1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 /// @{ 161 /// Metadata attribute names 162 static const char *const LLVMLoopVectorizeFollowupAll = 163 "llvm.loop.vectorize.followup_all"; 164 static const char *const LLVMLoopVectorizeFollowupVectorized = 165 "llvm.loop.vectorize.followup_vectorized"; 166 static const char *const LLVMLoopVectorizeFollowupEpilogue = 167 "llvm.loop.vectorize.followup_epilogue"; 168 /// @} 169 170 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 171 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 172 173 /// Loops with a known constant trip count below this number are vectorized only 174 /// if no scalar iteration overheads are incurred. 175 static cl::opt<unsigned> TinyTripCountVectorThreshold( 176 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 177 cl::desc("Loops with a constant trip count that is smaller than this " 178 "value are vectorized only if no scalar iteration overheads " 179 "are incurred.")); 180 181 // Indicates that an epilogue is undesired, predication is preferred. 182 // This means that the vectorizer will try to fold the loop-tail (epilogue) 183 // into the loop and predicate the loop body accordingly. 184 static cl::opt<bool> PreferPredicateOverEpilog( 185 "prefer-predicate-over-epilog", cl::init(false), cl::Hidden, 186 cl::desc("Indicate that an epilogue is undesired, predication should be " 187 "used instead.")); 188 189 static cl::opt<bool> MaximizeBandwidth( 190 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 191 cl::desc("Maximize bandwidth when selecting vectorization factor which " 192 "will be determined by the smallest type in loop.")); 193 194 static cl::opt<bool> EnableInterleavedMemAccesses( 195 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 196 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 197 198 /// An interleave-group may need masking if it resides in a block that needs 199 /// predication, or in order to mask away gaps. 200 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 201 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 202 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 203 204 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 205 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 206 cl::desc("We don't interleave loops with a estimated constant trip count " 207 "below this number")); 208 209 static cl::opt<unsigned> ForceTargetNumScalarRegs( 210 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 211 cl::desc("A flag that overrides the target's number of scalar registers.")); 212 213 static cl::opt<unsigned> ForceTargetNumVectorRegs( 214 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 215 cl::desc("A flag that overrides the target's number of vector registers.")); 216 217 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 218 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 219 cl::desc("A flag that overrides the target's max interleave factor for " 220 "scalar loops.")); 221 222 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 223 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 224 cl::desc("A flag that overrides the target's max interleave factor for " 225 "vectorized loops.")); 226 227 static cl::opt<unsigned> ForceTargetInstructionCost( 228 "force-target-instruction-cost", cl::init(0), cl::Hidden, 229 cl::desc("A flag that overrides the target's expected cost for " 230 "an instruction to a single constant value. Mostly " 231 "useful for getting consistent testing.")); 232 233 static cl::opt<unsigned> SmallLoopCost( 234 "small-loop-cost", cl::init(20), cl::Hidden, 235 cl::desc( 236 "The cost of a loop that is considered 'small' by the interleaver.")); 237 238 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 239 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 240 cl::desc("Enable the use of the block frequency analysis to access PGO " 241 "heuristics minimizing code growth in cold regions and being more " 242 "aggressive in hot regions.")); 243 244 // Runtime interleave loops for load/store throughput. 245 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 246 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 247 cl::desc( 248 "Enable runtime interleaving until load/store ports are saturated")); 249 250 /// The number of stores in a loop that are allowed to need predication. 251 static cl::opt<unsigned> NumberOfStoresToPredicate( 252 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 253 cl::desc("Max number of stores to be predicated behind an if.")); 254 255 static cl::opt<bool> EnableIndVarRegisterHeur( 256 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 257 cl::desc("Count the induction variable only once when interleaving")); 258 259 static cl::opt<bool> EnableCondStoresVectorization( 260 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 261 cl::desc("Enable if predication of stores during vectorization.")); 262 263 static cl::opt<unsigned> MaxNestedScalarReductionIC( 264 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 265 cl::desc("The maximum interleave count to use when interleaving a scalar " 266 "reduction in a nested loop.")); 267 268 cl::opt<bool> EnableVPlanNativePath( 269 "enable-vplan-native-path", cl::init(false), cl::Hidden, 270 cl::desc("Enable VPlan-native vectorization path with " 271 "support for outer loop vectorization.")); 272 273 // FIXME: Remove this switch once we have divergence analysis. Currently we 274 // assume divergent non-backedge branches when this switch is true. 275 cl::opt<bool> EnableVPlanPredication( 276 "enable-vplan-predication", cl::init(false), cl::Hidden, 277 cl::desc("Enable VPlan-native vectorization path predicator with " 278 "support for outer loop vectorization.")); 279 280 // This flag enables the stress testing of the VPlan H-CFG construction in the 281 // VPlan-native vectorization path. It must be used in conjuction with 282 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 283 // verification of the H-CFGs built. 284 static cl::opt<bool> VPlanBuildStressTest( 285 "vplan-build-stress-test", cl::init(false), cl::Hidden, 286 cl::desc( 287 "Build VPlan for every supported loop nest in the function and bail " 288 "out right after the build (stress test the VPlan H-CFG construction " 289 "in the VPlan-native vectorization path).")); 290 291 cl::opt<bool> llvm::EnableLoopInterleaving( 292 "interleave-loops", cl::init(true), cl::Hidden, 293 cl::desc("Enable loop interleaving in Loop vectorization passes")); 294 cl::opt<bool> llvm::EnableLoopVectorization( 295 "vectorize-loops", cl::init(true), cl::Hidden, 296 cl::desc("Run the Loop vectorization passes")); 297 298 /// A helper function that returns the type of loaded or stored value. 299 static Type *getMemInstValueType(Value *I) { 300 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 301 "Expected Load or Store instruction"); 302 if (auto *LI = dyn_cast<LoadInst>(I)) 303 return LI->getType(); 304 return cast<StoreInst>(I)->getValueOperand()->getType(); 305 } 306 307 /// A helper function that returns true if the given type is irregular. The 308 /// type is irregular if its allocated size doesn't equal the store size of an 309 /// element of the corresponding vector type at the given vectorization factor. 310 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 311 // Determine if an array of VF elements of type Ty is "bitcast compatible" 312 // with a <VF x Ty> vector. 313 if (VF > 1) { 314 auto *VectorTy = FixedVectorType::get(Ty, VF); 315 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 316 } 317 318 // If the vectorization factor is one, we just check if an array of type Ty 319 // requires padding between elements. 320 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 321 } 322 323 /// A helper function that returns the reciprocal of the block probability of 324 /// predicated blocks. If we return X, we are assuming the predicated block 325 /// will execute once for every X iterations of the loop header. 326 /// 327 /// TODO: We should use actual block probability here, if available. Currently, 328 /// we always assume predicated blocks have a 50% chance of executing. 329 static unsigned getReciprocalPredBlockProb() { return 2; } 330 331 /// A helper function that adds a 'fast' flag to floating-point operations. 332 static Value *addFastMathFlag(Value *V) { 333 if (isa<FPMathOperator>(V)) 334 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 335 return V; 336 } 337 338 static Value *addFastMathFlag(Value *V, FastMathFlags FMF) { 339 if (isa<FPMathOperator>(V)) 340 cast<Instruction>(V)->setFastMathFlags(FMF); 341 return V; 342 } 343 344 /// A helper function that returns an integer or floating-point constant with 345 /// value C. 346 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 347 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 348 : ConstantFP::get(Ty, C); 349 } 350 351 /// Returns "best known" trip count for the specified loop \p L as defined by 352 /// the following procedure: 353 /// 1) Returns exact trip count if it is known. 354 /// 2) Returns expected trip count according to profile data if any. 355 /// 3) Returns upper bound estimate if it is known. 356 /// 4) Returns None if all of the above failed. 357 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 358 // Check if exact trip count is known. 359 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 360 return ExpectedTC; 361 362 // Check if there is an expected trip count available from profile data. 363 if (LoopVectorizeWithBlockFrequency) 364 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 365 return EstimatedTC; 366 367 // Check if upper bound estimate is known. 368 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 369 return ExpectedTC; 370 371 return None; 372 } 373 374 namespace llvm { 375 376 /// InnerLoopVectorizer vectorizes loops which contain only one basic 377 /// block to a specified vectorization factor (VF). 378 /// This class performs the widening of scalars into vectors, or multiple 379 /// scalars. This class also implements the following features: 380 /// * It inserts an epilogue loop for handling loops that don't have iteration 381 /// counts that are known to be a multiple of the vectorization factor. 382 /// * It handles the code generation for reduction variables. 383 /// * Scalarization (implementation using scalars) of un-vectorizable 384 /// instructions. 385 /// InnerLoopVectorizer does not perform any vectorization-legality 386 /// checks, and relies on the caller to check for the different legality 387 /// aspects. The InnerLoopVectorizer relies on the 388 /// LoopVectorizationLegality class to provide information about the induction 389 /// and reduction variables that were found to a given vectorization factor. 390 class InnerLoopVectorizer { 391 public: 392 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 393 LoopInfo *LI, DominatorTree *DT, 394 const TargetLibraryInfo *TLI, 395 const TargetTransformInfo *TTI, AssumptionCache *AC, 396 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 397 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 398 LoopVectorizationCostModel *CM) 399 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 400 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 401 Builder(PSE.getSE()->getContext()), 402 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {} 403 virtual ~InnerLoopVectorizer() = default; 404 405 /// Create a new empty loop. Unlink the old loop and connect the new one. 406 /// Return the pre-header block of the new loop. 407 BasicBlock *createVectorizedLoopSkeleton(); 408 409 /// Widen a single instruction within the innermost loop. 410 void widenInstruction(Instruction &I, VPUser &Operands, 411 VPTransformState &State); 412 413 /// Widen a single call instruction within the innermost loop. 414 void widenCallInstruction(CallInst &I, VPUser &ArgOperands, 415 VPTransformState &State); 416 417 /// Widen a single select instruction within the innermost loop. 418 void widenSelectInstruction(SelectInst &I, VPUser &Operands, 419 bool InvariantCond, VPTransformState &State); 420 421 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 422 void fixVectorizedLoop(); 423 424 // Return true if any runtime check is added. 425 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 426 427 /// A type for vectorized values in the new loop. Each value from the 428 /// original loop, when vectorized, is represented by UF vector values in the 429 /// new unrolled loop, where UF is the unroll factor. 430 using VectorParts = SmallVector<Value *, 2>; 431 432 /// Vectorize a single GetElementPtrInst based on information gathered and 433 /// decisions taken during planning. 434 void widenGEP(GetElementPtrInst *GEP, VPUser &Indices, unsigned UF, 435 unsigned VF, bool IsPtrLoopInvariant, 436 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 437 438 /// Vectorize a single PHINode in a block. This method handles the induction 439 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 440 /// arbitrary length vectors. 441 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 442 443 /// A helper function to scalarize a single Instruction in the innermost loop. 444 /// Generates a sequence of scalar instances for each lane between \p MinLane 445 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 446 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 447 /// Instr's operands. 448 void scalarizeInstruction(Instruction *Instr, VPUser &Operands, 449 const VPIteration &Instance, bool IfPredicateInstr, 450 VPTransformState &State); 451 452 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 453 /// is provided, the integer induction variable will first be truncated to 454 /// the corresponding type. 455 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 456 457 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 458 /// vector or scalar value on-demand if one is not yet available. When 459 /// vectorizing a loop, we visit the definition of an instruction before its 460 /// uses. When visiting the definition, we either vectorize or scalarize the 461 /// instruction, creating an entry for it in the corresponding map. (In some 462 /// cases, such as induction variables, we will create both vector and scalar 463 /// entries.) Then, as we encounter uses of the definition, we derive values 464 /// for each scalar or vector use unless such a value is already available. 465 /// For example, if we scalarize a definition and one of its uses is vector, 466 /// we build the required vector on-demand with an insertelement sequence 467 /// when visiting the use. Otherwise, if the use is scalar, we can use the 468 /// existing scalar definition. 469 /// 470 /// Return a value in the new loop corresponding to \p V from the original 471 /// loop at unroll index \p Part. If the value has already been vectorized, 472 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 473 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 474 /// a new vector value on-demand by inserting the scalar values into a vector 475 /// with an insertelement sequence. If the value has been neither vectorized 476 /// nor scalarized, it must be loop invariant, so we simply broadcast the 477 /// value into a vector. 478 Value *getOrCreateVectorValue(Value *V, unsigned Part); 479 480 /// Return a value in the new loop corresponding to \p V from the original 481 /// loop at unroll and vector indices \p Instance. If the value has been 482 /// vectorized but not scalarized, the necessary extractelement instruction 483 /// will be generated. 484 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 485 486 /// Construct the vector value of a scalarized value \p V one lane at a time. 487 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 488 489 /// Try to vectorize interleaved access group \p Group with the base address 490 /// given in \p Addr, optionally masking the vector operations if \p 491 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 492 /// values in the vectorized loop. 493 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 494 VPTransformState &State, VPValue *Addr, 495 VPValue *BlockInMask = nullptr); 496 497 /// Vectorize Load and Store instructions with the base address given in \p 498 /// Addr, optionally masking the vector operations if \p BlockInMask is 499 /// non-null. Use \p State to translate given VPValues to IR values in the 500 /// vectorized loop. 501 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 502 VPValue *Addr, VPValue *StoredValue, 503 VPValue *BlockInMask); 504 505 /// Set the debug location in the builder using the debug location in 506 /// the instruction. 507 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 508 509 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 510 void fixNonInductionPHIs(void); 511 512 protected: 513 friend class LoopVectorizationPlanner; 514 515 /// A small list of PHINodes. 516 using PhiVector = SmallVector<PHINode *, 4>; 517 518 /// A type for scalarized values in the new loop. Each value from the 519 /// original loop, when scalarized, is represented by UF x VF scalar values 520 /// in the new unrolled loop, where UF is the unroll factor and VF is the 521 /// vectorization factor. 522 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 523 524 /// Set up the values of the IVs correctly when exiting the vector loop. 525 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 526 Value *CountRoundDown, Value *EndValue, 527 BasicBlock *MiddleBlock); 528 529 /// Create a new induction variable inside L. 530 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 531 Value *Step, Instruction *DL); 532 533 /// Handle all cross-iteration phis in the header. 534 void fixCrossIterationPHIs(); 535 536 /// Fix a first-order recurrence. This is the second phase of vectorizing 537 /// this phi node. 538 void fixFirstOrderRecurrence(PHINode *Phi); 539 540 /// Fix a reduction cross-iteration phi. This is the second phase of 541 /// vectorizing this phi node. 542 void fixReduction(PHINode *Phi); 543 544 /// Clear NSW/NUW flags from reduction instructions if necessary. 545 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 546 547 /// The Loop exit block may have single value PHI nodes with some 548 /// incoming value. While vectorizing we only handled real values 549 /// that were defined inside the loop and we should have one value for 550 /// each predecessor of its parent basic block. See PR14725. 551 void fixLCSSAPHIs(); 552 553 /// Iteratively sink the scalarized operands of a predicated instruction into 554 /// the block that was created for it. 555 void sinkScalarOperands(Instruction *PredInst); 556 557 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 558 /// represented as. 559 void truncateToMinimalBitwidths(); 560 561 /// Create a broadcast instruction. This method generates a broadcast 562 /// instruction (shuffle) for loop invariant values and for the induction 563 /// value. If this is the induction variable then we extend it to N, N+1, ... 564 /// this is needed because each iteration in the loop corresponds to a SIMD 565 /// element. 566 virtual Value *getBroadcastInstrs(Value *V); 567 568 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 569 /// to each vector element of Val. The sequence starts at StartIndex. 570 /// \p Opcode is relevant for FP induction variable. 571 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 572 Instruction::BinaryOps Opcode = 573 Instruction::BinaryOpsEnd); 574 575 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 576 /// variable on which to base the steps, \p Step is the size of the step, and 577 /// \p EntryVal is the value from the original loop that maps to the steps. 578 /// Note that \p EntryVal doesn't have to be an induction variable - it 579 /// can also be a truncate instruction. 580 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 581 const InductionDescriptor &ID); 582 583 /// Create a vector induction phi node based on an existing scalar one. \p 584 /// EntryVal is the value from the original loop that maps to the vector phi 585 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 586 /// truncate instruction, instead of widening the original IV, we widen a 587 /// version of the IV truncated to \p EntryVal's type. 588 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 589 Value *Step, Instruction *EntryVal); 590 591 /// Returns true if an instruction \p I should be scalarized instead of 592 /// vectorized for the chosen vectorization factor. 593 bool shouldScalarizeInstruction(Instruction *I) const; 594 595 /// Returns true if we should generate a scalar version of \p IV. 596 bool needsScalarInduction(Instruction *IV) const; 597 598 /// If there is a cast involved in the induction variable \p ID, which should 599 /// be ignored in the vectorized loop body, this function records the 600 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 601 /// cast. We had already proved that the casted Phi is equal to the uncasted 602 /// Phi in the vectorized loop (under a runtime guard), and therefore 603 /// there is no need to vectorize the cast - the same value can be used in the 604 /// vector loop for both the Phi and the cast. 605 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 606 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 607 /// 608 /// \p EntryVal is the value from the original loop that maps to the vector 609 /// phi node and is used to distinguish what is the IV currently being 610 /// processed - original one (if \p EntryVal is a phi corresponding to the 611 /// original IV) or the "newly-created" one based on the proof mentioned above 612 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 613 /// latter case \p EntryVal is a TruncInst and we must not record anything for 614 /// that IV, but it's error-prone to expect callers of this routine to care 615 /// about that, hence this explicit parameter. 616 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID, 617 const Instruction *EntryVal, 618 Value *VectorLoopValue, 619 unsigned Part, 620 unsigned Lane = UINT_MAX); 621 622 /// Generate a shuffle sequence that will reverse the vector Vec. 623 virtual Value *reverseVector(Value *Vec); 624 625 /// Returns (and creates if needed) the original loop trip count. 626 Value *getOrCreateTripCount(Loop *NewLoop); 627 628 /// Returns (and creates if needed) the trip count of the widened loop. 629 Value *getOrCreateVectorTripCount(Loop *NewLoop); 630 631 /// Returns a bitcasted value to the requested vector type. 632 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 633 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 634 const DataLayout &DL); 635 636 /// Emit a bypass check to see if the vector trip count is zero, including if 637 /// it overflows. 638 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 639 640 /// Emit a bypass check to see if all of the SCEV assumptions we've 641 /// had to make are correct. 642 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 643 644 /// Emit bypass checks to check any memory assumptions we may have made. 645 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 646 647 /// Compute the transformed value of Index at offset StartValue using step 648 /// StepValue. 649 /// For integer induction, returns StartValue + Index * StepValue. 650 /// For pointer induction, returns StartValue[Index * StepValue]. 651 /// FIXME: The newly created binary instructions should contain nsw/nuw 652 /// flags, which can be found from the original scalar operations. 653 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 654 const DataLayout &DL, 655 const InductionDescriptor &ID) const; 656 657 /// Add additional metadata to \p To that was not present on \p Orig. 658 /// 659 /// Currently this is used to add the noalias annotations based on the 660 /// inserted memchecks. Use this for instructions that are *cloned* into the 661 /// vector loop. 662 void addNewMetadata(Instruction *To, const Instruction *Orig); 663 664 /// Add metadata from one instruction to another. 665 /// 666 /// This includes both the original MDs from \p From and additional ones (\see 667 /// addNewMetadata). Use this for *newly created* instructions in the vector 668 /// loop. 669 void addMetadata(Instruction *To, Instruction *From); 670 671 /// Similar to the previous function but it adds the metadata to a 672 /// vector of instructions. 673 void addMetadata(ArrayRef<Value *> To, Instruction *From); 674 675 /// The original loop. 676 Loop *OrigLoop; 677 678 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 679 /// dynamic knowledge to simplify SCEV expressions and converts them to a 680 /// more usable form. 681 PredicatedScalarEvolution &PSE; 682 683 /// Loop Info. 684 LoopInfo *LI; 685 686 /// Dominator Tree. 687 DominatorTree *DT; 688 689 /// Alias Analysis. 690 AAResults *AA; 691 692 /// Target Library Info. 693 const TargetLibraryInfo *TLI; 694 695 /// Target Transform Info. 696 const TargetTransformInfo *TTI; 697 698 /// Assumption Cache. 699 AssumptionCache *AC; 700 701 /// Interface to emit optimization remarks. 702 OptimizationRemarkEmitter *ORE; 703 704 /// LoopVersioning. It's only set up (non-null) if memchecks were 705 /// used. 706 /// 707 /// This is currently only used to add no-alias metadata based on the 708 /// memchecks. The actually versioning is performed manually. 709 std::unique_ptr<LoopVersioning> LVer; 710 711 /// The vectorization SIMD factor to use. Each vector will have this many 712 /// vector elements. 713 unsigned VF; 714 715 /// The vectorization unroll factor to use. Each scalar is vectorized to this 716 /// many different vector instructions. 717 unsigned UF; 718 719 /// The builder that we use 720 IRBuilder<> Builder; 721 722 // --- Vectorization state --- 723 724 /// The vector-loop preheader. 725 BasicBlock *LoopVectorPreHeader; 726 727 /// The scalar-loop preheader. 728 BasicBlock *LoopScalarPreHeader; 729 730 /// Middle Block between the vector and the scalar. 731 BasicBlock *LoopMiddleBlock; 732 733 /// The ExitBlock of the scalar loop. 734 BasicBlock *LoopExitBlock; 735 736 /// The vector loop body. 737 BasicBlock *LoopVectorBody; 738 739 /// The scalar loop body. 740 BasicBlock *LoopScalarBody; 741 742 /// A list of all bypass blocks. The first block is the entry of the loop. 743 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 744 745 /// The new Induction variable which was added to the new block. 746 PHINode *Induction = nullptr; 747 748 /// The induction variable of the old basic block. 749 PHINode *OldInduction = nullptr; 750 751 /// Maps values from the original loop to their corresponding values in the 752 /// vectorized loop. A key value can map to either vector values, scalar 753 /// values or both kinds of values, depending on whether the key was 754 /// vectorized and scalarized. 755 VectorizerValueMap VectorLoopValueMap; 756 757 /// Store instructions that were predicated. 758 SmallVector<Instruction *, 4> PredicatedInstructions; 759 760 /// Trip count of the original loop. 761 Value *TripCount = nullptr; 762 763 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 764 Value *VectorTripCount = nullptr; 765 766 /// The legality analysis. 767 LoopVectorizationLegality *Legal; 768 769 /// The profitablity analysis. 770 LoopVectorizationCostModel *Cost; 771 772 // Record whether runtime checks are added. 773 bool AddedSafetyChecks = false; 774 775 // Holds the end values for each induction variable. We save the end values 776 // so we can later fix-up the external users of the induction variables. 777 DenseMap<PHINode *, Value *> IVEndValues; 778 779 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 780 // fixed up at the end of vector code generation. 781 SmallVector<PHINode *, 8> OrigPHIsToFix; 782 }; 783 784 class InnerLoopUnroller : public InnerLoopVectorizer { 785 public: 786 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 787 LoopInfo *LI, DominatorTree *DT, 788 const TargetLibraryInfo *TLI, 789 const TargetTransformInfo *TTI, AssumptionCache *AC, 790 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 791 LoopVectorizationLegality *LVL, 792 LoopVectorizationCostModel *CM) 793 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 794 UnrollFactor, LVL, CM) {} 795 796 private: 797 Value *getBroadcastInstrs(Value *V) override; 798 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 799 Instruction::BinaryOps Opcode = 800 Instruction::BinaryOpsEnd) override; 801 Value *reverseVector(Value *Vec) override; 802 }; 803 804 } // end namespace llvm 805 806 /// Look for a meaningful debug location on the instruction or it's 807 /// operands. 808 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 809 if (!I) 810 return I; 811 812 DebugLoc Empty; 813 if (I->getDebugLoc() != Empty) 814 return I; 815 816 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 817 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 818 if (OpInst->getDebugLoc() != Empty) 819 return OpInst; 820 } 821 822 return I; 823 } 824 825 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 826 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 827 const DILocation *DIL = Inst->getDebugLoc(); 828 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 829 !isa<DbgInfoIntrinsic>(Inst)) { 830 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(UF * VF); 831 if (NewDIL) 832 B.SetCurrentDebugLocation(NewDIL.getValue()); 833 else 834 LLVM_DEBUG(dbgs() 835 << "Failed to create new discriminator: " 836 << DIL->getFilename() << " Line: " << DIL->getLine()); 837 } 838 else 839 B.SetCurrentDebugLocation(DIL); 840 } else 841 B.SetCurrentDebugLocation(DebugLoc()); 842 } 843 844 /// Write a record \p DebugMsg about vectorization failure to the debug 845 /// output stream. If \p I is passed, it is an instruction that prevents 846 /// vectorization. 847 #ifndef NDEBUG 848 static void debugVectorizationFailure(const StringRef DebugMsg, 849 Instruction *I) { 850 dbgs() << "LV: Not vectorizing: " << DebugMsg; 851 if (I != nullptr) 852 dbgs() << " " << *I; 853 else 854 dbgs() << '.'; 855 dbgs() << '\n'; 856 } 857 #endif 858 859 /// Create an analysis remark that explains why vectorization failed 860 /// 861 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 862 /// RemarkName is the identifier for the remark. If \p I is passed it is an 863 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 864 /// the location of the remark. \return the remark object that can be 865 /// streamed to. 866 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 867 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 868 Value *CodeRegion = TheLoop->getHeader(); 869 DebugLoc DL = TheLoop->getStartLoc(); 870 871 if (I) { 872 CodeRegion = I->getParent(); 873 // If there is no debug location attached to the instruction, revert back to 874 // using the loop's. 875 if (I->getDebugLoc()) 876 DL = I->getDebugLoc(); 877 } 878 879 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 880 R << "loop not vectorized: "; 881 return R; 882 } 883 884 namespace llvm { 885 886 void reportVectorizationFailure(const StringRef DebugMsg, 887 const StringRef OREMsg, const StringRef ORETag, 888 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 889 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 890 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 891 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 892 ORETag, TheLoop, I) << OREMsg); 893 } 894 895 } // end namespace llvm 896 897 #ifndef NDEBUG 898 /// \return string containing a file name and a line # for the given loop. 899 static std::string getDebugLocString(const Loop *L) { 900 std::string Result; 901 if (L) { 902 raw_string_ostream OS(Result); 903 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 904 LoopDbgLoc.print(OS); 905 else 906 // Just print the module name. 907 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 908 OS.flush(); 909 } 910 return Result; 911 } 912 #endif 913 914 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 915 const Instruction *Orig) { 916 // If the loop was versioned with memchecks, add the corresponding no-alias 917 // metadata. 918 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 919 LVer->annotateInstWithNoAlias(To, Orig); 920 } 921 922 void InnerLoopVectorizer::addMetadata(Instruction *To, 923 Instruction *From) { 924 propagateMetadata(To, From); 925 addNewMetadata(To, From); 926 } 927 928 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 929 Instruction *From) { 930 for (Value *V : To) { 931 if (Instruction *I = dyn_cast<Instruction>(V)) 932 addMetadata(I, From); 933 } 934 } 935 936 namespace llvm { 937 938 // Loop vectorization cost-model hints how the scalar epilogue loop should be 939 // lowered. 940 enum ScalarEpilogueLowering { 941 942 // The default: allowing scalar epilogues. 943 CM_ScalarEpilogueAllowed, 944 945 // Vectorization with OptForSize: don't allow epilogues. 946 CM_ScalarEpilogueNotAllowedOptSize, 947 948 // A special case of vectorisation with OptForSize: loops with a very small 949 // trip count are considered for vectorization under OptForSize, thereby 950 // making sure the cost of their loop body is dominant, free of runtime 951 // guards and scalar iteration overheads. 952 CM_ScalarEpilogueNotAllowedLowTripLoop, 953 954 // Loop hint predicate indicating an epilogue is undesired. 955 CM_ScalarEpilogueNotNeededUsePredicate 956 }; 957 958 /// LoopVectorizationCostModel - estimates the expected speedups due to 959 /// vectorization. 960 /// In many cases vectorization is not profitable. This can happen because of 961 /// a number of reasons. In this class we mainly attempt to predict the 962 /// expected speedup/slowdowns due to the supported instruction set. We use the 963 /// TargetTransformInfo to query the different backends for the cost of 964 /// different operations. 965 class LoopVectorizationCostModel { 966 public: 967 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 968 PredicatedScalarEvolution &PSE, LoopInfo *LI, 969 LoopVectorizationLegality *Legal, 970 const TargetTransformInfo &TTI, 971 const TargetLibraryInfo *TLI, DemandedBits *DB, 972 AssumptionCache *AC, 973 OptimizationRemarkEmitter *ORE, const Function *F, 974 const LoopVectorizeHints *Hints, 975 InterleavedAccessInfo &IAI) 976 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 977 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 978 Hints(Hints), InterleaveInfo(IAI) {} 979 980 /// \return An upper bound for the vectorization factor, or None if 981 /// vectorization and interleaving should be avoided up front. 982 Optional<unsigned> computeMaxVF(unsigned UserVF, unsigned UserIC); 983 984 /// \return True if runtime checks are required for vectorization, and false 985 /// otherwise. 986 bool runtimeChecksRequired(); 987 988 /// \return The most profitable vectorization factor and the cost of that VF. 989 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 990 /// then this vectorization factor will be selected if vectorization is 991 /// possible. 992 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 993 994 /// Setup cost-based decisions for user vectorization factor. 995 void selectUserVectorizationFactor(unsigned UserVF) { 996 collectUniformsAndScalars(UserVF); 997 collectInstsToScalarize(UserVF); 998 } 999 1000 /// \return The size (in bits) of the smallest and widest types in the code 1001 /// that needs to be vectorized. We ignore values that remain scalar such as 1002 /// 64 bit loop indices. 1003 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1004 1005 /// \return The desired interleave count. 1006 /// If interleave count has been specified by metadata it will be returned. 1007 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1008 /// are the selected vectorization factor and the cost of the selected VF. 1009 unsigned selectInterleaveCount(unsigned VF, unsigned LoopCost); 1010 1011 /// Memory access instruction may be vectorized in more than one way. 1012 /// Form of instruction after vectorization depends on cost. 1013 /// This function takes cost-based decisions for Load/Store instructions 1014 /// and collects them in a map. This decisions map is used for building 1015 /// the lists of loop-uniform and loop-scalar instructions. 1016 /// The calculated cost is saved with widening decision in order to 1017 /// avoid redundant calculations. 1018 void setCostBasedWideningDecision(unsigned VF); 1019 1020 /// A struct that represents some properties of the register usage 1021 /// of a loop. 1022 struct RegisterUsage { 1023 /// Holds the number of loop invariant values that are used in the loop. 1024 /// The key is ClassID of target-provided register class. 1025 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1026 /// Holds the maximum number of concurrent live intervals in the loop. 1027 /// The key is ClassID of target-provided register class. 1028 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1029 }; 1030 1031 /// \return Returns information about the register usages of the loop for the 1032 /// given vectorization factors. 1033 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1034 1035 /// Collect values we want to ignore in the cost model. 1036 void collectValuesToIgnore(); 1037 1038 /// \returns The smallest bitwidth each instruction can be represented with. 1039 /// The vector equivalents of these instructions should be truncated to this 1040 /// type. 1041 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1042 return MinBWs; 1043 } 1044 1045 /// \returns True if it is more profitable to scalarize instruction \p I for 1046 /// vectorization factor \p VF. 1047 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1048 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1049 1050 // Cost model is not run in the VPlan-native path - return conservative 1051 // result until this changes. 1052 if (EnableVPlanNativePath) 1053 return false; 1054 1055 auto Scalars = InstsToScalarize.find(VF); 1056 assert(Scalars != InstsToScalarize.end() && 1057 "VF not yet analyzed for scalarization profitability"); 1058 return Scalars->second.find(I) != Scalars->second.end(); 1059 } 1060 1061 /// Returns true if \p I is known to be uniform after vectorization. 1062 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1063 if (VF == 1) 1064 return true; 1065 1066 // Cost model is not run in the VPlan-native path - return conservative 1067 // result until this changes. 1068 if (EnableVPlanNativePath) 1069 return false; 1070 1071 auto UniformsPerVF = Uniforms.find(VF); 1072 assert(UniformsPerVF != Uniforms.end() && 1073 "VF not yet analyzed for uniformity"); 1074 return UniformsPerVF->second.count(I); 1075 } 1076 1077 /// Returns true if \p I is known to be scalar after vectorization. 1078 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1079 if (VF == 1) 1080 return true; 1081 1082 // Cost model is not run in the VPlan-native path - return conservative 1083 // result until this changes. 1084 if (EnableVPlanNativePath) 1085 return false; 1086 1087 auto ScalarsPerVF = Scalars.find(VF); 1088 assert(ScalarsPerVF != Scalars.end() && 1089 "Scalar values are not calculated for VF"); 1090 return ScalarsPerVF->second.count(I); 1091 } 1092 1093 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1094 /// for vectorization factor \p VF. 1095 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1096 return VF > 1 && MinBWs.find(I) != MinBWs.end() && 1097 !isProfitableToScalarize(I, VF) && 1098 !isScalarAfterVectorization(I, VF); 1099 } 1100 1101 /// Decision that was taken during cost calculation for memory instruction. 1102 enum InstWidening { 1103 CM_Unknown, 1104 CM_Widen, // For consecutive accesses with stride +1. 1105 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1106 CM_Interleave, 1107 CM_GatherScatter, 1108 CM_Scalarize 1109 }; 1110 1111 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1112 /// instruction \p I and vector width \p VF. 1113 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1114 unsigned Cost) { 1115 assert(VF >= 2 && "Expected VF >=2"); 1116 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1117 } 1118 1119 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1120 /// interleaving group \p Grp and vector width \p VF. 1121 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, unsigned VF, 1122 InstWidening W, unsigned Cost) { 1123 assert(VF >= 2 && "Expected VF >=2"); 1124 /// Broadcast this decicion to all instructions inside the group. 1125 /// But the cost will be assigned to one instruction only. 1126 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1127 if (auto *I = Grp->getMember(i)) { 1128 if (Grp->getInsertPos() == I) 1129 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1130 else 1131 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1132 } 1133 } 1134 } 1135 1136 /// Return the cost model decision for the given instruction \p I and vector 1137 /// width \p VF. Return CM_Unknown if this instruction did not pass 1138 /// through the cost modeling. 1139 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1140 assert(VF >= 2 && "Expected VF >=2"); 1141 1142 // Cost model is not run in the VPlan-native path - return conservative 1143 // result until this changes. 1144 if (EnableVPlanNativePath) 1145 return CM_GatherScatter; 1146 1147 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1148 auto Itr = WideningDecisions.find(InstOnVF); 1149 if (Itr == WideningDecisions.end()) 1150 return CM_Unknown; 1151 return Itr->second.first; 1152 } 1153 1154 /// Return the vectorization cost for the given instruction \p I and vector 1155 /// width \p VF. 1156 unsigned getWideningCost(Instruction *I, unsigned VF) { 1157 assert(VF >= 2 && "Expected VF >=2"); 1158 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1159 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1160 "The cost is not calculated"); 1161 return WideningDecisions[InstOnVF].second; 1162 } 1163 1164 /// Return True if instruction \p I is an optimizable truncate whose operand 1165 /// is an induction variable. Such a truncate will be removed by adding a new 1166 /// induction variable with the destination type. 1167 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1168 // If the instruction is not a truncate, return false. 1169 auto *Trunc = dyn_cast<TruncInst>(I); 1170 if (!Trunc) 1171 return false; 1172 1173 // Get the source and destination types of the truncate. 1174 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1175 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1176 1177 // If the truncate is free for the given types, return false. Replacing a 1178 // free truncate with an induction variable would add an induction variable 1179 // update instruction to each iteration of the loop. We exclude from this 1180 // check the primary induction variable since it will need an update 1181 // instruction regardless. 1182 Value *Op = Trunc->getOperand(0); 1183 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1184 return false; 1185 1186 // If the truncated value is not an induction variable, return false. 1187 return Legal->isInductionPhi(Op); 1188 } 1189 1190 /// Collects the instructions to scalarize for each predicated instruction in 1191 /// the loop. 1192 void collectInstsToScalarize(unsigned VF); 1193 1194 /// Collect Uniform and Scalar values for the given \p VF. 1195 /// The sets depend on CM decision for Load/Store instructions 1196 /// that may be vectorized as interleave, gather-scatter or scalarized. 1197 void collectUniformsAndScalars(unsigned VF) { 1198 // Do the analysis once. 1199 if (VF == 1 || Uniforms.find(VF) != Uniforms.end()) 1200 return; 1201 setCostBasedWideningDecision(VF); 1202 collectLoopUniforms(VF); 1203 collectLoopScalars(VF); 1204 } 1205 1206 /// Returns true if the target machine supports masked store operation 1207 /// for the given \p DataType and kind of access to \p Ptr. 1208 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1209 return Legal->isConsecutivePtr(Ptr) && 1210 TTI.isLegalMaskedStore(DataType, Alignment); 1211 } 1212 1213 /// Returns true if the target machine supports masked load operation 1214 /// for the given \p DataType and kind of access to \p Ptr. 1215 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1216 return Legal->isConsecutivePtr(Ptr) && 1217 TTI.isLegalMaskedLoad(DataType, Alignment); 1218 } 1219 1220 /// Returns true if the target machine supports masked scatter operation 1221 /// for the given \p DataType. 1222 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1223 return TTI.isLegalMaskedScatter(DataType, Alignment); 1224 } 1225 1226 /// Returns true if the target machine supports masked gather operation 1227 /// for the given \p DataType. 1228 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1229 return TTI.isLegalMaskedGather(DataType, Alignment); 1230 } 1231 1232 /// Returns true if the target machine can represent \p V as a masked gather 1233 /// or scatter operation. 1234 bool isLegalGatherOrScatter(Value *V) { 1235 bool LI = isa<LoadInst>(V); 1236 bool SI = isa<StoreInst>(V); 1237 if (!LI && !SI) 1238 return false; 1239 auto *Ty = getMemInstValueType(V); 1240 Align Align = getLoadStoreAlignment(V); 1241 return (LI && isLegalMaskedGather(Ty, Align)) || 1242 (SI && isLegalMaskedScatter(Ty, Align)); 1243 } 1244 1245 /// Returns true if \p I is an instruction that will be scalarized with 1246 /// predication. Such instructions include conditional stores and 1247 /// instructions that may divide by zero. 1248 /// If a non-zero VF has been calculated, we check if I will be scalarized 1249 /// predication for that VF. 1250 bool isScalarWithPredication(Instruction *I, unsigned VF = 1); 1251 1252 // Returns true if \p I is an instruction that will be predicated either 1253 // through scalar predication or masked load/store or masked gather/scatter. 1254 // Superset of instructions that return true for isScalarWithPredication. 1255 bool isPredicatedInst(Instruction *I) { 1256 if (!blockNeedsPredication(I->getParent())) 1257 return false; 1258 // Loads and stores that need some form of masked operation are predicated 1259 // instructions. 1260 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1261 return Legal->isMaskRequired(I); 1262 return isScalarWithPredication(I); 1263 } 1264 1265 /// Returns true if \p I is a memory instruction with consecutive memory 1266 /// access that can be widened. 1267 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1268 1269 /// Returns true if \p I is a memory instruction in an interleaved-group 1270 /// of memory accesses that can be vectorized with wide vector loads/stores 1271 /// and shuffles. 1272 bool interleavedAccessCanBeWidened(Instruction *I, unsigned VF = 1); 1273 1274 /// Check if \p Instr belongs to any interleaved access group. 1275 bool isAccessInterleaved(Instruction *Instr) { 1276 return InterleaveInfo.isInterleaved(Instr); 1277 } 1278 1279 /// Get the interleaved access group that \p Instr belongs to. 1280 const InterleaveGroup<Instruction> * 1281 getInterleavedAccessGroup(Instruction *Instr) { 1282 return InterleaveInfo.getInterleaveGroup(Instr); 1283 } 1284 1285 /// Returns true if an interleaved group requires a scalar iteration 1286 /// to handle accesses with gaps, and there is nothing preventing us from 1287 /// creating a scalar epilogue. 1288 bool requiresScalarEpilogue() const { 1289 return isScalarEpilogueAllowed() && InterleaveInfo.requiresScalarEpilogue(); 1290 } 1291 1292 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1293 /// loop hint annotation. 1294 bool isScalarEpilogueAllowed() const { 1295 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1296 } 1297 1298 /// Returns true if all loop blocks should be masked to fold tail loop. 1299 bool foldTailByMasking() const { return FoldTailByMasking; } 1300 1301 bool blockNeedsPredication(BasicBlock *BB) { 1302 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1303 } 1304 1305 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1306 /// with factor VF. Return the cost of the instruction, including 1307 /// scalarization overhead if it's needed. 1308 unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF); 1309 1310 /// Estimate cost of a call instruction CI if it were vectorized with factor 1311 /// VF. Return the cost of the instruction, including scalarization overhead 1312 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1313 /// scalarized - 1314 /// i.e. either vector version isn't available, or is too expensive. 1315 unsigned getVectorCallCost(CallInst *CI, unsigned VF, bool &NeedToScalarize); 1316 1317 /// Invalidates decisions already taken by the cost model. 1318 void invalidateCostModelingDecisions() { 1319 WideningDecisions.clear(); 1320 Uniforms.clear(); 1321 Scalars.clear(); 1322 } 1323 1324 private: 1325 unsigned NumPredStores = 0; 1326 1327 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1328 /// than zero. One is returned if vectorization should best be avoided due 1329 /// to cost. 1330 unsigned computeFeasibleMaxVF(unsigned ConstTripCount); 1331 1332 /// The vectorization cost is a combination of the cost itself and a boolean 1333 /// indicating whether any of the contributing operations will actually 1334 /// operate on 1335 /// vector values after type legalization in the backend. If this latter value 1336 /// is 1337 /// false, then all operations will be scalarized (i.e. no vectorization has 1338 /// actually taken place). 1339 using VectorizationCostTy = std::pair<unsigned, bool>; 1340 1341 /// Returns the expected execution cost. The unit of the cost does 1342 /// not matter because we use the 'cost' units to compare different 1343 /// vector widths. The cost that is returned is *not* normalized by 1344 /// the factor width. 1345 VectorizationCostTy expectedCost(unsigned VF); 1346 1347 /// Returns the execution time cost of an instruction for a given vector 1348 /// width. Vector width of one means scalar. 1349 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1350 1351 /// The cost-computation logic from getInstructionCost which provides 1352 /// the vector type as an output parameter. 1353 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1354 1355 /// Calculate vectorization cost of memory instruction \p I. 1356 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1357 1358 /// The cost computation for scalarized memory instruction. 1359 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1360 1361 /// The cost computation for interleaving group of memory instructions. 1362 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1363 1364 /// The cost computation for Gather/Scatter instruction. 1365 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1366 1367 /// The cost computation for widening instruction \p I with consecutive 1368 /// memory access. 1369 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1370 1371 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1372 /// Load: scalar load + broadcast. 1373 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1374 /// element) 1375 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 1376 1377 /// Estimate the overhead of scalarizing an instruction. This is a 1378 /// convenience wrapper for the type-based getScalarizationOverhead API. 1379 unsigned getScalarizationOverhead(Instruction *I, unsigned VF); 1380 1381 /// Returns whether the instruction is a load or store and will be a emitted 1382 /// as a vector operation. 1383 bool isConsecutiveLoadOrStore(Instruction *I); 1384 1385 /// Returns true if an artificially high cost for emulated masked memrefs 1386 /// should be used. 1387 bool useEmulatedMaskMemRefHack(Instruction *I); 1388 1389 /// Map of scalar integer values to the smallest bitwidth they can be legally 1390 /// represented as. The vector equivalents of these values should be truncated 1391 /// to this type. 1392 MapVector<Instruction *, uint64_t> MinBWs; 1393 1394 /// A type representing the costs for instructions if they were to be 1395 /// scalarized rather than vectorized. The entries are Instruction-Cost 1396 /// pairs. 1397 using ScalarCostsTy = DenseMap<Instruction *, unsigned>; 1398 1399 /// A set containing all BasicBlocks that are known to present after 1400 /// vectorization as a predicated block. 1401 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1402 1403 /// Records whether it is allowed to have the original scalar loop execute at 1404 /// least once. This may be needed as a fallback loop in case runtime 1405 /// aliasing/dependence checks fail, or to handle the tail/remainder 1406 /// iterations when the trip count is unknown or doesn't divide by the VF, 1407 /// or as a peel-loop to handle gaps in interleave-groups. 1408 /// Under optsize and when the trip count is very small we don't allow any 1409 /// iterations to execute in the scalar loop. 1410 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1411 1412 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1413 bool FoldTailByMasking = false; 1414 1415 /// A map holding scalar costs for different vectorization factors. The 1416 /// presence of a cost for an instruction in the mapping indicates that the 1417 /// instruction will be scalarized when vectorizing with the associated 1418 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1419 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 1420 1421 /// Holds the instructions known to be uniform after vectorization. 1422 /// The data is collected per VF. 1423 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 1424 1425 /// Holds the instructions known to be scalar after vectorization. 1426 /// The data is collected per VF. 1427 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 1428 1429 /// Holds the instructions (address computations) that are forced to be 1430 /// scalarized. 1431 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1432 1433 /// Returns the expected difference in cost from scalarizing the expression 1434 /// feeding a predicated instruction \p PredInst. The instructions to 1435 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1436 /// non-negative return value implies the expression will be scalarized. 1437 /// Currently, only single-use chains are considered for scalarization. 1438 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1439 unsigned VF); 1440 1441 /// Collect the instructions that are uniform after vectorization. An 1442 /// instruction is uniform if we represent it with a single scalar value in 1443 /// the vectorized loop corresponding to each vector iteration. Examples of 1444 /// uniform instructions include pointer operands of consecutive or 1445 /// interleaved memory accesses. Note that although uniformity implies an 1446 /// instruction will be scalar, the reverse is not true. In general, a 1447 /// scalarized instruction will be represented by VF scalar values in the 1448 /// vectorized loop, each corresponding to an iteration of the original 1449 /// scalar loop. 1450 void collectLoopUniforms(unsigned VF); 1451 1452 /// Collect the instructions that are scalar after vectorization. An 1453 /// instruction is scalar if it is known to be uniform or will be scalarized 1454 /// during vectorization. Non-uniform scalarized instructions will be 1455 /// represented by VF values in the vectorized loop, each corresponding to an 1456 /// iteration of the original scalar loop. 1457 void collectLoopScalars(unsigned VF); 1458 1459 /// Keeps cost model vectorization decision and cost for instructions. 1460 /// Right now it is used for memory instructions only. 1461 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>, 1462 std::pair<InstWidening, unsigned>>; 1463 1464 DecisionList WideningDecisions; 1465 1466 /// Returns true if \p V is expected to be vectorized and it needs to be 1467 /// extracted. 1468 bool needsExtract(Value *V, unsigned VF) const { 1469 Instruction *I = dyn_cast<Instruction>(V); 1470 if (VF == 1 || !I || !TheLoop->contains(I) || TheLoop->isLoopInvariant(I)) 1471 return false; 1472 1473 // Assume we can vectorize V (and hence we need extraction) if the 1474 // scalars are not computed yet. This can happen, because it is called 1475 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1476 // the scalars are collected. That should be a safe assumption in most 1477 // cases, because we check if the operands have vectorizable types 1478 // beforehand in LoopVectorizationLegality. 1479 return Scalars.find(VF) == Scalars.end() || 1480 !isScalarAfterVectorization(I, VF); 1481 }; 1482 1483 /// Returns a range containing only operands needing to be extracted. 1484 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1485 unsigned VF) { 1486 return SmallVector<Value *, 4>(make_filter_range( 1487 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1488 } 1489 1490 public: 1491 /// The loop that we evaluate. 1492 Loop *TheLoop; 1493 1494 /// Predicated scalar evolution analysis. 1495 PredicatedScalarEvolution &PSE; 1496 1497 /// Loop Info analysis. 1498 LoopInfo *LI; 1499 1500 /// Vectorization legality. 1501 LoopVectorizationLegality *Legal; 1502 1503 /// Vector target information. 1504 const TargetTransformInfo &TTI; 1505 1506 /// Target Library Info. 1507 const TargetLibraryInfo *TLI; 1508 1509 /// Demanded bits analysis. 1510 DemandedBits *DB; 1511 1512 /// Assumption cache. 1513 AssumptionCache *AC; 1514 1515 /// Interface to emit optimization remarks. 1516 OptimizationRemarkEmitter *ORE; 1517 1518 const Function *TheFunction; 1519 1520 /// Loop Vectorize Hint. 1521 const LoopVectorizeHints *Hints; 1522 1523 /// The interleave access information contains groups of interleaved accesses 1524 /// with the same stride and close to each other. 1525 InterleavedAccessInfo &InterleaveInfo; 1526 1527 /// Values to ignore in the cost model. 1528 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1529 1530 /// Values to ignore in the cost model when VF > 1. 1531 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1532 }; 1533 1534 } // end namespace llvm 1535 1536 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1537 // vectorization. The loop needs to be annotated with #pragma omp simd 1538 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1539 // vector length information is not provided, vectorization is not considered 1540 // explicit. Interleave hints are not allowed either. These limitations will be 1541 // relaxed in the future. 1542 // Please, note that we are currently forced to abuse the pragma 'clang 1543 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1544 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1545 // provides *explicit vectorization hints* (LV can bypass legal checks and 1546 // assume that vectorization is legal). However, both hints are implemented 1547 // using the same metadata (llvm.loop.vectorize, processed by 1548 // LoopVectorizeHints). This will be fixed in the future when the native IR 1549 // representation for pragma 'omp simd' is introduced. 1550 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1551 OptimizationRemarkEmitter *ORE) { 1552 assert(!OuterLp->empty() && "This is not an outer loop"); 1553 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1554 1555 // Only outer loops with an explicit vectorization hint are supported. 1556 // Unannotated outer loops are ignored. 1557 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1558 return false; 1559 1560 Function *Fn = OuterLp->getHeader()->getParent(); 1561 if (!Hints.allowVectorization(Fn, OuterLp, 1562 true /*VectorizeOnlyWhenForced*/)) { 1563 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1564 return false; 1565 } 1566 1567 if (Hints.getInterleave() > 1) { 1568 // TODO: Interleave support is future work. 1569 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1570 "outer loops.\n"); 1571 Hints.emitRemarkWithHints(); 1572 return false; 1573 } 1574 1575 return true; 1576 } 1577 1578 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1579 OptimizationRemarkEmitter *ORE, 1580 SmallVectorImpl<Loop *> &V) { 1581 // Collect inner loops and outer loops without irreducible control flow. For 1582 // now, only collect outer loops that have explicit vectorization hints. If we 1583 // are stress testing the VPlan H-CFG construction, we collect the outermost 1584 // loop of every loop nest. 1585 if (L.empty() || VPlanBuildStressTest || 1586 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1587 LoopBlocksRPO RPOT(&L); 1588 RPOT.perform(LI); 1589 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1590 V.push_back(&L); 1591 // TODO: Collect inner loops inside marked outer loops in case 1592 // vectorization fails for the outer loop. Do not invoke 1593 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1594 // already known to be reducible. We can use an inherited attribute for 1595 // that. 1596 return; 1597 } 1598 } 1599 for (Loop *InnerL : L) 1600 collectSupportedLoops(*InnerL, LI, ORE, V); 1601 } 1602 1603 namespace { 1604 1605 /// The LoopVectorize Pass. 1606 struct LoopVectorize : public FunctionPass { 1607 /// Pass identification, replacement for typeid 1608 static char ID; 1609 1610 LoopVectorizePass Impl; 1611 1612 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1613 bool VectorizeOnlyWhenForced = false) 1614 : FunctionPass(ID), 1615 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1616 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1617 } 1618 1619 bool runOnFunction(Function &F) override { 1620 if (skipFunction(F)) 1621 return false; 1622 1623 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1624 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1625 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1626 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1627 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1628 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1629 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1630 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1631 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1632 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1633 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1634 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1635 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1636 1637 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1638 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1639 1640 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1641 GetLAA, *ORE, PSI).MadeAnyChange; 1642 } 1643 1644 void getAnalysisUsage(AnalysisUsage &AU) const override { 1645 AU.addRequired<AssumptionCacheTracker>(); 1646 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1647 AU.addRequired<DominatorTreeWrapperPass>(); 1648 AU.addRequired<LoopInfoWrapperPass>(); 1649 AU.addRequired<ScalarEvolutionWrapperPass>(); 1650 AU.addRequired<TargetTransformInfoWrapperPass>(); 1651 AU.addRequired<AAResultsWrapperPass>(); 1652 AU.addRequired<LoopAccessLegacyAnalysis>(); 1653 AU.addRequired<DemandedBitsWrapperPass>(); 1654 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 1655 AU.addRequired<InjectTLIMappingsLegacy>(); 1656 1657 // We currently do not preserve loopinfo/dominator analyses with outer loop 1658 // vectorization. Until this is addressed, mark these analyses as preserved 1659 // only for non-VPlan-native path. 1660 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 1661 if (!EnableVPlanNativePath) { 1662 AU.addPreserved<LoopInfoWrapperPass>(); 1663 AU.addPreserved<DominatorTreeWrapperPass>(); 1664 } 1665 1666 AU.addPreserved<BasicAAWrapperPass>(); 1667 AU.addPreserved<GlobalsAAWrapperPass>(); 1668 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1669 } 1670 }; 1671 1672 } // end anonymous namespace 1673 1674 //===----------------------------------------------------------------------===// 1675 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1676 // LoopVectorizationCostModel and LoopVectorizationPlanner. 1677 //===----------------------------------------------------------------------===// 1678 1679 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1680 // We need to place the broadcast of invariant variables outside the loop, 1681 // but only if it's proven safe to do so. Else, broadcast will be inside 1682 // vector loop body. 1683 Instruction *Instr = dyn_cast<Instruction>(V); 1684 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 1685 (!Instr || 1686 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 1687 // Place the code for broadcasting invariant variables in the new preheader. 1688 IRBuilder<>::InsertPointGuard Guard(Builder); 1689 if (SafeToHoist) 1690 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1691 1692 // Broadcast the scalar into all locations in the vector. 1693 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1694 1695 return Shuf; 1696 } 1697 1698 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 1699 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 1700 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1701 "Expected either an induction phi-node or a truncate of it!"); 1702 Value *Start = II.getStartValue(); 1703 1704 // Construct the initial value of the vector IV in the vector loop preheader 1705 auto CurrIP = Builder.saveIP(); 1706 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1707 if (isa<TruncInst>(EntryVal)) { 1708 assert(Start->getType()->isIntegerTy() && 1709 "Truncation requires an integer type"); 1710 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 1711 Step = Builder.CreateTrunc(Step, TruncType); 1712 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 1713 } 1714 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 1715 Value *SteppedStart = 1716 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 1717 1718 // We create vector phi nodes for both integer and floating-point induction 1719 // variables. Here, we determine the kind of arithmetic we will perform. 1720 Instruction::BinaryOps AddOp; 1721 Instruction::BinaryOps MulOp; 1722 if (Step->getType()->isIntegerTy()) { 1723 AddOp = Instruction::Add; 1724 MulOp = Instruction::Mul; 1725 } else { 1726 AddOp = II.getInductionOpcode(); 1727 MulOp = Instruction::FMul; 1728 } 1729 1730 // Multiply the vectorization factor by the step using integer or 1731 // floating-point arithmetic as appropriate. 1732 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 1733 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 1734 1735 // Create a vector splat to use in the induction update. 1736 // 1737 // FIXME: If the step is non-constant, we create the vector splat with 1738 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 1739 // handle a constant vector splat. 1740 Value *SplatVF = 1741 isa<Constant>(Mul) 1742 ? ConstantVector::getSplat({VF, false}, cast<Constant>(Mul)) 1743 : Builder.CreateVectorSplat(VF, Mul); 1744 Builder.restoreIP(CurrIP); 1745 1746 // We may need to add the step a number of times, depending on the unroll 1747 // factor. The last of those goes into the PHI. 1748 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 1749 &*LoopVectorBody->getFirstInsertionPt()); 1750 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 1751 Instruction *LastInduction = VecInd; 1752 for (unsigned Part = 0; Part < UF; ++Part) { 1753 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 1754 1755 if (isa<TruncInst>(EntryVal)) 1756 addMetadata(LastInduction, EntryVal); 1757 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part); 1758 1759 LastInduction = cast<Instruction>(addFastMathFlag( 1760 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 1761 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 1762 } 1763 1764 // Move the last step to the end of the latch block. This ensures consistent 1765 // placement of all induction updates. 1766 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 1767 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 1768 auto *ICmp = cast<Instruction>(Br->getCondition()); 1769 LastInduction->moveBefore(ICmp); 1770 LastInduction->setName("vec.ind.next"); 1771 1772 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 1773 VecInd->addIncoming(LastInduction, LoopVectorLatch); 1774 } 1775 1776 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 1777 return Cost->isScalarAfterVectorization(I, VF) || 1778 Cost->isProfitableToScalarize(I, VF); 1779 } 1780 1781 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 1782 if (shouldScalarizeInstruction(IV)) 1783 return true; 1784 auto isScalarInst = [&](User *U) -> bool { 1785 auto *I = cast<Instruction>(U); 1786 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 1787 }; 1788 return llvm::any_of(IV->users(), isScalarInst); 1789 } 1790 1791 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 1792 const InductionDescriptor &ID, const Instruction *EntryVal, 1793 Value *VectorLoopVal, unsigned Part, unsigned Lane) { 1794 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 1795 "Expected either an induction phi-node or a truncate of it!"); 1796 1797 // This induction variable is not the phi from the original loop but the 1798 // newly-created IV based on the proof that casted Phi is equal to the 1799 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 1800 // re-uses the same InductionDescriptor that original IV uses but we don't 1801 // have to do any recording in this case - that is done when original IV is 1802 // processed. 1803 if (isa<TruncInst>(EntryVal)) 1804 return; 1805 1806 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 1807 if (Casts.empty()) 1808 return; 1809 // Only the first Cast instruction in the Casts vector is of interest. 1810 // The rest of the Casts (if exist) have no uses outside the 1811 // induction update chain itself. 1812 Instruction *CastInst = *Casts.begin(); 1813 if (Lane < UINT_MAX) 1814 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal); 1815 else 1816 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal); 1817 } 1818 1819 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 1820 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 1821 "Primary induction variable must have an integer type"); 1822 1823 auto II = Legal->getInductionVars().find(IV); 1824 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 1825 1826 auto ID = II->second; 1827 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 1828 1829 // The value from the original loop to which we are mapping the new induction 1830 // variable. 1831 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 1832 1833 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 1834 1835 // Generate code for the induction step. Note that induction steps are 1836 // required to be loop-invariant 1837 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 1838 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 1839 "Induction step should be loop invariant"); 1840 if (PSE.getSE()->isSCEVable(IV->getType())) { 1841 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 1842 return Exp.expandCodeFor(Step, Step->getType(), 1843 LoopVectorPreHeader->getTerminator()); 1844 } 1845 return cast<SCEVUnknown>(Step)->getValue(); 1846 }; 1847 1848 // The scalar value to broadcast. This is derived from the canonical 1849 // induction variable. If a truncation type is given, truncate the canonical 1850 // induction variable and step. Otherwise, derive these values from the 1851 // induction descriptor. 1852 auto CreateScalarIV = [&](Value *&Step) -> Value * { 1853 Value *ScalarIV = Induction; 1854 if (IV != OldInduction) { 1855 ScalarIV = IV->getType()->isIntegerTy() 1856 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 1857 : Builder.CreateCast(Instruction::SIToFP, Induction, 1858 IV->getType()); 1859 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 1860 ScalarIV->setName("offset.idx"); 1861 } 1862 if (Trunc) { 1863 auto *TruncType = cast<IntegerType>(Trunc->getType()); 1864 assert(Step->getType()->isIntegerTy() && 1865 "Truncation requires an integer step"); 1866 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 1867 Step = Builder.CreateTrunc(Step, TruncType); 1868 } 1869 return ScalarIV; 1870 }; 1871 1872 // Create the vector values from the scalar IV, in the absence of creating a 1873 // vector IV. 1874 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 1875 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 1876 for (unsigned Part = 0; Part < UF; ++Part) { 1877 Value *EntryPart = 1878 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 1879 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 1880 if (Trunc) 1881 addMetadata(EntryPart, Trunc); 1882 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part); 1883 } 1884 }; 1885 1886 // Now do the actual transformations, and start with creating the step value. 1887 Value *Step = CreateStepValue(ID.getStep()); 1888 if (VF <= 1) { 1889 Value *ScalarIV = CreateScalarIV(Step); 1890 CreateSplatIV(ScalarIV, Step); 1891 return; 1892 } 1893 1894 // Determine if we want a scalar version of the induction variable. This is 1895 // true if the induction variable itself is not widened, or if it has at 1896 // least one user in the loop that is not widened. 1897 auto NeedsScalarIV = needsScalarInduction(EntryVal); 1898 if (!NeedsScalarIV) { 1899 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1900 return; 1901 } 1902 1903 // Try to create a new independent vector induction variable. If we can't 1904 // create the phi node, we will splat the scalar induction variable in each 1905 // loop iteration. 1906 if (!shouldScalarizeInstruction(EntryVal)) { 1907 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 1908 Value *ScalarIV = CreateScalarIV(Step); 1909 // Create scalar steps that can be used by instructions we will later 1910 // scalarize. Note that the addition of the scalar steps will not increase 1911 // the number of instructions in the loop in the common case prior to 1912 // InstCombine. We will be trading one vector extract for each scalar step. 1913 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1914 return; 1915 } 1916 1917 // All IV users are scalar instructions, so only emit a scalar IV, not a 1918 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 1919 // predicate used by the masked loads/stores. 1920 Value *ScalarIV = CreateScalarIV(Step); 1921 if (!Cost->isScalarEpilogueAllowed()) 1922 CreateSplatIV(ScalarIV, Step); 1923 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 1924 } 1925 1926 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 1927 Instruction::BinaryOps BinOp) { 1928 // Create and check the types. 1929 auto *ValVTy = cast<VectorType>(Val->getType()); 1930 int VLen = ValVTy->getNumElements(); 1931 1932 Type *STy = Val->getType()->getScalarType(); 1933 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 1934 "Induction Step must be an integer or FP"); 1935 assert(Step->getType() == STy && "Step has wrong type"); 1936 1937 SmallVector<Constant *, 8> Indices; 1938 1939 if (STy->isIntegerTy()) { 1940 // Create a vector of consecutive numbers from zero to VF. 1941 for (int i = 0; i < VLen; ++i) 1942 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 1943 1944 // Add the consecutive indices to the vector value. 1945 Constant *Cv = ConstantVector::get(Indices); 1946 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1947 Step = Builder.CreateVectorSplat(VLen, Step); 1948 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1949 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1950 // which can be found from the original scalar operations. 1951 Step = Builder.CreateMul(Cv, Step); 1952 return Builder.CreateAdd(Val, Step, "induction"); 1953 } 1954 1955 // Floating point induction. 1956 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 1957 "Binary Opcode should be specified for FP induction"); 1958 // Create a vector of consecutive numbers from zero to VF. 1959 for (int i = 0; i < VLen; ++i) 1960 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 1961 1962 // Add the consecutive indices to the vector value. 1963 Constant *Cv = ConstantVector::get(Indices); 1964 1965 Step = Builder.CreateVectorSplat(VLen, Step); 1966 1967 // Floating point operations had to be 'fast' to enable the induction. 1968 FastMathFlags Flags; 1969 Flags.setFast(); 1970 1971 Value *MulOp = Builder.CreateFMul(Cv, Step); 1972 if (isa<Instruction>(MulOp)) 1973 // Have to check, MulOp may be a constant 1974 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 1975 1976 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 1977 if (isa<Instruction>(BOp)) 1978 cast<Instruction>(BOp)->setFastMathFlags(Flags); 1979 return BOp; 1980 } 1981 1982 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 1983 Instruction *EntryVal, 1984 const InductionDescriptor &ID) { 1985 // We shouldn't have to build scalar steps if we aren't vectorizing. 1986 assert(VF > 1 && "VF should be greater than one"); 1987 1988 // Get the value type and ensure it and the step have the same integer type. 1989 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 1990 assert(ScalarIVTy == Step->getType() && 1991 "Val and Step should have the same type"); 1992 1993 // We build scalar steps for both integer and floating-point induction 1994 // variables. Here, we determine the kind of arithmetic we will perform. 1995 Instruction::BinaryOps AddOp; 1996 Instruction::BinaryOps MulOp; 1997 if (ScalarIVTy->isIntegerTy()) { 1998 AddOp = Instruction::Add; 1999 MulOp = Instruction::Mul; 2000 } else { 2001 AddOp = ID.getInductionOpcode(); 2002 MulOp = Instruction::FMul; 2003 } 2004 2005 // Determine the number of scalars we need to generate for each unroll 2006 // iteration. If EntryVal is uniform, we only need to generate the first 2007 // lane. Otherwise, we generate all VF values. 2008 unsigned Lanes = 2009 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2010 : VF; 2011 // Compute the scalar steps and save the results in VectorLoopValueMap. 2012 for (unsigned Part = 0; Part < UF; ++Part) { 2013 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2014 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2015 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2016 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2017 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2018 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane); 2019 } 2020 } 2021 } 2022 2023 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2024 assert(V != Induction && "The new induction variable should not be used."); 2025 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2026 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2027 2028 // If we have a stride that is replaced by one, do it here. Defer this for 2029 // the VPlan-native path until we start running Legal checks in that path. 2030 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2031 V = ConstantInt::get(V->getType(), 1); 2032 2033 // If we have a vector mapped to this value, return it. 2034 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2035 return VectorLoopValueMap.getVectorValue(V, Part); 2036 2037 // If the value has not been vectorized, check if it has been scalarized 2038 // instead. If it has been scalarized, and we actually need the value in 2039 // vector form, we will construct the vector values on demand. 2040 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2041 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2042 2043 // If we've scalarized a value, that value should be an instruction. 2044 auto *I = cast<Instruction>(V); 2045 2046 // If we aren't vectorizing, we can just copy the scalar map values over to 2047 // the vector map. 2048 if (VF == 1) { 2049 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2050 return ScalarValue; 2051 } 2052 2053 // Get the last scalar instruction we generated for V and Part. If the value 2054 // is known to be uniform after vectorization, this corresponds to lane zero 2055 // of the Part unroll iteration. Otherwise, the last instruction is the one 2056 // we created for the last vector lane of the Part unroll iteration. 2057 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2058 auto *LastInst = cast<Instruction>( 2059 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2060 2061 // Set the insert point after the last scalarized instruction. This ensures 2062 // the insertelement sequence will directly follow the scalar definitions. 2063 auto OldIP = Builder.saveIP(); 2064 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2065 Builder.SetInsertPoint(&*NewIP); 2066 2067 // However, if we are vectorizing, we need to construct the vector values. 2068 // If the value is known to be uniform after vectorization, we can just 2069 // broadcast the scalar value corresponding to lane zero for each unroll 2070 // iteration. Otherwise, we construct the vector values using insertelement 2071 // instructions. Since the resulting vectors are stored in 2072 // VectorLoopValueMap, we will only generate the insertelements once. 2073 Value *VectorValue = nullptr; 2074 if (Cost->isUniformAfterVectorization(I, VF)) { 2075 VectorValue = getBroadcastInstrs(ScalarValue); 2076 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2077 } else { 2078 // Initialize packing with insertelements to start from undef. 2079 Value *Undef = UndefValue::get(FixedVectorType::get(V->getType(), VF)); 2080 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2081 for (unsigned Lane = 0; Lane < VF; ++Lane) 2082 packScalarIntoVectorValue(V, {Part, Lane}); 2083 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2084 } 2085 Builder.restoreIP(OldIP); 2086 return VectorValue; 2087 } 2088 2089 // If this scalar is unknown, assume that it is a constant or that it is 2090 // loop invariant. Broadcast V and save the value for future uses. 2091 Value *B = getBroadcastInstrs(V); 2092 VectorLoopValueMap.setVectorValue(V, Part, B); 2093 return B; 2094 } 2095 2096 Value * 2097 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2098 const VPIteration &Instance) { 2099 // If the value is not an instruction contained in the loop, it should 2100 // already be scalar. 2101 if (OrigLoop->isLoopInvariant(V)) 2102 return V; 2103 2104 assert(Instance.Lane > 0 2105 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2106 : true && "Uniform values only have lane zero"); 2107 2108 // If the value from the original loop has not been vectorized, it is 2109 // represented by UF x VF scalar values in the new loop. Return the requested 2110 // scalar value. 2111 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2112 return VectorLoopValueMap.getScalarValue(V, Instance); 2113 2114 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2115 // for the given unroll part. If this entry is not a vector type (i.e., the 2116 // vectorization factor is one), there is no need to generate an 2117 // extractelement instruction. 2118 auto *U = getOrCreateVectorValue(V, Instance.Part); 2119 if (!U->getType()->isVectorTy()) { 2120 assert(VF == 1 && "Value not scalarized has non-vector type"); 2121 return U; 2122 } 2123 2124 // Otherwise, the value from the original loop has been vectorized and is 2125 // represented by UF vector values. Extract and return the requested scalar 2126 // value from the appropriate vector lane. 2127 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2128 } 2129 2130 void InnerLoopVectorizer::packScalarIntoVectorValue( 2131 Value *V, const VPIteration &Instance) { 2132 assert(V != Induction && "The new induction variable should not be used."); 2133 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2134 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2135 2136 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2137 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2138 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2139 Builder.getInt32(Instance.Lane)); 2140 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2141 } 2142 2143 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2144 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2145 SmallVector<int, 8> ShuffleMask; 2146 for (unsigned i = 0; i < VF; ++i) 2147 ShuffleMask.push_back(VF - i - 1); 2148 2149 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2150 ShuffleMask, "reverse"); 2151 } 2152 2153 // Return whether we allow using masked interleave-groups (for dealing with 2154 // strided loads/stores that reside in predicated blocks, or for dealing 2155 // with gaps). 2156 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2157 // If an override option has been passed in for interleaved accesses, use it. 2158 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2159 return EnableMaskedInterleavedMemAccesses; 2160 2161 return TTI.enableMaskedInterleavedAccessVectorization(); 2162 } 2163 2164 // Try to vectorize the interleave group that \p Instr belongs to. 2165 // 2166 // E.g. Translate following interleaved load group (factor = 3): 2167 // for (i = 0; i < N; i+=3) { 2168 // R = Pic[i]; // Member of index 0 2169 // G = Pic[i+1]; // Member of index 1 2170 // B = Pic[i+2]; // Member of index 2 2171 // ... // do something to R, G, B 2172 // } 2173 // To: 2174 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2175 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2176 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2177 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2178 // 2179 // Or translate following interleaved store group (factor = 3): 2180 // for (i = 0; i < N; i+=3) { 2181 // ... do something to R, G, B 2182 // Pic[i] = R; // Member of index 0 2183 // Pic[i+1] = G; // Member of index 1 2184 // Pic[i+2] = B; // Member of index 2 2185 // } 2186 // To: 2187 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2188 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2189 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2190 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2191 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2192 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2193 const InterleaveGroup<Instruction> *Group, VPTransformState &State, 2194 VPValue *Addr, VPValue *BlockInMask) { 2195 Instruction *Instr = Group->getInsertPos(); 2196 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2197 2198 // Prepare for the vector type of the interleaved load/store. 2199 Type *ScalarTy = getMemInstValueType(Instr); 2200 unsigned InterleaveFactor = Group->getFactor(); 2201 auto *VecTy = FixedVectorType::get(ScalarTy, InterleaveFactor * VF); 2202 2203 // Prepare for the new pointers. 2204 SmallVector<Value *, 2> AddrParts; 2205 unsigned Index = Group->getIndex(Instr); 2206 2207 // TODO: extend the masked interleaved-group support to reversed access. 2208 assert((!BlockInMask || !Group->isReverse()) && 2209 "Reversed masked interleave-group not supported."); 2210 2211 // If the group is reverse, adjust the index to refer to the last vector lane 2212 // instead of the first. We adjust the index from the first vector lane, 2213 // rather than directly getting the pointer for lane VF - 1, because the 2214 // pointer operand of the interleaved access is supposed to be uniform. For 2215 // uniform instructions, we're only required to generate a value for the 2216 // first vector lane in each unroll iteration. 2217 if (Group->isReverse()) 2218 Index += (VF - 1) * Group->getFactor(); 2219 2220 for (unsigned Part = 0; Part < UF; Part++) { 2221 Value *AddrPart = State.get(Addr, {Part, 0}); 2222 setDebugLocFromInst(Builder, AddrPart); 2223 2224 // Notice current instruction could be any index. Need to adjust the address 2225 // to the member of index 0. 2226 // 2227 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2228 // b = A[i]; // Member of index 0 2229 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2230 // 2231 // E.g. A[i+1] = a; // Member of index 1 2232 // A[i] = b; // Member of index 0 2233 // A[i+2] = c; // Member of index 2 (Current instruction) 2234 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2235 2236 bool InBounds = false; 2237 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2238 InBounds = gep->isInBounds(); 2239 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2240 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2241 2242 // Cast to the vector pointer type. 2243 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2244 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2245 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2246 } 2247 2248 setDebugLocFromInst(Builder, Instr); 2249 Value *UndefVec = UndefValue::get(VecTy); 2250 2251 Value *MaskForGaps = nullptr; 2252 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2253 MaskForGaps = createBitMaskForGaps(Builder, VF, *Group); 2254 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2255 } 2256 2257 // Vectorize the interleaved load group. 2258 if (isa<LoadInst>(Instr)) { 2259 // For each unroll part, create a wide load for the group. 2260 SmallVector<Value *, 2> NewLoads; 2261 for (unsigned Part = 0; Part < UF; Part++) { 2262 Instruction *NewLoad; 2263 if (BlockInMask || MaskForGaps) { 2264 assert(useMaskedInterleavedAccesses(*TTI) && 2265 "masked interleaved groups are not allowed."); 2266 Value *GroupMask = MaskForGaps; 2267 if (BlockInMask) { 2268 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2269 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2270 Value *ShuffledMask = Builder.CreateShuffleVector( 2271 BlockInMaskPart, Undefs, 2272 createReplicatedMask(InterleaveFactor, VF), "interleaved.mask"); 2273 GroupMask = MaskForGaps 2274 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2275 MaskForGaps) 2276 : ShuffledMask; 2277 } 2278 NewLoad = 2279 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2280 GroupMask, UndefVec, "wide.masked.vec"); 2281 } 2282 else 2283 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2284 Group->getAlign(), "wide.vec"); 2285 Group->addMetadata(NewLoad); 2286 NewLoads.push_back(NewLoad); 2287 } 2288 2289 // For each member in the group, shuffle out the appropriate data from the 2290 // wide loads. 2291 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2292 Instruction *Member = Group->getMember(I); 2293 2294 // Skip the gaps in the group. 2295 if (!Member) 2296 continue; 2297 2298 auto StrideMask = createStrideMask(I, InterleaveFactor, VF); 2299 for (unsigned Part = 0; Part < UF; Part++) { 2300 Value *StridedVec = Builder.CreateShuffleVector( 2301 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2302 2303 // If this member has different type, cast the result type. 2304 if (Member->getType() != ScalarTy) { 2305 VectorType *OtherVTy = FixedVectorType::get(Member->getType(), VF); 2306 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2307 } 2308 2309 if (Group->isReverse()) 2310 StridedVec = reverseVector(StridedVec); 2311 2312 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2313 } 2314 } 2315 return; 2316 } 2317 2318 // The sub vector type for current instruction. 2319 auto *SubVT = FixedVectorType::get(ScalarTy, VF); 2320 2321 // Vectorize the interleaved store group. 2322 for (unsigned Part = 0; Part < UF; Part++) { 2323 // Collect the stored vector from each member. 2324 SmallVector<Value *, 4> StoredVecs; 2325 for (unsigned i = 0; i < InterleaveFactor; i++) { 2326 // Interleaved store group doesn't allow a gap, so each index has a member 2327 Instruction *Member = Group->getMember(i); 2328 assert(Member && "Fail to get a member from an interleaved store group"); 2329 2330 Value *StoredVec = getOrCreateVectorValue( 2331 cast<StoreInst>(Member)->getValueOperand(), Part); 2332 if (Group->isReverse()) 2333 StoredVec = reverseVector(StoredVec); 2334 2335 // If this member has different type, cast it to a unified type. 2336 2337 if (StoredVec->getType() != SubVT) 2338 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2339 2340 StoredVecs.push_back(StoredVec); 2341 } 2342 2343 // Concatenate all vectors into a wide vector. 2344 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2345 2346 // Interleave the elements in the wide vector. 2347 Value *IVec = Builder.CreateShuffleVector( 2348 WideVec, UndefVec, createInterleaveMask(VF, InterleaveFactor), 2349 "interleaved.vec"); 2350 2351 Instruction *NewStoreInstr; 2352 if (BlockInMask) { 2353 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2354 auto *Undefs = UndefValue::get(BlockInMaskPart->getType()); 2355 Value *ShuffledMask = Builder.CreateShuffleVector( 2356 BlockInMaskPart, Undefs, createReplicatedMask(InterleaveFactor, VF), 2357 "interleaved.mask"); 2358 NewStoreInstr = Builder.CreateMaskedStore( 2359 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2360 } 2361 else 2362 NewStoreInstr = 2363 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2364 2365 Group->addMetadata(NewStoreInstr); 2366 } 2367 } 2368 2369 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr, 2370 VPTransformState &State, 2371 VPValue *Addr, 2372 VPValue *StoredValue, 2373 VPValue *BlockInMask) { 2374 // Attempt to issue a wide load. 2375 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2376 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2377 2378 assert((LI || SI) && "Invalid Load/Store instruction"); 2379 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2380 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2381 2382 LoopVectorizationCostModel::InstWidening Decision = 2383 Cost->getWideningDecision(Instr, VF); 2384 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2385 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2386 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2387 "CM decision is not to widen the memory instruction"); 2388 2389 Type *ScalarDataTy = getMemInstValueType(Instr); 2390 auto *DataTy = FixedVectorType::get(ScalarDataTy, VF); 2391 const Align Alignment = getLoadStoreAlignment(Instr); 2392 2393 // Determine if the pointer operand of the access is either consecutive or 2394 // reverse consecutive. 2395 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2396 bool ConsecutiveStride = 2397 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2398 bool CreateGatherScatter = 2399 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2400 2401 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2402 // gather/scatter. Otherwise Decision should have been to Scalarize. 2403 assert((ConsecutiveStride || CreateGatherScatter) && 2404 "The instruction should be scalarized"); 2405 (void)ConsecutiveStride; 2406 2407 VectorParts BlockInMaskParts(UF); 2408 bool isMaskRequired = BlockInMask; 2409 if (isMaskRequired) 2410 for (unsigned Part = 0; Part < UF; ++Part) 2411 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2412 2413 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2414 // Calculate the pointer for the specific unroll-part. 2415 GetElementPtrInst *PartPtr = nullptr; 2416 2417 bool InBounds = false; 2418 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2419 InBounds = gep->isInBounds(); 2420 2421 if (Reverse) { 2422 // If the address is consecutive but reversed, then the 2423 // wide store needs to start at the last vector element. 2424 PartPtr = cast<GetElementPtrInst>( 2425 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(-Part * VF))); 2426 PartPtr->setIsInBounds(InBounds); 2427 PartPtr = cast<GetElementPtrInst>( 2428 Builder.CreateGEP(ScalarDataTy, PartPtr, Builder.getInt32(1 - VF))); 2429 PartPtr->setIsInBounds(InBounds); 2430 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2431 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2432 } else { 2433 PartPtr = cast<GetElementPtrInst>( 2434 Builder.CreateGEP(ScalarDataTy, Ptr, Builder.getInt32(Part * VF))); 2435 PartPtr->setIsInBounds(InBounds); 2436 } 2437 2438 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2439 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2440 }; 2441 2442 // Handle Stores: 2443 if (SI) { 2444 setDebugLocFromInst(Builder, SI); 2445 2446 for (unsigned Part = 0; Part < UF; ++Part) { 2447 Instruction *NewSI = nullptr; 2448 Value *StoredVal = State.get(StoredValue, Part); 2449 if (CreateGatherScatter) { 2450 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2451 Value *VectorGep = State.get(Addr, Part); 2452 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2453 MaskPart); 2454 } else { 2455 if (Reverse) { 2456 // If we store to reverse consecutive memory locations, then we need 2457 // to reverse the order of elements in the stored value. 2458 StoredVal = reverseVector(StoredVal); 2459 // We don't want to update the value in the map as it might be used in 2460 // another expression. So don't call resetVectorValue(StoredVal). 2461 } 2462 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2463 if (isMaskRequired) 2464 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2465 BlockInMaskParts[Part]); 2466 else 2467 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2468 } 2469 addMetadata(NewSI, SI); 2470 } 2471 return; 2472 } 2473 2474 // Handle loads. 2475 assert(LI && "Must have a load instruction"); 2476 setDebugLocFromInst(Builder, LI); 2477 for (unsigned Part = 0; Part < UF; ++Part) { 2478 Value *NewLI; 2479 if (CreateGatherScatter) { 2480 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2481 Value *VectorGep = State.get(Addr, Part); 2482 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2483 nullptr, "wide.masked.gather"); 2484 addMetadata(NewLI, LI); 2485 } else { 2486 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, {0, 0})); 2487 if (isMaskRequired) 2488 NewLI = Builder.CreateMaskedLoad( 2489 VecPtr, Alignment, BlockInMaskParts[Part], UndefValue::get(DataTy), 2490 "wide.masked.load"); 2491 else 2492 NewLI = 2493 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2494 2495 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2496 addMetadata(NewLI, LI); 2497 if (Reverse) 2498 NewLI = reverseVector(NewLI); 2499 } 2500 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 2501 } 2502 } 2503 2504 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPUser &User, 2505 const VPIteration &Instance, 2506 bool IfPredicateInstr, 2507 VPTransformState &State) { 2508 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2509 2510 setDebugLocFromInst(Builder, Instr); 2511 2512 // Does this instruction return a value ? 2513 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2514 2515 Instruction *Cloned = Instr->clone(); 2516 if (!IsVoidRetTy) 2517 Cloned->setName(Instr->getName() + ".cloned"); 2518 2519 // Replace the operands of the cloned instructions with their scalar 2520 // equivalents in the new loop. 2521 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2522 auto *NewOp = State.get(User.getOperand(op), Instance); 2523 Cloned->setOperand(op, NewOp); 2524 } 2525 addNewMetadata(Cloned, Instr); 2526 2527 // Place the cloned scalar in the new loop. 2528 Builder.Insert(Cloned); 2529 2530 // Add the cloned scalar to the scalar map entry. 2531 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 2532 2533 // If we just cloned a new assumption, add it the assumption cache. 2534 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2535 if (II->getIntrinsicID() == Intrinsic::assume) 2536 AC->registerAssumption(II); 2537 2538 // End if-block. 2539 if (IfPredicateInstr) 2540 PredicatedInstructions.push_back(Cloned); 2541 } 2542 2543 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2544 Value *End, Value *Step, 2545 Instruction *DL) { 2546 BasicBlock *Header = L->getHeader(); 2547 BasicBlock *Latch = L->getLoopLatch(); 2548 // As we're just creating this loop, it's possible no latch exists 2549 // yet. If so, use the header as this will be a single block loop. 2550 if (!Latch) 2551 Latch = Header; 2552 2553 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2554 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2555 setDebugLocFromInst(Builder, OldInst); 2556 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2557 2558 Builder.SetInsertPoint(Latch->getTerminator()); 2559 setDebugLocFromInst(Builder, OldInst); 2560 2561 // Create i+1 and fill the PHINode. 2562 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2563 Induction->addIncoming(Start, L->getLoopPreheader()); 2564 Induction->addIncoming(Next, Latch); 2565 // Create the compare. 2566 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2567 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2568 2569 // Now we have two terminators. Remove the old one from the block. 2570 Latch->getTerminator()->eraseFromParent(); 2571 2572 return Induction; 2573 } 2574 2575 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2576 if (TripCount) 2577 return TripCount; 2578 2579 assert(L && "Create Trip Count for null loop."); 2580 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2581 // Find the loop boundaries. 2582 ScalarEvolution *SE = PSE.getSE(); 2583 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2584 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2585 "Invalid loop count"); 2586 2587 Type *IdxTy = Legal->getWidestInductionType(); 2588 assert(IdxTy && "No type for induction"); 2589 2590 // The exit count might have the type of i64 while the phi is i32. This can 2591 // happen if we have an induction variable that is sign extended before the 2592 // compare. The only way that we get a backedge taken count is that the 2593 // induction variable was signed and as such will not overflow. In such a case 2594 // truncation is legal. 2595 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2596 IdxTy->getPrimitiveSizeInBits()) 2597 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2598 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2599 2600 // Get the total trip count from the count by adding 1. 2601 const SCEV *ExitCount = SE->getAddExpr( 2602 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2603 2604 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2605 2606 // Expand the trip count and place the new instructions in the preheader. 2607 // Notice that the pre-header does not change, only the loop body. 2608 SCEVExpander Exp(*SE, DL, "induction"); 2609 2610 // Count holds the overall loop count (N). 2611 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2612 L->getLoopPreheader()->getTerminator()); 2613 2614 if (TripCount->getType()->isPointerTy()) 2615 TripCount = 2616 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2617 L->getLoopPreheader()->getTerminator()); 2618 2619 return TripCount; 2620 } 2621 2622 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2623 if (VectorTripCount) 2624 return VectorTripCount; 2625 2626 Value *TC = getOrCreateTripCount(L); 2627 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2628 2629 Type *Ty = TC->getType(); 2630 Constant *Step = ConstantInt::get(Ty, VF * UF); 2631 2632 // If the tail is to be folded by masking, round the number of iterations N 2633 // up to a multiple of Step instead of rounding down. This is done by first 2634 // adding Step-1 and then rounding down. Note that it's ok if this addition 2635 // overflows: the vector induction variable will eventually wrap to zero given 2636 // that it starts at zero and its Step is a power of two; the loop will then 2637 // exit, with the last early-exit vector comparison also producing all-true. 2638 if (Cost->foldTailByMasking()) { 2639 assert(isPowerOf2_32(VF * UF) && 2640 "VF*UF must be a power of 2 when folding tail by masking"); 2641 TC = Builder.CreateAdd(TC, ConstantInt::get(Ty, VF * UF - 1), "n.rnd.up"); 2642 } 2643 2644 // Now we need to generate the expression for the part of the loop that the 2645 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2646 // iterations are not required for correctness, or N - Step, otherwise. Step 2647 // is equal to the vectorization factor (number of SIMD elements) times the 2648 // unroll factor (number of SIMD instructions). 2649 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2650 2651 // If there is a non-reversed interleaved group that may speculatively access 2652 // memory out-of-bounds, we need to ensure that there will be at least one 2653 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2654 // the trip count, we set the remainder to be equal to the step. If the step 2655 // does not evenly divide the trip count, no adjustment is necessary since 2656 // there will already be scalar iterations. Note that the minimum iterations 2657 // check ensures that N >= Step. 2658 if (VF > 1 && Cost->requiresScalarEpilogue()) { 2659 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2660 R = Builder.CreateSelect(IsZero, Step, R); 2661 } 2662 2663 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2664 2665 return VectorTripCount; 2666 } 2667 2668 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2669 const DataLayout &DL) { 2670 // Verify that V is a vector type with same number of elements as DstVTy. 2671 unsigned VF = DstVTy->getNumElements(); 2672 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 2673 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2674 Type *SrcElemTy = SrcVecTy->getElementType(); 2675 Type *DstElemTy = DstVTy->getElementType(); 2676 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2677 "Vector elements must have same size"); 2678 2679 // Do a direct cast if element types are castable. 2680 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2681 return Builder.CreateBitOrPointerCast(V, DstVTy); 2682 } 2683 // V cannot be directly casted to desired vector type. 2684 // May happen when V is a floating point vector but DstVTy is a vector of 2685 // pointers or vice-versa. Handle this using a two-step bitcast using an 2686 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2687 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2688 "Only one type should be a pointer type"); 2689 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2690 "Only one type should be a floating point type"); 2691 Type *IntTy = 2692 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2693 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2694 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2695 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 2696 } 2697 2698 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2699 BasicBlock *Bypass) { 2700 Value *Count = getOrCreateTripCount(L); 2701 // Reuse existing vector loop preheader for TC checks. 2702 // Note that new preheader block is generated for vector loop. 2703 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2704 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2705 2706 // Generate code to check if the loop's trip count is less than VF * UF, or 2707 // equal to it in case a scalar epilogue is required; this implies that the 2708 // vector trip count is zero. This check also covers the case where adding one 2709 // to the backedge-taken count overflowed leading to an incorrect trip count 2710 // of zero. In this case we will also jump to the scalar loop. 2711 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 2712 : ICmpInst::ICMP_ULT; 2713 2714 // If tail is to be folded, vector loop takes care of all iterations. 2715 Value *CheckMinIters = Builder.getFalse(); 2716 if (!Cost->foldTailByMasking()) 2717 CheckMinIters = Builder.CreateICmp( 2718 P, Count, ConstantInt::get(Count->getType(), VF * UF), 2719 "min.iters.check"); 2720 2721 // Create new preheader for vector loop. 2722 LoopVectorPreHeader = 2723 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2724 "vector.ph"); 2725 2726 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2727 DT->getNode(Bypass)->getIDom()) && 2728 "TC check is expected to dominate Bypass"); 2729 2730 // Update dominator for Bypass & LoopExit. 2731 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2732 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2733 2734 ReplaceInstWithInst( 2735 TCCheckBlock->getTerminator(), 2736 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 2737 LoopBypassBlocks.push_back(TCCheckBlock); 2738 } 2739 2740 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 2741 // Reuse existing vector loop preheader for SCEV checks. 2742 // Note that new preheader block is generated for vector loop. 2743 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 2744 2745 // Generate the code to check that the SCEV assumptions that we made. 2746 // We want the new basic block to start at the first instruction in a 2747 // sequence of instructions that form a check. 2748 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 2749 "scev.check"); 2750 Value *SCEVCheck = Exp.expandCodeForPredicate( 2751 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 2752 2753 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 2754 if (C->isZero()) 2755 return; 2756 2757 assert(!SCEVCheckBlock->getParent()->hasOptSize() && 2758 "Cannot SCEV check stride or overflow when optimizing for size"); 2759 2760 SCEVCheckBlock->setName("vector.scevcheck"); 2761 // Create new preheader for vector loop. 2762 LoopVectorPreHeader = 2763 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 2764 nullptr, "vector.ph"); 2765 2766 // Update dominator only if this is first RT check. 2767 if (LoopBypassBlocks.empty()) { 2768 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 2769 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 2770 } 2771 2772 ReplaceInstWithInst( 2773 SCEVCheckBlock->getTerminator(), 2774 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 2775 LoopBypassBlocks.push_back(SCEVCheckBlock); 2776 AddedSafetyChecks = true; 2777 } 2778 2779 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 2780 // VPlan-native path does not do any analysis for runtime checks currently. 2781 if (EnableVPlanNativePath) 2782 return; 2783 2784 // Reuse existing vector loop preheader for runtime memory checks. 2785 // Note that new preheader block is generated for vector loop. 2786 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 2787 2788 // Generate the code that checks in runtime if arrays overlap. We put the 2789 // checks into a separate block to make the more common case of few elements 2790 // faster. 2791 auto *LAI = Legal->getLAI(); 2792 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 2793 if (!RtPtrChecking.Need) 2794 return; 2795 Instruction *FirstCheckInst; 2796 Instruction *MemRuntimeCheck; 2797 std::tie(FirstCheckInst, MemRuntimeCheck) = 2798 addRuntimeChecks(MemCheckBlock->getTerminator(), OrigLoop, 2799 RtPtrChecking.getChecks(), RtPtrChecking.getSE()); 2800 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 2801 "claimed checks are required"); 2802 2803 if (MemCheckBlock->getParent()->hasOptSize()) { 2804 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 2805 "Cannot emit memory checks when optimizing for size, unless forced " 2806 "to vectorize."); 2807 ORE->emit([&]() { 2808 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 2809 L->getStartLoc(), L->getHeader()) 2810 << "Code-size may be reduced by not forcing " 2811 "vectorization, or by source-code modifications " 2812 "eliminating the need for runtime checks " 2813 "(e.g., adding 'restrict')."; 2814 }); 2815 } 2816 2817 MemCheckBlock->setName("vector.memcheck"); 2818 // Create new preheader for vector loop. 2819 LoopVectorPreHeader = 2820 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 2821 "vector.ph"); 2822 2823 // Update dominator only if this is first RT check. 2824 if (LoopBypassBlocks.empty()) { 2825 DT->changeImmediateDominator(Bypass, MemCheckBlock); 2826 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 2827 } 2828 2829 ReplaceInstWithInst( 2830 MemCheckBlock->getTerminator(), 2831 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheck)); 2832 LoopBypassBlocks.push_back(MemCheckBlock); 2833 AddedSafetyChecks = true; 2834 2835 // We currently don't use LoopVersioning for the actual loop cloning but we 2836 // still use it to add the noalias metadata. 2837 LVer = std::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 2838 PSE.getSE()); 2839 LVer->prepareNoAliasMetadata(); 2840 } 2841 2842 Value *InnerLoopVectorizer::emitTransformedIndex( 2843 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 2844 const InductionDescriptor &ID) const { 2845 2846 SCEVExpander Exp(*SE, DL, "induction"); 2847 auto Step = ID.getStep(); 2848 auto StartValue = ID.getStartValue(); 2849 assert(Index->getType() == Step->getType() && 2850 "Index type does not match StepValue type"); 2851 2852 // Note: the IR at this point is broken. We cannot use SE to create any new 2853 // SCEV and then expand it, hoping that SCEV's simplification will give us 2854 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2855 // lead to various SCEV crashes. So all we can do is to use builder and rely 2856 // on InstCombine for future simplifications. Here we handle some trivial 2857 // cases only. 2858 auto CreateAdd = [&B](Value *X, Value *Y) { 2859 assert(X->getType() == Y->getType() && "Types don't match!"); 2860 if (auto *CX = dyn_cast<ConstantInt>(X)) 2861 if (CX->isZero()) 2862 return Y; 2863 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2864 if (CY->isZero()) 2865 return X; 2866 return B.CreateAdd(X, Y); 2867 }; 2868 2869 auto CreateMul = [&B](Value *X, Value *Y) { 2870 assert(X->getType() == Y->getType() && "Types don't match!"); 2871 if (auto *CX = dyn_cast<ConstantInt>(X)) 2872 if (CX->isOne()) 2873 return Y; 2874 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2875 if (CY->isOne()) 2876 return X; 2877 return B.CreateMul(X, Y); 2878 }; 2879 2880 switch (ID.getKind()) { 2881 case InductionDescriptor::IK_IntInduction: { 2882 assert(Index->getType() == StartValue->getType() && 2883 "Index type does not match StartValue type"); 2884 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 2885 return B.CreateSub(StartValue, Index); 2886 auto *Offset = CreateMul( 2887 Index, Exp.expandCodeFor(Step, Index->getType(), &*B.GetInsertPoint())); 2888 return CreateAdd(StartValue, Offset); 2889 } 2890 case InductionDescriptor::IK_PtrInduction: { 2891 assert(isa<SCEVConstant>(Step) && 2892 "Expected constant step for pointer induction"); 2893 return B.CreateGEP( 2894 StartValue->getType()->getPointerElementType(), StartValue, 2895 CreateMul(Index, Exp.expandCodeFor(Step, Index->getType(), 2896 &*B.GetInsertPoint()))); 2897 } 2898 case InductionDescriptor::IK_FpInduction: { 2899 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2900 auto InductionBinOp = ID.getInductionBinOp(); 2901 assert(InductionBinOp && 2902 (InductionBinOp->getOpcode() == Instruction::FAdd || 2903 InductionBinOp->getOpcode() == Instruction::FSub) && 2904 "Original bin op should be defined for FP induction"); 2905 2906 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 2907 2908 // Floating point operations had to be 'fast' to enable the induction. 2909 FastMathFlags Flags; 2910 Flags.setFast(); 2911 2912 Value *MulExp = B.CreateFMul(StepValue, Index); 2913 if (isa<Instruction>(MulExp)) 2914 // We have to check, the MulExp may be a constant. 2915 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 2916 2917 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2918 "induction"); 2919 if (isa<Instruction>(BOp)) 2920 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2921 2922 return BOp; 2923 } 2924 case InductionDescriptor::IK_NoInduction: 2925 return nullptr; 2926 } 2927 llvm_unreachable("invalid enum"); 2928 } 2929 2930 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 2931 /* 2932 In this function we generate a new loop. The new loop will contain 2933 the vectorized instructions while the old loop will continue to run the 2934 scalar remainder. 2935 2936 [ ] <-- loop iteration number check. 2937 / | 2938 / v 2939 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2940 | / | 2941 | / v 2942 || [ ] <-- vector pre header. 2943 |/ | 2944 | v 2945 | [ ] \ 2946 | [ ]_| <-- vector loop. 2947 | | 2948 | v 2949 | -[ ] <--- middle-block. 2950 | / | 2951 | / v 2952 -|- >[ ] <--- new preheader. 2953 | | 2954 | v 2955 | [ ] \ 2956 | [ ]_| <-- old scalar loop to handle remainder. 2957 \ | 2958 \ v 2959 >[ ] <-- exit block. 2960 ... 2961 */ 2962 2963 MDNode *OrigLoopID = OrigLoop->getLoopID(); 2964 2965 // Some loops have a single integer induction variable, while other loops 2966 // don't. One example is c++ iterators that often have multiple pointer 2967 // induction variables. In the code below we also support a case where we 2968 // don't have a single induction variable. 2969 // 2970 // We try to obtain an induction variable from the original loop as hard 2971 // as possible. However if we don't find one that: 2972 // - is an integer 2973 // - counts from zero, stepping by one 2974 // - is the size of the widest induction variable type 2975 // then we create a new one. 2976 OldInduction = Legal->getPrimaryInduction(); 2977 Type *IdxTy = Legal->getWidestInductionType(); 2978 2979 // Split the single block loop into the two loop structure described above. 2980 LoopScalarBody = OrigLoop->getHeader(); 2981 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 2982 LoopExitBlock = OrigLoop->getExitBlock(); 2983 assert(LoopExitBlock && "Must have an exit block"); 2984 assert(LoopVectorPreHeader && "Invalid loop structure"); 2985 2986 LoopMiddleBlock = 2987 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2988 LI, nullptr, "middle.block"); 2989 LoopScalarPreHeader = 2990 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 2991 nullptr, "scalar.ph"); 2992 // We intentionally don't let SplitBlock to update LoopInfo since 2993 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 2994 // LoopVectorBody is explicitly added to the correct place few lines later. 2995 LoopVectorBody = 2996 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 2997 nullptr, nullptr, "vector.body"); 2998 2999 // Update dominator for loop exit. 3000 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3001 3002 // Create and register the new vector loop. 3003 Loop *Lp = LI->AllocateLoop(); 3004 Loop *ParentLoop = OrigLoop->getParentLoop(); 3005 3006 // Insert the new loop into the loop nest and register the new basic blocks 3007 // before calling any utilities such as SCEV that require valid LoopInfo. 3008 if (ParentLoop) { 3009 ParentLoop->addChildLoop(Lp); 3010 } else { 3011 LI->addTopLevelLoop(Lp); 3012 } 3013 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3014 3015 // Find the loop boundaries. 3016 Value *Count = getOrCreateTripCount(Lp); 3017 3018 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3019 3020 // Now, compare the new count to zero. If it is zero skip the vector loop and 3021 // jump to the scalar loop. This check also covers the case where the 3022 // backedge-taken count is uint##_max: adding one to it will overflow leading 3023 // to an incorrect trip count of zero. In this (rare) case we will also jump 3024 // to the scalar loop. 3025 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3026 3027 // Generate the code to check any assumptions that we've made for SCEV 3028 // expressions. 3029 emitSCEVChecks(Lp, LoopScalarPreHeader); 3030 3031 // Generate the code that checks in runtime if arrays overlap. We put the 3032 // checks into a separate block to make the more common case of few elements 3033 // faster. 3034 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3035 3036 // Generate the induction variable. 3037 // The loop step is equal to the vectorization factor (num of SIMD elements) 3038 // times the unroll factor (num of SIMD instructions). 3039 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3040 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3041 Induction = 3042 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3043 getDebugLocFromInstOrOperands(OldInduction)); 3044 3045 // We are going to resume the execution of the scalar loop. 3046 // Go over all of the induction variables that we found and fix the 3047 // PHIs that are left in the scalar version of the loop. 3048 // The starting values of PHI nodes depend on the counter of the last 3049 // iteration in the vectorized loop. 3050 // If we come from a bypass edge then we need to start from the original 3051 // start value. 3052 3053 // This variable saves the new starting index for the scalar loop. It is used 3054 // to test if there are any tail iterations left once the vector loop has 3055 // completed. 3056 for (auto &InductionEntry : Legal->getInductionVars()) { 3057 PHINode *OrigPhi = InductionEntry.first; 3058 InductionDescriptor II = InductionEntry.second; 3059 3060 // Create phi nodes to merge from the backedge-taken check block. 3061 PHINode *BCResumeVal = 3062 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3063 LoopScalarPreHeader->getTerminator()); 3064 // Copy original phi DL over to the new one. 3065 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3066 Value *&EndValue = IVEndValues[OrigPhi]; 3067 if (OrigPhi == OldInduction) { 3068 // We know what the end value is. 3069 EndValue = CountRoundDown; 3070 } else { 3071 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3072 Type *StepType = II.getStep()->getType(); 3073 Instruction::CastOps CastOp = 3074 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3075 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3076 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3077 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3078 EndValue->setName("ind.end"); 3079 } 3080 3081 // The new PHI merges the original incoming value, in case of a bypass, 3082 // or the value at the end of the vectorized loop. 3083 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3084 3085 // Fix the scalar body counter (PHI node). 3086 // The old induction's phi node in the scalar body needs the truncated 3087 // value. 3088 for (BasicBlock *BB : LoopBypassBlocks) 3089 BCResumeVal->addIncoming(II.getStartValue(), BB); 3090 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3091 } 3092 3093 // We need the OrigLoop (scalar loop part) latch terminator to help 3094 // produce correct debug info for the middle block BB instructions. 3095 // The legality check stage guarantees that the loop will have a single 3096 // latch. 3097 assert(isa<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()) && 3098 "Scalar loop latch terminator isn't a branch"); 3099 BranchInst *ScalarLatchBr = 3100 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator()); 3101 3102 // Add a check in the middle block to see if we have completed 3103 // all of the iterations in the first vector loop. 3104 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3105 // If tail is to be folded, we know we don't need to run the remainder. 3106 Value *CmpN = Builder.getTrue(); 3107 if (!Cost->foldTailByMasking()) { 3108 CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3109 CountRoundDown, "cmp.n", 3110 LoopMiddleBlock->getTerminator()); 3111 3112 // Here we use the same DebugLoc as the scalar loop latch branch instead 3113 // of the corresponding compare because they may have ended up with 3114 // different line numbers and we want to avoid awkward line stepping while 3115 // debugging. Eg. if the compare has got a line number inside the loop. 3116 cast<Instruction>(CmpN)->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3117 } 3118 3119 BranchInst *BrInst = 3120 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, CmpN); 3121 BrInst->setDebugLoc(ScalarLatchBr->getDebugLoc()); 3122 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3123 3124 // Get ready to start creating new instructions into the vectorized body. 3125 assert(LoopVectorPreHeader == Lp->getLoopPreheader() && 3126 "Inconsistent vector loop preheader"); 3127 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3128 3129 Optional<MDNode *> VectorizedLoopID = 3130 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3131 LLVMLoopVectorizeFollowupVectorized}); 3132 if (VectorizedLoopID.hasValue()) { 3133 Lp->setLoopID(VectorizedLoopID.getValue()); 3134 3135 // Do not setAlreadyVectorized if loop attributes have been defined 3136 // explicitly. 3137 return LoopVectorPreHeader; 3138 } 3139 3140 // Keep all loop hints from the original loop on the vector loop (we'll 3141 // replace the vectorizer-specific hints below). 3142 if (MDNode *LID = OrigLoop->getLoopID()) 3143 Lp->setLoopID(LID); 3144 3145 LoopVectorizeHints Hints(Lp, true, *ORE); 3146 Hints.setAlreadyVectorized(); 3147 3148 #ifdef EXPENSIVE_CHECKS 3149 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3150 LI->verify(*DT); 3151 #endif 3152 3153 return LoopVectorPreHeader; 3154 } 3155 3156 // Fix up external users of the induction variable. At this point, we are 3157 // in LCSSA form, with all external PHIs that use the IV having one input value, 3158 // coming from the remainder loop. We need those PHIs to also have a correct 3159 // value for the IV when arriving directly from the middle block. 3160 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3161 const InductionDescriptor &II, 3162 Value *CountRoundDown, Value *EndValue, 3163 BasicBlock *MiddleBlock) { 3164 // There are two kinds of external IV usages - those that use the value 3165 // computed in the last iteration (the PHI) and those that use the penultimate 3166 // value (the value that feeds into the phi from the loop latch). 3167 // We allow both, but they, obviously, have different values. 3168 3169 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3170 3171 DenseMap<Value *, Value *> MissingVals; 3172 3173 // An external user of the last iteration's value should see the value that 3174 // the remainder loop uses to initialize its own IV. 3175 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3176 for (User *U : PostInc->users()) { 3177 Instruction *UI = cast<Instruction>(U); 3178 if (!OrigLoop->contains(UI)) { 3179 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3180 MissingVals[UI] = EndValue; 3181 } 3182 } 3183 3184 // An external user of the penultimate value need to see EndValue - Step. 3185 // The simplest way to get this is to recompute it from the constituent SCEVs, 3186 // that is Start + (Step * (CRD - 1)). 3187 for (User *U : OrigPhi->users()) { 3188 auto *UI = cast<Instruction>(U); 3189 if (!OrigLoop->contains(UI)) { 3190 const DataLayout &DL = 3191 OrigLoop->getHeader()->getModule()->getDataLayout(); 3192 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3193 3194 IRBuilder<> B(MiddleBlock->getTerminator()); 3195 Value *CountMinusOne = B.CreateSub( 3196 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3197 Value *CMO = 3198 !II.getStep()->getType()->isIntegerTy() 3199 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3200 II.getStep()->getType()) 3201 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3202 CMO->setName("cast.cmo"); 3203 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3204 Escape->setName("ind.escape"); 3205 MissingVals[UI] = Escape; 3206 } 3207 } 3208 3209 for (auto &I : MissingVals) { 3210 PHINode *PHI = cast<PHINode>(I.first); 3211 // One corner case we have to handle is two IVs "chasing" each-other, 3212 // that is %IV2 = phi [...], [ %IV1, %latch ] 3213 // In this case, if IV1 has an external use, we need to avoid adding both 3214 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3215 // don't already have an incoming value for the middle block. 3216 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3217 PHI->addIncoming(I.second, MiddleBlock); 3218 } 3219 } 3220 3221 namespace { 3222 3223 struct CSEDenseMapInfo { 3224 static bool canHandle(const Instruction *I) { 3225 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3226 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3227 } 3228 3229 static inline Instruction *getEmptyKey() { 3230 return DenseMapInfo<Instruction *>::getEmptyKey(); 3231 } 3232 3233 static inline Instruction *getTombstoneKey() { 3234 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3235 } 3236 3237 static unsigned getHashValue(const Instruction *I) { 3238 assert(canHandle(I) && "Unknown instruction!"); 3239 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3240 I->value_op_end())); 3241 } 3242 3243 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3244 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3245 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3246 return LHS == RHS; 3247 return LHS->isIdenticalTo(RHS); 3248 } 3249 }; 3250 3251 } // end anonymous namespace 3252 3253 ///Perform cse of induction variable instructions. 3254 static void cse(BasicBlock *BB) { 3255 // Perform simple cse. 3256 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3257 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3258 Instruction *In = &*I++; 3259 3260 if (!CSEDenseMapInfo::canHandle(In)) 3261 continue; 3262 3263 // Check if we can replace this instruction with any of the 3264 // visited instructions. 3265 if (Instruction *V = CSEMap.lookup(In)) { 3266 In->replaceAllUsesWith(V); 3267 In->eraseFromParent(); 3268 continue; 3269 } 3270 3271 CSEMap[In] = In; 3272 } 3273 } 3274 3275 unsigned LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, 3276 unsigned VF, 3277 bool &NeedToScalarize) { 3278 Function *F = CI->getCalledFunction(); 3279 Type *ScalarRetTy = CI->getType(); 3280 SmallVector<Type *, 4> Tys, ScalarTys; 3281 for (auto &ArgOp : CI->arg_operands()) 3282 ScalarTys.push_back(ArgOp->getType()); 3283 3284 // Estimate cost of scalarized vector call. The source operands are assumed 3285 // to be vectors, so we need to extract individual elements from there, 3286 // execute VF scalar calls, and then gather the result into the vector return 3287 // value. 3288 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, 3289 TTI::TCK_RecipThroughput); 3290 if (VF == 1) 3291 return ScalarCallCost; 3292 3293 // Compute corresponding vector type for return value and arguments. 3294 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3295 for (Type *ScalarTy : ScalarTys) 3296 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3297 3298 // Compute costs of unpacking argument values for the scalar calls and 3299 // packing the return values to a vector. 3300 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF); 3301 3302 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3303 3304 // If we can't emit a vector call for this function, then the currently found 3305 // cost is the cost we need to return. 3306 NeedToScalarize = true; 3307 VFShape Shape = VFShape::get(*CI, {VF, false}, false /*HasGlobalPred*/); 3308 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3309 3310 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3311 return Cost; 3312 3313 // If the corresponding vector cost is cheaper, return its cost. 3314 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys, 3315 TTI::TCK_RecipThroughput); 3316 if (VectorCallCost < Cost) { 3317 NeedToScalarize = false; 3318 return VectorCallCost; 3319 } 3320 return Cost; 3321 } 3322 3323 unsigned LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3324 unsigned VF) { 3325 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3326 assert(ID && "Expected intrinsic call!"); 3327 3328 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3329 return TTI.getIntrinsicInstrCost(CostAttrs, 3330 TargetTransformInfo::TCK_RecipThroughput); 3331 } 3332 3333 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3334 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3335 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3336 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3337 } 3338 3339 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3340 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3341 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3342 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3343 } 3344 3345 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3346 // For every instruction `I` in MinBWs, truncate the operands, create a 3347 // truncated version of `I` and reextend its result. InstCombine runs 3348 // later and will remove any ext/trunc pairs. 3349 SmallPtrSet<Value *, 4> Erased; 3350 for (const auto &KV : Cost->getMinimalBitwidths()) { 3351 // If the value wasn't vectorized, we must maintain the original scalar 3352 // type. The absence of the value from VectorLoopValueMap indicates that it 3353 // wasn't vectorized. 3354 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3355 continue; 3356 for (unsigned Part = 0; Part < UF; ++Part) { 3357 Value *I = getOrCreateVectorValue(KV.first, Part); 3358 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3359 continue; 3360 Type *OriginalTy = I->getType(); 3361 Type *ScalarTruncatedTy = 3362 IntegerType::get(OriginalTy->getContext(), KV.second); 3363 auto *TruncatedTy = FixedVectorType::get( 3364 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getNumElements()); 3365 if (TruncatedTy == OriginalTy) 3366 continue; 3367 3368 IRBuilder<> B(cast<Instruction>(I)); 3369 auto ShrinkOperand = [&](Value *V) -> Value * { 3370 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3371 if (ZI->getSrcTy() == TruncatedTy) 3372 return ZI->getOperand(0); 3373 return B.CreateZExtOrTrunc(V, TruncatedTy); 3374 }; 3375 3376 // The actual instruction modification depends on the instruction type, 3377 // unfortunately. 3378 Value *NewI = nullptr; 3379 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3380 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3381 ShrinkOperand(BO->getOperand(1))); 3382 3383 // Any wrapping introduced by shrinking this operation shouldn't be 3384 // considered undefined behavior. So, we can't unconditionally copy 3385 // arithmetic wrapping flags to NewI. 3386 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3387 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3388 NewI = 3389 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3390 ShrinkOperand(CI->getOperand(1))); 3391 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3392 NewI = B.CreateSelect(SI->getCondition(), 3393 ShrinkOperand(SI->getTrueValue()), 3394 ShrinkOperand(SI->getFalseValue())); 3395 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3396 switch (CI->getOpcode()) { 3397 default: 3398 llvm_unreachable("Unhandled cast!"); 3399 case Instruction::Trunc: 3400 NewI = ShrinkOperand(CI->getOperand(0)); 3401 break; 3402 case Instruction::SExt: 3403 NewI = B.CreateSExtOrTrunc( 3404 CI->getOperand(0), 3405 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3406 break; 3407 case Instruction::ZExt: 3408 NewI = B.CreateZExtOrTrunc( 3409 CI->getOperand(0), 3410 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3411 break; 3412 } 3413 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3414 auto Elements0 = 3415 cast<VectorType>(SI->getOperand(0)->getType())->getNumElements(); 3416 auto *O0 = B.CreateZExtOrTrunc( 3417 SI->getOperand(0), 3418 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3419 auto Elements1 = 3420 cast<VectorType>(SI->getOperand(1)->getType())->getNumElements(); 3421 auto *O1 = B.CreateZExtOrTrunc( 3422 SI->getOperand(1), 3423 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3424 3425 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3426 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3427 // Don't do anything with the operands, just extend the result. 3428 continue; 3429 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3430 auto Elements = 3431 cast<VectorType>(IE->getOperand(0)->getType())->getNumElements(); 3432 auto *O0 = B.CreateZExtOrTrunc( 3433 IE->getOperand(0), 3434 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3435 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3436 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3437 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3438 auto Elements = 3439 cast<VectorType>(EE->getOperand(0)->getType())->getNumElements(); 3440 auto *O0 = B.CreateZExtOrTrunc( 3441 EE->getOperand(0), 3442 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3443 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3444 } else { 3445 // If we don't know what to do, be conservative and don't do anything. 3446 continue; 3447 } 3448 3449 // Lastly, extend the result. 3450 NewI->takeName(cast<Instruction>(I)); 3451 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3452 I->replaceAllUsesWith(Res); 3453 cast<Instruction>(I)->eraseFromParent(); 3454 Erased.insert(I); 3455 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3456 } 3457 } 3458 3459 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3460 for (const auto &KV : Cost->getMinimalBitwidths()) { 3461 // If the value wasn't vectorized, we must maintain the original scalar 3462 // type. The absence of the value from VectorLoopValueMap indicates that it 3463 // wasn't vectorized. 3464 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3465 continue; 3466 for (unsigned Part = 0; Part < UF; ++Part) { 3467 Value *I = getOrCreateVectorValue(KV.first, Part); 3468 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3469 if (Inst && Inst->use_empty()) { 3470 Value *NewI = Inst->getOperand(0); 3471 Inst->eraseFromParent(); 3472 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3473 } 3474 } 3475 } 3476 } 3477 3478 void InnerLoopVectorizer::fixVectorizedLoop() { 3479 // Insert truncates and extends for any truncated instructions as hints to 3480 // InstCombine. 3481 if (VF > 1) 3482 truncateToMinimalBitwidths(); 3483 3484 // Fix widened non-induction PHIs by setting up the PHI operands. 3485 if (OrigPHIsToFix.size()) { 3486 assert(EnableVPlanNativePath && 3487 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3488 fixNonInductionPHIs(); 3489 } 3490 3491 // At this point every instruction in the original loop is widened to a 3492 // vector form. Now we need to fix the recurrences in the loop. These PHI 3493 // nodes are currently empty because we did not want to introduce cycles. 3494 // This is the second stage of vectorizing recurrences. 3495 fixCrossIterationPHIs(); 3496 3497 // Forget the original basic block. 3498 PSE.getSE()->forgetLoop(OrigLoop); 3499 3500 // Fix-up external users of the induction variables. 3501 for (auto &Entry : Legal->getInductionVars()) 3502 fixupIVUsers(Entry.first, Entry.second, 3503 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3504 IVEndValues[Entry.first], LoopMiddleBlock); 3505 3506 fixLCSSAPHIs(); 3507 for (Instruction *PI : PredicatedInstructions) 3508 sinkScalarOperands(&*PI); 3509 3510 // Remove redundant induction instructions. 3511 cse(LoopVectorBody); 3512 3513 // Set/update profile weights for the vector and remainder loops as original 3514 // loop iterations are now distributed among them. Note that original loop 3515 // represented by LoopScalarBody becomes remainder loop after vectorization. 3516 // 3517 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3518 // end up getting slightly roughened result but that should be OK since 3519 // profile is not inherently precise anyway. Note also possible bypass of 3520 // vector code caused by legality checks is ignored, assigning all the weight 3521 // to the vector loop, optimistically. 3522 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), 3523 LI->getLoopFor(LoopVectorBody), 3524 LI->getLoopFor(LoopScalarBody), VF * UF); 3525 } 3526 3527 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3528 // In order to support recurrences we need to be able to vectorize Phi nodes. 3529 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3530 // stage #2: We now need to fix the recurrences by adding incoming edges to 3531 // the currently empty PHI nodes. At this point every instruction in the 3532 // original loop is widened to a vector form so we can use them to construct 3533 // the incoming edges. 3534 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 3535 // Handle first-order recurrences and reductions that need to be fixed. 3536 if (Legal->isFirstOrderRecurrence(&Phi)) 3537 fixFirstOrderRecurrence(&Phi); 3538 else if (Legal->isReductionVariable(&Phi)) 3539 fixReduction(&Phi); 3540 } 3541 } 3542 3543 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3544 // This is the second phase of vectorizing first-order recurrences. An 3545 // overview of the transformation is described below. Suppose we have the 3546 // following loop. 3547 // 3548 // for (int i = 0; i < n; ++i) 3549 // b[i] = a[i] - a[i - 1]; 3550 // 3551 // There is a first-order recurrence on "a". For this loop, the shorthand 3552 // scalar IR looks like: 3553 // 3554 // scalar.ph: 3555 // s_init = a[-1] 3556 // br scalar.body 3557 // 3558 // scalar.body: 3559 // i = phi [0, scalar.ph], [i+1, scalar.body] 3560 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3561 // s2 = a[i] 3562 // b[i] = s2 - s1 3563 // br cond, scalar.body, ... 3564 // 3565 // In this example, s1 is a recurrence because it's value depends on the 3566 // previous iteration. In the first phase of vectorization, we created a 3567 // temporary value for s1. We now complete the vectorization and produce the 3568 // shorthand vector IR shown below (for VF = 4, UF = 1). 3569 // 3570 // vector.ph: 3571 // v_init = vector(..., ..., ..., a[-1]) 3572 // br vector.body 3573 // 3574 // vector.body 3575 // i = phi [0, vector.ph], [i+4, vector.body] 3576 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3577 // v2 = a[i, i+1, i+2, i+3]; 3578 // v3 = vector(v1(3), v2(0, 1, 2)) 3579 // b[i, i+1, i+2, i+3] = v2 - v3 3580 // br cond, vector.body, middle.block 3581 // 3582 // middle.block: 3583 // x = v2(3) 3584 // br scalar.ph 3585 // 3586 // scalar.ph: 3587 // s_init = phi [x, middle.block], [a[-1], otherwise] 3588 // br scalar.body 3589 // 3590 // After execution completes the vector loop, we extract the next value of 3591 // the recurrence (x) to use as the initial value in the scalar loop. 3592 3593 // Get the original loop preheader and single loop latch. 3594 auto *Preheader = OrigLoop->getLoopPreheader(); 3595 auto *Latch = OrigLoop->getLoopLatch(); 3596 3597 // Get the initial and previous values of the scalar recurrence. 3598 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3599 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3600 3601 // Create a vector from the initial value. 3602 auto *VectorInit = ScalarInit; 3603 if (VF > 1) { 3604 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3605 VectorInit = Builder.CreateInsertElement( 3606 UndefValue::get(FixedVectorType::get(VectorInit->getType(), VF)), 3607 VectorInit, Builder.getInt32(VF - 1), "vector.recur.init"); 3608 } 3609 3610 // We constructed a temporary phi node in the first phase of vectorization. 3611 // This phi node will eventually be deleted. 3612 Builder.SetInsertPoint( 3613 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 3614 3615 // Create a phi node for the new recurrence. The current value will either be 3616 // the initial value inserted into a vector or loop-varying vector value. 3617 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3618 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3619 3620 // Get the vectorized previous value of the last part UF - 1. It appears last 3621 // among all unrolled iterations, due to the order of their construction. 3622 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 3623 3624 // Find and set the insertion point after the previous value if it is an 3625 // instruction. 3626 BasicBlock::iterator InsertPt; 3627 // Note that the previous value may have been constant-folded so it is not 3628 // guaranteed to be an instruction in the vector loop. 3629 // FIXME: Loop invariant values do not form recurrences. We should deal with 3630 // them earlier. 3631 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 3632 InsertPt = LoopVectorBody->getFirstInsertionPt(); 3633 else { 3634 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 3635 if (isa<PHINode>(PreviousLastPart)) 3636 // If the previous value is a phi node, we should insert after all the phi 3637 // nodes in the block containing the PHI to avoid breaking basic block 3638 // verification. Note that the basic block may be different to 3639 // LoopVectorBody, in case we predicate the loop. 3640 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 3641 else 3642 InsertPt = ++PreviousInst->getIterator(); 3643 } 3644 Builder.SetInsertPoint(&*InsertPt); 3645 3646 // We will construct a vector for the recurrence by combining the values for 3647 // the current and previous iterations. This is the required shuffle mask. 3648 SmallVector<int, 8> ShuffleMask(VF); 3649 ShuffleMask[0] = VF - 1; 3650 for (unsigned I = 1; I < VF; ++I) 3651 ShuffleMask[I] = I + VF - 1; 3652 3653 // The vector from which to take the initial value for the current iteration 3654 // (actual or unrolled). Initially, this is the vector phi node. 3655 Value *Incoming = VecPhi; 3656 3657 // Shuffle the current and previous vector and update the vector parts. 3658 for (unsigned Part = 0; Part < UF; ++Part) { 3659 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 3660 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 3661 auto *Shuffle = VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 3662 ShuffleMask) 3663 : Incoming; 3664 PhiPart->replaceAllUsesWith(Shuffle); 3665 cast<Instruction>(PhiPart)->eraseFromParent(); 3666 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 3667 Incoming = PreviousPart; 3668 } 3669 3670 // Fix the latch value of the new recurrence in the vector loop. 3671 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3672 3673 // Extract the last vector element in the middle block. This will be the 3674 // initial value for the recurrence when jumping to the scalar loop. 3675 auto *ExtractForScalar = Incoming; 3676 if (VF > 1) { 3677 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3678 ExtractForScalar = Builder.CreateExtractElement( 3679 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 3680 } 3681 // Extract the second last element in the middle block if the 3682 // Phi is used outside the loop. We need to extract the phi itself 3683 // and not the last element (the phi update in the current iteration). This 3684 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3685 // when the scalar loop is not run at all. 3686 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3687 if (VF > 1) 3688 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3689 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 3690 // When loop is unrolled without vectorizing, initialize 3691 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 3692 // `Incoming`. This is analogous to the vectorized case above: extracting the 3693 // second last element when VF > 1. 3694 else if (UF > 1) 3695 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 3696 3697 // Fix the initial value of the original recurrence in the scalar loop. 3698 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3699 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3700 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3701 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3702 Start->addIncoming(Incoming, BB); 3703 } 3704 3705 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3706 Phi->setName("scalar.recur"); 3707 3708 // Finally, fix users of the recurrence outside the loop. The users will need 3709 // either the last value of the scalar recurrence or the last value of the 3710 // vector recurrence we extracted in the middle block. Since the loop is in 3711 // LCSSA form, we just need to find all the phi nodes for the original scalar 3712 // recurrence in the exit block, and then add an edge for the middle block. 3713 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3714 if (LCSSAPhi.getIncomingValue(0) == Phi) { 3715 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3716 } 3717 } 3718 } 3719 3720 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 3721 Constant *Zero = Builder.getInt32(0); 3722 3723 // Get it's reduction variable descriptor. 3724 assert(Legal->isReductionVariable(Phi) && 3725 "Unable to find the reduction variable"); 3726 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 3727 3728 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3729 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3730 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3731 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3732 RdxDesc.getMinMaxRecurrenceKind(); 3733 setDebugLocFromInst(Builder, ReductionStartValue); 3734 3735 // We need to generate a reduction vector from the incoming scalar. 3736 // To do so, we need to generate the 'identity' vector and override 3737 // one of the elements with the incoming scalar reduction. We need 3738 // to do it in the vector-loop preheader. 3739 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3740 3741 // This is the vector-clone of the value that leaves the loop. 3742 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 3743 3744 // Find the reduction identity variable. Zero for addition, or, xor, 3745 // one for multiplication, -1 for And. 3746 Value *Identity; 3747 Value *VectorStart; 3748 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3749 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3750 // MinMax reduction have the start value as their identify. 3751 if (VF == 1) { 3752 VectorStart = Identity = ReductionStartValue; 3753 } else { 3754 VectorStart = Identity = 3755 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3756 } 3757 } else { 3758 // Handle other reduction kinds: 3759 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3760 RK, VecTy->getScalarType()); 3761 if (VF == 1) { 3762 Identity = Iden; 3763 // This vector is the Identity vector where the first element is the 3764 // incoming scalar reduction. 3765 VectorStart = ReductionStartValue; 3766 } else { 3767 Identity = ConstantVector::getSplat({VF, false}, Iden); 3768 3769 // This vector is the Identity vector where the first element is the 3770 // incoming scalar reduction. 3771 VectorStart = 3772 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3773 } 3774 } 3775 3776 // Wrap flags are in general invalid after vectorization, clear them. 3777 clearReductionWrapFlags(RdxDesc); 3778 3779 // Fix the vector-loop phi. 3780 3781 // Reductions do not have to start at zero. They can start with 3782 // any loop invariant values. 3783 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3784 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3785 3786 for (unsigned Part = 0; Part < UF; ++Part) { 3787 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 3788 Value *Val = getOrCreateVectorValue(LoopVal, Part); 3789 // Make sure to add the reduction start value only to the 3790 // first unroll part. 3791 Value *StartVal = (Part == 0) ? VectorStart : Identity; 3792 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 3793 cast<PHINode>(VecRdxPhi) 3794 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3795 } 3796 3797 // Before each round, move the insertion point right between 3798 // the PHIs and the values we are going to write. 3799 // This allows us to write both PHINodes and the extractelement 3800 // instructions. 3801 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3802 3803 setDebugLocFromInst(Builder, LoopExitInst); 3804 3805 // If tail is folded by masking, the vector value to leave the loop should be 3806 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3807 // instead of the former. 3808 if (Cost->foldTailByMasking()) { 3809 for (unsigned Part = 0; Part < UF; ++Part) { 3810 Value *VecLoopExitInst = 3811 VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3812 Value *Sel = nullptr; 3813 for (User *U : VecLoopExitInst->users()) { 3814 if (isa<SelectInst>(U)) { 3815 assert(!Sel && "Reduction exit feeding two selects"); 3816 Sel = U; 3817 } else 3818 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3819 } 3820 assert(Sel && "Reduction exit feeds no select"); 3821 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, Sel); 3822 } 3823 } 3824 3825 // If the vector reduction can be performed in a smaller type, we truncate 3826 // then extend the loop exit value to enable InstCombine to evaluate the 3827 // entire expression in the smaller type. 3828 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3829 Type *RdxVecTy = FixedVectorType::get(RdxDesc.getRecurrenceType(), VF); 3830 Builder.SetInsertPoint( 3831 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 3832 VectorParts RdxParts(UF); 3833 for (unsigned Part = 0; Part < UF; ++Part) { 3834 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3835 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3836 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3837 : Builder.CreateZExt(Trunc, VecTy); 3838 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 3839 UI != RdxParts[Part]->user_end();) 3840 if (*UI != Trunc) { 3841 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 3842 RdxParts[Part] = Extnd; 3843 } else { 3844 ++UI; 3845 } 3846 } 3847 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3848 for (unsigned Part = 0; Part < UF; ++Part) { 3849 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3850 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 3851 } 3852 } 3853 3854 // Reduce all of the unrolled parts into a single vector. 3855 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 3856 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3857 3858 // The middle block terminator has already been assigned a DebugLoc here (the 3859 // OrigLoop's single latch terminator). We want the whole middle block to 3860 // appear to execute on this line because: (a) it is all compiler generated, 3861 // (b) these instructions are always executed after evaluating the latch 3862 // conditional branch, and (c) other passes may add new predecessors which 3863 // terminate on this line. This is the easiest way to ensure we don't 3864 // accidentally cause an extra step back into the loop while debugging. 3865 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 3866 for (unsigned Part = 1; Part < UF; ++Part) { 3867 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 3868 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3869 // Floating point operations had to be 'fast' to enable the reduction. 3870 ReducedPartRdx = addFastMathFlag( 3871 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 3872 ReducedPartRdx, "bin.rdx"), 3873 RdxDesc.getFastMathFlags()); 3874 else 3875 ReducedPartRdx = createMinMaxOp(Builder, MinMaxKind, ReducedPartRdx, 3876 RdxPart); 3877 } 3878 3879 if (VF > 1) { 3880 bool NoNaN = Legal->hasFunNoNaNAttr(); 3881 ReducedPartRdx = 3882 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 3883 // If the reduction can be performed in a smaller type, we need to extend 3884 // the reduction to the wider type before we branch to the original loop. 3885 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3886 ReducedPartRdx = 3887 RdxDesc.isSigned() 3888 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3889 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3890 } 3891 3892 // Create a phi node that merges control-flow from the backedge-taken check 3893 // block and the middle block. 3894 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3895 LoopScalarPreHeader->getTerminator()); 3896 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3897 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3898 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3899 3900 // Now, we need to fix the users of the reduction variable 3901 // inside and outside of the scalar remainder loop. 3902 // We know that the loop is in LCSSA form. We need to update the 3903 // PHI nodes in the exit blocks. 3904 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3905 // All PHINodes need to have a single entry edge, or two if 3906 // we already fixed them. 3907 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3908 3909 // We found a reduction value exit-PHI. Update it with the 3910 // incoming bypass edge. 3911 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst) 3912 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 3913 } // end of the LCSSA phi scan. 3914 3915 // Fix the scalar loop reduction variable with the incoming reduction sum 3916 // from the vector body and from the backedge value. 3917 int IncomingEdgeBlockIdx = 3918 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3919 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3920 // Pick the other block. 3921 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3922 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3923 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3924 } 3925 3926 void InnerLoopVectorizer::clearReductionWrapFlags( 3927 RecurrenceDescriptor &RdxDesc) { 3928 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3929 if (RK != RecurrenceDescriptor::RK_IntegerAdd && 3930 RK != RecurrenceDescriptor::RK_IntegerMult) 3931 return; 3932 3933 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 3934 assert(LoopExitInstr && "null loop exit instruction"); 3935 SmallVector<Instruction *, 8> Worklist; 3936 SmallPtrSet<Instruction *, 8> Visited; 3937 Worklist.push_back(LoopExitInstr); 3938 Visited.insert(LoopExitInstr); 3939 3940 while (!Worklist.empty()) { 3941 Instruction *Cur = Worklist.pop_back_val(); 3942 if (isa<OverflowingBinaryOperator>(Cur)) 3943 for (unsigned Part = 0; Part < UF; ++Part) { 3944 Value *V = getOrCreateVectorValue(Cur, Part); 3945 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 3946 } 3947 3948 for (User *U : Cur->users()) { 3949 Instruction *UI = cast<Instruction>(U); 3950 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 3951 Visited.insert(UI).second) 3952 Worklist.push_back(UI); 3953 } 3954 } 3955 } 3956 3957 void InnerLoopVectorizer::fixLCSSAPHIs() { 3958 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 3959 if (LCSSAPhi.getNumIncomingValues() == 1) { 3960 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 3961 // Non-instruction incoming values will have only one value. 3962 unsigned LastLane = 0; 3963 if (isa<Instruction>(IncomingValue)) 3964 LastLane = Cost->isUniformAfterVectorization( 3965 cast<Instruction>(IncomingValue), VF) 3966 ? 0 3967 : VF - 1; 3968 // Can be a loop invariant incoming value or the last scalar value to be 3969 // extracted from the vectorized loop. 3970 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3971 Value *lastIncomingValue = 3972 getOrCreateScalarValue(IncomingValue, { UF - 1, LastLane }); 3973 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 3974 } 3975 } 3976 } 3977 3978 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 3979 // The basic block and loop containing the predicated instruction. 3980 auto *PredBB = PredInst->getParent(); 3981 auto *VectorLoop = LI->getLoopFor(PredBB); 3982 3983 // Initialize a worklist with the operands of the predicated instruction. 3984 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 3985 3986 // Holds instructions that we need to analyze again. An instruction may be 3987 // reanalyzed if we don't yet know if we can sink it or not. 3988 SmallVector<Instruction *, 8> InstsToReanalyze; 3989 3990 // Returns true if a given use occurs in the predicated block. Phi nodes use 3991 // their operands in their corresponding predecessor blocks. 3992 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 3993 auto *I = cast<Instruction>(U.getUser()); 3994 BasicBlock *BB = I->getParent(); 3995 if (auto *Phi = dyn_cast<PHINode>(I)) 3996 BB = Phi->getIncomingBlock( 3997 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3998 return BB == PredBB; 3999 }; 4000 4001 // Iteratively sink the scalarized operands of the predicated instruction 4002 // into the block we created for it. When an instruction is sunk, it's 4003 // operands are then added to the worklist. The algorithm ends after one pass 4004 // through the worklist doesn't sink a single instruction. 4005 bool Changed; 4006 do { 4007 // Add the instructions that need to be reanalyzed to the worklist, and 4008 // reset the changed indicator. 4009 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4010 InstsToReanalyze.clear(); 4011 Changed = false; 4012 4013 while (!Worklist.empty()) { 4014 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4015 4016 // We can't sink an instruction if it is a phi node, is already in the 4017 // predicated block, is not in the loop, or may have side effects. 4018 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4019 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4020 continue; 4021 4022 // It's legal to sink the instruction if all its uses occur in the 4023 // predicated block. Otherwise, there's nothing to do yet, and we may 4024 // need to reanalyze the instruction. 4025 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4026 InstsToReanalyze.push_back(I); 4027 continue; 4028 } 4029 4030 // Move the instruction to the beginning of the predicated block, and add 4031 // it's operands to the worklist. 4032 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4033 Worklist.insert(I->op_begin(), I->op_end()); 4034 4035 // The sinking may have enabled other instructions to be sunk, so we will 4036 // need to iterate. 4037 Changed = true; 4038 } 4039 } while (Changed); 4040 } 4041 4042 void InnerLoopVectorizer::fixNonInductionPHIs() { 4043 for (PHINode *OrigPhi : OrigPHIsToFix) { 4044 PHINode *NewPhi = 4045 cast<PHINode>(VectorLoopValueMap.getVectorValue(OrigPhi, 0)); 4046 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4047 4048 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4049 predecessors(OrigPhi->getParent())); 4050 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4051 predecessors(NewPhi->getParent())); 4052 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4053 "Scalar and Vector BB should have the same number of predecessors"); 4054 4055 // The insertion point in Builder may be invalidated by the time we get 4056 // here. Force the Builder insertion point to something valid so that we do 4057 // not run into issues during insertion point restore in 4058 // getOrCreateVectorValue calls below. 4059 Builder.SetInsertPoint(NewPhi); 4060 4061 // The predecessor order is preserved and we can rely on mapping between 4062 // scalar and vector block predecessors. 4063 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4064 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4065 4066 // When looking up the new scalar/vector values to fix up, use incoming 4067 // values from original phi. 4068 Value *ScIncV = 4069 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4070 4071 // Scalar incoming value may need a broadcast 4072 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4073 NewPhi->addIncoming(NewIncV, NewPredBB); 4074 } 4075 } 4076 } 4077 4078 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPUser &Operands, 4079 unsigned UF, unsigned VF, 4080 bool IsPtrLoopInvariant, 4081 SmallBitVector &IsIndexLoopInvariant, 4082 VPTransformState &State) { 4083 // Construct a vector GEP by widening the operands of the scalar GEP as 4084 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4085 // results in a vector of pointers when at least one operand of the GEP 4086 // is vector-typed. Thus, to keep the representation compact, we only use 4087 // vector-typed operands for loop-varying values. 4088 4089 if (VF > 1 && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4090 // If we are vectorizing, but the GEP has only loop-invariant operands, 4091 // the GEP we build (by only using vector-typed operands for 4092 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4093 // produce a vector of pointers, we need to either arbitrarily pick an 4094 // operand to broadcast, or broadcast a clone of the original GEP. 4095 // Here, we broadcast a clone of the original. 4096 // 4097 // TODO: If at some point we decide to scalarize instructions having 4098 // loop-invariant operands, this special case will no longer be 4099 // required. We would add the scalarization decision to 4100 // collectLoopScalars() and teach getVectorValue() to broadcast 4101 // the lane-zero scalar value. 4102 auto *Clone = Builder.Insert(GEP->clone()); 4103 for (unsigned Part = 0; Part < UF; ++Part) { 4104 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4105 VectorLoopValueMap.setVectorValue(GEP, Part, EntryPart); 4106 addMetadata(EntryPart, GEP); 4107 } 4108 } else { 4109 // If the GEP has at least one loop-varying operand, we are sure to 4110 // produce a vector of pointers. But if we are only unrolling, we want 4111 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4112 // produce with the code below will be scalar (if VF == 1) or vector 4113 // (otherwise). Note that for the unroll-only case, we still maintain 4114 // values in the vector mapping with initVector, as we do for other 4115 // instructions. 4116 for (unsigned Part = 0; Part < UF; ++Part) { 4117 // The pointer operand of the new GEP. If it's loop-invariant, we 4118 // won't broadcast it. 4119 auto *Ptr = IsPtrLoopInvariant ? State.get(Operands.getOperand(0), {0, 0}) 4120 : State.get(Operands.getOperand(0), Part); 4121 4122 // Collect all the indices for the new GEP. If any index is 4123 // loop-invariant, we won't broadcast it. 4124 SmallVector<Value *, 4> Indices; 4125 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4126 VPValue *Operand = Operands.getOperand(I); 4127 if (IsIndexLoopInvariant[I - 1]) 4128 Indices.push_back(State.get(Operand, {0, 0})); 4129 else 4130 Indices.push_back(State.get(Operand, Part)); 4131 } 4132 4133 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4134 // but it should be a vector, otherwise. 4135 auto *NewGEP = 4136 GEP->isInBounds() 4137 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4138 Indices) 4139 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4140 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4141 "NewGEP is not a pointer vector"); 4142 VectorLoopValueMap.setVectorValue(GEP, Part, NewGEP); 4143 addMetadata(NewGEP, GEP); 4144 } 4145 } 4146 } 4147 4148 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4149 unsigned VF) { 4150 PHINode *P = cast<PHINode>(PN); 4151 if (EnableVPlanNativePath) { 4152 // Currently we enter here in the VPlan-native path for non-induction 4153 // PHIs where all control flow is uniform. We simply widen these PHIs. 4154 // Create a vector phi with no operands - the vector phi operands will be 4155 // set at the end of vector code generation. 4156 Type *VecTy = 4157 (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF); 4158 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4159 VectorLoopValueMap.setVectorValue(P, 0, VecPhi); 4160 OrigPHIsToFix.push_back(P); 4161 4162 return; 4163 } 4164 4165 assert(PN->getParent() == OrigLoop->getHeader() && 4166 "Non-header phis should have been handled elsewhere"); 4167 4168 // In order to support recurrences we need to be able to vectorize Phi nodes. 4169 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4170 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4171 // this value when we vectorize all of the instructions that use the PHI. 4172 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4173 for (unsigned Part = 0; Part < UF; ++Part) { 4174 // This is phase one of vectorizing PHIs. 4175 Type *VecTy = 4176 (VF == 1) ? PN->getType() : FixedVectorType::get(PN->getType(), VF); 4177 Value *EntryPart = PHINode::Create( 4178 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4179 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4180 } 4181 return; 4182 } 4183 4184 setDebugLocFromInst(Builder, P); 4185 4186 // This PHINode must be an induction variable. 4187 // Make sure that we know about it. 4188 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4189 4190 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4191 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4192 4193 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4194 // which can be found from the original scalar operations. 4195 switch (II.getKind()) { 4196 case InductionDescriptor::IK_NoInduction: 4197 llvm_unreachable("Unknown induction"); 4198 case InductionDescriptor::IK_IntInduction: 4199 case InductionDescriptor::IK_FpInduction: 4200 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4201 case InductionDescriptor::IK_PtrInduction: { 4202 // Handle the pointer induction variable case. 4203 assert(P->getType()->isPointerTy() && "Unexpected type."); 4204 4205 if (Cost->isScalarAfterVectorization(P, VF)) { 4206 // This is the normalized GEP that starts counting at zero. 4207 Value *PtrInd = 4208 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4209 // Determine the number of scalars we need to generate for each unroll 4210 // iteration. If the instruction is uniform, we only need to generate the 4211 // first lane. Otherwise, we generate all VF values. 4212 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4213 for (unsigned Part = 0; Part < UF; ++Part) { 4214 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4215 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4216 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4217 Value *SclrGep = 4218 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4219 SclrGep->setName("next.gep"); 4220 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4221 } 4222 } 4223 return; 4224 } 4225 assert(isa<SCEVConstant>(II.getStep()) && 4226 "Induction step not a SCEV constant!"); 4227 Type *PhiType = II.getStep()->getType(); 4228 4229 // Build a pointer phi 4230 Value *ScalarStartValue = II.getStartValue(); 4231 Type *ScStValueType = ScalarStartValue->getType(); 4232 PHINode *NewPointerPhi = 4233 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4234 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4235 4236 // A pointer induction, performed by using a gep 4237 const SCEV *ScalarStep = II.getStep(); 4238 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4239 Value *ScalarStepValue = 4240 Exp.expandCodeFor(ScalarStep, PhiType, &*Builder.GetInsertPoint()); 4241 Value *InductionGEP = Builder.CreateGEP( 4242 ScStValueType->getPointerElementType(), NewPointerPhi, 4243 Builder.CreateMul(ScalarStepValue, ConstantInt::get(PhiType, VF * UF))); 4244 NewPointerPhi->addIncoming(InductionGEP, 4245 cast<Instruction>(InductionGEP)->getParent()); 4246 4247 // Create UF many actual address geps that use the pointer 4248 // phi as base and a vectorized version of the step value 4249 // (<step*0, ..., step*N>) as offset. 4250 for (unsigned Part = 0; Part < UF; ++Part) { 4251 SmallVector<Constant *, 8> Indices; 4252 // Create a vector of consecutive numbers from zero to VF. 4253 for (unsigned i = 0; i < VF; ++i) 4254 Indices.push_back(ConstantInt::get(PhiType, i + Part * VF)); 4255 Constant *StartOffset = ConstantVector::get(Indices); 4256 4257 Value *GEP = Builder.CreateGEP( 4258 ScStValueType->getPointerElementType(), NewPointerPhi, 4259 Builder.CreateMul(StartOffset, 4260 Builder.CreateVectorSplat(VF, ScalarStepValue), 4261 "vector.gep")); 4262 VectorLoopValueMap.setVectorValue(P, Part, GEP); 4263 } 4264 } 4265 } 4266 } 4267 4268 /// A helper function for checking whether an integer division-related 4269 /// instruction may divide by zero (in which case it must be predicated if 4270 /// executed conditionally in the scalar code). 4271 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4272 /// Non-zero divisors that are non compile-time constants will not be 4273 /// converted into multiplication, so we will still end up scalarizing 4274 /// the division, but can do so w/o predication. 4275 static bool mayDivideByZero(Instruction &I) { 4276 assert((I.getOpcode() == Instruction::UDiv || 4277 I.getOpcode() == Instruction::SDiv || 4278 I.getOpcode() == Instruction::URem || 4279 I.getOpcode() == Instruction::SRem) && 4280 "Unexpected instruction"); 4281 Value *Divisor = I.getOperand(1); 4282 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4283 return !CInt || CInt->isZero(); 4284 } 4285 4286 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPUser &User, 4287 VPTransformState &State) { 4288 switch (I.getOpcode()) { 4289 case Instruction::Call: 4290 case Instruction::Br: 4291 case Instruction::PHI: 4292 case Instruction::GetElementPtr: 4293 case Instruction::Select: 4294 llvm_unreachable("This instruction is handled by a different recipe."); 4295 case Instruction::UDiv: 4296 case Instruction::SDiv: 4297 case Instruction::SRem: 4298 case Instruction::URem: 4299 case Instruction::Add: 4300 case Instruction::FAdd: 4301 case Instruction::Sub: 4302 case Instruction::FSub: 4303 case Instruction::FNeg: 4304 case Instruction::Mul: 4305 case Instruction::FMul: 4306 case Instruction::FDiv: 4307 case Instruction::FRem: 4308 case Instruction::Shl: 4309 case Instruction::LShr: 4310 case Instruction::AShr: 4311 case Instruction::And: 4312 case Instruction::Or: 4313 case Instruction::Xor: { 4314 // Just widen unops and binops. 4315 setDebugLocFromInst(Builder, &I); 4316 4317 for (unsigned Part = 0; Part < UF; ++Part) { 4318 SmallVector<Value *, 2> Ops; 4319 for (VPValue *VPOp : User.operands()) 4320 Ops.push_back(State.get(VPOp, Part)); 4321 4322 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4323 4324 if (auto *VecOp = dyn_cast<Instruction>(V)) 4325 VecOp->copyIRFlags(&I); 4326 4327 // Use this vector value for all users of the original instruction. 4328 VectorLoopValueMap.setVectorValue(&I, Part, V); 4329 addMetadata(V, &I); 4330 } 4331 4332 break; 4333 } 4334 case Instruction::ICmp: 4335 case Instruction::FCmp: { 4336 // Widen compares. Generate vector compares. 4337 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4338 auto *Cmp = cast<CmpInst>(&I); 4339 setDebugLocFromInst(Builder, Cmp); 4340 for (unsigned Part = 0; Part < UF; ++Part) { 4341 Value *A = State.get(User.getOperand(0), Part); 4342 Value *B = State.get(User.getOperand(1), Part); 4343 Value *C = nullptr; 4344 if (FCmp) { 4345 // Propagate fast math flags. 4346 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4347 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4348 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4349 } else { 4350 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4351 } 4352 VectorLoopValueMap.setVectorValue(&I, Part, C); 4353 addMetadata(C, &I); 4354 } 4355 4356 break; 4357 } 4358 4359 case Instruction::ZExt: 4360 case Instruction::SExt: 4361 case Instruction::FPToUI: 4362 case Instruction::FPToSI: 4363 case Instruction::FPExt: 4364 case Instruction::PtrToInt: 4365 case Instruction::IntToPtr: 4366 case Instruction::SIToFP: 4367 case Instruction::UIToFP: 4368 case Instruction::Trunc: 4369 case Instruction::FPTrunc: 4370 case Instruction::BitCast: { 4371 auto *CI = cast<CastInst>(&I); 4372 setDebugLocFromInst(Builder, CI); 4373 4374 /// Vectorize casts. 4375 Type *DestTy = 4376 (VF == 1) ? CI->getType() : FixedVectorType::get(CI->getType(), VF); 4377 4378 for (unsigned Part = 0; Part < UF; ++Part) { 4379 Value *A = State.get(User.getOperand(0), Part); 4380 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4381 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4382 addMetadata(Cast, &I); 4383 } 4384 break; 4385 } 4386 default: 4387 // This instruction is not vectorized by simple widening. 4388 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4389 llvm_unreachable("Unhandled instruction!"); 4390 } // end of switch. 4391 } 4392 4393 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPUser &ArgOperands, 4394 VPTransformState &State) { 4395 assert(!isa<DbgInfoIntrinsic>(I) && 4396 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4397 setDebugLocFromInst(Builder, &I); 4398 4399 Module *M = I.getParent()->getParent()->getParent(); 4400 auto *CI = cast<CallInst>(&I); 4401 4402 SmallVector<Type *, 4> Tys; 4403 for (Value *ArgOperand : CI->arg_operands()) 4404 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4405 4406 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4407 4408 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4409 // version of the instruction. 4410 // Is it beneficial to perform intrinsic call compared to lib call? 4411 bool NeedToScalarize = false; 4412 unsigned CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4413 bool UseVectorIntrinsic = 4414 ID && Cost->getVectorIntrinsicCost(CI, VF) <= CallCost; 4415 assert((UseVectorIntrinsic || !NeedToScalarize) && 4416 "Instruction should be scalarized elsewhere."); 4417 4418 for (unsigned Part = 0; Part < UF; ++Part) { 4419 SmallVector<Value *, 4> Args; 4420 for (auto &I : enumerate(ArgOperands.operands())) { 4421 // Some intrinsics have a scalar argument - don't replace it with a 4422 // vector. 4423 Value *Arg; 4424 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4425 Arg = State.get(I.value(), Part); 4426 else 4427 Arg = State.get(I.value(), {0, 0}); 4428 Args.push_back(Arg); 4429 } 4430 4431 Function *VectorF; 4432 if (UseVectorIntrinsic) { 4433 // Use vector version of the intrinsic. 4434 Type *TysForDecl[] = {CI->getType()}; 4435 if (VF > 1) 4436 TysForDecl[0] = 4437 FixedVectorType::get(CI->getType()->getScalarType(), VF); 4438 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4439 assert(VectorF && "Can't retrieve vector intrinsic."); 4440 } else { 4441 // Use vector version of the function call. 4442 const VFShape Shape = 4443 VFShape::get(*CI, {VF, false} /*EC*/, false /*HasGlobalPred*/); 4444 #ifndef NDEBUG 4445 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4446 "Can't create vector function."); 4447 #endif 4448 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4449 } 4450 SmallVector<OperandBundleDef, 1> OpBundles; 4451 CI->getOperandBundlesAsDefs(OpBundles); 4452 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4453 4454 if (isa<FPMathOperator>(V)) 4455 V->copyFastMathFlags(CI); 4456 4457 VectorLoopValueMap.setVectorValue(&I, Part, V); 4458 addMetadata(V, &I); 4459 } 4460 } 4461 4462 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, 4463 VPUser &Operands, 4464 bool InvariantCond, 4465 VPTransformState &State) { 4466 setDebugLocFromInst(Builder, &I); 4467 4468 // The condition can be loop invariant but still defined inside the 4469 // loop. This means that we can't just use the original 'cond' value. 4470 // We have to take the 'vectorized' value and pick the first lane. 4471 // Instcombine will make this a no-op. 4472 auto *InvarCond = 4473 InvariantCond ? State.get(Operands.getOperand(0), {0, 0}) : nullptr; 4474 4475 for (unsigned Part = 0; Part < UF; ++Part) { 4476 Value *Cond = 4477 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 4478 Value *Op0 = State.get(Operands.getOperand(1), Part); 4479 Value *Op1 = State.get(Operands.getOperand(2), Part); 4480 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 4481 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4482 addMetadata(Sel, &I); 4483 } 4484 } 4485 4486 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 4487 // We should not collect Scalars more than once per VF. Right now, this 4488 // function is called from collectUniformsAndScalars(), which already does 4489 // this check. Collecting Scalars for VF=1 does not make any sense. 4490 assert(VF >= 2 && Scalars.find(VF) == Scalars.end() && 4491 "This function should not be visited twice for the same VF"); 4492 4493 SmallSetVector<Instruction *, 8> Worklist; 4494 4495 // These sets are used to seed the analysis with pointers used by memory 4496 // accesses that will remain scalar. 4497 SmallSetVector<Instruction *, 8> ScalarPtrs; 4498 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4499 auto *Latch = TheLoop->getLoopLatch(); 4500 4501 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4502 // The pointer operands of loads and stores will be scalar as long as the 4503 // memory access is not a gather or scatter operation. The value operand of a 4504 // store will remain scalar if the store is scalarized. 4505 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4506 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4507 assert(WideningDecision != CM_Unknown && 4508 "Widening decision should be ready at this moment"); 4509 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4510 if (Ptr == Store->getValueOperand()) 4511 return WideningDecision == CM_Scalarize; 4512 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4513 "Ptr is neither a value or pointer operand"); 4514 return WideningDecision != CM_GatherScatter; 4515 }; 4516 4517 // A helper that returns true if the given value is a bitcast or 4518 // getelementptr instruction contained in the loop. 4519 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4520 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4521 isa<GetElementPtrInst>(V)) && 4522 !TheLoop->isLoopInvariant(V); 4523 }; 4524 4525 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 4526 if (!isa<PHINode>(Ptr) || 4527 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 4528 return false; 4529 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 4530 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 4531 return false; 4532 return isScalarUse(MemAccess, Ptr); 4533 }; 4534 4535 // A helper that evaluates a memory access's use of a pointer. If the 4536 // pointer is actually the pointer induction of a loop, it is being 4537 // inserted into Worklist. If the use will be a scalar use, and the 4538 // pointer is only used by memory accesses, we place the pointer in 4539 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 4540 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4541 if (isScalarPtrInduction(MemAccess, Ptr)) { 4542 Worklist.insert(cast<Instruction>(Ptr)); 4543 Instruction *Update = cast<Instruction>( 4544 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 4545 Worklist.insert(Update); 4546 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 4547 << "\n"); 4548 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 4549 << "\n"); 4550 return; 4551 } 4552 // We only care about bitcast and getelementptr instructions contained in 4553 // the loop. 4554 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4555 return; 4556 4557 // If the pointer has already been identified as scalar (e.g., if it was 4558 // also identified as uniform), there's nothing to do. 4559 auto *I = cast<Instruction>(Ptr); 4560 if (Worklist.count(I)) 4561 return; 4562 4563 // If the use of the pointer will be a scalar use, and all users of the 4564 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4565 // place the pointer in PossibleNonScalarPtrs. 4566 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4567 return isa<LoadInst>(U) || isa<StoreInst>(U); 4568 })) 4569 ScalarPtrs.insert(I); 4570 else 4571 PossibleNonScalarPtrs.insert(I); 4572 }; 4573 4574 // We seed the scalars analysis with three classes of instructions: (1) 4575 // instructions marked uniform-after-vectorization and (2) bitcast, 4576 // getelementptr and (pointer) phi instructions used by memory accesses 4577 // requiring a scalar use. 4578 // 4579 // (1) Add to the worklist all instructions that have been identified as 4580 // uniform-after-vectorization. 4581 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4582 4583 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4584 // memory accesses requiring a scalar use. The pointer operands of loads and 4585 // stores will be scalar as long as the memory accesses is not a gather or 4586 // scatter operation. The value operand of a store will remain scalar if the 4587 // store is scalarized. 4588 for (auto *BB : TheLoop->blocks()) 4589 for (auto &I : *BB) { 4590 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4591 evaluatePtrUse(Load, Load->getPointerOperand()); 4592 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4593 evaluatePtrUse(Store, Store->getPointerOperand()); 4594 evaluatePtrUse(Store, Store->getValueOperand()); 4595 } 4596 } 4597 for (auto *I : ScalarPtrs) 4598 if (!PossibleNonScalarPtrs.count(I)) { 4599 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4600 Worklist.insert(I); 4601 } 4602 4603 // Insert the forced scalars. 4604 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4605 // induction variable when the PHI user is scalarized. 4606 auto ForcedScalar = ForcedScalars.find(VF); 4607 if (ForcedScalar != ForcedScalars.end()) 4608 for (auto *I : ForcedScalar->second) 4609 Worklist.insert(I); 4610 4611 // Expand the worklist by looking through any bitcasts and getelementptr 4612 // instructions we've already identified as scalar. This is similar to the 4613 // expansion step in collectLoopUniforms(); however, here we're only 4614 // expanding to include additional bitcasts and getelementptr instructions. 4615 unsigned Idx = 0; 4616 while (Idx != Worklist.size()) { 4617 Instruction *Dst = Worklist[Idx++]; 4618 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4619 continue; 4620 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4621 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4622 auto *J = cast<Instruction>(U); 4623 return !TheLoop->contains(J) || Worklist.count(J) || 4624 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4625 isScalarUse(J, Src)); 4626 })) { 4627 Worklist.insert(Src); 4628 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4629 } 4630 } 4631 4632 // An induction variable will remain scalar if all users of the induction 4633 // variable and induction variable update remain scalar. 4634 for (auto &Induction : Legal->getInductionVars()) { 4635 auto *Ind = Induction.first; 4636 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4637 4638 // If tail-folding is applied, the primary induction variable will be used 4639 // to feed a vector compare. 4640 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4641 continue; 4642 4643 // Determine if all users of the induction variable are scalar after 4644 // vectorization. 4645 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4646 auto *I = cast<Instruction>(U); 4647 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 4648 }); 4649 if (!ScalarInd) 4650 continue; 4651 4652 // Determine if all users of the induction variable update instruction are 4653 // scalar after vectorization. 4654 auto ScalarIndUpdate = 4655 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4656 auto *I = cast<Instruction>(U); 4657 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 4658 }); 4659 if (!ScalarIndUpdate) 4660 continue; 4661 4662 // The induction variable and its update instruction will remain scalar. 4663 Worklist.insert(Ind); 4664 Worklist.insert(IndUpdate); 4665 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4666 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4667 << "\n"); 4668 } 4669 4670 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4671 } 4672 4673 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, unsigned VF) { 4674 if (!blockNeedsPredication(I->getParent())) 4675 return false; 4676 switch(I->getOpcode()) { 4677 default: 4678 break; 4679 case Instruction::Load: 4680 case Instruction::Store: { 4681 if (!Legal->isMaskRequired(I)) 4682 return false; 4683 auto *Ptr = getLoadStorePointerOperand(I); 4684 auto *Ty = getMemInstValueType(I); 4685 // We have already decided how to vectorize this instruction, get that 4686 // result. 4687 if (VF > 1) { 4688 InstWidening WideningDecision = getWideningDecision(I, VF); 4689 assert(WideningDecision != CM_Unknown && 4690 "Widening decision should be ready at this moment"); 4691 return WideningDecision == CM_Scalarize; 4692 } 4693 const Align Alignment = getLoadStoreAlignment(I); 4694 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4695 isLegalMaskedGather(Ty, Alignment)) 4696 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4697 isLegalMaskedScatter(Ty, Alignment)); 4698 } 4699 case Instruction::UDiv: 4700 case Instruction::SDiv: 4701 case Instruction::SRem: 4702 case Instruction::URem: 4703 return mayDivideByZero(*I); 4704 } 4705 return false; 4706 } 4707 4708 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(Instruction *I, 4709 unsigned VF) { 4710 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4711 assert(getWideningDecision(I, VF) == CM_Unknown && 4712 "Decision should not be set yet."); 4713 auto *Group = getInterleavedAccessGroup(I); 4714 assert(Group && "Must have a group."); 4715 4716 // If the instruction's allocated size doesn't equal it's type size, it 4717 // requires padding and will be scalarized. 4718 auto &DL = I->getModule()->getDataLayout(); 4719 auto *ScalarTy = getMemInstValueType(I); 4720 if (hasIrregularType(ScalarTy, DL, VF)) 4721 return false; 4722 4723 // Check if masking is required. 4724 // A Group may need masking for one of two reasons: it resides in a block that 4725 // needs predication, or it was decided to use masking to deal with gaps. 4726 bool PredicatedAccessRequiresMasking = 4727 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 4728 bool AccessWithGapsRequiresMasking = 4729 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 4730 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 4731 return true; 4732 4733 // If masked interleaving is required, we expect that the user/target had 4734 // enabled it, because otherwise it either wouldn't have been created or 4735 // it should have been invalidated by the CostModel. 4736 assert(useMaskedInterleavedAccesses(TTI) && 4737 "Masked interleave-groups for predicated accesses are not enabled."); 4738 4739 auto *Ty = getMemInstValueType(I); 4740 const Align Alignment = getLoadStoreAlignment(I); 4741 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4742 : TTI.isLegalMaskedStore(Ty, Alignment); 4743 } 4744 4745 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I, 4746 unsigned VF) { 4747 // Get and ensure we have a valid memory instruction. 4748 LoadInst *LI = dyn_cast<LoadInst>(I); 4749 StoreInst *SI = dyn_cast<StoreInst>(I); 4750 assert((LI || SI) && "Invalid memory instruction"); 4751 4752 auto *Ptr = getLoadStorePointerOperand(I); 4753 4754 // In order to be widened, the pointer should be consecutive, first of all. 4755 if (!Legal->isConsecutivePtr(Ptr)) 4756 return false; 4757 4758 // If the instruction is a store located in a predicated block, it will be 4759 // scalarized. 4760 if (isScalarWithPredication(I)) 4761 return false; 4762 4763 // If the instruction's allocated size doesn't equal it's type size, it 4764 // requires padding and will be scalarized. 4765 auto &DL = I->getModule()->getDataLayout(); 4766 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 4767 if (hasIrregularType(ScalarTy, DL, VF)) 4768 return false; 4769 4770 return true; 4771 } 4772 4773 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 4774 // We should not collect Uniforms more than once per VF. Right now, 4775 // this function is called from collectUniformsAndScalars(), which 4776 // already does this check. Collecting Uniforms for VF=1 does not make any 4777 // sense. 4778 4779 assert(VF >= 2 && Uniforms.find(VF) == Uniforms.end() && 4780 "This function should not be visited twice for the same VF"); 4781 4782 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4783 // not analyze again. Uniforms.count(VF) will return 1. 4784 Uniforms[VF].clear(); 4785 4786 // We now know that the loop is vectorizable! 4787 // Collect instructions inside the loop that will remain uniform after 4788 // vectorization. 4789 4790 // Global values, params and instructions outside of current loop are out of 4791 // scope. 4792 auto isOutOfScope = [&](Value *V) -> bool { 4793 Instruction *I = dyn_cast<Instruction>(V); 4794 return (!I || !TheLoop->contains(I)); 4795 }; 4796 4797 SetVector<Instruction *> Worklist; 4798 BasicBlock *Latch = TheLoop->getLoopLatch(); 4799 4800 // Instructions that are scalar with predication must not be considered 4801 // uniform after vectorization, because that would create an erroneous 4802 // replicating region where only a single instance out of VF should be formed. 4803 // TODO: optimize such seldom cases if found important, see PR40816. 4804 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4805 if (isScalarWithPredication(I, VF)) { 4806 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4807 << *I << "\n"); 4808 return; 4809 } 4810 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4811 Worklist.insert(I); 4812 }; 4813 4814 // Start with the conditional branch. If the branch condition is an 4815 // instruction contained in the loop that is only used by the branch, it is 4816 // uniform. 4817 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4818 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4819 addToWorklistIfAllowed(Cmp); 4820 4821 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 4822 // are pointers that are treated like consecutive pointers during 4823 // vectorization. The pointer operands of interleaved accesses are an 4824 // example. 4825 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 4826 4827 // Holds pointer operands of instructions that are possibly non-uniform. 4828 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 4829 4830 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 4831 InstWidening WideningDecision = getWideningDecision(I, VF); 4832 assert(WideningDecision != CM_Unknown && 4833 "Widening decision should be ready at this moment"); 4834 4835 return (WideningDecision == CM_Widen || 4836 WideningDecision == CM_Widen_Reverse || 4837 WideningDecision == CM_Interleave); 4838 }; 4839 // Iterate over the instructions in the loop, and collect all 4840 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 4841 // that a consecutive-like pointer operand will be scalarized, we collect it 4842 // in PossibleNonUniformPtrs instead. We use two sets here because a single 4843 // getelementptr instruction can be used by both vectorized and scalarized 4844 // memory instructions. For example, if a loop loads and stores from the same 4845 // location, but the store is conditional, the store will be scalarized, and 4846 // the getelementptr won't remain uniform. 4847 for (auto *BB : TheLoop->blocks()) 4848 for (auto &I : *BB) { 4849 // If there's no pointer operand, there's nothing to do. 4850 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 4851 if (!Ptr) 4852 continue; 4853 4854 // True if all users of Ptr are memory accesses that have Ptr as their 4855 // pointer operand. 4856 auto UsersAreMemAccesses = 4857 llvm::all_of(Ptr->users(), [&](User *U) -> bool { 4858 return getLoadStorePointerOperand(U) == Ptr; 4859 }); 4860 4861 // Ensure the memory instruction will not be scalarized or used by 4862 // gather/scatter, making its pointer operand non-uniform. If the pointer 4863 // operand is used by any instruction other than a memory access, we 4864 // conservatively assume the pointer operand may be non-uniform. 4865 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 4866 PossibleNonUniformPtrs.insert(Ptr); 4867 4868 // If the memory instruction will be vectorized and its pointer operand 4869 // is consecutive-like, or interleaving - the pointer operand should 4870 // remain uniform. 4871 else 4872 ConsecutiveLikePtrs.insert(Ptr); 4873 } 4874 4875 // Add to the Worklist all consecutive and consecutive-like pointers that 4876 // aren't also identified as possibly non-uniform. 4877 for (auto *V : ConsecutiveLikePtrs) 4878 if (!PossibleNonUniformPtrs.count(V)) 4879 addToWorklistIfAllowed(V); 4880 4881 // Expand Worklist in topological order: whenever a new instruction 4882 // is added , its users should be already inside Worklist. It ensures 4883 // a uniform instruction will only be used by uniform instructions. 4884 unsigned idx = 0; 4885 while (idx != Worklist.size()) { 4886 Instruction *I = Worklist[idx++]; 4887 4888 for (auto OV : I->operand_values()) { 4889 // isOutOfScope operands cannot be uniform instructions. 4890 if (isOutOfScope(OV)) 4891 continue; 4892 // First order recurrence Phi's should typically be considered 4893 // non-uniform. 4894 auto *OP = dyn_cast<PHINode>(OV); 4895 if (OP && Legal->isFirstOrderRecurrence(OP)) 4896 continue; 4897 // If all the users of the operand are uniform, then add the 4898 // operand into the uniform worklist. 4899 auto *OI = cast<Instruction>(OV); 4900 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4901 auto *J = cast<Instruction>(U); 4902 return Worklist.count(J) || 4903 (OI == getLoadStorePointerOperand(J) && 4904 isUniformDecision(J, VF)); 4905 })) 4906 addToWorklistIfAllowed(OI); 4907 } 4908 } 4909 4910 // Returns true if Ptr is the pointer operand of a memory access instruction 4911 // I, and I is known to not require scalarization. 4912 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4913 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4914 }; 4915 4916 // For an instruction to be added into Worklist above, all its users inside 4917 // the loop should also be in Worklist. However, this condition cannot be 4918 // true for phi nodes that form a cyclic dependence. We must process phi 4919 // nodes separately. An induction variable will remain uniform if all users 4920 // of the induction variable and induction variable update remain uniform. 4921 // The code below handles both pointer and non-pointer induction variables. 4922 for (auto &Induction : Legal->getInductionVars()) { 4923 auto *Ind = Induction.first; 4924 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4925 4926 // Determine if all users of the induction variable are uniform after 4927 // vectorization. 4928 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4929 auto *I = cast<Instruction>(U); 4930 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4931 isVectorizedMemAccessUse(I, Ind); 4932 }); 4933 if (!UniformInd) 4934 continue; 4935 4936 // Determine if all users of the induction variable update instruction are 4937 // uniform after vectorization. 4938 auto UniformIndUpdate = 4939 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4940 auto *I = cast<Instruction>(U); 4941 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4942 isVectorizedMemAccessUse(I, IndUpdate); 4943 }); 4944 if (!UniformIndUpdate) 4945 continue; 4946 4947 // The induction variable and its update instruction will remain uniform. 4948 addToWorklistIfAllowed(Ind); 4949 addToWorklistIfAllowed(IndUpdate); 4950 } 4951 4952 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4953 } 4954 4955 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4956 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4957 4958 if (Legal->getRuntimePointerChecking()->Need) { 4959 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4960 "runtime pointer checks needed. Enable vectorization of this " 4961 "loop with '#pragma clang loop vectorize(enable)' when " 4962 "compiling with -Os/-Oz", 4963 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4964 return true; 4965 } 4966 4967 if (!PSE.getUnionPredicate().getPredicates().empty()) { 4968 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4969 "runtime SCEV checks needed. Enable vectorization of this " 4970 "loop with '#pragma clang loop vectorize(enable)' when " 4971 "compiling with -Os/-Oz", 4972 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4973 return true; 4974 } 4975 4976 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4977 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4978 reportVectorizationFailure("Runtime stride check is required with -Os/-Oz", 4979 "runtime stride == 1 checks needed. Enable vectorization of " 4980 "this loop with '#pragma clang loop vectorize(enable)' when " 4981 "compiling with -Os/-Oz", 4982 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4983 return true; 4984 } 4985 4986 return false; 4987 } 4988 4989 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(unsigned UserVF, 4990 unsigned UserIC) { 4991 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 4992 // TODO: It may by useful to do since it's still likely to be dynamically 4993 // uniform if the target can skip. 4994 reportVectorizationFailure( 4995 "Not inserting runtime ptr check for divergent target", 4996 "runtime pointer checks needed. Not enabled for divergent target", 4997 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 4998 return None; 4999 } 5000 5001 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5002 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5003 if (TC == 1) { 5004 reportVectorizationFailure("Single iteration (non) loop", 5005 "loop trip count is one, irrelevant for vectorization", 5006 "SingleIterationLoop", ORE, TheLoop); 5007 return None; 5008 } 5009 5010 switch (ScalarEpilogueStatus) { 5011 case CM_ScalarEpilogueAllowed: 5012 return UserVF ? UserVF : computeFeasibleMaxVF(TC); 5013 case CM_ScalarEpilogueNotNeededUsePredicate: 5014 LLVM_DEBUG( 5015 dbgs() << "LV: vector predicate hint/switch found.\n" 5016 << "LV: Not allowing scalar epilogue, creating predicated " 5017 << "vector loop.\n"); 5018 break; 5019 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5020 // fallthrough as a special case of OptForSize 5021 case CM_ScalarEpilogueNotAllowedOptSize: 5022 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5023 LLVM_DEBUG( 5024 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5025 else 5026 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5027 << "count.\n"); 5028 5029 // Bail if runtime checks are required, which are not good when optimising 5030 // for size. 5031 if (runtimeChecksRequired()) 5032 return None; 5033 break; 5034 } 5035 5036 // Now try the tail folding 5037 5038 // Invalidate interleave groups that require an epilogue if we can't mask 5039 // the interleave-group. 5040 if (!useMaskedInterleavedAccesses(TTI)) { 5041 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5042 "No decisions should have been taken at this point"); 5043 // Note: There is no need to invalidate any cost modeling decisions here, as 5044 // non where taken so far. 5045 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5046 } 5047 5048 unsigned MaxVF = UserVF ? UserVF : computeFeasibleMaxVF(TC); 5049 assert((UserVF || isPowerOf2_32(MaxVF)) && "MaxVF must be a power of 2"); 5050 unsigned MaxVFtimesIC = UserIC ? MaxVF * UserIC : MaxVF; 5051 if (TC > 0 && TC % MaxVFtimesIC == 0) { 5052 // Accept MaxVF if we do not have a tail. 5053 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5054 return MaxVF; 5055 } 5056 5057 // If we don't know the precise trip count, or if the trip count that we 5058 // found modulo the vectorization factor is not zero, try to fold the tail 5059 // by masking. 5060 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5061 if (Legal->prepareToFoldTailByMasking()) { 5062 FoldTailByMasking = true; 5063 return MaxVF; 5064 } 5065 5066 if (TC == 0) { 5067 reportVectorizationFailure( 5068 "Unable to calculate the loop count due to complex control flow", 5069 "unable to calculate the loop count due to complex control flow", 5070 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5071 return None; 5072 } 5073 5074 reportVectorizationFailure( 5075 "Cannot optimize for size and vectorize at the same time.", 5076 "cannot optimize for size and vectorize at the same time. " 5077 "Enable vectorization of this loop with '#pragma clang loop " 5078 "vectorize(enable)' when compiling with -Os/-Oz", 5079 "NoTailLoopWithOptForSize", ORE, TheLoop); 5080 return None; 5081 } 5082 5083 unsigned 5084 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount) { 5085 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5086 unsigned SmallestType, WidestType; 5087 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5088 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5089 5090 // Get the maximum safe dependence distance in bits computed by LAA. 5091 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5092 // the memory accesses that is most restrictive (involved in the smallest 5093 // dependence distance). 5094 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 5095 5096 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 5097 5098 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5099 // Note that both WidestRegister and WidestType may not be a powers of 2. 5100 unsigned MaxVectorSize = PowerOf2Floor(WidestRegister / WidestType); 5101 5102 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5103 << " / " << WidestType << " bits.\n"); 5104 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5105 << WidestRegister << " bits.\n"); 5106 5107 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements" 5108 " into one vector!"); 5109 if (MaxVectorSize == 0) { 5110 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5111 MaxVectorSize = 1; 5112 return MaxVectorSize; 5113 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 5114 isPowerOf2_32(ConstTripCount)) { 5115 // We need to clamp the VF to be the ConstTripCount. There is no point in 5116 // choosing a higher viable VF as done in the loop below. 5117 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5118 << ConstTripCount << "\n"); 5119 MaxVectorSize = ConstTripCount; 5120 return MaxVectorSize; 5121 } 5122 5123 unsigned MaxVF = MaxVectorSize; 5124 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5125 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5126 // Collect all viable vectorization factors larger than the default MaxVF 5127 // (i.e. MaxVectorSize). 5128 SmallVector<unsigned, 8> VFs; 5129 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5130 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 5131 VFs.push_back(VS); 5132 5133 // For each VF calculate its register usage. 5134 auto RUs = calculateRegisterUsage(VFs); 5135 5136 // Select the largest VF which doesn't require more registers than existing 5137 // ones. 5138 for (int i = RUs.size() - 1; i >= 0; --i) { 5139 bool Selected = true; 5140 for (auto& pair : RUs[i].MaxLocalUsers) { 5141 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5142 if (pair.second > TargetNumRegisters) 5143 Selected = false; 5144 } 5145 if (Selected) { 5146 MaxVF = VFs[i]; 5147 break; 5148 } 5149 } 5150 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) { 5151 if (MaxVF < MinVF) { 5152 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5153 << ") with target's minimum: " << MinVF << '\n'); 5154 MaxVF = MinVF; 5155 } 5156 } 5157 } 5158 return MaxVF; 5159 } 5160 5161 VectorizationFactor 5162 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 5163 float Cost = expectedCost(1).first; 5164 const float ScalarCost = Cost; 5165 unsigned Width = 1; 5166 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5167 5168 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5169 if (ForceVectorization && MaxVF > 1) { 5170 // Ignore scalar width, because the user explicitly wants vectorization. 5171 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5172 // evaluation. 5173 Cost = std::numeric_limits<float>::max(); 5174 } 5175 5176 for (unsigned i = 2; i <= MaxVF; i *= 2) { 5177 // Notice that the vector loop needs to be executed less times, so 5178 // we need to divide the cost of the vector loops by the width of 5179 // the vector elements. 5180 VectorizationCostTy C = expectedCost(i); 5181 float VectorCost = C.first / (float)i; 5182 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5183 << " costs: " << (int)VectorCost << ".\n"); 5184 if (!C.second && !ForceVectorization) { 5185 LLVM_DEBUG( 5186 dbgs() << "LV: Not considering vector loop of width " << i 5187 << " because it will not generate any vector instructions.\n"); 5188 continue; 5189 } 5190 if (VectorCost < Cost) { 5191 Cost = VectorCost; 5192 Width = i; 5193 } 5194 } 5195 5196 if (!EnableCondStoresVectorization && NumPredStores) { 5197 reportVectorizationFailure("There are conditional stores.", 5198 "store that is conditionally executed prevents vectorization", 5199 "ConditionalStore", ORE, TheLoop); 5200 Width = 1; 5201 Cost = ScalarCost; 5202 } 5203 5204 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5205 << "LV: Vectorization seems to be not beneficial, " 5206 << "but was forced by a user.\n"); 5207 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5208 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 5209 return Factor; 5210 } 5211 5212 std::pair<unsigned, unsigned> 5213 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5214 unsigned MinWidth = -1U; 5215 unsigned MaxWidth = 8; 5216 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5217 5218 // For each block. 5219 for (BasicBlock *BB : TheLoop->blocks()) { 5220 // For each instruction in the loop. 5221 for (Instruction &I : BB->instructionsWithoutDebug()) { 5222 Type *T = I.getType(); 5223 5224 // Skip ignored values. 5225 if (ValuesToIgnore.count(&I)) 5226 continue; 5227 5228 // Only examine Loads, Stores and PHINodes. 5229 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5230 continue; 5231 5232 // Examine PHI nodes that are reduction variables. Update the type to 5233 // account for the recurrence type. 5234 if (auto *PN = dyn_cast<PHINode>(&I)) { 5235 if (!Legal->isReductionVariable(PN)) 5236 continue; 5237 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 5238 T = RdxDesc.getRecurrenceType(); 5239 } 5240 5241 // Examine the stored values. 5242 if (auto *ST = dyn_cast<StoreInst>(&I)) 5243 T = ST->getValueOperand()->getType(); 5244 5245 // Ignore loaded pointer types and stored pointer types that are not 5246 // vectorizable. 5247 // 5248 // FIXME: The check here attempts to predict whether a load or store will 5249 // be vectorized. We only know this for certain after a VF has 5250 // been selected. Here, we assume that if an access can be 5251 // vectorized, it will be. We should also look at extending this 5252 // optimization to non-pointer types. 5253 // 5254 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 5255 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 5256 continue; 5257 5258 MinWidth = std::min(MinWidth, 5259 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5260 MaxWidth = std::max(MaxWidth, 5261 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5262 } 5263 } 5264 5265 return {MinWidth, MaxWidth}; 5266 } 5267 5268 unsigned LoopVectorizationCostModel::selectInterleaveCount(unsigned VF, 5269 unsigned LoopCost) { 5270 // -- The interleave heuristics -- 5271 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5272 // There are many micro-architectural considerations that we can't predict 5273 // at this level. For example, frontend pressure (on decode or fetch) due to 5274 // code size, or the number and capabilities of the execution ports. 5275 // 5276 // We use the following heuristics to select the interleave count: 5277 // 1. If the code has reductions, then we interleave to break the cross 5278 // iteration dependency. 5279 // 2. If the loop is really small, then we interleave to reduce the loop 5280 // overhead. 5281 // 3. We don't interleave if we think that we will spill registers to memory 5282 // due to the increased register pressure. 5283 5284 if (!isScalarEpilogueAllowed()) 5285 return 1; 5286 5287 // We used the distance for the interleave count. 5288 if (Legal->getMaxSafeDepDistBytes() != -1U) 5289 return 1; 5290 5291 // Do not interleave loops with a relatively small known or estimated trip 5292 // count. 5293 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5294 if (BestKnownTC && *BestKnownTC < TinyTripCountInterleaveThreshold) 5295 return 1; 5296 5297 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5298 // We divide by these constants so assume that we have at least one 5299 // instruction that uses at least one register. 5300 for (auto& pair : R.MaxLocalUsers) { 5301 pair.second = std::max(pair.second, 1U); 5302 } 5303 5304 // We calculate the interleave count using the following formula. 5305 // Subtract the number of loop invariants from the number of available 5306 // registers. These registers are used by all of the interleaved instances. 5307 // Next, divide the remaining registers by the number of registers that is 5308 // required by the loop, in order to estimate how many parallel instances 5309 // fit without causing spills. All of this is rounded down if necessary to be 5310 // a power of two. We want power of two interleave count to simplify any 5311 // addressing operations or alignment considerations. 5312 // We also want power of two interleave counts to ensure that the induction 5313 // variable of the vector loop wraps to zero, when tail is folded by masking; 5314 // this currently happens when OptForSize, in which case IC is set to 1 above. 5315 unsigned IC = UINT_MAX; 5316 5317 for (auto& pair : R.MaxLocalUsers) { 5318 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5319 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5320 << " registers of " 5321 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5322 if (VF == 1) { 5323 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5324 TargetNumRegisters = ForceTargetNumScalarRegs; 5325 } else { 5326 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5327 TargetNumRegisters = ForceTargetNumVectorRegs; 5328 } 5329 unsigned MaxLocalUsers = pair.second; 5330 unsigned LoopInvariantRegs = 0; 5331 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5332 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5333 5334 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5335 // Don't count the induction variable as interleaved. 5336 if (EnableIndVarRegisterHeur) { 5337 TmpIC = 5338 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5339 std::max(1U, (MaxLocalUsers - 1))); 5340 } 5341 5342 IC = std::min(IC, TmpIC); 5343 } 5344 5345 // Clamp the interleave ranges to reasonable counts. 5346 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5347 5348 // Check if the user has overridden the max. 5349 if (VF == 1) { 5350 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5351 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5352 } else { 5353 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5354 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5355 } 5356 5357 // If trip count is known or estimated compile time constant, limit the 5358 // interleave count to be less than the trip count divided by VF. 5359 if (BestKnownTC) { 5360 MaxInterleaveCount = std::min(*BestKnownTC / VF, MaxInterleaveCount); 5361 } 5362 5363 // If we did not calculate the cost for VF (because the user selected the VF) 5364 // then we calculate the cost of VF here. 5365 if (LoopCost == 0) 5366 LoopCost = expectedCost(VF).first; 5367 5368 assert(LoopCost && "Non-zero loop cost expected"); 5369 5370 // Clamp the calculated IC to be between the 1 and the max interleave count 5371 // that the target and trip count allows. 5372 if (IC > MaxInterleaveCount) 5373 IC = MaxInterleaveCount; 5374 else if (IC < 1) 5375 IC = 1; 5376 5377 // Interleave if we vectorized this loop and there is a reduction that could 5378 // benefit from interleaving. 5379 if (VF > 1 && !Legal->getReductionVars().empty()) { 5380 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5381 return IC; 5382 } 5383 5384 // Note that if we've already vectorized the loop we will have done the 5385 // runtime check and so interleaving won't require further checks. 5386 bool InterleavingRequiresRuntimePointerCheck = 5387 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5388 5389 // We want to interleave small loops in order to reduce the loop overhead and 5390 // potentially expose ILP opportunities. 5391 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5392 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5393 // We assume that the cost overhead is 1 and we use the cost model 5394 // to estimate the cost of the loop and interleave until the cost of the 5395 // loop overhead is about 5% of the cost of the loop. 5396 unsigned SmallIC = 5397 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5398 5399 // Interleave until store/load ports (estimated by max interleave count) are 5400 // saturated. 5401 unsigned NumStores = Legal->getNumStores(); 5402 unsigned NumLoads = Legal->getNumLoads(); 5403 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5404 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5405 5406 // If we have a scalar reduction (vector reductions are already dealt with 5407 // by this point), we can increase the critical path length if the loop 5408 // we're interleaving is inside another loop. Limit, by default to 2, so the 5409 // critical path only gets increased by one reduction operation. 5410 if (!Legal->getReductionVars().empty() && TheLoop->getLoopDepth() > 1) { 5411 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5412 SmallIC = std::min(SmallIC, F); 5413 StoresIC = std::min(StoresIC, F); 5414 LoadsIC = std::min(LoadsIC, F); 5415 } 5416 5417 if (EnableLoadStoreRuntimeInterleave && 5418 std::max(StoresIC, LoadsIC) > SmallIC) { 5419 LLVM_DEBUG( 5420 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5421 return std::max(StoresIC, LoadsIC); 5422 } 5423 5424 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5425 return SmallIC; 5426 } 5427 5428 // Interleave if this is a large loop (small loops are already dealt with by 5429 // this point) that could benefit from interleaving. 5430 bool HasReductions = !Legal->getReductionVars().empty(); 5431 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5432 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5433 return IC; 5434 } 5435 5436 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5437 return 1; 5438 } 5439 5440 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5441 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5442 // This function calculates the register usage by measuring the highest number 5443 // of values that are alive at a single location. Obviously, this is a very 5444 // rough estimation. We scan the loop in a topological order in order and 5445 // assign a number to each instruction. We use RPO to ensure that defs are 5446 // met before their users. We assume that each instruction that has in-loop 5447 // users starts an interval. We record every time that an in-loop value is 5448 // used, so we have a list of the first and last occurrences of each 5449 // instruction. Next, we transpose this data structure into a multi map that 5450 // holds the list of intervals that *end* at a specific location. This multi 5451 // map allows us to perform a linear search. We scan the instructions linearly 5452 // and record each time that a new interval starts, by placing it in a set. 5453 // If we find this value in the multi-map then we remove it from the set. 5454 // The max register usage is the maximum size of the set. 5455 // We also search for instructions that are defined outside the loop, but are 5456 // used inside the loop. We need this number separately from the max-interval 5457 // usage number because when we unroll, loop-invariant values do not take 5458 // more register. 5459 LoopBlocksDFS DFS(TheLoop); 5460 DFS.perform(LI); 5461 5462 RegisterUsage RU; 5463 5464 // Each 'key' in the map opens a new interval. The values 5465 // of the map are the index of the 'last seen' usage of the 5466 // instruction that is the key. 5467 using IntervalMap = DenseMap<Instruction *, unsigned>; 5468 5469 // Maps instruction to its index. 5470 SmallVector<Instruction *, 64> IdxToInstr; 5471 // Marks the end of each interval. 5472 IntervalMap EndPoint; 5473 // Saves the list of instruction indices that are used in the loop. 5474 SmallPtrSet<Instruction *, 8> Ends; 5475 // Saves the list of values that are used in the loop but are 5476 // defined outside the loop, such as arguments and constants. 5477 SmallPtrSet<Value *, 8> LoopInvariants; 5478 5479 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5480 for (Instruction &I : BB->instructionsWithoutDebug()) { 5481 IdxToInstr.push_back(&I); 5482 5483 // Save the end location of each USE. 5484 for (Value *U : I.operands()) { 5485 auto *Instr = dyn_cast<Instruction>(U); 5486 5487 // Ignore non-instruction values such as arguments, constants, etc. 5488 if (!Instr) 5489 continue; 5490 5491 // If this instruction is outside the loop then record it and continue. 5492 if (!TheLoop->contains(Instr)) { 5493 LoopInvariants.insert(Instr); 5494 continue; 5495 } 5496 5497 // Overwrite previous end points. 5498 EndPoint[Instr] = IdxToInstr.size(); 5499 Ends.insert(Instr); 5500 } 5501 } 5502 } 5503 5504 // Saves the list of intervals that end with the index in 'key'. 5505 using InstrList = SmallVector<Instruction *, 2>; 5506 DenseMap<unsigned, InstrList> TransposeEnds; 5507 5508 // Transpose the EndPoints to a list of values that end at each index. 5509 for (auto &Interval : EndPoint) 5510 TransposeEnds[Interval.second].push_back(Interval.first); 5511 5512 SmallPtrSet<Instruction *, 8> OpenIntervals; 5513 5514 // Get the size of the widest register. 5515 unsigned MaxSafeDepDist = -1U; 5516 if (Legal->getMaxSafeDepDistBytes() != -1U) 5517 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5518 unsigned WidestRegister = 5519 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5520 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5521 5522 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5523 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5524 5525 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5526 5527 // A lambda that gets the register usage for the given type and VF. 5528 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5529 if (Ty->isTokenTy()) 5530 return 0U; 5531 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5532 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5533 }; 5534 5535 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5536 Instruction *I = IdxToInstr[i]; 5537 5538 // Remove all of the instructions that end at this location. 5539 InstrList &List = TransposeEnds[i]; 5540 for (Instruction *ToRemove : List) 5541 OpenIntervals.erase(ToRemove); 5542 5543 // Ignore instructions that are never used within the loop. 5544 if (!Ends.count(I)) 5545 continue; 5546 5547 // Skip ignored values. 5548 if (ValuesToIgnore.count(I)) 5549 continue; 5550 5551 // For each VF find the maximum usage of registers. 5552 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5553 // Count the number of live intervals. 5554 SmallMapVector<unsigned, unsigned, 4> RegUsage; 5555 5556 if (VFs[j] == 1) { 5557 for (auto Inst : OpenIntervals) { 5558 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5559 if (RegUsage.find(ClassID) == RegUsage.end()) 5560 RegUsage[ClassID] = 1; 5561 else 5562 RegUsage[ClassID] += 1; 5563 } 5564 } else { 5565 collectUniformsAndScalars(VFs[j]); 5566 for (auto Inst : OpenIntervals) { 5567 // Skip ignored values for VF > 1. 5568 if (VecValuesToIgnore.count(Inst)) 5569 continue; 5570 if (isScalarAfterVectorization(Inst, VFs[j])) { 5571 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 5572 if (RegUsage.find(ClassID) == RegUsage.end()) 5573 RegUsage[ClassID] = 1; 5574 else 5575 RegUsage[ClassID] += 1; 5576 } else { 5577 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 5578 if (RegUsage.find(ClassID) == RegUsage.end()) 5579 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 5580 else 5581 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 5582 } 5583 } 5584 } 5585 5586 for (auto& pair : RegUsage) { 5587 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 5588 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 5589 else 5590 MaxUsages[j][pair.first] = pair.second; 5591 } 5592 } 5593 5594 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5595 << OpenIntervals.size() << '\n'); 5596 5597 // Add the current instruction to the list of open intervals. 5598 OpenIntervals.insert(I); 5599 } 5600 5601 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5602 SmallMapVector<unsigned, unsigned, 4> Invariant; 5603 5604 for (auto Inst : LoopInvariants) { 5605 unsigned Usage = VFs[i] == 1 ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 5606 unsigned ClassID = TTI.getRegisterClassForType(VFs[i] > 1, Inst->getType()); 5607 if (Invariant.find(ClassID) == Invariant.end()) 5608 Invariant[ClassID] = Usage; 5609 else 5610 Invariant[ClassID] += Usage; 5611 } 5612 5613 LLVM_DEBUG({ 5614 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 5615 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 5616 << " item\n"; 5617 for (const auto &pair : MaxUsages[i]) { 5618 dbgs() << "LV(REG): RegisterClass: " 5619 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5620 << " registers\n"; 5621 } 5622 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 5623 << " item\n"; 5624 for (const auto &pair : Invariant) { 5625 dbgs() << "LV(REG): RegisterClass: " 5626 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 5627 << " registers\n"; 5628 } 5629 }); 5630 5631 RU.LoopInvariantRegs = Invariant; 5632 RU.MaxLocalUsers = MaxUsages[i]; 5633 RUs[i] = RU; 5634 } 5635 5636 return RUs; 5637 } 5638 5639 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 5640 // TODO: Cost model for emulated masked load/store is completely 5641 // broken. This hack guides the cost model to use an artificially 5642 // high enough value to practically disable vectorization with such 5643 // operations, except where previously deployed legality hack allowed 5644 // using very low cost values. This is to avoid regressions coming simply 5645 // from moving "masked load/store" check from legality to cost model. 5646 // Masked Load/Gather emulation was previously never allowed. 5647 // Limited number of Masked Store/Scatter emulation was allowed. 5648 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 5649 return isa<LoadInst>(I) || 5650 (isa<StoreInst>(I) && 5651 NumPredStores > NumberOfStoresToPredicate); 5652 } 5653 5654 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 5655 // If we aren't vectorizing the loop, or if we've already collected the 5656 // instructions to scalarize, there's nothing to do. Collection may already 5657 // have occurred if we have a user-selected VF and are now computing the 5658 // expected cost for interleaving. 5659 if (VF < 2 || InstsToScalarize.find(VF) != InstsToScalarize.end()) 5660 return; 5661 5662 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 5663 // not profitable to scalarize any instructions, the presence of VF in the 5664 // map will indicate that we've analyzed it already. 5665 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 5666 5667 // Find all the instructions that are scalar with predication in the loop and 5668 // determine if it would be better to not if-convert the blocks they are in. 5669 // If so, we also record the instructions to scalarize. 5670 for (BasicBlock *BB : TheLoop->blocks()) { 5671 if (!blockNeedsPredication(BB)) 5672 continue; 5673 for (Instruction &I : *BB) 5674 if (isScalarWithPredication(&I)) { 5675 ScalarCostsTy ScalarCosts; 5676 // Do not apply discount logic if hacked cost is needed 5677 // for emulated masked memrefs. 5678 if (!useEmulatedMaskMemRefHack(&I) && 5679 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 5680 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 5681 // Remember that BB will remain after vectorization. 5682 PredicatedBBsAfterVectorization.insert(BB); 5683 } 5684 } 5685 } 5686 5687 int LoopVectorizationCostModel::computePredInstDiscount( 5688 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 5689 unsigned VF) { 5690 assert(!isUniformAfterVectorization(PredInst, VF) && 5691 "Instruction marked uniform-after-vectorization will be predicated"); 5692 5693 // Initialize the discount to zero, meaning that the scalar version and the 5694 // vector version cost the same. 5695 int Discount = 0; 5696 5697 // Holds instructions to analyze. The instructions we visit are mapped in 5698 // ScalarCosts. Those instructions are the ones that would be scalarized if 5699 // we find that the scalar version costs less. 5700 SmallVector<Instruction *, 8> Worklist; 5701 5702 // Returns true if the given instruction can be scalarized. 5703 auto canBeScalarized = [&](Instruction *I) -> bool { 5704 // We only attempt to scalarize instructions forming a single-use chain 5705 // from the original predicated block that would otherwise be vectorized. 5706 // Although not strictly necessary, we give up on instructions we know will 5707 // already be scalar to avoid traversing chains that are unlikely to be 5708 // beneficial. 5709 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 5710 isScalarAfterVectorization(I, VF)) 5711 return false; 5712 5713 // If the instruction is scalar with predication, it will be analyzed 5714 // separately. We ignore it within the context of PredInst. 5715 if (isScalarWithPredication(I)) 5716 return false; 5717 5718 // If any of the instruction's operands are uniform after vectorization, 5719 // the instruction cannot be scalarized. This prevents, for example, a 5720 // masked load from being scalarized. 5721 // 5722 // We assume we will only emit a value for lane zero of an instruction 5723 // marked uniform after vectorization, rather than VF identical values. 5724 // Thus, if we scalarize an instruction that uses a uniform, we would 5725 // create uses of values corresponding to the lanes we aren't emitting code 5726 // for. This behavior can be changed by allowing getScalarValue to clone 5727 // the lane zero values for uniforms rather than asserting. 5728 for (Use &U : I->operands()) 5729 if (auto *J = dyn_cast<Instruction>(U.get())) 5730 if (isUniformAfterVectorization(J, VF)) 5731 return false; 5732 5733 // Otherwise, we can scalarize the instruction. 5734 return true; 5735 }; 5736 5737 // Compute the expected cost discount from scalarizing the entire expression 5738 // feeding the predicated instruction. We currently only consider expressions 5739 // that are single-use instruction chains. 5740 Worklist.push_back(PredInst); 5741 while (!Worklist.empty()) { 5742 Instruction *I = Worklist.pop_back_val(); 5743 5744 // If we've already analyzed the instruction, there's nothing to do. 5745 if (ScalarCosts.find(I) != ScalarCosts.end()) 5746 continue; 5747 5748 // Compute the cost of the vector instruction. Note that this cost already 5749 // includes the scalarization overhead of the predicated instruction. 5750 unsigned VectorCost = getInstructionCost(I, VF).first; 5751 5752 // Compute the cost of the scalarized instruction. This cost is the cost of 5753 // the instruction as if it wasn't if-converted and instead remained in the 5754 // predicated block. We will scale this cost by block probability after 5755 // computing the scalarization overhead. 5756 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 5757 5758 // Compute the scalarization overhead of needed insertelement instructions 5759 // and phi nodes. 5760 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 5761 ScalarCost += TTI.getScalarizationOverhead( 5762 cast<VectorType>(ToVectorTy(I->getType(), VF)), 5763 APInt::getAllOnesValue(VF), true, false); 5764 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI, 5765 TTI::TCK_RecipThroughput); 5766 } 5767 5768 // Compute the scalarization overhead of needed extractelement 5769 // instructions. For each of the instruction's operands, if the operand can 5770 // be scalarized, add it to the worklist; otherwise, account for the 5771 // overhead. 5772 for (Use &U : I->operands()) 5773 if (auto *J = dyn_cast<Instruction>(U.get())) { 5774 assert(VectorType::isValidElementType(J->getType()) && 5775 "Instruction has non-scalar type"); 5776 if (canBeScalarized(J)) 5777 Worklist.push_back(J); 5778 else if (needsExtract(J, VF)) 5779 ScalarCost += TTI.getScalarizationOverhead( 5780 cast<VectorType>(ToVectorTy(J->getType(), VF)), 5781 APInt::getAllOnesValue(VF), false, true); 5782 } 5783 5784 // Scale the total scalar cost by block probability. 5785 ScalarCost /= getReciprocalPredBlockProb(); 5786 5787 // Compute the discount. A non-negative discount means the vector version 5788 // of the instruction costs more, and scalarizing would be beneficial. 5789 Discount += VectorCost - ScalarCost; 5790 ScalarCosts[I] = ScalarCost; 5791 } 5792 5793 return Discount; 5794 } 5795 5796 LoopVectorizationCostModel::VectorizationCostTy 5797 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5798 VectorizationCostTy Cost; 5799 5800 // For each block. 5801 for (BasicBlock *BB : TheLoop->blocks()) { 5802 VectorizationCostTy BlockCost; 5803 5804 // For each instruction in the old loop. 5805 for (Instruction &I : BB->instructionsWithoutDebug()) { 5806 // Skip ignored values. 5807 if (ValuesToIgnore.count(&I) || (VF > 1 && VecValuesToIgnore.count(&I))) 5808 continue; 5809 5810 VectorizationCostTy C = getInstructionCost(&I, VF); 5811 5812 // Check if we should override the cost. 5813 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5814 C.first = ForceTargetInstructionCost; 5815 5816 BlockCost.first += C.first; 5817 BlockCost.second |= C.second; 5818 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 5819 << " for VF " << VF << " For instruction: " << I 5820 << '\n'); 5821 } 5822 5823 // If we are vectorizing a predicated block, it will have been 5824 // if-converted. This means that the block's instructions (aside from 5825 // stores and instructions that may divide by zero) will now be 5826 // unconditionally executed. For the scalar case, we may not always execute 5827 // the predicated block. Thus, scale the block's cost by the probability of 5828 // executing it. 5829 if (VF == 1 && blockNeedsPredication(BB)) 5830 BlockCost.first /= getReciprocalPredBlockProb(); 5831 5832 Cost.first += BlockCost.first; 5833 Cost.second |= BlockCost.second; 5834 } 5835 5836 return Cost; 5837 } 5838 5839 /// Gets Address Access SCEV after verifying that the access pattern 5840 /// is loop invariant except the induction variable dependence. 5841 /// 5842 /// This SCEV can be sent to the Target in order to estimate the address 5843 /// calculation cost. 5844 static const SCEV *getAddressAccessSCEV( 5845 Value *Ptr, 5846 LoopVectorizationLegality *Legal, 5847 PredicatedScalarEvolution &PSE, 5848 const Loop *TheLoop) { 5849 5850 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5851 if (!Gep) 5852 return nullptr; 5853 5854 // We are looking for a gep with all loop invariant indices except for one 5855 // which should be an induction variable. 5856 auto SE = PSE.getSE(); 5857 unsigned NumOperands = Gep->getNumOperands(); 5858 for (unsigned i = 1; i < NumOperands; ++i) { 5859 Value *Opd = Gep->getOperand(i); 5860 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5861 !Legal->isInductionVariable(Opd)) 5862 return nullptr; 5863 } 5864 5865 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 5866 return PSE.getSCEV(Ptr); 5867 } 5868 5869 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5870 return Legal->hasStride(I->getOperand(0)) || 5871 Legal->hasStride(I->getOperand(1)); 5872 } 5873 5874 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 5875 unsigned VF) { 5876 assert(VF > 1 && "Scalarization cost of instruction implies vectorization."); 5877 Type *ValTy = getMemInstValueType(I); 5878 auto SE = PSE.getSE(); 5879 5880 unsigned AS = getLoadStoreAddressSpace(I); 5881 Value *Ptr = getLoadStorePointerOperand(I); 5882 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 5883 5884 // Figure out whether the access is strided and get the stride value 5885 // if it's known in compile time 5886 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 5887 5888 // Get the cost of the scalar memory instruction and address computation. 5889 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 5890 5891 // Don't pass *I here, since it is scalar but will actually be part of a 5892 // vectorized loop where the user of it is a vectorized instruction. 5893 const Align Alignment = getLoadStoreAlignment(I); 5894 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 5895 Alignment, AS, 5896 TTI::TCK_RecipThroughput); 5897 5898 // Get the overhead of the extractelement and insertelement instructions 5899 // we might create due to scalarization. 5900 Cost += getScalarizationOverhead(I, VF); 5901 5902 // If we have a predicated store, it may not be executed for each vector 5903 // lane. Scale the cost by the probability of executing the predicated 5904 // block. 5905 if (isPredicatedInst(I)) { 5906 Cost /= getReciprocalPredBlockProb(); 5907 5908 if (useEmulatedMaskMemRefHack(I)) 5909 // Artificially setting to a high enough value to practically disable 5910 // vectorization with such operations. 5911 Cost = 3000000; 5912 } 5913 5914 return Cost; 5915 } 5916 5917 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 5918 unsigned VF) { 5919 Type *ValTy = getMemInstValueType(I); 5920 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5921 Value *Ptr = getLoadStorePointerOperand(I); 5922 unsigned AS = getLoadStoreAddressSpace(I); 5923 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 5924 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5925 5926 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 5927 "Stride should be 1 or -1 for consecutive memory access"); 5928 const Align Alignment = getLoadStoreAlignment(I); 5929 unsigned Cost = 0; 5930 if (Legal->isMaskRequired(I)) 5931 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5932 CostKind); 5933 else 5934 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 5935 CostKind, I); 5936 5937 bool Reverse = ConsecutiveStride < 0; 5938 if (Reverse) 5939 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 5940 return Cost; 5941 } 5942 5943 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 5944 unsigned VF) { 5945 Type *ValTy = getMemInstValueType(I); 5946 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5947 const Align Alignment = getLoadStoreAlignment(I); 5948 unsigned AS = getLoadStoreAddressSpace(I); 5949 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 5950 if (isa<LoadInst>(I)) { 5951 return TTI.getAddressComputationCost(ValTy) + 5952 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 5953 CostKind) + 5954 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 5955 } 5956 StoreInst *SI = cast<StoreInst>(I); 5957 5958 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 5959 return TTI.getAddressComputationCost(ValTy) + 5960 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 5961 CostKind) + 5962 (isLoopInvariantStoreValue 5963 ? 0 5964 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 5965 VF - 1)); 5966 } 5967 5968 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 5969 unsigned VF) { 5970 Type *ValTy = getMemInstValueType(I); 5971 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5972 const Align Alignment = getLoadStoreAlignment(I); 5973 const Value *Ptr = getLoadStorePointerOperand(I); 5974 5975 return TTI.getAddressComputationCost(VectorTy) + 5976 TTI.getGatherScatterOpCost( 5977 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 5978 TargetTransformInfo::TCK_RecipThroughput, I); 5979 } 5980 5981 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 5982 unsigned VF) { 5983 Type *ValTy = getMemInstValueType(I); 5984 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 5985 unsigned AS = getLoadStoreAddressSpace(I); 5986 5987 auto Group = getInterleavedAccessGroup(I); 5988 assert(Group && "Fail to get an interleaved access group."); 5989 5990 unsigned InterleaveFactor = Group->getFactor(); 5991 auto *WideVecTy = FixedVectorType::get(ValTy, VF * InterleaveFactor); 5992 5993 // Holds the indices of existing members in an interleaved load group. 5994 // An interleaved store group doesn't need this as it doesn't allow gaps. 5995 SmallVector<unsigned, 4> Indices; 5996 if (isa<LoadInst>(I)) { 5997 for (unsigned i = 0; i < InterleaveFactor; i++) 5998 if (Group->getMember(i)) 5999 Indices.push_back(i); 6000 } 6001 6002 // Calculate the cost of the whole interleaved group. 6003 bool UseMaskForGaps = 6004 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6005 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6006 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6007 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6008 6009 if (Group->isReverse()) { 6010 // TODO: Add support for reversed masked interleaved access. 6011 assert(!Legal->isMaskRequired(I) && 6012 "Reverse masked interleaved access not supported."); 6013 Cost += Group->getNumMembers() * 6014 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6015 } 6016 return Cost; 6017 } 6018 6019 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6020 unsigned VF) { 6021 // Calculate scalar cost only. Vectorization cost should be ready at this 6022 // moment. 6023 if (VF == 1) { 6024 Type *ValTy = getMemInstValueType(I); 6025 const Align Alignment = getLoadStoreAlignment(I); 6026 unsigned AS = getLoadStoreAddressSpace(I); 6027 6028 return TTI.getAddressComputationCost(ValTy) + 6029 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6030 TTI::TCK_RecipThroughput, I); 6031 } 6032 return getWideningCost(I, VF); 6033 } 6034 6035 LoopVectorizationCostModel::VectorizationCostTy 6036 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 6037 // If we know that this instruction will remain uniform, check the cost of 6038 // the scalar version. 6039 if (isUniformAfterVectorization(I, VF)) 6040 VF = 1; 6041 6042 if (VF > 1 && isProfitableToScalarize(I, VF)) 6043 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6044 6045 // Forced scalars do not have any scalarization overhead. 6046 auto ForcedScalar = ForcedScalars.find(VF); 6047 if (VF > 1 && ForcedScalar != ForcedScalars.end()) { 6048 auto InstSet = ForcedScalar->second; 6049 if (InstSet.count(I)) 6050 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 6051 } 6052 6053 Type *VectorTy; 6054 unsigned C = getInstructionCost(I, VF, VectorTy); 6055 6056 bool TypeNotScalarized = 6057 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 6058 return VectorizationCostTy(C, TypeNotScalarized); 6059 } 6060 6061 unsigned LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6062 unsigned VF) { 6063 6064 if (VF == 1) 6065 return 0; 6066 6067 unsigned Cost = 0; 6068 Type *RetTy = ToVectorTy(I->getType(), VF); 6069 if (!RetTy->isVoidTy() && 6070 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6071 Cost += TTI.getScalarizationOverhead( 6072 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF), true, false); 6073 6074 // Some targets keep addresses scalar. 6075 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6076 return Cost; 6077 6078 // Some targets support efficient element stores. 6079 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6080 return Cost; 6081 6082 // Collect operands to consider. 6083 CallInst *CI = dyn_cast<CallInst>(I); 6084 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 6085 6086 // Skip operands that do not require extraction/scalarization and do not incur 6087 // any overhead. 6088 return Cost + TTI.getOperandsScalarizationOverhead( 6089 filterExtractingOperands(Ops, VF), VF); 6090 } 6091 6092 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 6093 if (VF == 1) 6094 return; 6095 NumPredStores = 0; 6096 for (BasicBlock *BB : TheLoop->blocks()) { 6097 // For each instruction in the old loop. 6098 for (Instruction &I : *BB) { 6099 Value *Ptr = getLoadStorePointerOperand(&I); 6100 if (!Ptr) 6101 continue; 6102 6103 // TODO: We should generate better code and update the cost model for 6104 // predicated uniform stores. Today they are treated as any other 6105 // predicated store (see added test cases in 6106 // invariant-store-vectorization.ll). 6107 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 6108 NumPredStores++; 6109 6110 if (Legal->isUniform(Ptr) && 6111 // Conditional loads and stores should be scalarized and predicated. 6112 // isScalarWithPredication cannot be used here since masked 6113 // gather/scatters are not considered scalar with predication. 6114 !Legal->blockNeedsPredication(I.getParent())) { 6115 // TODO: Avoid replicating loads and stores instead of 6116 // relying on instcombine to remove them. 6117 // Load: Scalar load + broadcast 6118 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6119 unsigned Cost = getUniformMemOpCost(&I, VF); 6120 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6121 continue; 6122 } 6123 6124 // We assume that widening is the best solution when possible. 6125 if (memoryInstructionCanBeWidened(&I, VF)) { 6126 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 6127 int ConsecutiveStride = 6128 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 6129 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6130 "Expected consecutive stride."); 6131 InstWidening Decision = 6132 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6133 setWideningDecision(&I, VF, Decision, Cost); 6134 continue; 6135 } 6136 6137 // Choose between Interleaving, Gather/Scatter or Scalarization. 6138 unsigned InterleaveCost = std::numeric_limits<unsigned>::max(); 6139 unsigned NumAccesses = 1; 6140 if (isAccessInterleaved(&I)) { 6141 auto Group = getInterleavedAccessGroup(&I); 6142 assert(Group && "Fail to get an interleaved access group."); 6143 6144 // Make one decision for the whole group. 6145 if (getWideningDecision(&I, VF) != CM_Unknown) 6146 continue; 6147 6148 NumAccesses = Group->getNumMembers(); 6149 if (interleavedAccessCanBeWidened(&I, VF)) 6150 InterleaveCost = getInterleaveGroupCost(&I, VF); 6151 } 6152 6153 unsigned GatherScatterCost = 6154 isLegalGatherOrScatter(&I) 6155 ? getGatherScatterCost(&I, VF) * NumAccesses 6156 : std::numeric_limits<unsigned>::max(); 6157 6158 unsigned ScalarizationCost = 6159 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6160 6161 // Choose better solution for the current VF, 6162 // write down this decision and use it during vectorization. 6163 unsigned Cost; 6164 InstWidening Decision; 6165 if (InterleaveCost <= GatherScatterCost && 6166 InterleaveCost < ScalarizationCost) { 6167 Decision = CM_Interleave; 6168 Cost = InterleaveCost; 6169 } else if (GatherScatterCost < ScalarizationCost) { 6170 Decision = CM_GatherScatter; 6171 Cost = GatherScatterCost; 6172 } else { 6173 Decision = CM_Scalarize; 6174 Cost = ScalarizationCost; 6175 } 6176 // If the instructions belongs to an interleave group, the whole group 6177 // receives the same decision. The whole group receives the cost, but 6178 // the cost will actually be assigned to one instruction. 6179 if (auto Group = getInterleavedAccessGroup(&I)) 6180 setWideningDecision(Group, VF, Decision, Cost); 6181 else 6182 setWideningDecision(&I, VF, Decision, Cost); 6183 } 6184 } 6185 6186 // Make sure that any load of address and any other address computation 6187 // remains scalar unless there is gather/scatter support. This avoids 6188 // inevitable extracts into address registers, and also has the benefit of 6189 // activating LSR more, since that pass can't optimize vectorized 6190 // addresses. 6191 if (TTI.prefersVectorizedAddressing()) 6192 return; 6193 6194 // Start with all scalar pointer uses. 6195 SmallPtrSet<Instruction *, 8> AddrDefs; 6196 for (BasicBlock *BB : TheLoop->blocks()) 6197 for (Instruction &I : *BB) { 6198 Instruction *PtrDef = 6199 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6200 if (PtrDef && TheLoop->contains(PtrDef) && 6201 getWideningDecision(&I, VF) != CM_GatherScatter) 6202 AddrDefs.insert(PtrDef); 6203 } 6204 6205 // Add all instructions used to generate the addresses. 6206 SmallVector<Instruction *, 4> Worklist; 6207 for (auto *I : AddrDefs) 6208 Worklist.push_back(I); 6209 while (!Worklist.empty()) { 6210 Instruction *I = Worklist.pop_back_val(); 6211 for (auto &Op : I->operands()) 6212 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6213 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6214 AddrDefs.insert(InstOp).second) 6215 Worklist.push_back(InstOp); 6216 } 6217 6218 for (auto *I : AddrDefs) { 6219 if (isa<LoadInst>(I)) { 6220 // Setting the desired widening decision should ideally be handled in 6221 // by cost functions, but since this involves the task of finding out 6222 // if the loaded register is involved in an address computation, it is 6223 // instead changed here when we know this is the case. 6224 InstWidening Decision = getWideningDecision(I, VF); 6225 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6226 // Scalarize a widened load of address. 6227 setWideningDecision(I, VF, CM_Scalarize, 6228 (VF * getMemoryInstructionCost(I, 1))); 6229 else if (auto Group = getInterleavedAccessGroup(I)) { 6230 // Scalarize an interleave group of address loads. 6231 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6232 if (Instruction *Member = Group->getMember(I)) 6233 setWideningDecision(Member, VF, CM_Scalarize, 6234 (VF * getMemoryInstructionCost(Member, 1))); 6235 } 6236 } 6237 } else 6238 // Make sure I gets scalarized and a cost estimate without 6239 // scalarization overhead. 6240 ForcedScalars[VF].insert(I); 6241 } 6242 } 6243 6244 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6245 unsigned VF, 6246 Type *&VectorTy) { 6247 Type *RetTy = I->getType(); 6248 if (canTruncateToMinimalBitwidth(I, VF)) 6249 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6250 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 6251 auto SE = PSE.getSE(); 6252 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6253 6254 // TODO: We need to estimate the cost of intrinsic calls. 6255 switch (I->getOpcode()) { 6256 case Instruction::GetElementPtr: 6257 // We mark this instruction as zero-cost because the cost of GEPs in 6258 // vectorized code depends on whether the corresponding memory instruction 6259 // is scalarized or not. Therefore, we handle GEPs with the memory 6260 // instruction cost. 6261 return 0; 6262 case Instruction::Br: { 6263 // In cases of scalarized and predicated instructions, there will be VF 6264 // predicated blocks in the vectorized loop. Each branch around these 6265 // blocks requires also an extract of its vector compare i1 element. 6266 bool ScalarPredicatedBB = false; 6267 BranchInst *BI = cast<BranchInst>(I); 6268 if (VF > 1 && BI->isConditional() && 6269 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 6270 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 6271 ScalarPredicatedBB = true; 6272 6273 if (ScalarPredicatedBB) { 6274 // Return cost for branches around scalarized and predicated blocks. 6275 auto *Vec_i1Ty = 6276 FixedVectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 6277 return (TTI.getScalarizationOverhead(Vec_i1Ty, APInt::getAllOnesValue(VF), 6278 false, true) + 6279 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF)); 6280 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 6281 // The back-edge branch will remain, as will all scalar branches. 6282 return TTI.getCFInstrCost(Instruction::Br, CostKind); 6283 else 6284 // This branch will be eliminated by if-conversion. 6285 return 0; 6286 // Note: We currently assume zero cost for an unconditional branch inside 6287 // a predicated block since it will become a fall-through, although we 6288 // may decide in the future to call TTI for all branches. 6289 } 6290 case Instruction::PHI: { 6291 auto *Phi = cast<PHINode>(I); 6292 6293 // First-order recurrences are replaced by vector shuffles inside the loop. 6294 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 6295 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 6296 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 6297 cast<VectorType>(VectorTy), VF - 1, 6298 FixedVectorType::get(RetTy, 1)); 6299 6300 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 6301 // converted into select instructions. We require N - 1 selects per phi 6302 // node, where N is the number of incoming values. 6303 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 6304 return (Phi->getNumIncomingValues() - 1) * 6305 TTI.getCmpSelInstrCost( 6306 Instruction::Select, ToVectorTy(Phi->getType(), VF), 6307 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 6308 CostKind); 6309 6310 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 6311 } 6312 case Instruction::UDiv: 6313 case Instruction::SDiv: 6314 case Instruction::URem: 6315 case Instruction::SRem: 6316 // If we have a predicated instruction, it may not be executed for each 6317 // vector lane. Get the scalarization cost and scale this amount by the 6318 // probability of executing the predicated block. If the instruction is not 6319 // predicated, we fall through to the next case. 6320 if (VF > 1 && isScalarWithPredication(I)) { 6321 unsigned Cost = 0; 6322 6323 // These instructions have a non-void type, so account for the phi nodes 6324 // that we will create. This cost is likely to be zero. The phi node 6325 // cost, if any, should be scaled by the block probability because it 6326 // models a copy at the end of each predicated block. 6327 Cost += VF * TTI.getCFInstrCost(Instruction::PHI, CostKind); 6328 6329 // The cost of the non-predicated instruction. 6330 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 6331 6332 // The cost of insertelement and extractelement instructions needed for 6333 // scalarization. 6334 Cost += getScalarizationOverhead(I, VF); 6335 6336 // Scale the cost by the probability of executing the predicated blocks. 6337 // This assumes the predicated block for each vector lane is equally 6338 // likely. 6339 return Cost / getReciprocalPredBlockProb(); 6340 } 6341 LLVM_FALLTHROUGH; 6342 case Instruction::Add: 6343 case Instruction::FAdd: 6344 case Instruction::Sub: 6345 case Instruction::FSub: 6346 case Instruction::Mul: 6347 case Instruction::FMul: 6348 case Instruction::FDiv: 6349 case Instruction::FRem: 6350 case Instruction::Shl: 6351 case Instruction::LShr: 6352 case Instruction::AShr: 6353 case Instruction::And: 6354 case Instruction::Or: 6355 case Instruction::Xor: { 6356 // Since we will replace the stride by 1 the multiplication should go away. 6357 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 6358 return 0; 6359 // Certain instructions can be cheaper to vectorize if they have a constant 6360 // second vector operand. One example of this are shifts on x86. 6361 Value *Op2 = I->getOperand(1); 6362 TargetTransformInfo::OperandValueProperties Op2VP; 6363 TargetTransformInfo::OperandValueKind Op2VK = 6364 TTI.getOperandInfo(Op2, Op2VP); 6365 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 6366 Op2VK = TargetTransformInfo::OK_UniformValue; 6367 6368 SmallVector<const Value *, 4> Operands(I->operand_values()); 6369 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6370 return N * TTI.getArithmeticInstrCost( 6371 I->getOpcode(), VectorTy, CostKind, 6372 TargetTransformInfo::OK_AnyValue, 6373 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 6374 } 6375 case Instruction::FNeg: { 6376 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6377 return N * TTI.getArithmeticInstrCost( 6378 I->getOpcode(), VectorTy, CostKind, 6379 TargetTransformInfo::OK_AnyValue, 6380 TargetTransformInfo::OK_AnyValue, 6381 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 6382 I->getOperand(0), I); 6383 } 6384 case Instruction::Select: { 6385 SelectInst *SI = cast<SelectInst>(I); 6386 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 6387 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 6388 Type *CondTy = SI->getCondition()->getType(); 6389 if (!ScalarCond) 6390 CondTy = FixedVectorType::get(CondTy, VF); 6391 6392 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 6393 CostKind, I); 6394 } 6395 case Instruction::ICmp: 6396 case Instruction::FCmp: { 6397 Type *ValTy = I->getOperand(0)->getType(); 6398 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 6399 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 6400 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 6401 VectorTy = ToVectorTy(ValTy, VF); 6402 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, CostKind, 6403 I); 6404 } 6405 case Instruction::Store: 6406 case Instruction::Load: { 6407 unsigned Width = VF; 6408 if (Width > 1) { 6409 InstWidening Decision = getWideningDecision(I, Width); 6410 assert(Decision != CM_Unknown && 6411 "CM decision should be taken at this point"); 6412 if (Decision == CM_Scalarize) 6413 Width = 1; 6414 } 6415 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 6416 return getMemoryInstructionCost(I, VF); 6417 } 6418 case Instruction::ZExt: 6419 case Instruction::SExt: 6420 case Instruction::FPToUI: 6421 case Instruction::FPToSI: 6422 case Instruction::FPExt: 6423 case Instruction::PtrToInt: 6424 case Instruction::IntToPtr: 6425 case Instruction::SIToFP: 6426 case Instruction::UIToFP: 6427 case Instruction::Trunc: 6428 case Instruction::FPTrunc: 6429 case Instruction::BitCast: { 6430 // We optimize the truncation of induction variables having constant 6431 // integer steps. The cost of these truncations is the same as the scalar 6432 // operation. 6433 if (isOptimizableIVTruncate(I, VF)) { 6434 auto *Trunc = cast<TruncInst>(I); 6435 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 6436 Trunc->getSrcTy(), CostKind, Trunc); 6437 } 6438 6439 Type *SrcScalarTy = I->getOperand(0)->getType(); 6440 Type *SrcVecTy = 6441 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 6442 if (canTruncateToMinimalBitwidth(I, VF)) { 6443 // This cast is going to be shrunk. This may remove the cast or it might 6444 // turn it into slightly different cast. For example, if MinBW == 16, 6445 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6446 // 6447 // Calculate the modified src and dest types. 6448 Type *MinVecTy = VectorTy; 6449 if (I->getOpcode() == Instruction::Trunc) { 6450 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6451 VectorTy = 6452 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6453 } else if (I->getOpcode() == Instruction::ZExt || 6454 I->getOpcode() == Instruction::SExt) { 6455 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6456 VectorTy = 6457 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6458 } 6459 } 6460 6461 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 6462 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, 6463 CostKind, I); 6464 } 6465 case Instruction::Call: { 6466 bool NeedToScalarize; 6467 CallInst *CI = cast<CallInst>(I); 6468 unsigned CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 6469 if (getVectorIntrinsicIDForCall(CI, TLI)) 6470 return std::min(CallCost, getVectorIntrinsicCost(CI, VF)); 6471 return CallCost; 6472 } 6473 default: 6474 // The cost of executing VF copies of the scalar instruction. This opcode 6475 // is unknown. Assume that it is the same as 'mul'. 6476 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, 6477 CostKind) + 6478 getScalarizationOverhead(I, VF); 6479 } // end of switch. 6480 } 6481 6482 char LoopVectorize::ID = 0; 6483 6484 static const char lv_name[] = "Loop Vectorization"; 6485 6486 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6487 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6488 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6489 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6490 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6491 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6492 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6493 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6494 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6495 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6496 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 6497 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6498 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 6499 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 6500 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 6501 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6502 6503 namespace llvm { 6504 6505 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 6506 6507 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 6508 bool VectorizeOnlyWhenForced) { 6509 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 6510 } 6511 6512 } // end namespace llvm 6513 6514 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6515 // Check if the pointer operand of a load or store instruction is 6516 // consecutive. 6517 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 6518 return Legal->isConsecutivePtr(Ptr); 6519 return false; 6520 } 6521 6522 void LoopVectorizationCostModel::collectValuesToIgnore() { 6523 // Ignore ephemeral values. 6524 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6525 6526 // Ignore type-promoting instructions we identified during reduction 6527 // detection. 6528 for (auto &Reduction : Legal->getReductionVars()) { 6529 RecurrenceDescriptor &RedDes = Reduction.second; 6530 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6531 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6532 } 6533 // Ignore type-casting instructions we identified during induction 6534 // detection. 6535 for (auto &Induction : Legal->getInductionVars()) { 6536 InductionDescriptor &IndDes = Induction.second; 6537 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6538 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6539 } 6540 } 6541 6542 // TODO: we could return a pair of values that specify the max VF and 6543 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 6544 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 6545 // doesn't have a cost model that can choose which plan to execute if 6546 // more than one is generated. 6547 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 6548 LoopVectorizationCostModel &CM) { 6549 unsigned WidestType; 6550 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 6551 return WidestVectorRegBits / WidestType; 6552 } 6553 6554 VectorizationFactor 6555 LoopVectorizationPlanner::planInVPlanNativePath(unsigned UserVF) { 6556 unsigned VF = UserVF; 6557 // Outer loop handling: They may require CFG and instruction level 6558 // transformations before even evaluating whether vectorization is profitable. 6559 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 6560 // the vectorization pipeline. 6561 if (!OrigLoop->empty()) { 6562 // If the user doesn't provide a vectorization factor, determine a 6563 // reasonable one. 6564 if (!UserVF) { 6565 VF = determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM); 6566 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 6567 6568 // Make sure we have a VF > 1 for stress testing. 6569 if (VPlanBuildStressTest && VF < 2) { 6570 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 6571 << "overriding computed VF.\n"); 6572 VF = 4; 6573 } 6574 } 6575 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 6576 assert(isPowerOf2_32(VF) && "VF needs to be a power of two"); 6577 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVF ? "user " : "") << "VF " << VF 6578 << " to build VPlans.\n"); 6579 buildVPlans(VF, VF); 6580 6581 // For VPlan build stress testing, we bail out after VPlan construction. 6582 if (VPlanBuildStressTest) 6583 return VectorizationFactor::Disabled(); 6584 6585 return {VF, 0}; 6586 } 6587 6588 LLVM_DEBUG( 6589 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 6590 "VPlan-native path.\n"); 6591 return VectorizationFactor::Disabled(); 6592 } 6593 6594 Optional<VectorizationFactor> LoopVectorizationPlanner::plan(unsigned UserVF, 6595 unsigned UserIC) { 6596 assert(OrigLoop->empty() && "Inner loop expected."); 6597 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 6598 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 6599 return None; 6600 6601 // Invalidate interleave groups if all blocks of loop will be predicated. 6602 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 6603 !useMaskedInterleavedAccesses(*TTI)) { 6604 LLVM_DEBUG( 6605 dbgs() 6606 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 6607 "which requires masked-interleaved support.\n"); 6608 if (CM.InterleaveInfo.invalidateGroups()) 6609 // Invalidating interleave groups also requires invalidating all decisions 6610 // based on them, which includes widening decisions and uniform and scalar 6611 // values. 6612 CM.invalidateCostModelingDecisions(); 6613 } 6614 6615 if (UserVF) { 6616 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 6617 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 6618 // Collect the instructions (and their associated costs) that will be more 6619 // profitable to scalarize. 6620 CM.selectUserVectorizationFactor(UserVF); 6621 buildVPlansWithVPRecipes(UserVF, UserVF); 6622 LLVM_DEBUG(printPlans(dbgs())); 6623 return {{UserVF, 0}}; 6624 } 6625 6626 unsigned MaxVF = MaybeMaxVF.getValue(); 6627 assert(MaxVF != 0 && "MaxVF is zero."); 6628 6629 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 6630 // Collect Uniform and Scalar instructions after vectorization with VF. 6631 CM.collectUniformsAndScalars(VF); 6632 6633 // Collect the instructions (and their associated costs) that will be more 6634 // profitable to scalarize. 6635 if (VF > 1) 6636 CM.collectInstsToScalarize(VF); 6637 } 6638 6639 buildVPlansWithVPRecipes(1, MaxVF); 6640 LLVM_DEBUG(printPlans(dbgs())); 6641 if (MaxVF == 1) 6642 return VectorizationFactor::Disabled(); 6643 6644 // Select the optimal vectorization factor. 6645 return CM.selectVectorizationFactor(MaxVF); 6646 } 6647 6648 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 6649 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 6650 << '\n'); 6651 BestVF = VF; 6652 BestUF = UF; 6653 6654 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 6655 return !Plan->hasVF(VF); 6656 }); 6657 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 6658 } 6659 6660 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 6661 DominatorTree *DT) { 6662 // Perform the actual loop transformation. 6663 6664 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 6665 VPCallbackILV CallbackILV(ILV); 6666 6667 VPTransformState State{BestVF, BestUF, LI, 6668 DT, ILV.Builder, ILV.VectorLoopValueMap, 6669 &ILV, CallbackILV}; 6670 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 6671 State.TripCount = ILV.getOrCreateTripCount(nullptr); 6672 State.CanonicalIV = ILV.Induction; 6673 6674 //===------------------------------------------------===// 6675 // 6676 // Notice: any optimization or new instruction that go 6677 // into the code below should also be implemented in 6678 // the cost-model. 6679 // 6680 //===------------------------------------------------===// 6681 6682 // 2. Copy and widen instructions from the old loop into the new loop. 6683 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 6684 VPlans.front()->execute(&State); 6685 6686 // 3. Fix the vectorized code: take care of header phi's, live-outs, 6687 // predication, updating analyses. 6688 ILV.fixVectorizedLoop(); 6689 } 6690 6691 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 6692 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 6693 BasicBlock *Latch = OrigLoop->getLoopLatch(); 6694 6695 // We create new control-flow for the vectorized loop, so the original 6696 // condition will be dead after vectorization if it's only used by the 6697 // branch. 6698 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 6699 if (Cmp && Cmp->hasOneUse()) 6700 DeadInstructions.insert(Cmp); 6701 6702 // We create new "steps" for induction variable updates to which the original 6703 // induction variables map. An original update instruction will be dead if 6704 // all its users except the induction variable are dead. 6705 for (auto &Induction : Legal->getInductionVars()) { 6706 PHINode *Ind = Induction.first; 6707 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 6708 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 6709 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 6710 })) 6711 DeadInstructions.insert(IndUpdate); 6712 6713 // We record as "Dead" also the type-casting instructions we had identified 6714 // during induction analysis. We don't need any handling for them in the 6715 // vectorized loop because we have proven that, under a proper runtime 6716 // test guarding the vectorized loop, the value of the phi, and the casted 6717 // value of the phi, are the same. The last instruction in this casting chain 6718 // will get its scalar/vector/widened def from the scalar/vector/widened def 6719 // of the respective phi node. Any other casts in the induction def-use chain 6720 // have no other uses outside the phi update chain, and will be ignored. 6721 InductionDescriptor &IndDes = Induction.second; 6722 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 6723 DeadInstructions.insert(Casts.begin(), Casts.end()); 6724 } 6725 } 6726 6727 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6728 6729 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6730 6731 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 6732 Instruction::BinaryOps BinOp) { 6733 // When unrolling and the VF is 1, we only need to add a simple scalar. 6734 Type *Ty = Val->getType(); 6735 assert(!Ty->isVectorTy() && "Val must be a scalar"); 6736 6737 if (Ty->isFloatingPointTy()) { 6738 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 6739 6740 // Floating point operations had to be 'fast' to enable the unrolling. 6741 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 6742 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 6743 } 6744 Constant *C = ConstantInt::get(Ty, StartIdx); 6745 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6746 } 6747 6748 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 6749 SmallVector<Metadata *, 4> MDs; 6750 // Reserve first location for self reference to the LoopID metadata node. 6751 MDs.push_back(nullptr); 6752 bool IsUnrollMetadata = false; 6753 MDNode *LoopID = L->getLoopID(); 6754 if (LoopID) { 6755 // First find existing loop unrolling disable metadata. 6756 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 6757 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 6758 if (MD) { 6759 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 6760 IsUnrollMetadata = 6761 S && S->getString().startswith("llvm.loop.unroll.disable"); 6762 } 6763 MDs.push_back(LoopID->getOperand(i)); 6764 } 6765 } 6766 6767 if (!IsUnrollMetadata) { 6768 // Add runtime unroll disable metadata. 6769 LLVMContext &Context = L->getHeader()->getContext(); 6770 SmallVector<Metadata *, 1> DisableOperands; 6771 DisableOperands.push_back( 6772 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 6773 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 6774 MDs.push_back(DisableNode); 6775 MDNode *NewLoopID = MDNode::get(Context, MDs); 6776 // Set operand 0 to refer to the loop id itself. 6777 NewLoopID->replaceOperandWith(0, NewLoopID); 6778 L->setLoopID(NewLoopID); 6779 } 6780 } 6781 6782 bool LoopVectorizationPlanner::getDecisionAndClampRange( 6783 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 6784 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 6785 bool PredicateAtRangeStart = Predicate(Range.Start); 6786 6787 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 6788 if (Predicate(TmpVF) != PredicateAtRangeStart) { 6789 Range.End = TmpVF; 6790 break; 6791 } 6792 6793 return PredicateAtRangeStart; 6794 } 6795 6796 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 6797 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 6798 /// of VF's starting at a given VF and extending it as much as possible. Each 6799 /// vectorization decision can potentially shorten this sub-range during 6800 /// buildVPlan(). 6801 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 6802 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 6803 VFRange SubRange = {VF, MaxVF + 1}; 6804 VPlans.push_back(buildVPlan(SubRange)); 6805 VF = SubRange.End; 6806 } 6807 } 6808 6809 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 6810 VPlanPtr &Plan) { 6811 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 6812 6813 // Look for cached value. 6814 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 6815 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 6816 if (ECEntryIt != EdgeMaskCache.end()) 6817 return ECEntryIt->second; 6818 6819 VPValue *SrcMask = createBlockInMask(Src, Plan); 6820 6821 // The terminator has to be a branch inst! 6822 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 6823 assert(BI && "Unexpected terminator found"); 6824 6825 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 6826 return EdgeMaskCache[Edge] = SrcMask; 6827 6828 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition()); 6829 assert(EdgeMask && "No Edge Mask found for condition"); 6830 6831 if (BI->getSuccessor(0) != Dst) 6832 EdgeMask = Builder.createNot(EdgeMask); 6833 6834 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND. 6835 EdgeMask = Builder.createAnd(EdgeMask, SrcMask); 6836 6837 return EdgeMaskCache[Edge] = EdgeMask; 6838 } 6839 6840 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 6841 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 6842 6843 // Look for cached value. 6844 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 6845 if (BCEntryIt != BlockMaskCache.end()) 6846 return BCEntryIt->second; 6847 6848 // All-one mask is modelled as no-mask following the convention for masked 6849 // load/store/gather/scatter. Initialize BlockMask to no-mask. 6850 VPValue *BlockMask = nullptr; 6851 6852 if (OrigLoop->getHeader() == BB) { 6853 if (!CM.blockNeedsPredication(BB)) 6854 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 6855 6856 // Introduce the early-exit compare IV <= BTC to form header block mask. 6857 // This is used instead of IV < TC because TC may wrap, unlike BTC. 6858 // Start by constructing the desired canonical IV. 6859 VPValue *IV = nullptr; 6860 if (Legal->getPrimaryInduction()) 6861 IV = Plan->getVPValue(Legal->getPrimaryInduction()); 6862 else { 6863 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 6864 Builder.getInsertBlock()->appendRecipe(IVRecipe); 6865 IV = IVRecipe->getVPValue(); 6866 } 6867 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 6868 bool TailFolded = !CM.isScalarEpilogueAllowed(); 6869 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) 6870 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, BTC}); 6871 else 6872 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 6873 return BlockMaskCache[BB] = BlockMask; 6874 } 6875 6876 // This is the block mask. We OR all incoming edges. 6877 for (auto *Predecessor : predecessors(BB)) { 6878 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 6879 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 6880 return BlockMaskCache[BB] = EdgeMask; 6881 6882 if (!BlockMask) { // BlockMask has its initialized nullptr value. 6883 BlockMask = EdgeMask; 6884 continue; 6885 } 6886 6887 BlockMask = Builder.createOr(BlockMask, EdgeMask); 6888 } 6889 6890 return BlockMaskCache[BB] = BlockMask; 6891 } 6892 6893 VPWidenMemoryInstructionRecipe * 6894 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 6895 VPlanPtr &Plan) { 6896 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 6897 "Must be called with either a load or store"); 6898 6899 auto willWiden = [&](unsigned VF) -> bool { 6900 if (VF == 1) 6901 return false; 6902 LoopVectorizationCostModel::InstWidening Decision = 6903 CM.getWideningDecision(I, VF); 6904 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 6905 "CM decision should be taken at this point."); 6906 if (Decision == LoopVectorizationCostModel::CM_Interleave) 6907 return true; 6908 if (CM.isScalarAfterVectorization(I, VF) || 6909 CM.isProfitableToScalarize(I, VF)) 6910 return false; 6911 return Decision != LoopVectorizationCostModel::CM_Scalarize; 6912 }; 6913 6914 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 6915 return nullptr; 6916 6917 VPValue *Mask = nullptr; 6918 if (Legal->isMaskRequired(I)) 6919 Mask = createBlockInMask(I->getParent(), Plan); 6920 6921 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 6922 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 6923 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 6924 6925 StoreInst *Store = cast<StoreInst>(I); 6926 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 6927 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 6928 } 6929 6930 VPWidenIntOrFpInductionRecipe * 6931 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi) const { 6932 // Check if this is an integer or fp induction. If so, build the recipe that 6933 // produces its scalar and vector values. 6934 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 6935 if (II.getKind() == InductionDescriptor::IK_IntInduction || 6936 II.getKind() == InductionDescriptor::IK_FpInduction) 6937 return new VPWidenIntOrFpInductionRecipe(Phi); 6938 6939 return nullptr; 6940 } 6941 6942 VPWidenIntOrFpInductionRecipe * 6943 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, 6944 VFRange &Range) const { 6945 // Optimize the special case where the source is a constant integer 6946 // induction variable. Notice that we can only optimize the 'trunc' case 6947 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 6948 // (c) other casts depend on pointer size. 6949 6950 // Determine whether \p K is a truncation based on an induction variable that 6951 // can be optimized. 6952 auto isOptimizableIVTruncate = 6953 [&](Instruction *K) -> std::function<bool(unsigned)> { 6954 return 6955 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 6956 }; 6957 6958 if (LoopVectorizationPlanner::getDecisionAndClampRange( 6959 isOptimizableIVTruncate(I), Range)) 6960 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 6961 I); 6962 return nullptr; 6963 } 6964 6965 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 6966 // We know that all PHIs in non-header blocks are converted into selects, so 6967 // we don't have to worry about the insertion order and we can just use the 6968 // builder. At this point we generate the predication tree. There may be 6969 // duplications since this is a simple recursive scan, but future 6970 // optimizations will clean it up. 6971 6972 SmallVector<VPValue *, 2> Operands; 6973 unsigned NumIncoming = Phi->getNumIncomingValues(); 6974 for (unsigned In = 0; In < NumIncoming; In++) { 6975 VPValue *EdgeMask = 6976 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 6977 assert((EdgeMask || NumIncoming == 1) && 6978 "Multiple predecessors with one having a full mask"); 6979 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 6980 if (EdgeMask) 6981 Operands.push_back(EdgeMask); 6982 } 6983 return new VPBlendRecipe(Phi, Operands); 6984 } 6985 6986 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 6987 VPlan &Plan) const { 6988 6989 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 6990 [this, CI](unsigned VF) { return CM.isScalarWithPredication(CI, VF); }, 6991 Range); 6992 6993 if (IsPredicated) 6994 return nullptr; 6995 6996 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 6997 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 6998 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect)) 6999 return nullptr; 7000 7001 auto willWiden = [&](unsigned VF) -> bool { 7002 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 7003 // The following case may be scalarized depending on the VF. 7004 // The flag shows whether we use Intrinsic or a usual Call for vectorized 7005 // version of the instruction. 7006 // Is it beneficial to perform intrinsic call compared to lib call? 7007 bool NeedToScalarize = false; 7008 unsigned CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 7009 bool UseVectorIntrinsic = 7010 ID && CM.getVectorIntrinsicCost(CI, VF) <= CallCost; 7011 return UseVectorIntrinsic || !NeedToScalarize; 7012 }; 7013 7014 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 7015 return nullptr; 7016 7017 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 7018 } 7019 7020 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 7021 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 7022 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 7023 // Instruction should be widened, unless it is scalar after vectorization, 7024 // scalarization is profitable or it is predicated. 7025 auto WillScalarize = [this, I](unsigned VF) -> bool { 7026 return CM.isScalarAfterVectorization(I, VF) || 7027 CM.isProfitableToScalarize(I, VF) || 7028 CM.isScalarWithPredication(I, VF); 7029 }; 7030 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 7031 Range); 7032 } 7033 7034 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 7035 auto IsVectorizableOpcode = [](unsigned Opcode) { 7036 switch (Opcode) { 7037 case Instruction::Add: 7038 case Instruction::And: 7039 case Instruction::AShr: 7040 case Instruction::BitCast: 7041 case Instruction::FAdd: 7042 case Instruction::FCmp: 7043 case Instruction::FDiv: 7044 case Instruction::FMul: 7045 case Instruction::FNeg: 7046 case Instruction::FPExt: 7047 case Instruction::FPToSI: 7048 case Instruction::FPToUI: 7049 case Instruction::FPTrunc: 7050 case Instruction::FRem: 7051 case Instruction::FSub: 7052 case Instruction::ICmp: 7053 case Instruction::IntToPtr: 7054 case Instruction::LShr: 7055 case Instruction::Mul: 7056 case Instruction::Or: 7057 case Instruction::PtrToInt: 7058 case Instruction::SDiv: 7059 case Instruction::Select: 7060 case Instruction::SExt: 7061 case Instruction::Shl: 7062 case Instruction::SIToFP: 7063 case Instruction::SRem: 7064 case Instruction::Sub: 7065 case Instruction::Trunc: 7066 case Instruction::UDiv: 7067 case Instruction::UIToFP: 7068 case Instruction::URem: 7069 case Instruction::Xor: 7070 case Instruction::ZExt: 7071 return true; 7072 } 7073 return false; 7074 }; 7075 7076 if (!IsVectorizableOpcode(I->getOpcode())) 7077 return nullptr; 7078 7079 // Success: widen this instruction. 7080 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 7081 } 7082 7083 VPBasicBlock *VPRecipeBuilder::handleReplication( 7084 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 7085 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 7086 VPlanPtr &Plan) { 7087 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 7088 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 7089 Range); 7090 7091 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 7092 [&](unsigned VF) { return CM.isScalarWithPredication(I, VF); }, Range); 7093 7094 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 7095 IsUniform, IsPredicated); 7096 setRecipe(I, Recipe); 7097 7098 // Find if I uses a predicated instruction. If so, it will use its scalar 7099 // value. Avoid hoisting the insert-element which packs the scalar value into 7100 // a vector value, as that happens iff all users use the vector value. 7101 for (auto &Op : I->operands()) 7102 if (auto *PredInst = dyn_cast<Instruction>(Op)) 7103 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 7104 PredInst2Recipe[PredInst]->setAlsoPack(false); 7105 7106 // Finalize the recipe for Instr, first if it is not predicated. 7107 if (!IsPredicated) { 7108 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 7109 VPBB->appendRecipe(Recipe); 7110 return VPBB; 7111 } 7112 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 7113 assert(VPBB->getSuccessors().empty() && 7114 "VPBB has successors when handling predicated replication."); 7115 // Record predicated instructions for above packing optimizations. 7116 PredInst2Recipe[I] = Recipe; 7117 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 7118 VPBlockUtils::insertBlockAfter(Region, VPBB); 7119 auto *RegSucc = new VPBasicBlock(); 7120 VPBlockUtils::insertBlockAfter(RegSucc, Region); 7121 return RegSucc; 7122 } 7123 7124 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 7125 VPRecipeBase *PredRecipe, 7126 VPlanPtr &Plan) { 7127 // Instructions marked for predication are replicated and placed under an 7128 // if-then construct to prevent side-effects. 7129 7130 // Generate recipes to compute the block mask for this region. 7131 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 7132 7133 // Build the triangular if-then region. 7134 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 7135 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 7136 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 7137 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 7138 auto *PHIRecipe = 7139 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 7140 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 7141 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 7142 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 7143 7144 // Note: first set Entry as region entry and then connect successors starting 7145 // from it in order, to propagate the "parent" of each VPBasicBlock. 7146 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 7147 VPBlockUtils::connectBlocks(Pred, Exit); 7148 7149 return Region; 7150 } 7151 7152 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 7153 VFRange &Range, 7154 VPlanPtr &Plan) { 7155 // First, check for specific widening recipes that deal with calls, memory 7156 // operations, inductions and Phi nodes. 7157 if (auto *CI = dyn_cast<CallInst>(Instr)) 7158 return tryToWidenCall(CI, Range, *Plan); 7159 7160 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 7161 return tryToWidenMemory(Instr, Range, Plan); 7162 7163 VPRecipeBase *Recipe; 7164 if (auto Phi = dyn_cast<PHINode>(Instr)) { 7165 if (Phi->getParent() != OrigLoop->getHeader()) 7166 return tryToBlend(Phi, Plan); 7167 if ((Recipe = tryToOptimizeInductionPHI(Phi))) 7168 return Recipe; 7169 return new VPWidenPHIRecipe(Phi); 7170 } 7171 7172 if (isa<TruncInst>(Instr) && 7173 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Range))) 7174 return Recipe; 7175 7176 if (!shouldWiden(Instr, Range)) 7177 return nullptr; 7178 7179 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 7180 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 7181 OrigLoop); 7182 7183 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 7184 bool InvariantCond = 7185 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 7186 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 7187 InvariantCond); 7188 } 7189 7190 return tryToWiden(Instr, *Plan); 7191 } 7192 7193 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF, 7194 unsigned MaxVF) { 7195 assert(OrigLoop->empty() && "Inner loop expected."); 7196 7197 // Collect conditions feeding internal conditional branches; they need to be 7198 // represented in VPlan for it to model masking. 7199 SmallPtrSet<Value *, 1> NeedDef; 7200 7201 auto *Latch = OrigLoop->getLoopLatch(); 7202 for (BasicBlock *BB : OrigLoop->blocks()) { 7203 if (BB == Latch) 7204 continue; 7205 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); 7206 if (Branch && Branch->isConditional()) 7207 NeedDef.insert(Branch->getCondition()); 7208 } 7209 7210 // If the tail is to be folded by masking, the primary induction variable, if 7211 // exists needs to be represented in VPlan for it to model early-exit masking. 7212 // Also, both the Phi and the live-out instruction of each reduction are 7213 // required in order to introduce a select between them in VPlan. 7214 if (CM.foldTailByMasking()) { 7215 if (Legal->getPrimaryInduction()) 7216 NeedDef.insert(Legal->getPrimaryInduction()); 7217 for (auto &Reduction : Legal->getReductionVars()) { 7218 NeedDef.insert(Reduction.first); 7219 NeedDef.insert(Reduction.second.getLoopExitInstr()); 7220 } 7221 } 7222 7223 // Collect instructions from the original loop that will become trivially dead 7224 // in the vectorized loop. We don't need to vectorize these instructions. For 7225 // example, original induction update instructions can become dead because we 7226 // separately emit induction "steps" when generating code for the new loop. 7227 // Similarly, we create a new latch condition when setting up the structure 7228 // of the new loop, so the old one can become dead. 7229 SmallPtrSet<Instruction *, 4> DeadInstructions; 7230 collectTriviallyDeadInstructions(DeadInstructions); 7231 7232 // Add assume instructions we need to drop to DeadInstructions, to prevent 7233 // them from being added to the VPlan. 7234 // TODO: We only need to drop assumes in blocks that get flattend. If the 7235 // control flow is preserved, we should keep them. 7236 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 7237 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 7238 7239 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 7240 // Dead instructions do not need sinking. Remove them from SinkAfter. 7241 for (Instruction *I : DeadInstructions) 7242 SinkAfter.erase(I); 7243 7244 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7245 VFRange SubRange = {VF, MaxVF + 1}; 7246 VPlans.push_back(buildVPlanWithVPRecipes(SubRange, NeedDef, 7247 DeadInstructions, SinkAfter)); 7248 VF = SubRange.End; 7249 } 7250 } 7251 7252 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 7253 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef, 7254 SmallPtrSetImpl<Instruction *> &DeadInstructions, 7255 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 7256 7257 // Hold a mapping from predicated instructions to their recipes, in order to 7258 // fix their AlsoPack behavior if a user is determined to replicate and use a 7259 // scalar instead of vector value. 7260 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 7261 7262 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 7263 7264 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 7265 7266 // --------------------------------------------------------------------------- 7267 // Pre-construction: record ingredients whose recipes we'll need to further 7268 // process after constructing the initial VPlan. 7269 // --------------------------------------------------------------------------- 7270 7271 // Mark instructions we'll need to sink later and their targets as 7272 // ingredients whose recipe we'll need to record. 7273 for (auto &Entry : SinkAfter) { 7274 RecipeBuilder.recordRecipeOf(Entry.first); 7275 RecipeBuilder.recordRecipeOf(Entry.second); 7276 } 7277 7278 // For each interleave group which is relevant for this (possibly trimmed) 7279 // Range, add it to the set of groups to be later applied to the VPlan and add 7280 // placeholders for its members' Recipes which we'll be replacing with a 7281 // single VPInterleaveRecipe. 7282 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 7283 auto applyIG = [IG, this](unsigned VF) -> bool { 7284 return (VF >= 2 && // Query is illegal for VF == 1 7285 CM.getWideningDecision(IG->getInsertPos(), VF) == 7286 LoopVectorizationCostModel::CM_Interleave); 7287 }; 7288 if (!getDecisionAndClampRange(applyIG, Range)) 7289 continue; 7290 InterleaveGroups.insert(IG); 7291 for (unsigned i = 0; i < IG->getFactor(); i++) 7292 if (Instruction *Member = IG->getMember(i)) 7293 RecipeBuilder.recordRecipeOf(Member); 7294 }; 7295 7296 // --------------------------------------------------------------------------- 7297 // Build initial VPlan: Scan the body of the loop in a topological order to 7298 // visit each basic block after having visited its predecessor basic blocks. 7299 // --------------------------------------------------------------------------- 7300 7301 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 7302 auto Plan = std::make_unique<VPlan>(); 7303 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 7304 Plan->setEntry(VPBB); 7305 7306 // Represent values that will have defs inside VPlan. 7307 for (Value *V : NeedDef) 7308 Plan->addVPValue(V); 7309 7310 // Scan the body of the loop in a topological order to visit each basic block 7311 // after having visited its predecessor basic blocks. 7312 LoopBlocksDFS DFS(OrigLoop); 7313 DFS.perform(LI); 7314 7315 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 7316 // Relevant instructions from basic block BB will be grouped into VPRecipe 7317 // ingredients and fill a new VPBasicBlock. 7318 unsigned VPBBsForBB = 0; 7319 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 7320 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 7321 VPBB = FirstVPBBForBB; 7322 Builder.setInsertPoint(VPBB); 7323 7324 // Introduce each ingredient into VPlan. 7325 // TODO: Model and preserve debug instrinsics in VPlan. 7326 for (Instruction &I : BB->instructionsWithoutDebug()) { 7327 Instruction *Instr = &I; 7328 7329 // First filter out irrelevant instructions, to ensure no recipes are 7330 // built for them. 7331 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 7332 continue; 7333 7334 if (auto Recipe = 7335 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 7336 RecipeBuilder.setRecipe(Instr, Recipe); 7337 VPBB->appendRecipe(Recipe); 7338 continue; 7339 } 7340 7341 // Otherwise, if all widening options failed, Instruction is to be 7342 // replicated. This may create a successor for VPBB. 7343 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 7344 Instr, Range, VPBB, PredInst2Recipe, Plan); 7345 if (NextVPBB != VPBB) { 7346 VPBB = NextVPBB; 7347 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 7348 : ""); 7349 } 7350 } 7351 } 7352 7353 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 7354 // may also be empty, such as the last one VPBB, reflecting original 7355 // basic-blocks with no recipes. 7356 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 7357 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 7358 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 7359 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 7360 delete PreEntry; 7361 7362 // --------------------------------------------------------------------------- 7363 // Transform initial VPlan: Apply previously taken decisions, in order, to 7364 // bring the VPlan to its final state. 7365 // --------------------------------------------------------------------------- 7366 7367 // Apply Sink-After legal constraints. 7368 for (auto &Entry : SinkAfter) { 7369 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 7370 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 7371 Sink->moveAfter(Target); 7372 } 7373 7374 // Interleave memory: for each Interleave Group we marked earlier as relevant 7375 // for this VPlan, replace the Recipes widening its memory instructions with a 7376 // single VPInterleaveRecipe at its insertion point. 7377 for (auto IG : InterleaveGroups) { 7378 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 7379 RecipeBuilder.getRecipe(IG->getInsertPos())); 7380 (new VPInterleaveRecipe(IG, Recipe->getAddr(), Recipe->getMask())) 7381 ->insertBefore(Recipe); 7382 7383 for (unsigned i = 0; i < IG->getFactor(); ++i) 7384 if (Instruction *Member = IG->getMember(i)) { 7385 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 7386 } 7387 } 7388 7389 // Finally, if tail is folded by masking, introduce selects between the phi 7390 // and the live-out instruction of each reduction, at the end of the latch. 7391 if (CM.foldTailByMasking()) { 7392 Builder.setInsertPoint(VPBB); 7393 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 7394 for (auto &Reduction : Legal->getReductionVars()) { 7395 VPValue *Phi = Plan->getVPValue(Reduction.first); 7396 VPValue *Red = Plan->getVPValue(Reduction.second.getLoopExitInstr()); 7397 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 7398 } 7399 } 7400 7401 std::string PlanName; 7402 raw_string_ostream RSO(PlanName); 7403 unsigned VF = Range.Start; 7404 Plan->addVF(VF); 7405 RSO << "Initial VPlan for VF={" << VF; 7406 for (VF *= 2; VF < Range.End; VF *= 2) { 7407 Plan->addVF(VF); 7408 RSO << "," << VF; 7409 } 7410 RSO << "},UF>=1"; 7411 RSO.flush(); 7412 Plan->setName(PlanName); 7413 7414 return Plan; 7415 } 7416 7417 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 7418 // Outer loop handling: They may require CFG and instruction level 7419 // transformations before even evaluating whether vectorization is profitable. 7420 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7421 // the vectorization pipeline. 7422 assert(!OrigLoop->empty()); 7423 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7424 7425 // Create new empty VPlan 7426 auto Plan = std::make_unique<VPlan>(); 7427 7428 // Build hierarchical CFG 7429 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 7430 HCFGBuilder.buildHierarchicalCFG(); 7431 7432 for (unsigned VF = Range.Start; VF < Range.End; VF *= 2) 7433 Plan->addVF(VF); 7434 7435 if (EnableVPlanPredication) { 7436 VPlanPredicator VPP(*Plan); 7437 VPP.predicate(); 7438 7439 // Avoid running transformation to recipes until masked code generation in 7440 // VPlan-native path is in place. 7441 return Plan; 7442 } 7443 7444 SmallPtrSet<Instruction *, 1> DeadInstructions; 7445 VPlanTransforms::VPInstructionsToVPRecipes( 7446 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 7447 return Plan; 7448 } 7449 7450 Value* LoopVectorizationPlanner::VPCallbackILV:: 7451 getOrCreateVectorValues(Value *V, unsigned Part) { 7452 return ILV.getOrCreateVectorValue(V, Part); 7453 } 7454 7455 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 7456 Value *V, const VPIteration &Instance) { 7457 return ILV.getOrCreateScalarValue(V, Instance); 7458 } 7459 7460 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 7461 VPSlotTracker &SlotTracker) const { 7462 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 7463 IG->getInsertPos()->printAsOperand(O, false); 7464 O << ", "; 7465 getAddr()->printAsOperand(O, SlotTracker); 7466 VPValue *Mask = getMask(); 7467 if (Mask) { 7468 O << ", "; 7469 Mask->printAsOperand(O, SlotTracker); 7470 } 7471 for (unsigned i = 0; i < IG->getFactor(); ++i) 7472 if (Instruction *I = IG->getMember(i)) 7473 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 7474 } 7475 7476 void VPWidenCallRecipe::execute(VPTransformState &State) { 7477 State.ILV->widenCallInstruction(Ingredient, User, State); 7478 } 7479 7480 void VPWidenSelectRecipe::execute(VPTransformState &State) { 7481 State.ILV->widenSelectInstruction(Ingredient, User, InvariantCond, State); 7482 } 7483 7484 void VPWidenRecipe::execute(VPTransformState &State) { 7485 State.ILV->widenInstruction(Ingredient, User, State); 7486 } 7487 7488 void VPWidenGEPRecipe::execute(VPTransformState &State) { 7489 State.ILV->widenGEP(GEP, User, State.UF, State.VF, IsPtrLoopInvariant, 7490 IsIndexLoopInvariant, State); 7491 } 7492 7493 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 7494 assert(!State.Instance && "Int or FP induction being replicated."); 7495 State.ILV->widenIntOrFpInduction(IV, Trunc); 7496 } 7497 7498 void VPWidenPHIRecipe::execute(VPTransformState &State) { 7499 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7500 } 7501 7502 void VPBlendRecipe::execute(VPTransformState &State) { 7503 State.ILV->setDebugLocFromInst(State.Builder, Phi); 7504 // We know that all PHIs in non-header blocks are converted into 7505 // selects, so we don't have to worry about the insertion order and we 7506 // can just use the builder. 7507 // At this point we generate the predication tree. There may be 7508 // duplications since this is a simple recursive scan, but future 7509 // optimizations will clean it up. 7510 7511 unsigned NumIncoming = getNumIncomingValues(); 7512 7513 // Generate a sequence of selects of the form: 7514 // SELECT(Mask3, In3, 7515 // SELECT(Mask2, In2, 7516 // SELECT(Mask1, In1, 7517 // In0))) 7518 // Note that Mask0 is never used: lanes for which no path reaches this phi and 7519 // are essentially undef are taken from In0. 7520 InnerLoopVectorizer::VectorParts Entry(State.UF); 7521 for (unsigned In = 0; In < NumIncoming; ++In) { 7522 for (unsigned Part = 0; Part < State.UF; ++Part) { 7523 // We might have single edge PHIs (blocks) - use an identity 7524 // 'select' for the first PHI operand. 7525 Value *In0 = State.get(getIncomingValue(In), Part); 7526 if (In == 0) 7527 Entry[Part] = In0; // Initialize with the first incoming value. 7528 else { 7529 // Select between the current value and the previous incoming edge 7530 // based on the incoming mask. 7531 Value *Cond = State.get(getMask(In), Part); 7532 Entry[Part] = 7533 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 7534 } 7535 } 7536 } 7537 for (unsigned Part = 0; Part < State.UF; ++Part) 7538 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]); 7539 } 7540 7541 void VPInterleaveRecipe::execute(VPTransformState &State) { 7542 assert(!State.Instance && "Interleave group being replicated."); 7543 State.ILV->vectorizeInterleaveGroup(IG, State, getAddr(), getMask()); 7544 } 7545 7546 void VPReplicateRecipe::execute(VPTransformState &State) { 7547 if (State.Instance) { // Generate a single instance. 7548 State.ILV->scalarizeInstruction(Ingredient, User, *State.Instance, 7549 IsPredicated, State); 7550 // Insert scalar instance packing it into a vector. 7551 if (AlsoPack && State.VF > 1) { 7552 // If we're constructing lane 0, initialize to start from undef. 7553 if (State.Instance->Lane == 0) { 7554 Value *Undef = UndefValue::get( 7555 FixedVectorType::get(Ingredient->getType(), State.VF)); 7556 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 7557 } 7558 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 7559 } 7560 return; 7561 } 7562 7563 // Generate scalar instances for all VF lanes of all UF parts, unless the 7564 // instruction is uniform inwhich case generate only the first lane for each 7565 // of the UF parts. 7566 unsigned EndLane = IsUniform ? 1 : State.VF; 7567 for (unsigned Part = 0; Part < State.UF; ++Part) 7568 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 7569 State.ILV->scalarizeInstruction(Ingredient, User, {Part, Lane}, 7570 IsPredicated, State); 7571 } 7572 7573 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 7574 assert(State.Instance && "Branch on Mask works only on single instance."); 7575 7576 unsigned Part = State.Instance->Part; 7577 unsigned Lane = State.Instance->Lane; 7578 7579 Value *ConditionBit = nullptr; 7580 VPValue *BlockInMask = getMask(); 7581 if (BlockInMask) { 7582 ConditionBit = State.get(BlockInMask, Part); 7583 if (ConditionBit->getType()->isVectorTy()) 7584 ConditionBit = State.Builder.CreateExtractElement( 7585 ConditionBit, State.Builder.getInt32(Lane)); 7586 } else // Block in mask is all-one. 7587 ConditionBit = State.Builder.getTrue(); 7588 7589 // Replace the temporary unreachable terminator with a new conditional branch, 7590 // whose two destinations will be set later when they are created. 7591 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 7592 assert(isa<UnreachableInst>(CurrentTerminator) && 7593 "Expected to replace unreachable terminator with conditional branch."); 7594 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 7595 CondBr->setSuccessor(0, nullptr); 7596 ReplaceInstWithInst(CurrentTerminator, CondBr); 7597 } 7598 7599 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 7600 assert(State.Instance && "Predicated instruction PHI works per instance."); 7601 Instruction *ScalarPredInst = cast<Instruction>( 7602 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 7603 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 7604 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 7605 assert(PredicatingBB && "Predicated block has no single predecessor."); 7606 7607 // By current pack/unpack logic we need to generate only a single phi node: if 7608 // a vector value for the predicated instruction exists at this point it means 7609 // the instruction has vector users only, and a phi for the vector value is 7610 // needed. In this case the recipe of the predicated instruction is marked to 7611 // also do that packing, thereby "hoisting" the insert-element sequence. 7612 // Otherwise, a phi node for the scalar value is needed. 7613 unsigned Part = State.Instance->Part; 7614 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 7615 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 7616 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 7617 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 7618 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 7619 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 7620 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 7621 } else { 7622 Type *PredInstType = PredInst->getType(); 7623 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 7624 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 7625 Phi->addIncoming(ScalarPredInst, PredicatedBB); 7626 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 7627 } 7628 } 7629 7630 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 7631 VPValue *StoredValue = isa<StoreInst>(Instr) ? getStoredValue() : nullptr; 7632 State.ILV->vectorizeMemoryInstruction(&Instr, State, getAddr(), StoredValue, 7633 getMask()); 7634 } 7635 7636 // Determine how to lower the scalar epilogue, which depends on 1) optimising 7637 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 7638 // predication, and 4) a TTI hook that analyses whether the loop is suitable 7639 // for predication. 7640 static ScalarEpilogueLowering getScalarEpilogueLowering( 7641 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 7642 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 7643 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 7644 LoopVectorizationLegality &LVL) { 7645 bool OptSize = 7646 F->hasOptSize() || llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 7647 PGSOQueryType::IRPass); 7648 // 1) OptSize takes precedence over all other options, i.e. if this is set, 7649 // don't look at hints or options, and don't request a scalar epilogue. 7650 if (OptSize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) 7651 return CM_ScalarEpilogueNotAllowedOptSize; 7652 7653 bool PredicateOptDisabled = PreferPredicateOverEpilog.getNumOccurrences() && 7654 !PreferPredicateOverEpilog; 7655 7656 // 2) Next, if disabling predication is requested on the command line, honour 7657 // this and request a scalar epilogue. 7658 if (PredicateOptDisabled) 7659 return CM_ScalarEpilogueAllowed; 7660 7661 // 3) and 4) look if enabling predication is requested on the command line, 7662 // with a loop hint, or if the TTI hook indicates this is profitable, request 7663 // predication . 7664 if (PreferPredicateOverEpilog || 7665 Hints.getPredicate() == LoopVectorizeHints::FK_Enabled || 7666 (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 7667 LVL.getLAI()) && 7668 Hints.getPredicate() != LoopVectorizeHints::FK_Disabled)) 7669 return CM_ScalarEpilogueNotNeededUsePredicate; 7670 7671 return CM_ScalarEpilogueAllowed; 7672 } 7673 7674 // Process the loop in the VPlan-native vectorization path. This path builds 7675 // VPlan upfront in the vectorization pipeline, which allows to apply 7676 // VPlan-to-VPlan transformations from the very beginning without modifying the 7677 // input LLVM IR. 7678 static bool processLoopInVPlanNativePath( 7679 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 7680 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 7681 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 7682 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 7683 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 7684 7685 if (PSE.getBackedgeTakenCount() == PSE.getSE()->getCouldNotCompute()) { 7686 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 7687 return false; 7688 } 7689 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 7690 Function *F = L->getHeader()->getParent(); 7691 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 7692 7693 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7694 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 7695 7696 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 7697 &Hints, IAI); 7698 // Use the planner for outer loop vectorization. 7699 // TODO: CM is not used at this point inside the planner. Turn CM into an 7700 // optional argument if we don't need it in the future. 7701 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 7702 7703 // Get user vectorization factor. 7704 const unsigned UserVF = Hints.getWidth(); 7705 7706 // Plan how to best vectorize, return the best VF and its cost. 7707 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 7708 7709 // If we are stress testing VPlan builds, do not attempt to generate vector 7710 // code. Masked vector code generation support will follow soon. 7711 // Also, do not attempt to vectorize if no vector code will be produced. 7712 if (VPlanBuildStressTest || EnableVPlanPredication || 7713 VectorizationFactor::Disabled() == VF) 7714 return false; 7715 7716 LVP.setBestPlan(VF.Width, 1); 7717 7718 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 7719 &CM); 7720 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 7721 << L->getHeader()->getParent()->getName() << "\"\n"); 7722 LVP.executePlan(LB, DT); 7723 7724 // Mark the loop as already vectorized to avoid vectorizing again. 7725 Hints.setAlreadyVectorized(); 7726 7727 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 7728 return true; 7729 } 7730 7731 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 7732 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 7733 !EnableLoopInterleaving), 7734 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 7735 !EnableLoopVectorization) {} 7736 7737 bool LoopVectorizePass::processLoop(Loop *L) { 7738 assert((EnableVPlanNativePath || L->empty()) && 7739 "VPlan-native path is not enabled. Only process inner loops."); 7740 7741 #ifndef NDEBUG 7742 const std::string DebugLocStr = getDebugLocString(L); 7743 #endif /* NDEBUG */ 7744 7745 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 7746 << L->getHeader()->getParent()->getName() << "\" from " 7747 << DebugLocStr << "\n"); 7748 7749 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 7750 7751 LLVM_DEBUG( 7752 dbgs() << "LV: Loop hints:" 7753 << " force=" 7754 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 7755 ? "disabled" 7756 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 7757 ? "enabled" 7758 : "?")) 7759 << " width=" << Hints.getWidth() 7760 << " unroll=" << Hints.getInterleave() << "\n"); 7761 7762 // Function containing loop 7763 Function *F = L->getHeader()->getParent(); 7764 7765 // Looking at the diagnostic output is the only way to determine if a loop 7766 // was vectorized (other than looking at the IR or machine code), so it 7767 // is important to generate an optimization remark for each loop. Most of 7768 // these messages are generated as OptimizationRemarkAnalysis. Remarks 7769 // generated as OptimizationRemark and OptimizationRemarkMissed are 7770 // less verbose reporting vectorized loops and unvectorized loops that may 7771 // benefit from vectorization, respectively. 7772 7773 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 7774 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 7775 return false; 7776 } 7777 7778 PredicatedScalarEvolution PSE(*SE, *L); 7779 7780 // Check if it is legal to vectorize the loop. 7781 LoopVectorizationRequirements Requirements(*ORE); 7782 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 7783 &Requirements, &Hints, DB, AC); 7784 if (!LVL.canVectorize(EnableVPlanNativePath)) { 7785 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 7786 Hints.emitRemarkWithHints(); 7787 return false; 7788 } 7789 7790 // Check the function attributes and profiles to find out if this function 7791 // should be optimized for size. 7792 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 7793 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 7794 7795 // Entrance to the VPlan-native vectorization path. Outer loops are processed 7796 // here. They may require CFG and instruction level transformations before 7797 // even evaluating whether vectorization is profitable. Since we cannot modify 7798 // the incoming IR, we need to build VPlan upfront in the vectorization 7799 // pipeline. 7800 if (!L->empty()) 7801 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 7802 ORE, BFI, PSI, Hints); 7803 7804 assert(L->empty() && "Inner loop expected."); 7805 7806 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 7807 // count by optimizing for size, to minimize overheads. 7808 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 7809 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 7810 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 7811 << "This loop is worth vectorizing only if no scalar " 7812 << "iteration overheads are incurred."); 7813 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 7814 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 7815 else { 7816 LLVM_DEBUG(dbgs() << "\n"); 7817 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 7818 } 7819 } 7820 7821 // Check the function attributes to see if implicit floats are allowed. 7822 // FIXME: This check doesn't seem possibly correct -- what if the loop is 7823 // an integer loop and the vector instructions selected are purely integer 7824 // vector instructions? 7825 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 7826 reportVectorizationFailure( 7827 "Can't vectorize when the NoImplicitFloat attribute is used", 7828 "loop not vectorized due to NoImplicitFloat attribute", 7829 "NoImplicitFloat", ORE, L); 7830 Hints.emitRemarkWithHints(); 7831 return false; 7832 } 7833 7834 // Check if the target supports potentially unsafe FP vectorization. 7835 // FIXME: Add a check for the type of safety issue (denormal, signaling) 7836 // for the target we're vectorizing for, to make sure none of the 7837 // additional fp-math flags can help. 7838 if (Hints.isPotentiallyUnsafe() && 7839 TTI->isFPVectorizationPotentiallyUnsafe()) { 7840 reportVectorizationFailure( 7841 "Potentially unsafe FP op prevents vectorization", 7842 "loop not vectorized due to unsafe FP support.", 7843 "UnsafeFP", ORE, L); 7844 Hints.emitRemarkWithHints(); 7845 return false; 7846 } 7847 7848 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 7849 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 7850 7851 // If an override option has been passed in for interleaved accesses, use it. 7852 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 7853 UseInterleaved = EnableInterleavedMemAccesses; 7854 7855 // Analyze interleaved memory accesses. 7856 if (UseInterleaved) { 7857 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 7858 } 7859 7860 // Use the cost model. 7861 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 7862 F, &Hints, IAI); 7863 CM.collectValuesToIgnore(); 7864 7865 // Use the planner for vectorization. 7866 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 7867 7868 // Get user vectorization factor and interleave count. 7869 unsigned UserVF = Hints.getWidth(); 7870 unsigned UserIC = Hints.getInterleave(); 7871 7872 // Plan how to best vectorize, return the best VF and its cost. 7873 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 7874 7875 VectorizationFactor VF = VectorizationFactor::Disabled(); 7876 unsigned IC = 1; 7877 7878 if (MaybeVF) { 7879 VF = *MaybeVF; 7880 // Select the interleave count. 7881 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 7882 } 7883 7884 // Identify the diagnostic messages that should be produced. 7885 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 7886 bool VectorizeLoop = true, InterleaveLoop = true; 7887 if (Requirements.doesNotMeet(F, L, Hints)) { 7888 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 7889 "requirements.\n"); 7890 Hints.emitRemarkWithHints(); 7891 return false; 7892 } 7893 7894 if (VF.Width == 1) { 7895 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 7896 VecDiagMsg = std::make_pair( 7897 "VectorizationNotBeneficial", 7898 "the cost-model indicates that vectorization is not beneficial"); 7899 VectorizeLoop = false; 7900 } 7901 7902 if (!MaybeVF && UserIC > 1) { 7903 // Tell the user interleaving was avoided up-front, despite being explicitly 7904 // requested. 7905 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 7906 "interleaving should be avoided up front\n"); 7907 IntDiagMsg = std::make_pair( 7908 "InterleavingAvoided", 7909 "Ignoring UserIC, because interleaving was avoided up front"); 7910 InterleaveLoop = false; 7911 } else if (IC == 1 && UserIC <= 1) { 7912 // Tell the user interleaving is not beneficial. 7913 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 7914 IntDiagMsg = std::make_pair( 7915 "InterleavingNotBeneficial", 7916 "the cost-model indicates that interleaving is not beneficial"); 7917 InterleaveLoop = false; 7918 if (UserIC == 1) { 7919 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 7920 IntDiagMsg.second += 7921 " and is explicitly disabled or interleave count is set to 1"; 7922 } 7923 } else if (IC > 1 && UserIC == 1) { 7924 // Tell the user interleaving is beneficial, but it explicitly disabled. 7925 LLVM_DEBUG( 7926 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 7927 IntDiagMsg = std::make_pair( 7928 "InterleavingBeneficialButDisabled", 7929 "the cost-model indicates that interleaving is beneficial " 7930 "but is explicitly disabled or interleave count is set to 1"); 7931 InterleaveLoop = false; 7932 } 7933 7934 // Override IC if user provided an interleave count. 7935 IC = UserIC > 0 ? UserIC : IC; 7936 7937 // Emit diagnostic messages, if any. 7938 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 7939 if (!VectorizeLoop && !InterleaveLoop) { 7940 // Do not vectorize or interleaving the loop. 7941 ORE->emit([&]() { 7942 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 7943 L->getStartLoc(), L->getHeader()) 7944 << VecDiagMsg.second; 7945 }); 7946 ORE->emit([&]() { 7947 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 7948 L->getStartLoc(), L->getHeader()) 7949 << IntDiagMsg.second; 7950 }); 7951 return false; 7952 } else if (!VectorizeLoop && InterleaveLoop) { 7953 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7954 ORE->emit([&]() { 7955 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 7956 L->getStartLoc(), L->getHeader()) 7957 << VecDiagMsg.second; 7958 }); 7959 } else if (VectorizeLoop && !InterleaveLoop) { 7960 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7961 << ") in " << DebugLocStr << '\n'); 7962 ORE->emit([&]() { 7963 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 7964 L->getStartLoc(), L->getHeader()) 7965 << IntDiagMsg.second; 7966 }); 7967 } else if (VectorizeLoop && InterleaveLoop) { 7968 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 7969 << ") in " << DebugLocStr << '\n'); 7970 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 7971 } 7972 7973 LVP.setBestPlan(VF.Width, IC); 7974 7975 using namespace ore; 7976 bool DisableRuntimeUnroll = false; 7977 MDNode *OrigLoopID = L->getLoopID(); 7978 7979 if (!VectorizeLoop) { 7980 assert(IC > 1 && "interleave count should not be 1 or 0"); 7981 // If we decided that it is not legal to vectorize the loop, then 7982 // interleave it. 7983 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 7984 &CM); 7985 LVP.executePlan(Unroller, DT); 7986 7987 ORE->emit([&]() { 7988 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 7989 L->getHeader()) 7990 << "interleaved loop (interleaved count: " 7991 << NV("InterleaveCount", IC) << ")"; 7992 }); 7993 } else { 7994 // If we decided that it is *legal* to vectorize the loop, then do it. 7995 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 7996 &LVL, &CM); 7997 LVP.executePlan(LB, DT); 7998 ++LoopsVectorized; 7999 8000 // Add metadata to disable runtime unrolling a scalar loop when there are 8001 // no runtime checks about strides and memory. A scalar loop that is 8002 // rarely used is not worth unrolling. 8003 if (!LB.areSafetyChecksAdded()) 8004 DisableRuntimeUnroll = true; 8005 8006 // Report the vectorization decision. 8007 ORE->emit([&]() { 8008 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8009 L->getHeader()) 8010 << "vectorized loop (vectorization width: " 8011 << NV("VectorizationFactor", VF.Width) 8012 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 8013 }); 8014 } 8015 8016 Optional<MDNode *> RemainderLoopID = 8017 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 8018 LLVMLoopVectorizeFollowupEpilogue}); 8019 if (RemainderLoopID.hasValue()) { 8020 L->setLoopID(RemainderLoopID.getValue()); 8021 } else { 8022 if (DisableRuntimeUnroll) 8023 AddRuntimeUnrollDisableMetaData(L); 8024 8025 // Mark the loop as already vectorized to avoid vectorizing again. 8026 Hints.setAlreadyVectorized(); 8027 } 8028 8029 assert(!verifyFunction(*L->getHeader()->getParent())); 8030 return true; 8031 } 8032 8033 LoopVectorizeResult LoopVectorizePass::runImpl( 8034 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8035 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8036 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 8037 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8038 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 8039 SE = &SE_; 8040 LI = &LI_; 8041 TTI = &TTI_; 8042 DT = &DT_; 8043 BFI = &BFI_; 8044 TLI = TLI_; 8045 AA = &AA_; 8046 AC = &AC_; 8047 GetLAA = &GetLAA_; 8048 DB = &DB_; 8049 ORE = &ORE_; 8050 PSI = PSI_; 8051 8052 // Don't attempt if 8053 // 1. the target claims to have no vector registers, and 8054 // 2. interleaving won't help ILP. 8055 // 8056 // The second condition is necessary because, even if the target has no 8057 // vector registers, loop vectorization may still enable scalar 8058 // interleaving. 8059 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 8060 TTI->getMaxInterleaveFactor(1) < 2) 8061 return LoopVectorizeResult(false, false); 8062 8063 bool Changed = false, CFGChanged = false; 8064 8065 // The vectorizer requires loops to be in simplified form. 8066 // Since simplification may add new inner loops, it has to run before the 8067 // legality and profitability checks. This means running the loop vectorizer 8068 // will simplify all loops, regardless of whether anything end up being 8069 // vectorized. 8070 for (auto &L : *LI) 8071 Changed |= CFGChanged |= 8072 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 8073 8074 // Build up a worklist of inner-loops to vectorize. This is necessary as 8075 // the act of vectorizing or partially unrolling a loop creates new loops 8076 // and can invalidate iterators across the loops. 8077 SmallVector<Loop *, 8> Worklist; 8078 8079 for (Loop *L : *LI) 8080 collectSupportedLoops(*L, LI, ORE, Worklist); 8081 8082 LoopsAnalyzed += Worklist.size(); 8083 8084 // Now walk the identified inner loops. 8085 while (!Worklist.empty()) { 8086 Loop *L = Worklist.pop_back_val(); 8087 8088 // For the inner loops we actually process, form LCSSA to simplify the 8089 // transform. 8090 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8091 8092 Changed |= CFGChanged |= processLoop(L); 8093 } 8094 8095 // Process each loop nest in the function. 8096 return LoopVectorizeResult(Changed, CFGChanged); 8097 } 8098 8099 PreservedAnalyses LoopVectorizePass::run(Function &F, 8100 FunctionAnalysisManager &AM) { 8101 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8102 auto &LI = AM.getResult<LoopAnalysis>(F); 8103 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8104 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8105 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8106 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8107 auto &AA = AM.getResult<AAManager>(F); 8108 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8109 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8110 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8111 MemorySSA *MSSA = EnableMSSALoopDependency 8112 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 8113 : nullptr; 8114 8115 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8116 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8117 [&](Loop &L) -> const LoopAccessInfo & { 8118 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA}; 8119 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8120 }; 8121 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 8122 ProfileSummaryInfo *PSI = 8123 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 8124 LoopVectorizeResult Result = 8125 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 8126 if (!Result.MadeAnyChange) 8127 return PreservedAnalyses::all(); 8128 PreservedAnalyses PA; 8129 8130 // We currently do not preserve loopinfo/dominator analyses with outer loop 8131 // vectorization. Until this is addressed, mark these analyses as preserved 8132 // only for non-VPlan-native path. 8133 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 8134 if (!EnableVPlanNativePath) { 8135 PA.preserve<LoopAnalysis>(); 8136 PA.preserve<DominatorTreeAnalysis>(); 8137 } 8138 PA.preserve<BasicAA>(); 8139 PA.preserve<GlobalsAA>(); 8140 if (!Result.MadeCFGChange) 8141 PA.preserveSet<CFGAnalyses>(); 8142 return PA; 8143 } 8144