i] - a[i - 1]; 3744 // 3745 // There is a first-order recurrence on "a". For this loop, the shorthand 3746 // scalar IR looks like: 3747 // 3748 // scalar.ph: 3749 // s_init = a[-1] 3750 // br scalar.body 3751 // 3752 // scalar.body: 3753 // i = phi [0, scalar.ph], [i+1, scalar.body] 3754 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3755 // s2 = a[i] 3756 // b[i] = s2 - s1 3757 // br cond, scalar.body, ... 3758 // 3759 // In this example, s1 is a recurrence because it's value depends on the 3760 // previous iteration. In the first phase of vectorization, we created a 3761 // vector phi v1 for s1. We now complete the vectorization and produce the 3762 // shorthand vector IR shown below (for VF = 4, UF = 1). 3763 // 3764 // vector.ph: 3765 // v_init = vector(..., ..., ..., a[-1]) 3766 // br vector.body 3767 // 3768 // vector.body 3769 // i = phi [0, vector.ph], [i+4, vector.body] 3770 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3771 // v2 = a[i, i+1, i+2, i+3]; 3772 // v3 = vector(v1(3), v2(0, 1, 2)) 3773 // b[i, i+1, i+2, i+3] = v2 - v3 3774 // br cond, vector.body, middle.block 3775 // 3776 // middle.block: 3777 // x = v2(3) 3778 // br scalar.ph 3779 // 3780 // scalar.ph: 3781 // s_init = phi [x, middle.block], [a[-1], otherwise] 3782 // br scalar.body 3783 // 3784 // After execution completes the vector loop, we extract the next value of 3785 // the recurrence (x) to use as the initial value in the scalar loop. 3786 3787 // Extract the last vector element in the middle block. This will be the 3788 // initial value for the recurrence when jumping to the scalar loop. 3789 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3790 Value *Incoming = State.get(PreviousDef, UF - 1); 3791 auto *ExtractForScalar = Incoming; 3792 auto *IdxTy = Builder.getInt32Ty(); 3793 if (VF.isVector()) { 3794 auto *One = ConstantInt::get(IdxTy, 1); 3795 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3796 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3797 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3798 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3799 "vector.recur.extract"); 3800 } 3801 // Extract the second last element in the middle block if the 3802 // Phi is used outside the loop. We need to extract the phi itself 3803 // and not the last element (the phi update in the current iteration). This 3804 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3805 // when the scalar loop is not run at all. 3806 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3807 if (VF.isVector()) { 3808 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3809 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3810 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3811 Incoming, Idx, "vector.recur.extract.for.phi"); 3812 } else if (UF > 1) 3813 // When loop is unrolled without vectorizing, initialize 3814 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3815 // of `Incoming`. This is analogous to the vectorized case above: extracting 3816 // the second last element when VF > 1. 3817 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3818 3819 // Fix the initial value of the original recurrence in the scalar loop. 3820 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3821 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3822 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3823 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3824 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3825 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3826 Start->addIncoming(Incoming, BB); 3827 } 3828 3829 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3830 Phi->setName("scalar.recur"); 3831 3832 // Finally, fix users of the recurrence outside the loop. The users will need 3833 // either the last value of the scalar recurrence or the last value of the 3834 // vector recurrence we extracted in the middle block. Since the loop is in 3835 // LCSSA form, we just need to find all the phi nodes for the original scalar 3836 // recurrence in the exit block, and then add an edge for the middle block. 3837 // Note that LCSSA does not imply single entry when the original scalar loop 3838 // had multiple exiting edges (as we always run the last iteration in the 3839 // scalar epilogue); in that case, there is no edge from middle to exit and 3840 // and thus no phis which needed updated. 3841 if (!Cost->requiresScalarEpilogue(VF)) 3842 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3843 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) { 3844 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3845 State.Plan->removeLiveOut(&LCSSAPhi); 3846 } 3847 } 3848 3849 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3850 VPTransformState &State) { 3851 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3852 // Get it's reduction variable descriptor. 3853 assert(Legal->isReductionVariable(OrigPhi) && 3854 "Unable to find the reduction variable"); 3855 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3856 3857 RecurKind RK = RdxDesc.getRecurrenceKind(); 3858 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3859 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3860 State.setDebugLocFromInst(ReductionStartValue); 3861 3862 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3863 // This is the vector-clone of the value that leaves the loop. 3864 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3865 3866 // Wrap flags are in general invalid after vectorization, clear them. 3867 clearReductionWrapFlags(PhiR, State); 3868 3869 // Before each round, move the insertion point right between 3870 // the PHIs and the values we are going to write. 3871 // This allows us to write both PHINodes and the extractelement 3872 // instructions. 3873 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3874 3875 State.setDebugLocFromInst(LoopExitInst); 3876 3877 Type *PhiTy = OrigPhi->getType(); 3878 3879 VPBasicBlock *LatchVPBB = 3880 PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock(); 3881 BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB]; 3882 // If tail is folded by masking, the vector value to leave the loop should be 3883 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3884 // instead of the former. For an inloop reduction the reduction will already 3885 // be predicated, and does not need to be handled here. 3886 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3887 for (unsigned Part = 0; Part < UF; ++Part) { 3888 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3889 SelectInst *Sel = nullptr; 3890 for (User *U : VecLoopExitInst->users()) { 3891 if (isa<SelectInst>(U)) { 3892 assert(!Sel && "Reduction exit feeding two selects"); 3893 Sel = cast<SelectInst>(U); 3894 } else 3895 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3896 } 3897 assert(Sel && "Reduction exit feeds no select"); 3898 State.reset(LoopExitInstDef, Sel, Part); 3899 3900 if (isa<FPMathOperator>(Sel)) 3901 Sel->setFastMathFlags(RdxDesc.getFastMathFlags()); 3902 3903 // If the target can create a predicated operator for the reduction at no 3904 // extra cost in the loop (for example a predicated vadd), it can be 3905 // cheaper for the select to remain in the loop than be sunk out of it, 3906 // and so use the select value for the phi instead of the old 3907 // LoopExitValue. 3908 if (PreferPredicatedReductionSelect || 3909 TTI->preferPredicatedReductionSelect( 3910 RdxDesc.getOpcode(), PhiTy, 3911 TargetTransformInfo::ReductionFlags())) { 3912 auto *VecRdxPhi = 3913 cast<PHINode>(State.get(PhiR, Part)); 3914 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3915 } 3916 } 3917 } 3918 3919 // If the vector reduction can be performed in a smaller type, we truncate 3920 // then extend the loop exit value to enable InstCombine to evaluate the 3921 // entire expression in the smaller type. 3922 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3923 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3924 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3925 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3926 VectorParts RdxParts(UF); 3927 for (unsigned Part = 0; Part < UF; ++Part) { 3928 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3929 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3930 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3931 : Builder.CreateZExt(Trunc, VecTy); 3932 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3933 if (U != Trunc) { 3934 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3935 RdxParts[Part] = Extnd; 3936 } 3937 } 3938 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3939 for (unsigned Part = 0; Part < UF; ++Part) { 3940 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3941 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3942 } 3943 } 3944 3945 // Reduce all of the unrolled parts into a single vector. 3946 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3947 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3948 3949 // The middle block terminator has already been assigned a DebugLoc here (the 3950 // OrigLoop's single latch terminator). We want the whole middle block to 3951 // appear to execute on this line because: (a) it is all compiler generated, 3952 // (b) these instructions are always executed after evaluating the latch 3953 // conditional branch, and (c) other passes may add new predecessors which 3954 // terminate on this line. This is the easiest way to ensure we don't 3955 // accidentally cause an extra step back into the loop while debugging. 3956 State.setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3957 if (PhiR->isOrdered()) 3958 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3959 else { 3960 // Floating-point operations should have some FMF to enable the reduction. 3961 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3962 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3963 for (unsigned Part = 1; Part < UF; ++Part) { 3964 Value *RdxPart = State.get(LoopExitInstDef, Part); 3965 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 3966 ReducedPartRdx = Builder.CreateBinOp( 3967 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 3968 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 3969 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 3970 ReducedPartRdx, RdxPart); 3971 else 3972 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 3973 } 3974 } 3975 3976 // Create the reduction after the loop. Note that inloop reductions create the 3977 // target reduction in the loop using a Reduction recipe. 3978 if (VF.isVector() && !PhiR->isInLoop()) { 3979 ReducedPartRdx = 3980 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 3981 // If the reduction can be performed in a smaller type, we need to extend 3982 // the reduction to the wider type before we branch to the original loop. 3983 if (PhiTy != RdxDesc.getRecurrenceType()) 3984 ReducedPartRdx = RdxDesc.isSigned() 3985 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 3986 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 3987 } 3988 3989 PHINode *ResumePhi = 3990 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 3991 3992 // Create a phi node that merges control-flow from the backedge-taken check 3993 // block and the middle block. 3994 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 3995 LoopScalarPreHeader->getTerminator()); 3996 3997 // If we are fixing reductions in the epilogue loop then we should already 3998 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 3999 // we carry over the incoming values correctly. 4000 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4001 if (Incoming == LoopMiddleBlock) 4002 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4003 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4004 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4005 Incoming); 4006 else 4007 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4008 } 4009 4010 // Set the resume value for this reduction 4011 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4012 4013 // If there were stores of the reduction value to a uniform memory address 4014 // inside the loop, create the final store here. 4015 if (StoreInst *SI = RdxDesc.IntermediateStore) { 4016 StoreInst *NewSI = 4017 Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand()); 4018 propagateMetadata(NewSI, SI); 4019 4020 // If the reduction value is used in other places, 4021 // then let the code below create PHI's for that. 4022 } 4023 4024 // Now, we need to fix the users of the reduction variable 4025 // inside and outside of the scalar remainder loop. 4026 4027 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4028 // in the exit blocks. See comment on analogous loop in 4029 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4030 if (!Cost->requiresScalarEpilogue(VF)) 4031 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4032 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) { 4033 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4034 State.Plan->removeLiveOut(&LCSSAPhi); 4035 } 4036 4037 // Fix the scalar loop reduction variable with the incoming reduction sum 4038 // from the vector body and from the backedge value. 4039 int IncomingEdgeBlockIdx = 4040 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4041 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4042 // Pick the other block. 4043 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4044 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4045 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4046 } 4047 4048 void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 4049 VPTransformState &State) { 4050 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4051 RecurKind RK = RdxDesc.getRecurrenceKind(); 4052 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4053 return; 4054 4055 SmallVector<VPValue *, 8> Worklist; 4056 SmallPtrSet<VPValue *, 8> Visited; 4057 Worklist.push_back(PhiR); 4058 Visited.insert(PhiR); 4059 4060 while (!Worklist.empty()) { 4061 VPValue *Cur = Worklist.pop_back_val(); 4062 for (unsigned Part = 0; Part < UF; ++Part) { 4063 Value *V = State.get(Cur, Part); 4064 if (!isa<OverflowingBinaryOperator>(V)) 4065 break; 4066 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4067 } 4068 4069 for (VPUser *U : Cur->users()) { 4070 auto *UserRecipe = dyn_cast<VPRecipeBase>(U); 4071 if (!UserRecipe) 4072 continue; 4073 for (VPValue *V : UserRecipe->definedValues()) 4074 if (Visited.insert(V).second) 4075 Worklist.push_back(V); 4076 } 4077 } 4078 } 4079 4080 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4081 // The basic block and loop containing the predicated instruction. 4082 auto *PredBB = PredInst->getParent(); 4083 auto *VectorLoop = LI->getLoopFor(PredBB); 4084 4085 // Initialize a worklist with the operands of the predicated instruction. 4086 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4087 4088 // Holds instructions that we need to analyze again. An instruction may be 4089 // reanalyzed if we don't yet know if we can sink it or not. 4090 SmallVector<Instruction *, 8> InstsToReanalyze; 4091 4092 // Returns true if a given use occurs in the predicated block. Phi nodes use 4093 // their operands in their corresponding predecessor blocks. 4094 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4095 auto *I = cast<Instruction>(U.getUser()); 4096 BasicBlock *BB = I->getParent(); 4097 if (auto *Phi = dyn_cast<PHINode>(I)) 4098 BB = Phi->getIncomingBlock( 4099 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4100 return BB == PredBB; 4101 }; 4102 4103 // Iteratively sink the scalarized operands of the predicated instruction 4104 // into the block we created for it. When an instruction is sunk, it's 4105 // operands are then added to the worklist. The algorithm ends after one pass 4106 // through the worklist doesn't sink a single instruction. 4107 bool Changed; 4108 do { 4109 // Add the instructions that need to be reanalyzed to the worklist, and 4110 // reset the changed indicator. 4111 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4112 InstsToReanalyze.clear(); 4113 Changed = false; 4114 4115 while (!Worklist.empty()) { 4116 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4117 4118 // We can't sink an instruction if it is a phi node, is not in the loop, 4119 // or may have side effects. 4120 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4121 I->mayHaveSideEffects()) 4122 continue; 4123 4124 // If the instruction is already in PredBB, check if we can sink its 4125 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4126 // sinking the scalar instruction I, hence it appears in PredBB; but it 4127 // may have failed to sink I's operands (recursively), which we try 4128 // (again) here. 4129 if (I->getParent() == PredBB) { 4130 Worklist.insert(I->op_begin(), I->op_end()); 4131 continue; 4132 } 4133 4134 // It's legal to sink the instruction if all its uses occur in the 4135 // predicated block. Otherwise, there's nothing to do yet, and we may 4136 // need to reanalyze the instruction. 4137 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4138 InstsToReanalyze.push_back(I); 4139 continue; 4140 } 4141 4142 // Move the instruction to the beginning of the predicated block, and add 4143 // it's operands to the worklist. 4144 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4145 Worklist.insert(I->op_begin(), I->op_end()); 4146 4147 // The sinking may have enabled other instructions to be sunk, so we will 4148 // need to iterate. 4149 Changed = true; 4150 } 4151 } while (Changed); 4152 } 4153 4154 void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan, 4155 VPTransformState &State) { 4156 auto Iter = depth_first( 4157 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry())); 4158 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 4159 for (VPRecipeBase &P : VPBB->phis()) { 4160 VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P); 4161 if (!VPPhi) 4162 continue; 4163 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4164 // Make sure the builder has a valid insert point. 4165 Builder.SetInsertPoint(NewPhi); 4166 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4167 VPValue *Inc = VPPhi->getIncomingValue(i); 4168 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4169 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4170 } 4171 } 4172 } 4173 } 4174 4175 bool InnerLoopVectorizer::useOrderedReductions( 4176 const RecurrenceDescriptor &RdxDesc) { 4177 return Cost->useOrderedReductions(RdxDesc); 4178 } 4179 4180 void InnerLoopVectorizer::widenCallInstruction(CallInst &CI, VPValue *Def, 4181 VPUser &ArgOperands, 4182 VPTransformState &State) { 4183 assert(!isa<DbgInfoIntrinsic>(CI) && 4184 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4185 State.setDebugLocFromInst(&CI); 4186 4187 SmallVector<Type *, 4> Tys; 4188 for (Value *ArgOperand : CI.args()) 4189 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4190 4191 Intrinsic::ID ID = getVectorIntrinsicIDForCall(&CI, TLI); 4192 4193 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4194 // version of the instruction. 4195 // Is it beneficial to perform intrinsic call compared to lib call? 4196 bool NeedToScalarize = false; 4197 InstructionCost CallCost = Cost->getVectorCallCost(&CI, VF, NeedToScalarize); 4198 InstructionCost IntrinsicCost = 4199 ID ? Cost->getVectorIntrinsicCost(&CI, VF) : 0; 4200 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4201 assert((UseVectorIntrinsic || !NeedToScalarize) && 4202 "Instruction should be scalarized elsewhere."); 4203 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4204 "Either the intrinsic cost or vector call cost must be valid"); 4205 4206 for (unsigned Part = 0; Part < UF; ++Part) { 4207 SmallVector<Type *, 2> TysForDecl = {CI.getType()}; 4208 SmallVector<Value *, 4> Args; 4209 for (auto &I : enumerate(ArgOperands.operands())) { 4210 // Some intrinsics have a scalar argument - don't replace it with a 4211 // vector. 4212 Value *Arg; 4213 if (!UseVectorIntrinsic || 4214 !isVectorIntrinsicWithScalarOpAtArg(ID, I.index())) 4215 Arg = State.get(I.value(), Part); 4216 else 4217 Arg = State.get(I.value(), VPIteration(0, 0)); 4218 if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index())) 4219 TysForDecl.push_back(Arg->getType()); 4220 Args.push_back(Arg); 4221 } 4222 4223 Function *VectorF; 4224 if (UseVectorIntrinsic) { 4225 // Use vector version of the intrinsic. 4226 if (VF.isVector()) 4227 TysForDecl[0] = VectorType::get(CI.getType()->getScalarType(), VF); 4228 Module *M = State.Builder.GetInsertBlock()->getModule(); 4229 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4230 assert(VectorF && "Can't retrieve vector intrinsic."); 4231 } else { 4232 // Use vector version of the function call. 4233 const VFShape Shape = VFShape::get(CI, VF, false /*HasGlobalPred*/); 4234 #ifndef NDEBUG 4235 assert(VFDatabase(CI).getVectorizedFunction(Shape) != nullptr && 4236 "Can't create vector function."); 4237 #endif 4238 VectorF = VFDatabase(CI).getVectorizedFunction(Shape); 4239 } 4240 SmallVector<OperandBundleDef, 1> OpBundles; 4241 CI.getOperandBundlesAsDefs(OpBundles); 4242 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4243 4244 if (isa<FPMathOperator>(V)) 4245 V->copyFastMathFlags(&CI); 4246 4247 State.set(Def, V, Part); 4248 State.addMetadata(V, &CI); 4249 } 4250 } 4251 4252 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4253 // We should not collect Scalars more than once per VF. Right now, this 4254 // function is called from collectUniformsAndScalars(), which already does 4255 // this check. Collecting Scalars for VF=1 does not make any sense. 4256 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4257 "This function should not be visited twice for the same VF"); 4258 4259 // This avoids any chances of creating a REPLICATE recipe during planning 4260 // since that would result in generation of scalarized code during execution, 4261 // which is not supported for scalable vectors. 4262 if (VF.isScalable()) { 4263 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4264 return; 4265 } 4266 4267 SmallSetVector<Instruction *, 8> Worklist; 4268 4269 // These sets are used to seed the analysis with pointers used by memory 4270 // accesses that will remain scalar. 4271 SmallSetVector<Instruction *, 8> ScalarPtrs; 4272 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4273 auto *Latch = TheLoop->getLoopLatch(); 4274 4275 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4276 // The pointer operands of loads and stores will be scalar as long as the 4277 // memory access is not a gather or scatter operation. The value operand of a 4278 // store will remain scalar if the store is scalarized. 4279 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4280 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4281 assert(WideningDecision != CM_Unknown && 4282 "Widening decision should be ready at this moment"); 4283 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4284 if (Ptr == Store->getValueOperand()) 4285 return WideningDecision == CM_Scalarize; 4286 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4287 "Ptr is neither a value or pointer operand"); 4288 return WideningDecision != CM_GatherScatter; 4289 }; 4290 4291 // A helper that returns true if the given value is a bitcast or 4292 // getelementptr instruction contained in the loop. 4293 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4294 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4295 isa<GetElementPtrInst>(V)) && 4296 !TheLoop->isLoopInvariant(V); 4297 }; 4298 4299 // A helper that evaluates a memory access's use of a pointer. If the use will 4300 // be a scalar use and the pointer is only used by memory accesses, we place 4301 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4302 // PossibleNonScalarPtrs. 4303 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4304 // We only care about bitcast and getelementptr instructions contained in 4305 // the loop. 4306 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4307 return; 4308 4309 // If the pointer has already been identified as scalar (e.g., if it was 4310 // also identified as uniform), there's nothing to do. 4311 auto *I = cast<Instruction>(Ptr); 4312 if (Worklist.count(I)) 4313 return; 4314 4315 // If the use of the pointer will be a scalar use, and all users of the 4316 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4317 // place the pointer in PossibleNonScalarPtrs. 4318 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4319 return isa<LoadInst>(U) || isa<StoreInst>(U); 4320 })) 4321 ScalarPtrs.insert(I); 4322 else 4323 PossibleNonScalarPtrs.insert(I); 4324 }; 4325 4326 // We seed the scalars analysis with three classes of instructions: (1) 4327 // instructions marked uniform-after-vectorization and (2) bitcast, 4328 // getelementptr and (pointer) phi instructions used by memory accesses 4329 // requiring a scalar use. 4330 // 4331 // (1) Add to the worklist all instructions that have been identified as 4332 // uniform-after-vectorization. 4333 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4334 4335 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4336 // memory accesses requiring a scalar use. The pointer operands of loads and 4337 // stores will be scalar as long as the memory accesses is not a gather or 4338 // scatter operation. The value operand of a store will remain scalar if the 4339 // store is scalarized. 4340 for (auto *BB : TheLoop->blocks()) 4341 for (auto &I : *BB) { 4342 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4343 evaluatePtrUse(Load, Load->getPointerOperand()); 4344 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4345 evaluatePtrUse(Store, Store->getPointerOperand()); 4346 evaluatePtrUse(Store, Store->getValueOperand()); 4347 } 4348 } 4349 for (auto *I : ScalarPtrs) 4350 if (!PossibleNonScalarPtrs.count(I)) { 4351 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4352 Worklist.insert(I); 4353 } 4354 4355 // Insert the forced scalars. 4356 // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector 4357 // induction variable when the PHI user is scalarized. 4358 auto ForcedScalar = ForcedScalars.find(VF); 4359 if (ForcedScalar != ForcedScalars.end()) 4360 for (auto *I : ForcedScalar->second) 4361 Worklist.insert(I); 4362 4363 // Expand the worklist by looking through any bitcasts and getelementptr 4364 // instructions we've already identified as scalar. This is similar to the 4365 // expansion step in collectLoopUniforms(); however, here we're only 4366 // expanding to include additional bitcasts and getelementptr instructions. 4367 unsigned Idx = 0; 4368 while (Idx != Worklist.size()) { 4369 Instruction *Dst = Worklist[Idx++]; 4370 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4371 continue; 4372 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4373 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4374 auto *J = cast<Instruction>(U); 4375 return !TheLoop->contains(J) || Worklist.count(J) || 4376 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4377 isScalarUse(J, Src)); 4378 })) { 4379 Worklist.insert(Src); 4380 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4381 } 4382 } 4383 4384 // An induction variable will remain scalar if all users of the induction 4385 // variable and induction variable update remain scalar. 4386 for (auto &Induction : Legal->getInductionVars()) { 4387 auto *Ind = Induction.first; 4388 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4389 4390 // If tail-folding is applied, the primary induction variable will be used 4391 // to feed a vector compare. 4392 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4393 continue; 4394 4395 // Returns true if \p Indvar is a pointer induction that is used directly by 4396 // load/store instruction \p I. 4397 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4398 Instruction *I) { 4399 return Induction.second.getKind() == 4400 InductionDescriptor::IK_PtrInduction && 4401 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4402 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4403 }; 4404 4405 // Determine if all users of the induction variable are scalar after 4406 // vectorization. 4407 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4408 auto *I = cast<Instruction>(U); 4409 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4410 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4411 }); 4412 if (!ScalarInd) 4413 continue; 4414 4415 // Determine if all users of the induction variable update instruction are 4416 // scalar after vectorization. 4417 auto ScalarIndUpdate = 4418 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4419 auto *I = cast<Instruction>(U); 4420 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4421 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4422 }); 4423 if (!ScalarIndUpdate) 4424 continue; 4425 4426 // The induction variable and its update instruction will remain scalar. 4427 Worklist.insert(Ind); 4428 Worklist.insert(IndUpdate); 4429 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4430 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4431 << "\n"); 4432 } 4433 4434 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4435 } 4436 4437 bool LoopVectorizationCostModel::isScalarWithPredication( 4438 Instruction *I, ElementCount VF) const { 4439 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4440 return false; 4441 switch(I->getOpcode()) { 4442 default: 4443 break; 4444 case Instruction::Load: 4445 case Instruction::Store: { 4446 if (!Legal->isMaskRequired(I)) 4447 return false; 4448 auto *Ptr = getLoadStorePointerOperand(I); 4449 auto *Ty = getLoadStoreType(I); 4450 Type *VTy = Ty; 4451 if (VF.isVector()) 4452 VTy = VectorType::get(Ty, VF); 4453 const Align Alignment = getLoadStoreAlignment(I); 4454 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4455 TTI.isLegalMaskedGather(VTy, Alignment)) 4456 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4457 TTI.isLegalMaskedScatter(VTy, Alignment)); 4458 } 4459 case Instruction::UDiv: 4460 case Instruction::SDiv: 4461 case Instruction::SRem: 4462 case Instruction::URem: 4463 // TODO: We can use the loop-preheader as context point here and get 4464 // context sensitive reasoning 4465 return !isSafeToSpeculativelyExecute(I); 4466 } 4467 return false; 4468 } 4469 4470 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4471 Instruction *I, ElementCount VF) { 4472 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4473 assert(getWideningDecision(I, VF) == CM_Unknown && 4474 "Decision should not be set yet."); 4475 auto *Group = getInterleavedAccessGroup(I); 4476 assert(Group && "Must have a group."); 4477 4478 // If the instruction's allocated size doesn't equal it's type size, it 4479 // requires padding and will be scalarized. 4480 auto &DL = I->getModule()->getDataLayout(); 4481 auto *ScalarTy = getLoadStoreType(I); 4482 if (hasIrregularType(ScalarTy, DL)) 4483 return false; 4484 4485 // If the group involves a non-integral pointer, we may not be able to 4486 // losslessly cast all values to a common type. 4487 unsigned InterleaveFactor = Group->getFactor(); 4488 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); 4489 for (unsigned i = 0; i < InterleaveFactor; i++) { 4490 Instruction *Member = Group->getMember(i); 4491 if (!Member) 4492 continue; 4493 auto *MemberTy = getLoadStoreType(Member); 4494 bool MemberNI = DL.isNonIntegralPointerType(MemberTy); 4495 // Don't coerce non-integral pointers to integers or vice versa. 4496 if (MemberNI != ScalarNI) { 4497 // TODO: Consider adding special nullptr value case here 4498 return false; 4499 } else if (MemberNI && ScalarNI && 4500 ScalarTy->getPointerAddressSpace() != 4501 MemberTy->getPointerAddressSpace()) { 4502 return false; 4503 } 4504 } 4505 4506 // Check if masking is required. 4507 // A Group may need masking for one of two reasons: it resides in a block that 4508 // needs predication, or it was decided to use masking to deal with gaps 4509 // (either a gap at the end of a load-access that may result in a speculative 4510 // load, or any gaps in a store-access). 4511 bool PredicatedAccessRequiresMasking = 4512 blockNeedsPredicationForAnyReason(I->getParent()) && 4513 Legal->isMaskRequired(I); 4514 bool LoadAccessWithGapsRequiresEpilogMasking = 4515 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4516 !isScalarEpilogueAllowed(); 4517 bool StoreAccessWithGapsRequiresMasking = 4518 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4519 if (!PredicatedAccessRequiresMasking && 4520 !LoadAccessWithGapsRequiresEpilogMasking && 4521 !StoreAccessWithGapsRequiresMasking) 4522 return true; 4523 4524 // If masked interleaving is required, we expect that the user/target had 4525 // enabled it, because otherwise it either wouldn't have been created or 4526 // it should have been invalidated by the CostModel. 4527 assert(useMaskedInterleavedAccesses(TTI) && 4528 "Masked interleave-groups for predicated accesses are not enabled."); 4529 4530 if (Group->isReverse()) 4531 return false; 4532 4533 auto *Ty = getLoadStoreType(I); 4534 const Align Alignment = getLoadStoreAlignment(I); 4535 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4536 : TTI.isLegalMaskedStore(Ty, Alignment); 4537 } 4538 4539 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4540 Instruction *I, ElementCount VF) { 4541 // Get and ensure we have a valid memory instruction. 4542 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4543 4544 auto *Ptr = getLoadStorePointerOperand(I); 4545 auto *ScalarTy = getLoadStoreType(I); 4546 4547 // In order to be widened, the pointer should be consecutive, first of all. 4548 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4549 return false; 4550 4551 // If the instruction is a store located in a predicated block, it will be 4552 // scalarized. 4553 if (isScalarWithPredication(I, VF)) 4554 return false; 4555 4556 // If the instruction's allocated size doesn't equal it's type size, it 4557 // requires padding and will be scalarized. 4558 auto &DL = I->getModule()->getDataLayout(); 4559 if (hasIrregularType(ScalarTy, DL)) 4560 return false; 4561 4562 return true; 4563 } 4564 4565 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4566 // We should not collect Uniforms more than once per VF. Right now, 4567 // this function is called from collectUniformsAndScalars(), which 4568 // already does this check. Collecting Uniforms for VF=1 does not make any 4569 // sense. 4570 4571 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4572 "This function should not be visited twice for the same VF"); 4573 4574 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4575 // not analyze again. Uniforms.count(VF) will return 1. 4576 Uniforms[VF].clear(); 4577 4578 // We now know that the loop is vectorizable! 4579 // Collect instructions inside the loop that will remain uniform after 4580 // vectorization. 4581 4582 // Global values, params and instructions outside of current loop are out of 4583 // scope. 4584 auto isOutOfScope = [&](Value *V) -> bool { 4585 Instruction *I = dyn_cast<Instruction>(V); 4586 return (!I || !TheLoop->contains(I)); 4587 }; 4588 4589 // Worklist containing uniform instructions demanding lane 0. 4590 SetVector<Instruction *> Worklist; 4591 BasicBlock *Latch = TheLoop->getLoopLatch(); 4592 4593 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4594 // that are scalar with predication must not be considered uniform after 4595 // vectorization, because that would create an erroneous replicating region 4596 // where only a single instance out of VF should be formed. 4597 // TODO: optimize such seldom cases if found important, see PR40816. 4598 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4599 if (isOutOfScope(I)) { 4600 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4601 << *I << "\n"); 4602 return; 4603 } 4604 if (isScalarWithPredication(I, VF)) { 4605 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4606 << *I << "\n"); 4607 return; 4608 } 4609 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4610 Worklist.insert(I); 4611 }; 4612 4613 // Start with the conditional branch. If the branch condition is an 4614 // instruction contained in the loop that is only used by the branch, it is 4615 // uniform. 4616 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4617 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4618 addToWorklistIfAllowed(Cmp); 4619 4620 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4621 InstWidening WideningDecision = getWideningDecision(I, VF); 4622 assert(WideningDecision != CM_Unknown && 4623 "Widening decision should be ready at this moment"); 4624 4625 // A uniform memory op is itself uniform. We exclude uniform stores 4626 // here as they demand the last lane, not the first one. 4627 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4628 assert(WideningDecision == CM_Scalarize); 4629 return true; 4630 } 4631 4632 return (WideningDecision == CM_Widen || 4633 WideningDecision == CM_Widen_Reverse || 4634 WideningDecision == CM_Interleave); 4635 }; 4636 4637 4638 // Returns true if Ptr is the pointer operand of a memory access instruction 4639 // I, and I is known to not require scalarization. 4640 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4641 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4642 }; 4643 4644 // Holds a list of values which are known to have at least one uniform use. 4645 // Note that there may be other uses which aren't uniform. A "uniform use" 4646 // here is something which only demands lane 0 of the unrolled iterations; 4647 // it does not imply that all lanes produce the same value (e.g. this is not 4648 // the usual meaning of uniform) 4649 SetVector<Value *> HasUniformUse; 4650 4651 // Scan the loop for instructions which are either a) known to have only 4652 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4653 for (auto *BB : TheLoop->blocks()) 4654 for (auto &I : *BB) { 4655 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4656 switch (II->getIntrinsicID()) { 4657 case Intrinsic::sideeffect: 4658 case Intrinsic::experimental_noalias_scope_decl: 4659 case Intrinsic::assume: 4660 case Intrinsic::lifetime_start: 4661 case Intrinsic::lifetime_end: 4662 if (TheLoop->hasLoopInvariantOperands(&I)) 4663 addToWorklistIfAllowed(&I); 4664 break; 4665 default: 4666 break; 4667 } 4668 } 4669 4670 // ExtractValue instructions must be uniform, because the operands are 4671 // known to be loop-invariant. 4672 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4673 assert(isOutOfScope(EVI->getAggregateOperand()) && 4674 "Expected aggregate value to be loop invariant"); 4675 addToWorklistIfAllowed(EVI); 4676 continue; 4677 } 4678 4679 // If there's no pointer operand, there's nothing to do. 4680 auto *Ptr = getLoadStorePointerOperand(&I); 4681 if (!Ptr) 4682 continue; 4683 4684 // A uniform memory op is itself uniform. We exclude uniform stores 4685 // here as they demand the last lane, not the first one. 4686 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4687 addToWorklistIfAllowed(&I); 4688 4689 if (isUniformDecision(&I, VF)) { 4690 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4691 HasUniformUse.insert(Ptr); 4692 } 4693 } 4694 4695 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4696 // demanding) users. Since loops are assumed to be in LCSSA form, this 4697 // disallows uses outside the loop as well. 4698 for (auto *V : HasUniformUse) { 4699 if (isOutOfScope(V)) 4700 continue; 4701 auto *I = cast<Instruction>(V); 4702 auto UsersAreMemAccesses = 4703 llvm::all_of(I->users(), [&](User *U) -> bool { 4704 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4705 }); 4706 if (UsersAreMemAccesses) 4707 addToWorklistIfAllowed(I); 4708 } 4709 4710 // Expand Worklist in topological order: whenever a new instruction 4711 // is added , its users should be already inside Worklist. It ensures 4712 // a uniform instruction will only be used by uniform instructions. 4713 unsigned idx = 0; 4714 while (idx != Worklist.size()) { 4715 Instruction *I = Worklist[idx++]; 4716 4717 for (auto OV : I->operand_values()) { 4718 // isOutOfScope operands cannot be uniform instructions. 4719 if (isOutOfScope(OV)) 4720 continue; 4721 // First order recurrence Phi's should typically be considered 4722 // non-uniform. 4723 auto *OP = dyn_cast<PHINode>(OV); 4724 if (OP && Legal->isFirstOrderRecurrence(OP)) 4725 continue; 4726 // If all the users of the operand are uniform, then add the 4727 // operand into the uniform worklist. 4728 auto *OI = cast<Instruction>(OV); 4729 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4730 auto *J = cast<Instruction>(U); 4731 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4732 })) 4733 addToWorklistIfAllowed(OI); 4734 } 4735 } 4736 4737 // For an instruction to be added into Worklist above, all its users inside 4738 // the loop should also be in Worklist. However, this condition cannot be 4739 // true for phi nodes that form a cyclic dependence. We must process phi 4740 // nodes separately. An induction variable will remain uniform if all users 4741 // of the induction variable and induction variable update remain uniform. 4742 // The code below handles both pointer and non-pointer induction variables. 4743 for (auto &Induction : Legal->getInductionVars()) { 4744 auto *Ind = Induction.first; 4745 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4746 4747 // Determine if all users of the induction variable are uniform after 4748 // vectorization. 4749 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4750 auto *I = cast<Instruction>(U); 4751 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4752 isVectorizedMemAccessUse(I, Ind); 4753 }); 4754 if (!UniformInd) 4755 continue; 4756 4757 // Determine if all users of the induction variable update instruction are 4758 // uniform after vectorization. 4759 auto UniformIndUpdate = 4760 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4761 auto *I = cast<Instruction>(U); 4762 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4763 isVectorizedMemAccessUse(I, IndUpdate); 4764 }); 4765 if (!UniformIndUpdate) 4766 continue; 4767 4768 // The induction variable and its update instruction will remain uniform. 4769 addToWorklistIfAllowed(Ind); 4770 addToWorklistIfAllowed(IndUpdate); 4771 } 4772 4773 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4774 } 4775 4776 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4777 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4778 4779 if (Legal->getRuntimePointerChecking()->Need) { 4780 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4781 "runtime pointer checks needed. Enable vectorization of this " 4782 "loop with '#pragma clang loop vectorize(enable)' when " 4783 "compiling with -Os/-Oz", 4784 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4785 return true; 4786 } 4787 4788 if (!PSE.getPredicate().isAlwaysTrue()) { 4789 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4790 "runtime SCEV checks needed. Enable vectorization of this " 4791 "loop with '#pragma clang loop vectorize(enable)' when " 4792 "compiling with -Os/-Oz", 4793 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4794 return true; 4795 } 4796 4797 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4798 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4799 reportVectorizationFailure("Runtime stride check for small trip count", 4800 "runtime stride == 1 checks needed. Enable vectorization of " 4801 "this loop without such check by compiling with -Os/-Oz", 4802 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4803 return true; 4804 } 4805 4806 return false; 4807 } 4808 4809 ElementCount 4810 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4811 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4812 return ElementCount::getScalable(0); 4813 4814 if (Hints->isScalableVectorizationDisabled()) { 4815 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4816 "ScalableVectorizationDisabled", ORE, TheLoop); 4817 return ElementCount::getScalable(0); 4818 } 4819 4820 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4821 4822 auto MaxScalableVF = ElementCount::getScalable( 4823 std::numeric_limits<ElementCount::ScalarTy>::max()); 4824 4825 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4826 // FIXME: While for scalable vectors this is currently sufficient, this should 4827 // be replaced by a more detailed mechanism that filters out specific VFs, 4828 // instead of invalidating vectorization for a whole set of VFs based on the 4829 // MaxVF. 4830 4831 // Disable scalable vectorization if the loop contains unsupported reductions. 4832 if (!canVectorizeReductions(MaxScalableVF)) { 4833 reportVectorizationInfo( 4834 "Scalable vectorization not supported for the reduction " 4835 "operations found in this loop.", 4836 "ScalableVFUnfeasible", ORE, TheLoop); 4837 return ElementCount::getScalable(0); 4838 } 4839 4840 // Disable scalable vectorization if the loop contains any instructions 4841 // with element types not supported for scalable vectors. 4842 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 4843 return !Ty->isVoidTy() && 4844 !this->TTI.isElementTypeLegalForScalableVector(Ty); 4845 })) { 4846 reportVectorizationInfo("Scalable vectorization is not supported " 4847 "for all element types found in this loop.", 4848 "ScalableVFUnfeasible", ORE, TheLoop); 4849 return ElementCount::getScalable(0); 4850 } 4851 4852 if (Legal->isSafeForAnyVectorWidth()) 4853 return MaxScalableVF; 4854 4855 // Limit MaxScalableVF by the maximum safe dependence distance. 4856 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 4857 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 4858 MaxVScale = 4859 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 4860 MaxScalableVF = ElementCount::getScalable( 4861 MaxVScale ? (MaxSafeElements / MaxVScale.value()) : 0); 4862 if (!MaxScalableVF) 4863 reportVectorizationInfo( 4864 "Max legal vector width too small, scalable vectorization " 4865 "unfeasible.", 4866 "ScalableVFUnfeasible", ORE, TheLoop); 4867 4868 return MaxScalableVF; 4869 } 4870 4871 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 4872 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 4873 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4874 unsigned SmallestType, WidestType; 4875 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4876 4877 // Get the maximum safe dependence distance in bits computed by LAA. 4878 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4879 // the memory accesses that is most restrictive (involved in the smallest 4880 // dependence distance). 4881 unsigned MaxSafeElements = 4882 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 4883 4884 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 4885 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 4886 4887 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 4888 << ".\n"); 4889 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 4890 << ".\n"); 4891 4892 // First analyze the UserVF, fall back if the UserVF should be ignored. 4893 if (UserVF) { 4894 auto MaxSafeUserVF = 4895 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 4896 4897 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 4898 // If `VF=vscale x N` is safe, then so is `VF=N` 4899 if (UserVF.isScalable()) 4900 return FixedScalableVFPair( 4901 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 4902 else 4903 return UserVF; 4904 } 4905 4906 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 4907 4908 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 4909 // is better to ignore the hint and let the compiler choose a suitable VF. 4910 if (!UserVF.isScalable()) { 4911 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4912 << " is unsafe, clamping to max safe VF=" 4913 << MaxSafeFixedVF << ".\n"); 4914 ORE->emit([&]() { 4915 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4916 TheLoop->getStartLoc(), 4917 TheLoop->getHeader()) 4918 << "User-specified vectorization factor " 4919 << ore::NV("UserVectorizationFactor", UserVF) 4920 << " is unsafe, clamping to maximum safe vectorization factor " 4921 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 4922 }); 4923 return MaxSafeFixedVF; 4924 } 4925 4926 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 4927 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4928 << " is ignored because scalable vectors are not " 4929 "available.\n"); 4930 ORE->emit([&]() { 4931 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4932 TheLoop->getStartLoc(), 4933 TheLoop->getHeader()) 4934 << "User-specified vectorization factor " 4935 << ore::NV("UserVectorizationFactor", UserVF) 4936 << " is ignored because the target does not support scalable " 4937 "vectors. The compiler will pick a more suitable value."; 4938 }); 4939 } else { 4940 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4941 << " is unsafe. Ignoring scalable UserVF.\n"); 4942 ORE->emit([&]() { 4943 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4944 TheLoop->getStartLoc(), 4945 TheLoop->getHeader()) 4946 << "User-specified vectorization factor " 4947 << ore::NV("UserVectorizationFactor", UserVF) 4948 << " is unsafe. Ignoring the hint to let the compiler pick a " 4949 "more suitable value."; 4950 }); 4951 } 4952 } 4953 4954 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4955 << " / " << WidestType << " bits.\n"); 4956 4957 FixedScalableVFPair Result(ElementCount::getFixed(1), 4958 ElementCount::getScalable(0)); 4959 if (auto MaxVF = 4960 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4961 MaxSafeFixedVF, FoldTailByMasking)) 4962 Result.FixedVF = MaxVF; 4963 4964 if (auto MaxVF = 4965 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 4966 MaxSafeScalableVF, FoldTailByMasking)) 4967 if (MaxVF.isScalable()) { 4968 Result.ScalableVF = MaxVF; 4969 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 4970 << "\n"); 4971 } 4972 4973 return Result; 4974 } 4975 4976 FixedScalableVFPair 4977 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 4978 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4979 // TODO: It may by useful to do since it's still likely to be dynamically 4980 // uniform if the target can skip. 4981 reportVectorizationFailure( 4982 "Not inserting runtime ptr check for divergent target", 4983 "runtime pointer checks needed. Not enabled for divergent target", 4984 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4985 return FixedScalableVFPair::getNone(); 4986 } 4987 4988 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 4989 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4990 if (TC == 1) { 4991 reportVectorizationFailure("Single iteration (non) loop", 4992 "loop trip count is one, irrelevant for vectorization", 4993 "SingleIterationLoop", ORE, TheLoop); 4994 return FixedScalableVFPair::getNone(); 4995 } 4996 4997 switch (ScalarEpilogueStatus) { 4998 case CM_ScalarEpilogueAllowed: 4999 return computeFeasibleMaxVF(TC, UserVF, false); 5000 case CM_ScalarEpilogueNotAllowedUsePredicate: 5001 LLVM_FALLTHROUGH; 5002 case CM_ScalarEpilogueNotNeededUsePredicate: 5003 LLVM_DEBUG( 5004 dbgs() << "LV: vector predicate hint/switch found.\n" 5005 << "LV: Not allowing scalar epilogue, creating predicated " 5006 << "vector loop.\n"); 5007 break; 5008 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5009 // fallthrough as a special case of OptForSize 5010 case CM_ScalarEpilogueNotAllowedOptSize: 5011 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5012 LLVM_DEBUG( 5013 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5014 else 5015 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5016 << "count.\n"); 5017 5018 // Bail if runtime checks are required, which are not good when optimising 5019 // for size. 5020 if (runtimeChecksRequired()) 5021 return FixedScalableVFPair::getNone(); 5022 5023 break; 5024 } 5025 5026 // The only loops we can vectorize without a scalar epilogue, are loops with 5027 // a bottom-test and a single exiting block. We'd have to handle the fact 5028 // that not every instruction executes on the last iteration. This will 5029 // require a lane mask which varies through the vector loop body. (TODO) 5030 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5031 // If there was a tail-folding hint/switch, but we can't fold the tail by 5032 // masking, fallback to a vectorization with a scalar epilogue. 5033 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5034 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5035 "scalar epilogue instead.\n"); 5036 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5037 return computeFeasibleMaxVF(TC, UserVF, false); 5038 } 5039 return FixedScalableVFPair::getNone(); 5040 } 5041 5042 // Now try the tail folding 5043 5044 // Invalidate interleave groups that require an epilogue if we can't mask 5045 // the interleave-group. 5046 if (!useMaskedInterleavedAccesses(TTI)) { 5047 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5048 "No decisions should have been taken at this point"); 5049 // Note: There is no need to invalidate any cost modeling decisions here, as 5050 // non where taken so far. 5051 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5052 } 5053 5054 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5055 // Avoid tail folding if the trip count is known to be a multiple of any VF 5056 // we chose. 5057 // FIXME: The condition below pessimises the case for fixed-width vectors, 5058 // when scalable VFs are also candidates for vectorization. 5059 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5060 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5061 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5062 "MaxFixedVF must be a power of 2"); 5063 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5064 : MaxFixedVF.getFixedValue(); 5065 ScalarEvolution *SE = PSE.getSE(); 5066 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5067 const SCEV *ExitCount = SE->getAddExpr( 5068 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5069 const SCEV *Rem = SE->getURemExpr( 5070 SE->applyLoopGuards(ExitCount, TheLoop), 5071 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5072 if (Rem->isZero()) { 5073 // Accept MaxFixedVF if we do not have a tail. 5074 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5075 return MaxFactors; 5076 } 5077 } 5078 5079 // If we don't know the precise trip count, or if the trip count that we 5080 // found modulo the vectorization factor is not zero, try to fold the tail 5081 // by masking. 5082 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5083 if (Legal->prepareToFoldTailByMasking()) { 5084 FoldTailByMasking = true; 5085 return MaxFactors; 5086 } 5087 5088 // If there was a tail-folding hint/switch, but we can't fold the tail by 5089 // masking, fallback to a vectorization with a scalar epilogue. 5090 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5091 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5092 "scalar epilogue instead.\n"); 5093 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5094 return MaxFactors; 5095 } 5096 5097 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5098 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5099 return FixedScalableVFPair::getNone(); 5100 } 5101 5102 if (TC == 0) { 5103 reportVectorizationFailure( 5104 "Unable to calculate the loop count due to complex control flow", 5105 "unable to calculate the loop count due to complex control flow", 5106 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5107 return FixedScalableVFPair::getNone(); 5108 } 5109 5110 reportVectorizationFailure( 5111 "Cannot optimize for size and vectorize at the same time.", 5112 "cannot optimize for size and vectorize at the same time. " 5113 "Enable vectorization of this loop with '#pragma clang loop " 5114 "vectorize(enable)' when compiling with -Os/-Oz", 5115 "NoTailLoopWithOptForSize", ORE, TheLoop); 5116 return FixedScalableVFPair::getNone(); 5117 } 5118 5119 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5120 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5121 ElementCount MaxSafeVF, bool FoldTailByMasking) { 5122 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5123 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5124 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5125 : TargetTransformInfo::RGK_FixedWidthVector); 5126 5127 // Convenience function to return the minimum of two ElementCounts. 5128 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5129 assert((LHS.isScalable() == RHS.isScalable()) && 5130 "Scalable flags must match"); 5131 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5132 }; 5133 5134 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5135 // Note that both WidestRegister and WidestType may not be a powers of 2. 5136 auto MaxVectorElementCount = ElementCount::get( 5137 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5138 ComputeScalableMaxVF); 5139 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5140 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5141 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5142 5143 if (!MaxVectorElementCount) { 5144 LLVM_DEBUG(dbgs() << "LV: The target has no " 5145 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5146 << " vector registers.\n"); 5147 return ElementCount::getFixed(1); 5148 } 5149 5150 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5151 if (ConstTripCount && 5152 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5153 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5154 // If loop trip count (TC) is known at compile time there is no point in 5155 // choosing VF greater than TC (as done in the loop below). Select maximum 5156 // power of two which doesn't exceed TC. 5157 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5158 // when the TC is less than or equal to the known number of lanes. 5159 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5160 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5161 "exceeding the constant trip count: " 5162 << ClampedConstTripCount << "\n"); 5163 return ElementCount::getFixed(ClampedConstTripCount); 5164 } 5165 5166 TargetTransformInfo::RegisterKind RegKind = 5167 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5168 : TargetTransformInfo::RGK_FixedWidthVector; 5169 ElementCount MaxVF = MaxVectorElementCount; 5170 if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && 5171 TTI.shouldMaximizeVectorBandwidth(RegKind))) { 5172 auto MaxVectorElementCountMaxBW = ElementCount::get( 5173 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5174 ComputeScalableMaxVF); 5175 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5176 5177 // Collect all viable vectorization factors larger than the default MaxVF 5178 // (i.e. MaxVectorElementCount). 5179 SmallVector<ElementCount, 8> VFs; 5180 for (ElementCount VS = MaxVectorElementCount * 2; 5181 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5182 VFs.push_back(VS); 5183 5184 // For each VF calculate its register usage. 5185 auto RUs = calculateRegisterUsage(VFs); 5186 5187 // Select the largest VF which doesn't require more registers than existing 5188 // ones. 5189 for (int i = RUs.size() - 1; i >= 0; --i) { 5190 bool Selected = true; 5191 for (auto &pair : RUs[i].MaxLocalUsers) { 5192 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5193 if (pair.second > TargetNumRegisters) 5194 Selected = false; 5195 } 5196 if (Selected) { 5197 MaxVF = VFs[i]; 5198 break; 5199 } 5200 } 5201 if (ElementCount MinVF = 5202 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5203 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5204 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5205 << ") with target's minimum: " << MinVF << '\n'); 5206 MaxVF = MinVF; 5207 } 5208 } 5209 5210 // Invalidate any widening decisions we might have made, in case the loop 5211 // requires prediction (decided later), but we have already made some 5212 // load/store widening decisions. 5213 invalidateCostModelingDecisions(); 5214 } 5215 return MaxVF; 5216 } 5217 5218 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5219 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5220 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5221 auto Min = Attr.getVScaleRangeMin(); 5222 auto Max = Attr.getVScaleRangeMax(); 5223 if (Max && Min == Max) 5224 return Max; 5225 } 5226 5227 return TTI.getVScaleForTuning(); 5228 } 5229 5230 bool LoopVectorizationCostModel::isMoreProfitable( 5231 const VectorizationFactor &A, const VectorizationFactor &B) const { 5232 InstructionCost CostA = A.Cost; 5233 InstructionCost CostB = B.Cost; 5234 5235 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5236 5237 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5238 MaxTripCount) { 5239 // If we are folding the tail and the trip count is a known (possibly small) 5240 // constant, the trip count will be rounded up to an integer number of 5241 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5242 // which we compare directly. When not folding the tail, the total cost will 5243 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5244 // approximated with the per-lane cost below instead of using the tripcount 5245 // as here. 5246 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5247 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5248 return RTCostA < RTCostB; 5249 } 5250 5251 // Improve estimate for the vector width if it is scalable. 5252 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5253 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5254 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5255 if (A.Width.isScalable()) 5256 EstimatedWidthA *= VScale.value(); 5257 if (B.Width.isScalable()) 5258 EstimatedWidthB *= VScale.value(); 5259 } 5260 5261 // Assume vscale may be larger than 1 (or the value being tuned for), 5262 // so that scalable vectorization is slightly favorable over fixed-width 5263 // vectorization. 5264 if (A.Width.isScalable() && !B.Width.isScalable()) 5265 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5266 5267 // To avoid the need for FP division: 5268 // (CostA / A.Width) < (CostB / B.Width) 5269 // <=> (CostA * B.Width) < (CostB * A.Width) 5270 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5271 } 5272 5273 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5274 const ElementCountSet &VFCandidates) { 5275 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5276 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5277 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5278 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5279 "Expected Scalar VF to be a candidate"); 5280 5281 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost, 5282 ExpectedCost); 5283 VectorizationFactor ChosenFactor = ScalarCost; 5284 5285 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5286 if (ForceVectorization && VFCandidates.size() > 1) { 5287 // Ignore scalar width, because the user explicitly wants vectorization. 5288 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5289 // evaluation. 5290 ChosenFactor.Cost = InstructionCost::getMax(); 5291 } 5292 5293 SmallVector<InstructionVFPair> InvalidCosts; 5294 for (const auto &i : VFCandidates) { 5295 // The cost for scalar VF=1 is already calculated, so ignore it. 5296 if (i.isScalar()) 5297 continue; 5298 5299 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5300 VectorizationFactor Candidate(i, C.first, ScalarCost.ScalarCost); 5301 5302 #ifndef NDEBUG 5303 unsigned AssumedMinimumVscale = 1; 5304 if (Optional<unsigned> VScale = getVScaleForTuning()) 5305 AssumedMinimumVscale = *VScale; 5306 unsigned Width = 5307 Candidate.Width.isScalable() 5308 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5309 : Candidate.Width.getFixedValue(); 5310 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5311 << " costs: " << (Candidate.Cost / Width)); 5312 if (i.isScalable()) 5313 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5314 << AssumedMinimumVscale << ")"); 5315 LLVM_DEBUG(dbgs() << ".\n"); 5316 #endif 5317 5318 if (!C.second && !ForceVectorization) { 5319 LLVM_DEBUG( 5320 dbgs() << "LV: Not considering vector loop of width " << i 5321 << " because it will not generate any vector instructions.\n"); 5322 continue; 5323 } 5324 5325 // If profitable add it to ProfitableVF list. 5326 if (isMoreProfitable(Candidate, ScalarCost)) 5327 ProfitableVFs.push_back(Candidate); 5328 5329 if (isMoreProfitable(Candidate, ChosenFactor)) 5330 ChosenFactor = Candidate; 5331 } 5332 5333 // Emit a report of VFs with invalid costs in the loop. 5334 if (!InvalidCosts.empty()) { 5335 // Group the remarks per instruction, keeping the instruction order from 5336 // InvalidCosts. 5337 std::map<Instruction *, unsigned> Numbering; 5338 unsigned I = 0; 5339 for (auto &Pair : InvalidCosts) 5340 if (!Numbering.count(Pair.first)) 5341 Numbering[Pair.first] = I++; 5342 5343 // Sort the list, first on instruction(number) then on VF. 5344 llvm::sort(InvalidCosts, 5345 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5346 if (Numbering[A.first] != Numbering[B.first]) 5347 return Numbering[A.first] < Numbering[B.first]; 5348 ElementCountComparator ECC; 5349 return ECC(A.second, B.second); 5350 }); 5351 5352 // For a list of ordered instruction-vf pairs: 5353 // [(load, vf1), (load, vf2), (store, vf1)] 5354 // Group the instructions together to emit separate remarks for: 5355 // load (vf1, vf2) 5356 // store (vf1) 5357 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5358 auto Subset = ArrayRef<InstructionVFPair>(); 5359 do { 5360 if (Subset.empty()) 5361 Subset = Tail.take_front(1); 5362 5363 Instruction *I = Subset.front().first; 5364 5365 // If the next instruction is different, or if there are no other pairs, 5366 // emit a remark for the collated subset. e.g. 5367 // [(load, vf1), (load, vf2))] 5368 // to emit: 5369 // remark: invalid costs for 'load' at VF=(vf, vf2) 5370 if (Subset == Tail || Tail[Subset.size()].first != I) { 5371 std::string OutString; 5372 raw_string_ostream OS(OutString); 5373 assert(!Subset.empty() && "Unexpected empty range"); 5374 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5375 for (auto &Pair : Subset) 5376 OS << (Pair.second == Subset.front().second ? "" : ", ") 5377 << Pair.second; 5378 OS << "):"; 5379 if (auto *CI = dyn_cast<CallInst>(I)) 5380 OS << " call to " << CI->getCalledFunction()->getName(); 5381 else 5382 OS << " " << I->getOpcodeName(); 5383 OS.flush(); 5384 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5385 Tail = Tail.drop_front(Subset.size()); 5386 Subset = {}; 5387 } else 5388 // Grow the subset by one element 5389 Subset = Tail.take_front(Subset.size() + 1); 5390 } while (!Tail.empty()); 5391 } 5392 5393 if (!EnableCondStoresVectorization && NumPredStores) { 5394 reportVectorizationFailure("There are conditional stores.", 5395 "store that is conditionally executed prevents vectorization", 5396 "ConditionalStore", ORE, TheLoop); 5397 ChosenFactor = ScalarCost; 5398 } 5399 5400 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5401 !isMoreProfitable(ChosenFactor, ScalarCost)) dbgs() 5402 << "LV: Vectorization seems to be not beneficial, " 5403 << "but was forced by a user.\n"); 5404 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5405 return ChosenFactor; 5406 } 5407 5408 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5409 const Loop &L, ElementCount VF) const { 5410 // Cross iteration phis such as reductions need special handling and are 5411 // currently unsupported. 5412 if (any_of(L.getHeader()->phis(), 5413 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5414 return false; 5415 5416 // Phis with uses outside of the loop require special handling and are 5417 // currently unsupported. 5418 for (auto &Entry : Legal->getInductionVars()) { 5419 // Look for uses of the value of the induction at the last iteration. 5420 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5421 for (User *U : PostInc->users()) 5422 if (!L.contains(cast<Instruction>(U))) 5423 return false; 5424 // Look for uses of penultimate value of the induction. 5425 for (User *U : Entry.first->users()) 5426 if (!L.contains(cast<Instruction>(U))) 5427 return false; 5428 } 5429 5430 // Induction variables that are widened require special handling that is 5431 // currently not supported. 5432 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5433 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5434 this->isProfitableToScalarize(Entry.first, VF)); 5435 })) 5436 return false; 5437 5438 // Epilogue vectorization code has not been auditted to ensure it handles 5439 // non-latch exits properly. It may be fine, but it needs auditted and 5440 // tested. 5441 if (L.getExitingBlock() != L.getLoopLatch()) 5442 return false; 5443 5444 return true; 5445 } 5446 5447 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5448 const ElementCount VF) const { 5449 // FIXME: We need a much better cost-model to take different parameters such 5450 // as register pressure, code size increase and cost of extra branches into 5451 // account. For now we apply a very crude heuristic and only consider loops 5452 // with vectorization factors larger than a certain value. 5453 // We also consider epilogue vectorization unprofitable for targets that don't 5454 // consider interleaving beneficial (eg. MVE). 5455 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5456 return false; 5457 // FIXME: We should consider changing the threshold for scalable 5458 // vectors to take VScaleForTuning into account. 5459 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5460 return true; 5461 return false; 5462 } 5463 5464 VectorizationFactor 5465 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5466 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5467 VectorizationFactor Result = VectorizationFactor::Disabled(); 5468 if (!EnableEpilogueVectorization) { 5469 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5470 return Result; 5471 } 5472 5473 if (!isScalarEpilogueAllowed()) { 5474 LLVM_DEBUG( 5475 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5476 "allowed.\n";); 5477 return Result; 5478 } 5479 5480 // Not really a cost consideration, but check for unsupported cases here to 5481 // simplify the logic. 5482 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5483 LLVM_DEBUG( 5484 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5485 "not a supported candidate.\n";); 5486 return Result; 5487 } 5488 5489 if (EpilogueVectorizationForceVF > 1) { 5490 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5491 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5492 if (LVP.hasPlanWithVF(ForcedEC)) 5493 return {ForcedEC, 0, 0}; 5494 else { 5495 LLVM_DEBUG( 5496 dbgs() 5497 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5498 return Result; 5499 } 5500 } 5501 5502 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5503 TheLoop->getHeader()->getParent()->hasMinSize()) { 5504 LLVM_DEBUG( 5505 dbgs() 5506 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5507 return Result; 5508 } 5509 5510 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5511 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5512 "this loop\n"); 5513 return Result; 5514 } 5515 5516 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5517 // the main loop handles 8 lanes per iteration. We could still benefit from 5518 // vectorizing the epilogue loop with VF=4. 5519 ElementCount EstimatedRuntimeVF = MainLoopVF; 5520 if (MainLoopVF.isScalable()) { 5521 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5522 if (Optional<unsigned> VScale = getVScaleForTuning()) 5523 EstimatedRuntimeVF *= *VScale; 5524 } 5525 5526 for (auto &NextVF : ProfitableVFs) 5527 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5528 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5529 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5530 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5531 LVP.hasPlanWithVF(NextVF.Width)) 5532 Result = NextVF; 5533 5534 if (Result != VectorizationFactor::Disabled()) 5535 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5536 << Result.Width << "\n";); 5537 return Result; 5538 } 5539 5540 std::pair<unsigned, unsigned> 5541 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5542 unsigned MinWidth = -1U; 5543 unsigned MaxWidth = 8; 5544 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5545 // For in-loop reductions, no element types are added to ElementTypesInLoop 5546 // if there are no loads/stores in the loop. In this case, check through the 5547 // reduction variables to determine the maximum width. 5548 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5549 // Reset MaxWidth so that we can find the smallest type used by recurrences 5550 // in the loop. 5551 MaxWidth = -1U; 5552 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5553 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5554 // When finding the min width used by the recurrence we need to account 5555 // for casts on the input operands of the recurrence. 5556 MaxWidth = std::min<unsigned>( 5557 MaxWidth, std::min<unsigned>( 5558 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5559 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5560 } 5561 } else { 5562 for (Type *T : ElementTypesInLoop) { 5563 MinWidth = std::min<unsigned>( 5564 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5565 MaxWidth = std::max<unsigned>( 5566 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5567 } 5568 } 5569 return {MinWidth, MaxWidth}; 5570 } 5571 5572 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5573 ElementTypesInLoop.clear(); 5574 // For each block. 5575 for (BasicBlock *BB : TheLoop->blocks()) { 5576 // For each instruction in the loop. 5577 for (Instruction &I : BB->instructionsWithoutDebug()) { 5578 Type *T = I.getType(); 5579 5580 // Skip ignored values. 5581 if (ValuesToIgnore.count(&I)) 5582 continue; 5583 5584 // Only examine Loads, Stores and PHINodes. 5585 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5586 continue; 5587 5588 // Examine PHI nodes that are reduction variables. Update the type to 5589 // account for the recurrence type. 5590 if (auto *PN = dyn_cast<PHINode>(&I)) { 5591 if (!Legal->isReductionVariable(PN)) 5592 continue; 5593 const RecurrenceDescriptor &RdxDesc = 5594 Legal->getReductionVars().find(PN)->second; 5595 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5596 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5597 RdxDesc.getRecurrenceType(), 5598 TargetTransformInfo::ReductionFlags())) 5599 continue; 5600 T = RdxDesc.getRecurrenceType(); 5601 } 5602 5603 // Examine the stored values. 5604 if (auto *ST = dyn_cast<StoreInst>(&I)) 5605 T = ST->getValueOperand()->getType(); 5606 5607 assert(T->isSized() && 5608 "Expected the load/store/recurrence type to be sized"); 5609 5610 ElementTypesInLoop.insert(T); 5611 } 5612 } 5613 } 5614 5615 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5616 unsigned LoopCost) { 5617 // -- The interleave heuristics -- 5618 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5619 // There are many micro-architectural considerations that we can't predict 5620 // at this level. For example, frontend pressure (on decode or fetch) due to 5621 // code size, or the number and capabilities of the execution ports. 5622 // 5623 // We use the following heuristics to select the interleave count: 5624 // 1. If the code has reductions, then we interleave to break the cross 5625 // iteration dependency. 5626 // 2. If the loop is really small, then we interleave to reduce the loop 5627 // overhead. 5628 // 3. We don't interleave if we think that we will spill registers to memory 5629 // due to the increased register pressure. 5630 5631 if (!isScalarEpilogueAllowed()) 5632 return 1; 5633 5634 // We used the distance for the interleave count. 5635 if (Legal->getMaxSafeDepDistBytes() != -1U) 5636 return 1; 5637 5638 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5639 const bool HasReductions = !Legal->getReductionVars().empty(); 5640 // Do not interleave loops with a relatively small known or estimated trip 5641 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5642 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5643 // because with the above conditions interleaving can expose ILP and break 5644 // cross iteration dependences for reductions. 5645 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5646 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5647 return 1; 5648 5649 // If we did not calculate the cost for VF (because the user selected the VF) 5650 // then we calculate the cost of VF here. 5651 if (LoopCost == 0) { 5652 InstructionCost C = expectedCost(VF).first; 5653 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5654 LoopCost = *C.getValue(); 5655 5656 // Loop body is free and there is no need for interleaving. 5657 if (LoopCost == 0) 5658 return 1; 5659 } 5660 5661 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5662 // We divide by these constants so assume that we have at least one 5663 // instruction that uses at least one register. 5664 for (auto& pair : R.MaxLocalUsers) { 5665 pair.second = std::max(pair.second, 1U); 5666 } 5667 5668 // We calculate the interleave count using the following formula. 5669 // Subtract the number of loop invariants from the number of available 5670 // registers. These registers are used by all of the interleaved instances. 5671 // Next, divide the remaining registers by the number of registers that is 5672 // required by the loop, in order to estimate how many parallel instances 5673 // fit without causing spills. All of this is rounded down if necessary to be 5674 // a power of two. We want power of two interleave count to simplify any 5675 // addressing operations or alignment considerations. 5676 // We also want power of two interleave counts to ensure that the induction 5677 // variable of the vector loop wraps to zero, when tail is folded by masking; 5678 // this currently happens when OptForSize, in which case IC is set to 1 above. 5679 unsigned IC = UINT_MAX; 5680 5681 for (auto& pair : R.MaxLocalUsers) { 5682 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5683 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5684 << " registers of " 5685 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5686 if (VF.isScalar()) { 5687 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5688 TargetNumRegisters = ForceTargetNumScalarRegs; 5689 } else { 5690 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5691 TargetNumRegisters = ForceTargetNumVectorRegs; 5692 } 5693 unsigned MaxLocalUsers = pair.second; 5694 unsigned LoopInvariantRegs = 0; 5695 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5696 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5697 5698 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5699 // Don't count the induction variable as interleaved. 5700 if (EnableIndVarRegisterHeur) { 5701 TmpIC = 5702 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5703 std::max(1U, (MaxLocalUsers - 1))); 5704 } 5705 5706 IC = std::min(IC, TmpIC); 5707 } 5708 5709 // Clamp the interleave ranges to reasonable counts. 5710 unsigned MaxInterleaveCount = 5711 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5712 5713 // Check if the user has overridden the max. 5714 if (VF.isScalar()) { 5715 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5716 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5717 } else { 5718 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5719 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5720 } 5721 5722 // If trip count is known or estimated compile time constant, limit the 5723 // interleave count to be less than the trip count divided by VF, provided it 5724 // is at least 1. 5725 // 5726 // For scalable vectors we can't know if interleaving is beneficial. It may 5727 // not be beneficial for small loops if none of the lanes in the second vector 5728 // iterations is enabled. However, for larger loops, there is likely to be a 5729 // similar benefit as for fixed-width vectors. For now, we choose to leave 5730 // the InterleaveCount as if vscale is '1', although if some information about 5731 // the vector is known (e.g. min vector size), we can make a better decision. 5732 if (BestKnownTC) { 5733 MaxInterleaveCount = 5734 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5735 // Make sure MaxInterleaveCount is greater than 0. 5736 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5737 } 5738 5739 assert(MaxInterleaveCount > 0 && 5740 "Maximum interleave count must be greater than 0"); 5741 5742 // Clamp the calculated IC to be between the 1 and the max interleave count 5743 // that the target and trip count allows. 5744 if (IC > MaxInterleaveCount) 5745 IC = MaxInterleaveCount; 5746 else 5747 // Make sure IC is greater than 0. 5748 IC = std::max(1u, IC); 5749 5750 assert(IC > 0 && "Interleave count must be greater than 0."); 5751 5752 // Interleave if we vectorized this loop and there is a reduction that could 5753 // benefit from interleaving. 5754 if (VF.isVector() && HasReductions) { 5755 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5756 return IC; 5757 } 5758 5759 // For any scalar loop that either requires runtime checks or predication we 5760 // are better off leaving this to the unroller. Note that if we've already 5761 // vectorized the loop we will have done the runtime check and so interleaving 5762 // won't require further checks. 5763 bool ScalarInterleavingRequiresPredication = 5764 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5765 return Legal->blockNeedsPredication(BB); 5766 })); 5767 bool ScalarInterleavingRequiresRuntimePointerCheck = 5768 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5769 5770 // We want to interleave small loops in order to reduce the loop overhead and 5771 // potentially expose ILP opportunities. 5772 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5773 << "LV: IC is " << IC << '\n' 5774 << "LV: VF is " << VF << '\n'); 5775 const bool AggressivelyInterleaveReductions = 5776 TTI.enableAggressiveInterleaving(HasReductions); 5777 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5778 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5779 // We assume that the cost overhead is 1 and we use the cost model 5780 // to estimate the cost of the loop and interleave until the cost of the 5781 // loop overhead is about 5% of the cost of the loop. 5782 unsigned SmallIC = 5783 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5784 5785 // Interleave until store/load ports (estimated by max interleave count) are 5786 // saturated. 5787 unsigned NumStores = Legal->getNumStores(); 5788 unsigned NumLoads = Legal->getNumLoads(); 5789 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5790 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5791 5792 // There is little point in interleaving for reductions containing selects 5793 // and compares when VF=1 since it may just create more overhead than it's 5794 // worth for loops with small trip counts. This is because we still have to 5795 // do the final reduction after the loop. 5796 bool HasSelectCmpReductions = 5797 HasReductions && 5798 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5799 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5800 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5801 RdxDesc.getRecurrenceKind()); 5802 }); 5803 if (HasSelectCmpReductions) { 5804 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5805 return 1; 5806 } 5807 5808 // If we have a scalar reduction (vector reductions are already dealt with 5809 // by this point), we can increase the critical path length if the loop 5810 // we're interleaving is inside another loop. For tree-wise reductions 5811 // set the limit to 2, and for ordered reductions it's best to disable 5812 // interleaving entirely. 5813 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5814 bool HasOrderedReductions = 5815 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5816 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5817 return RdxDesc.isOrdered(); 5818 }); 5819 if (HasOrderedReductions) { 5820 LLVM_DEBUG( 5821 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5822 return 1; 5823 } 5824 5825 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5826 SmallIC = std::min(SmallIC, F); 5827 StoresIC = std::min(StoresIC, F); 5828 LoadsIC = std::min(LoadsIC, F); 5829 } 5830 5831 if (EnableLoadStoreRuntimeInterleave && 5832 std::max(StoresIC, LoadsIC) > SmallIC) { 5833 LLVM_DEBUG( 5834 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5835 return std::max(StoresIC, LoadsIC); 5836 } 5837 5838 // If there are scalar reductions and TTI has enabled aggressive 5839 // interleaving for reductions, we will interleave to expose ILP. 5840 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5841 AggressivelyInterleaveReductions) { 5842 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5843 // Interleave no less than SmallIC but not as aggressive as the normal IC 5844 // to satisfy the rare situation when resources are too limited. 5845 return std::max(IC / 2, SmallIC); 5846 } else { 5847 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5848 return SmallIC; 5849 } 5850 } 5851 5852 // Interleave if this is a large loop (small loops are already dealt with by 5853 // this point) that could benefit from interleaving. 5854 if (AggressivelyInterleaveReductions) { 5855 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5856 return IC; 5857 } 5858 5859 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5860 return 1; 5861 } 5862 5863 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5864 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5865 // This function calculates the register usage by measuring the highest number 5866 // of values that are alive at a single location. Obviously, this is a very 5867 // rough estimation. We scan the loop in a topological order in order and 5868 // assign a number to each instruction. We use RPO to ensure that defs are 5869 // met before their users. We assume that each instruction that has in-loop 5870 // users starts an interval. We record every time that an in-loop value is 5871 // used, so we have a list of the first and last occurrences of each 5872 // instruction. Next, we transpose this data structure into a multi map that 5873 // holds the list of intervals that *end* at a specific location. This multi 5874 // map allows us to perform a linear search. We scan the instructions linearly 5875 // and record each time that a new interval starts, by placing it in a set. 5876 // If we find this value in the multi-map then we remove it from the set. 5877 // The max register usage is the maximum size of the set. 5878 // We also search for instructions that are defined outside the loop, but are 5879 // used inside the loop. We need this number separately from the max-interval 5880 // usage number because when we unroll, loop-invariant values do not take 5881 // more register. 5882 LoopBlocksDFS DFS(TheLoop); 5883 DFS.perform(LI); 5884 5885 RegisterUsage RU; 5886 5887 // Each 'key' in the map opens a new interval. The values 5888 // of the map are the index of the 'last seen' usage of the 5889 // instruction that is the key. 5890 using IntervalMap = DenseMap<Instruction *, unsigned>; 5891 5892 // Maps instruction to its index. 5893 SmallVector<Instruction *, 64> IdxToInstr; 5894 // Marks the end of each interval. 5895 IntervalMap EndPoint; 5896 // Saves the list of instruction indices that are used in the loop. 5897 SmallPtrSet<Instruction *, 8> Ends; 5898 // Saves the list of values that are used in the loop but are 5899 // defined outside the loop, such as arguments and constants. 5900 SmallPtrSet<Value *, 8> LoopInvariants; 5901 5902 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5903 for (Instruction &I : BB->instructionsWithoutDebug()) { 5904 IdxToInstr.push_back(&I); 5905 5906 // Save the end location of each USE. 5907 for (Value *U : I.operands()) { 5908 auto *Instr = dyn_cast<Instruction>(U); 5909 5910 // Ignore non-instruction values such as arguments, constants, etc. 5911 if (!Instr) 5912 continue; 5913 5914 // If this instruction is outside the loop then record it and continue. 5915 if (!TheLoop->contains(Instr)) { 5916 LoopInvariants.insert(Instr); 5917 continue; 5918 } 5919 5920 // Overwrite previous end points. 5921 EndPoint[Instr] = IdxToInstr.size(); 5922 Ends.insert(Instr); 5923 } 5924 } 5925 } 5926 5927 // Saves the list of intervals that end with the index in 'key'. 5928 using InstrList = SmallVector<Instruction *, 2>; 5929 DenseMap<unsigned, InstrList> TransposeEnds; 5930 5931 // Transpose the EndPoints to a list of values that end at each index. 5932 for (auto &Interval : EndPoint) 5933 TransposeEnds[Interval.second].push_back(Interval.first); 5934 5935 SmallPtrSet<Instruction *, 8> OpenIntervals; 5936 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5937 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5938 5939 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5940 5941 const auto &TTICapture = TTI; 5942 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 5943 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5944 return 0; 5945 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 5946 }; 5947 5948 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5949 Instruction *I = IdxToInstr[i]; 5950 5951 // Remove all of the instructions that end at this location. 5952 InstrList &List = TransposeEnds[i]; 5953 for (Instruction *ToRemove : List) 5954 OpenIntervals.erase(ToRemove); 5955 5956 // Ignore instructions that are never used within the loop. 5957 if (!Ends.count(I)) 5958 continue; 5959 5960 // Skip ignored values. 5961 if (ValuesToIgnore.count(I)) 5962 continue; 5963 5964 // For each VF find the maximum usage of registers. 5965 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5966 // Count the number of live intervals. 5967 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5968 5969 if (VFs[j].isScalar()) { 5970 for (auto Inst : OpenIntervals) { 5971 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5972 if (RegUsage.find(ClassID) == RegUsage.end()) 5973 RegUsage[ClassID] = 1; 5974 else 5975 RegUsage[ClassID] += 1; 5976 } 5977 } else { 5978 collectUniformsAndScalars(VFs[j]); 5979 for (auto Inst : OpenIntervals) { 5980 // Skip ignored values for VF > 1. 5981 if (VecValuesToIgnore.count(Inst)) 5982 continue; 5983 if (isScalarAfterVectorization(Inst, VFs[j])) { 5984 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5985 if (RegUsage.find(ClassID) == RegUsage.end()) 5986 RegUsage[ClassID] = 1; 5987 else 5988 RegUsage[ClassID] += 1; 5989 } else { 5990 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5991 if (RegUsage.find(ClassID) == RegUsage.end()) 5992 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5993 else 5994 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5995 } 5996 } 5997 } 5998 5999 for (auto& pair : RegUsage) { 6000 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6001 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6002 else 6003 MaxUsages[j][pair.first] = pair.second; 6004 } 6005 } 6006 6007 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6008 << OpenIntervals.size() << '\n'); 6009 6010 // Add the current instruction to the list of open intervals. 6011 OpenIntervals.insert(I); 6012 } 6013 6014 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6015 SmallMapVector<unsigned, unsigned, 4> Invariant; 6016 6017 for (auto Inst : LoopInvariants) { 6018 unsigned Usage = 6019 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6020 unsigned ClassID = 6021 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6022 if (Invariant.find(ClassID) == Invariant.end()) 6023 Invariant[ClassID] = Usage; 6024 else 6025 Invariant[ClassID] += Usage; 6026 } 6027 6028 LLVM_DEBUG({ 6029 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6030 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6031 << " item\n"; 6032 for (const auto &pair : MaxUsages[i]) { 6033 dbgs() << "LV(REG): RegisterClass: " 6034 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6035 << " registers\n"; 6036 } 6037 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6038 << " item\n"; 6039 for (const auto &pair : Invariant) { 6040 dbgs() << "LV(REG): RegisterClass: " 6041 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6042 << " registers\n"; 6043 } 6044 }); 6045 6046 RU.LoopInvariantRegs = Invariant; 6047 RU.MaxLocalUsers = MaxUsages[i]; 6048 RUs[i] = RU; 6049 } 6050 6051 return RUs; 6052 } 6053 6054 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6055 ElementCount VF) { 6056 // TODO: Cost model for emulated masked load/store is completely 6057 // broken. This hack guides the cost model to use an artificially 6058 // high enough value to practically disable vectorization with such 6059 // operations, except where previously deployed legality hack allowed 6060 // using very low cost values. This is to avoid regressions coming simply 6061 // from moving "masked load/store" check from legality to cost model. 6062 // Masked Load/Gather emulation was previously never allowed. 6063 // Limited number of Masked Store/Scatter emulation was allowed. 6064 assert((isPredicatedInst(I, VF) || Legal->isUniformMemOp(*I)) && 6065 "Expecting a scalar emulated instruction"); 6066 return isa<LoadInst>(I) || 6067 (isa<StoreInst>(I) && 6068 NumPredStores > NumberOfStoresToPredicate); 6069 } 6070 6071 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6072 // If we aren't vectorizing the loop, or if we've already collected the 6073 // instructions to scalarize, there's nothing to do. Collection may already 6074 // have occurred if we have a user-selected VF and are now computing the 6075 // expected cost for interleaving. 6076 if (VF.isScalar() || VF.isZero() || 6077 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6078 return; 6079 6080 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6081 // not profitable to scalarize any instructions, the presence of VF in the 6082 // map will indicate that we've analyzed it already. 6083 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6084 6085 PredicatedBBsAfterVectorization[VF].clear(); 6086 6087 // Find all the instructions that are scalar with predication in the loop and 6088 // determine if it would be better to not if-convert the blocks they are in. 6089 // If so, we also record the instructions to scalarize. 6090 for (BasicBlock *BB : TheLoop->blocks()) { 6091 if (!blockNeedsPredicationForAnyReason(BB)) 6092 continue; 6093 for (Instruction &I : *BB) 6094 if (isScalarWithPredication(&I, VF)) { 6095 ScalarCostsTy ScalarCosts; 6096 // Do not apply discount if scalable, because that would lead to 6097 // invalid scalarization costs. 6098 // Do not apply discount logic if hacked cost is needed 6099 // for emulated masked memrefs. 6100 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6101 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6102 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6103 // Remember that BB will remain after vectorization. 6104 PredicatedBBsAfterVectorization[VF].insert(BB); 6105 } 6106 } 6107 } 6108 6109 int LoopVectorizationCostModel::computePredInstDiscount( 6110 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6111 assert(!isUniformAfterVectorization(PredInst, VF) && 6112 "Instruction marked uniform-after-vectorization will be predicated"); 6113 6114 // Initialize the discount to zero, meaning that the scalar version and the 6115 // vector version cost the same. 6116 InstructionCost Discount = 0; 6117 6118 // Holds instructions to analyze. The instructions we visit are mapped in 6119 // ScalarCosts. Those instructions are the ones that would be scalarized if 6120 // we find that the scalar version costs less. 6121 SmallVector<Instruction *, 8> Worklist; 6122 6123 // Returns true if the given instruction can be scalarized. 6124 auto canBeScalarized = [&](Instruction *I) -> bool { 6125 // We only attempt to scalarize instructions forming a single-use chain 6126 // from the original predicated block that would otherwise be vectorized. 6127 // Although not strictly necessary, we give up on instructions we know will 6128 // already be scalar to avoid traversing chains that are unlikely to be 6129 // beneficial. 6130 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6131 isScalarAfterVectorization(I, VF)) 6132 return false; 6133 6134 // If the instruction is scalar with predication, it will be analyzed 6135 // separately. We ignore it within the context of PredInst. 6136 if (isScalarWithPredication(I, VF)) 6137 return false; 6138 6139 // If any of the instruction's operands are uniform after vectorization, 6140 // the instruction cannot be scalarized. This prevents, for example, a 6141 // masked load from being scalarized. 6142 // 6143 // We assume we will only emit a value for lane zero of an instruction 6144 // marked uniform after vectorization, rather than VF identical values. 6145 // Thus, if we scalarize an instruction that uses a uniform, we would 6146 // create uses of values corresponding to the lanes we aren't emitting code 6147 // for. This behavior can be changed by allowing getScalarValue to clone 6148 // the lane zero values for uniforms rather than asserting. 6149 for (Use &U : I->operands()) 6150 if (auto *J = dyn_cast<Instruction>(U.get())) 6151 if (isUniformAfterVectorization(J, VF)) 6152 return false; 6153 6154 // Otherwise, we can scalarize the instruction. 6155 return true; 6156 }; 6157 6158 // Compute the expected cost discount from scalarizing the entire expression 6159 // feeding the predicated instruction. We currently only consider expressions 6160 // that are single-use instruction chains. 6161 Worklist.push_back(PredInst); 6162 while (!Worklist.empty()) { 6163 Instruction *I = Worklist.pop_back_val(); 6164 6165 // If we've already analyzed the instruction, there's nothing to do. 6166 if (ScalarCosts.find(I) != ScalarCosts.end()) 6167 continue; 6168 6169 // Compute the cost of the vector instruction. Note that this cost already 6170 // includes the scalarization overhead of the predicated instruction. 6171 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6172 6173 // Compute the cost of the scalarized instruction. This cost is the cost of 6174 // the instruction as if it wasn't if-converted and instead remained in the 6175 // predicated block. We will scale this cost by block probability after 6176 // computing the scalarization overhead. 6177 InstructionCost ScalarCost = 6178 VF.getFixedValue() * 6179 getInstructionCost(I, ElementCount::getFixed(1)).first; 6180 6181 // Compute the scalarization overhead of needed insertelement instructions 6182 // and phi nodes. 6183 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6184 ScalarCost += TTI.getScalarizationOverhead( 6185 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6186 APInt::getAllOnes(VF.getFixedValue()), true, false); 6187 ScalarCost += 6188 VF.getFixedValue() * 6189 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6190 } 6191 6192 // Compute the scalarization overhead of needed extractelement 6193 // instructions. For each of the instruction's operands, if the operand can 6194 // be scalarized, add it to the worklist; otherwise, account for the 6195 // overhead. 6196 for (Use &U : I->operands()) 6197 if (auto *J = dyn_cast<Instruction>(U.get())) { 6198 assert(VectorType::isValidElementType(J->getType()) && 6199 "Instruction has non-scalar type"); 6200 if (canBeScalarized(J)) 6201 Worklist.push_back(J); 6202 else if (needsExtract(J, VF)) { 6203 ScalarCost += TTI.getScalarizationOverhead( 6204 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6205 APInt::getAllOnes(VF.getFixedValue()), false, true); 6206 } 6207 } 6208 6209 // Scale the total scalar cost by block probability. 6210 ScalarCost /= getReciprocalPredBlockProb(); 6211 6212 // Compute the discount. A non-negative discount means the vector version 6213 // of the instruction costs more, and scalarizing would be beneficial. 6214 Discount += VectorCost - ScalarCost; 6215 ScalarCosts[I] = ScalarCost; 6216 } 6217 6218 return *Discount.getValue(); 6219 } 6220 6221 LoopVectorizationCostModel::VectorizationCostTy 6222 LoopVectorizationCostModel::expectedCost( 6223 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6224 VectorizationCostTy Cost; 6225 6226 // For each block. 6227 for (BasicBlock *BB : TheLoop->blocks()) { 6228 VectorizationCostTy BlockCost; 6229 6230 // For each instruction in the old loop. 6231 for (Instruction &I : BB->instructionsWithoutDebug()) { 6232 // Skip ignored values. 6233 if (ValuesToIgnore.count(&I) || 6234 (VF.isVector() && VecValuesToIgnore.count(&I))) 6235 continue; 6236 6237 VectorizationCostTy C = getInstructionCost(&I, VF); 6238 6239 // Check if we should override the cost. 6240 if (C.first.isValid() && 6241 ForceTargetInstructionCost.getNumOccurrences() > 0) 6242 C.first = InstructionCost(ForceTargetInstructionCost); 6243 6244 // Keep a list of instructions with invalid costs. 6245 if (Invalid && !C.first.isValid()) 6246 Invalid->emplace_back(&I, VF); 6247 6248 BlockCost.first += C.first; 6249 BlockCost.second |= C.second; 6250 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6251 << " for VF " << VF << " For instruction: " << I 6252 << '\n'); 6253 } 6254 6255 // If we are vectorizing a predicated block, it will have been 6256 // if-converted. This means that the block's instructions (aside from 6257 // stores and instructions that may divide by zero) will now be 6258 // unconditionally executed. For the scalar case, we may not always execute 6259 // the predicated block, if it is an if-else block. Thus, scale the block's 6260 // cost by the probability of executing it. blockNeedsPredication from 6261 // Legal is used so as to not include all blocks in tail folded loops. 6262 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6263 BlockCost.first /= getReciprocalPredBlockProb(); 6264 6265 Cost.first += BlockCost.first; 6266 Cost.second |= BlockCost.second; 6267 } 6268 6269 return Cost; 6270 } 6271 6272 /// Gets Address Access SCEV after verifying that the access pattern 6273 /// is loop invariant except the induction variable dependence. 6274 /// 6275 /// This SCEV can be sent to the Target in order to estimate the address 6276 /// calculation cost. 6277 static const SCEV *getAddressAccessSCEV( 6278 Value *Ptr, 6279 LoopVectorizationLegality *Legal, 6280 PredicatedScalarEvolution &PSE, 6281 const Loop *TheLoop) { 6282 6283 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6284 if (!Gep) 6285 return nullptr; 6286 6287 // We are looking for a gep with all loop invariant indices except for one 6288 // which should be an induction variable. 6289 auto SE = PSE.getSE(); 6290 unsigned NumOperands = Gep->getNumOperands(); 6291 for (unsigned i = 1; i < NumOperands; ++i) { 6292 Value *Opd = Gep->getOperand(i); 6293 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6294 !Legal->isInductionVariable(Opd)) 6295 return nullptr; 6296 } 6297 6298 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6299 return PSE.getSCEV(Ptr); 6300 } 6301 6302 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6303 return Legal->hasStride(I->getOperand(0)) || 6304 Legal->hasStride(I->getOperand(1)); 6305 } 6306 6307 InstructionCost 6308 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6309 ElementCount VF) { 6310 assert(VF.isVector() && 6311 "Scalarization cost of instruction implies vectorization."); 6312 if (VF.isScalable()) 6313 return InstructionCost::getInvalid(); 6314 6315 Type *ValTy = getLoadStoreType(I); 6316 auto SE = PSE.getSE(); 6317 6318 unsigned AS = getLoadStoreAddressSpace(I); 6319 Value *Ptr = getLoadStorePointerOperand(I); 6320 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6321 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6322 // that it is being called from this specific place. 6323 6324 // Figure out whether the access is strided and get the stride value 6325 // if it's known in compile time 6326 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6327 6328 // Get the cost of the scalar memory instruction and address computation. 6329 InstructionCost Cost = 6330 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6331 6332 // Don't pass *I here, since it is scalar but will actually be part of a 6333 // vectorized loop where the user of it is a vectorized instruction. 6334 const Align Alignment = getLoadStoreAlignment(I); 6335 Cost += VF.getKnownMinValue() * 6336 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6337 AS, TTI::TCK_RecipThroughput); 6338 6339 // Get the overhead of the extractelement and insertelement instructions 6340 // we might create due to scalarization. 6341 Cost += getScalarizationOverhead(I, VF); 6342 6343 // If we have a predicated load/store, it will need extra i1 extracts and 6344 // conditional branches, but may not be executed for each vector lane. Scale 6345 // the cost by the probability of executing the predicated block. 6346 if (isPredicatedInst(I, VF)) { 6347 Cost /= getReciprocalPredBlockProb(); 6348 6349 // Add the cost of an i1 extract and a branch 6350 auto *Vec_i1Ty = 6351 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6352 Cost += TTI.getScalarizationOverhead( 6353 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6354 /*Insert=*/false, /*Extract=*/true); 6355 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6356 6357 if (useEmulatedMaskMemRefHack(I, VF)) 6358 // Artificially setting to a high enough value to practically disable 6359 // vectorization with such operations. 6360 Cost = 3000000; 6361 } 6362 6363 return Cost; 6364 } 6365 6366 InstructionCost 6367 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6368 ElementCount VF) { 6369 Type *ValTy = getLoadStoreType(I); 6370 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6371 Value *Ptr = getLoadStorePointerOperand(I); 6372 unsigned AS = getLoadStoreAddressSpace(I); 6373 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6374 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6375 6376 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6377 "Stride should be 1 or -1 for consecutive memory access"); 6378 const Align Alignment = getLoadStoreAlignment(I); 6379 InstructionCost Cost = 0; 6380 if (Legal->isMaskRequired(I)) 6381 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6382 CostKind); 6383 else 6384 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6385 CostKind, I); 6386 6387 bool Reverse = ConsecutiveStride < 0; 6388 if (Reverse) 6389 Cost += 6390 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6391 return Cost; 6392 } 6393 6394 InstructionCost 6395 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6396 ElementCount VF) { 6397 assert(Legal->isUniformMemOp(*I)); 6398 6399 Type *ValTy = getLoadStoreType(I); 6400 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6401 const Align Alignment = getLoadStoreAlignment(I); 6402 unsigned AS = getLoadStoreAddressSpace(I); 6403 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6404 if (isa<LoadInst>(I)) { 6405 return TTI.getAddressComputationCost(ValTy) + 6406 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6407 CostKind) + 6408 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6409 } 6410 StoreInst *SI = cast<StoreInst>(I); 6411 6412 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6413 return TTI.getAddressComputationCost(ValTy) + 6414 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6415 CostKind) + 6416 (isLoopInvariantStoreValue 6417 ? 0 6418 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6419 VF.getKnownMinValue() - 1)); 6420 } 6421 6422 InstructionCost 6423 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6424 ElementCount VF) { 6425 Type *ValTy = getLoadStoreType(I); 6426 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6427 const Align Alignment = getLoadStoreAlignment(I); 6428 const Value *Ptr = getLoadStorePointerOperand(I); 6429 6430 return TTI.getAddressComputationCost(VectorTy) + 6431 TTI.getGatherScatterOpCost( 6432 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6433 TargetTransformInfo::TCK_RecipThroughput, I); 6434 } 6435 6436 InstructionCost 6437 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6438 ElementCount VF) { 6439 // TODO: Once we have support for interleaving with scalable vectors 6440 // we can calculate the cost properly here. 6441 if (VF.isScalable()) 6442 return InstructionCost::getInvalid(); 6443 6444 Type *ValTy = getLoadStoreType(I); 6445 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6446 unsigned AS = getLoadStoreAddressSpace(I); 6447 6448 auto Group = getInterleavedAccessGroup(I); 6449 assert(Group && "Fail to get an interleaved access group."); 6450 6451 unsigned InterleaveFactor = Group->getFactor(); 6452 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6453 6454 // Holds the indices of existing members in the interleaved group. 6455 SmallVector<unsigned, 4> Indices; 6456 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6457 if (Group->getMember(IF)) 6458 Indices.push_back(IF); 6459 6460 // Calculate the cost of the whole interleaved group. 6461 bool UseMaskForGaps = 6462 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6463 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6464 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6465 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6466 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6467 6468 if (Group->isReverse()) { 6469 // TODO: Add support for reversed masked interleaved access. 6470 assert(!Legal->isMaskRequired(I) && 6471 "Reverse masked interleaved access not supported."); 6472 Cost += 6473 Group->getNumMembers() * 6474 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6475 } 6476 return Cost; 6477 } 6478 6479 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6480 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6481 using namespace llvm::PatternMatch; 6482 // Early exit for no inloop reductions 6483 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6484 return None; 6485 auto *VectorTy = cast<VectorType>(Ty); 6486 6487 // We are looking for a pattern of, and finding the minimal acceptable cost: 6488 // reduce(mul(ext(A), ext(B))) or 6489 // reduce(mul(A, B)) or 6490 // reduce(ext(A)) or 6491 // reduce(A). 6492 // The basic idea is that we walk down the tree to do that, finding the root 6493 // reduction instruction in InLoopReductionImmediateChains. From there we find 6494 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6495 // of the components. If the reduction cost is lower then we return it for the 6496 // reduction instruction and 0 for the other instructions in the pattern. If 6497 // it is not we return an invalid cost specifying the orignal cost method 6498 // should be used. 6499 Instruction *RetI = I; 6500 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6501 if (!RetI->hasOneUser()) 6502 return None; 6503 RetI = RetI->user_back(); 6504 } 6505 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6506 RetI->user_back()->getOpcode() == Instruction::Add) { 6507 if (!RetI->hasOneUser()) 6508 return None; 6509 RetI = RetI->user_back(); 6510 } 6511 6512 // Test if the found instruction is a reduction, and if not return an invalid 6513 // cost specifying the parent to use the original cost modelling. 6514 if (!InLoopReductionImmediateChains.count(RetI)) 6515 return None; 6516 6517 // Find the reduction this chain is a part of and calculate the basic cost of 6518 // the reduction on its own. 6519 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6520 Instruction *ReductionPhi = LastChain; 6521 while (!isa<PHINode>(ReductionPhi)) 6522 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6523 6524 const RecurrenceDescriptor &RdxDesc = 6525 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6526 6527 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6528 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6529 6530 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6531 // normal fmul instruction to the cost of the fadd reduction. 6532 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6533 BaseCost += 6534 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6535 6536 // If we're using ordered reductions then we can just return the base cost 6537 // here, since getArithmeticReductionCost calculates the full ordered 6538 // reduction cost when FP reassociation is not allowed. 6539 if (useOrderedReductions(RdxDesc)) 6540 return BaseCost; 6541 6542 // Get the operand that was not the reduction chain and match it to one of the 6543 // patterns, returning the better cost if it is found. 6544 Instruction *RedOp = RetI->getOperand(1) == LastChain 6545 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6546 : dyn_cast<Instruction>(RetI->getOperand(1)); 6547 6548 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6549 6550 Instruction *Op0, *Op1; 6551 if (RedOp && 6552 match(RedOp, 6553 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6554 match(Op0, m_ZExtOrSExt(m_Value())) && 6555 Op0->getOpcode() == Op1->getOpcode() && 6556 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6557 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6558 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6559 6560 // Matched reduce(ext(mul(ext(A), ext(B))) 6561 // Note that the extend opcodes need to all match, or if A==B they will have 6562 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6563 // which is equally fine. 6564 bool IsUnsigned = isa<ZExtInst>(Op0); 6565 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6566 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6567 6568 InstructionCost ExtCost = 6569 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6570 TTI::CastContextHint::None, CostKind, Op0); 6571 InstructionCost MulCost = 6572 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6573 InstructionCost Ext2Cost = 6574 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6575 TTI::CastContextHint::None, CostKind, RedOp); 6576 6577 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6578 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6579 CostKind); 6580 6581 if (RedCost.isValid() && 6582 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6583 return I == RetI ? RedCost : 0; 6584 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6585 !TheLoop->isLoopInvariant(RedOp)) { 6586 // Matched reduce(ext(A)) 6587 bool IsUnsigned = isa<ZExtInst>(RedOp); 6588 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6589 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6590 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6591 CostKind); 6592 6593 InstructionCost ExtCost = 6594 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6595 TTI::CastContextHint::None, CostKind, RedOp); 6596 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6597 return I == RetI ? RedCost : 0; 6598 } else if (RedOp && 6599 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6600 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6601 Op0->getOpcode() == Op1->getOpcode() && 6602 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6603 bool IsUnsigned = isa<ZExtInst>(Op0); 6604 Type *Op0Ty = Op0->getOperand(0)->getType(); 6605 Type *Op1Ty = Op1->getOperand(0)->getType(); 6606 Type *LargestOpTy = 6607 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6608 : Op0Ty; 6609 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6610 6611 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6612 // different sizes. We take the largest type as the ext to reduce, and add 6613 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6614 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6615 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6616 TTI::CastContextHint::None, CostKind, Op0); 6617 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6618 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6619 TTI::CastContextHint::None, CostKind, Op1); 6620 InstructionCost MulCost = 6621 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6622 6623 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6624 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6625 CostKind); 6626 InstructionCost ExtraExtCost = 0; 6627 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6628 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6629 ExtraExtCost = TTI.getCastInstrCost( 6630 ExtraExtOp->getOpcode(), ExtType, 6631 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6632 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6633 } 6634 6635 if (RedCost.isValid() && 6636 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6637 return I == RetI ? RedCost : 0; 6638 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6639 // Matched reduce(mul()) 6640 InstructionCost MulCost = 6641 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6642 6643 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6644 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6645 CostKind); 6646 6647 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6648 return I == RetI ? RedCost : 0; 6649 } 6650 } 6651 6652 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6653 } 6654 6655 InstructionCost 6656 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6657 ElementCount VF) { 6658 // Calculate scalar cost only. Vectorization cost should be ready at this 6659 // moment. 6660 if (VF.isScalar()) { 6661 Type *ValTy = getLoadStoreType(I); 6662 const Align Alignment = getLoadStoreAlignment(I); 6663 unsigned AS = getLoadStoreAddressSpace(I); 6664 6665 return TTI.getAddressComputationCost(ValTy) + 6666 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6667 TTI::TCK_RecipThroughput, I); 6668 } 6669 return getWideningCost(I, VF); 6670 } 6671 6672 LoopVectorizationCostModel::VectorizationCostTy 6673 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6674 ElementCount VF) { 6675 // If we know that this instruction will remain uniform, check the cost of 6676 // the scalar version. 6677 if (isUniformAfterVectorization(I, VF)) 6678 VF = ElementCount::getFixed(1); 6679 6680 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6681 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6682 6683 // Forced scalars do not have any scalarization overhead. 6684 auto ForcedScalar = ForcedScalars.find(VF); 6685 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6686 auto InstSet = ForcedScalar->second; 6687 if (InstSet.count(I)) 6688 return VectorizationCostTy( 6689 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6690 VF.getKnownMinValue()), 6691 false); 6692 } 6693 6694 Type *VectorTy; 6695 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6696 6697 bool TypeNotScalarized = false; 6698 if (VF.isVector() && VectorTy->isVectorTy()) { 6699 if (unsigned NumParts = TTI.getNumberOfParts(VectorTy)) { 6700 if (VF.isScalable()) 6701 // <vscale x 1 x iN> is assumed to be profitable over iN because 6702 // scalable registers are a distinct register class from scalar ones. 6703 // If we ever find a target which wants to lower scalable vectors 6704 // back to scalars, we'll need to update this code to explicitly 6705 // ask TTI about the register class uses for each part. 6706 TypeNotScalarized = NumParts <= VF.getKnownMinValue(); 6707 else 6708 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6709 } else 6710 C = InstructionCost::getInvalid(); 6711 } 6712 return VectorizationCostTy(C, TypeNotScalarized); 6713 } 6714 6715 InstructionCost 6716 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6717 ElementCount VF) const { 6718 6719 // There is no mechanism yet to create a scalable scalarization loop, 6720 // so this is currently Invalid. 6721 if (VF.isScalable()) 6722 return InstructionCost::getInvalid(); 6723 6724 if (VF.isScalar()) 6725 return 0; 6726 6727 InstructionCost Cost = 0; 6728 Type *RetTy = ToVectorTy(I->getType(), VF); 6729 if (!RetTy->isVoidTy() && 6730 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6731 Cost += TTI.getScalarizationOverhead( 6732 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6733 false); 6734 6735 // Some targets keep addresses scalar. 6736 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6737 return Cost; 6738 6739 // Some targets support efficient element stores. 6740 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6741 return Cost; 6742 6743 // Collect operands to consider. 6744 CallInst *CI = dyn_cast<CallInst>(I); 6745 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6746 6747 // Skip operands that do not require extraction/scalarization and do not incur 6748 // any overhead. 6749 SmallVector<Type *> Tys; 6750 for (auto *V : filterExtractingOperands(Ops, VF)) 6751 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6752 return Cost + TTI.getOperandsScalarizationOverhead( 6753 filterExtractingOperands(Ops, VF), Tys); 6754 } 6755 6756 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6757 if (VF.isScalar()) 6758 return; 6759 NumPredStores = 0; 6760 for (BasicBlock *BB : TheLoop->blocks()) { 6761 // For each instruction in the old loop. 6762 for (Instruction &I : *BB) { 6763 Value *Ptr = getLoadStorePointerOperand(&I); 6764 if (!Ptr) 6765 continue; 6766 6767 // TODO: We should generate better code and update the cost model for 6768 // predicated uniform stores. Today they are treated as any other 6769 // predicated store (see added test cases in 6770 // invariant-store-vectorization.ll). 6771 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6772 NumPredStores++; 6773 6774 if (Legal->isUniformMemOp(I)) { 6775 // Lowering story for uniform memory ops is currently a bit complicated. 6776 // Scalarization works for everything which isn't a store with scalable 6777 // VF. Fixed len VFs just scalarize and then DCE later; scalarization 6778 // knows how to handle uniform-per-part values (i.e. the first lane 6779 // in each unrolled VF) and can thus handle scalable loads too. For 6780 // scalable stores, we use a scatter if legal. If not, we have no way 6781 // to lower (currently) and thus have to abort vectorization. 6782 InstructionCost Cost; 6783 if (isa<StoreInst>(&I) && VF.isScalable()) { 6784 if (isLegalGatherOrScatter(&I, VF)) 6785 setWideningDecision(&I, VF, CM_GatherScatter, 6786 getGatherScatterCost(&I, VF)); 6787 else 6788 // Error case, abort vectorization 6789 setWideningDecision(&I, VF, CM_Scalarize, 6790 InstructionCost::getInvalid()); 6791 continue; 6792 } 6793 // Load: Scalar load + broadcast 6794 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6795 // TODO: Avoid replicating loads and stores instead of relying on 6796 // instcombine to remove them. 6797 setWideningDecision(&I, VF, CM_Scalarize, 6798 getUniformMemOpCost(&I, VF)); 6799 continue; 6800 } 6801 6802 // We assume that widening is the best solution when possible. 6803 if (memoryInstructionCanBeWidened(&I, VF)) { 6804 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6805 int ConsecutiveStride = Legal->isConsecutivePtr( 6806 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6807 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6808 "Expected consecutive stride."); 6809 InstWidening Decision = 6810 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6811 setWideningDecision(&I, VF, Decision, Cost); 6812 continue; 6813 } 6814 6815 // Choose between Interleaving, Gather/Scatter or Scalarization. 6816 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6817 unsigned NumAccesses = 1; 6818 if (isAccessInterleaved(&I)) { 6819 auto Group = getInterleavedAccessGroup(&I); 6820 assert(Group && "Fail to get an interleaved access group."); 6821 6822 // Make one decision for the whole group. 6823 if (getWideningDecision(&I, VF) != CM_Unknown) 6824 continue; 6825 6826 NumAccesses = Group->getNumMembers(); 6827 if (interleavedAccessCanBeWidened(&I, VF)) 6828 InterleaveCost = getInterleaveGroupCost(&I, VF); 6829 } 6830 6831 InstructionCost GatherScatterCost = 6832 isLegalGatherOrScatter(&I, VF) 6833 ? getGatherScatterCost(&I, VF) * NumAccesses 6834 : InstructionCost::getInvalid(); 6835 6836 InstructionCost ScalarizationCost = 6837 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6838 6839 // Choose better solution for the current VF, 6840 // write down this decision and use it during vectorization. 6841 InstructionCost Cost; 6842 InstWidening Decision; 6843 if (InterleaveCost <= GatherScatterCost && 6844 InterleaveCost < ScalarizationCost) { 6845 Decision = CM_Interleave; 6846 Cost = InterleaveCost; 6847 } else if (GatherScatterCost < ScalarizationCost) { 6848 Decision = CM_GatherScatter; 6849 Cost = GatherScatterCost; 6850 } else { 6851 Decision = CM_Scalarize; 6852 Cost = ScalarizationCost; 6853 } 6854 // If the instructions belongs to an interleave group, the whole group 6855 // receives the same decision. The whole group receives the cost, but 6856 // the cost will actually be assigned to one instruction. 6857 if (auto Group = getInterleavedAccessGroup(&I)) 6858 setWideningDecision(Group, VF, Decision, Cost); 6859 else 6860 setWideningDecision(&I, VF, Decision, Cost); 6861 } 6862 } 6863 6864 // Make sure that any load of address and any other address computation 6865 // remains scalar unless there is gather/scatter support. This avoids 6866 // inevitable extracts into address registers, and also has the benefit of 6867 // activating LSR more, since that pass can't optimize vectorized 6868 // addresses. 6869 if (TTI.prefersVectorizedAddressing()) 6870 return; 6871 6872 // Start with all scalar pointer uses. 6873 SmallPtrSet<Instruction *, 8> AddrDefs; 6874 for (BasicBlock *BB : TheLoop->blocks()) 6875 for (Instruction &I : *BB) { 6876 Instruction *PtrDef = 6877 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6878 if (PtrDef && TheLoop->contains(PtrDef) && 6879 getWideningDecision(&I, VF) != CM_GatherScatter) 6880 AddrDefs.insert(PtrDef); 6881 } 6882 6883 // Add all instructions used to generate the addresses. 6884 SmallVector<Instruction *, 4> Worklist; 6885 append_range(Worklist, AddrDefs); 6886 while (!Worklist.empty()) { 6887 Instruction *I = Worklist.pop_back_val(); 6888 for (auto &Op : I->operands()) 6889 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6890 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6891 AddrDefs.insert(InstOp).second) 6892 Worklist.push_back(InstOp); 6893 } 6894 6895 for (auto *I : AddrDefs) { 6896 if (isa<LoadInst>(I)) { 6897 // Setting the desired widening decision should ideally be handled in 6898 // by cost functions, but since this involves the task of finding out 6899 // if the loaded register is involved in an address computation, it is 6900 // instead changed here when we know this is the case. 6901 InstWidening Decision = getWideningDecision(I, VF); 6902 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6903 // Scalarize a widened load of address. 6904 setWideningDecision( 6905 I, VF, CM_Scalarize, 6906 (VF.getKnownMinValue() * 6907 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6908 else if (auto Group = getInterleavedAccessGroup(I)) { 6909 // Scalarize an interleave group of address loads. 6910 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6911 if (Instruction *Member = Group->getMember(I)) 6912 setWideningDecision( 6913 Member, VF, CM_Scalarize, 6914 (VF.getKnownMinValue() * 6915 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6916 } 6917 } 6918 } else 6919 // Make sure I gets scalarized and a cost estimate without 6920 // scalarization overhead. 6921 ForcedScalars[VF].insert(I); 6922 } 6923 } 6924 6925 InstructionCost 6926 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 6927 Type *&VectorTy) { 6928 Type *RetTy = I->getType(); 6929 if (canTruncateToMinimalBitwidth(I, VF)) 6930 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6931 auto SE = PSE.getSE(); 6932 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6933 6934 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 6935 ElementCount VF) -> bool { 6936 if (VF.isScalar()) 6937 return true; 6938 6939 auto Scalarized = InstsToScalarize.find(VF); 6940 assert(Scalarized != InstsToScalarize.end() && 6941 "VF not yet analyzed for scalarization profitability"); 6942 return !Scalarized->second.count(I) && 6943 llvm::all_of(I->users(), [&](User *U) { 6944 auto *UI = cast<Instruction>(U); 6945 return !Scalarized->second.count(UI); 6946 }); 6947 }; 6948 (void) hasSingleCopyAfterVectorization; 6949 6950 if (isScalarAfterVectorization(I, VF)) { 6951 // With the exception of GEPs and PHIs, after scalarization there should 6952 // only be one copy of the instruction generated in the loop. This is 6953 // because the VF is either 1, or any instructions that need scalarizing 6954 // have already been dealt with by the the time we get here. As a result, 6955 // it means we don't have to multiply the instruction cost by VF. 6956 assert(I->getOpcode() == Instruction::GetElementPtr || 6957 I->getOpcode() == Instruction::PHI || 6958 (I->getOpcode() == Instruction::BitCast && 6959 I->getType()->isPointerTy()) || 6960 hasSingleCopyAfterVectorization(I, VF)); 6961 VectorTy = RetTy; 6962 } else 6963 VectorTy = ToVectorTy(RetTy, VF); 6964 6965 // TODO: We need to estimate the cost of intrinsic calls. 6966 switch (I->getOpcode()) { 6967 case Instruction::GetElementPtr: 6968 // We mark this instruction as zero-cost because the cost of GEPs in 6969 // vectorized code depends on whether the corresponding memory instruction 6970 // is scalarized or not. Therefore, we handle GEPs with the memory 6971 // instruction cost. 6972 return 0; 6973 case Instruction::Br: { 6974 // In cases of scalarized and predicated instructions, there will be VF 6975 // predicated blocks in the vectorized loop. Each branch around these 6976 // blocks requires also an extract of its vector compare i1 element. 6977 bool ScalarPredicatedBB = false; 6978 BranchInst *BI = cast<BranchInst>(I); 6979 if (VF.isVector() && BI->isConditional() && 6980 (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) || 6981 PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1)))) 6982 ScalarPredicatedBB = true; 6983 6984 if (ScalarPredicatedBB) { 6985 // Not possible to scalarize scalable vector with predicated instructions. 6986 if (VF.isScalable()) 6987 return InstructionCost::getInvalid(); 6988 // Return cost for branches around scalarized and predicated blocks. 6989 auto *Vec_i1Ty = 6990 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6991 return ( 6992 TTI.getScalarizationOverhead( 6993 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 6994 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 6995 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 6996 // The back-edge branch will remain, as will all scalar branches. 6997 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6998 else 6999 // This branch will be eliminated by if-conversion. 7000 return 0; 7001 // Note: We currently assume zero cost for an unconditional branch inside 7002 // a predicated block since it will become a fall-through, although we 7003 // may decide in the future to call TTI for all branches. 7004 } 7005 case Instruction::PHI: { 7006 auto *Phi = cast<PHINode>(I); 7007 7008 // First-order recurrences are replaced by vector shuffles inside the loop. 7009 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7010 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7011 return TTI.getShuffleCost( 7012 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7013 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7014 7015 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7016 // converted into select instructions. We require N - 1 selects per phi 7017 // node, where N is the number of incoming values. 7018 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7019 return (Phi->getNumIncomingValues() - 1) * 7020 TTI.getCmpSelInstrCost( 7021 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7022 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7023 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7024 7025 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7026 } 7027 case Instruction::UDiv: 7028 case Instruction::SDiv: 7029 case Instruction::URem: 7030 case Instruction::SRem: 7031 // If we have a predicated instruction, it may not be executed for each 7032 // vector lane. Get the scalarization cost and scale this amount by the 7033 // probability of executing the predicated block. If the instruction is not 7034 // predicated, we fall through to the next case. 7035 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7036 InstructionCost Cost = 0; 7037 7038 // These instructions have a non-void type, so account for the phi nodes 7039 // that we will create. This cost is likely to be zero. The phi node 7040 // cost, if any, should be scaled by the block probability because it 7041 // models a copy at the end of each predicated block. 7042 Cost += VF.getKnownMinValue() * 7043 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7044 7045 // The cost of the non-predicated instruction. 7046 Cost += VF.getKnownMinValue() * 7047 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7048 7049 // The cost of insertelement and extractelement instructions needed for 7050 // scalarization. 7051 Cost += getScalarizationOverhead(I, VF); 7052 7053 // Scale the cost by the probability of executing the predicated blocks. 7054 // This assumes the predicated block for each vector lane is equally 7055 // likely. 7056 return Cost / getReciprocalPredBlockProb(); 7057 } 7058 LLVM_FALLTHROUGH; 7059 case Instruction::Add: 7060 case Instruction::FAdd: 7061 case Instruction::Sub: 7062 case Instruction::FSub: 7063 case Instruction::Mul: 7064 case Instruction::FMul: 7065 case Instruction::FDiv: 7066 case Instruction::FRem: 7067 case Instruction::Shl: 7068 case Instruction::LShr: 7069 case Instruction::AShr: 7070 case Instruction::And: 7071 case Instruction::Or: 7072 case Instruction::Xor: { 7073 // Since we will replace the stride by 1 the multiplication should go away. 7074 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7075 return 0; 7076 7077 // Detect reduction patterns 7078 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7079 return *RedCost; 7080 7081 // Certain instructions can be cheaper to vectorize if they have a constant 7082 // second vector operand. One example of this are shifts on x86. 7083 Value *Op2 = I->getOperand(1); 7084 TargetTransformInfo::OperandValueProperties Op2VP; 7085 TargetTransformInfo::OperandValueKind Op2VK = 7086 TTI.getOperandInfo(Op2, Op2VP); 7087 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7088 Op2VK = TargetTransformInfo::OK_UniformValue; 7089 7090 SmallVector<const Value *, 4> Operands(I->operand_values()); 7091 return TTI.getArithmeticInstrCost( 7092 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7093 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7094 } 7095 case Instruction::FNeg: { 7096 return TTI.getArithmeticInstrCost( 7097 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7098 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7099 TargetTransformInfo::OP_None, I->getOperand(0), I); 7100 } 7101 case Instruction::Select: { 7102 SelectInst *SI = cast<SelectInst>(I); 7103 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7104 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7105 7106 const Value *Op0, *Op1; 7107 using namespace llvm::PatternMatch; 7108 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7109 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7110 // select x, y, false --> x & y 7111 // select x, true, y --> x | y 7112 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7113 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7114 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7115 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7116 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7117 Op1->getType()->getScalarSizeInBits() == 1); 7118 7119 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7120 return TTI.getArithmeticInstrCost( 7121 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7122 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7123 } 7124 7125 Type *CondTy = SI->getCondition()->getType(); 7126 if (!ScalarCond) 7127 CondTy = VectorType::get(CondTy, VF); 7128 7129 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7130 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7131 Pred = Cmp->getPredicate(); 7132 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7133 CostKind, I); 7134 } 7135 case Instruction::ICmp: 7136 case Instruction::FCmp: { 7137 Type *ValTy = I->getOperand(0)->getType(); 7138 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7139 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7140 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7141 VectorTy = ToVectorTy(ValTy, VF); 7142 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7143 cast<CmpInst>(I)->getPredicate(), CostKind, 7144 I); 7145 } 7146 case Instruction::Store: 7147 case Instruction::Load: { 7148 ElementCount Width = VF; 7149 if (Width.isVector()) { 7150 InstWidening Decision = getWideningDecision(I, Width); 7151 assert(Decision != CM_Unknown && 7152 "CM decision should be taken at this point"); 7153 if (getWideningCost(I, VF) == InstructionCost::getInvalid()) 7154 return InstructionCost::getInvalid(); 7155 if (Decision == CM_Scalarize) 7156 Width = ElementCount::getFixed(1); 7157 } 7158 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7159 return getMemoryInstructionCost(I, VF); 7160 } 7161 case Instruction::BitCast: 7162 if (I->getType()->isPointerTy()) 7163 return 0; 7164 LLVM_FALLTHROUGH; 7165 case Instruction::ZExt: 7166 case Instruction::SExt: 7167 case Instruction::FPToUI: 7168 case Instruction::FPToSI: 7169 case Instruction::FPExt: 7170 case Instruction::PtrToInt: 7171 case Instruction::IntToPtr: 7172 case Instruction::SIToFP: 7173 case Instruction::UIToFP: 7174 case Instruction::Trunc: 7175 case Instruction::FPTrunc: { 7176 // Computes the CastContextHint from a Load/Store instruction. 7177 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7178 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7179 "Expected a load or a store!"); 7180 7181 if (VF.isScalar() || !TheLoop->contains(I)) 7182 return TTI::CastContextHint::Normal; 7183 7184 switch (getWideningDecision(I, VF)) { 7185 case LoopVectorizationCostModel::CM_GatherScatter: 7186 return TTI::CastContextHint::GatherScatter; 7187 case LoopVectorizationCostModel::CM_Interleave: 7188 return TTI::CastContextHint::Interleave; 7189 case LoopVectorizationCostModel::CM_Scalarize: 7190 case LoopVectorizationCostModel::CM_Widen: 7191 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7192 : TTI::CastContextHint::Normal; 7193 case LoopVectorizationCostModel::CM_Widen_Reverse: 7194 return TTI::CastContextHint::Reversed; 7195 case LoopVectorizationCostModel::CM_Unknown: 7196 llvm_unreachable("Instr did not go through cost modelling?"); 7197 } 7198 7199 llvm_unreachable("Unhandled case!"); 7200 }; 7201 7202 unsigned Opcode = I->getOpcode(); 7203 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7204 // For Trunc, the context is the only user, which must be a StoreInst. 7205 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7206 if (I->hasOneUse()) 7207 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7208 CCH = ComputeCCH(Store); 7209 } 7210 // For Z/Sext, the context is the operand, which must be a LoadInst. 7211 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7212 Opcode == Instruction::FPExt) { 7213 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7214 CCH = ComputeCCH(Load); 7215 } 7216 7217 // We optimize the truncation of induction variables having constant 7218 // integer steps. The cost of these truncations is the same as the scalar 7219 // operation. 7220 if (isOptimizableIVTruncate(I, VF)) { 7221 auto *Trunc = cast<TruncInst>(I); 7222 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7223 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7224 } 7225 7226 // Detect reduction patterns 7227 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7228 return *RedCost; 7229 7230 Type *SrcScalarTy = I->getOperand(0)->getType(); 7231 Type *SrcVecTy = 7232 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7233 if (canTruncateToMinimalBitwidth(I, VF)) { 7234 // This cast is going to be shrunk. This may remove the cast or it might 7235 // turn it into slightly different cast. For example, if MinBW == 16, 7236 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7237 // 7238 // Calculate the modified src and dest types. 7239 Type *MinVecTy = VectorTy; 7240 if (Opcode == Instruction::Trunc) { 7241 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7242 VectorTy = 7243 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7244 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7245 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7246 VectorTy = 7247 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7248 } 7249 } 7250 7251 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7252 } 7253 case Instruction::Call: { 7254 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7255 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7256 return *RedCost; 7257 bool NeedToScalarize; 7258 CallInst *CI = cast<CallInst>(I); 7259 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7260 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7261 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7262 return std::min(CallCost, IntrinsicCost); 7263 } 7264 return CallCost; 7265 } 7266 case Instruction::ExtractValue: 7267 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7268 case Instruction::Alloca: 7269 // We cannot easily widen alloca to a scalable alloca, as 7270 // the result would need to be a vector of pointers. 7271 if (VF.isScalable()) 7272 return InstructionCost::getInvalid(); 7273 LLVM_FALLTHROUGH; 7274 default: 7275 // This opcode is unknown. Assume that it is the same as 'mul'. 7276 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7277 } // end of switch. 7278 } 7279 7280 char LoopVectorize::ID = 0; 7281 7282 static const char lv_name[] = "Loop Vectorization"; 7283 7284 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7285 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7286 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7287 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7288 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7289 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7290 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7291 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7292 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7293 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7294 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7295 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7296 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7297 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7298 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7299 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7300 7301 namespace llvm { 7302 7303 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7304 7305 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7306 bool VectorizeOnlyWhenForced) { 7307 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7308 } 7309 7310 } // end namespace llvm 7311 7312 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7313 // Check if the pointer operand of a load or store instruction is 7314 // consecutive. 7315 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7316 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7317 return false; 7318 } 7319 7320 void LoopVectorizationCostModel::collectValuesToIgnore() { 7321 // Ignore ephemeral values. 7322 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7323 7324 // Find all stores to invariant variables. Since they are going to sink 7325 // outside the loop we do not need calculate cost for them. 7326 for (BasicBlock *BB : TheLoop->blocks()) 7327 for (Instruction &I : *BB) { 7328 StoreInst *SI; 7329 if ((SI = dyn_cast<StoreInst>(&I)) && 7330 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 7331 ValuesToIgnore.insert(&I); 7332 } 7333 7334 // Ignore type-promoting instructions we identified during reduction 7335 // detection. 7336 for (auto &Reduction : Legal->getReductionVars()) { 7337 const RecurrenceDescriptor &RedDes = Reduction.second; 7338 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7339 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7340 } 7341 // Ignore type-casting instructions we identified during induction 7342 // detection. 7343 for (auto &Induction : Legal->getInductionVars()) { 7344 const InductionDescriptor &IndDes = Induction.second; 7345 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7346 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7347 } 7348 } 7349 7350 void LoopVectorizationCostModel::collectInLoopReductions() { 7351 for (auto &Reduction : Legal->getReductionVars()) { 7352 PHINode *Phi = Reduction.first; 7353 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7354 7355 // We don't collect reductions that are type promoted (yet). 7356 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7357 continue; 7358 7359 // If the target would prefer this reduction to happen "in-loop", then we 7360 // want to record it as such. 7361 unsigned Opcode = RdxDesc.getOpcode(); 7362 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7363 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7364 TargetTransformInfo::ReductionFlags())) 7365 continue; 7366 7367 // Check that we can correctly put the reductions into the loop, by 7368 // finding the chain of operations that leads from the phi to the loop 7369 // exit value. 7370 SmallVector<Instruction *, 4> ReductionOperations = 7371 RdxDesc.getReductionOpChain(Phi, TheLoop); 7372 bool InLoop = !ReductionOperations.empty(); 7373 if (InLoop) { 7374 InLoopReductionChains[Phi] = ReductionOperations; 7375 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7376 Instruction *LastChain = Phi; 7377 for (auto *I : ReductionOperations) { 7378 InLoopReductionImmediateChains[I] = LastChain; 7379 LastChain = I; 7380 } 7381 } 7382 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7383 << " reduction for phi: " << *Phi << "\n"); 7384 } 7385 } 7386 7387 // TODO: we could return a pair of values that specify the max VF and 7388 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7389 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7390 // doesn't have a cost model that can choose which plan to execute if 7391 // more than one is generated. 7392 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7393 LoopVectorizationCostModel &CM) { 7394 unsigned WidestType; 7395 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7396 return WidestVectorRegBits / WidestType; 7397 } 7398 7399 VectorizationFactor 7400 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7401 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7402 ElementCount VF = UserVF; 7403 // Outer loop handling: They may require CFG and instruction level 7404 // transformations before even evaluating whether vectorization is profitable. 7405 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7406 // the vectorization pipeline. 7407 if (!OrigLoop->isInnermost()) { 7408 // If the user doesn't provide a vectorization factor, determine a 7409 // reasonable one. 7410 if (UserVF.isZero()) { 7411 VF = ElementCount::getFixed(determineVPlanVF( 7412 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7413 .getFixedSize(), 7414 CM)); 7415 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7416 7417 // Make sure we have a VF > 1 for stress testing. 7418 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7419 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7420 << "overriding computed VF.\n"); 7421 VF = ElementCount::getFixed(4); 7422 } 7423 } 7424 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7425 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7426 "VF needs to be a power of two"); 7427 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7428 << "VF " << VF << " to build VPlans.\n"); 7429 buildVPlans(VF, VF); 7430 7431 // For VPlan build stress testing, we bail out after VPlan construction. 7432 if (VPlanBuildStressTest) 7433 return VectorizationFactor::Disabled(); 7434 7435 return {VF, 0 /*Cost*/, 0 /* ScalarCost */}; 7436 } 7437 7438 LLVM_DEBUG( 7439 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7440 "VPlan-native path.\n"); 7441 return VectorizationFactor::Disabled(); 7442 } 7443 7444 Optional<VectorizationFactor> 7445 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7446 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7447 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7448 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7449 return None; 7450 7451 // Invalidate interleave groups if all blocks of loop will be predicated. 7452 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7453 !useMaskedInterleavedAccesses(*TTI)) { 7454 LLVM_DEBUG( 7455 dbgs() 7456 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7457 "which requires masked-interleaved support.\n"); 7458 if (CM.InterleaveInfo.invalidateGroups()) 7459 // Invalidating interleave groups also requires invalidating all decisions 7460 // based on them, which includes widening decisions and uniform and scalar 7461 // values. 7462 CM.invalidateCostModelingDecisions(); 7463 } 7464 7465 ElementCount MaxUserVF = 7466 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7467 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7468 if (!UserVF.isZero() && UserVFIsLegal) { 7469 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7470 "VF needs to be a power of two"); 7471 // Collect the instructions (and their associated costs) that will be more 7472 // profitable to scalarize. 7473 if (CM.selectUserVectorizationFactor(UserVF)) { 7474 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7475 CM.collectInLoopReductions(); 7476 buildVPlansWithVPRecipes(UserVF, UserVF); 7477 LLVM_DEBUG(printPlans(dbgs())); 7478 return {{UserVF, 0, 0}}; 7479 } else 7480 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7481 "InvalidCost", ORE, OrigLoop); 7482 } 7483 7484 // Populate the set of Vectorization Factor Candidates. 7485 ElementCountSet VFCandidates; 7486 for (auto VF = ElementCount::getFixed(1); 7487 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7488 VFCandidates.insert(VF); 7489 for (auto VF = ElementCount::getScalable(1); 7490 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7491 VFCandidates.insert(VF); 7492 7493 for (const auto &VF : VFCandidates) { 7494 // Collect Uniform and Scalar instructions after vectorization with VF. 7495 CM.collectUniformsAndScalars(VF); 7496 7497 // Collect the instructions (and their associated costs) that will be more 7498 // profitable to scalarize. 7499 if (VF.isVector()) 7500 CM.collectInstsToScalarize(VF); 7501 } 7502 7503 CM.collectInLoopReductions(); 7504 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7505 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7506 7507 LLVM_DEBUG(printPlans(dbgs())); 7508 if (!MaxFactors.hasVector()) 7509 return VectorizationFactor::Disabled(); 7510 7511 // Select the optimal vectorization factor. 7512 VectorizationFactor VF = CM.selectVectorizationFactor(VFCandidates); 7513 assert((VF.Width.isScalar() || VF.ScalarCost > 0) && "when vectorizing, the scalar cost must be non-zero."); 7514 return VF; 7515 } 7516 7517 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7518 assert(count_if(VPlans, 7519 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7520 1 && 7521 "Best VF has not a single VPlan."); 7522 7523 for (const VPlanPtr &Plan : VPlans) { 7524 if (Plan->hasVF(VF)) 7525 return *Plan.get(); 7526 } 7527 llvm_unreachable("No plan found!"); 7528 } 7529 7530 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7531 SmallVector<Metadata *, 4> MDs; 7532 // Reserve first location for self reference to the LoopID metadata node. 7533 MDs.push_back(nullptr); 7534 bool IsUnrollMetadata = false; 7535 MDNode *LoopID = L->getLoopID(); 7536 if (LoopID) { 7537 // First find existing loop unrolling disable metadata. 7538 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7539 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7540 if (MD) { 7541 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7542 IsUnrollMetadata = 7543 S && S->getString().startswith("llvm.loop.unroll.disable"); 7544 } 7545 MDs.push_back(LoopID->getOperand(i)); 7546 } 7547 } 7548 7549 if (!IsUnrollMetadata) { 7550 // Add runtime unroll disable metadata. 7551 LLVMContext &Context = L->getHeader()->getContext(); 7552 SmallVector<Metadata *, 1> DisableOperands; 7553 DisableOperands.push_back( 7554 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7555 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7556 MDs.push_back(DisableNode); 7557 MDNode *NewLoopID = MDNode::get(Context, MDs); 7558 // Set operand 0 to refer to the loop id itself. 7559 NewLoopID->replaceOperandWith(0, NewLoopID); 7560 L->setLoopID(NewLoopID); 7561 } 7562 } 7563 7564 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7565 VPlan &BestVPlan, 7566 InnerLoopVectorizer &ILV, 7567 DominatorTree *DT, 7568 bool IsEpilogueVectorization) { 7569 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7570 << '\n'); 7571 7572 // Perform the actual loop transformation. 7573 7574 // 1. Set up the skeleton for vectorization, including vector pre-header and 7575 // middle block. The vector loop is created during VPlan execution. 7576 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7577 Value *CanonicalIVStartValue; 7578 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7579 ILV.createVectorizedLoopSkeleton(); 7580 7581 // Only use noalias metadata when using memory checks guaranteeing no overlap 7582 // across all iterations. 7583 const LoopAccessInfo *LAI = ILV.Legal->getLAI(); 7584 if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() && 7585 !LAI->getRuntimePointerChecking()->getDiffChecks()) { 7586 7587 // We currently don't use LoopVersioning for the actual loop cloning but we 7588 // still use it to add the noalias metadata. 7589 // TODO: Find a better way to re-use LoopVersioning functionality to add 7590 // metadata. 7591 State.LVer = std::make_unique<LoopVersioning>( 7592 *LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT, 7593 PSE.getSE()); 7594 State.LVer->prepareNoAliasMetadata(); 7595 } 7596 7597 ILV.collectPoisonGeneratingRecipes(State); 7598 7599 ILV.printDebugTracesAtStart(); 7600 7601 //===------------------------------------------------===// 7602 // 7603 // Notice: any optimization or new instruction that go 7604 // into the code below should also be implemented in 7605 // the cost-model. 7606 // 7607 //===------------------------------------------------===// 7608 7609 // 2. Copy and widen instructions from the old loop into the new loop. 7610 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7611 ILV.getOrCreateVectorTripCount(nullptr), 7612 CanonicalIVStartValue, State, 7613 IsEpilogueVectorization); 7614 7615 BestVPlan.execute(&State); 7616 7617 // Keep all loop hints from the original loop on the vector loop (we'll 7618 // replace the vectorizer-specific hints below). 7619 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7620 7621 Optional<MDNode *> VectorizedLoopID = 7622 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7623 LLVMLoopVectorizeFollowupVectorized}); 7624 7625 VPBasicBlock *HeaderVPBB = 7626 BestVPlan.getVectorLoopRegion()->getEntryBasicBlock(); 7627 Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); 7628 if (VectorizedLoopID) 7629 L->setLoopID(VectorizedLoopID.value()); 7630 else { 7631 // Keep all loop hints from the original loop on the vector loop (we'll 7632 // replace the vectorizer-specific hints below). 7633 if (MDNode *LID = OrigLoop->getLoopID()) 7634 L->setLoopID(LID); 7635 7636 LoopVectorizeHints Hints(L, true, *ORE); 7637 Hints.setAlreadyVectorized(); 7638 } 7639 // Disable runtime unrolling when vectorizing the epilogue loop. 7640 if (CanonicalIVStartValue) 7641 AddRuntimeUnrollDisableMetaData(L); 7642 7643 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7644 // predication, updating analyses. 7645 ILV.fixVectorizedLoop(State, BestVPlan); 7646 7647 ILV.printDebugTracesAtEnd(); 7648 } 7649 7650 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7651 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7652 for (const auto &Plan : VPlans) 7653 if (PrintVPlansInDotFormat) 7654 Plan->printDOT(O); 7655 else 7656 Plan->print(O); 7657 } 7658 #endif 7659 7660 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7661 7662 //===--------------------------------------------------------------------===// 7663 // EpilogueVectorizerMainLoop 7664 //===--------------------------------------------------------------------===// 7665 7666 /// This function is partially responsible for generating the control flow 7667 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7668 std::pair<BasicBlock *, Value *> 7669 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7670 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7671 7672 // Workaround! Compute the trip count of the original loop and cache it 7673 // before we start modifying the CFG. This code has a systemic problem 7674 // wherein it tries to run analysis over partially constructed IR; this is 7675 // wrong, and not simply for SCEV. The trip count of the original loop 7676 // simply happens to be prone to hitting this in practice. In theory, we 7677 // can hit the same issue for any SCEV, or ValueTracking query done during 7678 // mutation. See PR49900. 7679 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 7680 createVectorLoopSkeleton(""); 7681 7682 // Generate the code to check the minimum iteration count of the vector 7683 // epilogue (see below). 7684 EPI.EpilogueIterationCountCheck = 7685 emitIterationCountCheck(LoopScalarPreHeader, true); 7686 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7687 7688 // Generate the code to check any assumptions that we've made for SCEV 7689 // expressions. 7690 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7691 7692 // Generate the code that checks at runtime if arrays overlap. We put the 7693 // checks into a separate block to make the more common case of few elements 7694 // faster. 7695 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7696 7697 // Generate the iteration count check for the main loop, *after* the check 7698 // for the epilogue loop, so that the path-length is shorter for the case 7699 // that goes directly through the vector epilogue. The longer-path length for 7700 // the main loop is compensated for, by the gain from vectorizing the larger 7701 // trip count. Note: the branch will get updated later on when we vectorize 7702 // the epilogue. 7703 EPI.MainLoopIterationCountCheck = 7704 emitIterationCountCheck(LoopScalarPreHeader, false); 7705 7706 // Generate the induction variable. 7707 EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 7708 7709 // Skip induction resume value creation here because they will be created in 7710 // the second pass. If we created them here, they wouldn't be used anyway, 7711 // because the vplan in the second pass still contains the inductions from the 7712 // original loop. 7713 7714 return {completeLoopSkeleton(OrigLoopID), nullptr}; 7715 } 7716 7717 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7718 LLVM_DEBUG({ 7719 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7720 << "Main Loop VF:" << EPI.MainLoopVF 7721 << ", Main Loop UF:" << EPI.MainLoopUF 7722 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7723 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7724 }); 7725 } 7726 7727 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7728 DEBUG_WITH_TYPE(VerboseDebug, { 7729 dbgs() << "intermediate fn:\n" 7730 << *OrigLoop->getHeader()->getParent() << "\n"; 7731 }); 7732 } 7733 7734 BasicBlock * 7735 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass, 7736 bool ForEpilogue) { 7737 assert(Bypass && "Expected valid bypass basic block."); 7738 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7739 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7740 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7741 // Reuse existing vector loop preheader for TC checks. 7742 // Note that new preheader block is generated for vector loop. 7743 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7744 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7745 7746 // Generate code to check if the loop's trip count is less than VF * UF of the 7747 // main vector loop. 7748 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7749 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7750 7751 Value *CheckMinIters = Builder.CreateICmp( 7752 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7753 "min.iters.check"); 7754 7755 if (!ForEpilogue) 7756 TCCheckBlock->setName("vector.main.loop.iter.check"); 7757 7758 // Create new preheader for vector loop. 7759 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7760 DT, LI, nullptr, "vector.ph"); 7761 7762 if (ForEpilogue) { 7763 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7764 DT->getNode(Bypass)->getIDom()) && 7765 "TC check is expected to dominate Bypass"); 7766 7767 // Update dominator for Bypass & LoopExit. 7768 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7769 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7770 // For loops with multiple exits, there's no edge from the middle block 7771 // to exit blocks (as the epilogue must run) and thus no need to update 7772 // the immediate dominator of the exit blocks. 7773 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7774 7775 LoopBypassBlocks.push_back(TCCheckBlock); 7776 7777 // Save the trip count so we don't have to regenerate it in the 7778 // vec.epilog.iter.check. This is safe to do because the trip count 7779 // generated here dominates the vector epilog iter check. 7780 EPI.TripCount = Count; 7781 } 7782 7783 ReplaceInstWithInst( 7784 TCCheckBlock->getTerminator(), 7785 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7786 7787 return TCCheckBlock; 7788 } 7789 7790 //===--------------------------------------------------------------------===// 7791 // EpilogueVectorizerEpilogueLoop 7792 //===--------------------------------------------------------------------===// 7793 7794 /// This function is partially responsible for generating the control flow 7795 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7796 std::pair<BasicBlock *, Value *> 7797 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7798 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7799 createVectorLoopSkeleton("vec.epilog."); 7800 7801 // Now, compare the remaining count and if there aren't enough iterations to 7802 // execute the vectorized epilogue skip to the scalar part. 7803 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7804 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7805 LoopVectorPreHeader = 7806 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7807 LI, nullptr, "vec.epilog.ph"); 7808 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7809 VecEpilogueIterationCountCheck); 7810 7811 // Adjust the control flow taking the state info from the main loop 7812 // vectorization into account. 7813 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7814 "expected this to be saved from the previous pass."); 7815 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7816 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7817 7818 DT->changeImmediateDominator(LoopVectorPreHeader, 7819 EPI.MainLoopIterationCountCheck); 7820 7821 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7822 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7823 7824 if (EPI.SCEVSafetyCheck) 7825 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7826 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7827 if (EPI.MemSafetyCheck) 7828 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7829 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7830 7831 DT->changeImmediateDominator( 7832 VecEpilogueIterationCountCheck, 7833 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7834 7835 DT->changeImmediateDominator(LoopScalarPreHeader, 7836 EPI.EpilogueIterationCountCheck); 7837 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7838 // If there is an epilogue which must run, there's no edge from the 7839 // middle block to exit blocks and thus no need to update the immediate 7840 // dominator of the exit blocks. 7841 DT->changeImmediateDominator(LoopExitBlock, 7842 EPI.EpilogueIterationCountCheck); 7843 7844 // Keep track of bypass blocks, as they feed start values to the induction 7845 // phis in the scalar loop preheader. 7846 if (EPI.SCEVSafetyCheck) 7847 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7848 if (EPI.MemSafetyCheck) 7849 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7850 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7851 7852 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 7853 // merge control-flow from the latch block and the middle block. Update the 7854 // incoming values here and move the Phi into the preheader. 7855 SmallVector<PHINode *, 4> PhisInBlock; 7856 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 7857 PhisInBlock.push_back(&Phi); 7858 7859 for (PHINode *Phi : PhisInBlock) { 7860 Phi->replaceIncomingBlockWith( 7861 VecEpilogueIterationCountCheck->getSinglePredecessor(), 7862 VecEpilogueIterationCountCheck); 7863 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 7864 if (EPI.SCEVSafetyCheck) 7865 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 7866 if (EPI.MemSafetyCheck) 7867 Phi->removeIncomingValue(EPI.MemSafetyCheck); 7868 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 7869 } 7870 7871 // Generate a resume induction for the vector epilogue and put it in the 7872 // vector epilogue preheader 7873 Type *IdxTy = Legal->getWidestInductionType(); 7874 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7875 LoopVectorPreHeader->getFirstNonPHI()); 7876 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7877 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7878 EPI.MainLoopIterationCountCheck); 7879 7880 // Generate induction resume values. These variables save the new starting 7881 // indexes for the scalar loop. They are used to test if there are any tail 7882 // iterations left once the vector loop has completed. 7883 // Note that when the vectorized epilogue is skipped due to iteration count 7884 // check, then the resume value for the induction variable comes from 7885 // the trip count of the main vector loop, hence passing the AdditionalBypass 7886 // argument. 7887 createInductionResumeValues({VecEpilogueIterationCountCheck, 7888 EPI.VectorTripCount} /* AdditionalBypass */); 7889 7890 return {completeLoopSkeleton(OrigLoopID), EPResumeVal}; 7891 } 7892 7893 BasicBlock * 7894 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7895 BasicBlock *Bypass, BasicBlock *Insert) { 7896 7897 assert(EPI.TripCount && 7898 "Expected trip count to have been safed in the first pass."); 7899 assert( 7900 (!isa<Instruction>(EPI.TripCount) || 7901 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7902 "saved trip count does not dominate insertion point."); 7903 Value *TC = EPI.TripCount; 7904 IRBuilder<> Builder(Insert->getTerminator()); 7905 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7906 7907 // Generate code to check if the loop's trip count is less than VF * UF of the 7908 // vector epilogue loop. 7909 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 7910 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7911 7912 Value *CheckMinIters = 7913 Builder.CreateICmp(P, Count, 7914 createStepForVF(Builder, Count->getType(), 7915 EPI.EpilogueVF, EPI.EpilogueUF), 7916 "min.epilog.iters.check"); 7917 7918 ReplaceInstWithInst( 7919 Insert->getTerminator(), 7920 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7921 7922 LoopBypassBlocks.push_back(Insert); 7923 return Insert; 7924 } 7925 7926 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 7927 LLVM_DEBUG({ 7928 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 7929 << "Epilogue Loop VF:" << EPI.EpilogueVF 7930 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7931 }); 7932 } 7933 7934 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 7935 DEBUG_WITH_TYPE(VerboseDebug, { 7936 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 7937 }); 7938 } 7939 7940 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7941 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7942 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7943 bool PredicateAtRangeStart = Predicate(Range.Start); 7944 7945 for (ElementCount TmpVF = Range.Start * 2; 7946 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 7947 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7948 Range.End = TmpVF; 7949 break; 7950 } 7951 7952 return PredicateAtRangeStart; 7953 } 7954 7955 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7956 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7957 /// of VF's starting at a given VF and extending it as much as possible. Each 7958 /// vectorization decision can potentially shorten this sub-range during 7959 /// buildVPlan(). 7960 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 7961 ElementCount MaxVF) { 7962 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 7963 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 7964 VFRange SubRange = {VF, MaxVFPlusOne}; 7965 VPlans.push_back(buildVPlan(SubRange)); 7966 VF = SubRange.End; 7967 } 7968 } 7969 7970 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 7971 VPlanPtr &Plan) { 7972 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 7973 7974 // Look for cached value. 7975 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 7976 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 7977 if (ECEntryIt != EdgeMaskCache.end()) 7978 return ECEntryIt->second; 7979 7980 VPValue *SrcMask = createBlockInMask(Src, Plan); 7981 7982 // The terminator has to be a branch inst! 7983 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 7984 assert(BI && "Unexpected terminator found"); 7985 7986 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 7987 return EdgeMaskCache[Edge] = SrcMask; 7988 7989 // If source is an exiting block, we know the exit edge is dynamically dead 7990 // in the vector loop, and thus we don't need to restrict the mask. Avoid 7991 // adding uses of an otherwise potentially dead instruction. 7992 if (OrigLoop->isLoopExiting(Src)) 7993 return EdgeMaskCache[Edge] = SrcMask; 7994 7995 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 7996 assert(EdgeMask && "No Edge Mask found for condition"); 7997 7998 if (BI->getSuccessor(0) != Dst) 7999 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8000 8001 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8002 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8003 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8004 // The select version does not introduce new UB if SrcMask is false and 8005 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8006 VPValue *False = Plan->getOrAddVPValue( 8007 ConstantInt::getFalse(BI->getCondition()->getType())); 8008 EdgeMask = 8009 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8010 } 8011 8012 return EdgeMaskCache[Edge] = EdgeMask; 8013 } 8014 8015 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8016 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8017 8018 // Look for cached value. 8019 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8020 if (BCEntryIt != BlockMaskCache.end()) 8021 return BCEntryIt->second; 8022 8023 // All-one mask is modelled as no-mask following the convention for masked 8024 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8025 VPValue *BlockMask = nullptr; 8026 8027 if (OrigLoop->getHeader() == BB) { 8028 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8029 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8030 8031 assert(CM.foldTailByMasking() && "must fold the tail"); 8032 8033 // If we're using the active lane mask for control flow, then we get the 8034 // mask from the active lane mask PHI that is cached in the VPlan. 8035 PredicationStyle EmitGetActiveLaneMask = CM.TTI.emitGetActiveLaneMask(); 8036 if (EmitGetActiveLaneMask == PredicationStyle::DataAndControlFlow) 8037 return BlockMaskCache[BB] = Plan->getActiveLaneMaskPhi(); 8038 8039 // Introduce the early-exit compare IV <= BTC to form header block mask. 8040 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8041 // constructing the desired canonical IV in the header block as its first 8042 // non-phi instructions. 8043 8044 VPBasicBlock *HeaderVPBB = 8045 Plan->getVectorLoopRegion()->getEntryBasicBlock(); 8046 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8047 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8048 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8049 8050 VPBuilder::InsertPointGuard Guard(Builder); 8051 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8052 if (EmitGetActiveLaneMask != PredicationStyle::None) { 8053 VPValue *TC = Plan->getOrCreateTripCount(); 8054 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}, 8055 nullptr, "active.lane.mask"); 8056 } else { 8057 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8058 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8059 } 8060 return BlockMaskCache[BB] = BlockMask; 8061 } 8062 8063 // This is the block mask. We OR all incoming edges. 8064 for (auto *Predecessor : predecessors(BB)) { 8065 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8066 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8067 return BlockMaskCache[BB] = EdgeMask; 8068 8069 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8070 BlockMask = EdgeMask; 8071 continue; 8072 } 8073 8074 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8075 } 8076 8077 return BlockMaskCache[BB] = BlockMask; 8078 } 8079 8080 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8081 ArrayRef<VPValue *> Operands, 8082 VFRange &Range, 8083 VPlanPtr &Plan) { 8084 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8085 "Must be called with either a load or store"); 8086 8087 auto willWiden = [&](ElementCount VF) -> bool { 8088 LoopVectorizationCostModel::InstWidening Decision = 8089 CM.getWideningDecision(I, VF); 8090 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8091 "CM decision should be taken at this point."); 8092 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8093 return true; 8094 if (CM.isScalarAfterVectorization(I, VF) || 8095 CM.isProfitableToScalarize(I, VF)) 8096 return false; 8097 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8098 }; 8099 8100 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8101 return nullptr; 8102 8103 VPValue *Mask = nullptr; 8104 if (Legal->isMaskRequired(I)) 8105 Mask = createBlockInMask(I->getParent(), Plan); 8106 8107 // Determine if the pointer operand of the access is either consecutive or 8108 // reverse consecutive. 8109 LoopVectorizationCostModel::InstWidening Decision = 8110 CM.getWideningDecision(I, Range.Start); 8111 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8112 bool Consecutive = 8113 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8114 8115 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8116 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8117 Consecutive, Reverse); 8118 8119 StoreInst *Store = cast<StoreInst>(I); 8120 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8121 Mask, Consecutive, Reverse); 8122 } 8123 8124 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also 8125 /// insert a recipe to expand the step for the induction recipe. 8126 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes( 8127 PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, 8128 const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM, 8129 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) { 8130 // Returns true if an instruction \p I should be scalarized instead of 8131 // vectorized for the chosen vectorization factor. 8132 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8133 return CM.isScalarAfterVectorization(I, VF) || 8134 CM.isProfitableToScalarize(I, VF); 8135 }; 8136 8137 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8138 [&](ElementCount VF) { 8139 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8140 }, 8141 Range); 8142 assert(IndDesc.getStartValue() == 8143 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8144 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8145 "step must be loop invariant"); 8146 8147 VPValue *Step = 8148 vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); 8149 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8150 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI, 8151 !NeedsScalarIVOnly); 8152 } 8153 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8154 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, 8155 !NeedsScalarIVOnly); 8156 } 8157 8158 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( 8159 PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) { 8160 8161 // Check if this is an integer or fp induction. If so, build the recipe that 8162 // produces its scalar and vector values. 8163 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8164 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan, 8165 *PSE.getSE(), *OrigLoop, Range); 8166 8167 // Check if this is pointer induction. If so, build the recipe for it. 8168 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) 8169 return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II, 8170 *PSE.getSE()); 8171 return nullptr; 8172 } 8173 8174 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8175 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) { 8176 // Optimize the special case where the source is a constant integer 8177 // induction variable. Notice that we can only optimize the 'trunc' case 8178 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8179 // (c) other casts depend on pointer size. 8180 8181 // Determine whether \p K is a truncation based on an induction variable that 8182 // can be optimized. 8183 auto isOptimizableIVTruncate = 8184 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8185 return [=](ElementCount VF) -> bool { 8186 return CM.isOptimizableIVTruncate(K, VF); 8187 }; 8188 }; 8189 8190 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8191 isOptimizableIVTruncate(I), Range)) { 8192 8193 auto *Phi = cast<PHINode>(I->getOperand(0)); 8194 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8195 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8196 return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan, 8197 *PSE.getSE(), *OrigLoop, Range); 8198 } 8199 return nullptr; 8200 } 8201 8202 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8203 ArrayRef<VPValue *> Operands, 8204 VPlanPtr &Plan) { 8205 // If all incoming values are equal, the incoming VPValue can be used directly 8206 // instead of creating a new VPBlendRecipe. 8207 VPValue *FirstIncoming = Operands[0]; 8208 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8209 return FirstIncoming == Inc; 8210 })) { 8211 return Operands[0]; 8212 } 8213 8214 unsigned NumIncoming = Phi->getNumIncomingValues(); 8215 // For in-loop reductions, we do not need to create an additional select. 8216 VPValue *InLoopVal = nullptr; 8217 for (unsigned In = 0; In < NumIncoming; In++) { 8218 PHINode *PhiOp = 8219 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8220 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8221 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8222 InLoopVal = Operands[In]; 8223 } 8224 } 8225 8226 assert((!InLoopVal || NumIncoming == 2) && 8227 "Found an in-loop reduction for PHI with unexpected number of " 8228 "incoming values"); 8229 if (InLoopVal) 8230 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8231 8232 // We know that all PHIs in non-header blocks are converted into selects, so 8233 // we don't have to worry about the insertion order and we can just use the 8234 // builder. At this point we generate the predication tree. There may be 8235 // duplications since this is a simple recursive scan, but future 8236 // optimizations will clean it up. 8237 SmallVector<VPValue *, 2> OperandsWithMask; 8238 8239 for (unsigned In = 0; In < NumIncoming; In++) { 8240 VPValue *EdgeMask = 8241 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8242 assert((EdgeMask || NumIncoming == 1) && 8243 "Multiple predecessors with one having a full mask"); 8244 OperandsWithMask.push_back(Operands[In]); 8245 if (EdgeMask) 8246 OperandsWithMask.push_back(EdgeMask); 8247 } 8248 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8249 } 8250 8251 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8252 ArrayRef<VPValue *> Operands, 8253 VFRange &Range) const { 8254 8255 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8256 [this, CI](ElementCount VF) { 8257 return CM.isScalarWithPredication(CI, VF); 8258 }, 8259 Range); 8260 8261 if (IsPredicated) 8262 return nullptr; 8263 8264 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8265 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8266 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8267 ID == Intrinsic::pseudoprobe || 8268 ID == Intrinsic::experimental_noalias_scope_decl)) 8269 return nullptr; 8270 8271 auto willWiden = [&](ElementCount VF) -> bool { 8272 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8273 // The following case may be scalarized depending on the VF. 8274 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8275 // version of the instruction. 8276 // Is it beneficial to perform intrinsic call compared to lib call? 8277 bool NeedToScalarize = false; 8278 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8279 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8280 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8281 return UseVectorIntrinsic || !NeedToScalarize; 8282 }; 8283 8284 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8285 return nullptr; 8286 8287 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8288 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8289 } 8290 8291 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8292 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8293 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8294 // Instruction should be widened, unless it is scalar after vectorization, 8295 // scalarization is profitable or it is predicated. 8296 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8297 return CM.isScalarAfterVectorization(I, VF) || 8298 CM.isProfitableToScalarize(I, VF) || 8299 CM.isScalarWithPredication(I, VF); 8300 }; 8301 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8302 Range); 8303 } 8304 8305 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8306 ArrayRef<VPValue *> Operands) const { 8307 auto IsVectorizableOpcode = [](unsigned Opcode) { 8308 switch (Opcode) { 8309 case Instruction::Add: 8310 case Instruction::And: 8311 case Instruction::AShr: 8312 case Instruction::BitCast: 8313 case Instruction::FAdd: 8314 case Instruction::FCmp: 8315 case Instruction::FDiv: 8316 case Instruction::FMul: 8317 case Instruction::FNeg: 8318 case Instruction::FPExt: 8319 case Instruction::FPToSI: 8320 case Instruction::FPToUI: 8321 case Instruction::FPTrunc: 8322 case Instruction::FRem: 8323 case Instruction::FSub: 8324 case Instruction::ICmp: 8325 case Instruction::IntToPtr: 8326 case Instruction::LShr: 8327 case Instruction::Mul: 8328 case Instruction::Or: 8329 case Instruction::PtrToInt: 8330 case Instruction::SDiv: 8331 case Instruction::Select: 8332 case Instruction::SExt: 8333 case Instruction::Shl: 8334 case Instruction::SIToFP: 8335 case Instruction::SRem: 8336 case Instruction::Sub: 8337 case Instruction::Trunc: 8338 case Instruction::UDiv: 8339 case Instruction::UIToFP: 8340 case Instruction::URem: 8341 case Instruction::Xor: 8342 case Instruction::ZExt: 8343 case Instruction::Freeze: 8344 return true; 8345 } 8346 return false; 8347 }; 8348 8349 if (!IsVectorizableOpcode(I->getOpcode())) 8350 return nullptr; 8351 8352 // Success: widen this instruction. 8353 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8354 } 8355 8356 void VPRecipeBuilder::fixHeaderPhis() { 8357 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8358 for (VPHeaderPHIRecipe *R : PhisToFix) { 8359 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8360 VPRecipeBase *IncR = 8361 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8362 R->addOperand(IncR->getVPSingleValue()); 8363 } 8364 } 8365 8366 VPBasicBlock *VPRecipeBuilder::handleReplication( 8367 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8368 VPlanPtr &Plan) { 8369 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8370 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8371 Range); 8372 8373 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8374 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF); }, 8375 Range); 8376 8377 // Even if the instruction is not marked as uniform, there are certain 8378 // intrinsic calls that can be effectively treated as such, so we check for 8379 // them here. Conservatively, we only do this for scalable vectors, since 8380 // for fixed-width VFs we can always fall back on full scalarization. 8381 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8382 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8383 case Intrinsic::assume: 8384 case Intrinsic::lifetime_start: 8385 case Intrinsic::lifetime_end: 8386 // For scalable vectors if one of the operands is variant then we still 8387 // want to mark as uniform, which will generate one instruction for just 8388 // the first lane of the vector. We can't scalarize the call in the same 8389 // way as for fixed-width vectors because we don't know how many lanes 8390 // there are. 8391 // 8392 // The reasons for doing it this way for scalable vectors are: 8393 // 1. For the assume intrinsic generating the instruction for the first 8394 // lane is still be better than not generating any at all. For 8395 // example, the input may be a splat across all lanes. 8396 // 2. For the lifetime start/end intrinsics the pointer operand only 8397 // does anything useful when the input comes from a stack object, 8398 // which suggests it should always be uniform. For non-stack objects 8399 // the effect is to poison the object, which still allows us to 8400 // remove the call. 8401 IsUniform = true; 8402 break; 8403 default: 8404 break; 8405 } 8406 } 8407 8408 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8409 IsUniform, IsPredicated); 8410 8411 // Find if I uses a predicated instruction. If so, it will use its scalar 8412 // value. Avoid hoisting the insert-element which packs the scalar value into 8413 // a vector value, as that happens iff all users use the vector value. 8414 for (VPValue *Op : Recipe->operands()) { 8415 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8416 if (!PredR) 8417 continue; 8418 auto *RepR = 8419 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8420 assert(RepR->isPredicated() && 8421 "expected Replicate recipe to be predicated"); 8422 RepR->setAlsoPack(false); 8423 } 8424 8425 // Finalize the recipe for Instr, first if it is not predicated. 8426 if (!IsPredicated) { 8427 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8428 setRecipe(I, Recipe); 8429 Plan->addVPValue(I, Recipe); 8430 VPBB->appendRecipe(Recipe); 8431 return VPBB; 8432 } 8433 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8434 8435 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8436 assert(SingleSucc && "VPBB must have a single successor when handling " 8437 "predicated replication."); 8438 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8439 // Record predicated instructions for above packing optimizations. 8440 VPBlockBase *Region = createReplicateRegion(Recipe, Plan); 8441 VPBlockUtils::insertBlockAfter(Region, VPBB); 8442 auto *RegSucc = new VPBasicBlock(); 8443 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8444 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8445 return RegSucc; 8446 } 8447 8448 VPRegionBlock * 8449 VPRecipeBuilder::createReplicateRegion(VPReplicateRecipe *PredRecipe, 8450 VPlanPtr &Plan) { 8451 Instruction *Instr = PredRecipe->getUnderlyingInstr(); 8452 // Instructions marked for predication are replicated and placed under an 8453 // if-then construct to prevent side-effects. 8454 // Generate recipes to compute the block mask for this region. 8455 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8456 8457 // Build the triangular if-then region. 8458 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8459 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8460 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8461 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8462 auto *PHIRecipe = Instr->getType()->isVoidTy() 8463 ? nullptr 8464 : new VPPredInstPHIRecipe(PredRecipe); 8465 if (PHIRecipe) { 8466 setRecipe(Instr, PHIRecipe); 8467 Plan->addVPValue(Instr, PHIRecipe); 8468 } else { 8469 setRecipe(Instr, PredRecipe); 8470 Plan->addVPValue(Instr, PredRecipe); 8471 } 8472 8473 auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8474 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8475 VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true); 8476 8477 // Note: first set Entry as region entry and then connect successors starting 8478 // from it in order, to propagate the "parent" of each VPBasicBlock. 8479 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry); 8480 VPBlockUtils::connectBlocks(Pred, Exiting); 8481 8482 return Region; 8483 } 8484 8485 VPRecipeOrVPValueTy 8486 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8487 ArrayRef<VPValue *> Operands, 8488 VFRange &Range, VPlanPtr &Plan) { 8489 // First, check for specific widening recipes that deal with inductions, Phi 8490 // nodes, calls and memory operations. 8491 VPRecipeBase *Recipe; 8492 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8493 if (Phi->getParent() != OrigLoop->getHeader()) 8494 return tryToBlend(Phi, Operands, Plan); 8495 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range))) 8496 return toVPRecipeResult(Recipe); 8497 8498 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8499 assert((Legal->isReductionVariable(Phi) || 8500 Legal->isFirstOrderRecurrence(Phi)) && 8501 "can only widen reductions and first-order recurrences here"); 8502 VPValue *StartV = Operands[0]; 8503 if (Legal->isReductionVariable(Phi)) { 8504 const RecurrenceDescriptor &RdxDesc = 8505 Legal->getReductionVars().find(Phi)->second; 8506 assert(RdxDesc.getRecurrenceStartValue() == 8507 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8508 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8509 CM.isInLoopReduction(Phi), 8510 CM.useOrderedReductions(RdxDesc)); 8511 } else { 8512 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8513 } 8514 8515 // Record the incoming value from the backedge, so we can add the incoming 8516 // value from the backedge after all recipes have been created. 8517 recordRecipeOf(cast<Instruction>( 8518 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8519 PhisToFix.push_back(PhiRecipe); 8520 return toVPRecipeResult(PhiRecipe); 8521 } 8522 8523 if (isa<TruncInst>(Instr) && 8524 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8525 Range, *Plan))) 8526 return toVPRecipeResult(Recipe); 8527 8528 // All widen recipes below deal only with VF > 1. 8529 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8530 [&](ElementCount VF) { return VF.isScalar(); }, Range)) 8531 return nullptr; 8532 8533 if (auto *CI = dyn_cast<CallInst>(Instr)) 8534 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8535 8536 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8537 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8538 8539 if (!shouldWiden(Instr, Range)) 8540 return nullptr; 8541 8542 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8543 return toVPRecipeResult(new VPWidenGEPRecipe( 8544 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8545 8546 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8547 bool InvariantCond = 8548 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8549 return toVPRecipeResult(new VPWidenSelectRecipe( 8550 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8551 } 8552 8553 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8554 } 8555 8556 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8557 ElementCount MaxVF) { 8558 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8559 8560 // Add assume instructions we need to drop to DeadInstructions, to prevent 8561 // them from being added to the VPlan. 8562 // TODO: We only need to drop assumes in blocks that get flattend. If the 8563 // control flow is preserved, we should keep them. 8564 SmallPtrSet<Instruction *, 4> DeadInstructions; 8565 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8566 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8567 8568 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8569 // Dead instructions do not need sinking. Remove them from SinkAfter. 8570 for (Instruction *I : DeadInstructions) 8571 SinkAfter.erase(I); 8572 8573 // Cannot sink instructions after dead instructions (there won't be any 8574 // recipes for them). Instead, find the first non-dead previous instruction. 8575 for (auto &P : Legal->getSinkAfter()) { 8576 Instruction *SinkTarget = P.second; 8577 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8578 (void)FirstInst; 8579 while (DeadInstructions.contains(SinkTarget)) { 8580 assert( 8581 SinkTarget != FirstInst && 8582 "Must find a live instruction (at least the one feeding the " 8583 "first-order recurrence PHI) before reaching beginning of the block"); 8584 SinkTarget = SinkTarget->getPrevNode(); 8585 assert(SinkTarget != P.first && 8586 "sink source equals target, no sinking required"); 8587 } 8588 P.second = SinkTarget; 8589 } 8590 8591 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8592 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8593 VFRange SubRange = {VF, MaxVFPlusOne}; 8594 VPlans.push_back( 8595 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8596 VF = SubRange.End; 8597 } 8598 } 8599 8600 // Add the necessary canonical IV and branch recipes required to control the 8601 // loop. 8602 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8603 bool HasNUW, 8604 bool UseLaneMaskForLoopControlFlow) { 8605 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8606 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8607 8608 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header. 8609 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8610 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8611 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8612 Header->insert(CanonicalIVPHI, Header->begin()); 8613 8614 // Add a CanonicalIVIncrement{NUW} VPInstruction to increment the scalar 8615 // IV by VF * UF. 8616 auto *CanonicalIVIncrement = 8617 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8618 : VPInstruction::CanonicalIVIncrement, 8619 {CanonicalIVPHI}, DL, "index.next"); 8620 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8621 8622 VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); 8623 EB->appendRecipe(CanonicalIVIncrement); 8624 8625 if (UseLaneMaskForLoopControlFlow) { 8626 // Create the active lane mask instruction in the vplan preheader. 8627 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 8628 8629 // We can't use StartV directly in the ActiveLaneMask VPInstruction, since 8630 // we have to take unrolling into account. Each part needs to start at 8631 // Part * VF 8632 auto *CanonicalIVIncrementParts = 8633 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW 8634 : VPInstruction::CanonicalIVIncrementForPart, 8635 {StartV}, DL, "index.part.next"); 8636 Preheader->appendRecipe(CanonicalIVIncrementParts); 8637 8638 // Create the ActiveLaneMask instruction using the correct start values. 8639 VPValue *TC = Plan.getOrCreateTripCount(); 8640 auto *EntryALM = new VPInstruction(VPInstruction::ActiveLaneMask, 8641 {CanonicalIVIncrementParts, TC}, DL, 8642 "active.lane.mask.entry"); 8643 Preheader->appendRecipe(EntryALM); 8644 8645 // Now create the ActiveLaneMaskPhi recipe in the main loop using the 8646 // preheader ActiveLaneMask instruction. 8647 auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc()); 8648 Header->insert(LaneMaskPhi, Header->getFirstNonPhi()); 8649 8650 // Create the active lane mask for the next iteration of the loop. 8651 CanonicalIVIncrementParts = 8652 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW 8653 : VPInstruction::CanonicalIVIncrementForPart, 8654 {CanonicalIVIncrement}, DL); 8655 EB->appendRecipe(CanonicalIVIncrementParts); 8656 8657 auto *ALM = new VPInstruction(VPInstruction::ActiveLaneMask, 8658 {CanonicalIVIncrementParts, TC}, DL, 8659 "active.lane.mask.next"); 8660 EB->appendRecipe(ALM); 8661 LaneMaskPhi->addOperand(ALM); 8662 8663 // We have to invert the mask here because a true condition means jumping 8664 // to the exit block. 8665 auto *NotMask = new VPInstruction(VPInstruction::Not, ALM, DL); 8666 EB->appendRecipe(NotMask); 8667 8668 VPInstruction *BranchBack = 8669 new VPInstruction(VPInstruction::BranchOnCond, {NotMask}, DL); 8670 EB->appendRecipe(BranchBack); 8671 } else { 8672 // Add the BranchOnCount VPInstruction to the latch. 8673 VPInstruction *BranchBack = new VPInstruction( 8674 VPInstruction::BranchOnCount, 8675 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8676 EB->appendRecipe(BranchBack); 8677 } 8678 } 8679 8680 // Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the 8681 // original exit block. 8682 static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB, 8683 VPBasicBlock *MiddleVPBB, Loop *OrigLoop, 8684 VPlan &Plan) { 8685 BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock(); 8686 BasicBlock *ExitingBB = OrigLoop->getExitingBlock(); 8687 // Only handle single-exit loops with unique exit blocks for now. 8688 if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB) 8689 return; 8690 8691 // Introduce VPUsers modeling the exit values. 8692 for (PHINode &ExitPhi : ExitBB->phis()) { 8693 Value *IncomingValue = 8694 ExitPhi.getIncomingValueForBlock(ExitingBB); 8695 VPValue *V = Plan.getOrAddVPValue(IncomingValue, true); 8696 Plan.addLiveOut(&ExitPhi, V); 8697 } 8698 } 8699 8700 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8701 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8702 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8703 8704 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8705 8706 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8707 8708 // --------------------------------------------------------------------------- 8709 // Pre-construction: record ingredients whose recipes we'll need to further 8710 // process after constructing the initial VPlan. 8711 // --------------------------------------------------------------------------- 8712 8713 // Mark instructions we'll need to sink later and their targets as 8714 // ingredients whose recipe we'll need to record. 8715 for (auto &Entry : SinkAfter) { 8716 RecipeBuilder.recordRecipeOf(Entry.first); 8717 RecipeBuilder.recordRecipeOf(Entry.second); 8718 } 8719 for (auto &Reduction : CM.getInLoopReductionChains()) { 8720 PHINode *Phi = Reduction.first; 8721 RecurKind Kind = 8722 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8723 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8724 8725 RecipeBuilder.recordRecipeOf(Phi); 8726 for (auto &R : ReductionOperations) { 8727 RecipeBuilder.recordRecipeOf(R); 8728 // For min/max reductions, where we have a pair of icmp/select, we also 8729 // need to record the ICmp recipe, so it can be removed later. 8730 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8731 "Only min/max recurrences allowed for inloop reductions"); 8732 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8733 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8734 } 8735 } 8736 8737 // For each interleave group which is relevant for this (possibly trimmed) 8738 // Range, add it to the set of groups to be later applied to the VPlan and add 8739 // placeholders for its members' Recipes which we'll be replacing with a 8740 // single VPInterleaveRecipe. 8741 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8742 auto applyIG = [IG, this](ElementCount VF) -> bool { 8743 return (VF.isVector() && // Query is illegal for VF == 1 8744 CM.getWideningDecision(IG->getInsertPos(), VF) == 8745 LoopVectorizationCostModel::CM_Interleave); 8746 }; 8747 if (!getDecisionAndClampRange(applyIG, Range)) 8748 continue; 8749 InterleaveGroups.insert(IG); 8750 for (unsigned i = 0; i < IG->getFactor(); i++) 8751 if (Instruction *Member = IG->getMember(i)) 8752 RecipeBuilder.recordRecipeOf(Member); 8753 }; 8754 8755 // --------------------------------------------------------------------------- 8756 // Build initial VPlan: Scan the body of the loop in a topological order to 8757 // visit each basic block after having visited its predecessor basic blocks. 8758 // --------------------------------------------------------------------------- 8759 8760 // Create initial VPlan skeleton, starting with a block for the pre-header, 8761 // followed by a region for the vector loop, followed by the middle block. The 8762 // skeleton vector loop region contains a header and latch block. 8763 VPBasicBlock *Preheader = new VPBasicBlock("vector.ph"); 8764 auto Plan = std::make_unique<VPlan>(Preheader); 8765 8766 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 8767 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8768 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8769 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8770 VPBlockUtils::insertBlockAfter(TopRegion, Preheader); 8771 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 8772 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 8773 8774 Instruction *DLInst = 8775 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8776 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8777 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8778 !CM.foldTailByMasking(), 8779 CM.useActiveLaneMaskForControlFlow()); 8780 8781 // Scan the body of the loop in a topological order to visit each basic block 8782 // after having visited its predecessor basic blocks. 8783 LoopBlocksDFS DFS(OrigLoop); 8784 DFS.perform(LI); 8785 8786 VPBasicBlock *VPBB = HeaderVPBB; 8787 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8788 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8789 // Relevant instructions from basic block BB will be grouped into VPRecipe 8790 // ingredients and fill a new VPBasicBlock. 8791 unsigned VPBBsForBB = 0; 8792 if (VPBB != HeaderVPBB) 8793 VPBB->setName(BB->getName()); 8794 Builder.setInsertPoint(VPBB); 8795 8796 // Introduce each ingredient into VPlan. 8797 // TODO: Model and preserve debug intrinsics in VPlan. 8798 for (Instruction &I : BB->instructionsWithoutDebug()) { 8799 Instruction *Instr = &I; 8800 8801 // First filter out irrelevant instructions, to ensure no recipes are 8802 // built for them. 8803 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8804 continue; 8805 8806 SmallVector<VPValue *, 4> Operands; 8807 auto *Phi = dyn_cast<PHINode>(Instr); 8808 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8809 Operands.push_back(Plan->getOrAddVPValue( 8810 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8811 } else { 8812 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8813 Operands = {OpRange.begin(), OpRange.end()}; 8814 } 8815 8816 // Invariant stores inside loop will be deleted and a single store 8817 // with the final reduction value will be added to the exit block 8818 StoreInst *SI; 8819 if ((SI = dyn_cast<StoreInst>(&I)) && 8820 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 8821 continue; 8822 8823 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8824 Instr, Operands, Range, Plan)) { 8825 // If Instr can be simplified to an existing VPValue, use it. 8826 if (RecipeOrValue.is<VPValue *>()) { 8827 auto *VPV = RecipeOrValue.get<VPValue *>(); 8828 Plan->addVPValue(Instr, VPV); 8829 // If the re-used value is a recipe, register the recipe for the 8830 // instruction, in case the recipe for Instr needs to be recorded. 8831 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8832 RecipeBuilder.setRecipe(Instr, R); 8833 continue; 8834 } 8835 // Otherwise, add the new recipe. 8836 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8837 for (auto *Def : Recipe->definedValues()) { 8838 auto *UV = Def->getUnderlyingValue(); 8839 Plan->addVPValue(UV, Def); 8840 } 8841 8842 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8843 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8844 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8845 // of the header block. That can happen for truncates of induction 8846 // variables. Those recipes are moved to the phi section of the header 8847 // block after applying SinkAfter, which relies on the original 8848 // position of the trunc. 8849 assert(isa<TruncInst>(Instr)); 8850 InductionsToMove.push_back( 8851 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8852 } 8853 RecipeBuilder.setRecipe(Instr, Recipe); 8854 VPBB->appendRecipe(Recipe); 8855 continue; 8856 } 8857 8858 // Otherwise, if all widening options failed, Instruction is to be 8859 // replicated. This may create a successor for VPBB. 8860 VPBasicBlock *NextVPBB = 8861 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8862 if (NextVPBB != VPBB) { 8863 VPBB = NextVPBB; 8864 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8865 : ""); 8866 } 8867 } 8868 8869 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8870 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8871 } 8872 8873 HeaderVPBB->setName("vector.body"); 8874 8875 // Fold the last, empty block into its predecessor. 8876 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8877 assert(VPBB && "expected to fold last (empty) block"); 8878 // After here, VPBB should not be used. 8879 VPBB = nullptr; 8880 8881 addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan); 8882 8883 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 8884 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 8885 "entry block must be set to a VPRegionBlock having a non-empty entry " 8886 "VPBasicBlock"); 8887 RecipeBuilder.fixHeaderPhis(); 8888 8889 // --------------------------------------------------------------------------- 8890 // Transform initial VPlan: Apply previously taken decisions, in order, to 8891 // bring the VPlan to its final state. 8892 // --------------------------------------------------------------------------- 8893 8894 // Apply Sink-After legal constraints. 8895 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8896 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8897 if (Region && Region->isReplicator()) { 8898 assert(Region->getNumSuccessors() == 1 && 8899 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8900 assert(R->getParent()->size() == 1 && 8901 "A recipe in an original replicator region must be the only " 8902 "recipe in its block"); 8903 return Region; 8904 } 8905 return nullptr; 8906 }; 8907 for (auto &Entry : SinkAfter) { 8908 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8909 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8910 8911 auto *TargetRegion = GetReplicateRegion(Target); 8912 auto *SinkRegion = GetReplicateRegion(Sink); 8913 if (!SinkRegion) { 8914 // If the sink source is not a replicate region, sink the recipe directly. 8915 if (TargetRegion) { 8916 // The target is in a replication region, make sure to move Sink to 8917 // the block after it, not into the replication region itself. 8918 VPBasicBlock *NextBlock = 8919 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 8920 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8921 } else 8922 Sink->moveAfter(Target); 8923 continue; 8924 } 8925 8926 // The sink source is in a replicate region. Unhook the region from the CFG. 8927 auto *SinkPred = SinkRegion->getSinglePredecessor(); 8928 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 8929 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 8930 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 8931 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 8932 8933 if (TargetRegion) { 8934 // The target recipe is also in a replicate region, move the sink region 8935 // after the target region. 8936 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 8937 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 8938 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 8939 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 8940 } else { 8941 // The sink source is in a replicate region, we need to move the whole 8942 // replicate region, which should only contain a single recipe in the 8943 // main block. 8944 auto *SplitBlock = 8945 Target->getParent()->splitAt(std::next(Target->getIterator())); 8946 8947 auto *SplitPred = SplitBlock->getSinglePredecessor(); 8948 8949 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 8950 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 8951 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 8952 } 8953 } 8954 8955 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 8956 VPlanTransforms::removeRedundantInductionCasts(*Plan); 8957 8958 // Now that sink-after is done, move induction recipes for optimized truncates 8959 // to the phi section of the header block. 8960 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 8961 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 8962 8963 // Adjust the recipes for any inloop reductions. 8964 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan, 8965 RecipeBuilder, Range.Start); 8966 8967 // Introduce a recipe to combine the incoming and previous values of a 8968 // first-order recurrence. 8969 for (VPRecipeBase &R : 8970 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 8971 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 8972 if (!RecurPhi) 8973 continue; 8974 8975 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 8976 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 8977 auto *Region = GetReplicateRegion(PrevRecipe); 8978 if (Region) 8979 InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor()); 8980 if (!InsertBlock) { 8981 InsertBlock = new VPBasicBlock(Region->getName() + ".succ"); 8982 VPBlockUtils::insertBlockAfter(InsertBlock, Region); 8983 } 8984 if (Region || PrevRecipe->isPhi()) 8985 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 8986 else 8987 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 8988 8989 auto *RecurSplice = cast<VPInstruction>( 8990 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 8991 {RecurPhi, RecurPhi->getBackedgeValue()})); 8992 8993 RecurPhi->replaceAllUsesWith(RecurSplice); 8994 // Set the first operand of RecurSplice to RecurPhi again, after replacing 8995 // all users. 8996 RecurSplice->setOperand(0, RecurPhi); 8997 } 8998 8999 // Interleave memory: for each Interleave Group we marked earlier as relevant 9000 // for this VPlan, replace the Recipes widening its memory instructions with a 9001 // single VPInterleaveRecipe at its insertion point. 9002 for (auto IG : InterleaveGroups) { 9003 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9004 RecipeBuilder.getRecipe(IG->getInsertPos())); 9005 SmallVector<VPValue *, 4> StoredValues; 9006 for (unsigned i = 0; i < IG->getFactor(); ++i) 9007 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9008 auto *StoreR = 9009 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9010 StoredValues.push_back(StoreR->getStoredValue()); 9011 } 9012 9013 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9014 Recipe->getMask()); 9015 VPIG->insertBefore(Recipe); 9016 unsigned J = 0; 9017 for (unsigned i = 0; i < IG->getFactor(); ++i) 9018 if (Instruction *Member = IG->getMember(i)) { 9019 if (!Member->getType()->isVoidTy()) { 9020 VPValue *OriginalV = Plan->getVPValue(Member); 9021 Plan->removeVPValueFor(Member); 9022 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9023 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9024 J++; 9025 } 9026 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9027 } 9028 } 9029 9030 std::string PlanName; 9031 raw_string_ostream RSO(PlanName); 9032 ElementCount VF = Range.Start; 9033 Plan->addVF(VF); 9034 RSO << "Initial VPlan for VF={" << VF; 9035 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9036 Plan->addVF(VF); 9037 RSO << "," << VF; 9038 } 9039 RSO << "},UF>=1"; 9040 RSO.flush(); 9041 Plan->setName(PlanName); 9042 9043 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9044 // in ways that accessing values using original IR values is incorrect. 9045 Plan->disableValue2VPValue(); 9046 9047 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9048 VPlanTransforms::sinkScalarOperands(*Plan); 9049 VPlanTransforms::removeDeadRecipes(*Plan); 9050 VPlanTransforms::mergeReplicateRegions(*Plan); 9051 VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan); 9052 9053 // Fold Exit block into its predecessor if possible. 9054 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9055 // VPBasicBlock as exit. 9056 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExiting()); 9057 9058 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9059 return Plan; 9060 } 9061 9062 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9063 // Outer loop handling: They may require CFG and instruction level 9064 // transformations before even evaluating whether vectorization is profitable. 9065 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9066 // the vectorization pipeline. 9067 assert(!OrigLoop->isInnermost()); 9068 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9069 9070 // Create new empty VPlan 9071 auto Plan = std::make_unique<VPlan>(); 9072 9073 // Build hierarchical CFG 9074 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9075 HCFGBuilder.buildHierarchicalCFG(); 9076 9077 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9078 VF *= 2) 9079 Plan->addVF(VF); 9080 9081 SmallPtrSet<Instruction *, 1> DeadInstructions; 9082 VPlanTransforms::VPInstructionsToVPRecipes( 9083 OrigLoop, Plan, 9084 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9085 DeadInstructions, *PSE.getSE()); 9086 9087 // Remove the existing terminator of the exiting block of the top-most region. 9088 // A BranchOnCount will be added instead when adding the canonical IV recipes. 9089 auto *Term = 9090 Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator(); 9091 Term->eraseFromParent(); 9092 9093 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9094 true, CM.useActiveLaneMaskForControlFlow()); 9095 return Plan; 9096 } 9097 9098 // Adjust the recipes for reductions. For in-loop reductions the chain of 9099 // instructions leading from the loop exit instr to the phi need to be converted 9100 // to reductions, with one operand being vector and the other being the scalar 9101 // reduction chain. For other reductions, a select is introduced between the phi 9102 // and live-out recipes when folding the tail. 9103 void LoopVectorizationPlanner::adjustRecipesForReductions( 9104 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9105 ElementCount MinVF) { 9106 for (auto &Reduction : CM.getInLoopReductionChains()) { 9107 PHINode *Phi = Reduction.first; 9108 const RecurrenceDescriptor &RdxDesc = 9109 Legal->getReductionVars().find(Phi)->second; 9110 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9111 9112 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9113 continue; 9114 9115 // ReductionOperations are orders top-down from the phi's use to the 9116 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9117 // which of the two operands will remain scalar and which will be reduced. 9118 // For minmax the chain will be the select instructions. 9119 Instruction *Chain = Phi; 9120 for (Instruction *R : ReductionOperations) { 9121 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9122 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9123 9124 VPValue *ChainOp = Plan->getVPValue(Chain); 9125 unsigned FirstOpId; 9126 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9127 "Only min/max recurrences allowed for inloop reductions"); 9128 // Recognize a call to the llvm.fmuladd intrinsic. 9129 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9130 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9131 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9132 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9133 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9134 "Expected to replace a VPWidenSelectSC"); 9135 FirstOpId = 1; 9136 } else { 9137 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9138 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9139 "Expected to replace a VPWidenSC"); 9140 FirstOpId = 0; 9141 } 9142 unsigned VecOpId = 9143 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9144 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9145 9146 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9147 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9148 : nullptr; 9149 9150 if (IsFMulAdd) { 9151 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9152 // need to create an fmul recipe to use as the vector operand for the 9153 // fadd reduction. 9154 VPInstruction *FMulRecipe = new VPInstruction( 9155 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9156 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9157 WidenRecipe->getParent()->insert(FMulRecipe, 9158 WidenRecipe->getIterator()); 9159 VecOp = FMulRecipe; 9160 } 9161 VPReductionRecipe *RedRecipe = 9162 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9163 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9164 Plan->removeVPValueFor(R); 9165 Plan->addVPValue(R, RedRecipe); 9166 // Append the recipe to the end of the VPBasicBlock because we need to 9167 // ensure that it comes after all of it's inputs, including CondOp. 9168 WidenRecipe->getParent()->appendRecipe(RedRecipe); 9169 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9170 WidenRecipe->eraseFromParent(); 9171 9172 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9173 VPRecipeBase *CompareRecipe = 9174 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9175 assert(isa<VPWidenRecipe>(CompareRecipe) && 9176 "Expected to replace a VPWidenSC"); 9177 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9178 "Expected no remaining users"); 9179 CompareRecipe->eraseFromParent(); 9180 } 9181 Chain = R; 9182 } 9183 } 9184 9185 // If tail is folded by masking, introduce selects between the phi 9186 // and the live-out instruction of each reduction, at the beginning of the 9187 // dedicated latch block. 9188 if (CM.foldTailByMasking()) { 9189 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9190 for (VPRecipeBase &R : 9191 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9192 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9193 if (!PhiR || PhiR->isInLoop()) 9194 continue; 9195 VPValue *Cond = 9196 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9197 VPValue *Red = PhiR->getBackedgeValue(); 9198 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9199 "reduction recipe must be defined before latch"); 9200 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9201 } 9202 } 9203 } 9204 9205 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9206 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9207 VPSlotTracker &SlotTracker) const { 9208 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9209 IG->getInsertPos()->printAsOperand(O, false); 9210 O << ", "; 9211 getAddr()->printAsOperand(O, SlotTracker); 9212 VPValue *Mask = getMask(); 9213 if (Mask) { 9214 O << ", "; 9215 Mask->printAsOperand(O, SlotTracker); 9216 } 9217 9218 unsigned OpIdx = 0; 9219 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9220 if (!IG->getMember(i)) 9221 continue; 9222 if (getNumStoreOperands() > 0) { 9223 O << "\n" << Indent << " store "; 9224 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9225 O << " to index " << i; 9226 } else { 9227 O << "\n" << Indent << " "; 9228 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9229 O << " = load from index " << i; 9230 } 9231 ++OpIdx; 9232 } 9233 } 9234 #endif 9235 9236 void VPWidenCallRecipe::execute(VPTransformState &State) { 9237 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9238 *this, State); 9239 } 9240 9241 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9242 assert(!State.Instance && "Int or FP induction being replicated."); 9243 9244 Value *Start = getStartValue()->getLiveInIRValue(); 9245 const InductionDescriptor &ID = getInductionDescriptor(); 9246 TruncInst *Trunc = getTruncInst(); 9247 IRBuilderBase &Builder = State.Builder; 9248 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9249 assert(State.VF.isVector() && "must have vector VF"); 9250 9251 // The value from the original loop to which we are mapping the new induction 9252 // variable. 9253 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9254 9255 // Fast-math-flags propagate from the original induction instruction. 9256 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9257 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9258 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9259 9260 // Now do the actual transformations, and start with fetching the step value. 9261 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9262 9263 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9264 "Expected either an induction phi-node or a truncate of it!"); 9265 9266 // Construct the initial value of the vector IV in the vector loop preheader 9267 auto CurrIP = Builder.saveIP(); 9268 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9269 Builder.SetInsertPoint(VectorPH->getTerminator()); 9270 if (isa<TruncInst>(EntryVal)) { 9271 assert(Start->getType()->isIntegerTy() && 9272 "Truncation requires an integer type"); 9273 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9274 Step = Builder.CreateTrunc(Step, TruncType); 9275 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9276 } 9277 9278 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9279 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9280 Value *SteppedStart = getStepVector( 9281 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9282 9283 // We create vector phi nodes for both integer and floating-point induction 9284 // variables. Here, we determine the kind of arithmetic we will perform. 9285 Instruction::BinaryOps AddOp; 9286 Instruction::BinaryOps MulOp; 9287 if (Step->getType()->isIntegerTy()) { 9288 AddOp = Instruction::Add; 9289 MulOp = Instruction::Mul; 9290 } else { 9291 AddOp = ID.getInductionOpcode(); 9292 MulOp = Instruction::FMul; 9293 } 9294 9295 // Multiply the vectorization factor by the step using integer or 9296 // floating-point arithmetic as appropriate. 9297 Type *StepType = Step->getType(); 9298 Value *RuntimeVF; 9299 if (Step->getType()->isFloatingPointTy()) 9300 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9301 else 9302 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9303 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9304 9305 // Create a vector splat to use in the induction update. 9306 // 9307 // FIXME: If the step is non-constant, we create the vector splat with 9308 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9309 // handle a constant vector splat. 9310 Value *SplatVF = isa<Constant>(Mul) 9311 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9312 : Builder.CreateVectorSplat(State.VF, Mul); 9313 Builder.restoreIP(CurrIP); 9314 9315 // We may need to add the step a number of times, depending on the unroll 9316 // factor. The last of those goes into the PHI. 9317 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9318 &*State.CFG.PrevBB->getFirstInsertionPt()); 9319 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9320 Instruction *LastInduction = VecInd; 9321 for (unsigned Part = 0; Part < State.UF; ++Part) { 9322 State.set(this, LastInduction, Part); 9323 9324 if (isa<TruncInst>(EntryVal)) 9325 State.addMetadata(LastInduction, EntryVal); 9326 9327 LastInduction = cast<Instruction>( 9328 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9329 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9330 } 9331 9332 LastInduction->setName("vec.ind.next"); 9333 VecInd->addIncoming(SteppedStart, VectorPH); 9334 // Add induction update using an incorrect block temporarily. The phi node 9335 // will be fixed after VPlan execution. Note that at this point the latch 9336 // block cannot be used, as it does not exist yet. 9337 // TODO: Model increment value in VPlan, by turning the recipe into a 9338 // multi-def and a subclass of VPHeaderPHIRecipe. 9339 VecInd->addIncoming(LastInduction, VectorPH); 9340 } 9341 9342 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { 9343 assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && 9344 "Not a pointer induction according to InductionDescriptor!"); 9345 assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && 9346 "Unexpected type."); 9347 9348 auto *IVR = getParent()->getPlan()->getCanonicalIV(); 9349 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 9350 9351 if (onlyScalarsGenerated(State.VF)) { 9352 // This is the normalized GEP that starts counting at zero. 9353 Value *PtrInd = State.Builder.CreateSExtOrTrunc( 9354 CanonicalIV, IndDesc.getStep()->getType()); 9355 // Determine the number of scalars we need to generate for each unroll 9356 // iteration. If the instruction is uniform, we only need to generate the 9357 // first lane. Otherwise, we generate all VF values. 9358 bool IsUniform = vputils::onlyFirstLaneUsed(this); 9359 assert((IsUniform || !State.VF.isScalable()) && 9360 "Cannot scalarize a scalable VF"); 9361 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 9362 9363 for (unsigned Part = 0; Part < State.UF; ++Part) { 9364 Value *PartStart = 9365 createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); 9366 9367 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 9368 Value *Idx = State.Builder.CreateAdd( 9369 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 9370 Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); 9371 9372 Value *Step = CreateStepValue(IndDesc.getStep(), SE, 9373 State.CFG.PrevBB->getTerminator()); 9374 Value *SclrGep = emitTransformedIndex( 9375 State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); 9376 SclrGep->setName("next.gep"); 9377 State.set(this, SclrGep, VPIteration(Part, Lane)); 9378 } 9379 } 9380 return; 9381 } 9382 9383 assert(isa<SCEVConstant>(IndDesc.getStep()) && 9384 "Induction step not a SCEV constant!"); 9385 Type *PhiType = IndDesc.getStep()->getType(); 9386 9387 // Build a pointer phi 9388 Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); 9389 Type *ScStValueType = ScalarStartValue->getType(); 9390 PHINode *NewPointerPhi = 9391 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 9392 9393 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9394 NewPointerPhi->addIncoming(ScalarStartValue, VectorPH); 9395 9396 // A pointer induction, performed by using a gep 9397 const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout(); 9398 Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); 9399 9400 const SCEV *ScalarStep = IndDesc.getStep(); 9401 SCEVExpander Exp(SE, DL, "induction"); 9402 Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 9403 Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); 9404 Value *NumUnrolledElems = 9405 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 9406 Value *InductionGEP = GetElementPtrInst::Create( 9407 IndDesc.getElementType(), NewPointerPhi, 9408 State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 9409 InductionLoc); 9410 // Add induction update using an incorrect block temporarily. The phi node 9411 // will be fixed after VPlan execution. Note that at this point the latch 9412 // block cannot be used, as it does not exist yet. 9413 // TODO: Model increment value in VPlan, by turning the recipe into a 9414 // multi-def and a subclass of VPHeaderPHIRecipe. 9415 NewPointerPhi->addIncoming(InductionGEP, VectorPH); 9416 9417 // Create UF many actual address geps that use the pointer 9418 // phi as base and a vectorized version of the step value 9419 // (<step*0, ..., step*N>) as offset. 9420 for (unsigned Part = 0; Part < State.UF; ++Part) { 9421 Type *VecPhiType = VectorType::get(PhiType, State.VF); 9422 Value *StartOffsetScalar = 9423 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 9424 Value *StartOffset = 9425 State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 9426 // Create a vector of consecutive numbers from zero to VF. 9427 StartOffset = State.Builder.CreateAdd( 9428 StartOffset, State.Builder.CreateStepVector(VecPhiType)); 9429 9430 Value *GEP = State.Builder.CreateGEP( 9431 IndDesc.getElementType(), NewPointerPhi, 9432 State.Builder.CreateMul( 9433 StartOffset, 9434 State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), 9435 "vector.gep")); 9436 State.set(this, GEP, Part); 9437 } 9438 } 9439 9440 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9441 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9442 9443 // Fast-math-flags propagate from the original induction instruction. 9444 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9445 if (IndDesc.getInductionBinOp() && 9446 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9447 State.Builder.setFastMathFlags( 9448 IndDesc.getInductionBinOp()->getFastMathFlags()); 9449 9450 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9451 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9452 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9453 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9454 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9455 ScalarIV = 9456 Ty->isIntegerTy() 9457 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9458 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9459 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9460 getStartValue()->getLiveInIRValue(), Step, 9461 IndDesc); 9462 ScalarIV->setName("offset.idx"); 9463 } 9464 if (TruncToTy) { 9465 assert(Step->getType()->isIntegerTy() && 9466 "Truncation requires an integer step"); 9467 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9468 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9469 } 9470 return ScalarIV; 9471 }; 9472 9473 Value *ScalarIV = CreateScalarIV(Step); 9474 if (State.VF.isVector()) { 9475 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9476 return; 9477 } 9478 9479 for (unsigned Part = 0; Part < State.UF; ++Part) { 9480 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9481 Value *EntryPart; 9482 if (Step->getType()->isFloatingPointTy()) { 9483 Value *StartIdx = 9484 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9485 // Floating-point operations inherit FMF via the builder's flags. 9486 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9487 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9488 ScalarIV, MulOp); 9489 } else { 9490 Value *StartIdx = 9491 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9492 EntryPart = State.Builder.CreateAdd( 9493 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9494 } 9495 State.set(this, EntryPart, Part); 9496 } 9497 } 9498 9499 void VPInterleaveRecipe::execute(VPTransformState &State) { 9500 assert(!State.Instance && "Interleave group being replicated."); 9501 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9502 getStoredValues(), getMask()); 9503 } 9504 9505 void VPReductionRecipe::execute(VPTransformState &State) { 9506 assert(!State.Instance && "Reduction being replicated."); 9507 Value *PrevInChain = State.get(getChainOp(), 0); 9508 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9509 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9510 // Propagate the fast-math flags carried by the underlying instruction. 9511 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9512 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9513 for (unsigned Part = 0; Part < State.UF; ++Part) { 9514 Value *NewVecOp = State.get(getVecOp(), Part); 9515 if (VPValue *Cond = getCondOp()) { 9516 Value *NewCond = State.get(Cond, Part); 9517 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9518 Value *Iden = RdxDesc->getRecurrenceIdentity( 9519 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9520 Value *IdenVec = 9521 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9522 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9523 NewVecOp = Select; 9524 } 9525 Value *NewRed; 9526 Value *NextInChain; 9527 if (IsOrdered) { 9528 if (State.VF.isVector()) 9529 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9530 PrevInChain); 9531 else 9532 NewRed = State.Builder.CreateBinOp( 9533 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9534 NewVecOp); 9535 PrevInChain = NewRed; 9536 } else { 9537 PrevInChain = State.get(getChainOp(), Part); 9538 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9539 } 9540 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9541 NextInChain = 9542 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9543 NewRed, PrevInChain); 9544 } else if (IsOrdered) 9545 NextInChain = NewRed; 9546 else 9547 NextInChain = State.Builder.CreateBinOp( 9548 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9549 PrevInChain); 9550 State.set(this, NextInChain, Part); 9551 } 9552 } 9553 9554 void VPReplicateRecipe::execute(VPTransformState &State) { 9555 if (State.Instance) { // Generate a single instance. 9556 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9557 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9558 IsPredicated, State); 9559 // Insert scalar instance packing it into a vector. 9560 if (AlsoPack && State.VF.isVector()) { 9561 // If we're constructing lane 0, initialize to start from poison. 9562 if (State.Instance->Lane.isFirstLane()) { 9563 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9564 Value *Poison = PoisonValue::get( 9565 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9566 State.set(this, Poison, State.Instance->Part); 9567 } 9568 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9569 } 9570 return; 9571 } 9572 9573 // Generate scalar instances for all VF lanes of all UF parts, unless the 9574 // instruction is uniform inwhich case generate only the first lane for each 9575 // of the UF parts. 9576 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9577 assert((!State.VF.isScalable() || IsUniform) && 9578 "Can't scalarize a scalable vector"); 9579 for (unsigned Part = 0; Part < State.UF; ++Part) 9580 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9581 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9582 VPIteration(Part, Lane), IsPredicated, 9583 State); 9584 } 9585 9586 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9587 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9588 9589 // Attempt to issue a wide load. 9590 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9591 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9592 9593 assert((LI || SI) && "Invalid Load/Store instruction"); 9594 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9595 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9596 9597 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9598 9599 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9600 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9601 bool CreateGatherScatter = !Consecutive; 9602 9603 auto &Builder = State.Builder; 9604 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9605 bool isMaskRequired = getMask(); 9606 if (isMaskRequired) 9607 for (unsigned Part = 0; Part < State.UF; ++Part) 9608 BlockInMaskParts[Part] = State.get(getMask(), Part); 9609 9610 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9611 // Calculate the pointer for the specific unroll-part. 9612 GetElementPtrInst *PartPtr = nullptr; 9613 9614 bool InBounds = false; 9615 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9616 InBounds = gep->isInBounds(); 9617 if (Reverse) { 9618 // If the address is consecutive but reversed, then the 9619 // wide store needs to start at the last vector element. 9620 // RunTimeVF = VScale * VF.getKnownMinValue() 9621 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9622 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9623 // NumElt = -Part * RunTimeVF 9624 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9625 // LastLane = 1 - RunTimeVF 9626 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9627 PartPtr = 9628 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9629 PartPtr->setIsInBounds(InBounds); 9630 PartPtr = cast<GetElementPtrInst>( 9631 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9632 PartPtr->setIsInBounds(InBounds); 9633 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9634 BlockInMaskParts[Part] = 9635 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9636 } else { 9637 Value *Increment = 9638 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9639 PartPtr = cast<GetElementPtrInst>( 9640 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9641 PartPtr->setIsInBounds(InBounds); 9642 } 9643 9644 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9645 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9646 }; 9647 9648 // Handle Stores: 9649 if (SI) { 9650 State.setDebugLocFromInst(SI); 9651 9652 for (unsigned Part = 0; Part < State.UF; ++Part) { 9653 Instruction *NewSI = nullptr; 9654 Value *StoredVal = State.get(StoredValue, Part); 9655 if (CreateGatherScatter) { 9656 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9657 Value *VectorGep = State.get(getAddr(), Part); 9658 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9659 MaskPart); 9660 } else { 9661 if (Reverse) { 9662 // If we store to reverse consecutive memory locations, then we need 9663 // to reverse the order of elements in the stored value. 9664 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 9665 // We don't want to update the value in the map as it might be used in 9666 // another expression. So don't call resetVectorValue(StoredVal). 9667 } 9668 auto *VecPtr = 9669 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9670 if (isMaskRequired) 9671 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 9672 BlockInMaskParts[Part]); 9673 else 9674 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 9675 } 9676 State.addMetadata(NewSI, SI); 9677 } 9678 return; 9679 } 9680 9681 // Handle loads. 9682 assert(LI && "Must have a load instruction"); 9683 State.setDebugLocFromInst(LI); 9684 for (unsigned Part = 0; Part < State.UF; ++Part) { 9685 Value *NewLI; 9686 if (CreateGatherScatter) { 9687 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9688 Value *VectorGep = State.get(getAddr(), Part); 9689 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 9690 nullptr, "wide.masked.gather"); 9691 State.addMetadata(NewLI, LI); 9692 } else { 9693 auto *VecPtr = 9694 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9695 if (isMaskRequired) 9696 NewLI = Builder.CreateMaskedLoad( 9697 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 9698 PoisonValue::get(DataTy), "wide.masked.load"); 9699 else 9700 NewLI = 9701 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 9702 9703 // Add metadata to the load, but setVectorValue to the reverse shuffle. 9704 State.addMetadata(NewLI, LI); 9705 if (Reverse) 9706 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 9707 } 9708 9709 State.set(getVPSingleValue(), NewLI, Part); 9710 } 9711 } 9712 9713 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9714 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9715 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9716 // for predication. 9717 static ScalarEpilogueLowering getScalarEpilogueLowering( 9718 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9719 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9720 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9721 LoopVectorizationLegality &LVL) { 9722 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9723 // don't look at hints or options, and don't request a scalar epilogue. 9724 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9725 // LoopAccessInfo (due to code dependency and not being able to reliably get 9726 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9727 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9728 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9729 // back to the old way and vectorize with versioning when forced. See D81345.) 9730 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9731 PGSOQueryType::IRPass) && 9732 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9733 return CM_ScalarEpilogueNotAllowedOptSize; 9734 9735 // 2) If set, obey the directives 9736 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9737 switch (PreferPredicateOverEpilogue) { 9738 case PreferPredicateTy::ScalarEpilogue: 9739 return CM_ScalarEpilogueAllowed; 9740 case PreferPredicateTy::PredicateElseScalarEpilogue: 9741 return CM_ScalarEpilogueNotNeededUsePredicate; 9742 case PreferPredicateTy::PredicateOrDontVectorize: 9743 return CM_ScalarEpilogueNotAllowedUsePredicate; 9744 }; 9745 } 9746 9747 // 3) If set, obey the hints 9748 switch (Hints.getPredicate()) { 9749 case LoopVectorizeHints::FK_Enabled: 9750 return CM_ScalarEpilogueNotNeededUsePredicate; 9751 case LoopVectorizeHints::FK_Disabled: 9752 return CM_ScalarEpilogueAllowed; 9753 }; 9754 9755 // 4) if the TTI hook indicates this is profitable, request predication. 9756 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, &LVL)) 9757 return CM_ScalarEpilogueNotNeededUsePredicate; 9758 9759 return CM_ScalarEpilogueAllowed; 9760 } 9761 9762 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9763 // If Values have been set for this Def return the one relevant for \p Part. 9764 if (hasVectorValue(Def, Part)) 9765 return Data.PerPartOutput[Def][Part]; 9766 9767 if (!hasScalarValue(Def, {Part, 0})) { 9768 Value *IRV = Def->getLiveInIRValue(); 9769 Value *B = ILV->getBroadcastInstrs(IRV); 9770 set(Def, B, Part); 9771 return B; 9772 } 9773 9774 Value *ScalarValue = get(Def, {Part, 0}); 9775 // If we aren't vectorizing, we can just copy the scalar map values over 9776 // to the vector map. 9777 if (VF.isScalar()) { 9778 set(Def, ScalarValue, Part); 9779 return ScalarValue; 9780 } 9781 9782 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9783 bool IsUniform = RepR && RepR->isUniform(); 9784 9785 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9786 // Check if there is a scalar value for the selected lane. 9787 if (!hasScalarValue(Def, {Part, LastLane})) { 9788 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9789 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 9790 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 9791 "unexpected recipe found to be invariant"); 9792 IsUniform = true; 9793 LastLane = 0; 9794 } 9795 9796 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9797 // Set the insert point after the last scalarized instruction or after the 9798 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9799 // will directly follow the scalar definitions. 9800 auto OldIP = Builder.saveIP(); 9801 auto NewIP = 9802 isa<PHINode>(LastInst) 9803 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 9804 : std::next(BasicBlock::iterator(LastInst)); 9805 Builder.SetInsertPoint(&*NewIP); 9806 9807 // However, if we are vectorizing, we need to construct the vector values. 9808 // If the value is known to be uniform after vectorization, we can just 9809 // broadcast the scalar value corresponding to lane zero for each unroll 9810 // iteration. Otherwise, we construct the vector values using 9811 // insertelement instructions. Since the resulting vectors are stored in 9812 // State, we will only generate the insertelements once. 9813 Value *VectorValue = nullptr; 9814 if (IsUniform) { 9815 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9816 set(Def, VectorValue, Part); 9817 } else { 9818 // Initialize packing with insertelements to start from undef. 9819 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9820 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9821 set(Def, Undef, Part); 9822 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9823 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9824 VectorValue = get(Def, Part); 9825 } 9826 Builder.restoreIP(OldIP); 9827 return VectorValue; 9828 } 9829 9830 // Process the loop in the VPlan-native vectorization path. This path builds 9831 // VPlan upfront in the vectorization pipeline, which allows to apply 9832 // VPlan-to-VPlan transformations from the very beginning without modifying the 9833 // input LLVM IR. 9834 static bool processLoopInVPlanNativePath( 9835 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9836 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9837 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9838 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9839 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9840 LoopVectorizationRequirements &Requirements) { 9841 9842 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9843 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9844 return false; 9845 } 9846 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9847 Function *F = L->getHeader()->getParent(); 9848 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9849 9850 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9851 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9852 9853 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9854 &Hints, IAI); 9855 // Use the planner for outer loop vectorization. 9856 // TODO: CM is not used at this point inside the planner. Turn CM into an 9857 // optional argument if we don't need it in the future. 9858 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, ORE); 9859 9860 // Get user vectorization factor. 9861 ElementCount UserVF = Hints.getWidth(); 9862 9863 CM.collectElementTypesForWidening(); 9864 9865 // Plan how to best vectorize, return the best VF and its cost. 9866 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9867 9868 // If we are stress testing VPlan builds, do not attempt to generate vector 9869 // code. Masked vector code generation support will follow soon. 9870 // Also, do not attempt to vectorize if no vector code will be produced. 9871 if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF) 9872 return false; 9873 9874 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 9875 9876 { 9877 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, 9878 F->getParent()->getDataLayout()); 9879 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 9880 VF.Width, 1, LVL, &CM, BFI, PSI, Checks); 9881 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9882 << L->getHeader()->getParent()->getName() << "\"\n"); 9883 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false); 9884 } 9885 9886 // Mark the loop as already vectorized to avoid vectorizing again. 9887 Hints.setAlreadyVectorized(); 9888 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9889 return true; 9890 } 9891 9892 // Emit a remark if there are stores to floats that required a floating point 9893 // extension. If the vectorized loop was generated with floating point there 9894 // will be a performance penalty from the conversion overhead and the change in 9895 // the vector width. 9896 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9897 SmallVector<Instruction *, 4> Worklist; 9898 for (BasicBlock *BB : L->getBlocks()) { 9899 for (Instruction &Inst : *BB) { 9900 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9901 if (S->getValueOperand()->getType()->isFloatTy()) 9902 Worklist.push_back(S); 9903 } 9904 } 9905 } 9906 9907 // Traverse the floating point stores upwards searching, for floating point 9908 // conversions. 9909 SmallPtrSet<const Instruction *, 4> Visited; 9910 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9911 while (!Worklist.empty()) { 9912 auto *I = Worklist.pop_back_val(); 9913 if (!L->contains(I)) 9914 continue; 9915 if (!Visited.insert(I).second) 9916 continue; 9917 9918 // Emit a remark if the floating point store required a floating 9919 // point conversion. 9920 // TODO: More work could be done to identify the root cause such as a 9921 // constant or a function return type and point the user to it. 9922 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9923 ORE->emit([&]() { 9924 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9925 I->getDebugLoc(), L->getHeader()) 9926 << "floating point conversion changes vector width. " 9927 << "Mixed floating point precision requires an up/down " 9928 << "cast that will negatively impact performance."; 9929 }); 9930 9931 for (Use &Op : I->operands()) 9932 if (auto *OpI = dyn_cast<Instruction>(Op)) 9933 Worklist.push_back(OpI); 9934 } 9935 } 9936 9937 static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks, 9938 VectorizationFactor &VF, 9939 Optional<unsigned> VScale, Loop *L, 9940 ScalarEvolution &SE) { 9941 InstructionCost CheckCost = Checks.getCost(); 9942 if (!CheckCost.isValid()) 9943 return false; 9944 9945 // When interleaving only scalar and vector cost will be equal, which in turn 9946 // would lead to a divide by 0. Fall back to hard threshold. 9947 if (VF.Width.isScalar()) { 9948 if (CheckCost > VectorizeMemoryCheckThreshold) { 9949 LLVM_DEBUG( 9950 dbgs() 9951 << "LV: Interleaving only is not profitable due to runtime checks\n"); 9952 return false; 9953 } 9954 return true; 9955 } 9956 9957 // The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated. 9958 double ScalarC = *VF.ScalarCost.getValue(); 9959 if (ScalarC == 0) 9960 return true; 9961 9962 // First, compute the minimum iteration count required so that the vector 9963 // loop outperforms the scalar loop. 9964 // The total cost of the scalar loop is 9965 // ScalarC * TC 9966 // where 9967 // * TC is the actual trip count of the loop. 9968 // * ScalarC is the cost of a single scalar iteration. 9969 // 9970 // The total cost of the vector loop is 9971 // RtC + VecC * (TC / VF) + EpiC 9972 // where 9973 // * RtC is the cost of the generated runtime checks 9974 // * VecC is the cost of a single vector iteration. 9975 // * TC is the actual trip count of the loop 9976 // * VF is the vectorization factor 9977 // * EpiCost is the cost of the generated epilogue, including the cost 9978 // of the remaining scalar operations. 9979 // 9980 // Vectorization is profitable once the total vector cost is less than the 9981 // total scalar cost: 9982 // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC 9983 // 9984 // Now we can compute the minimum required trip count TC as 9985 // (RtC + EpiC) / (ScalarC - (VecC / VF)) < TC 9986 // 9987 // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that 9988 // the computations are performed on doubles, not integers and the result 9989 // is rounded up, hence we get an upper estimate of the TC. 9990 unsigned IntVF = VF.Width.getKnownMinValue(); 9991 if (VF.Width.isScalable()) { 9992 unsigned AssumedMinimumVscale = 1; 9993 if (VScale) 9994 AssumedMinimumVscale = *VScale; 9995 IntVF *= AssumedMinimumVscale; 9996 } 9997 double VecCOverVF = double(*VF.Cost.getValue()) / IntVF; 9998 double RtC = *CheckCost.getValue(); 9999 double MinTC1 = RtC / (ScalarC - VecCOverVF); 10000 10001 // Second, compute a minimum iteration count so that the cost of the 10002 // runtime checks is only a fraction of the total scalar loop cost. This 10003 // adds a loop-dependent bound on the overhead incurred if the runtime 10004 // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC 10005 // * TC. To bound the runtime check to be a fraction 1/X of the scalar 10006 // cost, compute 10007 // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC 10008 double MinTC2 = RtC * 10 / ScalarC; 10009 10010 // Now pick the larger minimum. If it is not a multiple of VF, choose the 10011 // next closest multiple of VF. This should partly compensate for ignoring 10012 // the epilogue cost. 10013 uint64_t MinTC = std::ceil(std::max(MinTC1, MinTC2)); 10014 VF.MinProfitableTripCount = ElementCount::getFixed(alignTo(MinTC, IntVF)); 10015 10016 LLVM_DEBUG( 10017 dbgs() << "LV: Minimum required TC for runtime checks to be profitable:" 10018 << VF.MinProfitableTripCount << "\n"); 10019 10020 // Skip vectorization if the expected trip count is less than the minimum 10021 // required trip count. 10022 if (auto ExpectedTC = getSmallBestKnownTC(SE, L)) { 10023 if (ElementCount::isKnownLT(ElementCount::getFixed(*ExpectedTC), 10024 VF.MinProfitableTripCount)) { 10025 LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected " 10026 "trip count < minimum profitable VF (" 10027 << *ExpectedTC << " < " << VF.MinProfitableTripCount 10028 << ")\n"); 10029 10030 return false; 10031 } 10032 } 10033 return true; 10034 } 10035 10036 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10037 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10038 !EnableLoopInterleaving), 10039 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10040 !EnableLoopVectorization) {} 10041 10042 bool LoopVectorizePass::processLoop(Loop *L) { 10043 assert((EnableVPlanNativePath || L->isInnermost()) && 10044 "VPlan-native path is not enabled. Only process inner loops."); 10045 10046 #ifndef NDEBUG 10047 const std::string DebugLocStr = getDebugLocString(L); 10048 #endif /* NDEBUG */ 10049 10050 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10051 << L->getHeader()->getParent()->getName() << "' from " 10052 << DebugLocStr << "\n"); 10053 10054 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10055 10056 LLVM_DEBUG( 10057 dbgs() << "LV: Loop hints:" 10058 << " force=" 10059 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10060 ? "disabled" 10061 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10062 ? "enabled" 10063 : "?")) 10064 << " width=" << Hints.getWidth() 10065 << " interleave=" << Hints.getInterleave() << "\n"); 10066 10067 // Function containing loop 10068 Function *F = L->getHeader()->getParent(); 10069 10070 // Looking at the diagnostic output is the only way to determine if a loop 10071 // was vectorized (other than looking at the IR or machine code), so it 10072 // is important to generate an optimization remark for each loop. Most of 10073 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10074 // generated as OptimizationRemark and OptimizationRemarkMissed are 10075 // less verbose reporting vectorized loops and unvectorized loops that may 10076 // benefit from vectorization, respectively. 10077 10078 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10079 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10080 return false; 10081 } 10082 10083 PredicatedScalarEvolution PSE(*SE, *L); 10084 10085 // Check if it is legal to vectorize the loop. 10086 LoopVectorizationRequirements Requirements; 10087 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10088 &Requirements, &Hints, DB, AC, BFI, PSI); 10089 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10090 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10091 Hints.emitRemarkWithHints(); 10092 return false; 10093 } 10094 10095 // Check the function attributes and profiles to find out if this function 10096 // should be optimized for size. 10097 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10098 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10099 10100 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10101 // here. They may require CFG and instruction level transformations before 10102 // even evaluating whether vectorization is profitable. Since we cannot modify 10103 // the incoming IR, we need to build VPlan upfront in the vectorization 10104 // pipeline. 10105 if (!L->isInnermost()) 10106 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10107 ORE, BFI, PSI, Hints, Requirements); 10108 10109 assert(L->isInnermost() && "Inner loop expected."); 10110 10111 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10112 // count by optimizing for size, to minimize overheads. 10113 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10114 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10115 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10116 << "This loop is worth vectorizing only if no scalar " 10117 << "iteration overheads are incurred."); 10118 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10119 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10120 else { 10121 LLVM_DEBUG(dbgs() << "\n"); 10122 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10123 } 10124 } 10125 10126 // Check the function attributes to see if implicit floats are allowed. 10127 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10128 // an integer loop and the vector instructions selected are purely integer 10129 // vector instructions? 10130 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10131 reportVectorizationFailure( 10132 "Can't vectorize when the NoImplicitFloat attribute is used", 10133 "loop not vectorized due to NoImplicitFloat attribute", 10134 "NoImplicitFloat", ORE, L); 10135 Hints.emitRemarkWithHints(); 10136 return false; 10137 } 10138 10139 // Check if the target supports potentially unsafe FP vectorization. 10140 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10141 // for the target we're vectorizing for, to make sure none of the 10142 // additional fp-math flags can help. 10143 if (Hints.isPotentiallyUnsafe() && 10144 TTI->isFPVectorizationPotentiallyUnsafe()) { 10145 reportVectorizationFailure( 10146 "Potentially unsafe FP op prevents vectorization", 10147 "loop not vectorized due to unsafe FP support.", 10148 "UnsafeFP", ORE, L); 10149 Hints.emitRemarkWithHints(); 10150 return false; 10151 } 10152 10153 bool AllowOrderedReductions; 10154 // If the flag is set, use that instead and override the TTI behaviour. 10155 if (ForceOrderedReductions.getNumOccurrences() > 0) 10156 AllowOrderedReductions = ForceOrderedReductions; 10157 else 10158 AllowOrderedReductions = TTI->enableOrderedReductions(); 10159 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10160 ORE->emit([&]() { 10161 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10162 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10163 ExactFPMathInst->getDebugLoc(), 10164 ExactFPMathInst->getParent()) 10165 << "loop not vectorized: cannot prove it is safe to reorder " 10166 "floating-point operations"; 10167 }); 10168 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10169 "reorder floating-point operations\n"); 10170 Hints.emitRemarkWithHints(); 10171 return false; 10172 } 10173 10174 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10175 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10176 10177 // If an override option has been passed in for interleaved accesses, use it. 10178 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10179 UseInterleaved = EnableInterleavedMemAccesses; 10180 10181 // Analyze interleaved memory accesses. 10182 if (UseInterleaved) { 10183 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10184 } 10185 10186 // Use the cost model. 10187 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10188 F, &Hints, IAI); 10189 CM.collectValuesToIgnore(); 10190 CM.collectElementTypesForWidening(); 10191 10192 // Use the planner for vectorization. 10193 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, ORE); 10194 10195 // Get user vectorization factor and interleave count. 10196 ElementCount UserVF = Hints.getWidth(); 10197 unsigned UserIC = Hints.getInterleave(); 10198 10199 // Plan how to best vectorize, return the best VF and its cost. 10200 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10201 10202 VectorizationFactor VF = VectorizationFactor::Disabled(); 10203 unsigned IC = 1; 10204 10205 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, 10206 F->getParent()->getDataLayout()); 10207 if (MaybeVF) { 10208 VF = *MaybeVF; 10209 // Select the interleave count. 10210 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10211 10212 unsigned SelectedIC = std::max(IC, UserIC); 10213 // Optimistically generate runtime checks if they are needed. Drop them if 10214 // they turn out to not be profitable. 10215 if (VF.Width.isVector() || SelectedIC > 1) 10216 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC); 10217 10218 // Check if it is profitable to vectorize with runtime checks. 10219 bool ForceVectorization = 10220 Hints.getForce() == LoopVectorizeHints::FK_Enabled; 10221 if (!ForceVectorization && 10222 !areRuntimeChecksProfitable(Checks, VF, CM.getVScaleForTuning(), L, 10223 *PSE.getSE())) { 10224 ORE->emit([&]() { 10225 return OptimizationRemarkAnalysisAliasing( 10226 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(), 10227 L->getHeader()) 10228 << "loop not vectorized: cannot prove it is safe to reorder " 10229 "memory operations"; 10230 }); 10231 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 10232 Hints.emitRemarkWithHints(); 10233 return false; 10234 } 10235 } 10236 10237 // Identify the diagnostic messages that should be produced. 10238 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10239 bool VectorizeLoop = true, InterleaveLoop = true; 10240 if (VF.Width.isScalar()) { 10241 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10242 VecDiagMsg = std::make_pair( 10243 "VectorizationNotBeneficial", 10244 "the cost-model indicates that vectorization is not beneficial"); 10245 VectorizeLoop = false; 10246 } 10247 10248 if (!MaybeVF && UserIC > 1) { 10249 // Tell the user interleaving was avoided up-front, despite being explicitly 10250 // requested. 10251 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10252 "interleaving should be avoided up front\n"); 10253 IntDiagMsg = std::make_pair( 10254 "InterleavingAvoided", 10255 "Ignoring UserIC, because interleaving was avoided up front"); 10256 InterleaveLoop = false; 10257 } else if (IC == 1 && UserIC <= 1) { 10258 // Tell the user interleaving is not beneficial. 10259 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10260 IntDiagMsg = std::make_pair( 10261 "InterleavingNotBeneficial", 10262 "the cost-model indicates that interleaving is not beneficial"); 10263 InterleaveLoop = false; 10264 if (UserIC == 1) { 10265 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10266 IntDiagMsg.second += 10267 " and is explicitly disabled or interleave count is set to 1"; 10268 } 10269 } else if (IC > 1 && UserIC == 1) { 10270 // Tell the user interleaving is beneficial, but it explicitly disabled. 10271 LLVM_DEBUG( 10272 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10273 IntDiagMsg = std::make_pair( 10274 "InterleavingBeneficialButDisabled", 10275 "the cost-model indicates that interleaving is beneficial " 10276 "but is explicitly disabled or interleave count is set to 1"); 10277 InterleaveLoop = false; 10278 } 10279 10280 // Override IC if user provided an interleave count. 10281 IC = UserIC > 0 ? UserIC : IC; 10282 10283 // Emit diagnostic messages, if any. 10284 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10285 if (!VectorizeLoop && !InterleaveLoop) { 10286 // Do not vectorize or interleaving the loop. 10287 ORE->emit([&]() { 10288 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10289 L->getStartLoc(), L->getHeader()) 10290 << VecDiagMsg.second; 10291 }); 10292 ORE->emit([&]() { 10293 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10294 L->getStartLoc(), L->getHeader()) 10295 << IntDiagMsg.second; 10296 }); 10297 return false; 10298 } else if (!VectorizeLoop && InterleaveLoop) { 10299 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10300 ORE->emit([&]() { 10301 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10302 L->getStartLoc(), L->getHeader()) 10303 << VecDiagMsg.second; 10304 }); 10305 } else if (VectorizeLoop && !InterleaveLoop) { 10306 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10307 << ") in " << DebugLocStr << '\n'); 10308 ORE->emit([&]() { 10309 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10310 L->getStartLoc(), L->getHeader()) 10311 << IntDiagMsg.second; 10312 }); 10313 } else if (VectorizeLoop && InterleaveLoop) { 10314 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10315 << ") in " << DebugLocStr << '\n'); 10316 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10317 } 10318 10319 bool DisableRuntimeUnroll = false; 10320 MDNode *OrigLoopID = L->getLoopID(); 10321 { 10322 using namespace ore; 10323 if (!VectorizeLoop) { 10324 assert(IC > 1 && "interleave count should not be 1 or 0"); 10325 // If we decided that it is not legal to vectorize the loop, then 10326 // interleave it. 10327 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10328 &CM, BFI, PSI, Checks); 10329 10330 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10331 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false); 10332 10333 ORE->emit([&]() { 10334 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10335 L->getHeader()) 10336 << "interleaved loop (interleaved count: " 10337 << NV("InterleaveCount", IC) << ")"; 10338 }); 10339 } else { 10340 // If we decided that it is *legal* to vectorize the loop, then do it. 10341 10342 // Consider vectorizing the epilogue too if it's profitable. 10343 VectorizationFactor EpilogueVF = 10344 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10345 if (EpilogueVF.Width.isVector()) { 10346 10347 // The first pass vectorizes the main loop and creates a scalar epilogue 10348 // to be vectorized by executing the plan (potentially with a different 10349 // factor) again shortly afterwards. 10350 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10351 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10352 EPI, &LVL, &CM, BFI, PSI, Checks); 10353 10354 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10355 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10356 DT, true); 10357 ++LoopsVectorized; 10358 10359 // Second pass vectorizes the epilogue and adjusts the control flow 10360 // edges from the first pass. 10361 EPI.MainLoopVF = EPI.EpilogueVF; 10362 EPI.MainLoopUF = EPI.EpilogueUF; 10363 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10364 ORE, EPI, &LVL, &CM, BFI, PSI, 10365 Checks); 10366 10367 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10368 VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion(); 10369 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock(); 10370 Header->setName("vec.epilog.vector.body"); 10371 10372 // Ensure that the start values for any VPReductionPHIRecipes are 10373 // updated before vectorising the epilogue loop. 10374 for (VPRecipeBase &R : Header->phis()) { 10375 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10376 if (auto *Resume = MainILV.getReductionResumeValue( 10377 ReductionPhi->getRecurrenceDescriptor())) { 10378 VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume); 10379 ReductionPhi->setOperand(0, StartVal); 10380 } 10381 } 10382 } 10383 10384 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10385 DT, true); 10386 ++LoopsEpilogueVectorized; 10387 10388 if (!MainILV.areSafetyChecksAdded()) 10389 DisableRuntimeUnroll = true; 10390 } else { 10391 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 10392 VF.MinProfitableTripCount, IC, &LVL, &CM, BFI, 10393 PSI, Checks); 10394 10395 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10396 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false); 10397 ++LoopsVectorized; 10398 10399 // Add metadata to disable runtime unrolling a scalar loop when there 10400 // are no runtime checks about strides and memory. A scalar loop that is 10401 // rarely used is not worth unrolling. 10402 if (!LB.areSafetyChecksAdded()) 10403 DisableRuntimeUnroll = true; 10404 } 10405 // Report the vectorization decision. 10406 ORE->emit([&]() { 10407 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10408 L->getHeader()) 10409 << "vectorized loop (vectorization width: " 10410 << NV("VectorizationFactor", VF.Width) 10411 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10412 }); 10413 } 10414 10415 if (ORE->allowExtraAnalysis(LV_NAME)) 10416 checkMixedPrecision(L, ORE); 10417 } 10418 10419 Optional<MDNode *> RemainderLoopID = 10420 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10421 LLVMLoopVectorizeFollowupEpilogue}); 10422 if (RemainderLoopID) { 10423 L->setLoopID(RemainderLoopID.value()); 10424 } else { 10425 if (DisableRuntimeUnroll) 10426 AddRuntimeUnrollDisableMetaData(L); 10427 10428 // Mark the loop as already vectorized to avoid vectorizing again. 10429 Hints.setAlreadyVectorized(); 10430 } 10431 10432 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10433 return true; 10434 } 10435 10436 LoopVectorizeResult LoopVectorizePass::runImpl( 10437 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10438 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10439 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10440 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10441 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10442 SE = &SE_; 10443 LI = &LI_; 10444 TTI = &TTI_; 10445 DT = &DT_; 10446 BFI = &BFI_; 10447 TLI = TLI_; 10448 AA = &AA_; 10449 AC = &AC_; 10450 GetLAA = &GetLAA_; 10451 DB = &DB_; 10452 ORE = &ORE_; 10453 PSI = PSI_; 10454 10455 // Don't attempt if 10456 // 1. the target claims to have no vector registers, and 10457 // 2. interleaving won't help ILP. 10458 // 10459 // The second condition is necessary because, even if the target has no 10460 // vector registers, loop vectorization may still enable scalar 10461 // interleaving. 10462 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10463 TTI->getMaxInterleaveFactor(1) < 2) 10464 return LoopVectorizeResult(false, false); 10465 10466 bool Changed = false, CFGChanged = false; 10467 10468 // The vectorizer requires loops to be in simplified form. 10469 // Since simplification may add new inner loops, it has to run before the 10470 // legality and profitability checks. This means running the loop vectorizer 10471 // will simplify all loops, regardless of whether anything end up being 10472 // vectorized. 10473 for (auto &L : *LI) 10474 Changed |= CFGChanged |= 10475 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10476 10477 // Build up a worklist of inner-loops to vectorize. This is necessary as 10478 // the act of vectorizing or partially unrolling a loop creates new loops 10479 // and can invalidate iterators across the loops. 10480 SmallVector<Loop *, 8> Worklist; 10481 10482 for (Loop *L : *LI) 10483 collectSupportedLoops(*L, LI, ORE, Worklist); 10484 10485 LoopsAnalyzed += Worklist.size(); 10486 10487 // Now walk the identified inner loops. 10488 while (!Worklist.empty()) { 10489 Loop *L = Worklist.pop_back_val(); 10490 10491 // For the inner loops we actually process, form LCSSA to simplify the 10492 // transform. 10493 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10494 10495 Changed |= CFGChanged |= processLoop(L); 10496 } 10497 10498 // Process each loop nest in the function. 10499 return LoopVectorizeResult(Changed, CFGChanged); 10500 } 10501 10502 PreservedAnalyses LoopVectorizePass::run(Function &F, 10503 FunctionAnalysisManager &AM) { 10504 auto &LI = AM.getResult<LoopAnalysis>(F); 10505 // There are no loops in the function. Return before computing other expensive 10506 // analyses. 10507 if (LI.empty()) 10508 return PreservedAnalyses::all(); 10509 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10510 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10511 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10512 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10513 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10514 auto &AA = AM.getResult<AAManager>(F); 10515 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10516 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10517 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10518 10519 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10520 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10521 [&](Loop &L) -> const LoopAccessInfo & { 10522 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10523 TLI, TTI, nullptr, nullptr, nullptr}; 10524 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10525 }; 10526 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10527 ProfileSummaryInfo *PSI = 10528 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10529 LoopVectorizeResult Result = 10530 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10531 if (!Result.MadeAnyChange) 10532 return PreservedAnalyses::all(); 10533 PreservedAnalyses PA; 10534 10535 // We currently do not preserve loopinfo/dominator analyses with outer loop 10536 // vectorization. Until this is addressed, mark these analyses as preserved 10537 // only for non-VPlan-native path. 10538 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10539 if (!EnableVPlanNativePath) { 10540 PA.preserve<LoopAnalysis>(); 10541 PA.preserve<DominatorTreeAnalysis>(); 10542 } 10543 10544 if (Result.MadeCFGChange) { 10545 // Making CFG changes likely means a loop got vectorized. Indicate that 10546 // extra simplification passes should be run. 10547 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10548 // be run if runtime checks have been added. 10549 AM.getResult<ShouldRunExtraVectorPasses>(F); 10550 PA.preserve<ShouldRunExtraVectorPasses>(); 10551 } else { 10552 PA.preserveSet<CFGAnalyses>(); 10553 } 10554 return PA; 10555 } 10556 10557 void LoopVectorizePass::printPipeline( 10558 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10559 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10560 OS, MapClassName2PassName); 10561 10562 OS << "<"; 10563 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10564 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10565 OS << ">"; 10566 } 10567