1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 /// InnerLoopVectorizer vectorizes loops which contain only one basic 432 /// block to a specified vectorization factor (VF). 433 /// This class performs the widening of scalars into vectors, or multiple 434 /// scalars. This class also implements the following features: 435 /// * It inserts an epilogue loop for handling loops that don't have iteration 436 /// counts that are known to be a multiple of the vectorization factor. 437 /// * It handles the code generation for reduction variables. 438 /// * Scalarization (implementation using scalars) of un-vectorizable 439 /// instructions. 440 /// InnerLoopVectorizer does not perform any vectorization-legality 441 /// checks, and relies on the caller to check for the different legality 442 /// aspects. The InnerLoopVectorizer relies on the 443 /// LoopVectorizationLegality class to provide information about the induction 444 /// and reduction variables that were found to a given vectorization factor. 445 class InnerLoopVectorizer { 446 public: 447 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 448 LoopInfo *LI, DominatorTree *DT, 449 const TargetLibraryInfo *TLI, 450 const TargetTransformInfo *TTI, AssumptionCache *AC, 451 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 452 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 453 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 454 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 455 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 456 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 457 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 458 PSI(PSI), RTChecks(RTChecks) { 459 // Query this against the original loop and save it here because the profile 460 // of the original loop header may change as the transformation happens. 461 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 462 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 463 } 464 465 virtual ~InnerLoopVectorizer() = default; 466 467 /// Create a new empty loop that will contain vectorized instructions later 468 /// on, while the old loop will be used as the scalar remainder. Control flow 469 /// is generated around the vectorized (and scalar epilogue) loops consisting 470 /// of various checks and bypasses. Return the pre-header block of the new 471 /// loop. 472 /// In the case of epilogue vectorization, this function is overriden to 473 /// handle the more complex control flow around the loops. 474 virtual BasicBlock *createVectorizedLoopSkeleton(); 475 476 /// Widen a single instruction within the innermost loop. 477 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 478 VPTransformState &State); 479 480 /// Widen a single call instruction within the innermost loop. 481 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 482 VPTransformState &State); 483 484 /// Widen a single select instruction within the innermost loop. 485 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 486 bool InvariantCond, VPTransformState &State); 487 488 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 489 void fixVectorizedLoop(VPTransformState &State); 490 491 // Return true if any runtime check is added. 492 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 493 494 /// A type for vectorized values in the new loop. Each value from the 495 /// original loop, when vectorized, is represented by UF vector values in the 496 /// new unrolled loop, where UF is the unroll factor. 497 using VectorParts = SmallVector<Value *, 2>; 498 499 /// Vectorize a single GetElementPtrInst based on information gathered and 500 /// decisions taken during planning. 501 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 502 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 503 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 504 505 /// Vectorize a single first-order recurrence or pointer induction PHINode in 506 /// a block. This method handles the induction variable canonicalization. It 507 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 508 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 509 VPTransformState &State); 510 511 /// A helper function to scalarize a single Instruction in the innermost loop. 512 /// Generates a sequence of scalar instances for each lane between \p MinLane 513 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 514 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 515 /// Instr's operands. 516 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 517 const VPIteration &Instance, bool IfPredicateInstr, 518 VPTransformState &State); 519 520 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 521 /// is provided, the integer induction variable will first be truncated to 522 /// the corresponding type. 523 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 524 VPValue *Def, VPValue *CastDef, 525 VPTransformState &State); 526 527 /// Construct the vector value of a scalarized value \p V one lane at a time. 528 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 529 VPTransformState &State); 530 531 /// Try to vectorize interleaved access group \p Group with the base address 532 /// given in \p Addr, optionally masking the vector operations if \p 533 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 534 /// values in the vectorized loop. 535 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 536 ArrayRef<VPValue *> VPDefs, 537 VPTransformState &State, VPValue *Addr, 538 ArrayRef<VPValue *> StoredValues, 539 VPValue *BlockInMask = nullptr); 540 541 /// Vectorize Load and Store instructions with the base address given in \p 542 /// Addr, optionally masking the vector operations if \p BlockInMask is 543 /// non-null. Use \p State to translate given VPValues to IR values in the 544 /// vectorized loop. 545 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 546 VPValue *Def, VPValue *Addr, 547 VPValue *StoredValue, VPValue *BlockInMask, 548 bool ConsecutiveStride, bool Reverse); 549 550 /// Set the debug location in the builder \p Ptr using the debug location in 551 /// \p V. If \p Ptr is None then it uses the class member's Builder. 552 void setDebugLocFromInst(const Value *V, 553 Optional<IRBuilder<> *> CustomBuilder = None); 554 555 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 556 void fixNonInductionPHIs(VPTransformState &State); 557 558 /// Returns true if the reordering of FP operations is not allowed, but we are 559 /// able to vectorize with strict in-order reductions for the given RdxDesc. 560 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 561 562 /// Create a broadcast instruction. This method generates a broadcast 563 /// instruction (shuffle) for loop invariant values and for the induction 564 /// value. If this is the induction variable then we extend it to N, N+1, ... 565 /// this is needed because each iteration in the loop corresponds to a SIMD 566 /// element. 567 virtual Value *getBroadcastInstrs(Value *V); 568 569 protected: 570 friend class LoopVectorizationPlanner; 571 572 /// A small list of PHINodes. 573 using PhiVector = SmallVector<PHINode *, 4>; 574 575 /// A type for scalarized values in the new loop. Each value from the 576 /// original loop, when scalarized, is represented by UF x VF scalar values 577 /// in the new unrolled loop, where UF is the unroll factor and VF is the 578 /// vectorization factor. 579 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 580 581 /// Set up the values of the IVs correctly when exiting the vector loop. 582 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 583 Value *CountRoundDown, Value *EndValue, 584 BasicBlock *MiddleBlock); 585 586 /// Create a new induction variable inside L. 587 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 588 Value *Step, Instruction *DL); 589 590 /// Handle all cross-iteration phis in the header. 591 void fixCrossIterationPHIs(VPTransformState &State); 592 593 /// Create the exit value of first order recurrences in the middle block and 594 /// update their users. 595 void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State); 596 597 /// Create code for the loop exit value of the reduction. 598 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 599 600 /// Clear NSW/NUW flags from reduction instructions if necessary. 601 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 602 VPTransformState &State); 603 604 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 605 /// means we need to add the appropriate incoming value from the middle 606 /// block as exiting edges from the scalar epilogue loop (if present) are 607 /// already in place, and we exit the vector loop exclusively to the middle 608 /// block. 609 void fixLCSSAPHIs(VPTransformState &State); 610 611 /// Iteratively sink the scalarized operands of a predicated instruction into 612 /// the block that was created for it. 613 void sinkScalarOperands(Instruction *PredInst); 614 615 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 616 /// represented as. 617 void truncateToMinimalBitwidths(VPTransformState &State); 618 619 /// This function adds 620 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 621 /// to each vector element of Val. The sequence starts at StartIndex. 622 /// \p Opcode is relevant for FP induction variable. 623 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 624 Instruction::BinaryOps Opcode = 625 Instruction::BinaryOpsEnd); 626 627 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 628 /// variable on which to base the steps, \p Step is the size of the step, and 629 /// \p EntryVal is the value from the original loop that maps to the steps. 630 /// Note that \p EntryVal doesn't have to be an induction variable - it 631 /// can also be a truncate instruction. 632 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 633 const InductionDescriptor &ID, VPValue *Def, 634 VPValue *CastDef, VPTransformState &State); 635 636 /// Create a vector induction phi node based on an existing scalar one. \p 637 /// EntryVal is the value from the original loop that maps to the vector phi 638 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 639 /// truncate instruction, instead of widening the original IV, we widen a 640 /// version of the IV truncated to \p EntryVal's type. 641 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 642 Value *Step, Value *Start, 643 Instruction *EntryVal, VPValue *Def, 644 VPValue *CastDef, 645 VPTransformState &State); 646 647 /// Returns true if an instruction \p I should be scalarized instead of 648 /// vectorized for the chosen vectorization factor. 649 bool shouldScalarizeInstruction(Instruction *I) const; 650 651 /// Returns true if we should generate a scalar version of \p IV. 652 bool needsScalarInduction(Instruction *IV) const; 653 654 /// If there is a cast involved in the induction variable \p ID, which should 655 /// be ignored in the vectorized loop body, this function records the 656 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 657 /// cast. We had already proved that the casted Phi is equal to the uncasted 658 /// Phi in the vectorized loop (under a runtime guard), and therefore 659 /// there is no need to vectorize the cast - the same value can be used in the 660 /// vector loop for both the Phi and the cast. 661 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 662 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 663 /// 664 /// \p EntryVal is the value from the original loop that maps to the vector 665 /// phi node and is used to distinguish what is the IV currently being 666 /// processed - original one (if \p EntryVal is a phi corresponding to the 667 /// original IV) or the "newly-created" one based on the proof mentioned above 668 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 669 /// latter case \p EntryVal is a TruncInst and we must not record anything for 670 /// that IV, but it's error-prone to expect callers of this routine to care 671 /// about that, hence this explicit parameter. 672 void recordVectorLoopValueForInductionCast( 673 const InductionDescriptor &ID, const Instruction *EntryVal, 674 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 675 unsigned Part, unsigned Lane = UINT_MAX); 676 677 /// Generate a shuffle sequence that will reverse the vector Vec. 678 virtual Value *reverseVector(Value *Vec); 679 680 /// Returns (and creates if needed) the original loop trip count. 681 Value *getOrCreateTripCount(Loop *NewLoop); 682 683 /// Returns (and creates if needed) the trip count of the widened loop. 684 Value *getOrCreateVectorTripCount(Loop *NewLoop); 685 686 /// Returns a bitcasted value to the requested vector type. 687 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 688 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 689 const DataLayout &DL); 690 691 /// Emit a bypass check to see if the vector trip count is zero, including if 692 /// it overflows. 693 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 694 695 /// Emit a bypass check to see if all of the SCEV assumptions we've 696 /// had to make are correct. Returns the block containing the checks or 697 /// nullptr if no checks have been added. 698 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 699 700 /// Emit bypass checks to check any memory assumptions we may have made. 701 /// Returns the block containing the checks or nullptr if no checks have been 702 /// added. 703 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 704 705 /// Compute the transformed value of Index at offset StartValue using step 706 /// StepValue. 707 /// For integer induction, returns StartValue + Index * StepValue. 708 /// For pointer induction, returns StartValue[Index * StepValue]. 709 /// FIXME: The newly created binary instructions should contain nsw/nuw 710 /// flags, which can be found from the original scalar operations. 711 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 712 const DataLayout &DL, 713 const InductionDescriptor &ID) const; 714 715 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 716 /// vector loop preheader, middle block and scalar preheader. Also 717 /// allocate a loop object for the new vector loop and return it. 718 Loop *createVectorLoopSkeleton(StringRef Prefix); 719 720 /// Create new phi nodes for the induction variables to resume iteration count 721 /// in the scalar epilogue, from where the vectorized loop left off (given by 722 /// \p VectorTripCount). 723 /// In cases where the loop skeleton is more complicated (eg. epilogue 724 /// vectorization) and the resume values can come from an additional bypass 725 /// block, the \p AdditionalBypass pair provides information about the bypass 726 /// block and the end value on the edge from bypass to this loop. 727 void createInductionResumeValues( 728 Loop *L, Value *VectorTripCount, 729 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 730 731 /// Complete the loop skeleton by adding debug MDs, creating appropriate 732 /// conditional branches in the middle block, preparing the builder and 733 /// running the verifier. Take in the vector loop \p L as argument, and return 734 /// the preheader of the completed vector loop. 735 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 736 737 /// Add additional metadata to \p To that was not present on \p Orig. 738 /// 739 /// Currently this is used to add the noalias annotations based on the 740 /// inserted memchecks. Use this for instructions that are *cloned* into the 741 /// vector loop. 742 void addNewMetadata(Instruction *To, const Instruction *Orig); 743 744 /// Add metadata from one instruction to another. 745 /// 746 /// This includes both the original MDs from \p From and additional ones (\see 747 /// addNewMetadata). Use this for *newly created* instructions in the vector 748 /// loop. 749 void addMetadata(Instruction *To, Instruction *From); 750 751 /// Similar to the previous function but it adds the metadata to a 752 /// vector of instructions. 753 void addMetadata(ArrayRef<Value *> To, Instruction *From); 754 755 /// Allow subclasses to override and print debug traces before/after vplan 756 /// execution, when trace information is requested. 757 virtual void printDebugTracesAtStart(){}; 758 virtual void printDebugTracesAtEnd(){}; 759 760 /// The original loop. 761 Loop *OrigLoop; 762 763 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 764 /// dynamic knowledge to simplify SCEV expressions and converts them to a 765 /// more usable form. 766 PredicatedScalarEvolution &PSE; 767 768 /// Loop Info. 769 LoopInfo *LI; 770 771 /// Dominator Tree. 772 DominatorTree *DT; 773 774 /// Alias Analysis. 775 AAResults *AA; 776 777 /// Target Library Info. 778 const TargetLibraryInfo *TLI; 779 780 /// Target Transform Info. 781 const TargetTransformInfo *TTI; 782 783 /// Assumption Cache. 784 AssumptionCache *AC; 785 786 /// Interface to emit optimization remarks. 787 OptimizationRemarkEmitter *ORE; 788 789 /// LoopVersioning. It's only set up (non-null) if memchecks were 790 /// used. 791 /// 792 /// This is currently only used to add no-alias metadata based on the 793 /// memchecks. The actually versioning is performed manually. 794 std::unique_ptr<LoopVersioning> LVer; 795 796 /// The vectorization SIMD factor to use. Each vector will have this many 797 /// vector elements. 798 ElementCount VF; 799 800 /// The vectorization unroll factor to use. Each scalar is vectorized to this 801 /// many different vector instructions. 802 unsigned UF; 803 804 /// The builder that we use 805 IRBuilder<> Builder; 806 807 // --- Vectorization state --- 808 809 /// The vector-loop preheader. 810 BasicBlock *LoopVectorPreHeader; 811 812 /// The scalar-loop preheader. 813 BasicBlock *LoopScalarPreHeader; 814 815 /// Middle Block between the vector and the scalar. 816 BasicBlock *LoopMiddleBlock; 817 818 /// The unique ExitBlock of the scalar loop if one exists. Note that 819 /// there can be multiple exiting edges reaching this block. 820 BasicBlock *LoopExitBlock; 821 822 /// The vector loop body. 823 BasicBlock *LoopVectorBody; 824 825 /// The scalar loop body. 826 BasicBlock *LoopScalarBody; 827 828 /// A list of all bypass blocks. The first block is the entry of the loop. 829 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 830 831 /// The new Induction variable which was added to the new block. 832 PHINode *Induction = nullptr; 833 834 /// The induction variable of the old basic block. 835 PHINode *OldInduction = nullptr; 836 837 /// Store instructions that were predicated. 838 SmallVector<Instruction *, 4> PredicatedInstructions; 839 840 /// Trip count of the original loop. 841 Value *TripCount = nullptr; 842 843 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 844 Value *VectorTripCount = nullptr; 845 846 /// The legality analysis. 847 LoopVectorizationLegality *Legal; 848 849 /// The profitablity analysis. 850 LoopVectorizationCostModel *Cost; 851 852 // Record whether runtime checks are added. 853 bool AddedSafetyChecks = false; 854 855 // Holds the end values for each induction variable. We save the end values 856 // so we can later fix-up the external users of the induction variables. 857 DenseMap<PHINode *, Value *> IVEndValues; 858 859 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 860 // fixed up at the end of vector code generation. 861 SmallVector<PHINode *, 8> OrigPHIsToFix; 862 863 /// BFI and PSI are used to check for profile guided size optimizations. 864 BlockFrequencyInfo *BFI; 865 ProfileSummaryInfo *PSI; 866 867 // Whether this loop should be optimized for size based on profile guided size 868 // optimizatios. 869 bool OptForSizeBasedOnProfile; 870 871 /// Structure to hold information about generated runtime checks, responsible 872 /// for cleaning the checks, if vectorization turns out unprofitable. 873 GeneratedRTChecks &RTChecks; 874 }; 875 876 class InnerLoopUnroller : public InnerLoopVectorizer { 877 public: 878 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 879 LoopInfo *LI, DominatorTree *DT, 880 const TargetLibraryInfo *TLI, 881 const TargetTransformInfo *TTI, AssumptionCache *AC, 882 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 883 LoopVectorizationLegality *LVL, 884 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 885 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 886 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 887 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 888 BFI, PSI, Check) {} 889 890 private: 891 Value *getBroadcastInstrs(Value *V) override; 892 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 893 Instruction::BinaryOps Opcode = 894 Instruction::BinaryOpsEnd) override; 895 Value *reverseVector(Value *Vec) override; 896 }; 897 898 /// Encapsulate information regarding vectorization of a loop and its epilogue. 899 /// This information is meant to be updated and used across two stages of 900 /// epilogue vectorization. 901 struct EpilogueLoopVectorizationInfo { 902 ElementCount MainLoopVF = ElementCount::getFixed(0); 903 unsigned MainLoopUF = 0; 904 ElementCount EpilogueVF = ElementCount::getFixed(0); 905 unsigned EpilogueUF = 0; 906 BasicBlock *MainLoopIterationCountCheck = nullptr; 907 BasicBlock *EpilogueIterationCountCheck = nullptr; 908 BasicBlock *SCEVSafetyCheck = nullptr; 909 BasicBlock *MemSafetyCheck = nullptr; 910 Value *TripCount = nullptr; 911 Value *VectorTripCount = nullptr; 912 913 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 914 ElementCount EVF, unsigned EUF) 915 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 916 assert(EUF == 1 && 917 "A high UF for the epilogue loop is likely not beneficial."); 918 } 919 }; 920 921 /// An extension of the inner loop vectorizer that creates a skeleton for a 922 /// vectorized loop that has its epilogue (residual) also vectorized. 923 /// The idea is to run the vplan on a given loop twice, firstly to setup the 924 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 925 /// from the first step and vectorize the epilogue. This is achieved by 926 /// deriving two concrete strategy classes from this base class and invoking 927 /// them in succession from the loop vectorizer planner. 928 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 929 public: 930 InnerLoopAndEpilogueVectorizer( 931 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 932 DominatorTree *DT, const TargetLibraryInfo *TLI, 933 const TargetTransformInfo *TTI, AssumptionCache *AC, 934 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 935 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 936 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 937 GeneratedRTChecks &Checks) 938 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 939 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 940 Checks), 941 EPI(EPI) {} 942 943 // Override this function to handle the more complex control flow around the 944 // three loops. 945 BasicBlock *createVectorizedLoopSkeleton() final override { 946 return createEpilogueVectorizedLoopSkeleton(); 947 } 948 949 /// The interface for creating a vectorized skeleton using one of two 950 /// different strategies, each corresponding to one execution of the vplan 951 /// as described above. 952 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 953 954 /// Holds and updates state information required to vectorize the main loop 955 /// and its epilogue in two separate passes. This setup helps us avoid 956 /// regenerating and recomputing runtime safety checks. It also helps us to 957 /// shorten the iteration-count-check path length for the cases where the 958 /// iteration count of the loop is so small that the main vector loop is 959 /// completely skipped. 960 EpilogueLoopVectorizationInfo &EPI; 961 }; 962 963 /// A specialized derived class of inner loop vectorizer that performs 964 /// vectorization of *main* loops in the process of vectorizing loops and their 965 /// epilogues. 966 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 967 public: 968 EpilogueVectorizerMainLoop( 969 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 970 DominatorTree *DT, const TargetLibraryInfo *TLI, 971 const TargetTransformInfo *TTI, AssumptionCache *AC, 972 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 973 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 974 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 975 GeneratedRTChecks &Check) 976 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 977 EPI, LVL, CM, BFI, PSI, Check) {} 978 /// Implements the interface for creating a vectorized skeleton using the 979 /// *main loop* strategy (ie the first pass of vplan execution). 980 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 981 982 protected: 983 /// Emits an iteration count bypass check once for the main loop (when \p 984 /// ForEpilogue is false) and once for the epilogue loop (when \p 985 /// ForEpilogue is true). 986 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 987 bool ForEpilogue); 988 void printDebugTracesAtStart() override; 989 void printDebugTracesAtEnd() override; 990 }; 991 992 // A specialized derived class of inner loop vectorizer that performs 993 // vectorization of *epilogue* loops in the process of vectorizing loops and 994 // their epilogues. 995 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 996 public: 997 EpilogueVectorizerEpilogueLoop( 998 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 999 DominatorTree *DT, const TargetLibraryInfo *TLI, 1000 const TargetTransformInfo *TTI, AssumptionCache *AC, 1001 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1002 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1003 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1004 GeneratedRTChecks &Checks) 1005 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1006 EPI, LVL, CM, BFI, PSI, Checks) {} 1007 /// Implements the interface for creating a vectorized skeleton using the 1008 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1009 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1010 1011 protected: 1012 /// Emits an iteration count bypass check after the main vector loop has 1013 /// finished to see if there are any iterations left to execute by either 1014 /// the vector epilogue or the scalar epilogue. 1015 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1016 BasicBlock *Bypass, 1017 BasicBlock *Insert); 1018 void printDebugTracesAtStart() override; 1019 void printDebugTracesAtEnd() override; 1020 }; 1021 } // end namespace llvm 1022 1023 /// Look for a meaningful debug location on the instruction or it's 1024 /// operands. 1025 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1026 if (!I) 1027 return I; 1028 1029 DebugLoc Empty; 1030 if (I->getDebugLoc() != Empty) 1031 return I; 1032 1033 for (Use &Op : I->operands()) { 1034 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1035 if (OpInst->getDebugLoc() != Empty) 1036 return OpInst; 1037 } 1038 1039 return I; 1040 } 1041 1042 void InnerLoopVectorizer::setDebugLocFromInst( 1043 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 1044 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 1045 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1046 const DILocation *DIL = Inst->getDebugLoc(); 1047 1048 // When a FSDiscriminator is enabled, we don't need to add the multiply 1049 // factors to the discriminators. 1050 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1051 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1052 // FIXME: For scalable vectors, assume vscale=1. 1053 auto NewDIL = 1054 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1055 if (NewDIL) 1056 B->SetCurrentDebugLocation(NewDIL.getValue()); 1057 else 1058 LLVM_DEBUG(dbgs() 1059 << "Failed to create new discriminator: " 1060 << DIL->getFilename() << " Line: " << DIL->getLine()); 1061 } else 1062 B->SetCurrentDebugLocation(DIL); 1063 } else 1064 B->SetCurrentDebugLocation(DebugLoc()); 1065 } 1066 1067 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1068 /// is passed, the message relates to that particular instruction. 1069 #ifndef NDEBUG 1070 static void debugVectorizationMessage(const StringRef Prefix, 1071 const StringRef DebugMsg, 1072 Instruction *I) { 1073 dbgs() << "LV: " << Prefix << DebugMsg; 1074 if (I != nullptr) 1075 dbgs() << " " << *I; 1076 else 1077 dbgs() << '.'; 1078 dbgs() << '\n'; 1079 } 1080 #endif 1081 1082 /// Create an analysis remark that explains why vectorization failed 1083 /// 1084 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1085 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1086 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1087 /// the location of the remark. \return the remark object that can be 1088 /// streamed to. 1089 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1090 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1091 Value *CodeRegion = TheLoop->getHeader(); 1092 DebugLoc DL = TheLoop->getStartLoc(); 1093 1094 if (I) { 1095 CodeRegion = I->getParent(); 1096 // If there is no debug location attached to the instruction, revert back to 1097 // using the loop's. 1098 if (I->getDebugLoc()) 1099 DL = I->getDebugLoc(); 1100 } 1101 1102 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1103 } 1104 1105 /// Return a value for Step multiplied by VF. 1106 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1107 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1108 Constant *StepVal = ConstantInt::get( 1109 Step->getType(), 1110 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1111 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1112 } 1113 1114 namespace llvm { 1115 1116 /// Return the runtime value for VF. 1117 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1118 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1119 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1120 } 1121 1122 void reportVectorizationFailure(const StringRef DebugMsg, 1123 const StringRef OREMsg, const StringRef ORETag, 1124 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1125 Instruction *I) { 1126 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1127 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1128 ORE->emit( 1129 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1130 << "loop not vectorized: " << OREMsg); 1131 } 1132 1133 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1134 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1135 Instruction *I) { 1136 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1137 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1138 ORE->emit( 1139 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1140 << Msg); 1141 } 1142 1143 } // end namespace llvm 1144 1145 #ifndef NDEBUG 1146 /// \return string containing a file name and a line # for the given loop. 1147 static std::string getDebugLocString(const Loop *L) { 1148 std::string Result; 1149 if (L) { 1150 raw_string_ostream OS(Result); 1151 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1152 LoopDbgLoc.print(OS); 1153 else 1154 // Just print the module name. 1155 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1156 OS.flush(); 1157 } 1158 return Result; 1159 } 1160 #endif 1161 1162 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1163 const Instruction *Orig) { 1164 // If the loop was versioned with memchecks, add the corresponding no-alias 1165 // metadata. 1166 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1167 LVer->annotateInstWithNoAlias(To, Orig); 1168 } 1169 1170 void InnerLoopVectorizer::addMetadata(Instruction *To, 1171 Instruction *From) { 1172 propagateMetadata(To, From); 1173 addNewMetadata(To, From); 1174 } 1175 1176 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1177 Instruction *From) { 1178 for (Value *V : To) { 1179 if (Instruction *I = dyn_cast<Instruction>(V)) 1180 addMetadata(I, From); 1181 } 1182 } 1183 1184 namespace llvm { 1185 1186 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1187 // lowered. 1188 enum ScalarEpilogueLowering { 1189 1190 // The default: allowing scalar epilogues. 1191 CM_ScalarEpilogueAllowed, 1192 1193 // Vectorization with OptForSize: don't allow epilogues. 1194 CM_ScalarEpilogueNotAllowedOptSize, 1195 1196 // A special case of vectorisation with OptForSize: loops with a very small 1197 // trip count are considered for vectorization under OptForSize, thereby 1198 // making sure the cost of their loop body is dominant, free of runtime 1199 // guards and scalar iteration overheads. 1200 CM_ScalarEpilogueNotAllowedLowTripLoop, 1201 1202 // Loop hint predicate indicating an epilogue is undesired. 1203 CM_ScalarEpilogueNotNeededUsePredicate, 1204 1205 // Directive indicating we must either tail fold or not vectorize 1206 CM_ScalarEpilogueNotAllowedUsePredicate 1207 }; 1208 1209 /// ElementCountComparator creates a total ordering for ElementCount 1210 /// for the purposes of using it in a set structure. 1211 struct ElementCountComparator { 1212 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1213 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1214 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1215 } 1216 }; 1217 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1218 1219 /// LoopVectorizationCostModel - estimates the expected speedups due to 1220 /// vectorization. 1221 /// In many cases vectorization is not profitable. This can happen because of 1222 /// a number of reasons. In this class we mainly attempt to predict the 1223 /// expected speedup/slowdowns due to the supported instruction set. We use the 1224 /// TargetTransformInfo to query the different backends for the cost of 1225 /// different operations. 1226 class LoopVectorizationCostModel { 1227 public: 1228 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1229 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1230 LoopVectorizationLegality *Legal, 1231 const TargetTransformInfo &TTI, 1232 const TargetLibraryInfo *TLI, DemandedBits *DB, 1233 AssumptionCache *AC, 1234 OptimizationRemarkEmitter *ORE, const Function *F, 1235 const LoopVectorizeHints *Hints, 1236 InterleavedAccessInfo &IAI) 1237 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1238 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1239 Hints(Hints), InterleaveInfo(IAI) {} 1240 1241 /// \return An upper bound for the vectorization factors (both fixed and 1242 /// scalable). If the factors are 0, vectorization and interleaving should be 1243 /// avoided up front. 1244 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1245 1246 /// \return True if runtime checks are required for vectorization, and false 1247 /// otherwise. 1248 bool runtimeChecksRequired(); 1249 1250 /// \return The most profitable vectorization factor and the cost of that VF. 1251 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1252 /// then this vectorization factor will be selected if vectorization is 1253 /// possible. 1254 VectorizationFactor 1255 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1256 1257 VectorizationFactor 1258 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1259 const LoopVectorizationPlanner &LVP); 1260 1261 /// Setup cost-based decisions for user vectorization factor. 1262 /// \return true if the UserVF is a feasible VF to be chosen. 1263 bool selectUserVectorizationFactor(ElementCount UserVF) { 1264 collectUniformsAndScalars(UserVF); 1265 collectInstsToScalarize(UserVF); 1266 return expectedCost(UserVF).first.isValid(); 1267 } 1268 1269 /// \return The size (in bits) of the smallest and widest types in the code 1270 /// that needs to be vectorized. We ignore values that remain scalar such as 1271 /// 64 bit loop indices. 1272 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1273 1274 /// \return The desired interleave count. 1275 /// If interleave count has been specified by metadata it will be returned. 1276 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1277 /// are the selected vectorization factor and the cost of the selected VF. 1278 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1279 1280 /// Memory access instruction may be vectorized in more than one way. 1281 /// Form of instruction after vectorization depends on cost. 1282 /// This function takes cost-based decisions for Load/Store instructions 1283 /// and collects them in a map. This decisions map is used for building 1284 /// the lists of loop-uniform and loop-scalar instructions. 1285 /// The calculated cost is saved with widening decision in order to 1286 /// avoid redundant calculations. 1287 void setCostBasedWideningDecision(ElementCount VF); 1288 1289 /// A struct that represents some properties of the register usage 1290 /// of a loop. 1291 struct RegisterUsage { 1292 /// Holds the number of loop invariant values that are used in the loop. 1293 /// The key is ClassID of target-provided register class. 1294 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1295 /// Holds the maximum number of concurrent live intervals in the loop. 1296 /// The key is ClassID of target-provided register class. 1297 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1298 }; 1299 1300 /// \return Returns information about the register usages of the loop for the 1301 /// given vectorization factors. 1302 SmallVector<RegisterUsage, 8> 1303 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1304 1305 /// Collect values we want to ignore in the cost model. 1306 void collectValuesToIgnore(); 1307 1308 /// Collect all element types in the loop for which widening is needed. 1309 void collectElementTypesForWidening(); 1310 1311 /// Split reductions into those that happen in the loop, and those that happen 1312 /// outside. In loop reductions are collected into InLoopReductionChains. 1313 void collectInLoopReductions(); 1314 1315 /// Returns true if we should use strict in-order reductions for the given 1316 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1317 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1318 /// of FP operations. 1319 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1320 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1321 } 1322 1323 /// \returns The smallest bitwidth each instruction can be represented with. 1324 /// The vector equivalents of these instructions should be truncated to this 1325 /// type. 1326 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1327 return MinBWs; 1328 } 1329 1330 /// \returns True if it is more profitable to scalarize instruction \p I for 1331 /// vectorization factor \p VF. 1332 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1333 assert(VF.isVector() && 1334 "Profitable to scalarize relevant only for VF > 1."); 1335 1336 // Cost model is not run in the VPlan-native path - return conservative 1337 // result until this changes. 1338 if (EnableVPlanNativePath) 1339 return false; 1340 1341 auto Scalars = InstsToScalarize.find(VF); 1342 assert(Scalars != InstsToScalarize.end() && 1343 "VF not yet analyzed for scalarization profitability"); 1344 return Scalars->second.find(I) != Scalars->second.end(); 1345 } 1346 1347 /// Returns true if \p I is known to be uniform after vectorization. 1348 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1349 if (VF.isScalar()) 1350 return true; 1351 1352 // Cost model is not run in the VPlan-native path - return conservative 1353 // result until this changes. 1354 if (EnableVPlanNativePath) 1355 return false; 1356 1357 auto UniformsPerVF = Uniforms.find(VF); 1358 assert(UniformsPerVF != Uniforms.end() && 1359 "VF not yet analyzed for uniformity"); 1360 return UniformsPerVF->second.count(I); 1361 } 1362 1363 /// Returns true if \p I is known to be scalar after vectorization. 1364 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1365 if (VF.isScalar()) 1366 return true; 1367 1368 // Cost model is not run in the VPlan-native path - return conservative 1369 // result until this changes. 1370 if (EnableVPlanNativePath) 1371 return false; 1372 1373 auto ScalarsPerVF = Scalars.find(VF); 1374 assert(ScalarsPerVF != Scalars.end() && 1375 "Scalar values are not calculated for VF"); 1376 return ScalarsPerVF->second.count(I); 1377 } 1378 1379 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1380 /// for vectorization factor \p VF. 1381 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1382 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1383 !isProfitableToScalarize(I, VF) && 1384 !isScalarAfterVectorization(I, VF); 1385 } 1386 1387 /// Decision that was taken during cost calculation for memory instruction. 1388 enum InstWidening { 1389 CM_Unknown, 1390 CM_Widen, // For consecutive accesses with stride +1. 1391 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1392 CM_Interleave, 1393 CM_GatherScatter, 1394 CM_Scalarize 1395 }; 1396 1397 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1398 /// instruction \p I and vector width \p VF. 1399 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1400 InstructionCost Cost) { 1401 assert(VF.isVector() && "Expected VF >=2"); 1402 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1403 } 1404 1405 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1406 /// interleaving group \p Grp and vector width \p VF. 1407 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1408 ElementCount VF, InstWidening W, 1409 InstructionCost Cost) { 1410 assert(VF.isVector() && "Expected VF >=2"); 1411 /// Broadcast this decicion to all instructions inside the group. 1412 /// But the cost will be assigned to one instruction only. 1413 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1414 if (auto *I = Grp->getMember(i)) { 1415 if (Grp->getInsertPos() == I) 1416 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1417 else 1418 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1419 } 1420 } 1421 } 1422 1423 /// Return the cost model decision for the given instruction \p I and vector 1424 /// width \p VF. Return CM_Unknown if this instruction did not pass 1425 /// through the cost modeling. 1426 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1427 assert(VF.isVector() && "Expected VF to be a vector VF"); 1428 // Cost model is not run in the VPlan-native path - return conservative 1429 // result until this changes. 1430 if (EnableVPlanNativePath) 1431 return CM_GatherScatter; 1432 1433 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1434 auto Itr = WideningDecisions.find(InstOnVF); 1435 if (Itr == WideningDecisions.end()) 1436 return CM_Unknown; 1437 return Itr->second.first; 1438 } 1439 1440 /// Return the vectorization cost for the given instruction \p I and vector 1441 /// width \p VF. 1442 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1443 assert(VF.isVector() && "Expected VF >=2"); 1444 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1445 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1446 "The cost is not calculated"); 1447 return WideningDecisions[InstOnVF].second; 1448 } 1449 1450 /// Return True if instruction \p I is an optimizable truncate whose operand 1451 /// is an induction variable. Such a truncate will be removed by adding a new 1452 /// induction variable with the destination type. 1453 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1454 // If the instruction is not a truncate, return false. 1455 auto *Trunc = dyn_cast<TruncInst>(I); 1456 if (!Trunc) 1457 return false; 1458 1459 // Get the source and destination types of the truncate. 1460 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1461 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1462 1463 // If the truncate is free for the given types, return false. Replacing a 1464 // free truncate with an induction variable would add an induction variable 1465 // update instruction to each iteration of the loop. We exclude from this 1466 // check the primary induction variable since it will need an update 1467 // instruction regardless. 1468 Value *Op = Trunc->getOperand(0); 1469 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1470 return false; 1471 1472 // If the truncated value is not an induction variable, return false. 1473 return Legal->isInductionPhi(Op); 1474 } 1475 1476 /// Collects the instructions to scalarize for each predicated instruction in 1477 /// the loop. 1478 void collectInstsToScalarize(ElementCount VF); 1479 1480 /// Collect Uniform and Scalar values for the given \p VF. 1481 /// The sets depend on CM decision for Load/Store instructions 1482 /// that may be vectorized as interleave, gather-scatter or scalarized. 1483 void collectUniformsAndScalars(ElementCount VF) { 1484 // Do the analysis once. 1485 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1486 return; 1487 setCostBasedWideningDecision(VF); 1488 collectLoopUniforms(VF); 1489 collectLoopScalars(VF); 1490 } 1491 1492 /// Returns true if the target machine supports masked store operation 1493 /// for the given \p DataType and kind of access to \p Ptr. 1494 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1495 return Legal->isConsecutivePtr(DataType, Ptr) && 1496 TTI.isLegalMaskedStore(DataType, Alignment); 1497 } 1498 1499 /// Returns true if the target machine supports masked load operation 1500 /// for the given \p DataType and kind of access to \p Ptr. 1501 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1502 return Legal->isConsecutivePtr(DataType, Ptr) && 1503 TTI.isLegalMaskedLoad(DataType, Alignment); 1504 } 1505 1506 /// Returns true if the target machine can represent \p V as a masked gather 1507 /// or scatter operation. 1508 bool isLegalGatherOrScatter(Value *V) { 1509 bool LI = isa<LoadInst>(V); 1510 bool SI = isa<StoreInst>(V); 1511 if (!LI && !SI) 1512 return false; 1513 auto *Ty = getLoadStoreType(V); 1514 Align Align = getLoadStoreAlignment(V); 1515 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1516 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1517 } 1518 1519 /// Returns true if the target machine supports all of the reduction 1520 /// variables found for the given VF. 1521 bool canVectorizeReductions(ElementCount VF) const { 1522 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1523 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1524 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1525 })); 1526 } 1527 1528 /// Returns true if \p I is an instruction that will be scalarized with 1529 /// predication. Such instructions include conditional stores and 1530 /// instructions that may divide by zero. 1531 /// If a non-zero VF has been calculated, we check if I will be scalarized 1532 /// predication for that VF. 1533 bool isScalarWithPredication(Instruction *I) const; 1534 1535 // Returns true if \p I is an instruction that will be predicated either 1536 // through scalar predication or masked load/store or masked gather/scatter. 1537 // Superset of instructions that return true for isScalarWithPredication. 1538 bool isPredicatedInst(Instruction *I) { 1539 if (!blockNeedsPredication(I->getParent())) 1540 return false; 1541 // Loads and stores that need some form of masked operation are predicated 1542 // instructions. 1543 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1544 return Legal->isMaskRequired(I); 1545 return isScalarWithPredication(I); 1546 } 1547 1548 /// Returns true if \p I is a memory instruction with consecutive memory 1549 /// access that can be widened. 1550 bool 1551 memoryInstructionCanBeWidened(Instruction *I, 1552 ElementCount VF = ElementCount::getFixed(1)); 1553 1554 /// Returns true if \p I is a memory instruction in an interleaved-group 1555 /// of memory accesses that can be vectorized with wide vector loads/stores 1556 /// and shuffles. 1557 bool 1558 interleavedAccessCanBeWidened(Instruction *I, 1559 ElementCount VF = ElementCount::getFixed(1)); 1560 1561 /// Check if \p Instr belongs to any interleaved access group. 1562 bool isAccessInterleaved(Instruction *Instr) { 1563 return InterleaveInfo.isInterleaved(Instr); 1564 } 1565 1566 /// Get the interleaved access group that \p Instr belongs to. 1567 const InterleaveGroup<Instruction> * 1568 getInterleavedAccessGroup(Instruction *Instr) { 1569 return InterleaveInfo.getInterleaveGroup(Instr); 1570 } 1571 1572 /// Returns true if we're required to use a scalar epilogue for at least 1573 /// the final iteration of the original loop. 1574 bool requiresScalarEpilogue(ElementCount VF) const { 1575 if (!isScalarEpilogueAllowed()) 1576 return false; 1577 // If we might exit from anywhere but the latch, must run the exiting 1578 // iteration in scalar form. 1579 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1580 return true; 1581 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1582 } 1583 1584 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1585 /// loop hint annotation. 1586 bool isScalarEpilogueAllowed() const { 1587 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1588 } 1589 1590 /// Returns true if all loop blocks should be masked to fold tail loop. 1591 bool foldTailByMasking() const { return FoldTailByMasking; } 1592 1593 bool blockNeedsPredication(BasicBlock *BB) const { 1594 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1595 } 1596 1597 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1598 /// nodes to the chain of instructions representing the reductions. Uses a 1599 /// MapVector to ensure deterministic iteration order. 1600 using ReductionChainMap = 1601 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1602 1603 /// Return the chain of instructions representing an inloop reduction. 1604 const ReductionChainMap &getInLoopReductionChains() const { 1605 return InLoopReductionChains; 1606 } 1607 1608 /// Returns true if the Phi is part of an inloop reduction. 1609 bool isInLoopReduction(PHINode *Phi) const { 1610 return InLoopReductionChains.count(Phi); 1611 } 1612 1613 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1614 /// with factor VF. Return the cost of the instruction, including 1615 /// scalarization overhead if it's needed. 1616 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1617 1618 /// Estimate cost of a call instruction CI if it were vectorized with factor 1619 /// VF. Return the cost of the instruction, including scalarization overhead 1620 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1621 /// scalarized - 1622 /// i.e. either vector version isn't available, or is too expensive. 1623 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1624 bool &NeedToScalarize) const; 1625 1626 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1627 /// that of B. 1628 bool isMoreProfitable(const VectorizationFactor &A, 1629 const VectorizationFactor &B) const; 1630 1631 /// Invalidates decisions already taken by the cost model. 1632 void invalidateCostModelingDecisions() { 1633 WideningDecisions.clear(); 1634 Uniforms.clear(); 1635 Scalars.clear(); 1636 } 1637 1638 private: 1639 unsigned NumPredStores = 0; 1640 1641 /// \return An upper bound for the vectorization factors for both 1642 /// fixed and scalable vectorization, where the minimum-known number of 1643 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1644 /// disabled or unsupported, then the scalable part will be equal to 1645 /// ElementCount::getScalable(0). 1646 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1647 ElementCount UserVF); 1648 1649 /// \return the maximized element count based on the targets vector 1650 /// registers and the loop trip-count, but limited to a maximum safe VF. 1651 /// This is a helper function of computeFeasibleMaxVF. 1652 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1653 /// issue that occurred on one of the buildbots which cannot be reproduced 1654 /// without having access to the properietary compiler (see comments on 1655 /// D98509). The issue is currently under investigation and this workaround 1656 /// will be removed as soon as possible. 1657 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1658 unsigned SmallestType, 1659 unsigned WidestType, 1660 const ElementCount &MaxSafeVF); 1661 1662 /// \return the maximum legal scalable VF, based on the safe max number 1663 /// of elements. 1664 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1665 1666 /// The vectorization cost is a combination of the cost itself and a boolean 1667 /// indicating whether any of the contributing operations will actually 1668 /// operate on vector values after type legalization in the backend. If this 1669 /// latter value is false, then all operations will be scalarized (i.e. no 1670 /// vectorization has actually taken place). 1671 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1672 1673 /// Returns the expected execution cost. The unit of the cost does 1674 /// not matter because we use the 'cost' units to compare different 1675 /// vector widths. The cost that is returned is *not* normalized by 1676 /// the factor width. If \p Invalid is not nullptr, this function 1677 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1678 /// each instruction that has an Invalid cost for the given VF. 1679 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1680 VectorizationCostTy 1681 expectedCost(ElementCount VF, 1682 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1683 1684 /// Returns the execution time cost of an instruction for a given vector 1685 /// width. Vector width of one means scalar. 1686 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1687 1688 /// The cost-computation logic from getInstructionCost which provides 1689 /// the vector type as an output parameter. 1690 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1691 Type *&VectorTy); 1692 1693 /// Return the cost of instructions in an inloop reduction pattern, if I is 1694 /// part of that pattern. 1695 Optional<InstructionCost> 1696 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1697 TTI::TargetCostKind CostKind); 1698 1699 /// Calculate vectorization cost of memory instruction \p I. 1700 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1701 1702 /// The cost computation for scalarized memory instruction. 1703 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1704 1705 /// The cost computation for interleaving group of memory instructions. 1706 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1707 1708 /// The cost computation for Gather/Scatter instruction. 1709 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1710 1711 /// The cost computation for widening instruction \p I with consecutive 1712 /// memory access. 1713 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1714 1715 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1716 /// Load: scalar load + broadcast. 1717 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1718 /// element) 1719 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1720 1721 /// Estimate the overhead of scalarizing an instruction. This is a 1722 /// convenience wrapper for the type-based getScalarizationOverhead API. 1723 InstructionCost getScalarizationOverhead(Instruction *I, 1724 ElementCount VF) const; 1725 1726 /// Returns whether the instruction is a load or store and will be a emitted 1727 /// as a vector operation. 1728 bool isConsecutiveLoadOrStore(Instruction *I); 1729 1730 /// Returns true if an artificially high cost for emulated masked memrefs 1731 /// should be used. 1732 bool useEmulatedMaskMemRefHack(Instruction *I); 1733 1734 /// Map of scalar integer values to the smallest bitwidth they can be legally 1735 /// represented as. The vector equivalents of these values should be truncated 1736 /// to this type. 1737 MapVector<Instruction *, uint64_t> MinBWs; 1738 1739 /// A type representing the costs for instructions if they were to be 1740 /// scalarized rather than vectorized. The entries are Instruction-Cost 1741 /// pairs. 1742 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1743 1744 /// A set containing all BasicBlocks that are known to present after 1745 /// vectorization as a predicated block. 1746 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1747 1748 /// Records whether it is allowed to have the original scalar loop execute at 1749 /// least once. This may be needed as a fallback loop in case runtime 1750 /// aliasing/dependence checks fail, or to handle the tail/remainder 1751 /// iterations when the trip count is unknown or doesn't divide by the VF, 1752 /// or as a peel-loop to handle gaps in interleave-groups. 1753 /// Under optsize and when the trip count is very small we don't allow any 1754 /// iterations to execute in the scalar loop. 1755 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1756 1757 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1758 bool FoldTailByMasking = false; 1759 1760 /// A map holding scalar costs for different vectorization factors. The 1761 /// presence of a cost for an instruction in the mapping indicates that the 1762 /// instruction will be scalarized when vectorizing with the associated 1763 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1764 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1765 1766 /// Holds the instructions known to be uniform after vectorization. 1767 /// The data is collected per VF. 1768 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1769 1770 /// Holds the instructions known to be scalar after vectorization. 1771 /// The data is collected per VF. 1772 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1773 1774 /// Holds the instructions (address computations) that are forced to be 1775 /// scalarized. 1776 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1777 1778 /// PHINodes of the reductions that should be expanded in-loop along with 1779 /// their associated chains of reduction operations, in program order from top 1780 /// (PHI) to bottom 1781 ReductionChainMap InLoopReductionChains; 1782 1783 /// A Map of inloop reduction operations and their immediate chain operand. 1784 /// FIXME: This can be removed once reductions can be costed correctly in 1785 /// vplan. This was added to allow quick lookup to the inloop operations, 1786 /// without having to loop through InLoopReductionChains. 1787 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1788 1789 /// Returns the expected difference in cost from scalarizing the expression 1790 /// feeding a predicated instruction \p PredInst. The instructions to 1791 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1792 /// non-negative return value implies the expression will be scalarized. 1793 /// Currently, only single-use chains are considered for scalarization. 1794 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1795 ElementCount VF); 1796 1797 /// Collect the instructions that are uniform after vectorization. An 1798 /// instruction is uniform if we represent it with a single scalar value in 1799 /// the vectorized loop corresponding to each vector iteration. Examples of 1800 /// uniform instructions include pointer operands of consecutive or 1801 /// interleaved memory accesses. Note that although uniformity implies an 1802 /// instruction will be scalar, the reverse is not true. In general, a 1803 /// scalarized instruction will be represented by VF scalar values in the 1804 /// vectorized loop, each corresponding to an iteration of the original 1805 /// scalar loop. 1806 void collectLoopUniforms(ElementCount VF); 1807 1808 /// Collect the instructions that are scalar after vectorization. An 1809 /// instruction is scalar if it is known to be uniform or will be scalarized 1810 /// during vectorization. Non-uniform scalarized instructions will be 1811 /// represented by VF values in the vectorized loop, each corresponding to an 1812 /// iteration of the original scalar loop. 1813 void collectLoopScalars(ElementCount VF); 1814 1815 /// Keeps cost model vectorization decision and cost for instructions. 1816 /// Right now it is used for memory instructions only. 1817 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1818 std::pair<InstWidening, InstructionCost>>; 1819 1820 DecisionList WideningDecisions; 1821 1822 /// Returns true if \p V is expected to be vectorized and it needs to be 1823 /// extracted. 1824 bool needsExtract(Value *V, ElementCount VF) const { 1825 Instruction *I = dyn_cast<Instruction>(V); 1826 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1827 TheLoop->isLoopInvariant(I)) 1828 return false; 1829 1830 // Assume we can vectorize V (and hence we need extraction) if the 1831 // scalars are not computed yet. This can happen, because it is called 1832 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1833 // the scalars are collected. That should be a safe assumption in most 1834 // cases, because we check if the operands have vectorizable types 1835 // beforehand in LoopVectorizationLegality. 1836 return Scalars.find(VF) == Scalars.end() || 1837 !isScalarAfterVectorization(I, VF); 1838 }; 1839 1840 /// Returns a range containing only operands needing to be extracted. 1841 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1842 ElementCount VF) const { 1843 return SmallVector<Value *, 4>(make_filter_range( 1844 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1845 } 1846 1847 /// Determines if we have the infrastructure to vectorize loop \p L and its 1848 /// epilogue, assuming the main loop is vectorized by \p VF. 1849 bool isCandidateForEpilogueVectorization(const Loop &L, 1850 const ElementCount VF) const; 1851 1852 /// Returns true if epilogue vectorization is considered profitable, and 1853 /// false otherwise. 1854 /// \p VF is the vectorization factor chosen for the original loop. 1855 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1856 1857 public: 1858 /// The loop that we evaluate. 1859 Loop *TheLoop; 1860 1861 /// Predicated scalar evolution analysis. 1862 PredicatedScalarEvolution &PSE; 1863 1864 /// Loop Info analysis. 1865 LoopInfo *LI; 1866 1867 /// Vectorization legality. 1868 LoopVectorizationLegality *Legal; 1869 1870 /// Vector target information. 1871 const TargetTransformInfo &TTI; 1872 1873 /// Target Library Info. 1874 const TargetLibraryInfo *TLI; 1875 1876 /// Demanded bits analysis. 1877 DemandedBits *DB; 1878 1879 /// Assumption cache. 1880 AssumptionCache *AC; 1881 1882 /// Interface to emit optimization remarks. 1883 OptimizationRemarkEmitter *ORE; 1884 1885 const Function *TheFunction; 1886 1887 /// Loop Vectorize Hint. 1888 const LoopVectorizeHints *Hints; 1889 1890 /// The interleave access information contains groups of interleaved accesses 1891 /// with the same stride and close to each other. 1892 InterleavedAccessInfo &InterleaveInfo; 1893 1894 /// Values to ignore in the cost model. 1895 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1896 1897 /// Values to ignore in the cost model when VF > 1. 1898 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1899 1900 /// All element types found in the loop. 1901 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1902 1903 /// Profitable vector factors. 1904 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1905 }; 1906 } // end namespace llvm 1907 1908 /// Helper struct to manage generating runtime checks for vectorization. 1909 /// 1910 /// The runtime checks are created up-front in temporary blocks to allow better 1911 /// estimating the cost and un-linked from the existing IR. After deciding to 1912 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1913 /// temporary blocks are completely removed. 1914 class GeneratedRTChecks { 1915 /// Basic block which contains the generated SCEV checks, if any. 1916 BasicBlock *SCEVCheckBlock = nullptr; 1917 1918 /// The value representing the result of the generated SCEV checks. If it is 1919 /// nullptr, either no SCEV checks have been generated or they have been used. 1920 Value *SCEVCheckCond = nullptr; 1921 1922 /// Basic block which contains the generated memory runtime checks, if any. 1923 BasicBlock *MemCheckBlock = nullptr; 1924 1925 /// The value representing the result of the generated memory runtime checks. 1926 /// If it is nullptr, either no memory runtime checks have been generated or 1927 /// they have been used. 1928 Value *MemRuntimeCheckCond = nullptr; 1929 1930 DominatorTree *DT; 1931 LoopInfo *LI; 1932 1933 SCEVExpander SCEVExp; 1934 SCEVExpander MemCheckExp; 1935 1936 public: 1937 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1938 const DataLayout &DL) 1939 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1940 MemCheckExp(SE, DL, "scev.check") {} 1941 1942 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1943 /// accurately estimate the cost of the runtime checks. The blocks are 1944 /// un-linked from the IR and is added back during vector code generation. If 1945 /// there is no vector code generation, the check blocks are removed 1946 /// completely. 1947 void Create(Loop *L, const LoopAccessInfo &LAI, 1948 const SCEVUnionPredicate &UnionPred) { 1949 1950 BasicBlock *LoopHeader = L->getHeader(); 1951 BasicBlock *Preheader = L->getLoopPreheader(); 1952 1953 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1954 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1955 // may be used by SCEVExpander. The blocks will be un-linked from their 1956 // predecessors and removed from LI & DT at the end of the function. 1957 if (!UnionPred.isAlwaysTrue()) { 1958 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1959 nullptr, "vector.scevcheck"); 1960 1961 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1962 &UnionPred, SCEVCheckBlock->getTerminator()); 1963 } 1964 1965 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1966 if (RtPtrChecking.Need) { 1967 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1968 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1969 "vector.memcheck"); 1970 1971 MemRuntimeCheckCond = 1972 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1973 RtPtrChecking.getChecks(), MemCheckExp); 1974 assert(MemRuntimeCheckCond && 1975 "no RT checks generated although RtPtrChecking " 1976 "claimed checks are required"); 1977 } 1978 1979 if (!MemCheckBlock && !SCEVCheckBlock) 1980 return; 1981 1982 // Unhook the temporary block with the checks, update various places 1983 // accordingly. 1984 if (SCEVCheckBlock) 1985 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1986 if (MemCheckBlock) 1987 MemCheckBlock->replaceAllUsesWith(Preheader); 1988 1989 if (SCEVCheckBlock) { 1990 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1991 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1992 Preheader->getTerminator()->eraseFromParent(); 1993 } 1994 if (MemCheckBlock) { 1995 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1996 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1997 Preheader->getTerminator()->eraseFromParent(); 1998 } 1999 2000 DT->changeImmediateDominator(LoopHeader, Preheader); 2001 if (MemCheckBlock) { 2002 DT->eraseNode(MemCheckBlock); 2003 LI->removeBlock(MemCheckBlock); 2004 } 2005 if (SCEVCheckBlock) { 2006 DT->eraseNode(SCEVCheckBlock); 2007 LI->removeBlock(SCEVCheckBlock); 2008 } 2009 } 2010 2011 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2012 /// unused. 2013 ~GeneratedRTChecks() { 2014 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2015 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2016 if (!SCEVCheckCond) 2017 SCEVCleaner.markResultUsed(); 2018 2019 if (!MemRuntimeCheckCond) 2020 MemCheckCleaner.markResultUsed(); 2021 2022 if (MemRuntimeCheckCond) { 2023 auto &SE = *MemCheckExp.getSE(); 2024 // Memory runtime check generation creates compares that use expanded 2025 // values. Remove them before running the SCEVExpanderCleaners. 2026 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2027 if (MemCheckExp.isInsertedInstruction(&I)) 2028 continue; 2029 SE.forgetValue(&I); 2030 SE.eraseValueFromMap(&I); 2031 I.eraseFromParent(); 2032 } 2033 } 2034 MemCheckCleaner.cleanup(); 2035 SCEVCleaner.cleanup(); 2036 2037 if (SCEVCheckCond) 2038 SCEVCheckBlock->eraseFromParent(); 2039 if (MemRuntimeCheckCond) 2040 MemCheckBlock->eraseFromParent(); 2041 } 2042 2043 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2044 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2045 /// depending on the generated condition. 2046 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2047 BasicBlock *LoopVectorPreHeader, 2048 BasicBlock *LoopExitBlock) { 2049 if (!SCEVCheckCond) 2050 return nullptr; 2051 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2052 if (C->isZero()) 2053 return nullptr; 2054 2055 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2056 2057 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2058 // Create new preheader for vector loop. 2059 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2060 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2061 2062 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2063 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2064 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2065 SCEVCheckBlock); 2066 2067 DT->addNewBlock(SCEVCheckBlock, Pred); 2068 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2069 2070 ReplaceInstWithInst( 2071 SCEVCheckBlock->getTerminator(), 2072 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2073 // Mark the check as used, to prevent it from being removed during cleanup. 2074 SCEVCheckCond = nullptr; 2075 return SCEVCheckBlock; 2076 } 2077 2078 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2079 /// the branches to branch to the vector preheader or \p Bypass, depending on 2080 /// the generated condition. 2081 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2082 BasicBlock *LoopVectorPreHeader) { 2083 // Check if we generated code that checks in runtime if arrays overlap. 2084 if (!MemRuntimeCheckCond) 2085 return nullptr; 2086 2087 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2088 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2089 MemCheckBlock); 2090 2091 DT->addNewBlock(MemCheckBlock, Pred); 2092 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2093 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2094 2095 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2096 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2097 2098 ReplaceInstWithInst( 2099 MemCheckBlock->getTerminator(), 2100 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2101 MemCheckBlock->getTerminator()->setDebugLoc( 2102 Pred->getTerminator()->getDebugLoc()); 2103 2104 // Mark the check as used, to prevent it from being removed during cleanup. 2105 MemRuntimeCheckCond = nullptr; 2106 return MemCheckBlock; 2107 } 2108 }; 2109 2110 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2111 // vectorization. The loop needs to be annotated with #pragma omp simd 2112 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2113 // vector length information is not provided, vectorization is not considered 2114 // explicit. Interleave hints are not allowed either. These limitations will be 2115 // relaxed in the future. 2116 // Please, note that we are currently forced to abuse the pragma 'clang 2117 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2118 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2119 // provides *explicit vectorization hints* (LV can bypass legal checks and 2120 // assume that vectorization is legal). However, both hints are implemented 2121 // using the same metadata (llvm.loop.vectorize, processed by 2122 // LoopVectorizeHints). This will be fixed in the future when the native IR 2123 // representation for pragma 'omp simd' is introduced. 2124 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2125 OptimizationRemarkEmitter *ORE) { 2126 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2127 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2128 2129 // Only outer loops with an explicit vectorization hint are supported. 2130 // Unannotated outer loops are ignored. 2131 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2132 return false; 2133 2134 Function *Fn = OuterLp->getHeader()->getParent(); 2135 if (!Hints.allowVectorization(Fn, OuterLp, 2136 true /*VectorizeOnlyWhenForced*/)) { 2137 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2138 return false; 2139 } 2140 2141 if (Hints.getInterleave() > 1) { 2142 // TODO: Interleave support is future work. 2143 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2144 "outer loops.\n"); 2145 Hints.emitRemarkWithHints(); 2146 return false; 2147 } 2148 2149 return true; 2150 } 2151 2152 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2153 OptimizationRemarkEmitter *ORE, 2154 SmallVectorImpl<Loop *> &V) { 2155 // Collect inner loops and outer loops without irreducible control flow. For 2156 // now, only collect outer loops that have explicit vectorization hints. If we 2157 // are stress testing the VPlan H-CFG construction, we collect the outermost 2158 // loop of every loop nest. 2159 if (L.isInnermost() || VPlanBuildStressTest || 2160 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2161 LoopBlocksRPO RPOT(&L); 2162 RPOT.perform(LI); 2163 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2164 V.push_back(&L); 2165 // TODO: Collect inner loops inside marked outer loops in case 2166 // vectorization fails for the outer loop. Do not invoke 2167 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2168 // already known to be reducible. We can use an inherited attribute for 2169 // that. 2170 return; 2171 } 2172 } 2173 for (Loop *InnerL : L) 2174 collectSupportedLoops(*InnerL, LI, ORE, V); 2175 } 2176 2177 namespace { 2178 2179 /// The LoopVectorize Pass. 2180 struct LoopVectorize : public FunctionPass { 2181 /// Pass identification, replacement for typeid 2182 static char ID; 2183 2184 LoopVectorizePass Impl; 2185 2186 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2187 bool VectorizeOnlyWhenForced = false) 2188 : FunctionPass(ID), 2189 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2190 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2191 } 2192 2193 bool runOnFunction(Function &F) override { 2194 if (skipFunction(F)) 2195 return false; 2196 2197 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2198 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2199 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2200 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2201 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2202 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2203 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2204 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2205 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2206 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2207 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2208 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2209 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2210 2211 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2212 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2213 2214 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2215 GetLAA, *ORE, PSI).MadeAnyChange; 2216 } 2217 2218 void getAnalysisUsage(AnalysisUsage &AU) const override { 2219 AU.addRequired<AssumptionCacheTracker>(); 2220 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2221 AU.addRequired<DominatorTreeWrapperPass>(); 2222 AU.addRequired<LoopInfoWrapperPass>(); 2223 AU.addRequired<ScalarEvolutionWrapperPass>(); 2224 AU.addRequired<TargetTransformInfoWrapperPass>(); 2225 AU.addRequired<AAResultsWrapperPass>(); 2226 AU.addRequired<LoopAccessLegacyAnalysis>(); 2227 AU.addRequired<DemandedBitsWrapperPass>(); 2228 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2229 AU.addRequired<InjectTLIMappingsLegacy>(); 2230 2231 // We currently do not preserve loopinfo/dominator analyses with outer loop 2232 // vectorization. Until this is addressed, mark these analyses as preserved 2233 // only for non-VPlan-native path. 2234 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2235 if (!EnableVPlanNativePath) { 2236 AU.addPreserved<LoopInfoWrapperPass>(); 2237 AU.addPreserved<DominatorTreeWrapperPass>(); 2238 } 2239 2240 AU.addPreserved<BasicAAWrapperPass>(); 2241 AU.addPreserved<GlobalsAAWrapperPass>(); 2242 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2243 } 2244 }; 2245 2246 } // end anonymous namespace 2247 2248 //===----------------------------------------------------------------------===// 2249 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2250 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2251 //===----------------------------------------------------------------------===// 2252 2253 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2254 // We need to place the broadcast of invariant variables outside the loop, 2255 // but only if it's proven safe to do so. Else, broadcast will be inside 2256 // vector loop body. 2257 Instruction *Instr = dyn_cast<Instruction>(V); 2258 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2259 (!Instr || 2260 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2261 // Place the code for broadcasting invariant variables in the new preheader. 2262 IRBuilder<>::InsertPointGuard Guard(Builder); 2263 if (SafeToHoist) 2264 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2265 2266 // Broadcast the scalar into all locations in the vector. 2267 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2268 2269 return Shuf; 2270 } 2271 2272 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2273 const InductionDescriptor &II, Value *Step, Value *Start, 2274 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2275 VPTransformState &State) { 2276 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2277 "Expected either an induction phi-node or a truncate of it!"); 2278 2279 // Construct the initial value of the vector IV in the vector loop preheader 2280 auto CurrIP = Builder.saveIP(); 2281 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2282 if (isa<TruncInst>(EntryVal)) { 2283 assert(Start->getType()->isIntegerTy() && 2284 "Truncation requires an integer type"); 2285 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2286 Step = Builder.CreateTrunc(Step, TruncType); 2287 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2288 } 2289 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2290 Value *SteppedStart = 2291 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2292 2293 // We create vector phi nodes for both integer and floating-point induction 2294 // variables. Here, we determine the kind of arithmetic we will perform. 2295 Instruction::BinaryOps AddOp; 2296 Instruction::BinaryOps MulOp; 2297 if (Step->getType()->isIntegerTy()) { 2298 AddOp = Instruction::Add; 2299 MulOp = Instruction::Mul; 2300 } else { 2301 AddOp = II.getInductionOpcode(); 2302 MulOp = Instruction::FMul; 2303 } 2304 2305 // Multiply the vectorization factor by the step using integer or 2306 // floating-point arithmetic as appropriate. 2307 Type *StepType = Step->getType(); 2308 if (Step->getType()->isFloatingPointTy()) 2309 StepType = IntegerType::get(StepType->getContext(), 2310 StepType->getScalarSizeInBits()); 2311 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2312 if (Step->getType()->isFloatingPointTy()) 2313 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2314 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2315 2316 // Create a vector splat to use in the induction update. 2317 // 2318 // FIXME: If the step is non-constant, we create the vector splat with 2319 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2320 // handle a constant vector splat. 2321 Value *SplatVF = isa<Constant>(Mul) 2322 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2323 : Builder.CreateVectorSplat(VF, Mul); 2324 Builder.restoreIP(CurrIP); 2325 2326 // We may need to add the step a number of times, depending on the unroll 2327 // factor. The last of those goes into the PHI. 2328 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2329 &*LoopVectorBody->getFirstInsertionPt()); 2330 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2331 Instruction *LastInduction = VecInd; 2332 for (unsigned Part = 0; Part < UF; ++Part) { 2333 State.set(Def, LastInduction, Part); 2334 2335 if (isa<TruncInst>(EntryVal)) 2336 addMetadata(LastInduction, EntryVal); 2337 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2338 State, Part); 2339 2340 LastInduction = cast<Instruction>( 2341 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2342 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2343 } 2344 2345 // Move the last step to the end of the latch block. This ensures consistent 2346 // placement of all induction updates. 2347 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2348 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2349 auto *ICmp = cast<Instruction>(Br->getCondition()); 2350 LastInduction->moveBefore(ICmp); 2351 LastInduction->setName("vec.ind.next"); 2352 2353 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2354 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2355 } 2356 2357 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2358 return Cost->isScalarAfterVectorization(I, VF) || 2359 Cost->isProfitableToScalarize(I, VF); 2360 } 2361 2362 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2363 if (shouldScalarizeInstruction(IV)) 2364 return true; 2365 auto isScalarInst = [&](User *U) -> bool { 2366 auto *I = cast<Instruction>(U); 2367 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2368 }; 2369 return llvm::any_of(IV->users(), isScalarInst); 2370 } 2371 2372 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2373 const InductionDescriptor &ID, const Instruction *EntryVal, 2374 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2375 unsigned Part, unsigned Lane) { 2376 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2377 "Expected either an induction phi-node or a truncate of it!"); 2378 2379 // This induction variable is not the phi from the original loop but the 2380 // newly-created IV based on the proof that casted Phi is equal to the 2381 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2382 // re-uses the same InductionDescriptor that original IV uses but we don't 2383 // have to do any recording in this case - that is done when original IV is 2384 // processed. 2385 if (isa<TruncInst>(EntryVal)) 2386 return; 2387 2388 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2389 if (Casts.empty()) 2390 return; 2391 // Only the first Cast instruction in the Casts vector is of interest. 2392 // The rest of the Casts (if exist) have no uses outside the 2393 // induction update chain itself. 2394 if (Lane < UINT_MAX) 2395 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2396 else 2397 State.set(CastDef, VectorLoopVal, Part); 2398 } 2399 2400 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2401 TruncInst *Trunc, VPValue *Def, 2402 VPValue *CastDef, 2403 VPTransformState &State) { 2404 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2405 "Primary induction variable must have an integer type"); 2406 2407 auto II = Legal->getInductionVars().find(IV); 2408 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2409 2410 auto ID = II->second; 2411 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2412 2413 // The value from the original loop to which we are mapping the new induction 2414 // variable. 2415 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2416 2417 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2418 2419 // Generate code for the induction step. Note that induction steps are 2420 // required to be loop-invariant 2421 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2422 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2423 "Induction step should be loop invariant"); 2424 if (PSE.getSE()->isSCEVable(IV->getType())) { 2425 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2426 return Exp.expandCodeFor(Step, Step->getType(), 2427 LoopVectorPreHeader->getTerminator()); 2428 } 2429 return cast<SCEVUnknown>(Step)->getValue(); 2430 }; 2431 2432 // The scalar value to broadcast. This is derived from the canonical 2433 // induction variable. If a truncation type is given, truncate the canonical 2434 // induction variable and step. Otherwise, derive these values from the 2435 // induction descriptor. 2436 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2437 Value *ScalarIV = Induction; 2438 if (IV != OldInduction) { 2439 ScalarIV = IV->getType()->isIntegerTy() 2440 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2441 : Builder.CreateCast(Instruction::SIToFP, Induction, 2442 IV->getType()); 2443 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2444 ScalarIV->setName("offset.idx"); 2445 } 2446 if (Trunc) { 2447 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2448 assert(Step->getType()->isIntegerTy() && 2449 "Truncation requires an integer step"); 2450 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2451 Step = Builder.CreateTrunc(Step, TruncType); 2452 } 2453 return ScalarIV; 2454 }; 2455 2456 // Create the vector values from the scalar IV, in the absence of creating a 2457 // vector IV. 2458 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2459 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2460 for (unsigned Part = 0; Part < UF; ++Part) { 2461 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2462 Value *EntryPart = 2463 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2464 ID.getInductionOpcode()); 2465 State.set(Def, EntryPart, Part); 2466 if (Trunc) 2467 addMetadata(EntryPart, Trunc); 2468 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2469 State, Part); 2470 } 2471 }; 2472 2473 // Fast-math-flags propagate from the original induction instruction. 2474 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2475 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2476 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2477 2478 // Now do the actual transformations, and start with creating the step value. 2479 Value *Step = CreateStepValue(ID.getStep()); 2480 if (VF.isZero() || VF.isScalar()) { 2481 Value *ScalarIV = CreateScalarIV(Step); 2482 CreateSplatIV(ScalarIV, Step); 2483 return; 2484 } 2485 2486 // Determine if we want a scalar version of the induction variable. This is 2487 // true if the induction variable itself is not widened, or if it has at 2488 // least one user in the loop that is not widened. 2489 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2490 if (!NeedsScalarIV) { 2491 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2492 State); 2493 return; 2494 } 2495 2496 // Try to create a new independent vector induction variable. If we can't 2497 // create the phi node, we will splat the scalar induction variable in each 2498 // loop iteration. 2499 if (!shouldScalarizeInstruction(EntryVal)) { 2500 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2501 State); 2502 Value *ScalarIV = CreateScalarIV(Step); 2503 // Create scalar steps that can be used by instructions we will later 2504 // scalarize. Note that the addition of the scalar steps will not increase 2505 // the number of instructions in the loop in the common case prior to 2506 // InstCombine. We will be trading one vector extract for each scalar step. 2507 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2508 return; 2509 } 2510 2511 // All IV users are scalar instructions, so only emit a scalar IV, not a 2512 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2513 // predicate used by the masked loads/stores. 2514 Value *ScalarIV = CreateScalarIV(Step); 2515 if (!Cost->isScalarEpilogueAllowed()) 2516 CreateSplatIV(ScalarIV, Step); 2517 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2518 } 2519 2520 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2521 Instruction::BinaryOps BinOp) { 2522 // Create and check the types. 2523 auto *ValVTy = cast<VectorType>(Val->getType()); 2524 ElementCount VLen = ValVTy->getElementCount(); 2525 2526 Type *STy = Val->getType()->getScalarType(); 2527 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2528 "Induction Step must be an integer or FP"); 2529 assert(Step->getType() == STy && "Step has wrong type"); 2530 2531 SmallVector<Constant *, 8> Indices; 2532 2533 // Create a vector of consecutive numbers from zero to VF. 2534 VectorType *InitVecValVTy = ValVTy; 2535 Type *InitVecValSTy = STy; 2536 if (STy->isFloatingPointTy()) { 2537 InitVecValSTy = 2538 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2539 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2540 } 2541 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2542 2543 // Add on StartIdx 2544 Value *StartIdxSplat = Builder.CreateVectorSplat( 2545 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2546 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2547 2548 if (STy->isIntegerTy()) { 2549 Step = Builder.CreateVectorSplat(VLen, Step); 2550 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2551 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2552 // which can be found from the original scalar operations. 2553 Step = Builder.CreateMul(InitVec, Step); 2554 return Builder.CreateAdd(Val, Step, "induction"); 2555 } 2556 2557 // Floating point induction. 2558 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2559 "Binary Opcode should be specified for FP induction"); 2560 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2561 Step = Builder.CreateVectorSplat(VLen, Step); 2562 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2563 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2564 } 2565 2566 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2567 Instruction *EntryVal, 2568 const InductionDescriptor &ID, 2569 VPValue *Def, VPValue *CastDef, 2570 VPTransformState &State) { 2571 // We shouldn't have to build scalar steps if we aren't vectorizing. 2572 assert(VF.isVector() && "VF should be greater than one"); 2573 // Get the value type and ensure it and the step have the same integer type. 2574 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2575 assert(ScalarIVTy == Step->getType() && 2576 "Val and Step should have the same type"); 2577 2578 // We build scalar steps for both integer and floating-point induction 2579 // variables. Here, we determine the kind of arithmetic we will perform. 2580 Instruction::BinaryOps AddOp; 2581 Instruction::BinaryOps MulOp; 2582 if (ScalarIVTy->isIntegerTy()) { 2583 AddOp = Instruction::Add; 2584 MulOp = Instruction::Mul; 2585 } else { 2586 AddOp = ID.getInductionOpcode(); 2587 MulOp = Instruction::FMul; 2588 } 2589 2590 // Determine the number of scalars we need to generate for each unroll 2591 // iteration. If EntryVal is uniform, we only need to generate the first 2592 // lane. Otherwise, we generate all VF values. 2593 bool IsUniform = 2594 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2595 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2596 // Compute the scalar steps and save the results in State. 2597 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2598 ScalarIVTy->getScalarSizeInBits()); 2599 Type *VecIVTy = nullptr; 2600 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2601 if (!IsUniform && VF.isScalable()) { 2602 VecIVTy = VectorType::get(ScalarIVTy, VF); 2603 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2604 SplatStep = Builder.CreateVectorSplat(VF, Step); 2605 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2606 } 2607 2608 for (unsigned Part = 0; Part < UF; ++Part) { 2609 Value *StartIdx0 = 2610 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2611 2612 if (!IsUniform && VF.isScalable()) { 2613 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2614 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2615 if (ScalarIVTy->isFloatingPointTy()) 2616 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2617 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2618 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2619 State.set(Def, Add, Part); 2620 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2621 Part); 2622 // It's useful to record the lane values too for the known minimum number 2623 // of elements so we do those below. This improves the code quality when 2624 // trying to extract the first element, for example. 2625 } 2626 2627 if (ScalarIVTy->isFloatingPointTy()) 2628 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2629 2630 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2631 Value *StartIdx = Builder.CreateBinOp( 2632 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2633 // The step returned by `createStepForVF` is a runtime-evaluated value 2634 // when VF is scalable. Otherwise, it should be folded into a Constant. 2635 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2636 "Expected StartIdx to be folded to a constant when VF is not " 2637 "scalable"); 2638 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2639 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2640 State.set(Def, Add, VPIteration(Part, Lane)); 2641 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2642 Part, Lane); 2643 } 2644 } 2645 } 2646 2647 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2648 const VPIteration &Instance, 2649 VPTransformState &State) { 2650 Value *ScalarInst = State.get(Def, Instance); 2651 Value *VectorValue = State.get(Def, Instance.Part); 2652 VectorValue = Builder.CreateInsertElement( 2653 VectorValue, ScalarInst, 2654 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2655 State.set(Def, VectorValue, Instance.Part); 2656 } 2657 2658 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2659 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2660 return Builder.CreateVectorReverse(Vec, "reverse"); 2661 } 2662 2663 // Return whether we allow using masked interleave-groups (for dealing with 2664 // strided loads/stores that reside in predicated blocks, or for dealing 2665 // with gaps). 2666 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2667 // If an override option has been passed in for interleaved accesses, use it. 2668 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2669 return EnableMaskedInterleavedMemAccesses; 2670 2671 return TTI.enableMaskedInterleavedAccessVectorization(); 2672 } 2673 2674 // Try to vectorize the interleave group that \p Instr belongs to. 2675 // 2676 // E.g. Translate following interleaved load group (factor = 3): 2677 // for (i = 0; i < N; i+=3) { 2678 // R = Pic[i]; // Member of index 0 2679 // G = Pic[i+1]; // Member of index 1 2680 // B = Pic[i+2]; // Member of index 2 2681 // ... // do something to R, G, B 2682 // } 2683 // To: 2684 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2685 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2686 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2687 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2688 // 2689 // Or translate following interleaved store group (factor = 3): 2690 // for (i = 0; i < N; i+=3) { 2691 // ... do something to R, G, B 2692 // Pic[i] = R; // Member of index 0 2693 // Pic[i+1] = G; // Member of index 1 2694 // Pic[i+2] = B; // Member of index 2 2695 // } 2696 // To: 2697 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2698 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2699 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2700 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2701 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2702 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2703 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2704 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2705 VPValue *BlockInMask) { 2706 Instruction *Instr = Group->getInsertPos(); 2707 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2708 2709 // Prepare for the vector type of the interleaved load/store. 2710 Type *ScalarTy = getLoadStoreType(Instr); 2711 unsigned InterleaveFactor = Group->getFactor(); 2712 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2713 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2714 2715 // Prepare for the new pointers. 2716 SmallVector<Value *, 2> AddrParts; 2717 unsigned Index = Group->getIndex(Instr); 2718 2719 // TODO: extend the masked interleaved-group support to reversed access. 2720 assert((!BlockInMask || !Group->isReverse()) && 2721 "Reversed masked interleave-group not supported."); 2722 2723 // If the group is reverse, adjust the index to refer to the last vector lane 2724 // instead of the first. We adjust the index from the first vector lane, 2725 // rather than directly getting the pointer for lane VF - 1, because the 2726 // pointer operand of the interleaved access is supposed to be uniform. For 2727 // uniform instructions, we're only required to generate a value for the 2728 // first vector lane in each unroll iteration. 2729 if (Group->isReverse()) 2730 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2731 2732 for (unsigned Part = 0; Part < UF; Part++) { 2733 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2734 setDebugLocFromInst(AddrPart); 2735 2736 // Notice current instruction could be any index. Need to adjust the address 2737 // to the member of index 0. 2738 // 2739 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2740 // b = A[i]; // Member of index 0 2741 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2742 // 2743 // E.g. A[i+1] = a; // Member of index 1 2744 // A[i] = b; // Member of index 0 2745 // A[i+2] = c; // Member of index 2 (Current instruction) 2746 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2747 2748 bool InBounds = false; 2749 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2750 InBounds = gep->isInBounds(); 2751 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2752 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2753 2754 // Cast to the vector pointer type. 2755 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2756 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2757 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2758 } 2759 2760 setDebugLocFromInst(Instr); 2761 Value *PoisonVec = PoisonValue::get(VecTy); 2762 2763 Value *MaskForGaps = nullptr; 2764 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2765 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2766 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2767 } 2768 2769 // Vectorize the interleaved load group. 2770 if (isa<LoadInst>(Instr)) { 2771 // For each unroll part, create a wide load for the group. 2772 SmallVector<Value *, 2> NewLoads; 2773 for (unsigned Part = 0; Part < UF; Part++) { 2774 Instruction *NewLoad; 2775 if (BlockInMask || MaskForGaps) { 2776 assert(useMaskedInterleavedAccesses(*TTI) && 2777 "masked interleaved groups are not allowed."); 2778 Value *GroupMask = MaskForGaps; 2779 if (BlockInMask) { 2780 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2781 Value *ShuffledMask = Builder.CreateShuffleVector( 2782 BlockInMaskPart, 2783 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2784 "interleaved.mask"); 2785 GroupMask = MaskForGaps 2786 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2787 MaskForGaps) 2788 : ShuffledMask; 2789 } 2790 NewLoad = 2791 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2792 GroupMask, PoisonVec, "wide.masked.vec"); 2793 } 2794 else 2795 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2796 Group->getAlign(), "wide.vec"); 2797 Group->addMetadata(NewLoad); 2798 NewLoads.push_back(NewLoad); 2799 } 2800 2801 // For each member in the group, shuffle out the appropriate data from the 2802 // wide loads. 2803 unsigned J = 0; 2804 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2805 Instruction *Member = Group->getMember(I); 2806 2807 // Skip the gaps in the group. 2808 if (!Member) 2809 continue; 2810 2811 auto StrideMask = 2812 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2813 for (unsigned Part = 0; Part < UF; Part++) { 2814 Value *StridedVec = Builder.CreateShuffleVector( 2815 NewLoads[Part], StrideMask, "strided.vec"); 2816 2817 // If this member has different type, cast the result type. 2818 if (Member->getType() != ScalarTy) { 2819 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2820 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2821 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2822 } 2823 2824 if (Group->isReverse()) 2825 StridedVec = reverseVector(StridedVec); 2826 2827 State.set(VPDefs[J], StridedVec, Part); 2828 } 2829 ++J; 2830 } 2831 return; 2832 } 2833 2834 // The sub vector type for current instruction. 2835 auto *SubVT = VectorType::get(ScalarTy, VF); 2836 2837 // Vectorize the interleaved store group. 2838 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2839 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2840 "masked interleaved groups are not allowed."); 2841 assert((!MaskForGaps || !VF.isScalable()) && 2842 "masking gaps for scalable vectors is not yet supported."); 2843 for (unsigned Part = 0; Part < UF; Part++) { 2844 // Collect the stored vector from each member. 2845 SmallVector<Value *, 4> StoredVecs; 2846 for (unsigned i = 0; i < InterleaveFactor; i++) { 2847 assert((Group->getMember(i) || MaskForGaps) && 2848 "Fail to get a member from an interleaved store group"); 2849 Instruction *Member = Group->getMember(i); 2850 2851 // Skip the gaps in the group. 2852 if (!Member) { 2853 Value *Undef = PoisonValue::get(SubVT); 2854 StoredVecs.push_back(Undef); 2855 continue; 2856 } 2857 2858 Value *StoredVec = State.get(StoredValues[i], Part); 2859 2860 if (Group->isReverse()) 2861 StoredVec = reverseVector(StoredVec); 2862 2863 // If this member has different type, cast it to a unified type. 2864 2865 if (StoredVec->getType() != SubVT) 2866 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2867 2868 StoredVecs.push_back(StoredVec); 2869 } 2870 2871 // Concatenate all vectors into a wide vector. 2872 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2873 2874 // Interleave the elements in the wide vector. 2875 Value *IVec = Builder.CreateShuffleVector( 2876 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2877 "interleaved.vec"); 2878 2879 Instruction *NewStoreInstr; 2880 if (BlockInMask || MaskForGaps) { 2881 Value *GroupMask = MaskForGaps; 2882 if (BlockInMask) { 2883 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2884 Value *ShuffledMask = Builder.CreateShuffleVector( 2885 BlockInMaskPart, 2886 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2887 "interleaved.mask"); 2888 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2889 ShuffledMask, MaskForGaps) 2890 : ShuffledMask; 2891 } 2892 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2893 Group->getAlign(), GroupMask); 2894 } else 2895 NewStoreInstr = 2896 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2897 2898 Group->addMetadata(NewStoreInstr); 2899 } 2900 } 2901 2902 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2903 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2904 VPValue *StoredValue, VPValue *BlockInMask, bool ConsecutiveStride, 2905 bool Reverse) { 2906 // Attempt to issue a wide load. 2907 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2908 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2909 2910 assert((LI || SI) && "Invalid Load/Store instruction"); 2911 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2912 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2913 2914 Type *ScalarDataTy = getLoadStoreType(Instr); 2915 2916 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2917 const Align Alignment = getLoadStoreAlignment(Instr); 2918 bool CreateGatherScatter = !ConsecutiveStride; 2919 2920 VectorParts BlockInMaskParts(UF); 2921 bool isMaskRequired = BlockInMask; 2922 if (isMaskRequired) 2923 for (unsigned Part = 0; Part < UF; ++Part) 2924 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2925 2926 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2927 // Calculate the pointer for the specific unroll-part. 2928 GetElementPtrInst *PartPtr = nullptr; 2929 2930 bool InBounds = false; 2931 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2932 InBounds = gep->isInBounds(); 2933 if (Reverse) { 2934 // If the address is consecutive but reversed, then the 2935 // wide store needs to start at the last vector element. 2936 // RunTimeVF = VScale * VF.getKnownMinValue() 2937 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2938 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2939 // NumElt = -Part * RunTimeVF 2940 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2941 // LastLane = 1 - RunTimeVF 2942 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2943 PartPtr = 2944 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2945 PartPtr->setIsInBounds(InBounds); 2946 PartPtr = cast<GetElementPtrInst>( 2947 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2948 PartPtr->setIsInBounds(InBounds); 2949 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2950 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2951 } else { 2952 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2953 PartPtr = cast<GetElementPtrInst>( 2954 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2955 PartPtr->setIsInBounds(InBounds); 2956 } 2957 2958 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2959 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2960 }; 2961 2962 // Handle Stores: 2963 if (SI) { 2964 setDebugLocFromInst(SI); 2965 2966 for (unsigned Part = 0; Part < UF; ++Part) { 2967 Instruction *NewSI = nullptr; 2968 Value *StoredVal = State.get(StoredValue, Part); 2969 if (CreateGatherScatter) { 2970 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2971 Value *VectorGep = State.get(Addr, Part); 2972 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2973 MaskPart); 2974 } else { 2975 if (Reverse) { 2976 // If we store to reverse consecutive memory locations, then we need 2977 // to reverse the order of elements in the stored value. 2978 StoredVal = reverseVector(StoredVal); 2979 // We don't want to update the value in the map as it might be used in 2980 // another expression. So don't call resetVectorValue(StoredVal). 2981 } 2982 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2983 if (isMaskRequired) 2984 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2985 BlockInMaskParts[Part]); 2986 else 2987 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2988 } 2989 addMetadata(NewSI, SI); 2990 } 2991 return; 2992 } 2993 2994 // Handle loads. 2995 assert(LI && "Must have a load instruction"); 2996 setDebugLocFromInst(LI); 2997 for (unsigned Part = 0; Part < UF; ++Part) { 2998 Value *NewLI; 2999 if (CreateGatherScatter) { 3000 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 3001 Value *VectorGep = State.get(Addr, Part); 3002 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 3003 nullptr, "wide.masked.gather"); 3004 addMetadata(NewLI, LI); 3005 } else { 3006 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 3007 if (isMaskRequired) 3008 NewLI = Builder.CreateMaskedLoad( 3009 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 3010 PoisonValue::get(DataTy), "wide.masked.load"); 3011 else 3012 NewLI = 3013 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 3014 3015 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3016 addMetadata(NewLI, LI); 3017 if (Reverse) 3018 NewLI = reverseVector(NewLI); 3019 } 3020 3021 State.set(Def, NewLI, Part); 3022 } 3023 } 3024 3025 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3026 VPUser &User, 3027 const VPIteration &Instance, 3028 bool IfPredicateInstr, 3029 VPTransformState &State) { 3030 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3031 3032 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3033 // the first lane and part. 3034 if (isa<NoAliasScopeDeclInst>(Instr)) 3035 if (!Instance.isFirstIteration()) 3036 return; 3037 3038 setDebugLocFromInst(Instr); 3039 3040 // Does this instruction return a value ? 3041 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3042 3043 Instruction *Cloned = Instr->clone(); 3044 if (!IsVoidRetTy) 3045 Cloned->setName(Instr->getName() + ".cloned"); 3046 3047 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3048 Builder.GetInsertPoint()); 3049 // Replace the operands of the cloned instructions with their scalar 3050 // equivalents in the new loop. 3051 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3052 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3053 auto InputInstance = Instance; 3054 if (!Operand || !OrigLoop->contains(Operand) || 3055 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3056 InputInstance.Lane = VPLane::getFirstLane(); 3057 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3058 Cloned->setOperand(op, NewOp); 3059 } 3060 addNewMetadata(Cloned, Instr); 3061 3062 // Place the cloned scalar in the new loop. 3063 Builder.Insert(Cloned); 3064 3065 State.set(Def, Cloned, Instance); 3066 3067 // If we just cloned a new assumption, add it the assumption cache. 3068 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3069 AC->registerAssumption(II); 3070 3071 // End if-block. 3072 if (IfPredicateInstr) 3073 PredicatedInstructions.push_back(Cloned); 3074 } 3075 3076 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3077 Value *End, Value *Step, 3078 Instruction *DL) { 3079 BasicBlock *Header = L->getHeader(); 3080 BasicBlock *Latch = L->getLoopLatch(); 3081 // As we're just creating this loop, it's possible no latch exists 3082 // yet. If so, use the header as this will be a single block loop. 3083 if (!Latch) 3084 Latch = Header; 3085 3086 IRBuilder<> B(&*Header->getFirstInsertionPt()); 3087 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3088 setDebugLocFromInst(OldInst, &B); 3089 auto *Induction = B.CreatePHI(Start->getType(), 2, "index"); 3090 3091 B.SetInsertPoint(Latch->getTerminator()); 3092 setDebugLocFromInst(OldInst, &B); 3093 3094 // Create i+1 and fill the PHINode. 3095 // 3096 // If the tail is not folded, we know that End - Start >= Step (either 3097 // statically or through the minimum iteration checks). We also know that both 3098 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3099 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3100 // overflows and we can mark the induction increment as NUW. 3101 Value *Next = B.CreateAdd(Induction, Step, "index.next", 3102 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3103 Induction->addIncoming(Start, L->getLoopPreheader()); 3104 Induction->addIncoming(Next, Latch); 3105 // Create the compare. 3106 Value *ICmp = B.CreateICmpEQ(Next, End); 3107 B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3108 3109 // Now we have two terminators. Remove the old one from the block. 3110 Latch->getTerminator()->eraseFromParent(); 3111 3112 return Induction; 3113 } 3114 3115 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3116 if (TripCount) 3117 return TripCount; 3118 3119 assert(L && "Create Trip Count for null loop."); 3120 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3121 // Find the loop boundaries. 3122 ScalarEvolution *SE = PSE.getSE(); 3123 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3124 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3125 "Invalid loop count"); 3126 3127 Type *IdxTy = Legal->getWidestInductionType(); 3128 assert(IdxTy && "No type for induction"); 3129 3130 // The exit count might have the type of i64 while the phi is i32. This can 3131 // happen if we have an induction variable that is sign extended before the 3132 // compare. The only way that we get a backedge taken count is that the 3133 // induction variable was signed and as such will not overflow. In such a case 3134 // truncation is legal. 3135 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3136 IdxTy->getPrimitiveSizeInBits()) 3137 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3138 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3139 3140 // Get the total trip count from the count by adding 1. 3141 const SCEV *ExitCount = SE->getAddExpr( 3142 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3143 3144 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3145 3146 // Expand the trip count and place the new instructions in the preheader. 3147 // Notice that the pre-header does not change, only the loop body. 3148 SCEVExpander Exp(*SE, DL, "induction"); 3149 3150 // Count holds the overall loop count (N). 3151 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3152 L->getLoopPreheader()->getTerminator()); 3153 3154 if (TripCount->getType()->isPointerTy()) 3155 TripCount = 3156 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3157 L->getLoopPreheader()->getTerminator()); 3158 3159 return TripCount; 3160 } 3161 3162 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3163 if (VectorTripCount) 3164 return VectorTripCount; 3165 3166 Value *TC = getOrCreateTripCount(L); 3167 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3168 3169 Type *Ty = TC->getType(); 3170 // This is where we can make the step a runtime constant. 3171 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3172 3173 // If the tail is to be folded by masking, round the number of iterations N 3174 // up to a multiple of Step instead of rounding down. This is done by first 3175 // adding Step-1 and then rounding down. Note that it's ok if this addition 3176 // overflows: the vector induction variable will eventually wrap to zero given 3177 // that it starts at zero and its Step is a power of two; the loop will then 3178 // exit, with the last early-exit vector comparison also producing all-true. 3179 if (Cost->foldTailByMasking()) { 3180 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3181 "VF*UF must be a power of 2 when folding tail by masking"); 3182 assert(!VF.isScalable() && 3183 "Tail folding not yet supported for scalable vectors"); 3184 TC = Builder.CreateAdd( 3185 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3186 } 3187 3188 // Now we need to generate the expression for the part of the loop that the 3189 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3190 // iterations are not required for correctness, or N - Step, otherwise. Step 3191 // is equal to the vectorization factor (number of SIMD elements) times the 3192 // unroll factor (number of SIMD instructions). 3193 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3194 3195 // There are cases where we *must* run at least one iteration in the remainder 3196 // loop. See the cost model for when this can happen. If the step evenly 3197 // divides the trip count, we set the remainder to be equal to the step. If 3198 // the step does not evenly divide the trip count, no adjustment is necessary 3199 // since there will already be scalar iterations. Note that the minimum 3200 // iterations check ensures that N >= Step. 3201 if (Cost->requiresScalarEpilogue(VF)) { 3202 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3203 R = Builder.CreateSelect(IsZero, Step, R); 3204 } 3205 3206 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3207 3208 return VectorTripCount; 3209 } 3210 3211 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3212 const DataLayout &DL) { 3213 // Verify that V is a vector type with same number of elements as DstVTy. 3214 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3215 unsigned VF = DstFVTy->getNumElements(); 3216 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3217 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3218 Type *SrcElemTy = SrcVecTy->getElementType(); 3219 Type *DstElemTy = DstFVTy->getElementType(); 3220 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3221 "Vector elements must have same size"); 3222 3223 // Do a direct cast if element types are castable. 3224 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3225 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3226 } 3227 // V cannot be directly casted to desired vector type. 3228 // May happen when V is a floating point vector but DstVTy is a vector of 3229 // pointers or vice-versa. Handle this using a two-step bitcast using an 3230 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3231 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3232 "Only one type should be a pointer type"); 3233 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3234 "Only one type should be a floating point type"); 3235 Type *IntTy = 3236 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3237 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3238 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3239 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3240 } 3241 3242 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3243 BasicBlock *Bypass) { 3244 Value *Count = getOrCreateTripCount(L); 3245 // Reuse existing vector loop preheader for TC checks. 3246 // Note that new preheader block is generated for vector loop. 3247 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3248 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3249 3250 // Generate code to check if the loop's trip count is less than VF * UF, or 3251 // equal to it in case a scalar epilogue is required; this implies that the 3252 // vector trip count is zero. This check also covers the case where adding one 3253 // to the backedge-taken count overflowed leading to an incorrect trip count 3254 // of zero. In this case we will also jump to the scalar loop. 3255 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3256 : ICmpInst::ICMP_ULT; 3257 3258 // If tail is to be folded, vector loop takes care of all iterations. 3259 Value *CheckMinIters = Builder.getFalse(); 3260 if (!Cost->foldTailByMasking()) { 3261 Value *Step = 3262 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3263 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3264 } 3265 // Create new preheader for vector loop. 3266 LoopVectorPreHeader = 3267 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3268 "vector.ph"); 3269 3270 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3271 DT->getNode(Bypass)->getIDom()) && 3272 "TC check is expected to dominate Bypass"); 3273 3274 // Update dominator for Bypass & LoopExit (if needed). 3275 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3276 if (!Cost->requiresScalarEpilogue(VF)) 3277 // If there is an epilogue which must run, there's no edge from the 3278 // middle block to exit blocks and thus no need to update the immediate 3279 // dominator of the exit blocks. 3280 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3281 3282 ReplaceInstWithInst( 3283 TCCheckBlock->getTerminator(), 3284 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3285 LoopBypassBlocks.push_back(TCCheckBlock); 3286 } 3287 3288 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3289 3290 BasicBlock *const SCEVCheckBlock = 3291 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3292 if (!SCEVCheckBlock) 3293 return nullptr; 3294 3295 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3296 (OptForSizeBasedOnProfile && 3297 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3298 "Cannot SCEV check stride or overflow when optimizing for size"); 3299 3300 3301 // Update dominator only if this is first RT check. 3302 if (LoopBypassBlocks.empty()) { 3303 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3304 if (!Cost->requiresScalarEpilogue(VF)) 3305 // If there is an epilogue which must run, there's no edge from the 3306 // middle block to exit blocks and thus no need to update the immediate 3307 // dominator of the exit blocks. 3308 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3309 } 3310 3311 LoopBypassBlocks.push_back(SCEVCheckBlock); 3312 AddedSafetyChecks = true; 3313 return SCEVCheckBlock; 3314 } 3315 3316 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3317 BasicBlock *Bypass) { 3318 // VPlan-native path does not do any analysis for runtime checks currently. 3319 if (EnableVPlanNativePath) 3320 return nullptr; 3321 3322 BasicBlock *const MemCheckBlock = 3323 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3324 3325 // Check if we generated code that checks in runtime if arrays overlap. We put 3326 // the checks into a separate block to make the more common case of few 3327 // elements faster. 3328 if (!MemCheckBlock) 3329 return nullptr; 3330 3331 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3332 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3333 "Cannot emit memory checks when optimizing for size, unless forced " 3334 "to vectorize."); 3335 ORE->emit([&]() { 3336 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3337 L->getStartLoc(), L->getHeader()) 3338 << "Code-size may be reduced by not forcing " 3339 "vectorization, or by source-code modifications " 3340 "eliminating the need for runtime checks " 3341 "(e.g., adding 'restrict')."; 3342 }); 3343 } 3344 3345 LoopBypassBlocks.push_back(MemCheckBlock); 3346 3347 AddedSafetyChecks = true; 3348 3349 // We currently don't use LoopVersioning for the actual loop cloning but we 3350 // still use it to add the noalias metadata. 3351 LVer = std::make_unique<LoopVersioning>( 3352 *Legal->getLAI(), 3353 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3354 DT, PSE.getSE()); 3355 LVer->prepareNoAliasMetadata(); 3356 return MemCheckBlock; 3357 } 3358 3359 Value *InnerLoopVectorizer::emitTransformedIndex( 3360 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3361 const InductionDescriptor &ID) const { 3362 3363 SCEVExpander Exp(*SE, DL, "induction"); 3364 auto Step = ID.getStep(); 3365 auto StartValue = ID.getStartValue(); 3366 assert(Index->getType()->getScalarType() == Step->getType() && 3367 "Index scalar type does not match StepValue type"); 3368 3369 // Note: the IR at this point is broken. We cannot use SE to create any new 3370 // SCEV and then expand it, hoping that SCEV's simplification will give us 3371 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3372 // lead to various SCEV crashes. So all we can do is to use builder and rely 3373 // on InstCombine for future simplifications. Here we handle some trivial 3374 // cases only. 3375 auto CreateAdd = [&B](Value *X, Value *Y) { 3376 assert(X->getType() == Y->getType() && "Types don't match!"); 3377 if (auto *CX = dyn_cast<ConstantInt>(X)) 3378 if (CX->isZero()) 3379 return Y; 3380 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3381 if (CY->isZero()) 3382 return X; 3383 return B.CreateAdd(X, Y); 3384 }; 3385 3386 // We allow X to be a vector type, in which case Y will potentially be 3387 // splatted into a vector with the same element count. 3388 auto CreateMul = [&B](Value *X, Value *Y) { 3389 assert(X->getType()->getScalarType() == Y->getType() && 3390 "Types don't match!"); 3391 if (auto *CX = dyn_cast<ConstantInt>(X)) 3392 if (CX->isOne()) 3393 return Y; 3394 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3395 if (CY->isOne()) 3396 return X; 3397 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3398 if (XVTy && !isa<VectorType>(Y->getType())) 3399 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3400 return B.CreateMul(X, Y); 3401 }; 3402 3403 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3404 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3405 // the DomTree is not kept up-to-date for additional blocks generated in the 3406 // vector loop. By using the header as insertion point, we guarantee that the 3407 // expanded instructions dominate all their uses. 3408 auto GetInsertPoint = [this, &B]() { 3409 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3410 if (InsertBB != LoopVectorBody && 3411 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3412 return LoopVectorBody->getTerminator(); 3413 return &*B.GetInsertPoint(); 3414 }; 3415 3416 switch (ID.getKind()) { 3417 case InductionDescriptor::IK_IntInduction: { 3418 assert(!isa<VectorType>(Index->getType()) && 3419 "Vector indices not supported for integer inductions yet"); 3420 assert(Index->getType() == StartValue->getType() && 3421 "Index type does not match StartValue type"); 3422 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3423 return B.CreateSub(StartValue, Index); 3424 auto *Offset = CreateMul( 3425 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3426 return CreateAdd(StartValue, Offset); 3427 } 3428 case InductionDescriptor::IK_PtrInduction: { 3429 assert(isa<SCEVConstant>(Step) && 3430 "Expected constant step for pointer induction"); 3431 return B.CreateGEP( 3432 ID.getElementType(), StartValue, 3433 CreateMul(Index, 3434 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3435 GetInsertPoint()))); 3436 } 3437 case InductionDescriptor::IK_FpInduction: { 3438 assert(!isa<VectorType>(Index->getType()) && 3439 "Vector indices not supported for FP inductions yet"); 3440 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3441 auto InductionBinOp = ID.getInductionBinOp(); 3442 assert(InductionBinOp && 3443 (InductionBinOp->getOpcode() == Instruction::FAdd || 3444 InductionBinOp->getOpcode() == Instruction::FSub) && 3445 "Original bin op should be defined for FP induction"); 3446 3447 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3448 Value *MulExp = B.CreateFMul(StepValue, Index); 3449 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3450 "induction"); 3451 } 3452 case InductionDescriptor::IK_NoInduction: 3453 return nullptr; 3454 } 3455 llvm_unreachable("invalid enum"); 3456 } 3457 3458 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3459 LoopScalarBody = OrigLoop->getHeader(); 3460 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3461 assert(LoopVectorPreHeader && "Invalid loop structure"); 3462 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3463 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3464 "multiple exit loop without required epilogue?"); 3465 3466 LoopMiddleBlock = 3467 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3468 LI, nullptr, Twine(Prefix) + "middle.block"); 3469 LoopScalarPreHeader = 3470 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3471 nullptr, Twine(Prefix) + "scalar.ph"); 3472 3473 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3474 3475 // Set up the middle block terminator. Two cases: 3476 // 1) If we know that we must execute the scalar epilogue, emit an 3477 // unconditional branch. 3478 // 2) Otherwise, we must have a single unique exit block (due to how we 3479 // implement the multiple exit case). In this case, set up a conditonal 3480 // branch from the middle block to the loop scalar preheader, and the 3481 // exit block. completeLoopSkeleton will update the condition to use an 3482 // iteration check, if required to decide whether to execute the remainder. 3483 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3484 BranchInst::Create(LoopScalarPreHeader) : 3485 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3486 Builder.getTrue()); 3487 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3488 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3489 3490 // We intentionally don't let SplitBlock to update LoopInfo since 3491 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3492 // LoopVectorBody is explicitly added to the correct place few lines later. 3493 LoopVectorBody = 3494 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3495 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3496 3497 // Update dominator for loop exit. 3498 if (!Cost->requiresScalarEpilogue(VF)) 3499 // If there is an epilogue which must run, there's no edge from the 3500 // middle block to exit blocks and thus no need to update the immediate 3501 // dominator of the exit blocks. 3502 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3503 3504 // Create and register the new vector loop. 3505 Loop *Lp = LI->AllocateLoop(); 3506 Loop *ParentLoop = OrigLoop->getParentLoop(); 3507 3508 // Insert the new loop into the loop nest and register the new basic blocks 3509 // before calling any utilities such as SCEV that require valid LoopInfo. 3510 if (ParentLoop) { 3511 ParentLoop->addChildLoop(Lp); 3512 } else { 3513 LI->addTopLevelLoop(Lp); 3514 } 3515 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3516 return Lp; 3517 } 3518 3519 void InnerLoopVectorizer::createInductionResumeValues( 3520 Loop *L, Value *VectorTripCount, 3521 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3522 assert(VectorTripCount && L && "Expected valid arguments"); 3523 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3524 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3525 "Inconsistent information about additional bypass."); 3526 // We are going to resume the execution of the scalar loop. 3527 // Go over all of the induction variables that we found and fix the 3528 // PHIs that are left in the scalar version of the loop. 3529 // The starting values of PHI nodes depend on the counter of the last 3530 // iteration in the vectorized loop. 3531 // If we come from a bypass edge then we need to start from the original 3532 // start value. 3533 for (auto &InductionEntry : Legal->getInductionVars()) { 3534 PHINode *OrigPhi = InductionEntry.first; 3535 InductionDescriptor II = InductionEntry.second; 3536 3537 // Create phi nodes to merge from the backedge-taken check block. 3538 PHINode *BCResumeVal = 3539 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3540 LoopScalarPreHeader->getTerminator()); 3541 // Copy original phi DL over to the new one. 3542 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3543 Value *&EndValue = IVEndValues[OrigPhi]; 3544 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3545 if (OrigPhi == OldInduction) { 3546 // We know what the end value is. 3547 EndValue = VectorTripCount; 3548 } else { 3549 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3550 3551 // Fast-math-flags propagate from the original induction instruction. 3552 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3553 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3554 3555 Type *StepType = II.getStep()->getType(); 3556 Instruction::CastOps CastOp = 3557 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3558 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3559 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3560 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3561 EndValue->setName("ind.end"); 3562 3563 // Compute the end value for the additional bypass (if applicable). 3564 if (AdditionalBypass.first) { 3565 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3566 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3567 StepType, true); 3568 CRD = 3569 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3570 EndValueFromAdditionalBypass = 3571 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3572 EndValueFromAdditionalBypass->setName("ind.end"); 3573 } 3574 } 3575 // The new PHI merges the original incoming value, in case of a bypass, 3576 // or the value at the end of the vectorized loop. 3577 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3578 3579 // Fix the scalar body counter (PHI node). 3580 // The old induction's phi node in the scalar body needs the truncated 3581 // value. 3582 for (BasicBlock *BB : LoopBypassBlocks) 3583 BCResumeVal->addIncoming(II.getStartValue(), BB); 3584 3585 if (AdditionalBypass.first) 3586 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3587 EndValueFromAdditionalBypass); 3588 3589 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3590 } 3591 } 3592 3593 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3594 MDNode *OrigLoopID) { 3595 assert(L && "Expected valid loop."); 3596 3597 // The trip counts should be cached by now. 3598 Value *Count = getOrCreateTripCount(L); 3599 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3600 3601 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3602 3603 // Add a check in the middle block to see if we have completed 3604 // all of the iterations in the first vector loop. Three cases: 3605 // 1) If we require a scalar epilogue, there is no conditional branch as 3606 // we unconditionally branch to the scalar preheader. Do nothing. 3607 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3608 // Thus if tail is to be folded, we know we don't need to run the 3609 // remainder and we can use the previous value for the condition (true). 3610 // 3) Otherwise, construct a runtime check. 3611 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3612 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3613 Count, VectorTripCount, "cmp.n", 3614 LoopMiddleBlock->getTerminator()); 3615 3616 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3617 // of the corresponding compare because they may have ended up with 3618 // different line numbers and we want to avoid awkward line stepping while 3619 // debugging. Eg. if the compare has got a line number inside the loop. 3620 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3621 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3622 } 3623 3624 // Get ready to start creating new instructions into the vectorized body. 3625 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3626 "Inconsistent vector loop preheader"); 3627 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3628 3629 Optional<MDNode *> VectorizedLoopID = 3630 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3631 LLVMLoopVectorizeFollowupVectorized}); 3632 if (VectorizedLoopID.hasValue()) { 3633 L->setLoopID(VectorizedLoopID.getValue()); 3634 3635 // Do not setAlreadyVectorized if loop attributes have been defined 3636 // explicitly. 3637 return LoopVectorPreHeader; 3638 } 3639 3640 // Keep all loop hints from the original loop on the vector loop (we'll 3641 // replace the vectorizer-specific hints below). 3642 if (MDNode *LID = OrigLoop->getLoopID()) 3643 L->setLoopID(LID); 3644 3645 LoopVectorizeHints Hints(L, true, *ORE); 3646 Hints.setAlreadyVectorized(); 3647 3648 #ifdef EXPENSIVE_CHECKS 3649 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3650 LI->verify(*DT); 3651 #endif 3652 3653 return LoopVectorPreHeader; 3654 } 3655 3656 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3657 /* 3658 In this function we generate a new loop. The new loop will contain 3659 the vectorized instructions while the old loop will continue to run the 3660 scalar remainder. 3661 3662 [ ] <-- loop iteration number check. 3663 / | 3664 / v 3665 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3666 | / | 3667 | / v 3668 || [ ] <-- vector pre header. 3669 |/ | 3670 | v 3671 | [ ] \ 3672 | [ ]_| <-- vector loop. 3673 | | 3674 | v 3675 \ -[ ] <--- middle-block. 3676 \/ | 3677 /\ v 3678 | ->[ ] <--- new preheader. 3679 | | 3680 (opt) v <-- edge from middle to exit iff epilogue is not required. 3681 | [ ] \ 3682 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3683 \ | 3684 \ v 3685 >[ ] <-- exit block(s). 3686 ... 3687 */ 3688 3689 // Get the metadata of the original loop before it gets modified. 3690 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3691 3692 // Workaround! Compute the trip count of the original loop and cache it 3693 // before we start modifying the CFG. This code has a systemic problem 3694 // wherein it tries to run analysis over partially constructed IR; this is 3695 // wrong, and not simply for SCEV. The trip count of the original loop 3696 // simply happens to be prone to hitting this in practice. In theory, we 3697 // can hit the same issue for any SCEV, or ValueTracking query done during 3698 // mutation. See PR49900. 3699 getOrCreateTripCount(OrigLoop); 3700 3701 // Create an empty vector loop, and prepare basic blocks for the runtime 3702 // checks. 3703 Loop *Lp = createVectorLoopSkeleton(""); 3704 3705 // Now, compare the new count to zero. If it is zero skip the vector loop and 3706 // jump to the scalar loop. This check also covers the case where the 3707 // backedge-taken count is uint##_max: adding one to it will overflow leading 3708 // to an incorrect trip count of zero. In this (rare) case we will also jump 3709 // to the scalar loop. 3710 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3711 3712 // Generate the code to check any assumptions that we've made for SCEV 3713 // expressions. 3714 emitSCEVChecks(Lp, LoopScalarPreHeader); 3715 3716 // Generate the code that checks in runtime if arrays overlap. We put the 3717 // checks into a separate block to make the more common case of few elements 3718 // faster. 3719 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3720 3721 // Some loops have a single integer induction variable, while other loops 3722 // don't. One example is c++ iterators that often have multiple pointer 3723 // induction variables. In the code below we also support a case where we 3724 // don't have a single induction variable. 3725 // 3726 // We try to obtain an induction variable from the original loop as hard 3727 // as possible. However if we don't find one that: 3728 // - is an integer 3729 // - counts from zero, stepping by one 3730 // - is the size of the widest induction variable type 3731 // then we create a new one. 3732 OldInduction = Legal->getPrimaryInduction(); 3733 Type *IdxTy = Legal->getWidestInductionType(); 3734 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3735 // The loop step is equal to the vectorization factor (num of SIMD elements) 3736 // times the unroll factor (num of SIMD instructions). 3737 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3738 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3739 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3740 Induction = 3741 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3742 getDebugLocFromInstOrOperands(OldInduction)); 3743 3744 // Emit phis for the new starting index of the scalar loop. 3745 createInductionResumeValues(Lp, CountRoundDown); 3746 3747 return completeLoopSkeleton(Lp, OrigLoopID); 3748 } 3749 3750 // Fix up external users of the induction variable. At this point, we are 3751 // in LCSSA form, with all external PHIs that use the IV having one input value, 3752 // coming from the remainder loop. We need those PHIs to also have a correct 3753 // value for the IV when arriving directly from the middle block. 3754 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3755 const InductionDescriptor &II, 3756 Value *CountRoundDown, Value *EndValue, 3757 BasicBlock *MiddleBlock) { 3758 // There are two kinds of external IV usages - those that use the value 3759 // computed in the last iteration (the PHI) and those that use the penultimate 3760 // value (the value that feeds into the phi from the loop latch). 3761 // We allow both, but they, obviously, have different values. 3762 3763 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3764 3765 DenseMap<Value *, Value *> MissingVals; 3766 3767 // An external user of the last iteration's value should see the value that 3768 // the remainder loop uses to initialize its own IV. 3769 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3770 for (User *U : PostInc->users()) { 3771 Instruction *UI = cast<Instruction>(U); 3772 if (!OrigLoop->contains(UI)) { 3773 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3774 MissingVals[UI] = EndValue; 3775 } 3776 } 3777 3778 // An external user of the penultimate value need to see EndValue - Step. 3779 // The simplest way to get this is to recompute it from the constituent SCEVs, 3780 // that is Start + (Step * (CRD - 1)). 3781 for (User *U : OrigPhi->users()) { 3782 auto *UI = cast<Instruction>(U); 3783 if (!OrigLoop->contains(UI)) { 3784 const DataLayout &DL = 3785 OrigLoop->getHeader()->getModule()->getDataLayout(); 3786 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3787 3788 IRBuilder<> B(MiddleBlock->getTerminator()); 3789 3790 // Fast-math-flags propagate from the original induction instruction. 3791 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3792 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3793 3794 Value *CountMinusOne = B.CreateSub( 3795 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3796 Value *CMO = 3797 !II.getStep()->getType()->isIntegerTy() 3798 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3799 II.getStep()->getType()) 3800 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3801 CMO->setName("cast.cmo"); 3802 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3803 Escape->setName("ind.escape"); 3804 MissingVals[UI] = Escape; 3805 } 3806 } 3807 3808 for (auto &I : MissingVals) { 3809 PHINode *PHI = cast<PHINode>(I.first); 3810 // One corner case we have to handle is two IVs "chasing" each-other, 3811 // that is %IV2 = phi [...], [ %IV1, %latch ] 3812 // In this case, if IV1 has an external use, we need to avoid adding both 3813 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3814 // don't already have an incoming value for the middle block. 3815 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3816 PHI->addIncoming(I.second, MiddleBlock); 3817 } 3818 } 3819 3820 namespace { 3821 3822 struct CSEDenseMapInfo { 3823 static bool canHandle(const Instruction *I) { 3824 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3825 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3826 } 3827 3828 static inline Instruction *getEmptyKey() { 3829 return DenseMapInfo<Instruction *>::getEmptyKey(); 3830 } 3831 3832 static inline Instruction *getTombstoneKey() { 3833 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3834 } 3835 3836 static unsigned getHashValue(const Instruction *I) { 3837 assert(canHandle(I) && "Unknown instruction!"); 3838 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3839 I->value_op_end())); 3840 } 3841 3842 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3843 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3844 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3845 return LHS == RHS; 3846 return LHS->isIdenticalTo(RHS); 3847 } 3848 }; 3849 3850 } // end anonymous namespace 3851 3852 ///Perform cse of induction variable instructions. 3853 static void cse(BasicBlock *BB) { 3854 // Perform simple cse. 3855 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3856 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3857 if (!CSEDenseMapInfo::canHandle(&In)) 3858 continue; 3859 3860 // Check if we can replace this instruction with any of the 3861 // visited instructions. 3862 if (Instruction *V = CSEMap.lookup(&In)) { 3863 In.replaceAllUsesWith(V); 3864 In.eraseFromParent(); 3865 continue; 3866 } 3867 3868 CSEMap[&In] = &In; 3869 } 3870 } 3871 3872 InstructionCost 3873 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3874 bool &NeedToScalarize) const { 3875 Function *F = CI->getCalledFunction(); 3876 Type *ScalarRetTy = CI->getType(); 3877 SmallVector<Type *, 4> Tys, ScalarTys; 3878 for (auto &ArgOp : CI->args()) 3879 ScalarTys.push_back(ArgOp->getType()); 3880 3881 // Estimate cost of scalarized vector call. The source operands are assumed 3882 // to be vectors, so we need to extract individual elements from there, 3883 // execute VF scalar calls, and then gather the result into the vector return 3884 // value. 3885 InstructionCost ScalarCallCost = 3886 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3887 if (VF.isScalar()) 3888 return ScalarCallCost; 3889 3890 // Compute corresponding vector type for return value and arguments. 3891 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3892 for (Type *ScalarTy : ScalarTys) 3893 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3894 3895 // Compute costs of unpacking argument values for the scalar calls and 3896 // packing the return values to a vector. 3897 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3898 3899 InstructionCost Cost = 3900 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3901 3902 // If we can't emit a vector call for this function, then the currently found 3903 // cost is the cost we need to return. 3904 NeedToScalarize = true; 3905 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3906 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3907 3908 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3909 return Cost; 3910 3911 // If the corresponding vector cost is cheaper, return its cost. 3912 InstructionCost VectorCallCost = 3913 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3914 if (VectorCallCost < Cost) { 3915 NeedToScalarize = false; 3916 Cost = VectorCallCost; 3917 } 3918 return Cost; 3919 } 3920 3921 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3922 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3923 return Elt; 3924 return VectorType::get(Elt, VF); 3925 } 3926 3927 InstructionCost 3928 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3929 ElementCount VF) const { 3930 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3931 assert(ID && "Expected intrinsic call!"); 3932 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3933 FastMathFlags FMF; 3934 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3935 FMF = FPMO->getFastMathFlags(); 3936 3937 SmallVector<const Value *> Arguments(CI->args()); 3938 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3939 SmallVector<Type *> ParamTys; 3940 std::transform(FTy->param_begin(), FTy->param_end(), 3941 std::back_inserter(ParamTys), 3942 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3943 3944 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3945 dyn_cast<IntrinsicInst>(CI)); 3946 return TTI.getIntrinsicInstrCost(CostAttrs, 3947 TargetTransformInfo::TCK_RecipThroughput); 3948 } 3949 3950 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3951 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3952 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3953 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3954 } 3955 3956 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3957 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3958 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3959 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3960 } 3961 3962 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3963 // For every instruction `I` in MinBWs, truncate the operands, create a 3964 // truncated version of `I` and reextend its result. InstCombine runs 3965 // later and will remove any ext/trunc pairs. 3966 SmallPtrSet<Value *, 4> Erased; 3967 for (const auto &KV : Cost->getMinimalBitwidths()) { 3968 // If the value wasn't vectorized, we must maintain the original scalar 3969 // type. The absence of the value from State indicates that it 3970 // wasn't vectorized. 3971 // FIXME: Should not rely on getVPValue at this point. 3972 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3973 if (!State.hasAnyVectorValue(Def)) 3974 continue; 3975 for (unsigned Part = 0; Part < UF; ++Part) { 3976 Value *I = State.get(Def, Part); 3977 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3978 continue; 3979 Type *OriginalTy = I->getType(); 3980 Type *ScalarTruncatedTy = 3981 IntegerType::get(OriginalTy->getContext(), KV.second); 3982 auto *TruncatedTy = VectorType::get( 3983 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3984 if (TruncatedTy == OriginalTy) 3985 continue; 3986 3987 IRBuilder<> B(cast<Instruction>(I)); 3988 auto ShrinkOperand = [&](Value *V) -> Value * { 3989 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3990 if (ZI->getSrcTy() == TruncatedTy) 3991 return ZI->getOperand(0); 3992 return B.CreateZExtOrTrunc(V, TruncatedTy); 3993 }; 3994 3995 // The actual instruction modification depends on the instruction type, 3996 // unfortunately. 3997 Value *NewI = nullptr; 3998 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3999 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 4000 ShrinkOperand(BO->getOperand(1))); 4001 4002 // Any wrapping introduced by shrinking this operation shouldn't be 4003 // considered undefined behavior. So, we can't unconditionally copy 4004 // arithmetic wrapping flags to NewI. 4005 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 4006 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 4007 NewI = 4008 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 4009 ShrinkOperand(CI->getOperand(1))); 4010 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 4011 NewI = B.CreateSelect(SI->getCondition(), 4012 ShrinkOperand(SI->getTrueValue()), 4013 ShrinkOperand(SI->getFalseValue())); 4014 } else if (auto *CI = dyn_cast<CastInst>(I)) { 4015 switch (CI->getOpcode()) { 4016 default: 4017 llvm_unreachable("Unhandled cast!"); 4018 case Instruction::Trunc: 4019 NewI = ShrinkOperand(CI->getOperand(0)); 4020 break; 4021 case Instruction::SExt: 4022 NewI = B.CreateSExtOrTrunc( 4023 CI->getOperand(0), 4024 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4025 break; 4026 case Instruction::ZExt: 4027 NewI = B.CreateZExtOrTrunc( 4028 CI->getOperand(0), 4029 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4030 break; 4031 } 4032 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4033 auto Elements0 = 4034 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 4035 auto *O0 = B.CreateZExtOrTrunc( 4036 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4037 auto Elements1 = 4038 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 4039 auto *O1 = B.CreateZExtOrTrunc( 4040 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4041 4042 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4043 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4044 // Don't do anything with the operands, just extend the result. 4045 continue; 4046 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4047 auto Elements = 4048 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 4049 auto *O0 = B.CreateZExtOrTrunc( 4050 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4051 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4052 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4053 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4054 auto Elements = 4055 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 4056 auto *O0 = B.CreateZExtOrTrunc( 4057 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4058 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4059 } else { 4060 // If we don't know what to do, be conservative and don't do anything. 4061 continue; 4062 } 4063 4064 // Lastly, extend the result. 4065 NewI->takeName(cast<Instruction>(I)); 4066 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4067 I->replaceAllUsesWith(Res); 4068 cast<Instruction>(I)->eraseFromParent(); 4069 Erased.insert(I); 4070 State.reset(Def, Res, Part); 4071 } 4072 } 4073 4074 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4075 for (const auto &KV : Cost->getMinimalBitwidths()) { 4076 // If the value wasn't vectorized, we must maintain the original scalar 4077 // type. The absence of the value from State indicates that it 4078 // wasn't vectorized. 4079 // FIXME: Should not rely on getVPValue at this point. 4080 VPValue *Def = State.Plan->getVPValue(KV.first, true); 4081 if (!State.hasAnyVectorValue(Def)) 4082 continue; 4083 for (unsigned Part = 0; Part < UF; ++Part) { 4084 Value *I = State.get(Def, Part); 4085 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4086 if (Inst && Inst->use_empty()) { 4087 Value *NewI = Inst->getOperand(0); 4088 Inst->eraseFromParent(); 4089 State.reset(Def, NewI, Part); 4090 } 4091 } 4092 } 4093 } 4094 4095 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4096 // Insert truncates and extends for any truncated instructions as hints to 4097 // InstCombine. 4098 if (VF.isVector()) 4099 truncateToMinimalBitwidths(State); 4100 4101 // Fix widened non-induction PHIs by setting up the PHI operands. 4102 if (OrigPHIsToFix.size()) { 4103 assert(EnableVPlanNativePath && 4104 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4105 fixNonInductionPHIs(State); 4106 } 4107 4108 // At this point every instruction in the original loop is widened to a 4109 // vector form. Now we need to fix the recurrences in the loop. These PHI 4110 // nodes are currently empty because we did not want to introduce cycles. 4111 // This is the second stage of vectorizing recurrences. 4112 fixCrossIterationPHIs(State); 4113 4114 // Forget the original basic block. 4115 PSE.getSE()->forgetLoop(OrigLoop); 4116 4117 // If we inserted an edge from the middle block to the unique exit block, 4118 // update uses outside the loop (phis) to account for the newly inserted 4119 // edge. 4120 if (!Cost->requiresScalarEpilogue(VF)) { 4121 // Fix-up external users of the induction variables. 4122 for (auto &Entry : Legal->getInductionVars()) 4123 fixupIVUsers(Entry.first, Entry.second, 4124 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4125 IVEndValues[Entry.first], LoopMiddleBlock); 4126 4127 fixLCSSAPHIs(State); 4128 } 4129 4130 for (Instruction *PI : PredicatedInstructions) 4131 sinkScalarOperands(&*PI); 4132 4133 // Remove redundant induction instructions. 4134 cse(LoopVectorBody); 4135 4136 // Set/update profile weights for the vector and remainder loops as original 4137 // loop iterations are now distributed among them. Note that original loop 4138 // represented by LoopScalarBody becomes remainder loop after vectorization. 4139 // 4140 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4141 // end up getting slightly roughened result but that should be OK since 4142 // profile is not inherently precise anyway. Note also possible bypass of 4143 // vector code caused by legality checks is ignored, assigning all the weight 4144 // to the vector loop, optimistically. 4145 // 4146 // For scalable vectorization we can't know at compile time how many iterations 4147 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4148 // vscale of '1'. 4149 setProfileInfoAfterUnrolling( 4150 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4151 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4152 } 4153 4154 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4155 // In order to support recurrences we need to be able to vectorize Phi nodes. 4156 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4157 // stage #2: We now need to fix the recurrences by adding incoming edges to 4158 // the currently empty PHI nodes. At this point every instruction in the 4159 // original loop is widened to a vector form so we can use them to construct 4160 // the incoming edges. 4161 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4162 for (VPRecipeBase &R : Header->phis()) { 4163 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 4164 fixReduction(ReductionPhi, State); 4165 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 4166 fixFirstOrderRecurrence(FOR, State); 4167 } 4168 } 4169 4170 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, 4171 VPTransformState &State) { 4172 // This is the second phase of vectorizing first-order recurrences. An 4173 // overview of the transformation is described below. Suppose we have the 4174 // following loop. 4175 // 4176 // for (int i = 0; i < n; ++i) 4177 // b[i] = a[i] - a[i - 1]; 4178 // 4179 // There is a first-order recurrence on "a". For this loop, the shorthand 4180 // scalar IR looks like: 4181 // 4182 // scalar.ph: 4183 // s_init = a[-1] 4184 // br scalar.body 4185 // 4186 // scalar.body: 4187 // i = phi [0, scalar.ph], [i+1, scalar.body] 4188 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4189 // s2 = a[i] 4190 // b[i] = s2 - s1 4191 // br cond, scalar.body, ... 4192 // 4193 // In this example, s1 is a recurrence because it's value depends on the 4194 // previous iteration. In the first phase of vectorization, we created a 4195 // vector phi v1 for s1. We now complete the vectorization and produce the 4196 // shorthand vector IR shown below (for VF = 4, UF = 1). 4197 // 4198 // vector.ph: 4199 // v_init = vector(..., ..., ..., a[-1]) 4200 // br vector.body 4201 // 4202 // vector.body 4203 // i = phi [0, vector.ph], [i+4, vector.body] 4204 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4205 // v2 = a[i, i+1, i+2, i+3]; 4206 // v3 = vector(v1(3), v2(0, 1, 2)) 4207 // b[i, i+1, i+2, i+3] = v2 - v3 4208 // br cond, vector.body, middle.block 4209 // 4210 // middle.block: 4211 // x = v2(3) 4212 // br scalar.ph 4213 // 4214 // scalar.ph: 4215 // s_init = phi [x, middle.block], [a[-1], otherwise] 4216 // br scalar.body 4217 // 4218 // After execution completes the vector loop, we extract the next value of 4219 // the recurrence (x) to use as the initial value in the scalar loop. 4220 4221 // Extract the last vector element in the middle block. This will be the 4222 // initial value for the recurrence when jumping to the scalar loop. 4223 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4224 Value *Incoming = State.get(PreviousDef, UF - 1); 4225 auto *ExtractForScalar = Incoming; 4226 auto *IdxTy = Builder.getInt32Ty(); 4227 if (VF.isVector()) { 4228 auto *One = ConstantInt::get(IdxTy, 1); 4229 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4230 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4231 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4232 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4233 "vector.recur.extract"); 4234 } 4235 // Extract the second last element in the middle block if the 4236 // Phi is used outside the loop. We need to extract the phi itself 4237 // and not the last element (the phi update in the current iteration). This 4238 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4239 // when the scalar loop is not run at all. 4240 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4241 if (VF.isVector()) { 4242 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4243 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4244 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4245 Incoming, Idx, "vector.recur.extract.for.phi"); 4246 } else if (UF > 1) 4247 // When loop is unrolled without vectorizing, initialize 4248 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4249 // of `Incoming`. This is analogous to the vectorized case above: extracting 4250 // the second last element when VF > 1. 4251 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4252 4253 // Fix the initial value of the original recurrence in the scalar loop. 4254 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4255 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4256 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4257 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4258 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4259 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4260 Start->addIncoming(Incoming, BB); 4261 } 4262 4263 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4264 Phi->setName("scalar.recur"); 4265 4266 // Finally, fix users of the recurrence outside the loop. The users will need 4267 // either the last value of the scalar recurrence or the last value of the 4268 // vector recurrence we extracted in the middle block. Since the loop is in 4269 // LCSSA form, we just need to find all the phi nodes for the original scalar 4270 // recurrence in the exit block, and then add an edge for the middle block. 4271 // Note that LCSSA does not imply single entry when the original scalar loop 4272 // had multiple exiting edges (as we always run the last iteration in the 4273 // scalar epilogue); in that case, there is no edge from middle to exit and 4274 // and thus no phis which needed updated. 4275 if (!Cost->requiresScalarEpilogue(VF)) 4276 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4277 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) 4278 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4279 } 4280 4281 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4282 VPTransformState &State) { 4283 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4284 // Get it's reduction variable descriptor. 4285 assert(Legal->isReductionVariable(OrigPhi) && 4286 "Unable to find the reduction variable"); 4287 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4288 4289 RecurKind RK = RdxDesc.getRecurrenceKind(); 4290 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4291 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4292 setDebugLocFromInst(ReductionStartValue); 4293 4294 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4295 // This is the vector-clone of the value that leaves the loop. 4296 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4297 4298 // Wrap flags are in general invalid after vectorization, clear them. 4299 clearReductionWrapFlags(RdxDesc, State); 4300 4301 // Before each round, move the insertion point right between 4302 // the PHIs and the values we are going to write. 4303 // This allows us to write both PHINodes and the extractelement 4304 // instructions. 4305 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4306 4307 setDebugLocFromInst(LoopExitInst); 4308 4309 Type *PhiTy = OrigPhi->getType(); 4310 // If tail is folded by masking, the vector value to leave the loop should be 4311 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4312 // instead of the former. For an inloop reduction the reduction will already 4313 // be predicated, and does not need to be handled here. 4314 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4315 for (unsigned Part = 0; Part < UF; ++Part) { 4316 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4317 Value *Sel = nullptr; 4318 for (User *U : VecLoopExitInst->users()) { 4319 if (isa<SelectInst>(U)) { 4320 assert(!Sel && "Reduction exit feeding two selects"); 4321 Sel = U; 4322 } else 4323 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4324 } 4325 assert(Sel && "Reduction exit feeds no select"); 4326 State.reset(LoopExitInstDef, Sel, Part); 4327 4328 // If the target can create a predicated operator for the reduction at no 4329 // extra cost in the loop (for example a predicated vadd), it can be 4330 // cheaper for the select to remain in the loop than be sunk out of it, 4331 // and so use the select value for the phi instead of the old 4332 // LoopExitValue. 4333 if (PreferPredicatedReductionSelect || 4334 TTI->preferPredicatedReductionSelect( 4335 RdxDesc.getOpcode(), PhiTy, 4336 TargetTransformInfo::ReductionFlags())) { 4337 auto *VecRdxPhi = 4338 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4339 VecRdxPhi->setIncomingValueForBlock( 4340 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4341 } 4342 } 4343 } 4344 4345 // If the vector reduction can be performed in a smaller type, we truncate 4346 // then extend the loop exit value to enable InstCombine to evaluate the 4347 // entire expression in the smaller type. 4348 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4349 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4350 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4351 Builder.SetInsertPoint( 4352 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4353 VectorParts RdxParts(UF); 4354 for (unsigned Part = 0; Part < UF; ++Part) { 4355 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4356 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4357 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4358 : Builder.CreateZExt(Trunc, VecTy); 4359 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4360 UI != RdxParts[Part]->user_end();) 4361 if (*UI != Trunc) { 4362 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4363 RdxParts[Part] = Extnd; 4364 } else { 4365 ++UI; 4366 } 4367 } 4368 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4369 for (unsigned Part = 0; Part < UF; ++Part) { 4370 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4371 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4372 } 4373 } 4374 4375 // Reduce all of the unrolled parts into a single vector. 4376 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4377 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4378 4379 // The middle block terminator has already been assigned a DebugLoc here (the 4380 // OrigLoop's single latch terminator). We want the whole middle block to 4381 // appear to execute on this line because: (a) it is all compiler generated, 4382 // (b) these instructions are always executed after evaluating the latch 4383 // conditional branch, and (c) other passes may add new predecessors which 4384 // terminate on this line. This is the easiest way to ensure we don't 4385 // accidentally cause an extra step back into the loop while debugging. 4386 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4387 if (PhiR->isOrdered()) 4388 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4389 else { 4390 // Floating-point operations should have some FMF to enable the reduction. 4391 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4392 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4393 for (unsigned Part = 1; Part < UF; ++Part) { 4394 Value *RdxPart = State.get(LoopExitInstDef, Part); 4395 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4396 ReducedPartRdx = Builder.CreateBinOp( 4397 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4398 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 4399 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 4400 ReducedPartRdx, RdxPart); 4401 else 4402 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4403 } 4404 } 4405 4406 // Create the reduction after the loop. Note that inloop reductions create the 4407 // target reduction in the loop using a Reduction recipe. 4408 if (VF.isVector() && !PhiR->isInLoop()) { 4409 ReducedPartRdx = 4410 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 4411 // If the reduction can be performed in a smaller type, we need to extend 4412 // the reduction to the wider type before we branch to the original loop. 4413 if (PhiTy != RdxDesc.getRecurrenceType()) 4414 ReducedPartRdx = RdxDesc.isSigned() 4415 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4416 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4417 } 4418 4419 // Create a phi node that merges control-flow from the backedge-taken check 4420 // block and the middle block. 4421 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4422 LoopScalarPreHeader->getTerminator()); 4423 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4424 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4425 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4426 4427 // Now, we need to fix the users of the reduction variable 4428 // inside and outside of the scalar remainder loop. 4429 4430 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4431 // in the exit blocks. See comment on analogous loop in 4432 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4433 if (!Cost->requiresScalarEpilogue(VF)) 4434 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4435 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) 4436 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4437 4438 // Fix the scalar loop reduction variable with the incoming reduction sum 4439 // from the vector body and from the backedge value. 4440 int IncomingEdgeBlockIdx = 4441 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4442 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4443 // Pick the other block. 4444 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4445 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4446 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4447 } 4448 4449 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4450 VPTransformState &State) { 4451 RecurKind RK = RdxDesc.getRecurrenceKind(); 4452 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4453 return; 4454 4455 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4456 assert(LoopExitInstr && "null loop exit instruction"); 4457 SmallVector<Instruction *, 8> Worklist; 4458 SmallPtrSet<Instruction *, 8> Visited; 4459 Worklist.push_back(LoopExitInstr); 4460 Visited.insert(LoopExitInstr); 4461 4462 while (!Worklist.empty()) { 4463 Instruction *Cur = Worklist.pop_back_val(); 4464 if (isa<OverflowingBinaryOperator>(Cur)) 4465 for (unsigned Part = 0; Part < UF; ++Part) { 4466 // FIXME: Should not rely on getVPValue at this point. 4467 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4468 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4469 } 4470 4471 for (User *U : Cur->users()) { 4472 Instruction *UI = cast<Instruction>(U); 4473 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4474 Visited.insert(UI).second) 4475 Worklist.push_back(UI); 4476 } 4477 } 4478 } 4479 4480 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4481 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4482 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4483 // Some phis were already hand updated by the reduction and recurrence 4484 // code above, leave them alone. 4485 continue; 4486 4487 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4488 // Non-instruction incoming values will have only one value. 4489 4490 VPLane Lane = VPLane::getFirstLane(); 4491 if (isa<Instruction>(IncomingValue) && 4492 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4493 VF)) 4494 Lane = VPLane::getLastLaneForVF(VF); 4495 4496 // Can be a loop invariant incoming value or the last scalar value to be 4497 // extracted from the vectorized loop. 4498 // FIXME: Should not rely on getVPValue at this point. 4499 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4500 Value *lastIncomingValue = 4501 OrigLoop->isLoopInvariant(IncomingValue) 4502 ? IncomingValue 4503 : State.get(State.Plan->getVPValue(IncomingValue, true), 4504 VPIteration(UF - 1, Lane)); 4505 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4506 } 4507 } 4508 4509 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4510 // The basic block and loop containing the predicated instruction. 4511 auto *PredBB = PredInst->getParent(); 4512 auto *VectorLoop = LI->getLoopFor(PredBB); 4513 4514 // Initialize a worklist with the operands of the predicated instruction. 4515 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4516 4517 // Holds instructions that we need to analyze again. An instruction may be 4518 // reanalyzed if we don't yet know if we can sink it or not. 4519 SmallVector<Instruction *, 8> InstsToReanalyze; 4520 4521 // Returns true if a given use occurs in the predicated block. Phi nodes use 4522 // their operands in their corresponding predecessor blocks. 4523 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4524 auto *I = cast<Instruction>(U.getUser()); 4525 BasicBlock *BB = I->getParent(); 4526 if (auto *Phi = dyn_cast<PHINode>(I)) 4527 BB = Phi->getIncomingBlock( 4528 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4529 return BB == PredBB; 4530 }; 4531 4532 // Iteratively sink the scalarized operands of the predicated instruction 4533 // into the block we created for it. When an instruction is sunk, it's 4534 // operands are then added to the worklist. The algorithm ends after one pass 4535 // through the worklist doesn't sink a single instruction. 4536 bool Changed; 4537 do { 4538 // Add the instructions that need to be reanalyzed to the worklist, and 4539 // reset the changed indicator. 4540 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4541 InstsToReanalyze.clear(); 4542 Changed = false; 4543 4544 while (!Worklist.empty()) { 4545 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4546 4547 // We can't sink an instruction if it is a phi node, is not in the loop, 4548 // or may have side effects. 4549 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4550 I->mayHaveSideEffects()) 4551 continue; 4552 4553 // If the instruction is already in PredBB, check if we can sink its 4554 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4555 // sinking the scalar instruction I, hence it appears in PredBB; but it 4556 // may have failed to sink I's operands (recursively), which we try 4557 // (again) here. 4558 if (I->getParent() == PredBB) { 4559 Worklist.insert(I->op_begin(), I->op_end()); 4560 continue; 4561 } 4562 4563 // It's legal to sink the instruction if all its uses occur in the 4564 // predicated block. Otherwise, there's nothing to do yet, and we may 4565 // need to reanalyze the instruction. 4566 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4567 InstsToReanalyze.push_back(I); 4568 continue; 4569 } 4570 4571 // Move the instruction to the beginning of the predicated block, and add 4572 // it's operands to the worklist. 4573 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4574 Worklist.insert(I->op_begin(), I->op_end()); 4575 4576 // The sinking may have enabled other instructions to be sunk, so we will 4577 // need to iterate. 4578 Changed = true; 4579 } 4580 } while (Changed); 4581 } 4582 4583 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4584 for (PHINode *OrigPhi : OrigPHIsToFix) { 4585 VPWidenPHIRecipe *VPPhi = 4586 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4587 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4588 // Make sure the builder has a valid insert point. 4589 Builder.SetInsertPoint(NewPhi); 4590 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4591 VPValue *Inc = VPPhi->getIncomingValue(i); 4592 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4593 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4594 } 4595 } 4596 } 4597 4598 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4599 return Cost->useOrderedReductions(RdxDesc); 4600 } 4601 4602 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4603 VPUser &Operands, unsigned UF, 4604 ElementCount VF, bool IsPtrLoopInvariant, 4605 SmallBitVector &IsIndexLoopInvariant, 4606 VPTransformState &State) { 4607 // Construct a vector GEP by widening the operands of the scalar GEP as 4608 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4609 // results in a vector of pointers when at least one operand of the GEP 4610 // is vector-typed. Thus, to keep the representation compact, we only use 4611 // vector-typed operands for loop-varying values. 4612 4613 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4614 // If we are vectorizing, but the GEP has only loop-invariant operands, 4615 // the GEP we build (by only using vector-typed operands for 4616 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4617 // produce a vector of pointers, we need to either arbitrarily pick an 4618 // operand to broadcast, or broadcast a clone of the original GEP. 4619 // Here, we broadcast a clone of the original. 4620 // 4621 // TODO: If at some point we decide to scalarize instructions having 4622 // loop-invariant operands, this special case will no longer be 4623 // required. We would add the scalarization decision to 4624 // collectLoopScalars() and teach getVectorValue() to broadcast 4625 // the lane-zero scalar value. 4626 auto *Clone = Builder.Insert(GEP->clone()); 4627 for (unsigned Part = 0; Part < UF; ++Part) { 4628 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4629 State.set(VPDef, EntryPart, Part); 4630 addMetadata(EntryPart, GEP); 4631 } 4632 } else { 4633 // If the GEP has at least one loop-varying operand, we are sure to 4634 // produce a vector of pointers. But if we are only unrolling, we want 4635 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4636 // produce with the code below will be scalar (if VF == 1) or vector 4637 // (otherwise). Note that for the unroll-only case, we still maintain 4638 // values in the vector mapping with initVector, as we do for other 4639 // instructions. 4640 for (unsigned Part = 0; Part < UF; ++Part) { 4641 // The pointer operand of the new GEP. If it's loop-invariant, we 4642 // won't broadcast it. 4643 auto *Ptr = IsPtrLoopInvariant 4644 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4645 : State.get(Operands.getOperand(0), Part); 4646 4647 // Collect all the indices for the new GEP. If any index is 4648 // loop-invariant, we won't broadcast it. 4649 SmallVector<Value *, 4> Indices; 4650 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4651 VPValue *Operand = Operands.getOperand(I); 4652 if (IsIndexLoopInvariant[I - 1]) 4653 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4654 else 4655 Indices.push_back(State.get(Operand, Part)); 4656 } 4657 4658 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4659 // but it should be a vector, otherwise. 4660 auto *NewGEP = 4661 GEP->isInBounds() 4662 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4663 Indices) 4664 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4665 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4666 "NewGEP is not a pointer vector"); 4667 State.set(VPDef, NewGEP, Part); 4668 addMetadata(NewGEP, GEP); 4669 } 4670 } 4671 } 4672 4673 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4674 VPWidenPHIRecipe *PhiR, 4675 VPTransformState &State) { 4676 PHINode *P = cast<PHINode>(PN); 4677 if (EnableVPlanNativePath) { 4678 // Currently we enter here in the VPlan-native path for non-induction 4679 // PHIs where all control flow is uniform. We simply widen these PHIs. 4680 // Create a vector phi with no operands - the vector phi operands will be 4681 // set at the end of vector code generation. 4682 Type *VecTy = (State.VF.isScalar()) 4683 ? PN->getType() 4684 : VectorType::get(PN->getType(), State.VF); 4685 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4686 State.set(PhiR, VecPhi, 0); 4687 OrigPHIsToFix.push_back(P); 4688 4689 return; 4690 } 4691 4692 assert(PN->getParent() == OrigLoop->getHeader() && 4693 "Non-header phis should have been handled elsewhere"); 4694 4695 // In order to support recurrences we need to be able to vectorize Phi nodes. 4696 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4697 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4698 // this value when we vectorize all of the instructions that use the PHI. 4699 4700 assert(!Legal->isReductionVariable(P) && 4701 "reductions should be handled elsewhere"); 4702 4703 setDebugLocFromInst(P); 4704 4705 // This PHINode must be an induction variable. 4706 // Make sure that we know about it. 4707 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4708 4709 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4710 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4711 4712 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4713 // which can be found from the original scalar operations. 4714 switch (II.getKind()) { 4715 case InductionDescriptor::IK_NoInduction: 4716 llvm_unreachable("Unknown induction"); 4717 case InductionDescriptor::IK_IntInduction: 4718 case InductionDescriptor::IK_FpInduction: 4719 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4720 case InductionDescriptor::IK_PtrInduction: { 4721 // Handle the pointer induction variable case. 4722 assert(P->getType()->isPointerTy() && "Unexpected type."); 4723 4724 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4725 // This is the normalized GEP that starts counting at zero. 4726 Value *PtrInd = 4727 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4728 // Determine the number of scalars we need to generate for each unroll 4729 // iteration. If the instruction is uniform, we only need to generate the 4730 // first lane. Otherwise, we generate all VF values. 4731 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4732 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4733 4734 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4735 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4736 if (NeedsVectorIndex) { 4737 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4738 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4739 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4740 } 4741 4742 for (unsigned Part = 0; Part < UF; ++Part) { 4743 Value *PartStart = createStepForVF( 4744 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4745 4746 if (NeedsVectorIndex) { 4747 // Here we cache the whole vector, which means we can support the 4748 // extraction of any lane. However, in some cases the extractelement 4749 // instruction that is generated for scalar uses of this vector (e.g. 4750 // a load instruction) is not folded away. Therefore we still 4751 // calculate values for the first n lanes to avoid redundant moves 4752 // (when extracting the 0th element) and to produce scalar code (i.e. 4753 // additional add/gep instructions instead of expensive extractelement 4754 // instructions) when extracting higher-order elements. 4755 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4756 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4757 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4758 Value *SclrGep = 4759 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4760 SclrGep->setName("next.gep"); 4761 State.set(PhiR, SclrGep, Part); 4762 } 4763 4764 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4765 Value *Idx = Builder.CreateAdd( 4766 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4767 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4768 Value *SclrGep = 4769 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4770 SclrGep->setName("next.gep"); 4771 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4772 } 4773 } 4774 return; 4775 } 4776 assert(isa<SCEVConstant>(II.getStep()) && 4777 "Induction step not a SCEV constant!"); 4778 Type *PhiType = II.getStep()->getType(); 4779 4780 // Build a pointer phi 4781 Value *ScalarStartValue = II.getStartValue(); 4782 Type *ScStValueType = ScalarStartValue->getType(); 4783 PHINode *NewPointerPhi = 4784 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4785 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4786 4787 // A pointer induction, performed by using a gep 4788 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4789 Instruction *InductionLoc = LoopLatch->getTerminator(); 4790 const SCEV *ScalarStep = II.getStep(); 4791 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4792 Value *ScalarStepValue = 4793 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4794 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4795 Value *NumUnrolledElems = 4796 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4797 Value *InductionGEP = GetElementPtrInst::Create( 4798 II.getElementType(), NewPointerPhi, 4799 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4800 InductionLoc); 4801 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4802 4803 // Create UF many actual address geps that use the pointer 4804 // phi as base and a vectorized version of the step value 4805 // (<step*0, ..., step*N>) as offset. 4806 for (unsigned Part = 0; Part < State.UF; ++Part) { 4807 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4808 Value *StartOffsetScalar = 4809 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4810 Value *StartOffset = 4811 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4812 // Create a vector of consecutive numbers from zero to VF. 4813 StartOffset = 4814 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4815 4816 Value *GEP = Builder.CreateGEP( 4817 II.getElementType(), NewPointerPhi, 4818 Builder.CreateMul( 4819 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4820 "vector.gep")); 4821 State.set(PhiR, GEP, Part); 4822 } 4823 } 4824 } 4825 } 4826 4827 /// A helper function for checking whether an integer division-related 4828 /// instruction may divide by zero (in which case it must be predicated if 4829 /// executed conditionally in the scalar code). 4830 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4831 /// Non-zero divisors that are non compile-time constants will not be 4832 /// converted into multiplication, so we will still end up scalarizing 4833 /// the division, but can do so w/o predication. 4834 static bool mayDivideByZero(Instruction &I) { 4835 assert((I.getOpcode() == Instruction::UDiv || 4836 I.getOpcode() == Instruction::SDiv || 4837 I.getOpcode() == Instruction::URem || 4838 I.getOpcode() == Instruction::SRem) && 4839 "Unexpected instruction"); 4840 Value *Divisor = I.getOperand(1); 4841 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4842 return !CInt || CInt->isZero(); 4843 } 4844 4845 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4846 VPUser &User, 4847 VPTransformState &State) { 4848 switch (I.getOpcode()) { 4849 case Instruction::Call: 4850 case Instruction::Br: 4851 case Instruction::PHI: 4852 case Instruction::GetElementPtr: 4853 case Instruction::Select: 4854 llvm_unreachable("This instruction is handled by a different recipe."); 4855 case Instruction::UDiv: 4856 case Instruction::SDiv: 4857 case Instruction::SRem: 4858 case Instruction::URem: 4859 case Instruction::Add: 4860 case Instruction::FAdd: 4861 case Instruction::Sub: 4862 case Instruction::FSub: 4863 case Instruction::FNeg: 4864 case Instruction::Mul: 4865 case Instruction::FMul: 4866 case Instruction::FDiv: 4867 case Instruction::FRem: 4868 case Instruction::Shl: 4869 case Instruction::LShr: 4870 case Instruction::AShr: 4871 case Instruction::And: 4872 case Instruction::Or: 4873 case Instruction::Xor: { 4874 // Just widen unops and binops. 4875 setDebugLocFromInst(&I); 4876 4877 for (unsigned Part = 0; Part < UF; ++Part) { 4878 SmallVector<Value *, 2> Ops; 4879 for (VPValue *VPOp : User.operands()) 4880 Ops.push_back(State.get(VPOp, Part)); 4881 4882 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4883 4884 if (auto *VecOp = dyn_cast<Instruction>(V)) 4885 VecOp->copyIRFlags(&I); 4886 4887 // Use this vector value for all users of the original instruction. 4888 State.set(Def, V, Part); 4889 addMetadata(V, &I); 4890 } 4891 4892 break; 4893 } 4894 case Instruction::ICmp: 4895 case Instruction::FCmp: { 4896 // Widen compares. Generate vector compares. 4897 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4898 auto *Cmp = cast<CmpInst>(&I); 4899 setDebugLocFromInst(Cmp); 4900 for (unsigned Part = 0; Part < UF; ++Part) { 4901 Value *A = State.get(User.getOperand(0), Part); 4902 Value *B = State.get(User.getOperand(1), Part); 4903 Value *C = nullptr; 4904 if (FCmp) { 4905 // Propagate fast math flags. 4906 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4907 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4908 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4909 } else { 4910 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4911 } 4912 State.set(Def, C, Part); 4913 addMetadata(C, &I); 4914 } 4915 4916 break; 4917 } 4918 4919 case Instruction::ZExt: 4920 case Instruction::SExt: 4921 case Instruction::FPToUI: 4922 case Instruction::FPToSI: 4923 case Instruction::FPExt: 4924 case Instruction::PtrToInt: 4925 case Instruction::IntToPtr: 4926 case Instruction::SIToFP: 4927 case Instruction::UIToFP: 4928 case Instruction::Trunc: 4929 case Instruction::FPTrunc: 4930 case Instruction::BitCast: { 4931 auto *CI = cast<CastInst>(&I); 4932 setDebugLocFromInst(CI); 4933 4934 /// Vectorize casts. 4935 Type *DestTy = 4936 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4937 4938 for (unsigned Part = 0; Part < UF; ++Part) { 4939 Value *A = State.get(User.getOperand(0), Part); 4940 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4941 State.set(Def, Cast, Part); 4942 addMetadata(Cast, &I); 4943 } 4944 break; 4945 } 4946 default: 4947 // This instruction is not vectorized by simple widening. 4948 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4949 llvm_unreachable("Unhandled instruction!"); 4950 } // end of switch. 4951 } 4952 4953 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4954 VPUser &ArgOperands, 4955 VPTransformState &State) { 4956 assert(!isa<DbgInfoIntrinsic>(I) && 4957 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4958 setDebugLocFromInst(&I); 4959 4960 Module *M = I.getParent()->getParent()->getParent(); 4961 auto *CI = cast<CallInst>(&I); 4962 4963 SmallVector<Type *, 4> Tys; 4964 for (Value *ArgOperand : CI->args()) 4965 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4966 4967 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4968 4969 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4970 // version of the instruction. 4971 // Is it beneficial to perform intrinsic call compared to lib call? 4972 bool NeedToScalarize = false; 4973 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4974 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4975 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4976 assert((UseVectorIntrinsic || !NeedToScalarize) && 4977 "Instruction should be scalarized elsewhere."); 4978 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4979 "Either the intrinsic cost or vector call cost must be valid"); 4980 4981 for (unsigned Part = 0; Part < UF; ++Part) { 4982 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4983 SmallVector<Value *, 4> Args; 4984 for (auto &I : enumerate(ArgOperands.operands())) { 4985 // Some intrinsics have a scalar argument - don't replace it with a 4986 // vector. 4987 Value *Arg; 4988 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4989 Arg = State.get(I.value(), Part); 4990 else { 4991 Arg = State.get(I.value(), VPIteration(0, 0)); 4992 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 4993 TysForDecl.push_back(Arg->getType()); 4994 } 4995 Args.push_back(Arg); 4996 } 4997 4998 Function *VectorF; 4999 if (UseVectorIntrinsic) { 5000 // Use vector version of the intrinsic. 5001 if (VF.isVector()) 5002 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5003 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5004 assert(VectorF && "Can't retrieve vector intrinsic."); 5005 } else { 5006 // Use vector version of the function call. 5007 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5008 #ifndef NDEBUG 5009 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5010 "Can't create vector function."); 5011 #endif 5012 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5013 } 5014 SmallVector<OperandBundleDef, 1> OpBundles; 5015 CI->getOperandBundlesAsDefs(OpBundles); 5016 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5017 5018 if (isa<FPMathOperator>(V)) 5019 V->copyFastMathFlags(CI); 5020 5021 State.set(Def, V, Part); 5022 addMetadata(V, &I); 5023 } 5024 } 5025 5026 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5027 VPUser &Operands, 5028 bool InvariantCond, 5029 VPTransformState &State) { 5030 setDebugLocFromInst(&I); 5031 5032 // The condition can be loop invariant but still defined inside the 5033 // loop. This means that we can't just use the original 'cond' value. 5034 // We have to take the 'vectorized' value and pick the first lane. 5035 // Instcombine will make this a no-op. 5036 auto *InvarCond = InvariantCond 5037 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5038 : nullptr; 5039 5040 for (unsigned Part = 0; Part < UF; ++Part) { 5041 Value *Cond = 5042 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5043 Value *Op0 = State.get(Operands.getOperand(1), Part); 5044 Value *Op1 = State.get(Operands.getOperand(2), Part); 5045 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5046 State.set(VPDef, Sel, Part); 5047 addMetadata(Sel, &I); 5048 } 5049 } 5050 5051 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5052 // We should not collect Scalars more than once per VF. Right now, this 5053 // function is called from collectUniformsAndScalars(), which already does 5054 // this check. Collecting Scalars for VF=1 does not make any sense. 5055 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5056 "This function should not be visited twice for the same VF"); 5057 5058 SmallSetVector<Instruction *, 8> Worklist; 5059 5060 // These sets are used to seed the analysis with pointers used by memory 5061 // accesses that will remain scalar. 5062 SmallSetVector<Instruction *, 8> ScalarPtrs; 5063 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5064 auto *Latch = TheLoop->getLoopLatch(); 5065 5066 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5067 // The pointer operands of loads and stores will be scalar as long as the 5068 // memory access is not a gather or scatter operation. The value operand of a 5069 // store will remain scalar if the store is scalarized. 5070 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5071 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5072 assert(WideningDecision != CM_Unknown && 5073 "Widening decision should be ready at this moment"); 5074 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5075 if (Ptr == Store->getValueOperand()) 5076 return WideningDecision == CM_Scalarize; 5077 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5078 "Ptr is neither a value or pointer operand"); 5079 return WideningDecision != CM_GatherScatter; 5080 }; 5081 5082 // A helper that returns true if the given value is a bitcast or 5083 // getelementptr instruction contained in the loop. 5084 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5085 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5086 isa<GetElementPtrInst>(V)) && 5087 !TheLoop->isLoopInvariant(V); 5088 }; 5089 5090 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5091 if (!isa<PHINode>(Ptr) || 5092 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5093 return false; 5094 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5095 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5096 return false; 5097 return isScalarUse(MemAccess, Ptr); 5098 }; 5099 5100 // A helper that evaluates a memory access's use of a pointer. If the 5101 // pointer is actually the pointer induction of a loop, it is being 5102 // inserted into Worklist. If the use will be a scalar use, and the 5103 // pointer is only used by memory accesses, we place the pointer in 5104 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5105 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5106 if (isScalarPtrInduction(MemAccess, Ptr)) { 5107 Worklist.insert(cast<Instruction>(Ptr)); 5108 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5109 << "\n"); 5110 5111 Instruction *Update = cast<Instruction>( 5112 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5113 5114 // If there is more than one user of Update (Ptr), we shouldn't assume it 5115 // will be scalar after vectorisation as other users of the instruction 5116 // may require widening. Otherwise, add it to ScalarPtrs. 5117 if (Update->hasOneUse() && cast<Value>(*Update->user_begin()) == Ptr) { 5118 ScalarPtrs.insert(Update); 5119 return; 5120 } 5121 } 5122 // We only care about bitcast and getelementptr instructions contained in 5123 // the loop. 5124 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5125 return; 5126 5127 // If the pointer has already been identified as scalar (e.g., if it was 5128 // also identified as uniform), there's nothing to do. 5129 auto *I = cast<Instruction>(Ptr); 5130 if (Worklist.count(I)) 5131 return; 5132 5133 // If the use of the pointer will be a scalar use, and all users of the 5134 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5135 // place the pointer in PossibleNonScalarPtrs. 5136 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5137 return isa<LoadInst>(U) || isa<StoreInst>(U); 5138 })) 5139 ScalarPtrs.insert(I); 5140 else 5141 PossibleNonScalarPtrs.insert(I); 5142 }; 5143 5144 // We seed the scalars analysis with three classes of instructions: (1) 5145 // instructions marked uniform-after-vectorization and (2) bitcast, 5146 // getelementptr and (pointer) phi instructions used by memory accesses 5147 // requiring a scalar use. 5148 // 5149 // (1) Add to the worklist all instructions that have been identified as 5150 // uniform-after-vectorization. 5151 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5152 5153 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5154 // memory accesses requiring a scalar use. The pointer operands of loads and 5155 // stores will be scalar as long as the memory accesses is not a gather or 5156 // scatter operation. The value operand of a store will remain scalar if the 5157 // store is scalarized. 5158 for (auto *BB : TheLoop->blocks()) 5159 for (auto &I : *BB) { 5160 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5161 evaluatePtrUse(Load, Load->getPointerOperand()); 5162 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5163 evaluatePtrUse(Store, Store->getPointerOperand()); 5164 evaluatePtrUse(Store, Store->getValueOperand()); 5165 } 5166 } 5167 for (auto *I : ScalarPtrs) 5168 if (!PossibleNonScalarPtrs.count(I)) { 5169 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5170 Worklist.insert(I); 5171 } 5172 5173 // Insert the forced scalars. 5174 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5175 // induction variable when the PHI user is scalarized. 5176 auto ForcedScalar = ForcedScalars.find(VF); 5177 if (ForcedScalar != ForcedScalars.end()) 5178 for (auto *I : ForcedScalar->second) 5179 Worklist.insert(I); 5180 5181 // Expand the worklist by looking through any bitcasts and getelementptr 5182 // instructions we've already identified as scalar. This is similar to the 5183 // expansion step in collectLoopUniforms(); however, here we're only 5184 // expanding to include additional bitcasts and getelementptr instructions. 5185 unsigned Idx = 0; 5186 while (Idx != Worklist.size()) { 5187 Instruction *Dst = Worklist[Idx++]; 5188 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5189 continue; 5190 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5191 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5192 auto *J = cast<Instruction>(U); 5193 return !TheLoop->contains(J) || Worklist.count(J) || 5194 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5195 isScalarUse(J, Src)); 5196 })) { 5197 Worklist.insert(Src); 5198 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5199 } 5200 } 5201 5202 // An induction variable will remain scalar if all users of the induction 5203 // variable and induction variable update remain scalar. 5204 for (auto &Induction : Legal->getInductionVars()) { 5205 auto *Ind = Induction.first; 5206 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5207 5208 // If tail-folding is applied, the primary induction variable will be used 5209 // to feed a vector compare. 5210 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5211 continue; 5212 5213 // Determine if all users of the induction variable are scalar after 5214 // vectorization. 5215 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5216 auto *I = cast<Instruction>(U); 5217 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5218 }); 5219 if (!ScalarInd) 5220 continue; 5221 5222 // Determine if all users of the induction variable update instruction are 5223 // scalar after vectorization. 5224 auto ScalarIndUpdate = 5225 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5226 auto *I = cast<Instruction>(U); 5227 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5228 }); 5229 if (!ScalarIndUpdate) 5230 continue; 5231 5232 // The induction variable and its update instruction will remain scalar. 5233 Worklist.insert(Ind); 5234 Worklist.insert(IndUpdate); 5235 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5236 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5237 << "\n"); 5238 } 5239 5240 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5241 } 5242 5243 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5244 if (!blockNeedsPredication(I->getParent())) 5245 return false; 5246 switch(I->getOpcode()) { 5247 default: 5248 break; 5249 case Instruction::Load: 5250 case Instruction::Store: { 5251 if (!Legal->isMaskRequired(I)) 5252 return false; 5253 auto *Ptr = getLoadStorePointerOperand(I); 5254 auto *Ty = getLoadStoreType(I); 5255 const Align Alignment = getLoadStoreAlignment(I); 5256 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5257 TTI.isLegalMaskedGather(Ty, Alignment)) 5258 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5259 TTI.isLegalMaskedScatter(Ty, Alignment)); 5260 } 5261 case Instruction::UDiv: 5262 case Instruction::SDiv: 5263 case Instruction::SRem: 5264 case Instruction::URem: 5265 return mayDivideByZero(*I); 5266 } 5267 return false; 5268 } 5269 5270 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5271 Instruction *I, ElementCount VF) { 5272 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5273 assert(getWideningDecision(I, VF) == CM_Unknown && 5274 "Decision should not be set yet."); 5275 auto *Group = getInterleavedAccessGroup(I); 5276 assert(Group && "Must have a group."); 5277 5278 // If the instruction's allocated size doesn't equal it's type size, it 5279 // requires padding and will be scalarized. 5280 auto &DL = I->getModule()->getDataLayout(); 5281 auto *ScalarTy = getLoadStoreType(I); 5282 if (hasIrregularType(ScalarTy, DL)) 5283 return false; 5284 5285 // Check if masking is required. 5286 // A Group may need masking for one of two reasons: it resides in a block that 5287 // needs predication, or it was decided to use masking to deal with gaps 5288 // (either a gap at the end of a load-access that may result in a speculative 5289 // load, or any gaps in a store-access). 5290 bool PredicatedAccessRequiresMasking = 5291 blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5292 bool LoadAccessWithGapsRequiresEpilogMasking = 5293 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 5294 !isScalarEpilogueAllowed(); 5295 bool StoreAccessWithGapsRequiresMasking = 5296 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 5297 if (!PredicatedAccessRequiresMasking && 5298 !LoadAccessWithGapsRequiresEpilogMasking && 5299 !StoreAccessWithGapsRequiresMasking) 5300 return true; 5301 5302 // If masked interleaving is required, we expect that the user/target had 5303 // enabled it, because otherwise it either wouldn't have been created or 5304 // it should have been invalidated by the CostModel. 5305 assert(useMaskedInterleavedAccesses(TTI) && 5306 "Masked interleave-groups for predicated accesses are not enabled."); 5307 5308 if (Group->isReverse()) 5309 return false; 5310 5311 auto *Ty = getLoadStoreType(I); 5312 const Align Alignment = getLoadStoreAlignment(I); 5313 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5314 : TTI.isLegalMaskedStore(Ty, Alignment); 5315 } 5316 5317 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5318 Instruction *I, ElementCount VF) { 5319 // Get and ensure we have a valid memory instruction. 5320 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 5321 5322 auto *Ptr = getLoadStorePointerOperand(I); 5323 auto *ScalarTy = getLoadStoreType(I); 5324 5325 // In order to be widened, the pointer should be consecutive, first of all. 5326 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 5327 return false; 5328 5329 // If the instruction is a store located in a predicated block, it will be 5330 // scalarized. 5331 if (isScalarWithPredication(I)) 5332 return false; 5333 5334 // If the instruction's allocated size doesn't equal it's type size, it 5335 // requires padding and will be scalarized. 5336 auto &DL = I->getModule()->getDataLayout(); 5337 if (hasIrregularType(ScalarTy, DL)) 5338 return false; 5339 5340 return true; 5341 } 5342 5343 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5344 // We should not collect Uniforms more than once per VF. Right now, 5345 // this function is called from collectUniformsAndScalars(), which 5346 // already does this check. Collecting Uniforms for VF=1 does not make any 5347 // sense. 5348 5349 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5350 "This function should not be visited twice for the same VF"); 5351 5352 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5353 // not analyze again. Uniforms.count(VF) will return 1. 5354 Uniforms[VF].clear(); 5355 5356 // We now know that the loop is vectorizable! 5357 // Collect instructions inside the loop that will remain uniform after 5358 // vectorization. 5359 5360 // Global values, params and instructions outside of current loop are out of 5361 // scope. 5362 auto isOutOfScope = [&](Value *V) -> bool { 5363 Instruction *I = dyn_cast<Instruction>(V); 5364 return (!I || !TheLoop->contains(I)); 5365 }; 5366 5367 SetVector<Instruction *> Worklist; 5368 BasicBlock *Latch = TheLoop->getLoopLatch(); 5369 5370 // Instructions that are scalar with predication must not be considered 5371 // uniform after vectorization, because that would create an erroneous 5372 // replicating region where only a single instance out of VF should be formed. 5373 // TODO: optimize such seldom cases if found important, see PR40816. 5374 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5375 if (isOutOfScope(I)) { 5376 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5377 << *I << "\n"); 5378 return; 5379 } 5380 if (isScalarWithPredication(I)) { 5381 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5382 << *I << "\n"); 5383 return; 5384 } 5385 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5386 Worklist.insert(I); 5387 }; 5388 5389 // Start with the conditional branch. If the branch condition is an 5390 // instruction contained in the loop that is only used by the branch, it is 5391 // uniform. 5392 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5393 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5394 addToWorklistIfAllowed(Cmp); 5395 5396 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5397 InstWidening WideningDecision = getWideningDecision(I, VF); 5398 assert(WideningDecision != CM_Unknown && 5399 "Widening decision should be ready at this moment"); 5400 5401 // A uniform memory op is itself uniform. We exclude uniform stores 5402 // here as they demand the last lane, not the first one. 5403 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5404 assert(WideningDecision == CM_Scalarize); 5405 return true; 5406 } 5407 5408 return (WideningDecision == CM_Widen || 5409 WideningDecision == CM_Widen_Reverse || 5410 WideningDecision == CM_Interleave); 5411 }; 5412 5413 5414 // Returns true if Ptr is the pointer operand of a memory access instruction 5415 // I, and I is known to not require scalarization. 5416 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5417 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5418 }; 5419 5420 // Holds a list of values which are known to have at least one uniform use. 5421 // Note that there may be other uses which aren't uniform. A "uniform use" 5422 // here is something which only demands lane 0 of the unrolled iterations; 5423 // it does not imply that all lanes produce the same value (e.g. this is not 5424 // the usual meaning of uniform) 5425 SetVector<Value *> HasUniformUse; 5426 5427 // Scan the loop for instructions which are either a) known to have only 5428 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5429 for (auto *BB : TheLoop->blocks()) 5430 for (auto &I : *BB) { 5431 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5432 switch (II->getIntrinsicID()) { 5433 case Intrinsic::sideeffect: 5434 case Intrinsic::experimental_noalias_scope_decl: 5435 case Intrinsic::assume: 5436 case Intrinsic::lifetime_start: 5437 case Intrinsic::lifetime_end: 5438 if (TheLoop->hasLoopInvariantOperands(&I)) 5439 addToWorklistIfAllowed(&I); 5440 break; 5441 default: 5442 break; 5443 } 5444 } 5445 5446 // ExtractValue instructions must be uniform, because the operands are 5447 // known to be loop-invariant. 5448 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5449 assert(isOutOfScope(EVI->getAggregateOperand()) && 5450 "Expected aggregate value to be loop invariant"); 5451 addToWorklistIfAllowed(EVI); 5452 continue; 5453 } 5454 5455 // If there's no pointer operand, there's nothing to do. 5456 auto *Ptr = getLoadStorePointerOperand(&I); 5457 if (!Ptr) 5458 continue; 5459 5460 // A uniform memory op is itself uniform. We exclude uniform stores 5461 // here as they demand the last lane, not the first one. 5462 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5463 addToWorklistIfAllowed(&I); 5464 5465 if (isUniformDecision(&I, VF)) { 5466 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5467 HasUniformUse.insert(Ptr); 5468 } 5469 } 5470 5471 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5472 // demanding) users. Since loops are assumed to be in LCSSA form, this 5473 // disallows uses outside the loop as well. 5474 for (auto *V : HasUniformUse) { 5475 if (isOutOfScope(V)) 5476 continue; 5477 auto *I = cast<Instruction>(V); 5478 auto UsersAreMemAccesses = 5479 llvm::all_of(I->users(), [&](User *U) -> bool { 5480 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5481 }); 5482 if (UsersAreMemAccesses) 5483 addToWorklistIfAllowed(I); 5484 } 5485 5486 // Expand Worklist in topological order: whenever a new instruction 5487 // is added , its users should be already inside Worklist. It ensures 5488 // a uniform instruction will only be used by uniform instructions. 5489 unsigned idx = 0; 5490 while (idx != Worklist.size()) { 5491 Instruction *I = Worklist[idx++]; 5492 5493 for (auto OV : I->operand_values()) { 5494 // isOutOfScope operands cannot be uniform instructions. 5495 if (isOutOfScope(OV)) 5496 continue; 5497 // First order recurrence Phi's should typically be considered 5498 // non-uniform. 5499 auto *OP = dyn_cast<PHINode>(OV); 5500 if (OP && Legal->isFirstOrderRecurrence(OP)) 5501 continue; 5502 // If all the users of the operand are uniform, then add the 5503 // operand into the uniform worklist. 5504 auto *OI = cast<Instruction>(OV); 5505 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5506 auto *J = cast<Instruction>(U); 5507 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5508 })) 5509 addToWorklistIfAllowed(OI); 5510 } 5511 } 5512 5513 // For an instruction to be added into Worklist above, all its users inside 5514 // the loop should also be in Worklist. However, this condition cannot be 5515 // true for phi nodes that form a cyclic dependence. We must process phi 5516 // nodes separately. An induction variable will remain uniform if all users 5517 // of the induction variable and induction variable update remain uniform. 5518 // The code below handles both pointer and non-pointer induction variables. 5519 for (auto &Induction : Legal->getInductionVars()) { 5520 auto *Ind = Induction.first; 5521 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5522 5523 // Determine if all users of the induction variable are uniform after 5524 // vectorization. 5525 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5526 auto *I = cast<Instruction>(U); 5527 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5528 isVectorizedMemAccessUse(I, Ind); 5529 }); 5530 if (!UniformInd) 5531 continue; 5532 5533 // Determine if all users of the induction variable update instruction are 5534 // uniform after vectorization. 5535 auto UniformIndUpdate = 5536 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5537 auto *I = cast<Instruction>(U); 5538 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5539 isVectorizedMemAccessUse(I, IndUpdate); 5540 }); 5541 if (!UniformIndUpdate) 5542 continue; 5543 5544 // The induction variable and its update instruction will remain uniform. 5545 addToWorklistIfAllowed(Ind); 5546 addToWorklistIfAllowed(IndUpdate); 5547 } 5548 5549 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5550 } 5551 5552 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5553 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5554 5555 if (Legal->getRuntimePointerChecking()->Need) { 5556 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5557 "runtime pointer checks needed. Enable vectorization of this " 5558 "loop with '#pragma clang loop vectorize(enable)' when " 5559 "compiling with -Os/-Oz", 5560 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5561 return true; 5562 } 5563 5564 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5565 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5566 "runtime SCEV checks needed. Enable vectorization of this " 5567 "loop with '#pragma clang loop vectorize(enable)' when " 5568 "compiling with -Os/-Oz", 5569 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5570 return true; 5571 } 5572 5573 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5574 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5575 reportVectorizationFailure("Runtime stride check for small trip count", 5576 "runtime stride == 1 checks needed. Enable vectorization of " 5577 "this loop without such check by compiling with -Os/-Oz", 5578 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5579 return true; 5580 } 5581 5582 return false; 5583 } 5584 5585 ElementCount 5586 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5587 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5588 return ElementCount::getScalable(0); 5589 5590 if (Hints->isScalableVectorizationDisabled()) { 5591 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5592 "ScalableVectorizationDisabled", ORE, TheLoop); 5593 return ElementCount::getScalable(0); 5594 } 5595 5596 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5597 5598 auto MaxScalableVF = ElementCount::getScalable( 5599 std::numeric_limits<ElementCount::ScalarTy>::max()); 5600 5601 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5602 // FIXME: While for scalable vectors this is currently sufficient, this should 5603 // be replaced by a more detailed mechanism that filters out specific VFs, 5604 // instead of invalidating vectorization for a whole set of VFs based on the 5605 // MaxVF. 5606 5607 // Disable scalable vectorization if the loop contains unsupported reductions. 5608 if (!canVectorizeReductions(MaxScalableVF)) { 5609 reportVectorizationInfo( 5610 "Scalable vectorization not supported for the reduction " 5611 "operations found in this loop.", 5612 "ScalableVFUnfeasible", ORE, TheLoop); 5613 return ElementCount::getScalable(0); 5614 } 5615 5616 // Disable scalable vectorization if the loop contains any instructions 5617 // with element types not supported for scalable vectors. 5618 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5619 return !Ty->isVoidTy() && 5620 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5621 })) { 5622 reportVectorizationInfo("Scalable vectorization is not supported " 5623 "for all element types found in this loop.", 5624 "ScalableVFUnfeasible", ORE, TheLoop); 5625 return ElementCount::getScalable(0); 5626 } 5627 5628 if (Legal->isSafeForAnyVectorWidth()) 5629 return MaxScalableVF; 5630 5631 // Limit MaxScalableVF by the maximum safe dependence distance. 5632 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5633 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5634 unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange) 5635 .getVScaleRangeArgs() 5636 .second; 5637 if (VScaleMax > 0) 5638 MaxVScale = VScaleMax; 5639 } 5640 MaxScalableVF = ElementCount::getScalable( 5641 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5642 if (!MaxScalableVF) 5643 reportVectorizationInfo( 5644 "Max legal vector width too small, scalable vectorization " 5645 "unfeasible.", 5646 "ScalableVFUnfeasible", ORE, TheLoop); 5647 5648 return MaxScalableVF; 5649 } 5650 5651 FixedScalableVFPair 5652 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5653 ElementCount UserVF) { 5654 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5655 unsigned SmallestType, WidestType; 5656 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5657 5658 // Get the maximum safe dependence distance in bits computed by LAA. 5659 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5660 // the memory accesses that is most restrictive (involved in the smallest 5661 // dependence distance). 5662 unsigned MaxSafeElements = 5663 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5664 5665 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5666 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5667 5668 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5669 << ".\n"); 5670 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5671 << ".\n"); 5672 5673 // First analyze the UserVF, fall back if the UserVF should be ignored. 5674 if (UserVF) { 5675 auto MaxSafeUserVF = 5676 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5677 5678 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5679 // If `VF=vscale x N` is safe, then so is `VF=N` 5680 if (UserVF.isScalable()) 5681 return FixedScalableVFPair( 5682 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5683 else 5684 return UserVF; 5685 } 5686 5687 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5688 5689 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5690 // is better to ignore the hint and let the compiler choose a suitable VF. 5691 if (!UserVF.isScalable()) { 5692 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5693 << " is unsafe, clamping to max safe VF=" 5694 << MaxSafeFixedVF << ".\n"); 5695 ORE->emit([&]() { 5696 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5697 TheLoop->getStartLoc(), 5698 TheLoop->getHeader()) 5699 << "User-specified vectorization factor " 5700 << ore::NV("UserVectorizationFactor", UserVF) 5701 << " is unsafe, clamping to maximum safe vectorization factor " 5702 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5703 }); 5704 return MaxSafeFixedVF; 5705 } 5706 5707 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5708 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5709 << " is ignored because scalable vectors are not " 5710 "available.\n"); 5711 ORE->emit([&]() { 5712 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5713 TheLoop->getStartLoc(), 5714 TheLoop->getHeader()) 5715 << "User-specified vectorization factor " 5716 << ore::NV("UserVectorizationFactor", UserVF) 5717 << " is ignored because the target does not support scalable " 5718 "vectors. The compiler will pick a more suitable value."; 5719 }); 5720 } else { 5721 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5722 << " is unsafe. Ignoring scalable UserVF.\n"); 5723 ORE->emit([&]() { 5724 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5725 TheLoop->getStartLoc(), 5726 TheLoop->getHeader()) 5727 << "User-specified vectorization factor " 5728 << ore::NV("UserVectorizationFactor", UserVF) 5729 << " is unsafe. Ignoring the hint to let the compiler pick a " 5730 "more suitable value."; 5731 }); 5732 } 5733 } 5734 5735 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5736 << " / " << WidestType << " bits.\n"); 5737 5738 FixedScalableVFPair Result(ElementCount::getFixed(1), 5739 ElementCount::getScalable(0)); 5740 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5741 WidestType, MaxSafeFixedVF)) 5742 Result.FixedVF = MaxVF; 5743 5744 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5745 WidestType, MaxSafeScalableVF)) 5746 if (MaxVF.isScalable()) { 5747 Result.ScalableVF = MaxVF; 5748 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5749 << "\n"); 5750 } 5751 5752 return Result; 5753 } 5754 5755 FixedScalableVFPair 5756 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5757 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5758 // TODO: It may by useful to do since it's still likely to be dynamically 5759 // uniform if the target can skip. 5760 reportVectorizationFailure( 5761 "Not inserting runtime ptr check for divergent target", 5762 "runtime pointer checks needed. Not enabled for divergent target", 5763 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5764 return FixedScalableVFPair::getNone(); 5765 } 5766 5767 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5768 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5769 if (TC == 1) { 5770 reportVectorizationFailure("Single iteration (non) loop", 5771 "loop trip count is one, irrelevant for vectorization", 5772 "SingleIterationLoop", ORE, TheLoop); 5773 return FixedScalableVFPair::getNone(); 5774 } 5775 5776 switch (ScalarEpilogueStatus) { 5777 case CM_ScalarEpilogueAllowed: 5778 return computeFeasibleMaxVF(TC, UserVF); 5779 case CM_ScalarEpilogueNotAllowedUsePredicate: 5780 LLVM_FALLTHROUGH; 5781 case CM_ScalarEpilogueNotNeededUsePredicate: 5782 LLVM_DEBUG( 5783 dbgs() << "LV: vector predicate hint/switch found.\n" 5784 << "LV: Not allowing scalar epilogue, creating predicated " 5785 << "vector loop.\n"); 5786 break; 5787 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5788 // fallthrough as a special case of OptForSize 5789 case CM_ScalarEpilogueNotAllowedOptSize: 5790 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5791 LLVM_DEBUG( 5792 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5793 else 5794 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5795 << "count.\n"); 5796 5797 // Bail if runtime checks are required, which are not good when optimising 5798 // for size. 5799 if (runtimeChecksRequired()) 5800 return FixedScalableVFPair::getNone(); 5801 5802 break; 5803 } 5804 5805 // The only loops we can vectorize without a scalar epilogue, are loops with 5806 // a bottom-test and a single exiting block. We'd have to handle the fact 5807 // that not every instruction executes on the last iteration. This will 5808 // require a lane mask which varies through the vector loop body. (TODO) 5809 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5810 // If there was a tail-folding hint/switch, but we can't fold the tail by 5811 // masking, fallback to a vectorization with a scalar epilogue. 5812 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5813 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5814 "scalar epilogue instead.\n"); 5815 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5816 return computeFeasibleMaxVF(TC, UserVF); 5817 } 5818 return FixedScalableVFPair::getNone(); 5819 } 5820 5821 // Now try the tail folding 5822 5823 // Invalidate interleave groups that require an epilogue if we can't mask 5824 // the interleave-group. 5825 if (!useMaskedInterleavedAccesses(TTI)) { 5826 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5827 "No decisions should have been taken at this point"); 5828 // Note: There is no need to invalidate any cost modeling decisions here, as 5829 // non where taken so far. 5830 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5831 } 5832 5833 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5834 // Avoid tail folding if the trip count is known to be a multiple of any VF 5835 // we chose. 5836 // FIXME: The condition below pessimises the case for fixed-width vectors, 5837 // when scalable VFs are also candidates for vectorization. 5838 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5839 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5840 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5841 "MaxFixedVF must be a power of 2"); 5842 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5843 : MaxFixedVF.getFixedValue(); 5844 ScalarEvolution *SE = PSE.getSE(); 5845 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5846 const SCEV *ExitCount = SE->getAddExpr( 5847 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5848 const SCEV *Rem = SE->getURemExpr( 5849 SE->applyLoopGuards(ExitCount, TheLoop), 5850 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5851 if (Rem->isZero()) { 5852 // Accept MaxFixedVF if we do not have a tail. 5853 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5854 return MaxFactors; 5855 } 5856 } 5857 5858 // For scalable vectors, don't use tail folding as this is currently not yet 5859 // supported. The code is likely to have ended up here if the tripcount is 5860 // low, in which case it makes sense not to use scalable vectors. 5861 if (MaxFactors.ScalableVF.isVector()) 5862 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5863 5864 // If we don't know the precise trip count, or if the trip count that we 5865 // found modulo the vectorization factor is not zero, try to fold the tail 5866 // by masking. 5867 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5868 if (Legal->prepareToFoldTailByMasking()) { 5869 FoldTailByMasking = true; 5870 return MaxFactors; 5871 } 5872 5873 // If there was a tail-folding hint/switch, but we can't fold the tail by 5874 // masking, fallback to a vectorization with a scalar epilogue. 5875 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5876 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5877 "scalar epilogue instead.\n"); 5878 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5879 return MaxFactors; 5880 } 5881 5882 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5883 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5884 return FixedScalableVFPair::getNone(); 5885 } 5886 5887 if (TC == 0) { 5888 reportVectorizationFailure( 5889 "Unable to calculate the loop count due to complex control flow", 5890 "unable to calculate the loop count due to complex control flow", 5891 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5892 return FixedScalableVFPair::getNone(); 5893 } 5894 5895 reportVectorizationFailure( 5896 "Cannot optimize for size and vectorize at the same time.", 5897 "cannot optimize for size and vectorize at the same time. " 5898 "Enable vectorization of this loop with '#pragma clang loop " 5899 "vectorize(enable)' when compiling with -Os/-Oz", 5900 "NoTailLoopWithOptForSize", ORE, TheLoop); 5901 return FixedScalableVFPair::getNone(); 5902 } 5903 5904 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5905 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5906 const ElementCount &MaxSafeVF) { 5907 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5908 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5909 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5910 : TargetTransformInfo::RGK_FixedWidthVector); 5911 5912 // Convenience function to return the minimum of two ElementCounts. 5913 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5914 assert((LHS.isScalable() == RHS.isScalable()) && 5915 "Scalable flags must match"); 5916 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5917 }; 5918 5919 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5920 // Note that both WidestRegister and WidestType may not be a powers of 2. 5921 auto MaxVectorElementCount = ElementCount::get( 5922 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5923 ComputeScalableMaxVF); 5924 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5925 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5926 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5927 5928 if (!MaxVectorElementCount) { 5929 LLVM_DEBUG(dbgs() << "LV: The target has no " 5930 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5931 << " vector registers.\n"); 5932 return ElementCount::getFixed(1); 5933 } 5934 5935 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5936 if (ConstTripCount && 5937 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5938 isPowerOf2_32(ConstTripCount)) { 5939 // We need to clamp the VF to be the ConstTripCount. There is no point in 5940 // choosing a higher viable VF as done in the loop below. If 5941 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5942 // the TC is less than or equal to the known number of lanes. 5943 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5944 << ConstTripCount << "\n"); 5945 return TripCountEC; 5946 } 5947 5948 ElementCount MaxVF = MaxVectorElementCount; 5949 if (TTI.shouldMaximizeVectorBandwidth() || 5950 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5951 auto MaxVectorElementCountMaxBW = ElementCount::get( 5952 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5953 ComputeScalableMaxVF); 5954 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5955 5956 // Collect all viable vectorization factors larger than the default MaxVF 5957 // (i.e. MaxVectorElementCount). 5958 SmallVector<ElementCount, 8> VFs; 5959 for (ElementCount VS = MaxVectorElementCount * 2; 5960 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5961 VFs.push_back(VS); 5962 5963 // For each VF calculate its register usage. 5964 auto RUs = calculateRegisterUsage(VFs); 5965 5966 // Select the largest VF which doesn't require more registers than existing 5967 // ones. 5968 for (int i = RUs.size() - 1; i >= 0; --i) { 5969 bool Selected = true; 5970 for (auto &pair : RUs[i].MaxLocalUsers) { 5971 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5972 if (pair.second > TargetNumRegisters) 5973 Selected = false; 5974 } 5975 if (Selected) { 5976 MaxVF = VFs[i]; 5977 break; 5978 } 5979 } 5980 if (ElementCount MinVF = 5981 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5982 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5983 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5984 << ") with target's minimum: " << MinVF << '\n'); 5985 MaxVF = MinVF; 5986 } 5987 } 5988 } 5989 return MaxVF; 5990 } 5991 5992 bool LoopVectorizationCostModel::isMoreProfitable( 5993 const VectorizationFactor &A, const VectorizationFactor &B) const { 5994 InstructionCost CostA = A.Cost; 5995 InstructionCost CostB = B.Cost; 5996 5997 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5998 5999 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 6000 MaxTripCount) { 6001 // If we are folding the tail and the trip count is a known (possibly small) 6002 // constant, the trip count will be rounded up to an integer number of 6003 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 6004 // which we compare directly. When not folding the tail, the total cost will 6005 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 6006 // approximated with the per-lane cost below instead of using the tripcount 6007 // as here. 6008 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 6009 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 6010 return RTCostA < RTCostB; 6011 } 6012 6013 // When set to preferred, for now assume vscale may be larger than 1, so 6014 // that scalable vectorization is slightly favorable over fixed-width 6015 // vectorization. 6016 if (Hints->isScalableVectorizationPreferred()) 6017 if (A.Width.isScalable() && !B.Width.isScalable()) 6018 return (CostA * B.Width.getKnownMinValue()) <= 6019 (CostB * A.Width.getKnownMinValue()); 6020 6021 // To avoid the need for FP division: 6022 // (CostA / A.Width) < (CostB / B.Width) 6023 // <=> (CostA * B.Width) < (CostB * A.Width) 6024 return (CostA * B.Width.getKnownMinValue()) < 6025 (CostB * A.Width.getKnownMinValue()); 6026 } 6027 6028 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 6029 const ElementCountSet &VFCandidates) { 6030 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6031 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6032 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6033 assert(VFCandidates.count(ElementCount::getFixed(1)) && 6034 "Expected Scalar VF to be a candidate"); 6035 6036 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6037 VectorizationFactor ChosenFactor = ScalarCost; 6038 6039 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6040 if (ForceVectorization && VFCandidates.size() > 1) { 6041 // Ignore scalar width, because the user explicitly wants vectorization. 6042 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6043 // evaluation. 6044 ChosenFactor.Cost = InstructionCost::getMax(); 6045 } 6046 6047 SmallVector<InstructionVFPair> InvalidCosts; 6048 for (const auto &i : VFCandidates) { 6049 // The cost for scalar VF=1 is already calculated, so ignore it. 6050 if (i.isScalar()) 6051 continue; 6052 6053 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 6054 VectorizationFactor Candidate(i, C.first); 6055 LLVM_DEBUG( 6056 dbgs() << "LV: Vector loop of width " << i << " costs: " 6057 << (Candidate.Cost / Candidate.Width.getKnownMinValue()) 6058 << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "") 6059 << ".\n"); 6060 6061 if (!C.second && !ForceVectorization) { 6062 LLVM_DEBUG( 6063 dbgs() << "LV: Not considering vector loop of width " << i 6064 << " because it will not generate any vector instructions.\n"); 6065 continue; 6066 } 6067 6068 // If profitable add it to ProfitableVF list. 6069 if (isMoreProfitable(Candidate, ScalarCost)) 6070 ProfitableVFs.push_back(Candidate); 6071 6072 if (isMoreProfitable(Candidate, ChosenFactor)) 6073 ChosenFactor = Candidate; 6074 } 6075 6076 // Emit a report of VFs with invalid costs in the loop. 6077 if (!InvalidCosts.empty()) { 6078 // Group the remarks per instruction, keeping the instruction order from 6079 // InvalidCosts. 6080 std::map<Instruction *, unsigned> Numbering; 6081 unsigned I = 0; 6082 for (auto &Pair : InvalidCosts) 6083 if (!Numbering.count(Pair.first)) 6084 Numbering[Pair.first] = I++; 6085 6086 // Sort the list, first on instruction(number) then on VF. 6087 llvm::sort(InvalidCosts, 6088 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 6089 if (Numbering[A.first] != Numbering[B.first]) 6090 return Numbering[A.first] < Numbering[B.first]; 6091 ElementCountComparator ECC; 6092 return ECC(A.second, B.second); 6093 }); 6094 6095 // For a list of ordered instruction-vf pairs: 6096 // [(load, vf1), (load, vf2), (store, vf1)] 6097 // Group the instructions together to emit separate remarks for: 6098 // load (vf1, vf2) 6099 // store (vf1) 6100 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 6101 auto Subset = ArrayRef<InstructionVFPair>(); 6102 do { 6103 if (Subset.empty()) 6104 Subset = Tail.take_front(1); 6105 6106 Instruction *I = Subset.front().first; 6107 6108 // If the next instruction is different, or if there are no other pairs, 6109 // emit a remark for the collated subset. e.g. 6110 // [(load, vf1), (load, vf2))] 6111 // to emit: 6112 // remark: invalid costs for 'load' at VF=(vf, vf2) 6113 if (Subset == Tail || Tail[Subset.size()].first != I) { 6114 std::string OutString; 6115 raw_string_ostream OS(OutString); 6116 assert(!Subset.empty() && "Unexpected empty range"); 6117 OS << "Instruction with invalid costs prevented vectorization at VF=("; 6118 for (auto &Pair : Subset) 6119 OS << (Pair.second == Subset.front().second ? "" : ", ") 6120 << Pair.second; 6121 OS << "):"; 6122 if (auto *CI = dyn_cast<CallInst>(I)) 6123 OS << " call to " << CI->getCalledFunction()->getName(); 6124 else 6125 OS << " " << I->getOpcodeName(); 6126 OS.flush(); 6127 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 6128 Tail = Tail.drop_front(Subset.size()); 6129 Subset = {}; 6130 } else 6131 // Grow the subset by one element 6132 Subset = Tail.take_front(Subset.size() + 1); 6133 } while (!Tail.empty()); 6134 } 6135 6136 if (!EnableCondStoresVectorization && NumPredStores) { 6137 reportVectorizationFailure("There are conditional stores.", 6138 "store that is conditionally executed prevents vectorization", 6139 "ConditionalStore", ORE, TheLoop); 6140 ChosenFactor = ScalarCost; 6141 } 6142 6143 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6144 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 6145 << "LV: Vectorization seems to be not beneficial, " 6146 << "but was forced by a user.\n"); 6147 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6148 return ChosenFactor; 6149 } 6150 6151 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6152 const Loop &L, ElementCount VF) const { 6153 // Cross iteration phis such as reductions need special handling and are 6154 // currently unsupported. 6155 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6156 return Legal->isFirstOrderRecurrence(&Phi) || 6157 Legal->isReductionVariable(&Phi); 6158 })) 6159 return false; 6160 6161 // Phis with uses outside of the loop require special handling and are 6162 // currently unsupported. 6163 for (auto &Entry : Legal->getInductionVars()) { 6164 // Look for uses of the value of the induction at the last iteration. 6165 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6166 for (User *U : PostInc->users()) 6167 if (!L.contains(cast<Instruction>(U))) 6168 return false; 6169 // Look for uses of penultimate value of the induction. 6170 for (User *U : Entry.first->users()) 6171 if (!L.contains(cast<Instruction>(U))) 6172 return false; 6173 } 6174 6175 // Induction variables that are widened require special handling that is 6176 // currently not supported. 6177 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6178 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6179 this->isProfitableToScalarize(Entry.first, VF)); 6180 })) 6181 return false; 6182 6183 // Epilogue vectorization code has not been auditted to ensure it handles 6184 // non-latch exits properly. It may be fine, but it needs auditted and 6185 // tested. 6186 if (L.getExitingBlock() != L.getLoopLatch()) 6187 return false; 6188 6189 return true; 6190 } 6191 6192 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6193 const ElementCount VF) const { 6194 // FIXME: We need a much better cost-model to take different parameters such 6195 // as register pressure, code size increase and cost of extra branches into 6196 // account. For now we apply a very crude heuristic and only consider loops 6197 // with vectorization factors larger than a certain value. 6198 // We also consider epilogue vectorization unprofitable for targets that don't 6199 // consider interleaving beneficial (eg. MVE). 6200 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6201 return false; 6202 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6203 return true; 6204 return false; 6205 } 6206 6207 VectorizationFactor 6208 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6209 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6210 VectorizationFactor Result = VectorizationFactor::Disabled(); 6211 if (!EnableEpilogueVectorization) { 6212 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6213 return Result; 6214 } 6215 6216 if (!isScalarEpilogueAllowed()) { 6217 LLVM_DEBUG( 6218 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6219 "allowed.\n";); 6220 return Result; 6221 } 6222 6223 // FIXME: This can be fixed for scalable vectors later, because at this stage 6224 // the LoopVectorizer will only consider vectorizing a loop with scalable 6225 // vectors when the loop has a hint to enable vectorization for a given VF. 6226 if (MainLoopVF.isScalable()) { 6227 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6228 "yet supported.\n"); 6229 return Result; 6230 } 6231 6232 // Not really a cost consideration, but check for unsupported cases here to 6233 // simplify the logic. 6234 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6235 LLVM_DEBUG( 6236 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6237 "not a supported candidate.\n";); 6238 return Result; 6239 } 6240 6241 if (EpilogueVectorizationForceVF > 1) { 6242 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6243 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 6244 if (LVP.hasPlanWithVFs({MainLoopVF, ForcedEC})) 6245 return {ForcedEC, 0}; 6246 else { 6247 LLVM_DEBUG( 6248 dbgs() 6249 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6250 return Result; 6251 } 6252 } 6253 6254 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6255 TheLoop->getHeader()->getParent()->hasMinSize()) { 6256 LLVM_DEBUG( 6257 dbgs() 6258 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6259 return Result; 6260 } 6261 6262 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6263 return Result; 6264 6265 for (auto &NextVF : ProfitableVFs) 6266 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6267 (Result.Width.getFixedValue() == 1 || 6268 isMoreProfitable(NextVF, Result)) && 6269 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6270 Result = NextVF; 6271 6272 if (Result != VectorizationFactor::Disabled()) 6273 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6274 << Result.Width.getFixedValue() << "\n";); 6275 return Result; 6276 } 6277 6278 std::pair<unsigned, unsigned> 6279 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6280 unsigned MinWidth = -1U; 6281 unsigned MaxWidth = 8; 6282 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6283 for (Type *T : ElementTypesInLoop) { 6284 MinWidth = std::min<unsigned>( 6285 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6286 MaxWidth = std::max<unsigned>( 6287 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6288 } 6289 return {MinWidth, MaxWidth}; 6290 } 6291 6292 void LoopVectorizationCostModel::collectElementTypesForWidening() { 6293 ElementTypesInLoop.clear(); 6294 // For each block. 6295 for (BasicBlock *BB : TheLoop->blocks()) { 6296 // For each instruction in the loop. 6297 for (Instruction &I : BB->instructionsWithoutDebug()) { 6298 Type *T = I.getType(); 6299 6300 // Skip ignored values. 6301 if (ValuesToIgnore.count(&I)) 6302 continue; 6303 6304 // Only examine Loads, Stores and PHINodes. 6305 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6306 continue; 6307 6308 // Examine PHI nodes that are reduction variables. Update the type to 6309 // account for the recurrence type. 6310 if (auto *PN = dyn_cast<PHINode>(&I)) { 6311 if (!Legal->isReductionVariable(PN)) 6312 continue; 6313 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6314 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6315 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6316 RdxDesc.getRecurrenceType(), 6317 TargetTransformInfo::ReductionFlags())) 6318 continue; 6319 T = RdxDesc.getRecurrenceType(); 6320 } 6321 6322 // Examine the stored values. 6323 if (auto *ST = dyn_cast<StoreInst>(&I)) 6324 T = ST->getValueOperand()->getType(); 6325 6326 // Ignore loaded pointer types and stored pointer types that are not 6327 // vectorizable. 6328 // 6329 // FIXME: The check here attempts to predict whether a load or store will 6330 // be vectorized. We only know this for certain after a VF has 6331 // been selected. Here, we assume that if an access can be 6332 // vectorized, it will be. We should also look at extending this 6333 // optimization to non-pointer types. 6334 // 6335 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6336 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6337 continue; 6338 6339 ElementTypesInLoop.insert(T); 6340 } 6341 } 6342 } 6343 6344 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6345 unsigned LoopCost) { 6346 // -- The interleave heuristics -- 6347 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6348 // There are many micro-architectural considerations that we can't predict 6349 // at this level. For example, frontend pressure (on decode or fetch) due to 6350 // code size, or the number and capabilities of the execution ports. 6351 // 6352 // We use the following heuristics to select the interleave count: 6353 // 1. If the code has reductions, then we interleave to break the cross 6354 // iteration dependency. 6355 // 2. If the loop is really small, then we interleave to reduce the loop 6356 // overhead. 6357 // 3. We don't interleave if we think that we will spill registers to memory 6358 // due to the increased register pressure. 6359 6360 if (!isScalarEpilogueAllowed()) 6361 return 1; 6362 6363 // We used the distance for the interleave count. 6364 if (Legal->getMaxSafeDepDistBytes() != -1U) 6365 return 1; 6366 6367 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6368 const bool HasReductions = !Legal->getReductionVars().empty(); 6369 // Do not interleave loops with a relatively small known or estimated trip 6370 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6371 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6372 // because with the above conditions interleaving can expose ILP and break 6373 // cross iteration dependences for reductions. 6374 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6375 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6376 return 1; 6377 6378 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6379 // We divide by these constants so assume that we have at least one 6380 // instruction that uses at least one register. 6381 for (auto& pair : R.MaxLocalUsers) { 6382 pair.second = std::max(pair.second, 1U); 6383 } 6384 6385 // We calculate the interleave count using the following formula. 6386 // Subtract the number of loop invariants from the number of available 6387 // registers. These registers are used by all of the interleaved instances. 6388 // Next, divide the remaining registers by the number of registers that is 6389 // required by the loop, in order to estimate how many parallel instances 6390 // fit without causing spills. All of this is rounded down if necessary to be 6391 // a power of two. We want power of two interleave count to simplify any 6392 // addressing operations or alignment considerations. 6393 // We also want power of two interleave counts to ensure that the induction 6394 // variable of the vector loop wraps to zero, when tail is folded by masking; 6395 // this currently happens when OptForSize, in which case IC is set to 1 above. 6396 unsigned IC = UINT_MAX; 6397 6398 for (auto& pair : R.MaxLocalUsers) { 6399 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6400 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6401 << " registers of " 6402 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6403 if (VF.isScalar()) { 6404 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6405 TargetNumRegisters = ForceTargetNumScalarRegs; 6406 } else { 6407 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6408 TargetNumRegisters = ForceTargetNumVectorRegs; 6409 } 6410 unsigned MaxLocalUsers = pair.second; 6411 unsigned LoopInvariantRegs = 0; 6412 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6413 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6414 6415 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6416 // Don't count the induction variable as interleaved. 6417 if (EnableIndVarRegisterHeur) { 6418 TmpIC = 6419 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6420 std::max(1U, (MaxLocalUsers - 1))); 6421 } 6422 6423 IC = std::min(IC, TmpIC); 6424 } 6425 6426 // Clamp the interleave ranges to reasonable counts. 6427 unsigned MaxInterleaveCount = 6428 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6429 6430 // Check if the user has overridden the max. 6431 if (VF.isScalar()) { 6432 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6433 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6434 } else { 6435 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6436 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6437 } 6438 6439 // If trip count is known or estimated compile time constant, limit the 6440 // interleave count to be less than the trip count divided by VF, provided it 6441 // is at least 1. 6442 // 6443 // For scalable vectors we can't know if interleaving is beneficial. It may 6444 // not be beneficial for small loops if none of the lanes in the second vector 6445 // iterations is enabled. However, for larger loops, there is likely to be a 6446 // similar benefit as for fixed-width vectors. For now, we choose to leave 6447 // the InterleaveCount as if vscale is '1', although if some information about 6448 // the vector is known (e.g. min vector size), we can make a better decision. 6449 if (BestKnownTC) { 6450 MaxInterleaveCount = 6451 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6452 // Make sure MaxInterleaveCount is greater than 0. 6453 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6454 } 6455 6456 assert(MaxInterleaveCount > 0 && 6457 "Maximum interleave count must be greater than 0"); 6458 6459 // Clamp the calculated IC to be between the 1 and the max interleave count 6460 // that the target and trip count allows. 6461 if (IC > MaxInterleaveCount) 6462 IC = MaxInterleaveCount; 6463 else 6464 // Make sure IC is greater than 0. 6465 IC = std::max(1u, IC); 6466 6467 assert(IC > 0 && "Interleave count must be greater than 0."); 6468 6469 // If we did not calculate the cost for VF (because the user selected the VF) 6470 // then we calculate the cost of VF here. 6471 if (LoopCost == 0) { 6472 InstructionCost C = expectedCost(VF).first; 6473 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6474 LoopCost = *C.getValue(); 6475 } 6476 6477 assert(LoopCost && "Non-zero loop cost expected"); 6478 6479 // Interleave if we vectorized this loop and there is a reduction that could 6480 // benefit from interleaving. 6481 if (VF.isVector() && HasReductions) { 6482 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6483 return IC; 6484 } 6485 6486 // Note that if we've already vectorized the loop we will have done the 6487 // runtime check and so interleaving won't require further checks. 6488 bool InterleavingRequiresRuntimePointerCheck = 6489 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6490 6491 // We want to interleave small loops in order to reduce the loop overhead and 6492 // potentially expose ILP opportunities. 6493 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6494 << "LV: IC is " << IC << '\n' 6495 << "LV: VF is " << VF << '\n'); 6496 const bool AggressivelyInterleaveReductions = 6497 TTI.enableAggressiveInterleaving(HasReductions); 6498 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6499 // We assume that the cost overhead is 1 and we use the cost model 6500 // to estimate the cost of the loop and interleave until the cost of the 6501 // loop overhead is about 5% of the cost of the loop. 6502 unsigned SmallIC = 6503 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6504 6505 // Interleave until store/load ports (estimated by max interleave count) are 6506 // saturated. 6507 unsigned NumStores = Legal->getNumStores(); 6508 unsigned NumLoads = Legal->getNumLoads(); 6509 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6510 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6511 6512 // There is little point in interleaving for reductions containing selects 6513 // and compares when VF=1 since it may just create more overhead than it's 6514 // worth for loops with small trip counts. This is because we still have to 6515 // do the final reduction after the loop. 6516 bool HasSelectCmpReductions = 6517 HasReductions && 6518 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6519 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6520 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 6521 RdxDesc.getRecurrenceKind()); 6522 }); 6523 if (HasSelectCmpReductions) { 6524 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 6525 return 1; 6526 } 6527 6528 // If we have a scalar reduction (vector reductions are already dealt with 6529 // by this point), we can increase the critical path length if the loop 6530 // we're interleaving is inside another loop. For tree-wise reductions 6531 // set the limit to 2, and for ordered reductions it's best to disable 6532 // interleaving entirely. 6533 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6534 bool HasOrderedReductions = 6535 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6536 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6537 return RdxDesc.isOrdered(); 6538 }); 6539 if (HasOrderedReductions) { 6540 LLVM_DEBUG( 6541 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6542 return 1; 6543 } 6544 6545 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6546 SmallIC = std::min(SmallIC, F); 6547 StoresIC = std::min(StoresIC, F); 6548 LoadsIC = std::min(LoadsIC, F); 6549 } 6550 6551 if (EnableLoadStoreRuntimeInterleave && 6552 std::max(StoresIC, LoadsIC) > SmallIC) { 6553 LLVM_DEBUG( 6554 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6555 return std::max(StoresIC, LoadsIC); 6556 } 6557 6558 // If there are scalar reductions and TTI has enabled aggressive 6559 // interleaving for reductions, we will interleave to expose ILP. 6560 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6561 AggressivelyInterleaveReductions) { 6562 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6563 // Interleave no less than SmallIC but not as aggressive as the normal IC 6564 // to satisfy the rare situation when resources are too limited. 6565 return std::max(IC / 2, SmallIC); 6566 } else { 6567 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6568 return SmallIC; 6569 } 6570 } 6571 6572 // Interleave if this is a large loop (small loops are already dealt with by 6573 // this point) that could benefit from interleaving. 6574 if (AggressivelyInterleaveReductions) { 6575 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6576 return IC; 6577 } 6578 6579 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6580 return 1; 6581 } 6582 6583 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6584 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6585 // This function calculates the register usage by measuring the highest number 6586 // of values that are alive at a single location. Obviously, this is a very 6587 // rough estimation. We scan the loop in a topological order in order and 6588 // assign a number to each instruction. We use RPO to ensure that defs are 6589 // met before their users. We assume that each instruction that has in-loop 6590 // users starts an interval. We record every time that an in-loop value is 6591 // used, so we have a list of the first and last occurrences of each 6592 // instruction. Next, we transpose this data structure into a multi map that 6593 // holds the list of intervals that *end* at a specific location. This multi 6594 // map allows us to perform a linear search. We scan the instructions linearly 6595 // and record each time that a new interval starts, by placing it in a set. 6596 // If we find this value in the multi-map then we remove it from the set. 6597 // The max register usage is the maximum size of the set. 6598 // We also search for instructions that are defined outside the loop, but are 6599 // used inside the loop. We need this number separately from the max-interval 6600 // usage number because when we unroll, loop-invariant values do not take 6601 // more register. 6602 LoopBlocksDFS DFS(TheLoop); 6603 DFS.perform(LI); 6604 6605 RegisterUsage RU; 6606 6607 // Each 'key' in the map opens a new interval. The values 6608 // of the map are the index of the 'last seen' usage of the 6609 // instruction that is the key. 6610 using IntervalMap = DenseMap<Instruction *, unsigned>; 6611 6612 // Maps instruction to its index. 6613 SmallVector<Instruction *, 64> IdxToInstr; 6614 // Marks the end of each interval. 6615 IntervalMap EndPoint; 6616 // Saves the list of instruction indices that are used in the loop. 6617 SmallPtrSet<Instruction *, 8> Ends; 6618 // Saves the list of values that are used in the loop but are 6619 // defined outside the loop, such as arguments and constants. 6620 SmallPtrSet<Value *, 8> LoopInvariants; 6621 6622 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6623 for (Instruction &I : BB->instructionsWithoutDebug()) { 6624 IdxToInstr.push_back(&I); 6625 6626 // Save the end location of each USE. 6627 for (Value *U : I.operands()) { 6628 auto *Instr = dyn_cast<Instruction>(U); 6629 6630 // Ignore non-instruction values such as arguments, constants, etc. 6631 if (!Instr) 6632 continue; 6633 6634 // If this instruction is outside the loop then record it and continue. 6635 if (!TheLoop->contains(Instr)) { 6636 LoopInvariants.insert(Instr); 6637 continue; 6638 } 6639 6640 // Overwrite previous end points. 6641 EndPoint[Instr] = IdxToInstr.size(); 6642 Ends.insert(Instr); 6643 } 6644 } 6645 } 6646 6647 // Saves the list of intervals that end with the index in 'key'. 6648 using InstrList = SmallVector<Instruction *, 2>; 6649 DenseMap<unsigned, InstrList> TransposeEnds; 6650 6651 // Transpose the EndPoints to a list of values that end at each index. 6652 for (auto &Interval : EndPoint) 6653 TransposeEnds[Interval.second].push_back(Interval.first); 6654 6655 SmallPtrSet<Instruction *, 8> OpenIntervals; 6656 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6657 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6658 6659 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6660 6661 // A lambda that gets the register usage for the given type and VF. 6662 const auto &TTICapture = TTI; 6663 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6664 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6665 return 0; 6666 InstructionCost::CostType RegUsage = 6667 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6668 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6669 "Nonsensical values for register usage."); 6670 return RegUsage; 6671 }; 6672 6673 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6674 Instruction *I = IdxToInstr[i]; 6675 6676 // Remove all of the instructions that end at this location. 6677 InstrList &List = TransposeEnds[i]; 6678 for (Instruction *ToRemove : List) 6679 OpenIntervals.erase(ToRemove); 6680 6681 // Ignore instructions that are never used within the loop. 6682 if (!Ends.count(I)) 6683 continue; 6684 6685 // Skip ignored values. 6686 if (ValuesToIgnore.count(I)) 6687 continue; 6688 6689 // For each VF find the maximum usage of registers. 6690 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6691 // Count the number of live intervals. 6692 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6693 6694 if (VFs[j].isScalar()) { 6695 for (auto Inst : OpenIntervals) { 6696 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6697 if (RegUsage.find(ClassID) == RegUsage.end()) 6698 RegUsage[ClassID] = 1; 6699 else 6700 RegUsage[ClassID] += 1; 6701 } 6702 } else { 6703 collectUniformsAndScalars(VFs[j]); 6704 for (auto Inst : OpenIntervals) { 6705 // Skip ignored values for VF > 1. 6706 if (VecValuesToIgnore.count(Inst)) 6707 continue; 6708 if (isScalarAfterVectorization(Inst, VFs[j])) { 6709 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6710 if (RegUsage.find(ClassID) == RegUsage.end()) 6711 RegUsage[ClassID] = 1; 6712 else 6713 RegUsage[ClassID] += 1; 6714 } else { 6715 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6716 if (RegUsage.find(ClassID) == RegUsage.end()) 6717 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6718 else 6719 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6720 } 6721 } 6722 } 6723 6724 for (auto& pair : RegUsage) { 6725 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6726 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6727 else 6728 MaxUsages[j][pair.first] = pair.second; 6729 } 6730 } 6731 6732 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6733 << OpenIntervals.size() << '\n'); 6734 6735 // Add the current instruction to the list of open intervals. 6736 OpenIntervals.insert(I); 6737 } 6738 6739 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6740 SmallMapVector<unsigned, unsigned, 4> Invariant; 6741 6742 for (auto Inst : LoopInvariants) { 6743 unsigned Usage = 6744 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6745 unsigned ClassID = 6746 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6747 if (Invariant.find(ClassID) == Invariant.end()) 6748 Invariant[ClassID] = Usage; 6749 else 6750 Invariant[ClassID] += Usage; 6751 } 6752 6753 LLVM_DEBUG({ 6754 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6755 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6756 << " item\n"; 6757 for (const auto &pair : MaxUsages[i]) { 6758 dbgs() << "LV(REG): RegisterClass: " 6759 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6760 << " registers\n"; 6761 } 6762 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6763 << " item\n"; 6764 for (const auto &pair : Invariant) { 6765 dbgs() << "LV(REG): RegisterClass: " 6766 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6767 << " registers\n"; 6768 } 6769 }); 6770 6771 RU.LoopInvariantRegs = Invariant; 6772 RU.MaxLocalUsers = MaxUsages[i]; 6773 RUs[i] = RU; 6774 } 6775 6776 return RUs; 6777 } 6778 6779 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6780 // TODO: Cost model for emulated masked load/store is completely 6781 // broken. This hack guides the cost model to use an artificially 6782 // high enough value to practically disable vectorization with such 6783 // operations, except where previously deployed legality hack allowed 6784 // using very low cost values. This is to avoid regressions coming simply 6785 // from moving "masked load/store" check from legality to cost model. 6786 // Masked Load/Gather emulation was previously never allowed. 6787 // Limited number of Masked Store/Scatter emulation was allowed. 6788 assert(isPredicatedInst(I) && 6789 "Expecting a scalar emulated instruction"); 6790 return isa<LoadInst>(I) || 6791 (isa<StoreInst>(I) && 6792 NumPredStores > NumberOfStoresToPredicate); 6793 } 6794 6795 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6796 // If we aren't vectorizing the loop, or if we've already collected the 6797 // instructions to scalarize, there's nothing to do. Collection may already 6798 // have occurred if we have a user-selected VF and are now computing the 6799 // expected cost for interleaving. 6800 if (VF.isScalar() || VF.isZero() || 6801 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6802 return; 6803 6804 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6805 // not profitable to scalarize any instructions, the presence of VF in the 6806 // map will indicate that we've analyzed it already. 6807 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6808 6809 // Find all the instructions that are scalar with predication in the loop and 6810 // determine if it would be better to not if-convert the blocks they are in. 6811 // If so, we also record the instructions to scalarize. 6812 for (BasicBlock *BB : TheLoop->blocks()) { 6813 if (!blockNeedsPredication(BB)) 6814 continue; 6815 for (Instruction &I : *BB) 6816 if (isScalarWithPredication(&I)) { 6817 ScalarCostsTy ScalarCosts; 6818 // Do not apply discount if scalable, because that would lead to 6819 // invalid scalarization costs. 6820 // Do not apply discount logic if hacked cost is needed 6821 // for emulated masked memrefs. 6822 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) && 6823 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6824 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6825 // Remember that BB will remain after vectorization. 6826 PredicatedBBsAfterVectorization.insert(BB); 6827 } 6828 } 6829 } 6830 6831 int LoopVectorizationCostModel::computePredInstDiscount( 6832 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6833 assert(!isUniformAfterVectorization(PredInst, VF) && 6834 "Instruction marked uniform-after-vectorization will be predicated"); 6835 6836 // Initialize the discount to zero, meaning that the scalar version and the 6837 // vector version cost the same. 6838 InstructionCost Discount = 0; 6839 6840 // Holds instructions to analyze. The instructions we visit are mapped in 6841 // ScalarCosts. Those instructions are the ones that would be scalarized if 6842 // we find that the scalar version costs less. 6843 SmallVector<Instruction *, 8> Worklist; 6844 6845 // Returns true if the given instruction can be scalarized. 6846 auto canBeScalarized = [&](Instruction *I) -> bool { 6847 // We only attempt to scalarize instructions forming a single-use chain 6848 // from the original predicated block that would otherwise be vectorized. 6849 // Although not strictly necessary, we give up on instructions we know will 6850 // already be scalar to avoid traversing chains that are unlikely to be 6851 // beneficial. 6852 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6853 isScalarAfterVectorization(I, VF)) 6854 return false; 6855 6856 // If the instruction is scalar with predication, it will be analyzed 6857 // separately. We ignore it within the context of PredInst. 6858 if (isScalarWithPredication(I)) 6859 return false; 6860 6861 // If any of the instruction's operands are uniform after vectorization, 6862 // the instruction cannot be scalarized. This prevents, for example, a 6863 // masked load from being scalarized. 6864 // 6865 // We assume we will only emit a value for lane zero of an instruction 6866 // marked uniform after vectorization, rather than VF identical values. 6867 // Thus, if we scalarize an instruction that uses a uniform, we would 6868 // create uses of values corresponding to the lanes we aren't emitting code 6869 // for. This behavior can be changed by allowing getScalarValue to clone 6870 // the lane zero values for uniforms rather than asserting. 6871 for (Use &U : I->operands()) 6872 if (auto *J = dyn_cast<Instruction>(U.get())) 6873 if (isUniformAfterVectorization(J, VF)) 6874 return false; 6875 6876 // Otherwise, we can scalarize the instruction. 6877 return true; 6878 }; 6879 6880 // Compute the expected cost discount from scalarizing the entire expression 6881 // feeding the predicated instruction. We currently only consider expressions 6882 // that are single-use instruction chains. 6883 Worklist.push_back(PredInst); 6884 while (!Worklist.empty()) { 6885 Instruction *I = Worklist.pop_back_val(); 6886 6887 // If we've already analyzed the instruction, there's nothing to do. 6888 if (ScalarCosts.find(I) != ScalarCosts.end()) 6889 continue; 6890 6891 // Compute the cost of the vector instruction. Note that this cost already 6892 // includes the scalarization overhead of the predicated instruction. 6893 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6894 6895 // Compute the cost of the scalarized instruction. This cost is the cost of 6896 // the instruction as if it wasn't if-converted and instead remained in the 6897 // predicated block. We will scale this cost by block probability after 6898 // computing the scalarization overhead. 6899 InstructionCost ScalarCost = 6900 VF.getFixedValue() * 6901 getInstructionCost(I, ElementCount::getFixed(1)).first; 6902 6903 // Compute the scalarization overhead of needed insertelement instructions 6904 // and phi nodes. 6905 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6906 ScalarCost += TTI.getScalarizationOverhead( 6907 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6908 APInt::getAllOnes(VF.getFixedValue()), true, false); 6909 ScalarCost += 6910 VF.getFixedValue() * 6911 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6912 } 6913 6914 // Compute the scalarization overhead of needed extractelement 6915 // instructions. For each of the instruction's operands, if the operand can 6916 // be scalarized, add it to the worklist; otherwise, account for the 6917 // overhead. 6918 for (Use &U : I->operands()) 6919 if (auto *J = dyn_cast<Instruction>(U.get())) { 6920 assert(VectorType::isValidElementType(J->getType()) && 6921 "Instruction has non-scalar type"); 6922 if (canBeScalarized(J)) 6923 Worklist.push_back(J); 6924 else if (needsExtract(J, VF)) { 6925 ScalarCost += TTI.getScalarizationOverhead( 6926 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6927 APInt::getAllOnes(VF.getFixedValue()), false, true); 6928 } 6929 } 6930 6931 // Scale the total scalar cost by block probability. 6932 ScalarCost /= getReciprocalPredBlockProb(); 6933 6934 // Compute the discount. A non-negative discount means the vector version 6935 // of the instruction costs more, and scalarizing would be beneficial. 6936 Discount += VectorCost - ScalarCost; 6937 ScalarCosts[I] = ScalarCost; 6938 } 6939 6940 return *Discount.getValue(); 6941 } 6942 6943 LoopVectorizationCostModel::VectorizationCostTy 6944 LoopVectorizationCostModel::expectedCost( 6945 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6946 VectorizationCostTy Cost; 6947 6948 // For each block. 6949 for (BasicBlock *BB : TheLoop->blocks()) { 6950 VectorizationCostTy BlockCost; 6951 6952 // For each instruction in the old loop. 6953 for (Instruction &I : BB->instructionsWithoutDebug()) { 6954 // Skip ignored values. 6955 if (ValuesToIgnore.count(&I) || 6956 (VF.isVector() && VecValuesToIgnore.count(&I))) 6957 continue; 6958 6959 VectorizationCostTy C = getInstructionCost(&I, VF); 6960 6961 // Check if we should override the cost. 6962 if (C.first.isValid() && 6963 ForceTargetInstructionCost.getNumOccurrences() > 0) 6964 C.first = InstructionCost(ForceTargetInstructionCost); 6965 6966 // Keep a list of instructions with invalid costs. 6967 if (Invalid && !C.first.isValid()) 6968 Invalid->emplace_back(&I, VF); 6969 6970 BlockCost.first += C.first; 6971 BlockCost.second |= C.second; 6972 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6973 << " for VF " << VF << " For instruction: " << I 6974 << '\n'); 6975 } 6976 6977 // If we are vectorizing a predicated block, it will have been 6978 // if-converted. This means that the block's instructions (aside from 6979 // stores and instructions that may divide by zero) will now be 6980 // unconditionally executed. For the scalar case, we may not always execute 6981 // the predicated block, if it is an if-else block. Thus, scale the block's 6982 // cost by the probability of executing it. blockNeedsPredication from 6983 // Legal is used so as to not include all blocks in tail folded loops. 6984 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6985 BlockCost.first /= getReciprocalPredBlockProb(); 6986 6987 Cost.first += BlockCost.first; 6988 Cost.second |= BlockCost.second; 6989 } 6990 6991 return Cost; 6992 } 6993 6994 /// Gets Address Access SCEV after verifying that the access pattern 6995 /// is loop invariant except the induction variable dependence. 6996 /// 6997 /// This SCEV can be sent to the Target in order to estimate the address 6998 /// calculation cost. 6999 static const SCEV *getAddressAccessSCEV( 7000 Value *Ptr, 7001 LoopVectorizationLegality *Legal, 7002 PredicatedScalarEvolution &PSE, 7003 const Loop *TheLoop) { 7004 7005 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 7006 if (!Gep) 7007 return nullptr; 7008 7009 // We are looking for a gep with all loop invariant indices except for one 7010 // which should be an induction variable. 7011 auto SE = PSE.getSE(); 7012 unsigned NumOperands = Gep->getNumOperands(); 7013 for (unsigned i = 1; i < NumOperands; ++i) { 7014 Value *Opd = Gep->getOperand(i); 7015 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7016 !Legal->isInductionVariable(Opd)) 7017 return nullptr; 7018 } 7019 7020 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7021 return PSE.getSCEV(Ptr); 7022 } 7023 7024 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7025 return Legal->hasStride(I->getOperand(0)) || 7026 Legal->hasStride(I->getOperand(1)); 7027 } 7028 7029 InstructionCost 7030 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7031 ElementCount VF) { 7032 assert(VF.isVector() && 7033 "Scalarization cost of instruction implies vectorization."); 7034 if (VF.isScalable()) 7035 return InstructionCost::getInvalid(); 7036 7037 Type *ValTy = getLoadStoreType(I); 7038 auto SE = PSE.getSE(); 7039 7040 unsigned AS = getLoadStoreAddressSpace(I); 7041 Value *Ptr = getLoadStorePointerOperand(I); 7042 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7043 7044 // Figure out whether the access is strided and get the stride value 7045 // if it's known in compile time 7046 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 7047 7048 // Get the cost of the scalar memory instruction and address computation. 7049 InstructionCost Cost = 7050 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7051 7052 // Don't pass *I here, since it is scalar but will actually be part of a 7053 // vectorized loop where the user of it is a vectorized instruction. 7054 const Align Alignment = getLoadStoreAlignment(I); 7055 Cost += VF.getKnownMinValue() * 7056 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7057 AS, TTI::TCK_RecipThroughput); 7058 7059 // Get the overhead of the extractelement and insertelement instructions 7060 // we might create due to scalarization. 7061 Cost += getScalarizationOverhead(I, VF); 7062 7063 // If we have a predicated load/store, it will need extra i1 extracts and 7064 // conditional branches, but may not be executed for each vector lane. Scale 7065 // the cost by the probability of executing the predicated block. 7066 if (isPredicatedInst(I)) { 7067 Cost /= getReciprocalPredBlockProb(); 7068 7069 // Add the cost of an i1 extract and a branch 7070 auto *Vec_i1Ty = 7071 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 7072 Cost += TTI.getScalarizationOverhead( 7073 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 7074 /*Insert=*/false, /*Extract=*/true); 7075 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 7076 7077 if (useEmulatedMaskMemRefHack(I)) 7078 // Artificially setting to a high enough value to practically disable 7079 // vectorization with such operations. 7080 Cost = 3000000; 7081 } 7082 7083 return Cost; 7084 } 7085 7086 InstructionCost 7087 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7088 ElementCount VF) { 7089 Type *ValTy = getLoadStoreType(I); 7090 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7091 Value *Ptr = getLoadStorePointerOperand(I); 7092 unsigned AS = getLoadStoreAddressSpace(I); 7093 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 7094 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7095 7096 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7097 "Stride should be 1 or -1 for consecutive memory access"); 7098 const Align Alignment = getLoadStoreAlignment(I); 7099 InstructionCost Cost = 0; 7100 if (Legal->isMaskRequired(I)) 7101 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7102 CostKind); 7103 else 7104 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7105 CostKind, I); 7106 7107 bool Reverse = ConsecutiveStride < 0; 7108 if (Reverse) 7109 Cost += 7110 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7111 return Cost; 7112 } 7113 7114 InstructionCost 7115 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7116 ElementCount VF) { 7117 assert(Legal->isUniformMemOp(*I)); 7118 7119 Type *ValTy = getLoadStoreType(I); 7120 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7121 const Align Alignment = getLoadStoreAlignment(I); 7122 unsigned AS = getLoadStoreAddressSpace(I); 7123 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7124 if (isa<LoadInst>(I)) { 7125 return TTI.getAddressComputationCost(ValTy) + 7126 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7127 CostKind) + 7128 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7129 } 7130 StoreInst *SI = cast<StoreInst>(I); 7131 7132 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7133 return TTI.getAddressComputationCost(ValTy) + 7134 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7135 CostKind) + 7136 (isLoopInvariantStoreValue 7137 ? 0 7138 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7139 VF.getKnownMinValue() - 1)); 7140 } 7141 7142 InstructionCost 7143 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7144 ElementCount VF) { 7145 Type *ValTy = getLoadStoreType(I); 7146 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7147 const Align Alignment = getLoadStoreAlignment(I); 7148 const Value *Ptr = getLoadStorePointerOperand(I); 7149 7150 return TTI.getAddressComputationCost(VectorTy) + 7151 TTI.getGatherScatterOpCost( 7152 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7153 TargetTransformInfo::TCK_RecipThroughput, I); 7154 } 7155 7156 InstructionCost 7157 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7158 ElementCount VF) { 7159 // TODO: Once we have support for interleaving with scalable vectors 7160 // we can calculate the cost properly here. 7161 if (VF.isScalable()) 7162 return InstructionCost::getInvalid(); 7163 7164 Type *ValTy = getLoadStoreType(I); 7165 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7166 unsigned AS = getLoadStoreAddressSpace(I); 7167 7168 auto Group = getInterleavedAccessGroup(I); 7169 assert(Group && "Fail to get an interleaved access group."); 7170 7171 unsigned InterleaveFactor = Group->getFactor(); 7172 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7173 7174 // Holds the indices of existing members in the interleaved group. 7175 SmallVector<unsigned, 4> Indices; 7176 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 7177 if (Group->getMember(IF)) 7178 Indices.push_back(IF); 7179 7180 // Calculate the cost of the whole interleaved group. 7181 bool UseMaskForGaps = 7182 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 7183 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 7184 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7185 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7186 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7187 7188 if (Group->isReverse()) { 7189 // TODO: Add support for reversed masked interleaved access. 7190 assert(!Legal->isMaskRequired(I) && 7191 "Reverse masked interleaved access not supported."); 7192 Cost += 7193 Group->getNumMembers() * 7194 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7195 } 7196 return Cost; 7197 } 7198 7199 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 7200 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7201 using namespace llvm::PatternMatch; 7202 // Early exit for no inloop reductions 7203 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7204 return None; 7205 auto *VectorTy = cast<VectorType>(Ty); 7206 7207 // We are looking for a pattern of, and finding the minimal acceptable cost: 7208 // reduce(mul(ext(A), ext(B))) or 7209 // reduce(mul(A, B)) or 7210 // reduce(ext(A)) or 7211 // reduce(A). 7212 // The basic idea is that we walk down the tree to do that, finding the root 7213 // reduction instruction in InLoopReductionImmediateChains. From there we find 7214 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7215 // of the components. If the reduction cost is lower then we return it for the 7216 // reduction instruction and 0 for the other instructions in the pattern. If 7217 // it is not we return an invalid cost specifying the orignal cost method 7218 // should be used. 7219 Instruction *RetI = I; 7220 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 7221 if (!RetI->hasOneUser()) 7222 return None; 7223 RetI = RetI->user_back(); 7224 } 7225 if (match(RetI, m_Mul(m_Value(), m_Value())) && 7226 RetI->user_back()->getOpcode() == Instruction::Add) { 7227 if (!RetI->hasOneUser()) 7228 return None; 7229 RetI = RetI->user_back(); 7230 } 7231 7232 // Test if the found instruction is a reduction, and if not return an invalid 7233 // cost specifying the parent to use the original cost modelling. 7234 if (!InLoopReductionImmediateChains.count(RetI)) 7235 return None; 7236 7237 // Find the reduction this chain is a part of and calculate the basic cost of 7238 // the reduction on its own. 7239 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7240 Instruction *ReductionPhi = LastChain; 7241 while (!isa<PHINode>(ReductionPhi)) 7242 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7243 7244 const RecurrenceDescriptor &RdxDesc = 7245 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7246 7247 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7248 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 7249 7250 // If we're using ordered reductions then we can just return the base cost 7251 // here, since getArithmeticReductionCost calculates the full ordered 7252 // reduction cost when FP reassociation is not allowed. 7253 if (useOrderedReductions(RdxDesc)) 7254 return BaseCost; 7255 7256 // Get the operand that was not the reduction chain and match it to one of the 7257 // patterns, returning the better cost if it is found. 7258 Instruction *RedOp = RetI->getOperand(1) == LastChain 7259 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7260 : dyn_cast<Instruction>(RetI->getOperand(1)); 7261 7262 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7263 7264 Instruction *Op0, *Op1; 7265 if (RedOp && 7266 match(RedOp, 7267 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 7268 match(Op0, m_ZExtOrSExt(m_Value())) && 7269 Op0->getOpcode() == Op1->getOpcode() && 7270 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7271 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 7272 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 7273 7274 // Matched reduce(ext(mul(ext(A), ext(B))) 7275 // Note that the extend opcodes need to all match, or if A==B they will have 7276 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 7277 // which is equally fine. 7278 bool IsUnsigned = isa<ZExtInst>(Op0); 7279 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7280 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 7281 7282 InstructionCost ExtCost = 7283 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 7284 TTI::CastContextHint::None, CostKind, Op0); 7285 InstructionCost MulCost = 7286 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 7287 InstructionCost Ext2Cost = 7288 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 7289 TTI::CastContextHint::None, CostKind, RedOp); 7290 7291 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7292 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7293 CostKind); 7294 7295 if (RedCost.isValid() && 7296 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 7297 return I == RetI ? RedCost : 0; 7298 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 7299 !TheLoop->isLoopInvariant(RedOp)) { 7300 // Matched reduce(ext(A)) 7301 bool IsUnsigned = isa<ZExtInst>(RedOp); 7302 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7303 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7304 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7305 CostKind); 7306 7307 InstructionCost ExtCost = 7308 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7309 TTI::CastContextHint::None, CostKind, RedOp); 7310 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7311 return I == RetI ? RedCost : 0; 7312 } else if (RedOp && 7313 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 7314 if (match(Op0, m_ZExtOrSExt(m_Value())) && 7315 Op0->getOpcode() == Op1->getOpcode() && 7316 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7317 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7318 bool IsUnsigned = isa<ZExtInst>(Op0); 7319 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7320 // Matched reduce(mul(ext, ext)) 7321 InstructionCost ExtCost = 7322 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7323 TTI::CastContextHint::None, CostKind, Op0); 7324 InstructionCost MulCost = 7325 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7326 7327 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7328 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7329 CostKind); 7330 7331 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7332 return I == RetI ? RedCost : 0; 7333 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7334 // Matched reduce(mul()) 7335 InstructionCost MulCost = 7336 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7337 7338 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7339 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7340 CostKind); 7341 7342 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7343 return I == RetI ? RedCost : 0; 7344 } 7345 } 7346 7347 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7348 } 7349 7350 InstructionCost 7351 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7352 ElementCount VF) { 7353 // Calculate scalar cost only. Vectorization cost should be ready at this 7354 // moment. 7355 if (VF.isScalar()) { 7356 Type *ValTy = getLoadStoreType(I); 7357 const Align Alignment = getLoadStoreAlignment(I); 7358 unsigned AS = getLoadStoreAddressSpace(I); 7359 7360 return TTI.getAddressComputationCost(ValTy) + 7361 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7362 TTI::TCK_RecipThroughput, I); 7363 } 7364 return getWideningCost(I, VF); 7365 } 7366 7367 LoopVectorizationCostModel::VectorizationCostTy 7368 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7369 ElementCount VF) { 7370 // If we know that this instruction will remain uniform, check the cost of 7371 // the scalar version. 7372 if (isUniformAfterVectorization(I, VF)) 7373 VF = ElementCount::getFixed(1); 7374 7375 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7376 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7377 7378 // Forced scalars do not have any scalarization overhead. 7379 auto ForcedScalar = ForcedScalars.find(VF); 7380 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7381 auto InstSet = ForcedScalar->second; 7382 if (InstSet.count(I)) 7383 return VectorizationCostTy( 7384 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7385 VF.getKnownMinValue()), 7386 false); 7387 } 7388 7389 Type *VectorTy; 7390 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7391 7392 bool TypeNotScalarized = 7393 VF.isVector() && VectorTy->isVectorTy() && 7394 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7395 return VectorizationCostTy(C, TypeNotScalarized); 7396 } 7397 7398 InstructionCost 7399 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7400 ElementCount VF) const { 7401 7402 // There is no mechanism yet to create a scalable scalarization loop, 7403 // so this is currently Invalid. 7404 if (VF.isScalable()) 7405 return InstructionCost::getInvalid(); 7406 7407 if (VF.isScalar()) 7408 return 0; 7409 7410 InstructionCost Cost = 0; 7411 Type *RetTy = ToVectorTy(I->getType(), VF); 7412 if (!RetTy->isVoidTy() && 7413 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7414 Cost += TTI.getScalarizationOverhead( 7415 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7416 false); 7417 7418 // Some targets keep addresses scalar. 7419 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7420 return Cost; 7421 7422 // Some targets support efficient element stores. 7423 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7424 return Cost; 7425 7426 // Collect operands to consider. 7427 CallInst *CI = dyn_cast<CallInst>(I); 7428 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 7429 7430 // Skip operands that do not require extraction/scalarization and do not incur 7431 // any overhead. 7432 SmallVector<Type *> Tys; 7433 for (auto *V : filterExtractingOperands(Ops, VF)) 7434 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7435 return Cost + TTI.getOperandsScalarizationOverhead( 7436 filterExtractingOperands(Ops, VF), Tys); 7437 } 7438 7439 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7440 if (VF.isScalar()) 7441 return; 7442 NumPredStores = 0; 7443 for (BasicBlock *BB : TheLoop->blocks()) { 7444 // For each instruction in the old loop. 7445 for (Instruction &I : *BB) { 7446 Value *Ptr = getLoadStorePointerOperand(&I); 7447 if (!Ptr) 7448 continue; 7449 7450 // TODO: We should generate better code and update the cost model for 7451 // predicated uniform stores. Today they are treated as any other 7452 // predicated store (see added test cases in 7453 // invariant-store-vectorization.ll). 7454 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7455 NumPredStores++; 7456 7457 if (Legal->isUniformMemOp(I)) { 7458 // TODO: Avoid replicating loads and stores instead of 7459 // relying on instcombine to remove them. 7460 // Load: Scalar load + broadcast 7461 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7462 InstructionCost Cost; 7463 if (isa<StoreInst>(&I) && VF.isScalable() && 7464 isLegalGatherOrScatter(&I)) { 7465 Cost = getGatherScatterCost(&I, VF); 7466 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7467 } else { 7468 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7469 "Cannot yet scalarize uniform stores"); 7470 Cost = getUniformMemOpCost(&I, VF); 7471 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7472 } 7473 continue; 7474 } 7475 7476 // We assume that widening is the best solution when possible. 7477 if (memoryInstructionCanBeWidened(&I, VF)) { 7478 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7479 int ConsecutiveStride = Legal->isConsecutivePtr( 7480 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 7481 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7482 "Expected consecutive stride."); 7483 InstWidening Decision = 7484 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7485 setWideningDecision(&I, VF, Decision, Cost); 7486 continue; 7487 } 7488 7489 // Choose between Interleaving, Gather/Scatter or Scalarization. 7490 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7491 unsigned NumAccesses = 1; 7492 if (isAccessInterleaved(&I)) { 7493 auto Group = getInterleavedAccessGroup(&I); 7494 assert(Group && "Fail to get an interleaved access group."); 7495 7496 // Make one decision for the whole group. 7497 if (getWideningDecision(&I, VF) != CM_Unknown) 7498 continue; 7499 7500 NumAccesses = Group->getNumMembers(); 7501 if (interleavedAccessCanBeWidened(&I, VF)) 7502 InterleaveCost = getInterleaveGroupCost(&I, VF); 7503 } 7504 7505 InstructionCost GatherScatterCost = 7506 isLegalGatherOrScatter(&I) 7507 ? getGatherScatterCost(&I, VF) * NumAccesses 7508 : InstructionCost::getInvalid(); 7509 7510 InstructionCost ScalarizationCost = 7511 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7512 7513 // Choose better solution for the current VF, 7514 // write down this decision and use it during vectorization. 7515 InstructionCost Cost; 7516 InstWidening Decision; 7517 if (InterleaveCost <= GatherScatterCost && 7518 InterleaveCost < ScalarizationCost) { 7519 Decision = CM_Interleave; 7520 Cost = InterleaveCost; 7521 } else if (GatherScatterCost < ScalarizationCost) { 7522 Decision = CM_GatherScatter; 7523 Cost = GatherScatterCost; 7524 } else { 7525 Decision = CM_Scalarize; 7526 Cost = ScalarizationCost; 7527 } 7528 // If the instructions belongs to an interleave group, the whole group 7529 // receives the same decision. The whole group receives the cost, but 7530 // the cost will actually be assigned to one instruction. 7531 if (auto Group = getInterleavedAccessGroup(&I)) 7532 setWideningDecision(Group, VF, Decision, Cost); 7533 else 7534 setWideningDecision(&I, VF, Decision, Cost); 7535 } 7536 } 7537 7538 // Make sure that any load of address and any other address computation 7539 // remains scalar unless there is gather/scatter support. This avoids 7540 // inevitable extracts into address registers, and also has the benefit of 7541 // activating LSR more, since that pass can't optimize vectorized 7542 // addresses. 7543 if (TTI.prefersVectorizedAddressing()) 7544 return; 7545 7546 // Start with all scalar pointer uses. 7547 SmallPtrSet<Instruction *, 8> AddrDefs; 7548 for (BasicBlock *BB : TheLoop->blocks()) 7549 for (Instruction &I : *BB) { 7550 Instruction *PtrDef = 7551 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7552 if (PtrDef && TheLoop->contains(PtrDef) && 7553 getWideningDecision(&I, VF) != CM_GatherScatter) 7554 AddrDefs.insert(PtrDef); 7555 } 7556 7557 // Add all instructions used to generate the addresses. 7558 SmallVector<Instruction *, 4> Worklist; 7559 append_range(Worklist, AddrDefs); 7560 while (!Worklist.empty()) { 7561 Instruction *I = Worklist.pop_back_val(); 7562 for (auto &Op : I->operands()) 7563 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7564 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7565 AddrDefs.insert(InstOp).second) 7566 Worklist.push_back(InstOp); 7567 } 7568 7569 for (auto *I : AddrDefs) { 7570 if (isa<LoadInst>(I)) { 7571 // Setting the desired widening decision should ideally be handled in 7572 // by cost functions, but since this involves the task of finding out 7573 // if the loaded register is involved in an address computation, it is 7574 // instead changed here when we know this is the case. 7575 InstWidening Decision = getWideningDecision(I, VF); 7576 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7577 // Scalarize a widened load of address. 7578 setWideningDecision( 7579 I, VF, CM_Scalarize, 7580 (VF.getKnownMinValue() * 7581 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7582 else if (auto Group = getInterleavedAccessGroup(I)) { 7583 // Scalarize an interleave group of address loads. 7584 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7585 if (Instruction *Member = Group->getMember(I)) 7586 setWideningDecision( 7587 Member, VF, CM_Scalarize, 7588 (VF.getKnownMinValue() * 7589 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7590 } 7591 } 7592 } else 7593 // Make sure I gets scalarized and a cost estimate without 7594 // scalarization overhead. 7595 ForcedScalars[VF].insert(I); 7596 } 7597 } 7598 7599 InstructionCost 7600 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7601 Type *&VectorTy) { 7602 Type *RetTy = I->getType(); 7603 if (canTruncateToMinimalBitwidth(I, VF)) 7604 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7605 auto SE = PSE.getSE(); 7606 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7607 7608 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7609 ElementCount VF) -> bool { 7610 if (VF.isScalar()) 7611 return true; 7612 7613 auto Scalarized = InstsToScalarize.find(VF); 7614 assert(Scalarized != InstsToScalarize.end() && 7615 "VF not yet analyzed for scalarization profitability"); 7616 return !Scalarized->second.count(I) && 7617 llvm::all_of(I->users(), [&](User *U) { 7618 auto *UI = cast<Instruction>(U); 7619 return !Scalarized->second.count(UI); 7620 }); 7621 }; 7622 (void) hasSingleCopyAfterVectorization; 7623 7624 if (isScalarAfterVectorization(I, VF)) { 7625 // With the exception of GEPs and PHIs, after scalarization there should 7626 // only be one copy of the instruction generated in the loop. This is 7627 // because the VF is either 1, or any instructions that need scalarizing 7628 // have already been dealt with by the the time we get here. As a result, 7629 // it means we don't have to multiply the instruction cost by VF. 7630 assert(I->getOpcode() == Instruction::GetElementPtr || 7631 I->getOpcode() == Instruction::PHI || 7632 (I->getOpcode() == Instruction::BitCast && 7633 I->getType()->isPointerTy()) || 7634 hasSingleCopyAfterVectorization(I, VF)); 7635 VectorTy = RetTy; 7636 } else 7637 VectorTy = ToVectorTy(RetTy, VF); 7638 7639 // TODO: We need to estimate the cost of intrinsic calls. 7640 switch (I->getOpcode()) { 7641 case Instruction::GetElementPtr: 7642 // We mark this instruction as zero-cost because the cost of GEPs in 7643 // vectorized code depends on whether the corresponding memory instruction 7644 // is scalarized or not. Therefore, we handle GEPs with the memory 7645 // instruction cost. 7646 return 0; 7647 case Instruction::Br: { 7648 // In cases of scalarized and predicated instructions, there will be VF 7649 // predicated blocks in the vectorized loop. Each branch around these 7650 // blocks requires also an extract of its vector compare i1 element. 7651 bool ScalarPredicatedBB = false; 7652 BranchInst *BI = cast<BranchInst>(I); 7653 if (VF.isVector() && BI->isConditional() && 7654 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7655 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7656 ScalarPredicatedBB = true; 7657 7658 if (ScalarPredicatedBB) { 7659 // Not possible to scalarize scalable vector with predicated instructions. 7660 if (VF.isScalable()) 7661 return InstructionCost::getInvalid(); 7662 // Return cost for branches around scalarized and predicated blocks. 7663 auto *Vec_i1Ty = 7664 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7665 return ( 7666 TTI.getScalarizationOverhead( 7667 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7668 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7669 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7670 // The back-edge branch will remain, as will all scalar branches. 7671 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7672 else 7673 // This branch will be eliminated by if-conversion. 7674 return 0; 7675 // Note: We currently assume zero cost for an unconditional branch inside 7676 // a predicated block since it will become a fall-through, although we 7677 // may decide in the future to call TTI for all branches. 7678 } 7679 case Instruction::PHI: { 7680 auto *Phi = cast<PHINode>(I); 7681 7682 // First-order recurrences are replaced by vector shuffles inside the loop. 7683 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7684 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7685 return TTI.getShuffleCost( 7686 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7687 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7688 7689 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7690 // converted into select instructions. We require N - 1 selects per phi 7691 // node, where N is the number of incoming values. 7692 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7693 return (Phi->getNumIncomingValues() - 1) * 7694 TTI.getCmpSelInstrCost( 7695 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7696 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7697 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7698 7699 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7700 } 7701 case Instruction::UDiv: 7702 case Instruction::SDiv: 7703 case Instruction::URem: 7704 case Instruction::SRem: 7705 // If we have a predicated instruction, it may not be executed for each 7706 // vector lane. Get the scalarization cost and scale this amount by the 7707 // probability of executing the predicated block. If the instruction is not 7708 // predicated, we fall through to the next case. 7709 if (VF.isVector() && isScalarWithPredication(I)) { 7710 InstructionCost Cost = 0; 7711 7712 // These instructions have a non-void type, so account for the phi nodes 7713 // that we will create. This cost is likely to be zero. The phi node 7714 // cost, if any, should be scaled by the block probability because it 7715 // models a copy at the end of each predicated block. 7716 Cost += VF.getKnownMinValue() * 7717 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7718 7719 // The cost of the non-predicated instruction. 7720 Cost += VF.getKnownMinValue() * 7721 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7722 7723 // The cost of insertelement and extractelement instructions needed for 7724 // scalarization. 7725 Cost += getScalarizationOverhead(I, VF); 7726 7727 // Scale the cost by the probability of executing the predicated blocks. 7728 // This assumes the predicated block for each vector lane is equally 7729 // likely. 7730 return Cost / getReciprocalPredBlockProb(); 7731 } 7732 LLVM_FALLTHROUGH; 7733 case Instruction::Add: 7734 case Instruction::FAdd: 7735 case Instruction::Sub: 7736 case Instruction::FSub: 7737 case Instruction::Mul: 7738 case Instruction::FMul: 7739 case Instruction::FDiv: 7740 case Instruction::FRem: 7741 case Instruction::Shl: 7742 case Instruction::LShr: 7743 case Instruction::AShr: 7744 case Instruction::And: 7745 case Instruction::Or: 7746 case Instruction::Xor: { 7747 // Since we will replace the stride by 1 the multiplication should go away. 7748 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7749 return 0; 7750 7751 // Detect reduction patterns 7752 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7753 return *RedCost; 7754 7755 // Certain instructions can be cheaper to vectorize if they have a constant 7756 // second vector operand. One example of this are shifts on x86. 7757 Value *Op2 = I->getOperand(1); 7758 TargetTransformInfo::OperandValueProperties Op2VP; 7759 TargetTransformInfo::OperandValueKind Op2VK = 7760 TTI.getOperandInfo(Op2, Op2VP); 7761 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7762 Op2VK = TargetTransformInfo::OK_UniformValue; 7763 7764 SmallVector<const Value *, 4> Operands(I->operand_values()); 7765 return TTI.getArithmeticInstrCost( 7766 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7767 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7768 } 7769 case Instruction::FNeg: { 7770 return TTI.getArithmeticInstrCost( 7771 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7772 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7773 TargetTransformInfo::OP_None, I->getOperand(0), I); 7774 } 7775 case Instruction::Select: { 7776 SelectInst *SI = cast<SelectInst>(I); 7777 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7778 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7779 7780 const Value *Op0, *Op1; 7781 using namespace llvm::PatternMatch; 7782 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7783 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7784 // select x, y, false --> x & y 7785 // select x, true, y --> x | y 7786 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7787 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7788 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7789 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7790 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7791 Op1->getType()->getScalarSizeInBits() == 1); 7792 7793 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7794 return TTI.getArithmeticInstrCost( 7795 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7796 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7797 } 7798 7799 Type *CondTy = SI->getCondition()->getType(); 7800 if (!ScalarCond) 7801 CondTy = VectorType::get(CondTy, VF); 7802 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7803 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7804 } 7805 case Instruction::ICmp: 7806 case Instruction::FCmp: { 7807 Type *ValTy = I->getOperand(0)->getType(); 7808 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7809 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7810 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7811 VectorTy = ToVectorTy(ValTy, VF); 7812 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7813 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7814 } 7815 case Instruction::Store: 7816 case Instruction::Load: { 7817 ElementCount Width = VF; 7818 if (Width.isVector()) { 7819 InstWidening Decision = getWideningDecision(I, Width); 7820 assert(Decision != CM_Unknown && 7821 "CM decision should be taken at this point"); 7822 if (Decision == CM_Scalarize) 7823 Width = ElementCount::getFixed(1); 7824 } 7825 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7826 return getMemoryInstructionCost(I, VF); 7827 } 7828 case Instruction::BitCast: 7829 if (I->getType()->isPointerTy()) 7830 return 0; 7831 LLVM_FALLTHROUGH; 7832 case Instruction::ZExt: 7833 case Instruction::SExt: 7834 case Instruction::FPToUI: 7835 case Instruction::FPToSI: 7836 case Instruction::FPExt: 7837 case Instruction::PtrToInt: 7838 case Instruction::IntToPtr: 7839 case Instruction::SIToFP: 7840 case Instruction::UIToFP: 7841 case Instruction::Trunc: 7842 case Instruction::FPTrunc: { 7843 // Computes the CastContextHint from a Load/Store instruction. 7844 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7845 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7846 "Expected a load or a store!"); 7847 7848 if (VF.isScalar() || !TheLoop->contains(I)) 7849 return TTI::CastContextHint::Normal; 7850 7851 switch (getWideningDecision(I, VF)) { 7852 case LoopVectorizationCostModel::CM_GatherScatter: 7853 return TTI::CastContextHint::GatherScatter; 7854 case LoopVectorizationCostModel::CM_Interleave: 7855 return TTI::CastContextHint::Interleave; 7856 case LoopVectorizationCostModel::CM_Scalarize: 7857 case LoopVectorizationCostModel::CM_Widen: 7858 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7859 : TTI::CastContextHint::Normal; 7860 case LoopVectorizationCostModel::CM_Widen_Reverse: 7861 return TTI::CastContextHint::Reversed; 7862 case LoopVectorizationCostModel::CM_Unknown: 7863 llvm_unreachable("Instr did not go through cost modelling?"); 7864 } 7865 7866 llvm_unreachable("Unhandled case!"); 7867 }; 7868 7869 unsigned Opcode = I->getOpcode(); 7870 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7871 // For Trunc, the context is the only user, which must be a StoreInst. 7872 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7873 if (I->hasOneUse()) 7874 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7875 CCH = ComputeCCH(Store); 7876 } 7877 // For Z/Sext, the context is the operand, which must be a LoadInst. 7878 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7879 Opcode == Instruction::FPExt) { 7880 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7881 CCH = ComputeCCH(Load); 7882 } 7883 7884 // We optimize the truncation of induction variables having constant 7885 // integer steps. The cost of these truncations is the same as the scalar 7886 // operation. 7887 if (isOptimizableIVTruncate(I, VF)) { 7888 auto *Trunc = cast<TruncInst>(I); 7889 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7890 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7891 } 7892 7893 // Detect reduction patterns 7894 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7895 return *RedCost; 7896 7897 Type *SrcScalarTy = I->getOperand(0)->getType(); 7898 Type *SrcVecTy = 7899 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7900 if (canTruncateToMinimalBitwidth(I, VF)) { 7901 // This cast is going to be shrunk. This may remove the cast or it might 7902 // turn it into slightly different cast. For example, if MinBW == 16, 7903 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7904 // 7905 // Calculate the modified src and dest types. 7906 Type *MinVecTy = VectorTy; 7907 if (Opcode == Instruction::Trunc) { 7908 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7909 VectorTy = 7910 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7911 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7912 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7913 VectorTy = 7914 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7915 } 7916 } 7917 7918 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7919 } 7920 case Instruction::Call: { 7921 bool NeedToScalarize; 7922 CallInst *CI = cast<CallInst>(I); 7923 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7924 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7925 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7926 return std::min(CallCost, IntrinsicCost); 7927 } 7928 return CallCost; 7929 } 7930 case Instruction::ExtractValue: 7931 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7932 case Instruction::Alloca: 7933 // We cannot easily widen alloca to a scalable alloca, as 7934 // the result would need to be a vector of pointers. 7935 if (VF.isScalable()) 7936 return InstructionCost::getInvalid(); 7937 LLVM_FALLTHROUGH; 7938 default: 7939 // This opcode is unknown. Assume that it is the same as 'mul'. 7940 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7941 } // end of switch. 7942 } 7943 7944 char LoopVectorize::ID = 0; 7945 7946 static const char lv_name[] = "Loop Vectorization"; 7947 7948 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7949 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7950 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7951 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7952 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7953 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7954 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7955 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7956 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7957 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7958 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7959 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7960 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7961 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7962 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7963 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7964 7965 namespace llvm { 7966 7967 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7968 7969 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7970 bool VectorizeOnlyWhenForced) { 7971 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7972 } 7973 7974 } // end namespace llvm 7975 7976 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7977 // Check if the pointer operand of a load or store instruction is 7978 // consecutive. 7979 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7980 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7981 return false; 7982 } 7983 7984 void LoopVectorizationCostModel::collectValuesToIgnore() { 7985 // Ignore ephemeral values. 7986 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7987 7988 // Ignore type-promoting instructions we identified during reduction 7989 // detection. 7990 for (auto &Reduction : Legal->getReductionVars()) { 7991 RecurrenceDescriptor &RedDes = Reduction.second; 7992 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7993 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7994 } 7995 // Ignore type-casting instructions we identified during induction 7996 // detection. 7997 for (auto &Induction : Legal->getInductionVars()) { 7998 InductionDescriptor &IndDes = Induction.second; 7999 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8000 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 8001 } 8002 } 8003 8004 void LoopVectorizationCostModel::collectInLoopReductions() { 8005 for (auto &Reduction : Legal->getReductionVars()) { 8006 PHINode *Phi = Reduction.first; 8007 RecurrenceDescriptor &RdxDesc = Reduction.second; 8008 8009 // We don't collect reductions that are type promoted (yet). 8010 if (RdxDesc.getRecurrenceType() != Phi->getType()) 8011 continue; 8012 8013 // If the target would prefer this reduction to happen "in-loop", then we 8014 // want to record it as such. 8015 unsigned Opcode = RdxDesc.getOpcode(); 8016 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 8017 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 8018 TargetTransformInfo::ReductionFlags())) 8019 continue; 8020 8021 // Check that we can correctly put the reductions into the loop, by 8022 // finding the chain of operations that leads from the phi to the loop 8023 // exit value. 8024 SmallVector<Instruction *, 4> ReductionOperations = 8025 RdxDesc.getReductionOpChain(Phi, TheLoop); 8026 bool InLoop = !ReductionOperations.empty(); 8027 if (InLoop) { 8028 InLoopReductionChains[Phi] = ReductionOperations; 8029 // Add the elements to InLoopReductionImmediateChains for cost modelling. 8030 Instruction *LastChain = Phi; 8031 for (auto *I : ReductionOperations) { 8032 InLoopReductionImmediateChains[I] = LastChain; 8033 LastChain = I; 8034 } 8035 } 8036 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 8037 << " reduction for phi: " << *Phi << "\n"); 8038 } 8039 } 8040 8041 // TODO: we could return a pair of values that specify the max VF and 8042 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 8043 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 8044 // doesn't have a cost model that can choose which plan to execute if 8045 // more than one is generated. 8046 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 8047 LoopVectorizationCostModel &CM) { 8048 unsigned WidestType; 8049 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 8050 return WidestVectorRegBits / WidestType; 8051 } 8052 8053 VectorizationFactor 8054 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 8055 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 8056 ElementCount VF = UserVF; 8057 // Outer loop handling: They may require CFG and instruction level 8058 // transformations before even evaluating whether vectorization is profitable. 8059 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8060 // the vectorization pipeline. 8061 if (!OrigLoop->isInnermost()) { 8062 // If the user doesn't provide a vectorization factor, determine a 8063 // reasonable one. 8064 if (UserVF.isZero()) { 8065 VF = ElementCount::getFixed(determineVPlanVF( 8066 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 8067 .getFixedSize(), 8068 CM)); 8069 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 8070 8071 // Make sure we have a VF > 1 for stress testing. 8072 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 8073 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 8074 << "overriding computed VF.\n"); 8075 VF = ElementCount::getFixed(4); 8076 } 8077 } 8078 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8079 assert(isPowerOf2_32(VF.getKnownMinValue()) && 8080 "VF needs to be a power of two"); 8081 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 8082 << "VF " << VF << " to build VPlans.\n"); 8083 buildVPlans(VF, VF); 8084 8085 // For VPlan build stress testing, we bail out after VPlan construction. 8086 if (VPlanBuildStressTest) 8087 return VectorizationFactor::Disabled(); 8088 8089 return {VF, 0 /*Cost*/}; 8090 } 8091 8092 LLVM_DEBUG( 8093 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 8094 "VPlan-native path.\n"); 8095 return VectorizationFactor::Disabled(); 8096 } 8097 8098 Optional<VectorizationFactor> 8099 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 8100 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8101 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 8102 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 8103 return None; 8104 8105 // Invalidate interleave groups if all blocks of loop will be predicated. 8106 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 8107 !useMaskedInterleavedAccesses(*TTI)) { 8108 LLVM_DEBUG( 8109 dbgs() 8110 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 8111 "which requires masked-interleaved support.\n"); 8112 if (CM.InterleaveInfo.invalidateGroups()) 8113 // Invalidating interleave groups also requires invalidating all decisions 8114 // based on them, which includes widening decisions and uniform and scalar 8115 // values. 8116 CM.invalidateCostModelingDecisions(); 8117 } 8118 8119 ElementCount MaxUserVF = 8120 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 8121 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 8122 if (!UserVF.isZero() && UserVFIsLegal) { 8123 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 8124 "VF needs to be a power of two"); 8125 // Collect the instructions (and their associated costs) that will be more 8126 // profitable to scalarize. 8127 if (CM.selectUserVectorizationFactor(UserVF)) { 8128 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 8129 CM.collectInLoopReductions(); 8130 buildVPlansWithVPRecipes(UserVF, UserVF); 8131 LLVM_DEBUG(printPlans(dbgs())); 8132 return {{UserVF, 0}}; 8133 } else 8134 reportVectorizationInfo("UserVF ignored because of invalid costs.", 8135 "InvalidCost", ORE, OrigLoop); 8136 } 8137 8138 // Populate the set of Vectorization Factor Candidates. 8139 ElementCountSet VFCandidates; 8140 for (auto VF = ElementCount::getFixed(1); 8141 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 8142 VFCandidates.insert(VF); 8143 for (auto VF = ElementCount::getScalable(1); 8144 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 8145 VFCandidates.insert(VF); 8146 8147 for (const auto &VF : VFCandidates) { 8148 // Collect Uniform and Scalar instructions after vectorization with VF. 8149 CM.collectUniformsAndScalars(VF); 8150 8151 // Collect the instructions (and their associated costs) that will be more 8152 // profitable to scalarize. 8153 if (VF.isVector()) 8154 CM.collectInstsToScalarize(VF); 8155 } 8156 8157 CM.collectInLoopReductions(); 8158 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 8159 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 8160 8161 LLVM_DEBUG(printPlans(dbgs())); 8162 if (!MaxFactors.hasVector()) 8163 return VectorizationFactor::Disabled(); 8164 8165 // Select the optimal vectorization factor. 8166 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 8167 8168 // Check if it is profitable to vectorize with runtime checks. 8169 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8170 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8171 bool PragmaThresholdReached = 8172 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8173 bool ThresholdReached = 8174 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8175 if ((ThresholdReached && !Hints.allowReordering()) || 8176 PragmaThresholdReached) { 8177 ORE->emit([&]() { 8178 return OptimizationRemarkAnalysisAliasing( 8179 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8180 OrigLoop->getHeader()) 8181 << "loop not vectorized: cannot prove it is safe to reorder " 8182 "memory operations"; 8183 }); 8184 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8185 Hints.emitRemarkWithHints(); 8186 return VectorizationFactor::Disabled(); 8187 } 8188 } 8189 return SelectedVF; 8190 } 8191 8192 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 8193 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 8194 << '\n'); 8195 BestVF = VF; 8196 BestUF = UF; 8197 8198 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 8199 return !Plan->hasVF(VF); 8200 }); 8201 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 8202 } 8203 8204 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 8205 DominatorTree *DT) { 8206 // Perform the actual loop transformation. 8207 8208 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8209 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 8210 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 8211 8212 VPTransformState State{ 8213 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 8214 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8215 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8216 State.CanonicalIV = ILV.Induction; 8217 8218 ILV.printDebugTracesAtStart(); 8219 8220 //===------------------------------------------------===// 8221 // 8222 // Notice: any optimization or new instruction that go 8223 // into the code below should also be implemented in 8224 // the cost-model. 8225 // 8226 //===------------------------------------------------===// 8227 8228 // 2. Copy and widen instructions from the old loop into the new loop. 8229 VPlans.front()->execute(&State); 8230 8231 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8232 // predication, updating analyses. 8233 ILV.fixVectorizedLoop(State); 8234 8235 ILV.printDebugTracesAtEnd(); 8236 } 8237 8238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8239 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8240 for (const auto &Plan : VPlans) 8241 if (PrintVPlansInDotFormat) 8242 Plan->printDOT(O); 8243 else 8244 Plan->print(O); 8245 } 8246 #endif 8247 8248 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8249 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8250 8251 // We create new control-flow for the vectorized loop, so the original exit 8252 // conditions will be dead after vectorization if it's only used by the 8253 // terminator 8254 SmallVector<BasicBlock*> ExitingBlocks; 8255 OrigLoop->getExitingBlocks(ExitingBlocks); 8256 for (auto *BB : ExitingBlocks) { 8257 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8258 if (!Cmp || !Cmp->hasOneUse()) 8259 continue; 8260 8261 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8262 if (!DeadInstructions.insert(Cmp).second) 8263 continue; 8264 8265 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8266 // TODO: can recurse through operands in general 8267 for (Value *Op : Cmp->operands()) { 8268 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8269 DeadInstructions.insert(cast<Instruction>(Op)); 8270 } 8271 } 8272 8273 // We create new "steps" for induction variable updates to which the original 8274 // induction variables map. An original update instruction will be dead if 8275 // all its users except the induction variable are dead. 8276 auto *Latch = OrigLoop->getLoopLatch(); 8277 for (auto &Induction : Legal->getInductionVars()) { 8278 PHINode *Ind = Induction.first; 8279 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8280 8281 // If the tail is to be folded by masking, the primary induction variable, 8282 // if exists, isn't dead: it will be used for masking. Don't kill it. 8283 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8284 continue; 8285 8286 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8287 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8288 })) 8289 DeadInstructions.insert(IndUpdate); 8290 8291 // We record as "Dead" also the type-casting instructions we had identified 8292 // during induction analysis. We don't need any handling for them in the 8293 // vectorized loop because we have proven that, under a proper runtime 8294 // test guarding the vectorized loop, the value of the phi, and the casted 8295 // value of the phi, are the same. The last instruction in this casting chain 8296 // will get its scalar/vector/widened def from the scalar/vector/widened def 8297 // of the respective phi node. Any other casts in the induction def-use chain 8298 // have no other uses outside the phi update chain, and will be ignored. 8299 InductionDescriptor &IndDes = Induction.second; 8300 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8301 DeadInstructions.insert(Casts.begin(), Casts.end()); 8302 } 8303 } 8304 8305 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8306 8307 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8308 8309 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 8310 Instruction::BinaryOps BinOp) { 8311 // When unrolling and the VF is 1, we only need to add a simple scalar. 8312 Type *Ty = Val->getType(); 8313 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8314 8315 if (Ty->isFloatingPointTy()) { 8316 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 8317 8318 // Floating-point operations inherit FMF via the builder's flags. 8319 Value *MulOp = Builder.CreateFMul(C, Step); 8320 return Builder.CreateBinOp(BinOp, Val, MulOp); 8321 } 8322 Constant *C = ConstantInt::get(Ty, StartIdx); 8323 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 8324 } 8325 8326 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8327 SmallVector<Metadata *, 4> MDs; 8328 // Reserve first location for self reference to the LoopID metadata node. 8329 MDs.push_back(nullptr); 8330 bool IsUnrollMetadata = false; 8331 MDNode *LoopID = L->getLoopID(); 8332 if (LoopID) { 8333 // First find existing loop unrolling disable metadata. 8334 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8335 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8336 if (MD) { 8337 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8338 IsUnrollMetadata = 8339 S && S->getString().startswith("llvm.loop.unroll.disable"); 8340 } 8341 MDs.push_back(LoopID->getOperand(i)); 8342 } 8343 } 8344 8345 if (!IsUnrollMetadata) { 8346 // Add runtime unroll disable metadata. 8347 LLVMContext &Context = L->getHeader()->getContext(); 8348 SmallVector<Metadata *, 1> DisableOperands; 8349 DisableOperands.push_back( 8350 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8351 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8352 MDs.push_back(DisableNode); 8353 MDNode *NewLoopID = MDNode::get(Context, MDs); 8354 // Set operand 0 to refer to the loop id itself. 8355 NewLoopID->replaceOperandWith(0, NewLoopID); 8356 L->setLoopID(NewLoopID); 8357 } 8358 } 8359 8360 //===--------------------------------------------------------------------===// 8361 // EpilogueVectorizerMainLoop 8362 //===--------------------------------------------------------------------===// 8363 8364 /// This function is partially responsible for generating the control flow 8365 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8366 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8367 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8368 Loop *Lp = createVectorLoopSkeleton(""); 8369 8370 // Generate the code to check the minimum iteration count of the vector 8371 // epilogue (see below). 8372 EPI.EpilogueIterationCountCheck = 8373 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8374 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8375 8376 // Generate the code to check any assumptions that we've made for SCEV 8377 // expressions. 8378 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8379 8380 // Generate the code that checks at runtime if arrays overlap. We put the 8381 // checks into a separate block to make the more common case of few elements 8382 // faster. 8383 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8384 8385 // Generate the iteration count check for the main loop, *after* the check 8386 // for the epilogue loop, so that the path-length is shorter for the case 8387 // that goes directly through the vector epilogue. The longer-path length for 8388 // the main loop is compensated for, by the gain from vectorizing the larger 8389 // trip count. Note: the branch will get updated later on when we vectorize 8390 // the epilogue. 8391 EPI.MainLoopIterationCountCheck = 8392 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8393 8394 // Generate the induction variable. 8395 OldInduction = Legal->getPrimaryInduction(); 8396 Type *IdxTy = Legal->getWidestInductionType(); 8397 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8398 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8399 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8400 EPI.VectorTripCount = CountRoundDown; 8401 Induction = 8402 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8403 getDebugLocFromInstOrOperands(OldInduction)); 8404 8405 // Skip induction resume value creation here because they will be created in 8406 // the second pass. If we created them here, they wouldn't be used anyway, 8407 // because the vplan in the second pass still contains the inductions from the 8408 // original loop. 8409 8410 return completeLoopSkeleton(Lp, OrigLoopID); 8411 } 8412 8413 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8414 LLVM_DEBUG({ 8415 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8416 << "Main Loop VF:" << EPI.MainLoopVF 8417 << ", Main Loop UF:" << EPI.MainLoopUF 8418 << ", Epilogue Loop VF:" << EPI.EpilogueVF 8419 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8420 }); 8421 } 8422 8423 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8424 DEBUG_WITH_TYPE(VerboseDebug, { 8425 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8426 }); 8427 } 8428 8429 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8430 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8431 assert(L && "Expected valid Loop."); 8432 assert(Bypass && "Expected valid bypass basic block."); 8433 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 8434 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8435 Value *Count = getOrCreateTripCount(L); 8436 // Reuse existing vector loop preheader for TC checks. 8437 // Note that new preheader block is generated for vector loop. 8438 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8439 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8440 8441 // Generate code to check if the loop's trip count is less than VF * UF of the 8442 // main vector loop. 8443 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8444 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8445 8446 Value *CheckMinIters = Builder.CreateICmp( 8447 P, Count, getRuntimeVF(Builder, Count->getType(), VFactor * UFactor), 8448 "min.iters.check"); 8449 8450 if (!ForEpilogue) 8451 TCCheckBlock->setName("vector.main.loop.iter.check"); 8452 8453 // Create new preheader for vector loop. 8454 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8455 DT, LI, nullptr, "vector.ph"); 8456 8457 if (ForEpilogue) { 8458 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8459 DT->getNode(Bypass)->getIDom()) && 8460 "TC check is expected to dominate Bypass"); 8461 8462 // Update dominator for Bypass & LoopExit. 8463 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8464 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8465 // For loops with multiple exits, there's no edge from the middle block 8466 // to exit blocks (as the epilogue must run) and thus no need to update 8467 // the immediate dominator of the exit blocks. 8468 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8469 8470 LoopBypassBlocks.push_back(TCCheckBlock); 8471 8472 // Save the trip count so we don't have to regenerate it in the 8473 // vec.epilog.iter.check. This is safe to do because the trip count 8474 // generated here dominates the vector epilog iter check. 8475 EPI.TripCount = Count; 8476 } 8477 8478 ReplaceInstWithInst( 8479 TCCheckBlock->getTerminator(), 8480 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8481 8482 return TCCheckBlock; 8483 } 8484 8485 //===--------------------------------------------------------------------===// 8486 // EpilogueVectorizerEpilogueLoop 8487 //===--------------------------------------------------------------------===// 8488 8489 /// This function is partially responsible for generating the control flow 8490 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8491 BasicBlock * 8492 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8493 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8494 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8495 8496 // Now, compare the remaining count and if there aren't enough iterations to 8497 // execute the vectorized epilogue skip to the scalar part. 8498 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8499 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8500 LoopVectorPreHeader = 8501 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8502 LI, nullptr, "vec.epilog.ph"); 8503 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8504 VecEpilogueIterationCountCheck); 8505 8506 // Adjust the control flow taking the state info from the main loop 8507 // vectorization into account. 8508 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8509 "expected this to be saved from the previous pass."); 8510 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8511 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8512 8513 DT->changeImmediateDominator(LoopVectorPreHeader, 8514 EPI.MainLoopIterationCountCheck); 8515 8516 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8517 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8518 8519 if (EPI.SCEVSafetyCheck) 8520 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8521 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8522 if (EPI.MemSafetyCheck) 8523 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8524 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8525 8526 DT->changeImmediateDominator( 8527 VecEpilogueIterationCountCheck, 8528 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8529 8530 DT->changeImmediateDominator(LoopScalarPreHeader, 8531 EPI.EpilogueIterationCountCheck); 8532 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8533 // If there is an epilogue which must run, there's no edge from the 8534 // middle block to exit blocks and thus no need to update the immediate 8535 // dominator of the exit blocks. 8536 DT->changeImmediateDominator(LoopExitBlock, 8537 EPI.EpilogueIterationCountCheck); 8538 8539 // Keep track of bypass blocks, as they feed start values to the induction 8540 // phis in the scalar loop preheader. 8541 if (EPI.SCEVSafetyCheck) 8542 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8543 if (EPI.MemSafetyCheck) 8544 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8545 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8546 8547 // Generate a resume induction for the vector epilogue and put it in the 8548 // vector epilogue preheader 8549 Type *IdxTy = Legal->getWidestInductionType(); 8550 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8551 LoopVectorPreHeader->getFirstNonPHI()); 8552 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8553 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8554 EPI.MainLoopIterationCountCheck); 8555 8556 // Generate the induction variable. 8557 OldInduction = Legal->getPrimaryInduction(); 8558 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8559 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8560 Value *StartIdx = EPResumeVal; 8561 Induction = 8562 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8563 getDebugLocFromInstOrOperands(OldInduction)); 8564 8565 // Generate induction resume values. These variables save the new starting 8566 // indexes for the scalar loop. They are used to test if there are any tail 8567 // iterations left once the vector loop has completed. 8568 // Note that when the vectorized epilogue is skipped due to iteration count 8569 // check, then the resume value for the induction variable comes from 8570 // the trip count of the main vector loop, hence passing the AdditionalBypass 8571 // argument. 8572 createInductionResumeValues(Lp, CountRoundDown, 8573 {VecEpilogueIterationCountCheck, 8574 EPI.VectorTripCount} /* AdditionalBypass */); 8575 8576 AddRuntimeUnrollDisableMetaData(Lp); 8577 return completeLoopSkeleton(Lp, OrigLoopID); 8578 } 8579 8580 BasicBlock * 8581 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8582 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8583 8584 assert(EPI.TripCount && 8585 "Expected trip count to have been safed in the first pass."); 8586 assert( 8587 (!isa<Instruction>(EPI.TripCount) || 8588 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8589 "saved trip count does not dominate insertion point."); 8590 Value *TC = EPI.TripCount; 8591 IRBuilder<> Builder(Insert->getTerminator()); 8592 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8593 8594 // Generate code to check if the loop's trip count is less than VF * UF of the 8595 // vector epilogue loop. 8596 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8597 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8598 8599 Value *CheckMinIters = Builder.CreateICmp( 8600 P, Count, 8601 getRuntimeVF(Builder, Count->getType(), EPI.EpilogueVF * EPI.EpilogueUF), 8602 "min.epilog.iters.check"); 8603 8604 ReplaceInstWithInst( 8605 Insert->getTerminator(), 8606 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8607 8608 LoopBypassBlocks.push_back(Insert); 8609 return Insert; 8610 } 8611 8612 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8613 LLVM_DEBUG({ 8614 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8615 << "Epilogue Loop VF:" << EPI.EpilogueVF 8616 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8617 }); 8618 } 8619 8620 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8621 DEBUG_WITH_TYPE(VerboseDebug, { 8622 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8623 }); 8624 } 8625 8626 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8627 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8628 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8629 bool PredicateAtRangeStart = Predicate(Range.Start); 8630 8631 for (ElementCount TmpVF = Range.Start * 2; 8632 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8633 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8634 Range.End = TmpVF; 8635 break; 8636 } 8637 8638 return PredicateAtRangeStart; 8639 } 8640 8641 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8642 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8643 /// of VF's starting at a given VF and extending it as much as possible. Each 8644 /// vectorization decision can potentially shorten this sub-range during 8645 /// buildVPlan(). 8646 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8647 ElementCount MaxVF) { 8648 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8649 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8650 VFRange SubRange = {VF, MaxVFPlusOne}; 8651 VPlans.push_back(buildVPlan(SubRange)); 8652 VF = SubRange.End; 8653 } 8654 } 8655 8656 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8657 VPlanPtr &Plan) { 8658 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8659 8660 // Look for cached value. 8661 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8662 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8663 if (ECEntryIt != EdgeMaskCache.end()) 8664 return ECEntryIt->second; 8665 8666 VPValue *SrcMask = createBlockInMask(Src, Plan); 8667 8668 // The terminator has to be a branch inst! 8669 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8670 assert(BI && "Unexpected terminator found"); 8671 8672 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8673 return EdgeMaskCache[Edge] = SrcMask; 8674 8675 // If source is an exiting block, we know the exit edge is dynamically dead 8676 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8677 // adding uses of an otherwise potentially dead instruction. 8678 if (OrigLoop->isLoopExiting(Src)) 8679 return EdgeMaskCache[Edge] = SrcMask; 8680 8681 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8682 assert(EdgeMask && "No Edge Mask found for condition"); 8683 8684 if (BI->getSuccessor(0) != Dst) 8685 EdgeMask = Builder.createNot(EdgeMask); 8686 8687 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8688 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8689 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8690 // The select version does not introduce new UB if SrcMask is false and 8691 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8692 VPValue *False = Plan->getOrAddVPValue( 8693 ConstantInt::getFalse(BI->getCondition()->getType())); 8694 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8695 } 8696 8697 return EdgeMaskCache[Edge] = EdgeMask; 8698 } 8699 8700 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8701 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8702 8703 // Look for cached value. 8704 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8705 if (BCEntryIt != BlockMaskCache.end()) 8706 return BCEntryIt->second; 8707 8708 // All-one mask is modelled as no-mask following the convention for masked 8709 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8710 VPValue *BlockMask = nullptr; 8711 8712 if (OrigLoop->getHeader() == BB) { 8713 if (!CM.blockNeedsPredication(BB)) 8714 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8715 8716 // Create the block in mask as the first non-phi instruction in the block. 8717 VPBuilder::InsertPointGuard Guard(Builder); 8718 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8719 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8720 8721 // Introduce the early-exit compare IV <= BTC to form header block mask. 8722 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8723 // Start by constructing the desired canonical IV. 8724 VPValue *IV = nullptr; 8725 if (Legal->getPrimaryInduction()) 8726 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8727 else { 8728 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8729 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8730 IV = IVRecipe->getVPSingleValue(); 8731 } 8732 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8733 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8734 8735 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8736 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8737 // as a second argument, we only pass the IV here and extract the 8738 // tripcount from the transform state where codegen of the VP instructions 8739 // happen. 8740 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8741 } else { 8742 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8743 } 8744 return BlockMaskCache[BB] = BlockMask; 8745 } 8746 8747 // This is the block mask. We OR all incoming edges. 8748 for (auto *Predecessor : predecessors(BB)) { 8749 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8750 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8751 return BlockMaskCache[BB] = EdgeMask; 8752 8753 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8754 BlockMask = EdgeMask; 8755 continue; 8756 } 8757 8758 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8759 } 8760 8761 return BlockMaskCache[BB] = BlockMask; 8762 } 8763 8764 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8765 ArrayRef<VPValue *> Operands, 8766 VFRange &Range, 8767 VPlanPtr &Plan) { 8768 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8769 "Must be called with either a load or store"); 8770 8771 auto willWiden = [&](ElementCount VF) -> bool { 8772 if (VF.isScalar()) 8773 return false; 8774 LoopVectorizationCostModel::InstWidening Decision = 8775 CM.getWideningDecision(I, VF); 8776 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8777 "CM decision should be taken at this point."); 8778 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8779 return true; 8780 if (CM.isScalarAfterVectorization(I, VF) || 8781 CM.isProfitableToScalarize(I, VF)) 8782 return false; 8783 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8784 }; 8785 8786 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8787 return nullptr; 8788 8789 VPValue *Mask = nullptr; 8790 if (Legal->isMaskRequired(I)) 8791 Mask = createBlockInMask(I->getParent(), Plan); 8792 8793 // Determine if the pointer operand of the access is either consecutive or 8794 // reverse consecutive. 8795 LoopVectorizationCostModel::InstWidening Decision = 8796 CM.getWideningDecision(I, Range.Start); 8797 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8798 bool Consecutive = 8799 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8800 8801 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8802 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8803 Consecutive, Reverse); 8804 8805 StoreInst *Store = cast<StoreInst>(I); 8806 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8807 Mask, Consecutive, Reverse); 8808 } 8809 8810 VPWidenIntOrFpInductionRecipe * 8811 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8812 ArrayRef<VPValue *> Operands) const { 8813 // Check if this is an integer or fp induction. If so, build the recipe that 8814 // produces its scalar and vector values. 8815 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8816 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8817 II.getKind() == InductionDescriptor::IK_FpInduction) { 8818 assert(II.getStartValue() == 8819 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8820 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8821 return new VPWidenIntOrFpInductionRecipe( 8822 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8823 } 8824 8825 return nullptr; 8826 } 8827 8828 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8829 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8830 VPlan &Plan) const { 8831 // Optimize the special case where the source is a constant integer 8832 // induction variable. Notice that we can only optimize the 'trunc' case 8833 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8834 // (c) other casts depend on pointer size. 8835 8836 // Determine whether \p K is a truncation based on an induction variable that 8837 // can be optimized. 8838 auto isOptimizableIVTruncate = 8839 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8840 return [=](ElementCount VF) -> bool { 8841 return CM.isOptimizableIVTruncate(K, VF); 8842 }; 8843 }; 8844 8845 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8846 isOptimizableIVTruncate(I), Range)) { 8847 8848 InductionDescriptor II = 8849 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8850 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8851 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8852 Start, nullptr, I); 8853 } 8854 return nullptr; 8855 } 8856 8857 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8858 ArrayRef<VPValue *> Operands, 8859 VPlanPtr &Plan) { 8860 // If all incoming values are equal, the incoming VPValue can be used directly 8861 // instead of creating a new VPBlendRecipe. 8862 VPValue *FirstIncoming = Operands[0]; 8863 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8864 return FirstIncoming == Inc; 8865 })) { 8866 return Operands[0]; 8867 } 8868 8869 // We know that all PHIs in non-header blocks are converted into selects, so 8870 // we don't have to worry about the insertion order and we can just use the 8871 // builder. At this point we generate the predication tree. There may be 8872 // duplications since this is a simple recursive scan, but future 8873 // optimizations will clean it up. 8874 SmallVector<VPValue *, 2> OperandsWithMask; 8875 unsigned NumIncoming = Phi->getNumIncomingValues(); 8876 8877 for (unsigned In = 0; In < NumIncoming; In++) { 8878 VPValue *EdgeMask = 8879 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8880 assert((EdgeMask || NumIncoming == 1) && 8881 "Multiple predecessors with one having a full mask"); 8882 OperandsWithMask.push_back(Operands[In]); 8883 if (EdgeMask) 8884 OperandsWithMask.push_back(EdgeMask); 8885 } 8886 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8887 } 8888 8889 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8890 ArrayRef<VPValue *> Operands, 8891 VFRange &Range) const { 8892 8893 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8894 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8895 Range); 8896 8897 if (IsPredicated) 8898 return nullptr; 8899 8900 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8901 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8902 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8903 ID == Intrinsic::pseudoprobe || 8904 ID == Intrinsic::experimental_noalias_scope_decl)) 8905 return nullptr; 8906 8907 auto willWiden = [&](ElementCount VF) -> bool { 8908 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8909 // The following case may be scalarized depending on the VF. 8910 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8911 // version of the instruction. 8912 // Is it beneficial to perform intrinsic call compared to lib call? 8913 bool NeedToScalarize = false; 8914 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8915 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8916 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8917 return UseVectorIntrinsic || !NeedToScalarize; 8918 }; 8919 8920 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8921 return nullptr; 8922 8923 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8924 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8925 } 8926 8927 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8928 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8929 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8930 // Instruction should be widened, unless it is scalar after vectorization, 8931 // scalarization is profitable or it is predicated. 8932 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8933 return CM.isScalarAfterVectorization(I, VF) || 8934 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8935 }; 8936 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8937 Range); 8938 } 8939 8940 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8941 ArrayRef<VPValue *> Operands) const { 8942 auto IsVectorizableOpcode = [](unsigned Opcode) { 8943 switch (Opcode) { 8944 case Instruction::Add: 8945 case Instruction::And: 8946 case Instruction::AShr: 8947 case Instruction::BitCast: 8948 case Instruction::FAdd: 8949 case Instruction::FCmp: 8950 case Instruction::FDiv: 8951 case Instruction::FMul: 8952 case Instruction::FNeg: 8953 case Instruction::FPExt: 8954 case Instruction::FPToSI: 8955 case Instruction::FPToUI: 8956 case Instruction::FPTrunc: 8957 case Instruction::FRem: 8958 case Instruction::FSub: 8959 case Instruction::ICmp: 8960 case Instruction::IntToPtr: 8961 case Instruction::LShr: 8962 case Instruction::Mul: 8963 case Instruction::Or: 8964 case Instruction::PtrToInt: 8965 case Instruction::SDiv: 8966 case Instruction::Select: 8967 case Instruction::SExt: 8968 case Instruction::Shl: 8969 case Instruction::SIToFP: 8970 case Instruction::SRem: 8971 case Instruction::Sub: 8972 case Instruction::Trunc: 8973 case Instruction::UDiv: 8974 case Instruction::UIToFP: 8975 case Instruction::URem: 8976 case Instruction::Xor: 8977 case Instruction::ZExt: 8978 return true; 8979 } 8980 return false; 8981 }; 8982 8983 if (!IsVectorizableOpcode(I->getOpcode())) 8984 return nullptr; 8985 8986 // Success: widen this instruction. 8987 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8988 } 8989 8990 void VPRecipeBuilder::fixHeaderPhis() { 8991 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8992 for (VPWidenPHIRecipe *R : PhisToFix) { 8993 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8994 VPRecipeBase *IncR = 8995 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8996 R->addOperand(IncR->getVPSingleValue()); 8997 } 8998 } 8999 9000 VPBasicBlock *VPRecipeBuilder::handleReplication( 9001 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 9002 VPlanPtr &Plan) { 9003 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 9004 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 9005 Range); 9006 9007 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 9008 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 9009 9010 // Even if the instruction is not marked as uniform, there are certain 9011 // intrinsic calls that can be effectively treated as such, so we check for 9012 // them here. Conservatively, we only do this for scalable vectors, since 9013 // for fixed-width VFs we can always fall back on full scalarization. 9014 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 9015 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 9016 case Intrinsic::assume: 9017 case Intrinsic::lifetime_start: 9018 case Intrinsic::lifetime_end: 9019 // For scalable vectors if one of the operands is variant then we still 9020 // want to mark as uniform, which will generate one instruction for just 9021 // the first lane of the vector. We can't scalarize the call in the same 9022 // way as for fixed-width vectors because we don't know how many lanes 9023 // there are. 9024 // 9025 // The reasons for doing it this way for scalable vectors are: 9026 // 1. For the assume intrinsic generating the instruction for the first 9027 // lane is still be better than not generating any at all. For 9028 // example, the input may be a splat across all lanes. 9029 // 2. For the lifetime start/end intrinsics the pointer operand only 9030 // does anything useful when the input comes from a stack object, 9031 // which suggests it should always be uniform. For non-stack objects 9032 // the effect is to poison the object, which still allows us to 9033 // remove the call. 9034 IsUniform = true; 9035 break; 9036 default: 9037 break; 9038 } 9039 } 9040 9041 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 9042 IsUniform, IsPredicated); 9043 setRecipe(I, Recipe); 9044 Plan->addVPValue(I, Recipe); 9045 9046 // Find if I uses a predicated instruction. If so, it will use its scalar 9047 // value. Avoid hoisting the insert-element which packs the scalar value into 9048 // a vector value, as that happens iff all users use the vector value. 9049 for (VPValue *Op : Recipe->operands()) { 9050 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 9051 if (!PredR) 9052 continue; 9053 auto *RepR = 9054 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 9055 assert(RepR->isPredicated() && 9056 "expected Replicate recipe to be predicated"); 9057 RepR->setAlsoPack(false); 9058 } 9059 9060 // Finalize the recipe for Instr, first if it is not predicated. 9061 if (!IsPredicated) { 9062 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 9063 VPBB->appendRecipe(Recipe); 9064 return VPBB; 9065 } 9066 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 9067 assert(VPBB->getSuccessors().empty() && 9068 "VPBB has successors when handling predicated replication."); 9069 // Record predicated instructions for above packing optimizations. 9070 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 9071 VPBlockUtils::insertBlockAfter(Region, VPBB); 9072 auto *RegSucc = new VPBasicBlock(); 9073 VPBlockUtils::insertBlockAfter(RegSucc, Region); 9074 return RegSucc; 9075 } 9076 9077 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 9078 VPRecipeBase *PredRecipe, 9079 VPlanPtr &Plan) { 9080 // Instructions marked for predication are replicated and placed under an 9081 // if-then construct to prevent side-effects. 9082 9083 // Generate recipes to compute the block mask for this region. 9084 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 9085 9086 // Build the triangular if-then region. 9087 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 9088 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 9089 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 9090 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 9091 auto *PHIRecipe = Instr->getType()->isVoidTy() 9092 ? nullptr 9093 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 9094 if (PHIRecipe) { 9095 Plan->removeVPValueFor(Instr); 9096 Plan->addVPValue(Instr, PHIRecipe); 9097 } 9098 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 9099 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 9100 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 9101 9102 // Note: first set Entry as region entry and then connect successors starting 9103 // from it in order, to propagate the "parent" of each VPBasicBlock. 9104 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 9105 VPBlockUtils::connectBlocks(Pred, Exit); 9106 9107 return Region; 9108 } 9109 9110 VPRecipeOrVPValueTy 9111 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 9112 ArrayRef<VPValue *> Operands, 9113 VFRange &Range, VPlanPtr &Plan) { 9114 // First, check for specific widening recipes that deal with calls, memory 9115 // operations, inductions and Phi nodes. 9116 if (auto *CI = dyn_cast<CallInst>(Instr)) 9117 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 9118 9119 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 9120 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 9121 9122 VPRecipeBase *Recipe; 9123 if (auto Phi = dyn_cast<PHINode>(Instr)) { 9124 if (Phi->getParent() != OrigLoop->getHeader()) 9125 return tryToBlend(Phi, Operands, Plan); 9126 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 9127 return toVPRecipeResult(Recipe); 9128 9129 VPWidenPHIRecipe *PhiRecipe = nullptr; 9130 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 9131 VPValue *StartV = Operands[0]; 9132 if (Legal->isReductionVariable(Phi)) { 9133 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9134 assert(RdxDesc.getRecurrenceStartValue() == 9135 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 9136 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 9137 CM.isInLoopReduction(Phi), 9138 CM.useOrderedReductions(RdxDesc)); 9139 } else { 9140 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 9141 } 9142 9143 // Record the incoming value from the backedge, so we can add the incoming 9144 // value from the backedge after all recipes have been created. 9145 recordRecipeOf(cast<Instruction>( 9146 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 9147 PhisToFix.push_back(PhiRecipe); 9148 } else { 9149 // TODO: record start and backedge value for remaining pointer induction 9150 // phis. 9151 assert(Phi->getType()->isPointerTy() && 9152 "only pointer phis should be handled here"); 9153 PhiRecipe = new VPWidenPHIRecipe(Phi); 9154 } 9155 9156 return toVPRecipeResult(PhiRecipe); 9157 } 9158 9159 if (isa<TruncInst>(Instr) && 9160 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 9161 Range, *Plan))) 9162 return toVPRecipeResult(Recipe); 9163 9164 if (!shouldWiden(Instr, Range)) 9165 return nullptr; 9166 9167 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 9168 return toVPRecipeResult(new VPWidenGEPRecipe( 9169 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 9170 9171 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 9172 bool InvariantCond = 9173 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 9174 return toVPRecipeResult(new VPWidenSelectRecipe( 9175 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 9176 } 9177 9178 return toVPRecipeResult(tryToWiden(Instr, Operands)); 9179 } 9180 9181 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 9182 ElementCount MaxVF) { 9183 assert(OrigLoop->isInnermost() && "Inner loop expected."); 9184 9185 // Collect instructions from the original loop that will become trivially dead 9186 // in the vectorized loop. We don't need to vectorize these instructions. For 9187 // example, original induction update instructions can become dead because we 9188 // separately emit induction "steps" when generating code for the new loop. 9189 // Similarly, we create a new latch condition when setting up the structure 9190 // of the new loop, so the old one can become dead. 9191 SmallPtrSet<Instruction *, 4> DeadInstructions; 9192 collectTriviallyDeadInstructions(DeadInstructions); 9193 9194 // Add assume instructions we need to drop to DeadInstructions, to prevent 9195 // them from being added to the VPlan. 9196 // TODO: We only need to drop assumes in blocks that get flattend. If the 9197 // control flow is preserved, we should keep them. 9198 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 9199 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 9200 9201 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 9202 // Dead instructions do not need sinking. Remove them from SinkAfter. 9203 for (Instruction *I : DeadInstructions) 9204 SinkAfter.erase(I); 9205 9206 // Cannot sink instructions after dead instructions (there won't be any 9207 // recipes for them). Instead, find the first non-dead previous instruction. 9208 for (auto &P : Legal->getSinkAfter()) { 9209 Instruction *SinkTarget = P.second; 9210 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 9211 (void)FirstInst; 9212 while (DeadInstructions.contains(SinkTarget)) { 9213 assert( 9214 SinkTarget != FirstInst && 9215 "Must find a live instruction (at least the one feeding the " 9216 "first-order recurrence PHI) before reaching beginning of the block"); 9217 SinkTarget = SinkTarget->getPrevNode(); 9218 assert(SinkTarget != P.first && 9219 "sink source equals target, no sinking required"); 9220 } 9221 P.second = SinkTarget; 9222 } 9223 9224 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9225 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9226 VFRange SubRange = {VF, MaxVFPlusOne}; 9227 VPlans.push_back( 9228 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9229 VF = SubRange.End; 9230 } 9231 } 9232 9233 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9234 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9235 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9236 9237 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9238 9239 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9240 9241 // --------------------------------------------------------------------------- 9242 // Pre-construction: record ingredients whose recipes we'll need to further 9243 // process after constructing the initial VPlan. 9244 // --------------------------------------------------------------------------- 9245 9246 // Mark instructions we'll need to sink later and their targets as 9247 // ingredients whose recipe we'll need to record. 9248 for (auto &Entry : SinkAfter) { 9249 RecipeBuilder.recordRecipeOf(Entry.first); 9250 RecipeBuilder.recordRecipeOf(Entry.second); 9251 } 9252 for (auto &Reduction : CM.getInLoopReductionChains()) { 9253 PHINode *Phi = Reduction.first; 9254 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9255 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9256 9257 RecipeBuilder.recordRecipeOf(Phi); 9258 for (auto &R : ReductionOperations) { 9259 RecipeBuilder.recordRecipeOf(R); 9260 // For min/max reducitons, where we have a pair of icmp/select, we also 9261 // need to record the ICmp recipe, so it can be removed later. 9262 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9263 "Only min/max recurrences allowed for inloop reductions"); 9264 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9265 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9266 } 9267 } 9268 9269 // For each interleave group which is relevant for this (possibly trimmed) 9270 // Range, add it to the set of groups to be later applied to the VPlan and add 9271 // placeholders for its members' Recipes which we'll be replacing with a 9272 // single VPInterleaveRecipe. 9273 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9274 auto applyIG = [IG, this](ElementCount VF) -> bool { 9275 return (VF.isVector() && // Query is illegal for VF == 1 9276 CM.getWideningDecision(IG->getInsertPos(), VF) == 9277 LoopVectorizationCostModel::CM_Interleave); 9278 }; 9279 if (!getDecisionAndClampRange(applyIG, Range)) 9280 continue; 9281 InterleaveGroups.insert(IG); 9282 for (unsigned i = 0; i < IG->getFactor(); i++) 9283 if (Instruction *Member = IG->getMember(i)) 9284 RecipeBuilder.recordRecipeOf(Member); 9285 }; 9286 9287 // --------------------------------------------------------------------------- 9288 // Build initial VPlan: Scan the body of the loop in a topological order to 9289 // visit each basic block after having visited its predecessor basic blocks. 9290 // --------------------------------------------------------------------------- 9291 9292 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9293 auto Plan = std::make_unique<VPlan>(); 9294 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 9295 Plan->setEntry(VPBB); 9296 9297 // Scan the body of the loop in a topological order to visit each basic block 9298 // after having visited its predecessor basic blocks. 9299 LoopBlocksDFS DFS(OrigLoop); 9300 DFS.perform(LI); 9301 9302 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9303 // Relevant instructions from basic block BB will be grouped into VPRecipe 9304 // ingredients and fill a new VPBasicBlock. 9305 unsigned VPBBsForBB = 0; 9306 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9307 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9308 VPBB = FirstVPBBForBB; 9309 Builder.setInsertPoint(VPBB); 9310 9311 // Introduce each ingredient into VPlan. 9312 // TODO: Model and preserve debug instrinsics in VPlan. 9313 for (Instruction &I : BB->instructionsWithoutDebug()) { 9314 Instruction *Instr = &I; 9315 9316 // First filter out irrelevant instructions, to ensure no recipes are 9317 // built for them. 9318 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9319 continue; 9320 9321 SmallVector<VPValue *, 4> Operands; 9322 auto *Phi = dyn_cast<PHINode>(Instr); 9323 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9324 Operands.push_back(Plan->getOrAddVPValue( 9325 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9326 } else { 9327 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9328 Operands = {OpRange.begin(), OpRange.end()}; 9329 } 9330 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9331 Instr, Operands, Range, Plan)) { 9332 // If Instr can be simplified to an existing VPValue, use it. 9333 if (RecipeOrValue.is<VPValue *>()) { 9334 auto *VPV = RecipeOrValue.get<VPValue *>(); 9335 Plan->addVPValue(Instr, VPV); 9336 // If the re-used value is a recipe, register the recipe for the 9337 // instruction, in case the recipe for Instr needs to be recorded. 9338 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9339 RecipeBuilder.setRecipe(Instr, R); 9340 continue; 9341 } 9342 // Otherwise, add the new recipe. 9343 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9344 for (auto *Def : Recipe->definedValues()) { 9345 auto *UV = Def->getUnderlyingValue(); 9346 Plan->addVPValue(UV, Def); 9347 } 9348 9349 RecipeBuilder.setRecipe(Instr, Recipe); 9350 VPBB->appendRecipe(Recipe); 9351 continue; 9352 } 9353 9354 // Otherwise, if all widening options failed, Instruction is to be 9355 // replicated. This may create a successor for VPBB. 9356 VPBasicBlock *NextVPBB = 9357 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9358 if (NextVPBB != VPBB) { 9359 VPBB = NextVPBB; 9360 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9361 : ""); 9362 } 9363 } 9364 } 9365 9366 RecipeBuilder.fixHeaderPhis(); 9367 9368 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 9369 // may also be empty, such as the last one VPBB, reflecting original 9370 // basic-blocks with no recipes. 9371 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 9372 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 9373 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 9374 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 9375 delete PreEntry; 9376 9377 // --------------------------------------------------------------------------- 9378 // Transform initial VPlan: Apply previously taken decisions, in order, to 9379 // bring the VPlan to its final state. 9380 // --------------------------------------------------------------------------- 9381 9382 // Apply Sink-After legal constraints. 9383 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9384 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9385 if (Region && Region->isReplicator()) { 9386 assert(Region->getNumSuccessors() == 1 && 9387 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9388 assert(R->getParent()->size() == 1 && 9389 "A recipe in an original replicator region must be the only " 9390 "recipe in its block"); 9391 return Region; 9392 } 9393 return nullptr; 9394 }; 9395 for (auto &Entry : SinkAfter) { 9396 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9397 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9398 9399 auto *TargetRegion = GetReplicateRegion(Target); 9400 auto *SinkRegion = GetReplicateRegion(Sink); 9401 if (!SinkRegion) { 9402 // If the sink source is not a replicate region, sink the recipe directly. 9403 if (TargetRegion) { 9404 // The target is in a replication region, make sure to move Sink to 9405 // the block after it, not into the replication region itself. 9406 VPBasicBlock *NextBlock = 9407 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9408 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9409 } else 9410 Sink->moveAfter(Target); 9411 continue; 9412 } 9413 9414 // The sink source is in a replicate region. Unhook the region from the CFG. 9415 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9416 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9417 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9418 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9419 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9420 9421 if (TargetRegion) { 9422 // The target recipe is also in a replicate region, move the sink region 9423 // after the target region. 9424 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9425 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9426 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9427 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9428 } else { 9429 // The sink source is in a replicate region, we need to move the whole 9430 // replicate region, which should only contain a single recipe in the 9431 // main block. 9432 auto *SplitBlock = 9433 Target->getParent()->splitAt(std::next(Target->getIterator())); 9434 9435 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9436 9437 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9438 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9439 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9440 if (VPBB == SplitPred) 9441 VPBB = SplitBlock; 9442 } 9443 } 9444 9445 // Adjust the recipes for any inloop reductions. 9446 adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start); 9447 9448 // Introduce a recipe to combine the incoming and previous values of a 9449 // first-order recurrence. 9450 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9451 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9452 if (!RecurPhi) 9453 continue; 9454 9455 auto *RecurSplice = cast<VPInstruction>( 9456 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9457 {RecurPhi, RecurPhi->getBackedgeValue()})); 9458 9459 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9460 if (auto *Region = GetReplicateRegion(PrevRecipe)) { 9461 VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9462 RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi()); 9463 } else 9464 RecurSplice->moveAfter(PrevRecipe); 9465 RecurPhi->replaceAllUsesWith(RecurSplice); 9466 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9467 // all users. 9468 RecurSplice->setOperand(0, RecurPhi); 9469 } 9470 9471 // Interleave memory: for each Interleave Group we marked earlier as relevant 9472 // for this VPlan, replace the Recipes widening its memory instructions with a 9473 // single VPInterleaveRecipe at its insertion point. 9474 for (auto IG : InterleaveGroups) { 9475 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9476 RecipeBuilder.getRecipe(IG->getInsertPos())); 9477 SmallVector<VPValue *, 4> StoredValues; 9478 for (unsigned i = 0; i < IG->getFactor(); ++i) 9479 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9480 auto *StoreR = 9481 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9482 StoredValues.push_back(StoreR->getStoredValue()); 9483 } 9484 9485 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9486 Recipe->getMask()); 9487 VPIG->insertBefore(Recipe); 9488 unsigned J = 0; 9489 for (unsigned i = 0; i < IG->getFactor(); ++i) 9490 if (Instruction *Member = IG->getMember(i)) { 9491 if (!Member->getType()->isVoidTy()) { 9492 VPValue *OriginalV = Plan->getVPValue(Member); 9493 Plan->removeVPValueFor(Member); 9494 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9495 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9496 J++; 9497 } 9498 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9499 } 9500 } 9501 9502 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9503 // in ways that accessing values using original IR values is incorrect. 9504 Plan->disableValue2VPValue(); 9505 9506 VPlanTransforms::sinkScalarOperands(*Plan); 9507 VPlanTransforms::mergeReplicateRegions(*Plan); 9508 9509 std::string PlanName; 9510 raw_string_ostream RSO(PlanName); 9511 ElementCount VF = Range.Start; 9512 Plan->addVF(VF); 9513 RSO << "Initial VPlan for VF={" << VF; 9514 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9515 Plan->addVF(VF); 9516 RSO << "," << VF; 9517 } 9518 RSO << "},UF>=1"; 9519 RSO.flush(); 9520 Plan->setName(PlanName); 9521 9522 return Plan; 9523 } 9524 9525 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9526 // Outer loop handling: They may require CFG and instruction level 9527 // transformations before even evaluating whether vectorization is profitable. 9528 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9529 // the vectorization pipeline. 9530 assert(!OrigLoop->isInnermost()); 9531 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9532 9533 // Create new empty VPlan 9534 auto Plan = std::make_unique<VPlan>(); 9535 9536 // Build hierarchical CFG 9537 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9538 HCFGBuilder.buildHierarchicalCFG(); 9539 9540 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9541 VF *= 2) 9542 Plan->addVF(VF); 9543 9544 if (EnableVPlanPredication) { 9545 VPlanPredicator VPP(*Plan); 9546 VPP.predicate(); 9547 9548 // Avoid running transformation to recipes until masked code generation in 9549 // VPlan-native path is in place. 9550 return Plan; 9551 } 9552 9553 SmallPtrSet<Instruction *, 1> DeadInstructions; 9554 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9555 Legal->getInductionVars(), 9556 DeadInstructions, *PSE.getSE()); 9557 return Plan; 9558 } 9559 9560 // Adjust the recipes for reductions. For in-loop reductions the chain of 9561 // instructions leading from the loop exit instr to the phi need to be converted 9562 // to reductions, with one operand being vector and the other being the scalar 9563 // reduction chain. For other reductions, a select is introduced between the phi 9564 // and live-out recipes when folding the tail. 9565 void LoopVectorizationPlanner::adjustRecipesForReductions( 9566 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9567 ElementCount MinVF) { 9568 for (auto &Reduction : CM.getInLoopReductionChains()) { 9569 PHINode *Phi = Reduction.first; 9570 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9571 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9572 9573 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9574 continue; 9575 9576 // ReductionOperations are orders top-down from the phi's use to the 9577 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9578 // which of the two operands will remain scalar and which will be reduced. 9579 // For minmax the chain will be the select instructions. 9580 Instruction *Chain = Phi; 9581 for (Instruction *R : ReductionOperations) { 9582 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9583 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9584 9585 VPValue *ChainOp = Plan->getVPValue(Chain); 9586 unsigned FirstOpId; 9587 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9588 "Only min/max recurrences allowed for inloop reductions"); 9589 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9590 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9591 "Expected to replace a VPWidenSelectSC"); 9592 FirstOpId = 1; 9593 } else { 9594 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) && 9595 "Expected to replace a VPWidenSC"); 9596 FirstOpId = 0; 9597 } 9598 unsigned VecOpId = 9599 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9600 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9601 9602 auto *CondOp = CM.foldTailByMasking() 9603 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9604 : nullptr; 9605 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9606 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9607 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9608 Plan->removeVPValueFor(R); 9609 Plan->addVPValue(R, RedRecipe); 9610 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9611 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9612 WidenRecipe->eraseFromParent(); 9613 9614 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9615 VPRecipeBase *CompareRecipe = 9616 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9617 assert(isa<VPWidenRecipe>(CompareRecipe) && 9618 "Expected to replace a VPWidenSC"); 9619 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9620 "Expected no remaining users"); 9621 CompareRecipe->eraseFromParent(); 9622 } 9623 Chain = R; 9624 } 9625 } 9626 9627 // If tail is folded by masking, introduce selects between the phi 9628 // and the live-out instruction of each reduction, at the end of the latch. 9629 if (CM.foldTailByMasking()) { 9630 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9631 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9632 if (!PhiR || PhiR->isInLoop()) 9633 continue; 9634 Builder.setInsertPoint(LatchVPBB); 9635 VPValue *Cond = 9636 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9637 VPValue *Red = PhiR->getBackedgeValue(); 9638 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9639 } 9640 } 9641 } 9642 9643 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9644 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9645 VPSlotTracker &SlotTracker) const { 9646 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9647 IG->getInsertPos()->printAsOperand(O, false); 9648 O << ", "; 9649 getAddr()->printAsOperand(O, SlotTracker); 9650 VPValue *Mask = getMask(); 9651 if (Mask) { 9652 O << ", "; 9653 Mask->printAsOperand(O, SlotTracker); 9654 } 9655 9656 unsigned OpIdx = 0; 9657 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9658 if (!IG->getMember(i)) 9659 continue; 9660 if (getNumStoreOperands() > 0) { 9661 O << "\n" << Indent << " store "; 9662 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9663 O << " to index " << i; 9664 } else { 9665 O << "\n" << Indent << " "; 9666 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9667 O << " = load from index " << i; 9668 } 9669 ++OpIdx; 9670 } 9671 } 9672 #endif 9673 9674 void VPWidenCallRecipe::execute(VPTransformState &State) { 9675 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9676 *this, State); 9677 } 9678 9679 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9680 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9681 this, *this, InvariantCond, State); 9682 } 9683 9684 void VPWidenRecipe::execute(VPTransformState &State) { 9685 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9686 } 9687 9688 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9689 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9690 *this, State.UF, State.VF, IsPtrLoopInvariant, 9691 IsIndexLoopInvariant, State); 9692 } 9693 9694 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9695 assert(!State.Instance && "Int or FP induction being replicated."); 9696 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9697 getTruncInst(), getVPValue(0), 9698 getCastValue(), State); 9699 } 9700 9701 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9702 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9703 State); 9704 } 9705 9706 void VPBlendRecipe::execute(VPTransformState &State) { 9707 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9708 // We know that all PHIs in non-header blocks are converted into 9709 // selects, so we don't have to worry about the insertion order and we 9710 // can just use the builder. 9711 // At this point we generate the predication tree. There may be 9712 // duplications since this is a simple recursive scan, but future 9713 // optimizations will clean it up. 9714 9715 unsigned NumIncoming = getNumIncomingValues(); 9716 9717 // Generate a sequence of selects of the form: 9718 // SELECT(Mask3, In3, 9719 // SELECT(Mask2, In2, 9720 // SELECT(Mask1, In1, 9721 // In0))) 9722 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9723 // are essentially undef are taken from In0. 9724 InnerLoopVectorizer::VectorParts Entry(State.UF); 9725 for (unsigned In = 0; In < NumIncoming; ++In) { 9726 for (unsigned Part = 0; Part < State.UF; ++Part) { 9727 // We might have single edge PHIs (blocks) - use an identity 9728 // 'select' for the first PHI operand. 9729 Value *In0 = State.get(getIncomingValue(In), Part); 9730 if (In == 0) 9731 Entry[Part] = In0; // Initialize with the first incoming value. 9732 else { 9733 // Select between the current value and the previous incoming edge 9734 // based on the incoming mask. 9735 Value *Cond = State.get(getMask(In), Part); 9736 Entry[Part] = 9737 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9738 } 9739 } 9740 } 9741 for (unsigned Part = 0; Part < State.UF; ++Part) 9742 State.set(this, Entry[Part], Part); 9743 } 9744 9745 void VPInterleaveRecipe::execute(VPTransformState &State) { 9746 assert(!State.Instance && "Interleave group being replicated."); 9747 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9748 getStoredValues(), getMask()); 9749 } 9750 9751 void VPReductionRecipe::execute(VPTransformState &State) { 9752 assert(!State.Instance && "Reduction being replicated."); 9753 Value *PrevInChain = State.get(getChainOp(), 0); 9754 for (unsigned Part = 0; Part < State.UF; ++Part) { 9755 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9756 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9757 Value *NewVecOp = State.get(getVecOp(), Part); 9758 if (VPValue *Cond = getCondOp()) { 9759 Value *NewCond = State.get(Cond, Part); 9760 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9761 Value *Iden = RdxDesc->getRecurrenceIdentity( 9762 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9763 Value *IdenVec = 9764 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9765 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9766 NewVecOp = Select; 9767 } 9768 Value *NewRed; 9769 Value *NextInChain; 9770 if (IsOrdered) { 9771 if (State.VF.isVector()) 9772 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9773 PrevInChain); 9774 else 9775 NewRed = State.Builder.CreateBinOp( 9776 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), 9777 PrevInChain, NewVecOp); 9778 PrevInChain = NewRed; 9779 } else { 9780 PrevInChain = State.get(getChainOp(), Part); 9781 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9782 } 9783 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9784 NextInChain = 9785 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9786 NewRed, PrevInChain); 9787 } else if (IsOrdered) 9788 NextInChain = NewRed; 9789 else { 9790 NextInChain = State.Builder.CreateBinOp( 9791 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9792 PrevInChain); 9793 } 9794 State.set(this, NextInChain, Part); 9795 } 9796 } 9797 9798 void VPReplicateRecipe::execute(VPTransformState &State) { 9799 if (State.Instance) { // Generate a single instance. 9800 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9801 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9802 *State.Instance, IsPredicated, State); 9803 // Insert scalar instance packing it into a vector. 9804 if (AlsoPack && State.VF.isVector()) { 9805 // If we're constructing lane 0, initialize to start from poison. 9806 if (State.Instance->Lane.isFirstLane()) { 9807 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9808 Value *Poison = PoisonValue::get( 9809 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9810 State.set(this, Poison, State.Instance->Part); 9811 } 9812 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9813 } 9814 return; 9815 } 9816 9817 // Generate scalar instances for all VF lanes of all UF parts, unless the 9818 // instruction is uniform inwhich case generate only the first lane for each 9819 // of the UF parts. 9820 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9821 assert((!State.VF.isScalable() || IsUniform) && 9822 "Can't scalarize a scalable vector"); 9823 for (unsigned Part = 0; Part < State.UF; ++Part) 9824 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9825 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9826 VPIteration(Part, Lane), IsPredicated, 9827 State); 9828 } 9829 9830 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9831 assert(State.Instance && "Branch on Mask works only on single instance."); 9832 9833 unsigned Part = State.Instance->Part; 9834 unsigned Lane = State.Instance->Lane.getKnownLane(); 9835 9836 Value *ConditionBit = nullptr; 9837 VPValue *BlockInMask = getMask(); 9838 if (BlockInMask) { 9839 ConditionBit = State.get(BlockInMask, Part); 9840 if (ConditionBit->getType()->isVectorTy()) 9841 ConditionBit = State.Builder.CreateExtractElement( 9842 ConditionBit, State.Builder.getInt32(Lane)); 9843 } else // Block in mask is all-one. 9844 ConditionBit = State.Builder.getTrue(); 9845 9846 // Replace the temporary unreachable terminator with a new conditional branch, 9847 // whose two destinations will be set later when they are created. 9848 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9849 assert(isa<UnreachableInst>(CurrentTerminator) && 9850 "Expected to replace unreachable terminator with conditional branch."); 9851 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9852 CondBr->setSuccessor(0, nullptr); 9853 ReplaceInstWithInst(CurrentTerminator, CondBr); 9854 } 9855 9856 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9857 assert(State.Instance && "Predicated instruction PHI works per instance."); 9858 Instruction *ScalarPredInst = 9859 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9860 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9861 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9862 assert(PredicatingBB && "Predicated block has no single predecessor."); 9863 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9864 "operand must be VPReplicateRecipe"); 9865 9866 // By current pack/unpack logic we need to generate only a single phi node: if 9867 // a vector value for the predicated instruction exists at this point it means 9868 // the instruction has vector users only, and a phi for the vector value is 9869 // needed. In this case the recipe of the predicated instruction is marked to 9870 // also do that packing, thereby "hoisting" the insert-element sequence. 9871 // Otherwise, a phi node for the scalar value is needed. 9872 unsigned Part = State.Instance->Part; 9873 if (State.hasVectorValue(getOperand(0), Part)) { 9874 Value *VectorValue = State.get(getOperand(0), Part); 9875 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9876 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9877 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9878 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9879 if (State.hasVectorValue(this, Part)) 9880 State.reset(this, VPhi, Part); 9881 else 9882 State.set(this, VPhi, Part); 9883 // NOTE: Currently we need to update the value of the operand, so the next 9884 // predicated iteration inserts its generated value in the correct vector. 9885 State.reset(getOperand(0), VPhi, Part); 9886 } else { 9887 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9888 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9889 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9890 PredicatingBB); 9891 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9892 if (State.hasScalarValue(this, *State.Instance)) 9893 State.reset(this, Phi, *State.Instance); 9894 else 9895 State.set(this, Phi, *State.Instance); 9896 // NOTE: Currently we need to update the value of the operand, so the next 9897 // predicated iteration inserts its generated value in the correct vector. 9898 State.reset(getOperand(0), Phi, *State.Instance); 9899 } 9900 } 9901 9902 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9903 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9904 State.ILV->vectorizeMemoryInstruction( 9905 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9906 StoredValue, getMask(), Consecutive, Reverse); 9907 } 9908 9909 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9910 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9911 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9912 // for predication. 9913 static ScalarEpilogueLowering getScalarEpilogueLowering( 9914 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9915 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9916 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9917 LoopVectorizationLegality &LVL) { 9918 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9919 // don't look at hints or options, and don't request a scalar epilogue. 9920 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9921 // LoopAccessInfo (due to code dependency and not being able to reliably get 9922 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9923 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9924 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9925 // back to the old way and vectorize with versioning when forced. See D81345.) 9926 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9927 PGSOQueryType::IRPass) && 9928 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9929 return CM_ScalarEpilogueNotAllowedOptSize; 9930 9931 // 2) If set, obey the directives 9932 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9933 switch (PreferPredicateOverEpilogue) { 9934 case PreferPredicateTy::ScalarEpilogue: 9935 return CM_ScalarEpilogueAllowed; 9936 case PreferPredicateTy::PredicateElseScalarEpilogue: 9937 return CM_ScalarEpilogueNotNeededUsePredicate; 9938 case PreferPredicateTy::PredicateOrDontVectorize: 9939 return CM_ScalarEpilogueNotAllowedUsePredicate; 9940 }; 9941 } 9942 9943 // 3) If set, obey the hints 9944 switch (Hints.getPredicate()) { 9945 case LoopVectorizeHints::FK_Enabled: 9946 return CM_ScalarEpilogueNotNeededUsePredicate; 9947 case LoopVectorizeHints::FK_Disabled: 9948 return CM_ScalarEpilogueAllowed; 9949 }; 9950 9951 // 4) if the TTI hook indicates this is profitable, request predication. 9952 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9953 LVL.getLAI())) 9954 return CM_ScalarEpilogueNotNeededUsePredicate; 9955 9956 return CM_ScalarEpilogueAllowed; 9957 } 9958 9959 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9960 // If Values have been set for this Def return the one relevant for \p Part. 9961 if (hasVectorValue(Def, Part)) 9962 return Data.PerPartOutput[Def][Part]; 9963 9964 if (!hasScalarValue(Def, {Part, 0})) { 9965 Value *IRV = Def->getLiveInIRValue(); 9966 Value *B = ILV->getBroadcastInstrs(IRV); 9967 set(Def, B, Part); 9968 return B; 9969 } 9970 9971 Value *ScalarValue = get(Def, {Part, 0}); 9972 // If we aren't vectorizing, we can just copy the scalar map values over 9973 // to the vector map. 9974 if (VF.isScalar()) { 9975 set(Def, ScalarValue, Part); 9976 return ScalarValue; 9977 } 9978 9979 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9980 bool IsUniform = RepR && RepR->isUniform(); 9981 9982 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9983 // Check if there is a scalar value for the selected lane. 9984 if (!hasScalarValue(Def, {Part, LastLane})) { 9985 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9986 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9987 "unexpected recipe found to be invariant"); 9988 IsUniform = true; 9989 LastLane = 0; 9990 } 9991 9992 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9993 // Set the insert point after the last scalarized instruction or after the 9994 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9995 // will directly follow the scalar definitions. 9996 auto OldIP = Builder.saveIP(); 9997 auto NewIP = 9998 isa<PHINode>(LastInst) 9999 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10000 : std::next(BasicBlock::iterator(LastInst)); 10001 Builder.SetInsertPoint(&*NewIP); 10002 10003 // However, if we are vectorizing, we need to construct the vector values. 10004 // If the value is known to be uniform after vectorization, we can just 10005 // broadcast the scalar value corresponding to lane zero for each unroll 10006 // iteration. Otherwise, we construct the vector values using 10007 // insertelement instructions. Since the resulting vectors are stored in 10008 // State, we will only generate the insertelements once. 10009 Value *VectorValue = nullptr; 10010 if (IsUniform) { 10011 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10012 set(Def, VectorValue, Part); 10013 } else { 10014 // Initialize packing with insertelements to start from undef. 10015 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10016 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10017 set(Def, Undef, Part); 10018 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10019 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10020 VectorValue = get(Def, Part); 10021 } 10022 Builder.restoreIP(OldIP); 10023 return VectorValue; 10024 } 10025 10026 // Process the loop in the VPlan-native vectorization path. This path builds 10027 // VPlan upfront in the vectorization pipeline, which allows to apply 10028 // VPlan-to-VPlan transformations from the very beginning without modifying the 10029 // input LLVM IR. 10030 static bool processLoopInVPlanNativePath( 10031 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10032 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10033 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10034 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10035 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10036 LoopVectorizationRequirements &Requirements) { 10037 10038 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10039 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10040 return false; 10041 } 10042 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10043 Function *F = L->getHeader()->getParent(); 10044 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10045 10046 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10047 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10048 10049 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10050 &Hints, IAI); 10051 // Use the planner for outer loop vectorization. 10052 // TODO: CM is not used at this point inside the planner. Turn CM into an 10053 // optional argument if we don't need it in the future. 10054 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10055 Requirements, ORE); 10056 10057 // Get user vectorization factor. 10058 ElementCount UserVF = Hints.getWidth(); 10059 10060 CM.collectElementTypesForWidening(); 10061 10062 // Plan how to best vectorize, return the best VF and its cost. 10063 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10064 10065 // If we are stress testing VPlan builds, do not attempt to generate vector 10066 // code. Masked vector code generation support will follow soon. 10067 // Also, do not attempt to vectorize if no vector code will be produced. 10068 if (VPlanBuildStressTest || EnableVPlanPredication || 10069 VectorizationFactor::Disabled() == VF) 10070 return false; 10071 10072 LVP.setBestPlan(VF.Width, 1); 10073 10074 { 10075 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10076 F->getParent()->getDataLayout()); 10077 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10078 &CM, BFI, PSI, Checks); 10079 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10080 << L->getHeader()->getParent()->getName() << "\"\n"); 10081 LVP.executePlan(LB, DT); 10082 } 10083 10084 // Mark the loop as already vectorized to avoid vectorizing again. 10085 Hints.setAlreadyVectorized(); 10086 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10087 return true; 10088 } 10089 10090 // Emit a remark if there are stores to floats that required a floating point 10091 // extension. If the vectorized loop was generated with floating point there 10092 // will be a performance penalty from the conversion overhead and the change in 10093 // the vector width. 10094 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10095 SmallVector<Instruction *, 4> Worklist; 10096 for (BasicBlock *BB : L->getBlocks()) { 10097 for (Instruction &Inst : *BB) { 10098 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10099 if (S->getValueOperand()->getType()->isFloatTy()) 10100 Worklist.push_back(S); 10101 } 10102 } 10103 } 10104 10105 // Traverse the floating point stores upwards searching, for floating point 10106 // conversions. 10107 SmallPtrSet<const Instruction *, 4> Visited; 10108 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10109 while (!Worklist.empty()) { 10110 auto *I = Worklist.pop_back_val(); 10111 if (!L->contains(I)) 10112 continue; 10113 if (!Visited.insert(I).second) 10114 continue; 10115 10116 // Emit a remark if the floating point store required a floating 10117 // point conversion. 10118 // TODO: More work could be done to identify the root cause such as a 10119 // constant or a function return type and point the user to it. 10120 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10121 ORE->emit([&]() { 10122 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10123 I->getDebugLoc(), L->getHeader()) 10124 << "floating point conversion changes vector width. " 10125 << "Mixed floating point precision requires an up/down " 10126 << "cast that will negatively impact performance."; 10127 }); 10128 10129 for (Use &Op : I->operands()) 10130 if (auto *OpI = dyn_cast<Instruction>(Op)) 10131 Worklist.push_back(OpI); 10132 } 10133 } 10134 10135 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10136 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10137 !EnableLoopInterleaving), 10138 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10139 !EnableLoopVectorization) {} 10140 10141 bool LoopVectorizePass::processLoop(Loop *L) { 10142 assert((EnableVPlanNativePath || L->isInnermost()) && 10143 "VPlan-native path is not enabled. Only process inner loops."); 10144 10145 #ifndef NDEBUG 10146 const std::string DebugLocStr = getDebugLocString(L); 10147 #endif /* NDEBUG */ 10148 10149 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10150 << L->getHeader()->getParent()->getName() << "\" from " 10151 << DebugLocStr << "\n"); 10152 10153 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 10154 10155 LLVM_DEBUG( 10156 dbgs() << "LV: Loop hints:" 10157 << " force=" 10158 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10159 ? "disabled" 10160 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10161 ? "enabled" 10162 : "?")) 10163 << " width=" << Hints.getWidth() 10164 << " interleave=" << Hints.getInterleave() << "\n"); 10165 10166 // Function containing loop 10167 Function *F = L->getHeader()->getParent(); 10168 10169 // Looking at the diagnostic output is the only way to determine if a loop 10170 // was vectorized (other than looking at the IR or machine code), so it 10171 // is important to generate an optimization remark for each loop. Most of 10172 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10173 // generated as OptimizationRemark and OptimizationRemarkMissed are 10174 // less verbose reporting vectorized loops and unvectorized loops that may 10175 // benefit from vectorization, respectively. 10176 10177 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10178 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10179 return false; 10180 } 10181 10182 PredicatedScalarEvolution PSE(*SE, *L); 10183 10184 // Check if it is legal to vectorize the loop. 10185 LoopVectorizationRequirements Requirements; 10186 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10187 &Requirements, &Hints, DB, AC, BFI, PSI); 10188 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10189 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10190 Hints.emitRemarkWithHints(); 10191 return false; 10192 } 10193 10194 // Check the function attributes and profiles to find out if this function 10195 // should be optimized for size. 10196 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10197 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10198 10199 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10200 // here. They may require CFG and instruction level transformations before 10201 // even evaluating whether vectorization is profitable. Since we cannot modify 10202 // the incoming IR, we need to build VPlan upfront in the vectorization 10203 // pipeline. 10204 if (!L->isInnermost()) 10205 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10206 ORE, BFI, PSI, Hints, Requirements); 10207 10208 assert(L->isInnermost() && "Inner loop expected."); 10209 10210 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10211 // count by optimizing for size, to minimize overheads. 10212 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10213 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10214 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10215 << "This loop is worth vectorizing only if no scalar " 10216 << "iteration overheads are incurred."); 10217 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10218 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10219 else { 10220 LLVM_DEBUG(dbgs() << "\n"); 10221 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10222 } 10223 } 10224 10225 // Check the function attributes to see if implicit floats are allowed. 10226 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10227 // an integer loop and the vector instructions selected are purely integer 10228 // vector instructions? 10229 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10230 reportVectorizationFailure( 10231 "Can't vectorize when the NoImplicitFloat attribute is used", 10232 "loop not vectorized due to NoImplicitFloat attribute", 10233 "NoImplicitFloat", ORE, L); 10234 Hints.emitRemarkWithHints(); 10235 return false; 10236 } 10237 10238 // Check if the target supports potentially unsafe FP vectorization. 10239 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10240 // for the target we're vectorizing for, to make sure none of the 10241 // additional fp-math flags can help. 10242 if (Hints.isPotentiallyUnsafe() && 10243 TTI->isFPVectorizationPotentiallyUnsafe()) { 10244 reportVectorizationFailure( 10245 "Potentially unsafe FP op prevents vectorization", 10246 "loop not vectorized due to unsafe FP support.", 10247 "UnsafeFP", ORE, L); 10248 Hints.emitRemarkWithHints(); 10249 return false; 10250 } 10251 10252 bool AllowOrderedReductions; 10253 // If the flag is set, use that instead and override the TTI behaviour. 10254 if (ForceOrderedReductions.getNumOccurrences() > 0) 10255 AllowOrderedReductions = ForceOrderedReductions; 10256 else 10257 AllowOrderedReductions = TTI->enableOrderedReductions(); 10258 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10259 ORE->emit([&]() { 10260 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10261 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10262 ExactFPMathInst->getDebugLoc(), 10263 ExactFPMathInst->getParent()) 10264 << "loop not vectorized: cannot prove it is safe to reorder " 10265 "floating-point operations"; 10266 }); 10267 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10268 "reorder floating-point operations\n"); 10269 Hints.emitRemarkWithHints(); 10270 return false; 10271 } 10272 10273 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10274 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10275 10276 // If an override option has been passed in for interleaved accesses, use it. 10277 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10278 UseInterleaved = EnableInterleavedMemAccesses; 10279 10280 // Analyze interleaved memory accesses. 10281 if (UseInterleaved) { 10282 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10283 } 10284 10285 // Use the cost model. 10286 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10287 F, &Hints, IAI); 10288 CM.collectValuesToIgnore(); 10289 CM.collectElementTypesForWidening(); 10290 10291 // Use the planner for vectorization. 10292 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10293 Requirements, ORE); 10294 10295 // Get user vectorization factor and interleave count. 10296 ElementCount UserVF = Hints.getWidth(); 10297 unsigned UserIC = Hints.getInterleave(); 10298 10299 // Plan how to best vectorize, return the best VF and its cost. 10300 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10301 10302 VectorizationFactor VF = VectorizationFactor::Disabled(); 10303 unsigned IC = 1; 10304 10305 if (MaybeVF) { 10306 VF = *MaybeVF; 10307 // Select the interleave count. 10308 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10309 } 10310 10311 // Identify the diagnostic messages that should be produced. 10312 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10313 bool VectorizeLoop = true, InterleaveLoop = true; 10314 if (VF.Width.isScalar()) { 10315 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10316 VecDiagMsg = std::make_pair( 10317 "VectorizationNotBeneficial", 10318 "the cost-model indicates that vectorization is not beneficial"); 10319 VectorizeLoop = false; 10320 } 10321 10322 if (!MaybeVF && UserIC > 1) { 10323 // Tell the user interleaving was avoided up-front, despite being explicitly 10324 // requested. 10325 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10326 "interleaving should be avoided up front\n"); 10327 IntDiagMsg = std::make_pair( 10328 "InterleavingAvoided", 10329 "Ignoring UserIC, because interleaving was avoided up front"); 10330 InterleaveLoop = false; 10331 } else if (IC == 1 && UserIC <= 1) { 10332 // Tell the user interleaving is not beneficial. 10333 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10334 IntDiagMsg = std::make_pair( 10335 "InterleavingNotBeneficial", 10336 "the cost-model indicates that interleaving is not beneficial"); 10337 InterleaveLoop = false; 10338 if (UserIC == 1) { 10339 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10340 IntDiagMsg.second += 10341 " and is explicitly disabled or interleave count is set to 1"; 10342 } 10343 } else if (IC > 1 && UserIC == 1) { 10344 // Tell the user interleaving is beneficial, but it explicitly disabled. 10345 LLVM_DEBUG( 10346 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10347 IntDiagMsg = std::make_pair( 10348 "InterleavingBeneficialButDisabled", 10349 "the cost-model indicates that interleaving is beneficial " 10350 "but is explicitly disabled or interleave count is set to 1"); 10351 InterleaveLoop = false; 10352 } 10353 10354 // Override IC if user provided an interleave count. 10355 IC = UserIC > 0 ? UserIC : IC; 10356 10357 // Emit diagnostic messages, if any. 10358 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10359 if (!VectorizeLoop && !InterleaveLoop) { 10360 // Do not vectorize or interleaving the loop. 10361 ORE->emit([&]() { 10362 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10363 L->getStartLoc(), L->getHeader()) 10364 << VecDiagMsg.second; 10365 }); 10366 ORE->emit([&]() { 10367 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10368 L->getStartLoc(), L->getHeader()) 10369 << IntDiagMsg.second; 10370 }); 10371 return false; 10372 } else if (!VectorizeLoop && InterleaveLoop) { 10373 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10374 ORE->emit([&]() { 10375 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10376 L->getStartLoc(), L->getHeader()) 10377 << VecDiagMsg.second; 10378 }); 10379 } else if (VectorizeLoop && !InterleaveLoop) { 10380 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10381 << ") in " << DebugLocStr << '\n'); 10382 ORE->emit([&]() { 10383 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10384 L->getStartLoc(), L->getHeader()) 10385 << IntDiagMsg.second; 10386 }); 10387 } else if (VectorizeLoop && InterleaveLoop) { 10388 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10389 << ") in " << DebugLocStr << '\n'); 10390 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10391 } 10392 10393 bool DisableRuntimeUnroll = false; 10394 MDNode *OrigLoopID = L->getLoopID(); 10395 { 10396 // Optimistically generate runtime checks. Drop them if they turn out to not 10397 // be profitable. Limit the scope of Checks, so the cleanup happens 10398 // immediately after vector codegeneration is done. 10399 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10400 F->getParent()->getDataLayout()); 10401 if (!VF.Width.isScalar() || IC > 1) 10402 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10403 LVP.setBestPlan(VF.Width, IC); 10404 10405 using namespace ore; 10406 if (!VectorizeLoop) { 10407 assert(IC > 1 && "interleave count should not be 1 or 0"); 10408 // If we decided that it is not legal to vectorize the loop, then 10409 // interleave it. 10410 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10411 &CM, BFI, PSI, Checks); 10412 LVP.executePlan(Unroller, DT); 10413 10414 ORE->emit([&]() { 10415 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10416 L->getHeader()) 10417 << "interleaved loop (interleaved count: " 10418 << NV("InterleaveCount", IC) << ")"; 10419 }); 10420 } else { 10421 // If we decided that it is *legal* to vectorize the loop, then do it. 10422 10423 // Consider vectorizing the epilogue too if it's profitable. 10424 VectorizationFactor EpilogueVF = 10425 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10426 if (EpilogueVF.Width.isVector()) { 10427 10428 // The first pass vectorizes the main loop and creates a scalar epilogue 10429 // to be vectorized by executing the plan (potentially with a different 10430 // factor) again shortly afterwards. 10431 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10432 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10433 EPI, &LVL, &CM, BFI, PSI, Checks); 10434 10435 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 10436 LVP.executePlan(MainILV, DT); 10437 ++LoopsVectorized; 10438 10439 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10440 formLCSSARecursively(*L, *DT, LI, SE); 10441 10442 // Second pass vectorizes the epilogue and adjusts the control flow 10443 // edges from the first pass. 10444 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 10445 EPI.MainLoopVF = EPI.EpilogueVF; 10446 EPI.MainLoopUF = EPI.EpilogueUF; 10447 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10448 ORE, EPI, &LVL, &CM, BFI, PSI, 10449 Checks); 10450 LVP.executePlan(EpilogILV, DT); 10451 ++LoopsEpilogueVectorized; 10452 10453 if (!MainILV.areSafetyChecksAdded()) 10454 DisableRuntimeUnroll = true; 10455 } else { 10456 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10457 &LVL, &CM, BFI, PSI, Checks); 10458 LVP.executePlan(LB, DT); 10459 ++LoopsVectorized; 10460 10461 // Add metadata to disable runtime unrolling a scalar loop when there 10462 // are no runtime checks about strides and memory. A scalar loop that is 10463 // rarely used is not worth unrolling. 10464 if (!LB.areSafetyChecksAdded()) 10465 DisableRuntimeUnroll = true; 10466 } 10467 // Report the vectorization decision. 10468 ORE->emit([&]() { 10469 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10470 L->getHeader()) 10471 << "vectorized loop (vectorization width: " 10472 << NV("VectorizationFactor", VF.Width) 10473 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10474 }); 10475 } 10476 10477 if (ORE->allowExtraAnalysis(LV_NAME)) 10478 checkMixedPrecision(L, ORE); 10479 } 10480 10481 Optional<MDNode *> RemainderLoopID = 10482 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10483 LLVMLoopVectorizeFollowupEpilogue}); 10484 if (RemainderLoopID.hasValue()) { 10485 L->setLoopID(RemainderLoopID.getValue()); 10486 } else { 10487 if (DisableRuntimeUnroll) 10488 AddRuntimeUnrollDisableMetaData(L); 10489 10490 // Mark the loop as already vectorized to avoid vectorizing again. 10491 Hints.setAlreadyVectorized(); 10492 } 10493 10494 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10495 return true; 10496 } 10497 10498 LoopVectorizeResult LoopVectorizePass::runImpl( 10499 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10500 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10501 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10502 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10503 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10504 SE = &SE_; 10505 LI = &LI_; 10506 TTI = &TTI_; 10507 DT = &DT_; 10508 BFI = &BFI_; 10509 TLI = TLI_; 10510 AA = &AA_; 10511 AC = &AC_; 10512 GetLAA = &GetLAA_; 10513 DB = &DB_; 10514 ORE = &ORE_; 10515 PSI = PSI_; 10516 10517 // Don't attempt if 10518 // 1. the target claims to have no vector registers, and 10519 // 2. interleaving won't help ILP. 10520 // 10521 // The second condition is necessary because, even if the target has no 10522 // vector registers, loop vectorization may still enable scalar 10523 // interleaving. 10524 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10525 TTI->getMaxInterleaveFactor(1) < 2) 10526 return LoopVectorizeResult(false, false); 10527 10528 bool Changed = false, CFGChanged = false; 10529 10530 // The vectorizer requires loops to be in simplified form. 10531 // Since simplification may add new inner loops, it has to run before the 10532 // legality and profitability checks. This means running the loop vectorizer 10533 // will simplify all loops, regardless of whether anything end up being 10534 // vectorized. 10535 for (auto &L : *LI) 10536 Changed |= CFGChanged |= 10537 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10538 10539 // Build up a worklist of inner-loops to vectorize. This is necessary as 10540 // the act of vectorizing or partially unrolling a loop creates new loops 10541 // and can invalidate iterators across the loops. 10542 SmallVector<Loop *, 8> Worklist; 10543 10544 for (Loop *L : *LI) 10545 collectSupportedLoops(*L, LI, ORE, Worklist); 10546 10547 LoopsAnalyzed += Worklist.size(); 10548 10549 // Now walk the identified inner loops. 10550 while (!Worklist.empty()) { 10551 Loop *L = Worklist.pop_back_val(); 10552 10553 // For the inner loops we actually process, form LCSSA to simplify the 10554 // transform. 10555 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10556 10557 Changed |= CFGChanged |= processLoop(L); 10558 } 10559 10560 // Process each loop nest in the function. 10561 return LoopVectorizeResult(Changed, CFGChanged); 10562 } 10563 10564 PreservedAnalyses LoopVectorizePass::run(Function &F, 10565 FunctionAnalysisManager &AM) { 10566 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10567 auto &LI = AM.getResult<LoopAnalysis>(F); 10568 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10569 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10570 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10571 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10572 auto &AA = AM.getResult<AAManager>(F); 10573 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10574 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10575 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10576 10577 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10578 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10579 [&](Loop &L) -> const LoopAccessInfo & { 10580 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10581 TLI, TTI, nullptr, nullptr, nullptr}; 10582 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10583 }; 10584 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10585 ProfileSummaryInfo *PSI = 10586 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10587 LoopVectorizeResult Result = 10588 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10589 if (!Result.MadeAnyChange) 10590 return PreservedAnalyses::all(); 10591 PreservedAnalyses PA; 10592 10593 // We currently do not preserve loopinfo/dominator analyses with outer loop 10594 // vectorization. Until this is addressed, mark these analyses as preserved 10595 // only for non-VPlan-native path. 10596 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10597 if (!EnableVPlanNativePath) { 10598 PA.preserve<LoopAnalysis>(); 10599 PA.preserve<DominatorTreeAnalysis>(); 10600 } 10601 if (!Result.MadeCFGChange) 10602 PA.preserveSet<CFGAnalyses>(); 10603 return PA; 10604 } 10605 10606 void LoopVectorizePass::printPipeline( 10607 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10608 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10609 OS, MapClassName2PassName); 10610 10611 OS << "<"; 10612 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10613 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10614 OS << ">"; 10615 } 10616