1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/MemorySSA.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 cl::opt<bool> EnableStrictReductions( 335 "enable-strict-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns the type of loaded or stored value. 379 static Type *getMemInstValueType(Value *I) { 380 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 381 "Expected Load or Store instruction"); 382 if (auto *LI = dyn_cast<LoadInst>(I)) 383 return LI->getType(); 384 return cast<StoreInst>(I)->getValueOperand()->getType(); 385 } 386 387 /// A helper function that returns true if the given type is irregular. The 388 /// type is irregular if its allocated size doesn't equal the store size of an 389 /// element of the corresponding vector type. 390 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 391 // Determine if an array of N elements of type Ty is "bitcast compatible" 392 // with a <N x Ty> vector. 393 // This is only true if there is no padding between the array elements. 394 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 395 } 396 397 /// A helper function that returns the reciprocal of the block probability of 398 /// predicated blocks. If we return X, we are assuming the predicated block 399 /// will execute once for every X iterations of the loop header. 400 /// 401 /// TODO: We should use actual block probability here, if available. Currently, 402 /// we always assume predicated blocks have a 50% chance of executing. 403 static unsigned getReciprocalPredBlockProb() { return 2; } 404 405 /// A helper function that returns an integer or floating-point constant with 406 /// value C. 407 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 408 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 409 : ConstantFP::get(Ty, C); 410 } 411 412 /// Returns "best known" trip count for the specified loop \p L as defined by 413 /// the following procedure: 414 /// 1) Returns exact trip count if it is known. 415 /// 2) Returns expected trip count according to profile data if any. 416 /// 3) Returns upper bound estimate if it is known. 417 /// 4) Returns None if all of the above failed. 418 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 419 // Check if exact trip count is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 421 return ExpectedTC; 422 423 // Check if there is an expected trip count available from profile data. 424 if (LoopVectorizeWithBlockFrequency) 425 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 426 return EstimatedTC; 427 428 // Check if upper bound estimate is known. 429 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 430 return ExpectedTC; 431 432 return None; 433 } 434 435 // Forward declare GeneratedRTChecks. 436 class GeneratedRTChecks; 437 438 namespace llvm { 439 440 /// InnerLoopVectorizer vectorizes loops which contain only one basic 441 /// block to a specified vectorization factor (VF). 442 /// This class performs the widening of scalars into vectors, or multiple 443 /// scalars. This class also implements the following features: 444 /// * It inserts an epilogue loop for handling loops that don't have iteration 445 /// counts that are known to be a multiple of the vectorization factor. 446 /// * It handles the code generation for reduction variables. 447 /// * Scalarization (implementation using scalars) of un-vectorizable 448 /// instructions. 449 /// InnerLoopVectorizer does not perform any vectorization-legality 450 /// checks, and relies on the caller to check for the different legality 451 /// aspects. The InnerLoopVectorizer relies on the 452 /// LoopVectorizationLegality class to provide information about the induction 453 /// and reduction variables that were found to a given vectorization factor. 454 class InnerLoopVectorizer { 455 public: 456 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 457 LoopInfo *LI, DominatorTree *DT, 458 const TargetLibraryInfo *TLI, 459 const TargetTransformInfo *TTI, AssumptionCache *AC, 460 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 461 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 462 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 463 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 464 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 465 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 466 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 467 PSI(PSI), RTChecks(RTChecks) { 468 // Query this against the original loop and save it here because the profile 469 // of the original loop header may change as the transformation happens. 470 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 471 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 472 } 473 474 virtual ~InnerLoopVectorizer() = default; 475 476 /// Create a new empty loop that will contain vectorized instructions later 477 /// on, while the old loop will be used as the scalar remainder. Control flow 478 /// is generated around the vectorized (and scalar epilogue) loops consisting 479 /// of various checks and bypasses. Return the pre-header block of the new 480 /// loop. 481 /// In the case of epilogue vectorization, this function is overriden to 482 /// handle the more complex control flow around the loops. 483 virtual BasicBlock *createVectorizedLoopSkeleton(); 484 485 /// Widen a single instruction within the innermost loop. 486 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 487 VPTransformState &State); 488 489 /// Widen a single call instruction within the innermost loop. 490 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 491 VPTransformState &State); 492 493 /// Widen a single select instruction within the innermost loop. 494 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 495 bool InvariantCond, VPTransformState &State); 496 497 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 498 void fixVectorizedLoop(VPTransformState &State); 499 500 // Return true if any runtime check is added. 501 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 502 503 /// A type for vectorized values in the new loop. Each value from the 504 /// original loop, when vectorized, is represented by UF vector values in the 505 /// new unrolled loop, where UF is the unroll factor. 506 using VectorParts = SmallVector<Value *, 2>; 507 508 /// Vectorize a single GetElementPtrInst based on information gathered and 509 /// decisions taken during planning. 510 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 511 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 512 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 513 514 /// Vectorize a single PHINode in a block. This method handles the induction 515 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 516 /// arbitrary length vectors. 517 void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc, 518 VPWidenPHIRecipe *PhiR, VPTransformState &State); 519 520 /// A helper function to scalarize a single Instruction in the innermost loop. 521 /// Generates a sequence of scalar instances for each lane between \p MinLane 522 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 523 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 524 /// Instr's operands. 525 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 526 const VPIteration &Instance, bool IfPredicateInstr, 527 VPTransformState &State); 528 529 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 530 /// is provided, the integer induction variable will first be truncated to 531 /// the corresponding type. 532 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 533 VPValue *Def, VPValue *CastDef, 534 VPTransformState &State); 535 536 /// Construct the vector value of a scalarized value \p V one lane at a time. 537 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 538 VPTransformState &State); 539 540 /// Try to vectorize interleaved access group \p Group with the base address 541 /// given in \p Addr, optionally masking the vector operations if \p 542 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 543 /// values in the vectorized loop. 544 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 545 ArrayRef<VPValue *> VPDefs, 546 VPTransformState &State, VPValue *Addr, 547 ArrayRef<VPValue *> StoredValues, 548 VPValue *BlockInMask = nullptr); 549 550 /// Vectorize Load and Store instructions with the base address given in \p 551 /// Addr, optionally masking the vector operations if \p BlockInMask is 552 /// non-null. Use \p State to translate given VPValues to IR values in the 553 /// vectorized loop. 554 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 555 VPValue *Def, VPValue *Addr, 556 VPValue *StoredValue, VPValue *BlockInMask); 557 558 /// Set the debug location in the builder using the debug location in 559 /// the instruction. 560 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 561 562 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 563 void fixNonInductionPHIs(VPTransformState &State); 564 565 /// Create a broadcast instruction. This method generates a broadcast 566 /// instruction (shuffle) for loop invariant values and for the induction 567 /// value. If this is the induction variable then we extend it to N, N+1, ... 568 /// this is needed because each iteration in the loop corresponds to a SIMD 569 /// element. 570 virtual Value *getBroadcastInstrs(Value *V); 571 572 protected: 573 friend class LoopVectorizationPlanner; 574 575 /// A small list of PHINodes. 576 using PhiVector = SmallVector<PHINode *, 4>; 577 578 /// A type for scalarized values in the new loop. Each value from the 579 /// original loop, when scalarized, is represented by UF x VF scalar values 580 /// in the new unrolled loop, where UF is the unroll factor and VF is the 581 /// vectorization factor. 582 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 583 584 /// Set up the values of the IVs correctly when exiting the vector loop. 585 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 586 Value *CountRoundDown, Value *EndValue, 587 BasicBlock *MiddleBlock); 588 589 /// Create a new induction variable inside L. 590 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 591 Value *Step, Instruction *DL); 592 593 /// Handle all cross-iteration phis in the header. 594 void fixCrossIterationPHIs(VPTransformState &State); 595 596 /// Fix a first-order recurrence. This is the second phase of vectorizing 597 /// this phi node. 598 void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State); 599 600 /// Fix a reduction cross-iteration phi. This is the second phase of 601 /// vectorizing this phi node. 602 void fixReduction(VPWidenPHIRecipe *Phi, VPTransformState &State); 603 604 /// Clear NSW/NUW flags from reduction instructions if necessary. 605 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc, 606 VPTransformState &State); 607 608 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 609 /// means we need to add the appropriate incoming value from the middle 610 /// block as exiting edges from the scalar epilogue loop (if present) are 611 /// already in place, and we exit the vector loop exclusively to the middle 612 /// block. 613 void fixLCSSAPHIs(VPTransformState &State); 614 615 /// Iteratively sink the scalarized operands of a predicated instruction into 616 /// the block that was created for it. 617 void sinkScalarOperands(Instruction *PredInst); 618 619 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 620 /// represented as. 621 void truncateToMinimalBitwidths(VPTransformState &State); 622 623 /// This function adds 624 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 625 /// to each vector element of Val. The sequence starts at StartIndex. 626 /// \p Opcode is relevant for FP induction variable. 627 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 628 Instruction::BinaryOps Opcode = 629 Instruction::BinaryOpsEnd); 630 631 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 632 /// variable on which to base the steps, \p Step is the size of the step, and 633 /// \p EntryVal is the value from the original loop that maps to the steps. 634 /// Note that \p EntryVal doesn't have to be an induction variable - it 635 /// can also be a truncate instruction. 636 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 637 const InductionDescriptor &ID, VPValue *Def, 638 VPValue *CastDef, VPTransformState &State); 639 640 /// Create a vector induction phi node based on an existing scalar one. \p 641 /// EntryVal is the value from the original loop that maps to the vector phi 642 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 643 /// truncate instruction, instead of widening the original IV, we widen a 644 /// version of the IV truncated to \p EntryVal's type. 645 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 646 Value *Step, Value *Start, 647 Instruction *EntryVal, VPValue *Def, 648 VPValue *CastDef, 649 VPTransformState &State); 650 651 /// Returns true if an instruction \p I should be scalarized instead of 652 /// vectorized for the chosen vectorization factor. 653 bool shouldScalarizeInstruction(Instruction *I) const; 654 655 /// Returns true if we should generate a scalar version of \p IV. 656 bool needsScalarInduction(Instruction *IV) const; 657 658 /// If there is a cast involved in the induction variable \p ID, which should 659 /// be ignored in the vectorized loop body, this function records the 660 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 661 /// cast. We had already proved that the casted Phi is equal to the uncasted 662 /// Phi in the vectorized loop (under a runtime guard), and therefore 663 /// there is no need to vectorize the cast - the same value can be used in the 664 /// vector loop for both the Phi and the cast. 665 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 666 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 667 /// 668 /// \p EntryVal is the value from the original loop that maps to the vector 669 /// phi node and is used to distinguish what is the IV currently being 670 /// processed - original one (if \p EntryVal is a phi corresponding to the 671 /// original IV) or the "newly-created" one based on the proof mentioned above 672 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 673 /// latter case \p EntryVal is a TruncInst and we must not record anything for 674 /// that IV, but it's error-prone to expect callers of this routine to care 675 /// about that, hence this explicit parameter. 676 void recordVectorLoopValueForInductionCast( 677 const InductionDescriptor &ID, const Instruction *EntryVal, 678 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 679 unsigned Part, unsigned Lane = UINT_MAX); 680 681 /// Generate a shuffle sequence that will reverse the vector Vec. 682 virtual Value *reverseVector(Value *Vec); 683 684 /// Returns (and creates if needed) the original loop trip count. 685 Value *getOrCreateTripCount(Loop *NewLoop); 686 687 /// Returns (and creates if needed) the trip count of the widened loop. 688 Value *getOrCreateVectorTripCount(Loop *NewLoop); 689 690 /// Returns a bitcasted value to the requested vector type. 691 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 692 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 693 const DataLayout &DL); 694 695 /// Emit a bypass check to see if the vector trip count is zero, including if 696 /// it overflows. 697 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 698 699 /// Emit a bypass check to see if all of the SCEV assumptions we've 700 /// had to make are correct. Returns the block containing the checks or 701 /// nullptr if no checks have been added. 702 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 703 704 /// Emit bypass checks to check any memory assumptions we may have made. 705 /// Returns the block containing the checks or nullptr if no checks have been 706 /// added. 707 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 708 709 /// Compute the transformed value of Index at offset StartValue using step 710 /// StepValue. 711 /// For integer induction, returns StartValue + Index * StepValue. 712 /// For pointer induction, returns StartValue[Index * StepValue]. 713 /// FIXME: The newly created binary instructions should contain nsw/nuw 714 /// flags, which can be found from the original scalar operations. 715 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 716 const DataLayout &DL, 717 const InductionDescriptor &ID) const; 718 719 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 720 /// vector loop preheader, middle block and scalar preheader. Also 721 /// allocate a loop object for the new vector loop and return it. 722 Loop *createVectorLoopSkeleton(StringRef Prefix); 723 724 /// Create new phi nodes for the induction variables to resume iteration count 725 /// in the scalar epilogue, from where the vectorized loop left off (given by 726 /// \p VectorTripCount). 727 /// In cases where the loop skeleton is more complicated (eg. epilogue 728 /// vectorization) and the resume values can come from an additional bypass 729 /// block, the \p AdditionalBypass pair provides information about the bypass 730 /// block and the end value on the edge from bypass to this loop. 731 void createInductionResumeValues( 732 Loop *L, Value *VectorTripCount, 733 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 734 735 /// Complete the loop skeleton by adding debug MDs, creating appropriate 736 /// conditional branches in the middle block, preparing the builder and 737 /// running the verifier. Take in the vector loop \p L as argument, and return 738 /// the preheader of the completed vector loop. 739 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 740 741 /// Add additional metadata to \p To that was not present on \p Orig. 742 /// 743 /// Currently this is used to add the noalias annotations based on the 744 /// inserted memchecks. Use this for instructions that are *cloned* into the 745 /// vector loop. 746 void addNewMetadata(Instruction *To, const Instruction *Orig); 747 748 /// Add metadata from one instruction to another. 749 /// 750 /// This includes both the original MDs from \p From and additional ones (\see 751 /// addNewMetadata). Use this for *newly created* instructions in the vector 752 /// loop. 753 void addMetadata(Instruction *To, Instruction *From); 754 755 /// Similar to the previous function but it adds the metadata to a 756 /// vector of instructions. 757 void addMetadata(ArrayRef<Value *> To, Instruction *From); 758 759 /// Allow subclasses to override and print debug traces before/after vplan 760 /// execution, when trace information is requested. 761 virtual void printDebugTracesAtStart(){}; 762 virtual void printDebugTracesAtEnd(){}; 763 764 /// The original loop. 765 Loop *OrigLoop; 766 767 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 768 /// dynamic knowledge to simplify SCEV expressions and converts them to a 769 /// more usable form. 770 PredicatedScalarEvolution &PSE; 771 772 /// Loop Info. 773 LoopInfo *LI; 774 775 /// Dominator Tree. 776 DominatorTree *DT; 777 778 /// Alias Analysis. 779 AAResults *AA; 780 781 /// Target Library Info. 782 const TargetLibraryInfo *TLI; 783 784 /// Target Transform Info. 785 const TargetTransformInfo *TTI; 786 787 /// Assumption Cache. 788 AssumptionCache *AC; 789 790 /// Interface to emit optimization remarks. 791 OptimizationRemarkEmitter *ORE; 792 793 /// LoopVersioning. It's only set up (non-null) if memchecks were 794 /// used. 795 /// 796 /// This is currently only used to add no-alias metadata based on the 797 /// memchecks. The actually versioning is performed manually. 798 std::unique_ptr<LoopVersioning> LVer; 799 800 /// The vectorization SIMD factor to use. Each vector will have this many 801 /// vector elements. 802 ElementCount VF; 803 804 /// The vectorization unroll factor to use. Each scalar is vectorized to this 805 /// many different vector instructions. 806 unsigned UF; 807 808 /// The builder that we use 809 IRBuilder<> Builder; 810 811 // --- Vectorization state --- 812 813 /// The vector-loop preheader. 814 BasicBlock *LoopVectorPreHeader; 815 816 /// The scalar-loop preheader. 817 BasicBlock *LoopScalarPreHeader; 818 819 /// Middle Block between the vector and the scalar. 820 BasicBlock *LoopMiddleBlock; 821 822 /// The (unique) ExitBlock of the scalar loop. Note that 823 /// there can be multiple exiting edges reaching this block. 824 BasicBlock *LoopExitBlock; 825 826 /// The vector loop body. 827 BasicBlock *LoopVectorBody; 828 829 /// The scalar loop body. 830 BasicBlock *LoopScalarBody; 831 832 /// A list of all bypass blocks. The first block is the entry of the loop. 833 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 834 835 /// The new Induction variable which was added to the new block. 836 PHINode *Induction = nullptr; 837 838 /// The induction variable of the old basic block. 839 PHINode *OldInduction = nullptr; 840 841 /// Store instructions that were predicated. 842 SmallVector<Instruction *, 4> PredicatedInstructions; 843 844 /// Trip count of the original loop. 845 Value *TripCount = nullptr; 846 847 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 848 Value *VectorTripCount = nullptr; 849 850 /// The legality analysis. 851 LoopVectorizationLegality *Legal; 852 853 /// The profitablity analysis. 854 LoopVectorizationCostModel *Cost; 855 856 // Record whether runtime checks are added. 857 bool AddedSafetyChecks = false; 858 859 // Holds the end values for each induction variable. We save the end values 860 // so we can later fix-up the external users of the induction variables. 861 DenseMap<PHINode *, Value *> IVEndValues; 862 863 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 864 // fixed up at the end of vector code generation. 865 SmallVector<PHINode *, 8> OrigPHIsToFix; 866 867 /// BFI and PSI are used to check for profile guided size optimizations. 868 BlockFrequencyInfo *BFI; 869 ProfileSummaryInfo *PSI; 870 871 // Whether this loop should be optimized for size based on profile guided size 872 // optimizatios. 873 bool OptForSizeBasedOnProfile; 874 875 /// Structure to hold information about generated runtime checks, responsible 876 /// for cleaning the checks, if vectorization turns out unprofitable. 877 GeneratedRTChecks &RTChecks; 878 }; 879 880 class InnerLoopUnroller : public InnerLoopVectorizer { 881 public: 882 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 883 LoopInfo *LI, DominatorTree *DT, 884 const TargetLibraryInfo *TLI, 885 const TargetTransformInfo *TTI, AssumptionCache *AC, 886 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 887 LoopVectorizationLegality *LVL, 888 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 889 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 890 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 891 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 892 BFI, PSI, Check) {} 893 894 private: 895 Value *getBroadcastInstrs(Value *V) override; 896 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 897 Instruction::BinaryOps Opcode = 898 Instruction::BinaryOpsEnd) override; 899 Value *reverseVector(Value *Vec) override; 900 }; 901 902 /// Encapsulate information regarding vectorization of a loop and its epilogue. 903 /// This information is meant to be updated and used across two stages of 904 /// epilogue vectorization. 905 struct EpilogueLoopVectorizationInfo { 906 ElementCount MainLoopVF = ElementCount::getFixed(0); 907 unsigned MainLoopUF = 0; 908 ElementCount EpilogueVF = ElementCount::getFixed(0); 909 unsigned EpilogueUF = 0; 910 BasicBlock *MainLoopIterationCountCheck = nullptr; 911 BasicBlock *EpilogueIterationCountCheck = nullptr; 912 BasicBlock *SCEVSafetyCheck = nullptr; 913 BasicBlock *MemSafetyCheck = nullptr; 914 Value *TripCount = nullptr; 915 Value *VectorTripCount = nullptr; 916 917 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 918 unsigned EUF) 919 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 920 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 921 assert(EUF == 1 && 922 "A high UF for the epilogue loop is likely not beneficial."); 923 } 924 }; 925 926 /// An extension of the inner loop vectorizer that creates a skeleton for a 927 /// vectorized loop that has its epilogue (residual) also vectorized. 928 /// The idea is to run the vplan on a given loop twice, firstly to setup the 929 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 930 /// from the first step and vectorize the epilogue. This is achieved by 931 /// deriving two concrete strategy classes from this base class and invoking 932 /// them in succession from the loop vectorizer planner. 933 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 934 public: 935 InnerLoopAndEpilogueVectorizer( 936 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 937 DominatorTree *DT, const TargetLibraryInfo *TLI, 938 const TargetTransformInfo *TTI, AssumptionCache *AC, 939 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 940 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 941 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 942 GeneratedRTChecks &Checks) 943 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 944 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 945 Checks), 946 EPI(EPI) {} 947 948 // Override this function to handle the more complex control flow around the 949 // three loops. 950 BasicBlock *createVectorizedLoopSkeleton() final override { 951 return createEpilogueVectorizedLoopSkeleton(); 952 } 953 954 /// The interface for creating a vectorized skeleton using one of two 955 /// different strategies, each corresponding to one execution of the vplan 956 /// as described above. 957 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 958 959 /// Holds and updates state information required to vectorize the main loop 960 /// and its epilogue in two separate passes. This setup helps us avoid 961 /// regenerating and recomputing runtime safety checks. It also helps us to 962 /// shorten the iteration-count-check path length for the cases where the 963 /// iteration count of the loop is so small that the main vector loop is 964 /// completely skipped. 965 EpilogueLoopVectorizationInfo &EPI; 966 }; 967 968 /// A specialized derived class of inner loop vectorizer that performs 969 /// vectorization of *main* loops in the process of vectorizing loops and their 970 /// epilogues. 971 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 972 public: 973 EpilogueVectorizerMainLoop( 974 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 975 DominatorTree *DT, const TargetLibraryInfo *TLI, 976 const TargetTransformInfo *TTI, AssumptionCache *AC, 977 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 978 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 979 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 980 GeneratedRTChecks &Check) 981 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 982 EPI, LVL, CM, BFI, PSI, Check) {} 983 /// Implements the interface for creating a vectorized skeleton using the 984 /// *main loop* strategy (ie the first pass of vplan execution). 985 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 986 987 protected: 988 /// Emits an iteration count bypass check once for the main loop (when \p 989 /// ForEpilogue is false) and once for the epilogue loop (when \p 990 /// ForEpilogue is true). 991 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 992 bool ForEpilogue); 993 void printDebugTracesAtStart() override; 994 void printDebugTracesAtEnd() override; 995 }; 996 997 // A specialized derived class of inner loop vectorizer that performs 998 // vectorization of *epilogue* loops in the process of vectorizing loops and 999 // their epilogues. 1000 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 1001 public: 1002 EpilogueVectorizerEpilogueLoop( 1003 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 1004 DominatorTree *DT, const TargetLibraryInfo *TLI, 1005 const TargetTransformInfo *TTI, AssumptionCache *AC, 1006 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1007 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1008 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1009 GeneratedRTChecks &Checks) 1010 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1011 EPI, LVL, CM, BFI, PSI, Checks) {} 1012 /// Implements the interface for creating a vectorized skeleton using the 1013 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1014 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1015 1016 protected: 1017 /// Emits an iteration count bypass check after the main vector loop has 1018 /// finished to see if there are any iterations left to execute by either 1019 /// the vector epilogue or the scalar epilogue. 1020 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1021 BasicBlock *Bypass, 1022 BasicBlock *Insert); 1023 void printDebugTracesAtStart() override; 1024 void printDebugTracesAtEnd() override; 1025 }; 1026 } // end namespace llvm 1027 1028 /// Look for a meaningful debug location on the instruction or it's 1029 /// operands. 1030 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1031 if (!I) 1032 return I; 1033 1034 DebugLoc Empty; 1035 if (I->getDebugLoc() != Empty) 1036 return I; 1037 1038 for (Use &Op : I->operands()) { 1039 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1040 if (OpInst->getDebugLoc() != Empty) 1041 return OpInst; 1042 } 1043 1044 return I; 1045 } 1046 1047 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 1048 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 1049 const DILocation *DIL = Inst->getDebugLoc(); 1050 1051 // When a FSDiscriminator is enabled, we don't need to add the multiply 1052 // factors to the discriminators. 1053 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1054 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1055 // FIXME: For scalable vectors, assume vscale=1. 1056 auto NewDIL = 1057 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1058 if (NewDIL) 1059 B.SetCurrentDebugLocation(NewDIL.getValue()); 1060 else 1061 LLVM_DEBUG(dbgs() 1062 << "Failed to create new discriminator: " 1063 << DIL->getFilename() << " Line: " << DIL->getLine()); 1064 } else 1065 B.SetCurrentDebugLocation(DIL); 1066 } else 1067 B.SetCurrentDebugLocation(DebugLoc()); 1068 } 1069 1070 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1071 /// is passed, the message relates to that particular instruction. 1072 #ifndef NDEBUG 1073 static void debugVectorizationMessage(const StringRef Prefix, 1074 const StringRef DebugMsg, 1075 Instruction *I) { 1076 dbgs() << "LV: " << Prefix << DebugMsg; 1077 if (I != nullptr) 1078 dbgs() << " " << *I; 1079 else 1080 dbgs() << '.'; 1081 dbgs() << '\n'; 1082 } 1083 #endif 1084 1085 /// Create an analysis remark that explains why vectorization failed 1086 /// 1087 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1088 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1089 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1090 /// the location of the remark. \return the remark object that can be 1091 /// streamed to. 1092 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1093 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1094 Value *CodeRegion = TheLoop->getHeader(); 1095 DebugLoc DL = TheLoop->getStartLoc(); 1096 1097 if (I) { 1098 CodeRegion = I->getParent(); 1099 // If there is no debug location attached to the instruction, revert back to 1100 // using the loop's. 1101 if (I->getDebugLoc()) 1102 DL = I->getDebugLoc(); 1103 } 1104 1105 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1106 } 1107 1108 /// Return a value for Step multiplied by VF. 1109 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1110 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1111 Constant *StepVal = ConstantInt::get( 1112 Step->getType(), 1113 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1114 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1115 } 1116 1117 namespace llvm { 1118 1119 /// Return the runtime value for VF. 1120 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1121 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1122 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1123 } 1124 1125 void reportVectorizationFailure(const StringRef DebugMsg, 1126 const StringRef OREMsg, const StringRef ORETag, 1127 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1128 Instruction *I) { 1129 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1130 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1131 ORE->emit( 1132 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1133 << "loop not vectorized: " << OREMsg); 1134 } 1135 1136 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1137 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1138 Instruction *I) { 1139 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1140 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1141 ORE->emit( 1142 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1143 << Msg); 1144 } 1145 1146 } // end namespace llvm 1147 1148 #ifndef NDEBUG 1149 /// \return string containing a file name and a line # for the given loop. 1150 static std::string getDebugLocString(const Loop *L) { 1151 std::string Result; 1152 if (L) { 1153 raw_string_ostream OS(Result); 1154 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1155 LoopDbgLoc.print(OS); 1156 else 1157 // Just print the module name. 1158 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1159 OS.flush(); 1160 } 1161 return Result; 1162 } 1163 #endif 1164 1165 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1166 const Instruction *Orig) { 1167 // If the loop was versioned with memchecks, add the corresponding no-alias 1168 // metadata. 1169 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1170 LVer->annotateInstWithNoAlias(To, Orig); 1171 } 1172 1173 void InnerLoopVectorizer::addMetadata(Instruction *To, 1174 Instruction *From) { 1175 propagateMetadata(To, From); 1176 addNewMetadata(To, From); 1177 } 1178 1179 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1180 Instruction *From) { 1181 for (Value *V : To) { 1182 if (Instruction *I = dyn_cast<Instruction>(V)) 1183 addMetadata(I, From); 1184 } 1185 } 1186 1187 namespace llvm { 1188 1189 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1190 // lowered. 1191 enum ScalarEpilogueLowering { 1192 1193 // The default: allowing scalar epilogues. 1194 CM_ScalarEpilogueAllowed, 1195 1196 // Vectorization with OptForSize: don't allow epilogues. 1197 CM_ScalarEpilogueNotAllowedOptSize, 1198 1199 // A special case of vectorisation with OptForSize: loops with a very small 1200 // trip count are considered for vectorization under OptForSize, thereby 1201 // making sure the cost of their loop body is dominant, free of runtime 1202 // guards and scalar iteration overheads. 1203 CM_ScalarEpilogueNotAllowedLowTripLoop, 1204 1205 // Loop hint predicate indicating an epilogue is undesired. 1206 CM_ScalarEpilogueNotNeededUsePredicate, 1207 1208 // Directive indicating we must either tail fold or not vectorize 1209 CM_ScalarEpilogueNotAllowedUsePredicate 1210 }; 1211 1212 /// LoopVectorizationCostModel - estimates the expected speedups due to 1213 /// vectorization. 1214 /// In many cases vectorization is not profitable. This can happen because of 1215 /// a number of reasons. In this class we mainly attempt to predict the 1216 /// expected speedup/slowdowns due to the supported instruction set. We use the 1217 /// TargetTransformInfo to query the different backends for the cost of 1218 /// different operations. 1219 class LoopVectorizationCostModel { 1220 public: 1221 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1222 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1223 LoopVectorizationLegality *Legal, 1224 const TargetTransformInfo &TTI, 1225 const TargetLibraryInfo *TLI, DemandedBits *DB, 1226 AssumptionCache *AC, 1227 OptimizationRemarkEmitter *ORE, const Function *F, 1228 const LoopVectorizeHints *Hints, 1229 InterleavedAccessInfo &IAI) 1230 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1231 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1232 Hints(Hints), InterleaveInfo(IAI) {} 1233 1234 /// \return An upper bound for the vectorization factors (both fixed and 1235 /// scalable). If the factors are 0, vectorization and interleaving should be 1236 /// avoided up front. 1237 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1238 1239 /// \return True if runtime checks are required for vectorization, and false 1240 /// otherwise. 1241 bool runtimeChecksRequired(); 1242 1243 /// \return The most profitable vectorization factor and the cost of that VF. 1244 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1245 /// then this vectorization factor will be selected if vectorization is 1246 /// possible. 1247 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1248 VectorizationFactor 1249 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1250 const LoopVectorizationPlanner &LVP); 1251 1252 /// Setup cost-based decisions for user vectorization factor. 1253 void selectUserVectorizationFactor(ElementCount UserVF) { 1254 collectUniformsAndScalars(UserVF); 1255 collectInstsToScalarize(UserVF); 1256 } 1257 1258 /// \return The size (in bits) of the smallest and widest types in the code 1259 /// that needs to be vectorized. We ignore values that remain scalar such as 1260 /// 64 bit loop indices. 1261 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1262 1263 /// \return The desired interleave count. 1264 /// If interleave count has been specified by metadata it will be returned. 1265 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1266 /// are the selected vectorization factor and the cost of the selected VF. 1267 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1268 1269 /// Memory access instruction may be vectorized in more than one way. 1270 /// Form of instruction after vectorization depends on cost. 1271 /// This function takes cost-based decisions for Load/Store instructions 1272 /// and collects them in a map. This decisions map is used for building 1273 /// the lists of loop-uniform and loop-scalar instructions. 1274 /// The calculated cost is saved with widening decision in order to 1275 /// avoid redundant calculations. 1276 void setCostBasedWideningDecision(ElementCount VF); 1277 1278 /// A struct that represents some properties of the register usage 1279 /// of a loop. 1280 struct RegisterUsage { 1281 /// Holds the number of loop invariant values that are used in the loop. 1282 /// The key is ClassID of target-provided register class. 1283 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1284 /// Holds the maximum number of concurrent live intervals in the loop. 1285 /// The key is ClassID of target-provided register class. 1286 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1287 }; 1288 1289 /// \return Returns information about the register usages of the loop for the 1290 /// given vectorization factors. 1291 SmallVector<RegisterUsage, 8> 1292 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1293 1294 /// Collect values we want to ignore in the cost model. 1295 void collectValuesToIgnore(); 1296 1297 /// Split reductions into those that happen in the loop, and those that happen 1298 /// outside. In loop reductions are collected into InLoopReductionChains. 1299 void collectInLoopReductions(); 1300 1301 /// \returns The smallest bitwidth each instruction can be represented with. 1302 /// The vector equivalents of these instructions should be truncated to this 1303 /// type. 1304 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1305 return MinBWs; 1306 } 1307 1308 /// \returns True if it is more profitable to scalarize instruction \p I for 1309 /// vectorization factor \p VF. 1310 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1311 assert(VF.isVector() && 1312 "Profitable to scalarize relevant only for VF > 1."); 1313 1314 // Cost model is not run in the VPlan-native path - return conservative 1315 // result until this changes. 1316 if (EnableVPlanNativePath) 1317 return false; 1318 1319 auto Scalars = InstsToScalarize.find(VF); 1320 assert(Scalars != InstsToScalarize.end() && 1321 "VF not yet analyzed for scalarization profitability"); 1322 return Scalars->second.find(I) != Scalars->second.end(); 1323 } 1324 1325 /// Returns true if \p I is known to be uniform after vectorization. 1326 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1327 if (VF.isScalar()) 1328 return true; 1329 1330 // Cost model is not run in the VPlan-native path - return conservative 1331 // result until this changes. 1332 if (EnableVPlanNativePath) 1333 return false; 1334 1335 auto UniformsPerVF = Uniforms.find(VF); 1336 assert(UniformsPerVF != Uniforms.end() && 1337 "VF not yet analyzed for uniformity"); 1338 return UniformsPerVF->second.count(I); 1339 } 1340 1341 /// Returns true if \p I is known to be scalar after vectorization. 1342 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1343 if (VF.isScalar()) 1344 return true; 1345 1346 // Cost model is not run in the VPlan-native path - return conservative 1347 // result until this changes. 1348 if (EnableVPlanNativePath) 1349 return false; 1350 1351 auto ScalarsPerVF = Scalars.find(VF); 1352 assert(ScalarsPerVF != Scalars.end() && 1353 "Scalar values are not calculated for VF"); 1354 return ScalarsPerVF->second.count(I); 1355 } 1356 1357 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1358 /// for vectorization factor \p VF. 1359 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1360 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1361 !isProfitableToScalarize(I, VF) && 1362 !isScalarAfterVectorization(I, VF); 1363 } 1364 1365 /// Decision that was taken during cost calculation for memory instruction. 1366 enum InstWidening { 1367 CM_Unknown, 1368 CM_Widen, // For consecutive accesses with stride +1. 1369 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1370 CM_Interleave, 1371 CM_GatherScatter, 1372 CM_Scalarize 1373 }; 1374 1375 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1376 /// instruction \p I and vector width \p VF. 1377 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1378 InstructionCost Cost) { 1379 assert(VF.isVector() && "Expected VF >=2"); 1380 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1381 } 1382 1383 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1384 /// interleaving group \p Grp and vector width \p VF. 1385 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1386 ElementCount VF, InstWidening W, 1387 InstructionCost Cost) { 1388 assert(VF.isVector() && "Expected VF >=2"); 1389 /// Broadcast this decicion to all instructions inside the group. 1390 /// But the cost will be assigned to one instruction only. 1391 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1392 if (auto *I = Grp->getMember(i)) { 1393 if (Grp->getInsertPos() == I) 1394 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1395 else 1396 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1397 } 1398 } 1399 } 1400 1401 /// Return the cost model decision for the given instruction \p I and vector 1402 /// width \p VF. Return CM_Unknown if this instruction did not pass 1403 /// through the cost modeling. 1404 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1405 assert(VF.isVector() && "Expected VF to be a vector VF"); 1406 // Cost model is not run in the VPlan-native path - return conservative 1407 // result until this changes. 1408 if (EnableVPlanNativePath) 1409 return CM_GatherScatter; 1410 1411 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1412 auto Itr = WideningDecisions.find(InstOnVF); 1413 if (Itr == WideningDecisions.end()) 1414 return CM_Unknown; 1415 return Itr->second.first; 1416 } 1417 1418 /// Return the vectorization cost for the given instruction \p I and vector 1419 /// width \p VF. 1420 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1421 assert(VF.isVector() && "Expected VF >=2"); 1422 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1423 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1424 "The cost is not calculated"); 1425 return WideningDecisions[InstOnVF].second; 1426 } 1427 1428 /// Return True if instruction \p I is an optimizable truncate whose operand 1429 /// is an induction variable. Such a truncate will be removed by adding a new 1430 /// induction variable with the destination type. 1431 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1432 // If the instruction is not a truncate, return false. 1433 auto *Trunc = dyn_cast<TruncInst>(I); 1434 if (!Trunc) 1435 return false; 1436 1437 // Get the source and destination types of the truncate. 1438 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1439 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1440 1441 // If the truncate is free for the given types, return false. Replacing a 1442 // free truncate with an induction variable would add an induction variable 1443 // update instruction to each iteration of the loop. We exclude from this 1444 // check the primary induction variable since it will need an update 1445 // instruction regardless. 1446 Value *Op = Trunc->getOperand(0); 1447 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1448 return false; 1449 1450 // If the truncated value is not an induction variable, return false. 1451 return Legal->isInductionPhi(Op); 1452 } 1453 1454 /// Collects the instructions to scalarize for each predicated instruction in 1455 /// the loop. 1456 void collectInstsToScalarize(ElementCount VF); 1457 1458 /// Collect Uniform and Scalar values for the given \p VF. 1459 /// The sets depend on CM decision for Load/Store instructions 1460 /// that may be vectorized as interleave, gather-scatter or scalarized. 1461 void collectUniformsAndScalars(ElementCount VF) { 1462 // Do the analysis once. 1463 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1464 return; 1465 setCostBasedWideningDecision(VF); 1466 collectLoopUniforms(VF); 1467 collectLoopScalars(VF); 1468 } 1469 1470 /// Returns true if the target machine supports masked store operation 1471 /// for the given \p DataType and kind of access to \p Ptr. 1472 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1473 return Legal->isConsecutivePtr(Ptr) && 1474 TTI.isLegalMaskedStore(DataType, Alignment); 1475 } 1476 1477 /// Returns true if the target machine supports masked load operation 1478 /// for the given \p DataType and kind of access to \p Ptr. 1479 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1480 return Legal->isConsecutivePtr(Ptr) && 1481 TTI.isLegalMaskedLoad(DataType, Alignment); 1482 } 1483 1484 /// Returns true if the target machine supports masked scatter operation 1485 /// for the given \p DataType. 1486 bool isLegalMaskedScatter(Type *DataType, Align Alignment) const { 1487 return TTI.isLegalMaskedScatter(DataType, Alignment); 1488 } 1489 1490 /// Returns true if the target machine supports masked gather operation 1491 /// for the given \p DataType. 1492 bool isLegalMaskedGather(Type *DataType, Align Alignment) const { 1493 return TTI.isLegalMaskedGather(DataType, Alignment); 1494 } 1495 1496 /// Returns true if the target machine can represent \p V as a masked gather 1497 /// or scatter operation. 1498 bool isLegalGatherOrScatter(Value *V) { 1499 bool LI = isa<LoadInst>(V); 1500 bool SI = isa<StoreInst>(V); 1501 if (!LI && !SI) 1502 return false; 1503 auto *Ty = getMemInstValueType(V); 1504 Align Align = getLoadStoreAlignment(V); 1505 return (LI && isLegalMaskedGather(Ty, Align)) || 1506 (SI && isLegalMaskedScatter(Ty, Align)); 1507 } 1508 1509 /// Returns true if the target machine supports all of the reduction 1510 /// variables found for the given VF. 1511 bool canVectorizeReductions(ElementCount VF) { 1512 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1513 RecurrenceDescriptor RdxDesc = Reduction.second; 1514 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1515 })); 1516 } 1517 1518 /// Returns true if \p I is an instruction that will be scalarized with 1519 /// predication. Such instructions include conditional stores and 1520 /// instructions that may divide by zero. 1521 /// If a non-zero VF has been calculated, we check if I will be scalarized 1522 /// predication for that VF. 1523 bool isScalarWithPredication(Instruction *I) const; 1524 1525 // Returns true if \p I is an instruction that will be predicated either 1526 // through scalar predication or masked load/store or masked gather/scatter. 1527 // Superset of instructions that return true for isScalarWithPredication. 1528 bool isPredicatedInst(Instruction *I) { 1529 if (!blockNeedsPredication(I->getParent())) 1530 return false; 1531 // Loads and stores that need some form of masked operation are predicated 1532 // instructions. 1533 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1534 return Legal->isMaskRequired(I); 1535 return isScalarWithPredication(I); 1536 } 1537 1538 /// Returns true if \p I is a memory instruction with consecutive memory 1539 /// access that can be widened. 1540 bool 1541 memoryInstructionCanBeWidened(Instruction *I, 1542 ElementCount VF = ElementCount::getFixed(1)); 1543 1544 /// Returns true if \p I is a memory instruction in an interleaved-group 1545 /// of memory accesses that can be vectorized with wide vector loads/stores 1546 /// and shuffles. 1547 bool 1548 interleavedAccessCanBeWidened(Instruction *I, 1549 ElementCount VF = ElementCount::getFixed(1)); 1550 1551 /// Check if \p Instr belongs to any interleaved access group. 1552 bool isAccessInterleaved(Instruction *Instr) { 1553 return InterleaveInfo.isInterleaved(Instr); 1554 } 1555 1556 /// Get the interleaved access group that \p Instr belongs to. 1557 const InterleaveGroup<Instruction> * 1558 getInterleavedAccessGroup(Instruction *Instr) { 1559 return InterleaveInfo.getInterleaveGroup(Instr); 1560 } 1561 1562 /// Returns true if we're required to use a scalar epilogue for at least 1563 /// the final iteration of the original loop. 1564 bool requiresScalarEpilogue() const { 1565 if (!isScalarEpilogueAllowed()) 1566 return false; 1567 // If we might exit from anywhere but the latch, must run the exiting 1568 // iteration in scalar form. 1569 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1570 return true; 1571 return InterleaveInfo.requiresScalarEpilogue(); 1572 } 1573 1574 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1575 /// loop hint annotation. 1576 bool isScalarEpilogueAllowed() const { 1577 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1578 } 1579 1580 /// Returns true if all loop blocks should be masked to fold tail loop. 1581 bool foldTailByMasking() const { return FoldTailByMasking; } 1582 1583 bool blockNeedsPredication(BasicBlock *BB) const { 1584 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1585 } 1586 1587 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1588 /// nodes to the chain of instructions representing the reductions. Uses a 1589 /// MapVector to ensure deterministic iteration order. 1590 using ReductionChainMap = 1591 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1592 1593 /// Return the chain of instructions representing an inloop reduction. 1594 const ReductionChainMap &getInLoopReductionChains() const { 1595 return InLoopReductionChains; 1596 } 1597 1598 /// Returns true if the Phi is part of an inloop reduction. 1599 bool isInLoopReduction(PHINode *Phi) const { 1600 return InLoopReductionChains.count(Phi); 1601 } 1602 1603 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1604 /// with factor VF. Return the cost of the instruction, including 1605 /// scalarization overhead if it's needed. 1606 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1607 1608 /// Estimate cost of a call instruction CI if it were vectorized with factor 1609 /// VF. Return the cost of the instruction, including scalarization overhead 1610 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1611 /// scalarized - 1612 /// i.e. either vector version isn't available, or is too expensive. 1613 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1614 bool &NeedToScalarize) const; 1615 1616 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1617 /// that of B. 1618 bool isMoreProfitable(const VectorizationFactor &A, 1619 const VectorizationFactor &B) const; 1620 1621 /// Invalidates decisions already taken by the cost model. 1622 void invalidateCostModelingDecisions() { 1623 WideningDecisions.clear(); 1624 Uniforms.clear(); 1625 Scalars.clear(); 1626 } 1627 1628 private: 1629 unsigned NumPredStores = 0; 1630 1631 /// \return An upper bound for the vectorization factors for both 1632 /// fixed and scalable vectorization, where the minimum-known number of 1633 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1634 /// disabled or unsupported, then the scalable part will be equal to 1635 /// ElementCount::getScalable(0). 1636 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1637 ElementCount UserVF); 1638 1639 /// \return the maximized element count based on the targets vector 1640 /// registers and the loop trip-count, but limited to a maximum safe VF. 1641 /// This is a helper function of computeFeasibleMaxVF. 1642 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1643 /// issue that occurred on one of the buildbots which cannot be reproduced 1644 /// without having access to the properietary compiler (see comments on 1645 /// D98509). The issue is currently under investigation and this workaround 1646 /// will be removed as soon as possible. 1647 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1648 unsigned SmallestType, 1649 unsigned WidestType, 1650 const ElementCount &MaxSafeVF); 1651 1652 /// \return the maximum legal scalable VF, based on the safe max number 1653 /// of elements. 1654 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1655 1656 /// The vectorization cost is a combination of the cost itself and a boolean 1657 /// indicating whether any of the contributing operations will actually 1658 /// operate on 1659 /// vector values after type legalization in the backend. If this latter value 1660 /// is 1661 /// false, then all operations will be scalarized (i.e. no vectorization has 1662 /// actually taken place). 1663 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1664 1665 /// Returns the expected execution cost. The unit of the cost does 1666 /// not matter because we use the 'cost' units to compare different 1667 /// vector widths. The cost that is returned is *not* normalized by 1668 /// the factor width. 1669 VectorizationCostTy expectedCost(ElementCount VF); 1670 1671 /// Returns the execution time cost of an instruction for a given vector 1672 /// width. Vector width of one means scalar. 1673 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1674 1675 /// The cost-computation logic from getInstructionCost which provides 1676 /// the vector type as an output parameter. 1677 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1678 Type *&VectorTy); 1679 1680 /// Return the cost of instructions in an inloop reduction pattern, if I is 1681 /// part of that pattern. 1682 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1683 Type *VectorTy, 1684 TTI::TargetCostKind CostKind); 1685 1686 /// Calculate vectorization cost of memory instruction \p I. 1687 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1688 1689 /// The cost computation for scalarized memory instruction. 1690 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1691 1692 /// The cost computation for interleaving group of memory instructions. 1693 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1694 1695 /// The cost computation for Gather/Scatter instruction. 1696 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1697 1698 /// The cost computation for widening instruction \p I with consecutive 1699 /// memory access. 1700 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1701 1702 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1703 /// Load: scalar load + broadcast. 1704 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1705 /// element) 1706 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1707 1708 /// Estimate the overhead of scalarizing an instruction. This is a 1709 /// convenience wrapper for the type-based getScalarizationOverhead API. 1710 InstructionCost getScalarizationOverhead(Instruction *I, 1711 ElementCount VF) const; 1712 1713 /// Returns whether the instruction is a load or store and will be a emitted 1714 /// as a vector operation. 1715 bool isConsecutiveLoadOrStore(Instruction *I); 1716 1717 /// Returns true if an artificially high cost for emulated masked memrefs 1718 /// should be used. 1719 bool useEmulatedMaskMemRefHack(Instruction *I); 1720 1721 /// Map of scalar integer values to the smallest bitwidth they can be legally 1722 /// represented as. The vector equivalents of these values should be truncated 1723 /// to this type. 1724 MapVector<Instruction *, uint64_t> MinBWs; 1725 1726 /// A type representing the costs for instructions if they were to be 1727 /// scalarized rather than vectorized. The entries are Instruction-Cost 1728 /// pairs. 1729 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1730 1731 /// A set containing all BasicBlocks that are known to present after 1732 /// vectorization as a predicated block. 1733 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1734 1735 /// Records whether it is allowed to have the original scalar loop execute at 1736 /// least once. This may be needed as a fallback loop in case runtime 1737 /// aliasing/dependence checks fail, or to handle the tail/remainder 1738 /// iterations when the trip count is unknown or doesn't divide by the VF, 1739 /// or as a peel-loop to handle gaps in interleave-groups. 1740 /// Under optsize and when the trip count is very small we don't allow any 1741 /// iterations to execute in the scalar loop. 1742 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1743 1744 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1745 bool FoldTailByMasking = false; 1746 1747 /// A map holding scalar costs for different vectorization factors. The 1748 /// presence of a cost for an instruction in the mapping indicates that the 1749 /// instruction will be scalarized when vectorizing with the associated 1750 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1751 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1752 1753 /// Holds the instructions known to be uniform after vectorization. 1754 /// The data is collected per VF. 1755 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1756 1757 /// Holds the instructions known to be scalar after vectorization. 1758 /// The data is collected per VF. 1759 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1760 1761 /// Holds the instructions (address computations) that are forced to be 1762 /// scalarized. 1763 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1764 1765 /// PHINodes of the reductions that should be expanded in-loop along with 1766 /// their associated chains of reduction operations, in program order from top 1767 /// (PHI) to bottom 1768 ReductionChainMap InLoopReductionChains; 1769 1770 /// A Map of inloop reduction operations and their immediate chain operand. 1771 /// FIXME: This can be removed once reductions can be costed correctly in 1772 /// vplan. This was added to allow quick lookup to the inloop operations, 1773 /// without having to loop through InLoopReductionChains. 1774 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1775 1776 /// Returns the expected difference in cost from scalarizing the expression 1777 /// feeding a predicated instruction \p PredInst. The instructions to 1778 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1779 /// non-negative return value implies the expression will be scalarized. 1780 /// Currently, only single-use chains are considered for scalarization. 1781 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1782 ElementCount VF); 1783 1784 /// Collect the instructions that are uniform after vectorization. An 1785 /// instruction is uniform if we represent it with a single scalar value in 1786 /// the vectorized loop corresponding to each vector iteration. Examples of 1787 /// uniform instructions include pointer operands of consecutive or 1788 /// interleaved memory accesses. Note that although uniformity implies an 1789 /// instruction will be scalar, the reverse is not true. In general, a 1790 /// scalarized instruction will be represented by VF scalar values in the 1791 /// vectorized loop, each corresponding to an iteration of the original 1792 /// scalar loop. 1793 void collectLoopUniforms(ElementCount VF); 1794 1795 /// Collect the instructions that are scalar after vectorization. An 1796 /// instruction is scalar if it is known to be uniform or will be scalarized 1797 /// during vectorization. Non-uniform scalarized instructions will be 1798 /// represented by VF values in the vectorized loop, each corresponding to an 1799 /// iteration of the original scalar loop. 1800 void collectLoopScalars(ElementCount VF); 1801 1802 /// Keeps cost model vectorization decision and cost for instructions. 1803 /// Right now it is used for memory instructions only. 1804 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1805 std::pair<InstWidening, InstructionCost>>; 1806 1807 DecisionList WideningDecisions; 1808 1809 /// Returns true if \p V is expected to be vectorized and it needs to be 1810 /// extracted. 1811 bool needsExtract(Value *V, ElementCount VF) const { 1812 Instruction *I = dyn_cast<Instruction>(V); 1813 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1814 TheLoop->isLoopInvariant(I)) 1815 return false; 1816 1817 // Assume we can vectorize V (and hence we need extraction) if the 1818 // scalars are not computed yet. This can happen, because it is called 1819 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1820 // the scalars are collected. That should be a safe assumption in most 1821 // cases, because we check if the operands have vectorizable types 1822 // beforehand in LoopVectorizationLegality. 1823 return Scalars.find(VF) == Scalars.end() || 1824 !isScalarAfterVectorization(I, VF); 1825 }; 1826 1827 /// Returns a range containing only operands needing to be extracted. 1828 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1829 ElementCount VF) const { 1830 return SmallVector<Value *, 4>(make_filter_range( 1831 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1832 } 1833 1834 /// Determines if we have the infrastructure to vectorize loop \p L and its 1835 /// epilogue, assuming the main loop is vectorized by \p VF. 1836 bool isCandidateForEpilogueVectorization(const Loop &L, 1837 const ElementCount VF) const; 1838 1839 /// Returns true if epilogue vectorization is considered profitable, and 1840 /// false otherwise. 1841 /// \p VF is the vectorization factor chosen for the original loop. 1842 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1843 1844 public: 1845 /// The loop that we evaluate. 1846 Loop *TheLoop; 1847 1848 /// Predicated scalar evolution analysis. 1849 PredicatedScalarEvolution &PSE; 1850 1851 /// Loop Info analysis. 1852 LoopInfo *LI; 1853 1854 /// Vectorization legality. 1855 LoopVectorizationLegality *Legal; 1856 1857 /// Vector target information. 1858 const TargetTransformInfo &TTI; 1859 1860 /// Target Library Info. 1861 const TargetLibraryInfo *TLI; 1862 1863 /// Demanded bits analysis. 1864 DemandedBits *DB; 1865 1866 /// Assumption cache. 1867 AssumptionCache *AC; 1868 1869 /// Interface to emit optimization remarks. 1870 OptimizationRemarkEmitter *ORE; 1871 1872 const Function *TheFunction; 1873 1874 /// Loop Vectorize Hint. 1875 const LoopVectorizeHints *Hints; 1876 1877 /// The interleave access information contains groups of interleaved accesses 1878 /// with the same stride and close to each other. 1879 InterleavedAccessInfo &InterleaveInfo; 1880 1881 /// Values to ignore in the cost model. 1882 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1883 1884 /// Values to ignore in the cost model when VF > 1. 1885 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1886 1887 /// Profitable vector factors. 1888 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1889 }; 1890 } // end namespace llvm 1891 1892 /// Helper struct to manage generating runtime checks for vectorization. 1893 /// 1894 /// The runtime checks are created up-front in temporary blocks to allow better 1895 /// estimating the cost and un-linked from the existing IR. After deciding to 1896 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1897 /// temporary blocks are completely removed. 1898 class GeneratedRTChecks { 1899 /// Basic block which contains the generated SCEV checks, if any. 1900 BasicBlock *SCEVCheckBlock = nullptr; 1901 1902 /// The value representing the result of the generated SCEV checks. If it is 1903 /// nullptr, either no SCEV checks have been generated or they have been used. 1904 Value *SCEVCheckCond = nullptr; 1905 1906 /// Basic block which contains the generated memory runtime checks, if any. 1907 BasicBlock *MemCheckBlock = nullptr; 1908 1909 /// The value representing the result of the generated memory runtime checks. 1910 /// If it is nullptr, either no memory runtime checks have been generated or 1911 /// they have been used. 1912 Instruction *MemRuntimeCheckCond = nullptr; 1913 1914 DominatorTree *DT; 1915 LoopInfo *LI; 1916 1917 SCEVExpander SCEVExp; 1918 SCEVExpander MemCheckExp; 1919 1920 public: 1921 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1922 const DataLayout &DL) 1923 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1924 MemCheckExp(SE, DL, "scev.check") {} 1925 1926 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1927 /// accurately estimate the cost of the runtime checks. The blocks are 1928 /// un-linked from the IR and is added back during vector code generation. If 1929 /// there is no vector code generation, the check blocks are removed 1930 /// completely. 1931 void Create(Loop *L, const LoopAccessInfo &LAI, 1932 const SCEVUnionPredicate &UnionPred) { 1933 1934 BasicBlock *LoopHeader = L->getHeader(); 1935 BasicBlock *Preheader = L->getLoopPreheader(); 1936 1937 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1938 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1939 // may be used by SCEVExpander. The blocks will be un-linked from their 1940 // predecessors and removed from LI & DT at the end of the function. 1941 if (!UnionPred.isAlwaysTrue()) { 1942 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1943 nullptr, "vector.scevcheck"); 1944 1945 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1946 &UnionPred, SCEVCheckBlock->getTerminator()); 1947 } 1948 1949 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1950 if (RtPtrChecking.Need) { 1951 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1952 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1953 "vector.memcheck"); 1954 1955 std::tie(std::ignore, MemRuntimeCheckCond) = 1956 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1957 RtPtrChecking.getChecks(), MemCheckExp); 1958 assert(MemRuntimeCheckCond && 1959 "no RT checks generated although RtPtrChecking " 1960 "claimed checks are required"); 1961 } 1962 1963 if (!MemCheckBlock && !SCEVCheckBlock) 1964 return; 1965 1966 // Unhook the temporary block with the checks, update various places 1967 // accordingly. 1968 if (SCEVCheckBlock) 1969 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1970 if (MemCheckBlock) 1971 MemCheckBlock->replaceAllUsesWith(Preheader); 1972 1973 if (SCEVCheckBlock) { 1974 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1975 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1976 Preheader->getTerminator()->eraseFromParent(); 1977 } 1978 if (MemCheckBlock) { 1979 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1980 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1981 Preheader->getTerminator()->eraseFromParent(); 1982 } 1983 1984 DT->changeImmediateDominator(LoopHeader, Preheader); 1985 if (MemCheckBlock) { 1986 DT->eraseNode(MemCheckBlock); 1987 LI->removeBlock(MemCheckBlock); 1988 } 1989 if (SCEVCheckBlock) { 1990 DT->eraseNode(SCEVCheckBlock); 1991 LI->removeBlock(SCEVCheckBlock); 1992 } 1993 } 1994 1995 /// Remove the created SCEV & memory runtime check blocks & instructions, if 1996 /// unused. 1997 ~GeneratedRTChecks() { 1998 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 1999 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2000 if (!SCEVCheckCond) 2001 SCEVCleaner.markResultUsed(); 2002 2003 if (!MemRuntimeCheckCond) 2004 MemCheckCleaner.markResultUsed(); 2005 2006 if (MemRuntimeCheckCond) { 2007 auto &SE = *MemCheckExp.getSE(); 2008 // Memory runtime check generation creates compares that use expanded 2009 // values. Remove them before running the SCEVExpanderCleaners. 2010 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2011 if (MemCheckExp.isInsertedInstruction(&I)) 2012 continue; 2013 SE.forgetValue(&I); 2014 SE.eraseValueFromMap(&I); 2015 I.eraseFromParent(); 2016 } 2017 } 2018 MemCheckCleaner.cleanup(); 2019 SCEVCleaner.cleanup(); 2020 2021 if (SCEVCheckCond) 2022 SCEVCheckBlock->eraseFromParent(); 2023 if (MemRuntimeCheckCond) 2024 MemCheckBlock->eraseFromParent(); 2025 } 2026 2027 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2028 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2029 /// depending on the generated condition. 2030 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2031 BasicBlock *LoopVectorPreHeader, 2032 BasicBlock *LoopExitBlock) { 2033 if (!SCEVCheckCond) 2034 return nullptr; 2035 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2036 if (C->isZero()) 2037 return nullptr; 2038 2039 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2040 2041 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2042 // Create new preheader for vector loop. 2043 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2044 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2045 2046 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2047 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2048 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2049 SCEVCheckBlock); 2050 2051 DT->addNewBlock(SCEVCheckBlock, Pred); 2052 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2053 2054 ReplaceInstWithInst( 2055 SCEVCheckBlock->getTerminator(), 2056 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2057 // Mark the check as used, to prevent it from being removed during cleanup. 2058 SCEVCheckCond = nullptr; 2059 return SCEVCheckBlock; 2060 } 2061 2062 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2063 /// the branches to branch to the vector preheader or \p Bypass, depending on 2064 /// the generated condition. 2065 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2066 BasicBlock *LoopVectorPreHeader) { 2067 // Check if we generated code that checks in runtime if arrays overlap. 2068 if (!MemRuntimeCheckCond) 2069 return nullptr; 2070 2071 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2072 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2073 MemCheckBlock); 2074 2075 DT->addNewBlock(MemCheckBlock, Pred); 2076 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2077 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2078 2079 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2080 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2081 2082 ReplaceInstWithInst( 2083 MemCheckBlock->getTerminator(), 2084 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2085 MemCheckBlock->getTerminator()->setDebugLoc( 2086 Pred->getTerminator()->getDebugLoc()); 2087 2088 // Mark the check as used, to prevent it from being removed during cleanup. 2089 MemRuntimeCheckCond = nullptr; 2090 return MemCheckBlock; 2091 } 2092 }; 2093 2094 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2095 // vectorization. The loop needs to be annotated with #pragma omp simd 2096 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2097 // vector length information is not provided, vectorization is not considered 2098 // explicit. Interleave hints are not allowed either. These limitations will be 2099 // relaxed in the future. 2100 // Please, note that we are currently forced to abuse the pragma 'clang 2101 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2102 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2103 // provides *explicit vectorization hints* (LV can bypass legal checks and 2104 // assume that vectorization is legal). However, both hints are implemented 2105 // using the same metadata (llvm.loop.vectorize, processed by 2106 // LoopVectorizeHints). This will be fixed in the future when the native IR 2107 // representation for pragma 'omp simd' is introduced. 2108 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2109 OptimizationRemarkEmitter *ORE) { 2110 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2111 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2112 2113 // Only outer loops with an explicit vectorization hint are supported. 2114 // Unannotated outer loops are ignored. 2115 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2116 return false; 2117 2118 Function *Fn = OuterLp->getHeader()->getParent(); 2119 if (!Hints.allowVectorization(Fn, OuterLp, 2120 true /*VectorizeOnlyWhenForced*/)) { 2121 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2122 return false; 2123 } 2124 2125 if (Hints.getInterleave() > 1) { 2126 // TODO: Interleave support is future work. 2127 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2128 "outer loops.\n"); 2129 Hints.emitRemarkWithHints(); 2130 return false; 2131 } 2132 2133 return true; 2134 } 2135 2136 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2137 OptimizationRemarkEmitter *ORE, 2138 SmallVectorImpl<Loop *> &V) { 2139 // Collect inner loops and outer loops without irreducible control flow. For 2140 // now, only collect outer loops that have explicit vectorization hints. If we 2141 // are stress testing the VPlan H-CFG construction, we collect the outermost 2142 // loop of every loop nest. 2143 if (L.isInnermost() || VPlanBuildStressTest || 2144 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2145 LoopBlocksRPO RPOT(&L); 2146 RPOT.perform(LI); 2147 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2148 V.push_back(&L); 2149 // TODO: Collect inner loops inside marked outer loops in case 2150 // vectorization fails for the outer loop. Do not invoke 2151 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2152 // already known to be reducible. We can use an inherited attribute for 2153 // that. 2154 return; 2155 } 2156 } 2157 for (Loop *InnerL : L) 2158 collectSupportedLoops(*InnerL, LI, ORE, V); 2159 } 2160 2161 namespace { 2162 2163 /// The LoopVectorize Pass. 2164 struct LoopVectorize : public FunctionPass { 2165 /// Pass identification, replacement for typeid 2166 static char ID; 2167 2168 LoopVectorizePass Impl; 2169 2170 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2171 bool VectorizeOnlyWhenForced = false) 2172 : FunctionPass(ID), 2173 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2174 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2175 } 2176 2177 bool runOnFunction(Function &F) override { 2178 if (skipFunction(F)) 2179 return false; 2180 2181 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2182 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2183 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2184 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2185 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2186 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2187 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2188 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2189 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2190 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2191 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2192 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2193 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2194 2195 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2196 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2197 2198 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2199 GetLAA, *ORE, PSI).MadeAnyChange; 2200 } 2201 2202 void getAnalysisUsage(AnalysisUsage &AU) const override { 2203 AU.addRequired<AssumptionCacheTracker>(); 2204 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2205 AU.addRequired<DominatorTreeWrapperPass>(); 2206 AU.addRequired<LoopInfoWrapperPass>(); 2207 AU.addRequired<ScalarEvolutionWrapperPass>(); 2208 AU.addRequired<TargetTransformInfoWrapperPass>(); 2209 AU.addRequired<AAResultsWrapperPass>(); 2210 AU.addRequired<LoopAccessLegacyAnalysis>(); 2211 AU.addRequired<DemandedBitsWrapperPass>(); 2212 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2213 AU.addRequired<InjectTLIMappingsLegacy>(); 2214 2215 // We currently do not preserve loopinfo/dominator analyses with outer loop 2216 // vectorization. Until this is addressed, mark these analyses as preserved 2217 // only for non-VPlan-native path. 2218 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2219 if (!EnableVPlanNativePath) { 2220 AU.addPreserved<LoopInfoWrapperPass>(); 2221 AU.addPreserved<DominatorTreeWrapperPass>(); 2222 } 2223 2224 AU.addPreserved<BasicAAWrapperPass>(); 2225 AU.addPreserved<GlobalsAAWrapperPass>(); 2226 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2227 } 2228 }; 2229 2230 } // end anonymous namespace 2231 2232 //===----------------------------------------------------------------------===// 2233 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2234 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2235 //===----------------------------------------------------------------------===// 2236 2237 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2238 // We need to place the broadcast of invariant variables outside the loop, 2239 // but only if it's proven safe to do so. Else, broadcast will be inside 2240 // vector loop body. 2241 Instruction *Instr = dyn_cast<Instruction>(V); 2242 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2243 (!Instr || 2244 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2245 // Place the code for broadcasting invariant variables in the new preheader. 2246 IRBuilder<>::InsertPointGuard Guard(Builder); 2247 if (SafeToHoist) 2248 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2249 2250 // Broadcast the scalar into all locations in the vector. 2251 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2252 2253 return Shuf; 2254 } 2255 2256 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2257 const InductionDescriptor &II, Value *Step, Value *Start, 2258 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2259 VPTransformState &State) { 2260 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2261 "Expected either an induction phi-node or a truncate of it!"); 2262 2263 // Construct the initial value of the vector IV in the vector loop preheader 2264 auto CurrIP = Builder.saveIP(); 2265 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2266 if (isa<TruncInst>(EntryVal)) { 2267 assert(Start->getType()->isIntegerTy() && 2268 "Truncation requires an integer type"); 2269 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2270 Step = Builder.CreateTrunc(Step, TruncType); 2271 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2272 } 2273 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2274 Value *SteppedStart = 2275 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2276 2277 // We create vector phi nodes for both integer and floating-point induction 2278 // variables. Here, we determine the kind of arithmetic we will perform. 2279 Instruction::BinaryOps AddOp; 2280 Instruction::BinaryOps MulOp; 2281 if (Step->getType()->isIntegerTy()) { 2282 AddOp = Instruction::Add; 2283 MulOp = Instruction::Mul; 2284 } else { 2285 AddOp = II.getInductionOpcode(); 2286 MulOp = Instruction::FMul; 2287 } 2288 2289 // Multiply the vectorization factor by the step using integer or 2290 // floating-point arithmetic as appropriate. 2291 Type *StepType = Step->getType(); 2292 if (Step->getType()->isFloatingPointTy()) 2293 StepType = IntegerType::get(StepType->getContext(), 2294 StepType->getScalarSizeInBits()); 2295 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2296 if (Step->getType()->isFloatingPointTy()) 2297 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2298 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2299 2300 // Create a vector splat to use in the induction update. 2301 // 2302 // FIXME: If the step is non-constant, we create the vector splat with 2303 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2304 // handle a constant vector splat. 2305 Value *SplatVF = isa<Constant>(Mul) 2306 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2307 : Builder.CreateVectorSplat(VF, Mul); 2308 Builder.restoreIP(CurrIP); 2309 2310 // We may need to add the step a number of times, depending on the unroll 2311 // factor. The last of those goes into the PHI. 2312 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2313 &*LoopVectorBody->getFirstInsertionPt()); 2314 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2315 Instruction *LastInduction = VecInd; 2316 for (unsigned Part = 0; Part < UF; ++Part) { 2317 State.set(Def, LastInduction, Part); 2318 2319 if (isa<TruncInst>(EntryVal)) 2320 addMetadata(LastInduction, EntryVal); 2321 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2322 State, Part); 2323 2324 LastInduction = cast<Instruction>( 2325 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2326 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2327 } 2328 2329 // Move the last step to the end of the latch block. This ensures consistent 2330 // placement of all induction updates. 2331 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2332 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2333 auto *ICmp = cast<Instruction>(Br->getCondition()); 2334 LastInduction->moveBefore(ICmp); 2335 LastInduction->setName("vec.ind.next"); 2336 2337 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2338 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2339 } 2340 2341 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2342 return Cost->isScalarAfterVectorization(I, VF) || 2343 Cost->isProfitableToScalarize(I, VF); 2344 } 2345 2346 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2347 if (shouldScalarizeInstruction(IV)) 2348 return true; 2349 auto isScalarInst = [&](User *U) -> bool { 2350 auto *I = cast<Instruction>(U); 2351 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2352 }; 2353 return llvm::any_of(IV->users(), isScalarInst); 2354 } 2355 2356 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2357 const InductionDescriptor &ID, const Instruction *EntryVal, 2358 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2359 unsigned Part, unsigned Lane) { 2360 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2361 "Expected either an induction phi-node or a truncate of it!"); 2362 2363 // This induction variable is not the phi from the original loop but the 2364 // newly-created IV based on the proof that casted Phi is equal to the 2365 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2366 // re-uses the same InductionDescriptor that original IV uses but we don't 2367 // have to do any recording in this case - that is done when original IV is 2368 // processed. 2369 if (isa<TruncInst>(EntryVal)) 2370 return; 2371 2372 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2373 if (Casts.empty()) 2374 return; 2375 // Only the first Cast instruction in the Casts vector is of interest. 2376 // The rest of the Casts (if exist) have no uses outside the 2377 // induction update chain itself. 2378 if (Lane < UINT_MAX) 2379 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2380 else 2381 State.set(CastDef, VectorLoopVal, Part); 2382 } 2383 2384 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2385 TruncInst *Trunc, VPValue *Def, 2386 VPValue *CastDef, 2387 VPTransformState &State) { 2388 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2389 "Primary induction variable must have an integer type"); 2390 2391 auto II = Legal->getInductionVars().find(IV); 2392 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2393 2394 auto ID = II->second; 2395 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2396 2397 // The value from the original loop to which we are mapping the new induction 2398 // variable. 2399 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2400 2401 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2402 2403 // Generate code for the induction step. Note that induction steps are 2404 // required to be loop-invariant 2405 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2406 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2407 "Induction step should be loop invariant"); 2408 if (PSE.getSE()->isSCEVable(IV->getType())) { 2409 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2410 return Exp.expandCodeFor(Step, Step->getType(), 2411 LoopVectorPreHeader->getTerminator()); 2412 } 2413 return cast<SCEVUnknown>(Step)->getValue(); 2414 }; 2415 2416 // The scalar value to broadcast. This is derived from the canonical 2417 // induction variable. If a truncation type is given, truncate the canonical 2418 // induction variable and step. Otherwise, derive these values from the 2419 // induction descriptor. 2420 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2421 Value *ScalarIV = Induction; 2422 if (IV != OldInduction) { 2423 ScalarIV = IV->getType()->isIntegerTy() 2424 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2425 : Builder.CreateCast(Instruction::SIToFP, Induction, 2426 IV->getType()); 2427 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2428 ScalarIV->setName("offset.idx"); 2429 } 2430 if (Trunc) { 2431 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2432 assert(Step->getType()->isIntegerTy() && 2433 "Truncation requires an integer step"); 2434 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2435 Step = Builder.CreateTrunc(Step, TruncType); 2436 } 2437 return ScalarIV; 2438 }; 2439 2440 // Create the vector values from the scalar IV, in the absence of creating a 2441 // vector IV. 2442 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2443 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2444 for (unsigned Part = 0; Part < UF; ++Part) { 2445 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2446 Value *EntryPart = 2447 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2448 ID.getInductionOpcode()); 2449 State.set(Def, EntryPart, Part); 2450 if (Trunc) 2451 addMetadata(EntryPart, Trunc); 2452 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2453 State, Part); 2454 } 2455 }; 2456 2457 // Fast-math-flags propagate from the original induction instruction. 2458 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2459 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2460 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2461 2462 // Now do the actual transformations, and start with creating the step value. 2463 Value *Step = CreateStepValue(ID.getStep()); 2464 if (VF.isZero() || VF.isScalar()) { 2465 Value *ScalarIV = CreateScalarIV(Step); 2466 CreateSplatIV(ScalarIV, Step); 2467 return; 2468 } 2469 2470 // Determine if we want a scalar version of the induction variable. This is 2471 // true if the induction variable itself is not widened, or if it has at 2472 // least one user in the loop that is not widened. 2473 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2474 if (!NeedsScalarIV) { 2475 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2476 State); 2477 return; 2478 } 2479 2480 // Try to create a new independent vector induction variable. If we can't 2481 // create the phi node, we will splat the scalar induction variable in each 2482 // loop iteration. 2483 if (!shouldScalarizeInstruction(EntryVal)) { 2484 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2485 State); 2486 Value *ScalarIV = CreateScalarIV(Step); 2487 // Create scalar steps that can be used by instructions we will later 2488 // scalarize. Note that the addition of the scalar steps will not increase 2489 // the number of instructions in the loop in the common case prior to 2490 // InstCombine. We will be trading one vector extract for each scalar step. 2491 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2492 return; 2493 } 2494 2495 // All IV users are scalar instructions, so only emit a scalar IV, not a 2496 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2497 // predicate used by the masked loads/stores. 2498 Value *ScalarIV = CreateScalarIV(Step); 2499 if (!Cost->isScalarEpilogueAllowed()) 2500 CreateSplatIV(ScalarIV, Step); 2501 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2502 } 2503 2504 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2505 Instruction::BinaryOps BinOp) { 2506 // Create and check the types. 2507 auto *ValVTy = cast<VectorType>(Val->getType()); 2508 ElementCount VLen = ValVTy->getElementCount(); 2509 2510 Type *STy = Val->getType()->getScalarType(); 2511 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2512 "Induction Step must be an integer or FP"); 2513 assert(Step->getType() == STy && "Step has wrong type"); 2514 2515 SmallVector<Constant *, 8> Indices; 2516 2517 // Create a vector of consecutive numbers from zero to VF. 2518 VectorType *InitVecValVTy = ValVTy; 2519 Type *InitVecValSTy = STy; 2520 if (STy->isFloatingPointTy()) { 2521 InitVecValSTy = 2522 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2523 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2524 } 2525 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2526 2527 // Add on StartIdx 2528 Value *StartIdxSplat = Builder.CreateVectorSplat( 2529 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2530 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2531 2532 if (STy->isIntegerTy()) { 2533 Step = Builder.CreateVectorSplat(VLen, Step); 2534 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2535 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2536 // which can be found from the original scalar operations. 2537 Step = Builder.CreateMul(InitVec, Step); 2538 return Builder.CreateAdd(Val, Step, "induction"); 2539 } 2540 2541 // Floating point induction. 2542 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2543 "Binary Opcode should be specified for FP induction"); 2544 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2545 Step = Builder.CreateVectorSplat(VLen, Step); 2546 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2547 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2548 } 2549 2550 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2551 Instruction *EntryVal, 2552 const InductionDescriptor &ID, 2553 VPValue *Def, VPValue *CastDef, 2554 VPTransformState &State) { 2555 // We shouldn't have to build scalar steps if we aren't vectorizing. 2556 assert(VF.isVector() && "VF should be greater than one"); 2557 // Get the value type and ensure it and the step have the same integer type. 2558 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2559 assert(ScalarIVTy == Step->getType() && 2560 "Val and Step should have the same type"); 2561 2562 // We build scalar steps for both integer and floating-point induction 2563 // variables. Here, we determine the kind of arithmetic we will perform. 2564 Instruction::BinaryOps AddOp; 2565 Instruction::BinaryOps MulOp; 2566 if (ScalarIVTy->isIntegerTy()) { 2567 AddOp = Instruction::Add; 2568 MulOp = Instruction::Mul; 2569 } else { 2570 AddOp = ID.getInductionOpcode(); 2571 MulOp = Instruction::FMul; 2572 } 2573 2574 // Determine the number of scalars we need to generate for each unroll 2575 // iteration. If EntryVal is uniform, we only need to generate the first 2576 // lane. Otherwise, we generate all VF values. 2577 bool IsUniform = 2578 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2579 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2580 // Compute the scalar steps and save the results in State. 2581 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2582 ScalarIVTy->getScalarSizeInBits()); 2583 Type *VecIVTy = nullptr; 2584 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2585 if (!IsUniform && VF.isScalable()) { 2586 VecIVTy = VectorType::get(ScalarIVTy, VF); 2587 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2588 SplatStep = Builder.CreateVectorSplat(VF, Step); 2589 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2590 } 2591 2592 for (unsigned Part = 0; Part < UF; ++Part) { 2593 Value *StartIdx0 = 2594 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2595 2596 if (!IsUniform && VF.isScalable()) { 2597 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2598 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2599 if (ScalarIVTy->isFloatingPointTy()) 2600 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2601 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2602 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2603 State.set(Def, Add, Part); 2604 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2605 Part); 2606 // It's useful to record the lane values too for the known minimum number 2607 // of elements so we do those below. This improves the code quality when 2608 // trying to extract the first element, for example. 2609 } 2610 2611 if (ScalarIVTy->isFloatingPointTy()) 2612 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2613 2614 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2615 Value *StartIdx = Builder.CreateBinOp( 2616 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2617 // The step returned by `createStepForVF` is a runtime-evaluated value 2618 // when VF is scalable. Otherwise, it should be folded into a Constant. 2619 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2620 "Expected StartIdx to be folded to a constant when VF is not " 2621 "scalable"); 2622 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2623 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2624 State.set(Def, Add, VPIteration(Part, Lane)); 2625 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2626 Part, Lane); 2627 } 2628 } 2629 } 2630 2631 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2632 const VPIteration &Instance, 2633 VPTransformState &State) { 2634 Value *ScalarInst = State.get(Def, Instance); 2635 Value *VectorValue = State.get(Def, Instance.Part); 2636 VectorValue = Builder.CreateInsertElement( 2637 VectorValue, ScalarInst, 2638 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2639 State.set(Def, VectorValue, Instance.Part); 2640 } 2641 2642 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2643 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2644 return Builder.CreateVectorReverse(Vec, "reverse"); 2645 } 2646 2647 // Return whether we allow using masked interleave-groups (for dealing with 2648 // strided loads/stores that reside in predicated blocks, or for dealing 2649 // with gaps). 2650 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2651 // If an override option has been passed in for interleaved accesses, use it. 2652 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2653 return EnableMaskedInterleavedMemAccesses; 2654 2655 return TTI.enableMaskedInterleavedAccessVectorization(); 2656 } 2657 2658 // Try to vectorize the interleave group that \p Instr belongs to. 2659 // 2660 // E.g. Translate following interleaved load group (factor = 3): 2661 // for (i = 0; i < N; i+=3) { 2662 // R = Pic[i]; // Member of index 0 2663 // G = Pic[i+1]; // Member of index 1 2664 // B = Pic[i+2]; // Member of index 2 2665 // ... // do something to R, G, B 2666 // } 2667 // To: 2668 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2669 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2670 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2671 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2672 // 2673 // Or translate following interleaved store group (factor = 3): 2674 // for (i = 0; i < N; i+=3) { 2675 // ... do something to R, G, B 2676 // Pic[i] = R; // Member of index 0 2677 // Pic[i+1] = G; // Member of index 1 2678 // Pic[i+2] = B; // Member of index 2 2679 // } 2680 // To: 2681 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2682 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2683 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2684 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2685 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2686 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2687 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2688 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2689 VPValue *BlockInMask) { 2690 Instruction *Instr = Group->getInsertPos(); 2691 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2692 2693 // Prepare for the vector type of the interleaved load/store. 2694 Type *ScalarTy = getMemInstValueType(Instr); 2695 unsigned InterleaveFactor = Group->getFactor(); 2696 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2697 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2698 2699 // Prepare for the new pointers. 2700 SmallVector<Value *, 2> AddrParts; 2701 unsigned Index = Group->getIndex(Instr); 2702 2703 // TODO: extend the masked interleaved-group support to reversed access. 2704 assert((!BlockInMask || !Group->isReverse()) && 2705 "Reversed masked interleave-group not supported."); 2706 2707 // If the group is reverse, adjust the index to refer to the last vector lane 2708 // instead of the first. We adjust the index from the first vector lane, 2709 // rather than directly getting the pointer for lane VF - 1, because the 2710 // pointer operand of the interleaved access is supposed to be uniform. For 2711 // uniform instructions, we're only required to generate a value for the 2712 // first vector lane in each unroll iteration. 2713 if (Group->isReverse()) 2714 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2715 2716 for (unsigned Part = 0; Part < UF; Part++) { 2717 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2718 setDebugLocFromInst(Builder, AddrPart); 2719 2720 // Notice current instruction could be any index. Need to adjust the address 2721 // to the member of index 0. 2722 // 2723 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2724 // b = A[i]; // Member of index 0 2725 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2726 // 2727 // E.g. A[i+1] = a; // Member of index 1 2728 // A[i] = b; // Member of index 0 2729 // A[i+2] = c; // Member of index 2 (Current instruction) 2730 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2731 2732 bool InBounds = false; 2733 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2734 InBounds = gep->isInBounds(); 2735 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2736 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2737 2738 // Cast to the vector pointer type. 2739 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2740 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2741 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2742 } 2743 2744 setDebugLocFromInst(Builder, Instr); 2745 Value *PoisonVec = PoisonValue::get(VecTy); 2746 2747 Value *MaskForGaps = nullptr; 2748 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2749 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2750 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2751 } 2752 2753 // Vectorize the interleaved load group. 2754 if (isa<LoadInst>(Instr)) { 2755 // For each unroll part, create a wide load for the group. 2756 SmallVector<Value *, 2> NewLoads; 2757 for (unsigned Part = 0; Part < UF; Part++) { 2758 Instruction *NewLoad; 2759 if (BlockInMask || MaskForGaps) { 2760 assert(useMaskedInterleavedAccesses(*TTI) && 2761 "masked interleaved groups are not allowed."); 2762 Value *GroupMask = MaskForGaps; 2763 if (BlockInMask) { 2764 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2765 Value *ShuffledMask = Builder.CreateShuffleVector( 2766 BlockInMaskPart, 2767 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2768 "interleaved.mask"); 2769 GroupMask = MaskForGaps 2770 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2771 MaskForGaps) 2772 : ShuffledMask; 2773 } 2774 NewLoad = 2775 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2776 GroupMask, PoisonVec, "wide.masked.vec"); 2777 } 2778 else 2779 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2780 Group->getAlign(), "wide.vec"); 2781 Group->addMetadata(NewLoad); 2782 NewLoads.push_back(NewLoad); 2783 } 2784 2785 // For each member in the group, shuffle out the appropriate data from the 2786 // wide loads. 2787 unsigned J = 0; 2788 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2789 Instruction *Member = Group->getMember(I); 2790 2791 // Skip the gaps in the group. 2792 if (!Member) 2793 continue; 2794 2795 auto StrideMask = 2796 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2797 for (unsigned Part = 0; Part < UF; Part++) { 2798 Value *StridedVec = Builder.CreateShuffleVector( 2799 NewLoads[Part], StrideMask, "strided.vec"); 2800 2801 // If this member has different type, cast the result type. 2802 if (Member->getType() != ScalarTy) { 2803 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2804 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2805 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2806 } 2807 2808 if (Group->isReverse()) 2809 StridedVec = reverseVector(StridedVec); 2810 2811 State.set(VPDefs[J], StridedVec, Part); 2812 } 2813 ++J; 2814 } 2815 return; 2816 } 2817 2818 // The sub vector type for current instruction. 2819 auto *SubVT = VectorType::get(ScalarTy, VF); 2820 2821 // Vectorize the interleaved store group. 2822 for (unsigned Part = 0; Part < UF; Part++) { 2823 // Collect the stored vector from each member. 2824 SmallVector<Value *, 4> StoredVecs; 2825 for (unsigned i = 0; i < InterleaveFactor; i++) { 2826 // Interleaved store group doesn't allow a gap, so each index has a member 2827 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2828 2829 Value *StoredVec = State.get(StoredValues[i], Part); 2830 2831 if (Group->isReverse()) 2832 StoredVec = reverseVector(StoredVec); 2833 2834 // If this member has different type, cast it to a unified type. 2835 2836 if (StoredVec->getType() != SubVT) 2837 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2838 2839 StoredVecs.push_back(StoredVec); 2840 } 2841 2842 // Concatenate all vectors into a wide vector. 2843 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2844 2845 // Interleave the elements in the wide vector. 2846 Value *IVec = Builder.CreateShuffleVector( 2847 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2848 "interleaved.vec"); 2849 2850 Instruction *NewStoreInstr; 2851 if (BlockInMask) { 2852 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2853 Value *ShuffledMask = Builder.CreateShuffleVector( 2854 BlockInMaskPart, 2855 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2856 "interleaved.mask"); 2857 NewStoreInstr = Builder.CreateMaskedStore( 2858 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2859 } 2860 else 2861 NewStoreInstr = 2862 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2863 2864 Group->addMetadata(NewStoreInstr); 2865 } 2866 } 2867 2868 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2869 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2870 VPValue *StoredValue, VPValue *BlockInMask) { 2871 // Attempt to issue a wide load. 2872 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2873 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2874 2875 assert((LI || SI) && "Invalid Load/Store instruction"); 2876 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2877 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2878 2879 LoopVectorizationCostModel::InstWidening Decision = 2880 Cost->getWideningDecision(Instr, VF); 2881 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2882 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2883 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2884 "CM decision is not to widen the memory instruction"); 2885 2886 Type *ScalarDataTy = getMemInstValueType(Instr); 2887 2888 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2889 const Align Alignment = getLoadStoreAlignment(Instr); 2890 2891 // Determine if the pointer operand of the access is either consecutive or 2892 // reverse consecutive. 2893 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2894 bool ConsecutiveStride = 2895 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2896 bool CreateGatherScatter = 2897 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2898 2899 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2900 // gather/scatter. Otherwise Decision should have been to Scalarize. 2901 assert((ConsecutiveStride || CreateGatherScatter) && 2902 "The instruction should be scalarized"); 2903 (void)ConsecutiveStride; 2904 2905 VectorParts BlockInMaskParts(UF); 2906 bool isMaskRequired = BlockInMask; 2907 if (isMaskRequired) 2908 for (unsigned Part = 0; Part < UF; ++Part) 2909 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2910 2911 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2912 // Calculate the pointer for the specific unroll-part. 2913 GetElementPtrInst *PartPtr = nullptr; 2914 2915 bool InBounds = false; 2916 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2917 InBounds = gep->isInBounds(); 2918 if (Reverse) { 2919 // If the address is consecutive but reversed, then the 2920 // wide store needs to start at the last vector element. 2921 // RunTimeVF = VScale * VF.getKnownMinValue() 2922 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2923 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2924 // NumElt = -Part * RunTimeVF 2925 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2926 // LastLane = 1 - RunTimeVF 2927 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2928 PartPtr = 2929 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2930 PartPtr->setIsInBounds(InBounds); 2931 PartPtr = cast<GetElementPtrInst>( 2932 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2933 PartPtr->setIsInBounds(InBounds); 2934 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2935 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2936 } else { 2937 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2938 PartPtr = cast<GetElementPtrInst>( 2939 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2940 PartPtr->setIsInBounds(InBounds); 2941 } 2942 2943 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2944 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2945 }; 2946 2947 // Handle Stores: 2948 if (SI) { 2949 setDebugLocFromInst(Builder, SI); 2950 2951 for (unsigned Part = 0; Part < UF; ++Part) { 2952 Instruction *NewSI = nullptr; 2953 Value *StoredVal = State.get(StoredValue, Part); 2954 if (CreateGatherScatter) { 2955 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2956 Value *VectorGep = State.get(Addr, Part); 2957 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2958 MaskPart); 2959 } else { 2960 if (Reverse) { 2961 // If we store to reverse consecutive memory locations, then we need 2962 // to reverse the order of elements in the stored value. 2963 StoredVal = reverseVector(StoredVal); 2964 // We don't want to update the value in the map as it might be used in 2965 // another expression. So don't call resetVectorValue(StoredVal). 2966 } 2967 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2968 if (isMaskRequired) 2969 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2970 BlockInMaskParts[Part]); 2971 else 2972 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2973 } 2974 addMetadata(NewSI, SI); 2975 } 2976 return; 2977 } 2978 2979 // Handle loads. 2980 assert(LI && "Must have a load instruction"); 2981 setDebugLocFromInst(Builder, LI); 2982 for (unsigned Part = 0; Part < UF; ++Part) { 2983 Value *NewLI; 2984 if (CreateGatherScatter) { 2985 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2986 Value *VectorGep = State.get(Addr, Part); 2987 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2988 nullptr, "wide.masked.gather"); 2989 addMetadata(NewLI, LI); 2990 } else { 2991 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2992 if (isMaskRequired) 2993 NewLI = Builder.CreateMaskedLoad( 2994 VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy), 2995 "wide.masked.load"); 2996 else 2997 NewLI = 2998 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2999 3000 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3001 addMetadata(NewLI, LI); 3002 if (Reverse) 3003 NewLI = reverseVector(NewLI); 3004 } 3005 3006 State.set(Def, NewLI, Part); 3007 } 3008 } 3009 3010 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3011 VPUser &User, 3012 const VPIteration &Instance, 3013 bool IfPredicateInstr, 3014 VPTransformState &State) { 3015 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3016 3017 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3018 // the first lane and part. 3019 if (isa<NoAliasScopeDeclInst>(Instr)) 3020 if (!Instance.isFirstIteration()) 3021 return; 3022 3023 setDebugLocFromInst(Builder, Instr); 3024 3025 // Does this instruction return a value ? 3026 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3027 3028 Instruction *Cloned = Instr->clone(); 3029 if (!IsVoidRetTy) 3030 Cloned->setName(Instr->getName() + ".cloned"); 3031 3032 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3033 Builder.GetInsertPoint()); 3034 // Replace the operands of the cloned instructions with their scalar 3035 // equivalents in the new loop. 3036 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3037 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3038 auto InputInstance = Instance; 3039 if (!Operand || !OrigLoop->contains(Operand) || 3040 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3041 InputInstance.Lane = VPLane::getFirstLane(); 3042 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3043 Cloned->setOperand(op, NewOp); 3044 } 3045 addNewMetadata(Cloned, Instr); 3046 3047 // Place the cloned scalar in the new loop. 3048 Builder.Insert(Cloned); 3049 3050 State.set(Def, Cloned, Instance); 3051 3052 // If we just cloned a new assumption, add it the assumption cache. 3053 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3054 AC->registerAssumption(II); 3055 3056 // End if-block. 3057 if (IfPredicateInstr) 3058 PredicatedInstructions.push_back(Cloned); 3059 } 3060 3061 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3062 Value *End, Value *Step, 3063 Instruction *DL) { 3064 BasicBlock *Header = L->getHeader(); 3065 BasicBlock *Latch = L->getLoopLatch(); 3066 // As we're just creating this loop, it's possible no latch exists 3067 // yet. If so, use the header as this will be a single block loop. 3068 if (!Latch) 3069 Latch = Header; 3070 3071 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3072 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3073 setDebugLocFromInst(Builder, OldInst); 3074 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3075 3076 Builder.SetInsertPoint(Latch->getTerminator()); 3077 setDebugLocFromInst(Builder, OldInst); 3078 3079 // Create i+1 and fill the PHINode. 3080 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3081 Induction->addIncoming(Start, L->getLoopPreheader()); 3082 Induction->addIncoming(Next, Latch); 3083 // Create the compare. 3084 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3085 Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3086 3087 // Now we have two terminators. Remove the old one from the block. 3088 Latch->getTerminator()->eraseFromParent(); 3089 3090 return Induction; 3091 } 3092 3093 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3094 if (TripCount) 3095 return TripCount; 3096 3097 assert(L && "Create Trip Count for null loop."); 3098 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3099 // Find the loop boundaries. 3100 ScalarEvolution *SE = PSE.getSE(); 3101 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3102 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3103 "Invalid loop count"); 3104 3105 Type *IdxTy = Legal->getWidestInductionType(); 3106 assert(IdxTy && "No type for induction"); 3107 3108 // The exit count might have the type of i64 while the phi is i32. This can 3109 // happen if we have an induction variable that is sign extended before the 3110 // compare. The only way that we get a backedge taken count is that the 3111 // induction variable was signed and as such will not overflow. In such a case 3112 // truncation is legal. 3113 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3114 IdxTy->getPrimitiveSizeInBits()) 3115 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3116 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3117 3118 // Get the total trip count from the count by adding 1. 3119 const SCEV *ExitCount = SE->getAddExpr( 3120 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3121 3122 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3123 3124 // Expand the trip count and place the new instructions in the preheader. 3125 // Notice that the pre-header does not change, only the loop body. 3126 SCEVExpander Exp(*SE, DL, "induction"); 3127 3128 // Count holds the overall loop count (N). 3129 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3130 L->getLoopPreheader()->getTerminator()); 3131 3132 if (TripCount->getType()->isPointerTy()) 3133 TripCount = 3134 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3135 L->getLoopPreheader()->getTerminator()); 3136 3137 return TripCount; 3138 } 3139 3140 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3141 if (VectorTripCount) 3142 return VectorTripCount; 3143 3144 Value *TC = getOrCreateTripCount(L); 3145 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3146 3147 Type *Ty = TC->getType(); 3148 // This is where we can make the step a runtime constant. 3149 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3150 3151 // If the tail is to be folded by masking, round the number of iterations N 3152 // up to a multiple of Step instead of rounding down. This is done by first 3153 // adding Step-1 and then rounding down. Note that it's ok if this addition 3154 // overflows: the vector induction variable will eventually wrap to zero given 3155 // that it starts at zero and its Step is a power of two; the loop will then 3156 // exit, with the last early-exit vector comparison also producing all-true. 3157 if (Cost->foldTailByMasking()) { 3158 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3159 "VF*UF must be a power of 2 when folding tail by masking"); 3160 assert(!VF.isScalable() && 3161 "Tail folding not yet supported for scalable vectors"); 3162 TC = Builder.CreateAdd( 3163 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3164 } 3165 3166 // Now we need to generate the expression for the part of the loop that the 3167 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3168 // iterations are not required for correctness, or N - Step, otherwise. Step 3169 // is equal to the vectorization factor (number of SIMD elements) times the 3170 // unroll factor (number of SIMD instructions). 3171 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3172 3173 // There are two cases where we need to ensure (at least) the last iteration 3174 // runs in the scalar remainder loop. Thus, if the step evenly divides 3175 // the trip count, we set the remainder to be equal to the step. If the step 3176 // does not evenly divide the trip count, no adjustment is necessary since 3177 // there will already be scalar iterations. Note that the minimum iterations 3178 // check ensures that N >= Step. The cases are: 3179 // 1) If there is a non-reversed interleaved group that may speculatively 3180 // access memory out-of-bounds. 3181 // 2) If any instruction may follow a conditionally taken exit. That is, if 3182 // the loop contains multiple exiting blocks, or a single exiting block 3183 // which is not the latch. 3184 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 3185 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3186 R = Builder.CreateSelect(IsZero, Step, R); 3187 } 3188 3189 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3190 3191 return VectorTripCount; 3192 } 3193 3194 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3195 const DataLayout &DL) { 3196 // Verify that V is a vector type with same number of elements as DstVTy. 3197 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3198 unsigned VF = DstFVTy->getNumElements(); 3199 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3200 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3201 Type *SrcElemTy = SrcVecTy->getElementType(); 3202 Type *DstElemTy = DstFVTy->getElementType(); 3203 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3204 "Vector elements must have same size"); 3205 3206 // Do a direct cast if element types are castable. 3207 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3208 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3209 } 3210 // V cannot be directly casted to desired vector type. 3211 // May happen when V is a floating point vector but DstVTy is a vector of 3212 // pointers or vice-versa. Handle this using a two-step bitcast using an 3213 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3214 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3215 "Only one type should be a pointer type"); 3216 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3217 "Only one type should be a floating point type"); 3218 Type *IntTy = 3219 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3220 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3221 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3222 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3223 } 3224 3225 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3226 BasicBlock *Bypass) { 3227 Value *Count = getOrCreateTripCount(L); 3228 // Reuse existing vector loop preheader for TC checks. 3229 // Note that new preheader block is generated for vector loop. 3230 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3231 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3232 3233 // Generate code to check if the loop's trip count is less than VF * UF, or 3234 // equal to it in case a scalar epilogue is required; this implies that the 3235 // vector trip count is zero. This check also covers the case where adding one 3236 // to the backedge-taken count overflowed leading to an incorrect trip count 3237 // of zero. In this case we will also jump to the scalar loop. 3238 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3239 : ICmpInst::ICMP_ULT; 3240 3241 // If tail is to be folded, vector loop takes care of all iterations. 3242 Value *CheckMinIters = Builder.getFalse(); 3243 if (!Cost->foldTailByMasking()) { 3244 Value *Step = 3245 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3246 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3247 } 3248 // Create new preheader for vector loop. 3249 LoopVectorPreHeader = 3250 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3251 "vector.ph"); 3252 3253 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3254 DT->getNode(Bypass)->getIDom()) && 3255 "TC check is expected to dominate Bypass"); 3256 3257 // Update dominator for Bypass & LoopExit. 3258 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3259 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3260 3261 ReplaceInstWithInst( 3262 TCCheckBlock->getTerminator(), 3263 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3264 LoopBypassBlocks.push_back(TCCheckBlock); 3265 } 3266 3267 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3268 3269 BasicBlock *const SCEVCheckBlock = 3270 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3271 if (!SCEVCheckBlock) 3272 return nullptr; 3273 3274 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3275 (OptForSizeBasedOnProfile && 3276 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3277 "Cannot SCEV check stride or overflow when optimizing for size"); 3278 3279 3280 // Update dominator only if this is first RT check. 3281 if (LoopBypassBlocks.empty()) { 3282 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3283 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3284 } 3285 3286 LoopBypassBlocks.push_back(SCEVCheckBlock); 3287 AddedSafetyChecks = true; 3288 return SCEVCheckBlock; 3289 } 3290 3291 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3292 BasicBlock *Bypass) { 3293 // VPlan-native path does not do any analysis for runtime checks currently. 3294 if (EnableVPlanNativePath) 3295 return nullptr; 3296 3297 BasicBlock *const MemCheckBlock = 3298 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3299 3300 // Check if we generated code that checks in runtime if arrays overlap. We put 3301 // the checks into a separate block to make the more common case of few 3302 // elements faster. 3303 if (!MemCheckBlock) 3304 return nullptr; 3305 3306 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3307 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3308 "Cannot emit memory checks when optimizing for size, unless forced " 3309 "to vectorize."); 3310 ORE->emit([&]() { 3311 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3312 L->getStartLoc(), L->getHeader()) 3313 << "Code-size may be reduced by not forcing " 3314 "vectorization, or by source-code modifications " 3315 "eliminating the need for runtime checks " 3316 "(e.g., adding 'restrict')."; 3317 }); 3318 } 3319 3320 LoopBypassBlocks.push_back(MemCheckBlock); 3321 3322 AddedSafetyChecks = true; 3323 3324 // We currently don't use LoopVersioning for the actual loop cloning but we 3325 // still use it to add the noalias metadata. 3326 LVer = std::make_unique<LoopVersioning>( 3327 *Legal->getLAI(), 3328 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3329 DT, PSE.getSE()); 3330 LVer->prepareNoAliasMetadata(); 3331 return MemCheckBlock; 3332 } 3333 3334 Value *InnerLoopVectorizer::emitTransformedIndex( 3335 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3336 const InductionDescriptor &ID) const { 3337 3338 SCEVExpander Exp(*SE, DL, "induction"); 3339 auto Step = ID.getStep(); 3340 auto StartValue = ID.getStartValue(); 3341 assert(Index->getType()->getScalarType() == Step->getType() && 3342 "Index scalar type does not match StepValue type"); 3343 3344 // Note: the IR at this point is broken. We cannot use SE to create any new 3345 // SCEV and then expand it, hoping that SCEV's simplification will give us 3346 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3347 // lead to various SCEV crashes. So all we can do is to use builder and rely 3348 // on InstCombine for future simplifications. Here we handle some trivial 3349 // cases only. 3350 auto CreateAdd = [&B](Value *X, Value *Y) { 3351 assert(X->getType() == Y->getType() && "Types don't match!"); 3352 if (auto *CX = dyn_cast<ConstantInt>(X)) 3353 if (CX->isZero()) 3354 return Y; 3355 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3356 if (CY->isZero()) 3357 return X; 3358 return B.CreateAdd(X, Y); 3359 }; 3360 3361 // We allow X to be a vector type, in which case Y will potentially be 3362 // splatted into a vector with the same element count. 3363 auto CreateMul = [&B](Value *X, Value *Y) { 3364 assert(X->getType()->getScalarType() == Y->getType() && 3365 "Types don't match!"); 3366 if (auto *CX = dyn_cast<ConstantInt>(X)) 3367 if (CX->isOne()) 3368 return Y; 3369 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3370 if (CY->isOne()) 3371 return X; 3372 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3373 if (XVTy && !isa<VectorType>(Y->getType())) 3374 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3375 return B.CreateMul(X, Y); 3376 }; 3377 3378 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3379 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3380 // the DomTree is not kept up-to-date for additional blocks generated in the 3381 // vector loop. By using the header as insertion point, we guarantee that the 3382 // expanded instructions dominate all their uses. 3383 auto GetInsertPoint = [this, &B]() { 3384 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3385 if (InsertBB != LoopVectorBody && 3386 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3387 return LoopVectorBody->getTerminator(); 3388 return &*B.GetInsertPoint(); 3389 }; 3390 3391 switch (ID.getKind()) { 3392 case InductionDescriptor::IK_IntInduction: { 3393 assert(!isa<VectorType>(Index->getType()) && 3394 "Vector indices not supported for integer inductions yet"); 3395 assert(Index->getType() == StartValue->getType() && 3396 "Index type does not match StartValue type"); 3397 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3398 return B.CreateSub(StartValue, Index); 3399 auto *Offset = CreateMul( 3400 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3401 return CreateAdd(StartValue, Offset); 3402 } 3403 case InductionDescriptor::IK_PtrInduction: { 3404 assert(isa<SCEVConstant>(Step) && 3405 "Expected constant step for pointer induction"); 3406 return B.CreateGEP( 3407 StartValue->getType()->getPointerElementType(), StartValue, 3408 CreateMul(Index, 3409 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3410 GetInsertPoint()))); 3411 } 3412 case InductionDescriptor::IK_FpInduction: { 3413 assert(!isa<VectorType>(Index->getType()) && 3414 "Vector indices not supported for FP inductions yet"); 3415 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3416 auto InductionBinOp = ID.getInductionBinOp(); 3417 assert(InductionBinOp && 3418 (InductionBinOp->getOpcode() == Instruction::FAdd || 3419 InductionBinOp->getOpcode() == Instruction::FSub) && 3420 "Original bin op should be defined for FP induction"); 3421 3422 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3423 Value *MulExp = B.CreateFMul(StepValue, Index); 3424 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3425 "induction"); 3426 } 3427 case InductionDescriptor::IK_NoInduction: 3428 return nullptr; 3429 } 3430 llvm_unreachable("invalid enum"); 3431 } 3432 3433 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3434 LoopScalarBody = OrigLoop->getHeader(); 3435 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3436 LoopExitBlock = OrigLoop->getUniqueExitBlock(); 3437 assert(LoopExitBlock && "Must have an exit block"); 3438 assert(LoopVectorPreHeader && "Invalid loop structure"); 3439 3440 LoopMiddleBlock = 3441 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3442 LI, nullptr, Twine(Prefix) + "middle.block"); 3443 LoopScalarPreHeader = 3444 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3445 nullptr, Twine(Prefix) + "scalar.ph"); 3446 3447 // Set up branch from middle block to the exit and scalar preheader blocks. 3448 // completeLoopSkeleton will update the condition to use an iteration check, 3449 // if required to decide whether to execute the remainder. 3450 BranchInst *BrInst = 3451 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue()); 3452 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3453 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3454 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3455 3456 // We intentionally don't let SplitBlock to update LoopInfo since 3457 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3458 // LoopVectorBody is explicitly added to the correct place few lines later. 3459 LoopVectorBody = 3460 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3461 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3462 3463 // Update dominator for loop exit. 3464 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3465 3466 // Create and register the new vector loop. 3467 Loop *Lp = LI->AllocateLoop(); 3468 Loop *ParentLoop = OrigLoop->getParentLoop(); 3469 3470 // Insert the new loop into the loop nest and register the new basic blocks 3471 // before calling any utilities such as SCEV that require valid LoopInfo. 3472 if (ParentLoop) { 3473 ParentLoop->addChildLoop(Lp); 3474 } else { 3475 LI->addTopLevelLoop(Lp); 3476 } 3477 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3478 return Lp; 3479 } 3480 3481 void InnerLoopVectorizer::createInductionResumeValues( 3482 Loop *L, Value *VectorTripCount, 3483 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3484 assert(VectorTripCount && L && "Expected valid arguments"); 3485 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3486 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3487 "Inconsistent information about additional bypass."); 3488 // We are going to resume the execution of the scalar loop. 3489 // Go over all of the induction variables that we found and fix the 3490 // PHIs that are left in the scalar version of the loop. 3491 // The starting values of PHI nodes depend on the counter of the last 3492 // iteration in the vectorized loop. 3493 // If we come from a bypass edge then we need to start from the original 3494 // start value. 3495 for (auto &InductionEntry : Legal->getInductionVars()) { 3496 PHINode *OrigPhi = InductionEntry.first; 3497 InductionDescriptor II = InductionEntry.second; 3498 3499 // Create phi nodes to merge from the backedge-taken check block. 3500 PHINode *BCResumeVal = 3501 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3502 LoopScalarPreHeader->getTerminator()); 3503 // Copy original phi DL over to the new one. 3504 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3505 Value *&EndValue = IVEndValues[OrigPhi]; 3506 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3507 if (OrigPhi == OldInduction) { 3508 // We know what the end value is. 3509 EndValue = VectorTripCount; 3510 } else { 3511 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3512 3513 // Fast-math-flags propagate from the original induction instruction. 3514 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3515 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3516 3517 Type *StepType = II.getStep()->getType(); 3518 Instruction::CastOps CastOp = 3519 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3520 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3521 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3522 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3523 EndValue->setName("ind.end"); 3524 3525 // Compute the end value for the additional bypass (if applicable). 3526 if (AdditionalBypass.first) { 3527 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3528 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3529 StepType, true); 3530 CRD = 3531 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3532 EndValueFromAdditionalBypass = 3533 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3534 EndValueFromAdditionalBypass->setName("ind.end"); 3535 } 3536 } 3537 // The new PHI merges the original incoming value, in case of a bypass, 3538 // or the value at the end of the vectorized loop. 3539 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3540 3541 // Fix the scalar body counter (PHI node). 3542 // The old induction's phi node in the scalar body needs the truncated 3543 // value. 3544 for (BasicBlock *BB : LoopBypassBlocks) 3545 BCResumeVal->addIncoming(II.getStartValue(), BB); 3546 3547 if (AdditionalBypass.first) 3548 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3549 EndValueFromAdditionalBypass); 3550 3551 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3552 } 3553 } 3554 3555 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3556 MDNode *OrigLoopID) { 3557 assert(L && "Expected valid loop."); 3558 3559 // The trip counts should be cached by now. 3560 Value *Count = getOrCreateTripCount(L); 3561 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3562 3563 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3564 3565 // Add a check in the middle block to see if we have completed 3566 // all of the iterations in the first vector loop. 3567 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3568 // If tail is to be folded, we know we don't need to run the remainder. 3569 if (!Cost->foldTailByMasking()) { 3570 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3571 Count, VectorTripCount, "cmp.n", 3572 LoopMiddleBlock->getTerminator()); 3573 3574 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3575 // of the corresponding compare because they may have ended up with 3576 // different line numbers and we want to avoid awkward line stepping while 3577 // debugging. Eg. if the compare has got a line number inside the loop. 3578 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3579 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3580 } 3581 3582 // Get ready to start creating new instructions into the vectorized body. 3583 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3584 "Inconsistent vector loop preheader"); 3585 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3586 3587 Optional<MDNode *> VectorizedLoopID = 3588 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3589 LLVMLoopVectorizeFollowupVectorized}); 3590 if (VectorizedLoopID.hasValue()) { 3591 L->setLoopID(VectorizedLoopID.getValue()); 3592 3593 // Do not setAlreadyVectorized if loop attributes have been defined 3594 // explicitly. 3595 return LoopVectorPreHeader; 3596 } 3597 3598 // Keep all loop hints from the original loop on the vector loop (we'll 3599 // replace the vectorizer-specific hints below). 3600 if (MDNode *LID = OrigLoop->getLoopID()) 3601 L->setLoopID(LID); 3602 3603 LoopVectorizeHints Hints(L, true, *ORE); 3604 Hints.setAlreadyVectorized(); 3605 3606 #ifdef EXPENSIVE_CHECKS 3607 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3608 LI->verify(*DT); 3609 #endif 3610 3611 return LoopVectorPreHeader; 3612 } 3613 3614 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3615 /* 3616 In this function we generate a new loop. The new loop will contain 3617 the vectorized instructions while the old loop will continue to run the 3618 scalar remainder. 3619 3620 [ ] <-- loop iteration number check. 3621 / | 3622 / v 3623 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3624 | / | 3625 | / v 3626 || [ ] <-- vector pre header. 3627 |/ | 3628 | v 3629 | [ ] \ 3630 | [ ]_| <-- vector loop. 3631 | | 3632 | v 3633 | -[ ] <--- middle-block. 3634 | / | 3635 | / v 3636 -|- >[ ] <--- new preheader. 3637 | | 3638 | v 3639 | [ ] \ 3640 | [ ]_| <-- old scalar loop to handle remainder. 3641 \ | 3642 \ v 3643 >[ ] <-- exit block. 3644 ... 3645 */ 3646 3647 // Get the metadata of the original loop before it gets modified. 3648 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3649 3650 // Workaround! Compute the trip count of the original loop and cache it 3651 // before we start modifying the CFG. This code has a systemic problem 3652 // wherein it tries to run analysis over partially constructed IR; this is 3653 // wrong, and not simply for SCEV. The trip count of the original loop 3654 // simply happens to be prone to hitting this in practice. In theory, we 3655 // can hit the same issue for any SCEV, or ValueTracking query done during 3656 // mutation. See PR49900. 3657 getOrCreateTripCount(OrigLoop); 3658 3659 // Create an empty vector loop, and prepare basic blocks for the runtime 3660 // checks. 3661 Loop *Lp = createVectorLoopSkeleton(""); 3662 3663 // Now, compare the new count to zero. If it is zero skip the vector loop and 3664 // jump to the scalar loop. This check also covers the case where the 3665 // backedge-taken count is uint##_max: adding one to it will overflow leading 3666 // to an incorrect trip count of zero. In this (rare) case we will also jump 3667 // to the scalar loop. 3668 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3669 3670 // Generate the code to check any assumptions that we've made for SCEV 3671 // expressions. 3672 emitSCEVChecks(Lp, LoopScalarPreHeader); 3673 3674 // Generate the code that checks in runtime if arrays overlap. We put the 3675 // checks into a separate block to make the more common case of few elements 3676 // faster. 3677 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3678 3679 // Some loops have a single integer induction variable, while other loops 3680 // don't. One example is c++ iterators that often have multiple pointer 3681 // induction variables. In the code below we also support a case where we 3682 // don't have a single induction variable. 3683 // 3684 // We try to obtain an induction variable from the original loop as hard 3685 // as possible. However if we don't find one that: 3686 // - is an integer 3687 // - counts from zero, stepping by one 3688 // - is the size of the widest induction variable type 3689 // then we create a new one. 3690 OldInduction = Legal->getPrimaryInduction(); 3691 Type *IdxTy = Legal->getWidestInductionType(); 3692 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3693 // The loop step is equal to the vectorization factor (num of SIMD elements) 3694 // times the unroll factor (num of SIMD instructions). 3695 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3696 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3697 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3698 Induction = 3699 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3700 getDebugLocFromInstOrOperands(OldInduction)); 3701 3702 // Emit phis for the new starting index of the scalar loop. 3703 createInductionResumeValues(Lp, CountRoundDown); 3704 3705 return completeLoopSkeleton(Lp, OrigLoopID); 3706 } 3707 3708 // Fix up external users of the induction variable. At this point, we are 3709 // in LCSSA form, with all external PHIs that use the IV having one input value, 3710 // coming from the remainder loop. We need those PHIs to also have a correct 3711 // value for the IV when arriving directly from the middle block. 3712 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3713 const InductionDescriptor &II, 3714 Value *CountRoundDown, Value *EndValue, 3715 BasicBlock *MiddleBlock) { 3716 // There are two kinds of external IV usages - those that use the value 3717 // computed in the last iteration (the PHI) and those that use the penultimate 3718 // value (the value that feeds into the phi from the loop latch). 3719 // We allow both, but they, obviously, have different values. 3720 3721 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3722 3723 DenseMap<Value *, Value *> MissingVals; 3724 3725 // An external user of the last iteration's value should see the value that 3726 // the remainder loop uses to initialize its own IV. 3727 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3728 for (User *U : PostInc->users()) { 3729 Instruction *UI = cast<Instruction>(U); 3730 if (!OrigLoop->contains(UI)) { 3731 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3732 MissingVals[UI] = EndValue; 3733 } 3734 } 3735 3736 // An external user of the penultimate value need to see EndValue - Step. 3737 // The simplest way to get this is to recompute it from the constituent SCEVs, 3738 // that is Start + (Step * (CRD - 1)). 3739 for (User *U : OrigPhi->users()) { 3740 auto *UI = cast<Instruction>(U); 3741 if (!OrigLoop->contains(UI)) { 3742 const DataLayout &DL = 3743 OrigLoop->getHeader()->getModule()->getDataLayout(); 3744 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3745 3746 IRBuilder<> B(MiddleBlock->getTerminator()); 3747 3748 // Fast-math-flags propagate from the original induction instruction. 3749 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3750 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3751 3752 Value *CountMinusOne = B.CreateSub( 3753 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3754 Value *CMO = 3755 !II.getStep()->getType()->isIntegerTy() 3756 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3757 II.getStep()->getType()) 3758 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3759 CMO->setName("cast.cmo"); 3760 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3761 Escape->setName("ind.escape"); 3762 MissingVals[UI] = Escape; 3763 } 3764 } 3765 3766 for (auto &I : MissingVals) { 3767 PHINode *PHI = cast<PHINode>(I.first); 3768 // One corner case we have to handle is two IVs "chasing" each-other, 3769 // that is %IV2 = phi [...], [ %IV1, %latch ] 3770 // In this case, if IV1 has an external use, we need to avoid adding both 3771 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3772 // don't already have an incoming value for the middle block. 3773 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3774 PHI->addIncoming(I.second, MiddleBlock); 3775 } 3776 } 3777 3778 namespace { 3779 3780 struct CSEDenseMapInfo { 3781 static bool canHandle(const Instruction *I) { 3782 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3783 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3784 } 3785 3786 static inline Instruction *getEmptyKey() { 3787 return DenseMapInfo<Instruction *>::getEmptyKey(); 3788 } 3789 3790 static inline Instruction *getTombstoneKey() { 3791 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3792 } 3793 3794 static unsigned getHashValue(const Instruction *I) { 3795 assert(canHandle(I) && "Unknown instruction!"); 3796 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3797 I->value_op_end())); 3798 } 3799 3800 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3801 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3802 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3803 return LHS == RHS; 3804 return LHS->isIdenticalTo(RHS); 3805 } 3806 }; 3807 3808 } // end anonymous namespace 3809 3810 ///Perform cse of induction variable instructions. 3811 static void cse(BasicBlock *BB) { 3812 // Perform simple cse. 3813 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3814 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3815 Instruction *In = &*I++; 3816 3817 if (!CSEDenseMapInfo::canHandle(In)) 3818 continue; 3819 3820 // Check if we can replace this instruction with any of the 3821 // visited instructions. 3822 if (Instruction *V = CSEMap.lookup(In)) { 3823 In->replaceAllUsesWith(V); 3824 In->eraseFromParent(); 3825 continue; 3826 } 3827 3828 CSEMap[In] = In; 3829 } 3830 } 3831 3832 InstructionCost 3833 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3834 bool &NeedToScalarize) const { 3835 Function *F = CI->getCalledFunction(); 3836 Type *ScalarRetTy = CI->getType(); 3837 SmallVector<Type *, 4> Tys, ScalarTys; 3838 for (auto &ArgOp : CI->arg_operands()) 3839 ScalarTys.push_back(ArgOp->getType()); 3840 3841 // Estimate cost of scalarized vector call. The source operands are assumed 3842 // to be vectors, so we need to extract individual elements from there, 3843 // execute VF scalar calls, and then gather the result into the vector return 3844 // value. 3845 InstructionCost ScalarCallCost = 3846 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3847 if (VF.isScalar()) 3848 return ScalarCallCost; 3849 3850 // Compute corresponding vector type for return value and arguments. 3851 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3852 for (Type *ScalarTy : ScalarTys) 3853 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3854 3855 // Compute costs of unpacking argument values for the scalar calls and 3856 // packing the return values to a vector. 3857 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3858 3859 InstructionCost Cost = 3860 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3861 3862 // If we can't emit a vector call for this function, then the currently found 3863 // cost is the cost we need to return. 3864 NeedToScalarize = true; 3865 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3866 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3867 3868 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3869 return Cost; 3870 3871 // If the corresponding vector cost is cheaper, return its cost. 3872 InstructionCost VectorCallCost = 3873 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3874 if (VectorCallCost < Cost) { 3875 NeedToScalarize = false; 3876 Cost = VectorCallCost; 3877 } 3878 return Cost; 3879 } 3880 3881 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3882 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3883 return Elt; 3884 return VectorType::get(Elt, VF); 3885 } 3886 3887 InstructionCost 3888 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3889 ElementCount VF) const { 3890 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3891 assert(ID && "Expected intrinsic call!"); 3892 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3893 FastMathFlags FMF; 3894 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3895 FMF = FPMO->getFastMathFlags(); 3896 3897 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3898 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3899 SmallVector<Type *> ParamTys; 3900 std::transform(FTy->param_begin(), FTy->param_end(), 3901 std::back_inserter(ParamTys), 3902 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3903 3904 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3905 dyn_cast<IntrinsicInst>(CI)); 3906 return TTI.getIntrinsicInstrCost(CostAttrs, 3907 TargetTransformInfo::TCK_RecipThroughput); 3908 } 3909 3910 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3911 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3912 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3913 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3914 } 3915 3916 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3917 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3918 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3919 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3920 } 3921 3922 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3923 // For every instruction `I` in MinBWs, truncate the operands, create a 3924 // truncated version of `I` and reextend its result. InstCombine runs 3925 // later and will remove any ext/trunc pairs. 3926 SmallPtrSet<Value *, 4> Erased; 3927 for (const auto &KV : Cost->getMinimalBitwidths()) { 3928 // If the value wasn't vectorized, we must maintain the original scalar 3929 // type. The absence of the value from State indicates that it 3930 // wasn't vectorized. 3931 VPValue *Def = State.Plan->getVPValue(KV.first); 3932 if (!State.hasAnyVectorValue(Def)) 3933 continue; 3934 for (unsigned Part = 0; Part < UF; ++Part) { 3935 Value *I = State.get(Def, Part); 3936 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3937 continue; 3938 Type *OriginalTy = I->getType(); 3939 Type *ScalarTruncatedTy = 3940 IntegerType::get(OriginalTy->getContext(), KV.second); 3941 auto *TruncatedTy = FixedVectorType::get( 3942 ScalarTruncatedTy, 3943 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3944 if (TruncatedTy == OriginalTy) 3945 continue; 3946 3947 IRBuilder<> B(cast<Instruction>(I)); 3948 auto ShrinkOperand = [&](Value *V) -> Value * { 3949 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3950 if (ZI->getSrcTy() == TruncatedTy) 3951 return ZI->getOperand(0); 3952 return B.CreateZExtOrTrunc(V, TruncatedTy); 3953 }; 3954 3955 // The actual instruction modification depends on the instruction type, 3956 // unfortunately. 3957 Value *NewI = nullptr; 3958 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3959 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3960 ShrinkOperand(BO->getOperand(1))); 3961 3962 // Any wrapping introduced by shrinking this operation shouldn't be 3963 // considered undefined behavior. So, we can't unconditionally copy 3964 // arithmetic wrapping flags to NewI. 3965 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3966 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3967 NewI = 3968 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3969 ShrinkOperand(CI->getOperand(1))); 3970 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3971 NewI = B.CreateSelect(SI->getCondition(), 3972 ShrinkOperand(SI->getTrueValue()), 3973 ShrinkOperand(SI->getFalseValue())); 3974 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3975 switch (CI->getOpcode()) { 3976 default: 3977 llvm_unreachable("Unhandled cast!"); 3978 case Instruction::Trunc: 3979 NewI = ShrinkOperand(CI->getOperand(0)); 3980 break; 3981 case Instruction::SExt: 3982 NewI = B.CreateSExtOrTrunc( 3983 CI->getOperand(0), 3984 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3985 break; 3986 case Instruction::ZExt: 3987 NewI = B.CreateZExtOrTrunc( 3988 CI->getOperand(0), 3989 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3990 break; 3991 } 3992 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3993 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3994 ->getNumElements(); 3995 auto *O0 = B.CreateZExtOrTrunc( 3996 SI->getOperand(0), 3997 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3998 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3999 ->getNumElements(); 4000 auto *O1 = B.CreateZExtOrTrunc( 4001 SI->getOperand(1), 4002 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 4003 4004 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4005 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4006 // Don't do anything with the operands, just extend the result. 4007 continue; 4008 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4009 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 4010 ->getNumElements(); 4011 auto *O0 = B.CreateZExtOrTrunc( 4012 IE->getOperand(0), 4013 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4014 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4015 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4016 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4017 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 4018 ->getNumElements(); 4019 auto *O0 = B.CreateZExtOrTrunc( 4020 EE->getOperand(0), 4021 FixedVectorType::get(ScalarTruncatedTy, Elements)); 4022 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4023 } else { 4024 // If we don't know what to do, be conservative and don't do anything. 4025 continue; 4026 } 4027 4028 // Lastly, extend the result. 4029 NewI->takeName(cast<Instruction>(I)); 4030 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4031 I->replaceAllUsesWith(Res); 4032 cast<Instruction>(I)->eraseFromParent(); 4033 Erased.insert(I); 4034 State.reset(Def, Res, Part); 4035 } 4036 } 4037 4038 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4039 for (const auto &KV : Cost->getMinimalBitwidths()) { 4040 // If the value wasn't vectorized, we must maintain the original scalar 4041 // type. The absence of the value from State indicates that it 4042 // wasn't vectorized. 4043 VPValue *Def = State.Plan->getVPValue(KV.first); 4044 if (!State.hasAnyVectorValue(Def)) 4045 continue; 4046 for (unsigned Part = 0; Part < UF; ++Part) { 4047 Value *I = State.get(Def, Part); 4048 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4049 if (Inst && Inst->use_empty()) { 4050 Value *NewI = Inst->getOperand(0); 4051 Inst->eraseFromParent(); 4052 State.reset(Def, NewI, Part); 4053 } 4054 } 4055 } 4056 } 4057 4058 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4059 // Insert truncates and extends for any truncated instructions as hints to 4060 // InstCombine. 4061 if (VF.isVector()) 4062 truncateToMinimalBitwidths(State); 4063 4064 // Fix widened non-induction PHIs by setting up the PHI operands. 4065 if (OrigPHIsToFix.size()) { 4066 assert(EnableVPlanNativePath && 4067 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4068 fixNonInductionPHIs(State); 4069 } 4070 4071 // At this point every instruction in the original loop is widened to a 4072 // vector form. Now we need to fix the recurrences in the loop. These PHI 4073 // nodes are currently empty because we did not want to introduce cycles. 4074 // This is the second stage of vectorizing recurrences. 4075 fixCrossIterationPHIs(State); 4076 4077 // Forget the original basic block. 4078 PSE.getSE()->forgetLoop(OrigLoop); 4079 4080 // Fix-up external users of the induction variables. 4081 for (auto &Entry : Legal->getInductionVars()) 4082 fixupIVUsers(Entry.first, Entry.second, 4083 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4084 IVEndValues[Entry.first], LoopMiddleBlock); 4085 4086 fixLCSSAPHIs(State); 4087 for (Instruction *PI : PredicatedInstructions) 4088 sinkScalarOperands(&*PI); 4089 4090 // Remove redundant induction instructions. 4091 cse(LoopVectorBody); 4092 4093 // Set/update profile weights for the vector and remainder loops as original 4094 // loop iterations are now distributed among them. Note that original loop 4095 // represented by LoopScalarBody becomes remainder loop after vectorization. 4096 // 4097 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4098 // end up getting slightly roughened result but that should be OK since 4099 // profile is not inherently precise anyway. Note also possible bypass of 4100 // vector code caused by legality checks is ignored, assigning all the weight 4101 // to the vector loop, optimistically. 4102 // 4103 // For scalable vectorization we can't know at compile time how many iterations 4104 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4105 // vscale of '1'. 4106 setProfileInfoAfterUnrolling( 4107 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4108 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4109 } 4110 4111 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4112 // In order to support recurrences we need to be able to vectorize Phi nodes. 4113 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4114 // stage #2: We now need to fix the recurrences by adding incoming edges to 4115 // the currently empty PHI nodes. At this point every instruction in the 4116 // original loop is widened to a vector form so we can use them to construct 4117 // the incoming edges. 4118 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4119 for (VPRecipeBase &R : Header->phis()) { 4120 auto *PhiR = dyn_cast<VPWidenPHIRecipe>(&R); 4121 if (!PhiR) 4122 continue; 4123 auto *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4124 if (PhiR->getRecurrenceDescriptor()) { 4125 fixReduction(PhiR, State); 4126 } else if (Legal->isFirstOrderRecurrence(OrigPhi)) 4127 fixFirstOrderRecurrence(OrigPhi, State); 4128 } 4129 } 4130 4131 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi, 4132 VPTransformState &State) { 4133 // This is the second phase of vectorizing first-order recurrences. An 4134 // overview of the transformation is described below. Suppose we have the 4135 // following loop. 4136 // 4137 // for (int i = 0; i < n; ++i) 4138 // b[i] = a[i] - a[i - 1]; 4139 // 4140 // There is a first-order recurrence on "a". For this loop, the shorthand 4141 // scalar IR looks like: 4142 // 4143 // scalar.ph: 4144 // s_init = a[-1] 4145 // br scalar.body 4146 // 4147 // scalar.body: 4148 // i = phi [0, scalar.ph], [i+1, scalar.body] 4149 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4150 // s2 = a[i] 4151 // b[i] = s2 - s1 4152 // br cond, scalar.body, ... 4153 // 4154 // In this example, s1 is a recurrence because it's value depends on the 4155 // previous iteration. In the first phase of vectorization, we created a 4156 // temporary value for s1. We now complete the vectorization and produce the 4157 // shorthand vector IR shown below (for VF = 4, UF = 1). 4158 // 4159 // vector.ph: 4160 // v_init = vector(..., ..., ..., a[-1]) 4161 // br vector.body 4162 // 4163 // vector.body 4164 // i = phi [0, vector.ph], [i+4, vector.body] 4165 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4166 // v2 = a[i, i+1, i+2, i+3]; 4167 // v3 = vector(v1(3), v2(0, 1, 2)) 4168 // b[i, i+1, i+2, i+3] = v2 - v3 4169 // br cond, vector.body, middle.block 4170 // 4171 // middle.block: 4172 // x = v2(3) 4173 // br scalar.ph 4174 // 4175 // scalar.ph: 4176 // s_init = phi [x, middle.block], [a[-1], otherwise] 4177 // br scalar.body 4178 // 4179 // After execution completes the vector loop, we extract the next value of 4180 // the recurrence (x) to use as the initial value in the scalar loop. 4181 4182 // Get the original loop preheader and single loop latch. 4183 auto *Preheader = OrigLoop->getLoopPreheader(); 4184 auto *Latch = OrigLoop->getLoopLatch(); 4185 4186 // Get the initial and previous values of the scalar recurrence. 4187 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4188 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4189 4190 auto *IdxTy = Builder.getInt32Ty(); 4191 auto *One = ConstantInt::get(IdxTy, 1); 4192 4193 // Create a vector from the initial value. 4194 auto *VectorInit = ScalarInit; 4195 if (VF.isVector()) { 4196 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4197 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4198 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4199 VectorInit = Builder.CreateInsertElement( 4200 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), 4201 VectorInit, LastIdx, "vector.recur.init"); 4202 } 4203 4204 VPValue *PhiDef = State.Plan->getVPValue(Phi); 4205 VPValue *PreviousDef = State.Plan->getVPValue(Previous); 4206 // We constructed a temporary phi node in the first phase of vectorization. 4207 // This phi node will eventually be deleted. 4208 Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0))); 4209 4210 // Create a phi node for the new recurrence. The current value will either be 4211 // the initial value inserted into a vector or loop-varying vector value. 4212 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4213 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4214 4215 // Get the vectorized previous value of the last part UF - 1. It appears last 4216 // among all unrolled iterations, due to the order of their construction. 4217 Value *PreviousLastPart = State.get(PreviousDef, UF - 1); 4218 4219 // Find and set the insertion point after the previous value if it is an 4220 // instruction. 4221 BasicBlock::iterator InsertPt; 4222 // Note that the previous value may have been constant-folded so it is not 4223 // guaranteed to be an instruction in the vector loop. 4224 // FIXME: Loop invariant values do not form recurrences. We should deal with 4225 // them earlier. 4226 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4227 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4228 else { 4229 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4230 if (isa<PHINode>(PreviousLastPart)) 4231 // If the previous value is a phi node, we should insert after all the phi 4232 // nodes in the block containing the PHI to avoid breaking basic block 4233 // verification. Note that the basic block may be different to 4234 // LoopVectorBody, in case we predicate the loop. 4235 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4236 else 4237 InsertPt = ++PreviousInst->getIterator(); 4238 } 4239 Builder.SetInsertPoint(&*InsertPt); 4240 4241 // The vector from which to take the initial value for the current iteration 4242 // (actual or unrolled). Initially, this is the vector phi node. 4243 Value *Incoming = VecPhi; 4244 4245 // Shuffle the current and previous vector and update the vector parts. 4246 for (unsigned Part = 0; Part < UF; ++Part) { 4247 Value *PreviousPart = State.get(PreviousDef, Part); 4248 Value *PhiPart = State.get(PhiDef, Part); 4249 auto *Shuffle = VF.isVector() 4250 ? Builder.CreateVectorSplice(Incoming, PreviousPart, -1) 4251 : Incoming; 4252 PhiPart->replaceAllUsesWith(Shuffle); 4253 cast<Instruction>(PhiPart)->eraseFromParent(); 4254 State.reset(PhiDef, Shuffle, Part); 4255 Incoming = PreviousPart; 4256 } 4257 4258 // Fix the latch value of the new recurrence in the vector loop. 4259 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4260 4261 // Extract the last vector element in the middle block. This will be the 4262 // initial value for the recurrence when jumping to the scalar loop. 4263 auto *ExtractForScalar = Incoming; 4264 if (VF.isVector()) { 4265 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4266 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4267 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4268 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4269 "vector.recur.extract"); 4270 } 4271 // Extract the second last element in the middle block if the 4272 // Phi is used outside the loop. We need to extract the phi itself 4273 // and not the last element (the phi update in the current iteration). This 4274 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4275 // when the scalar loop is not run at all. 4276 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4277 if (VF.isVector()) { 4278 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4279 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4280 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4281 Incoming, Idx, "vector.recur.extract.for.phi"); 4282 } else if (UF > 1) 4283 // When loop is unrolled without vectorizing, initialize 4284 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4285 // of `Incoming`. This is analogous to the vectorized case above: extracting 4286 // the second last element when VF > 1. 4287 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4288 4289 // Fix the initial value of the original recurrence in the scalar loop. 4290 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4291 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4292 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4293 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4294 Start->addIncoming(Incoming, BB); 4295 } 4296 4297 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4298 Phi->setName("scalar.recur"); 4299 4300 // Finally, fix users of the recurrence outside the loop. The users will need 4301 // either the last value of the scalar recurrence or the last value of the 4302 // vector recurrence we extracted in the middle block. Since the loop is in 4303 // LCSSA form, we just need to find all the phi nodes for the original scalar 4304 // recurrence in the exit block, and then add an edge for the middle block. 4305 // Note that LCSSA does not imply single entry when the original scalar loop 4306 // had multiple exiting edges (as we always run the last iteration in the 4307 // scalar epilogue); in that case, the exiting path through middle will be 4308 // dynamically dead and the value picked for the phi doesn't matter. 4309 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4310 if (any_of(LCSSAPhi.incoming_values(), 4311 [Phi](Value *V) { return V == Phi; })) 4312 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4313 } 4314 4315 static bool useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4316 return EnableStrictReductions && RdxDesc.isOrdered(); 4317 } 4318 4319 void InnerLoopVectorizer::fixReduction(VPWidenPHIRecipe *PhiR, 4320 VPTransformState &State) { 4321 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4322 // Get it's reduction variable descriptor. 4323 assert(Legal->isReductionVariable(OrigPhi) && 4324 "Unable to find the reduction variable"); 4325 RecurrenceDescriptor RdxDesc = *PhiR->getRecurrenceDescriptor(); 4326 4327 RecurKind RK = RdxDesc.getRecurrenceKind(); 4328 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4329 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4330 setDebugLocFromInst(Builder, ReductionStartValue); 4331 bool IsInLoopReductionPhi = Cost->isInLoopReduction(OrigPhi); 4332 4333 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4334 // This is the vector-clone of the value that leaves the loop. 4335 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4336 4337 // Wrap flags are in general invalid after vectorization, clear them. 4338 clearReductionWrapFlags(RdxDesc, State); 4339 4340 // Fix the vector-loop phi. 4341 4342 // Reductions do not have to start at zero. They can start with 4343 // any loop invariant values. 4344 BasicBlock *VectorLoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4345 4346 bool IsOrdered = State.VF.isVector() && IsInLoopReductionPhi && 4347 useOrderedReductions(RdxDesc); 4348 4349 for (unsigned Part = 0; Part < UF; ++Part) { 4350 if (IsOrdered && Part > 0) 4351 break; 4352 Value *VecRdxPhi = State.get(PhiR->getVPSingleValue(), Part); 4353 Value *Val = State.get(PhiR->getBackedgeValue(), Part); 4354 if (IsOrdered) 4355 Val = State.get(PhiR->getBackedgeValue(), UF - 1); 4356 4357 cast<PHINode>(VecRdxPhi)->addIncoming(Val, VectorLoopLatch); 4358 } 4359 4360 // Before each round, move the insertion point right between 4361 // the PHIs and the values we are going to write. 4362 // This allows us to write both PHINodes and the extractelement 4363 // instructions. 4364 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4365 4366 setDebugLocFromInst(Builder, LoopExitInst); 4367 4368 Type *PhiTy = OrigPhi->getType(); 4369 // If tail is folded by masking, the vector value to leave the loop should be 4370 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4371 // instead of the former. For an inloop reduction the reduction will already 4372 // be predicated, and does not need to be handled here. 4373 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4374 for (unsigned Part = 0; Part < UF; ++Part) { 4375 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4376 Value *Sel = nullptr; 4377 for (User *U : VecLoopExitInst->users()) { 4378 if (isa<SelectInst>(U)) { 4379 assert(!Sel && "Reduction exit feeding two selects"); 4380 Sel = U; 4381 } else 4382 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4383 } 4384 assert(Sel && "Reduction exit feeds no select"); 4385 State.reset(LoopExitInstDef, Sel, Part); 4386 4387 // If the target can create a predicated operator for the reduction at no 4388 // extra cost in the loop (for example a predicated vadd), it can be 4389 // cheaper for the select to remain in the loop than be sunk out of it, 4390 // and so use the select value for the phi instead of the old 4391 // LoopExitValue. 4392 if (PreferPredicatedReductionSelect || 4393 TTI->preferPredicatedReductionSelect( 4394 RdxDesc.getOpcode(), PhiTy, 4395 TargetTransformInfo::ReductionFlags())) { 4396 auto *VecRdxPhi = 4397 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4398 VecRdxPhi->setIncomingValueForBlock( 4399 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4400 } 4401 } 4402 } 4403 4404 // If the vector reduction can be performed in a smaller type, we truncate 4405 // then extend the loop exit value to enable InstCombine to evaluate the 4406 // entire expression in the smaller type. 4407 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4408 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4409 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4410 Builder.SetInsertPoint( 4411 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4412 VectorParts RdxParts(UF); 4413 for (unsigned Part = 0; Part < UF; ++Part) { 4414 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4415 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4416 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4417 : Builder.CreateZExt(Trunc, VecTy); 4418 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4419 UI != RdxParts[Part]->user_end();) 4420 if (*UI != Trunc) { 4421 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4422 RdxParts[Part] = Extnd; 4423 } else { 4424 ++UI; 4425 } 4426 } 4427 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4428 for (unsigned Part = 0; Part < UF; ++Part) { 4429 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4430 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4431 } 4432 } 4433 4434 // Reduce all of the unrolled parts into a single vector. 4435 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4436 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4437 4438 // The middle block terminator has already been assigned a DebugLoc here (the 4439 // OrigLoop's single latch terminator). We want the whole middle block to 4440 // appear to execute on this line because: (a) it is all compiler generated, 4441 // (b) these instructions are always executed after evaluating the latch 4442 // conditional branch, and (c) other passes may add new predecessors which 4443 // terminate on this line. This is the easiest way to ensure we don't 4444 // accidentally cause an extra step back into the loop while debugging. 4445 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4446 if (IsOrdered) 4447 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4448 else { 4449 // Floating-point operations should have some FMF to enable the reduction. 4450 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4451 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4452 for (unsigned Part = 1; Part < UF; ++Part) { 4453 Value *RdxPart = State.get(LoopExitInstDef, Part); 4454 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4455 ReducedPartRdx = Builder.CreateBinOp( 4456 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4457 } else { 4458 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4459 } 4460 } 4461 } 4462 4463 // Create the reduction after the loop. Note that inloop reductions create the 4464 // target reduction in the loop using a Reduction recipe. 4465 if (VF.isVector() && !IsInLoopReductionPhi) { 4466 ReducedPartRdx = 4467 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4468 // If the reduction can be performed in a smaller type, we need to extend 4469 // the reduction to the wider type before we branch to the original loop. 4470 if (PhiTy != RdxDesc.getRecurrenceType()) 4471 ReducedPartRdx = RdxDesc.isSigned() 4472 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4473 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4474 } 4475 4476 // Create a phi node that merges control-flow from the backedge-taken check 4477 // block and the middle block. 4478 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4479 LoopScalarPreHeader->getTerminator()); 4480 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4481 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4482 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4483 4484 // Now, we need to fix the users of the reduction variable 4485 // inside and outside of the scalar remainder loop. 4486 4487 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4488 // in the exit blocks. See comment on analogous loop in 4489 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4490 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4491 if (any_of(LCSSAPhi.incoming_values(), 4492 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4493 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4494 4495 // Fix the scalar loop reduction variable with the incoming reduction sum 4496 // from the vector body and from the backedge value. 4497 int IncomingEdgeBlockIdx = 4498 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4499 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4500 // Pick the other block. 4501 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4502 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4503 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4504 } 4505 4506 void InnerLoopVectorizer::clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc, 4507 VPTransformState &State) { 4508 RecurKind RK = RdxDesc.getRecurrenceKind(); 4509 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4510 return; 4511 4512 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4513 assert(LoopExitInstr && "null loop exit instruction"); 4514 SmallVector<Instruction *, 8> Worklist; 4515 SmallPtrSet<Instruction *, 8> Visited; 4516 Worklist.push_back(LoopExitInstr); 4517 Visited.insert(LoopExitInstr); 4518 4519 while (!Worklist.empty()) { 4520 Instruction *Cur = Worklist.pop_back_val(); 4521 if (isa<OverflowingBinaryOperator>(Cur)) 4522 for (unsigned Part = 0; Part < UF; ++Part) { 4523 Value *V = State.get(State.Plan->getVPValue(Cur), Part); 4524 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4525 } 4526 4527 for (User *U : Cur->users()) { 4528 Instruction *UI = cast<Instruction>(U); 4529 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4530 Visited.insert(UI).second) 4531 Worklist.push_back(UI); 4532 } 4533 } 4534 } 4535 4536 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4537 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4538 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4539 // Some phis were already hand updated by the reduction and recurrence 4540 // code above, leave them alone. 4541 continue; 4542 4543 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4544 // Non-instruction incoming values will have only one value. 4545 4546 VPLane Lane = VPLane::getFirstLane(); 4547 if (isa<Instruction>(IncomingValue) && 4548 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4549 VF)) 4550 Lane = VPLane::getLastLaneForVF(VF); 4551 4552 // Can be a loop invariant incoming value or the last scalar value to be 4553 // extracted from the vectorized loop. 4554 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4555 Value *lastIncomingValue = 4556 OrigLoop->isLoopInvariant(IncomingValue) 4557 ? IncomingValue 4558 : State.get(State.Plan->getVPValue(IncomingValue), 4559 VPIteration(UF - 1, Lane)); 4560 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4561 } 4562 } 4563 4564 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4565 // The basic block and loop containing the predicated instruction. 4566 auto *PredBB = PredInst->getParent(); 4567 auto *VectorLoop = LI->getLoopFor(PredBB); 4568 4569 // Initialize a worklist with the operands of the predicated instruction. 4570 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4571 4572 // Holds instructions that we need to analyze again. An instruction may be 4573 // reanalyzed if we don't yet know if we can sink it or not. 4574 SmallVector<Instruction *, 8> InstsToReanalyze; 4575 4576 // Returns true if a given use occurs in the predicated block. Phi nodes use 4577 // their operands in their corresponding predecessor blocks. 4578 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4579 auto *I = cast<Instruction>(U.getUser()); 4580 BasicBlock *BB = I->getParent(); 4581 if (auto *Phi = dyn_cast<PHINode>(I)) 4582 BB = Phi->getIncomingBlock( 4583 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4584 return BB == PredBB; 4585 }; 4586 4587 // Iteratively sink the scalarized operands of the predicated instruction 4588 // into the block we created for it. When an instruction is sunk, it's 4589 // operands are then added to the worklist. The algorithm ends after one pass 4590 // through the worklist doesn't sink a single instruction. 4591 bool Changed; 4592 do { 4593 // Add the instructions that need to be reanalyzed to the worklist, and 4594 // reset the changed indicator. 4595 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4596 InstsToReanalyze.clear(); 4597 Changed = false; 4598 4599 while (!Worklist.empty()) { 4600 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4601 4602 // We can't sink an instruction if it is a phi node, is not in the loop, 4603 // or may have side effects. 4604 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4605 I->mayHaveSideEffects()) 4606 continue; 4607 4608 // If the instruction is already in PredBB, check if we can sink its 4609 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4610 // sinking the scalar instruction I, hence it appears in PredBB; but it 4611 // may have failed to sink I's operands (recursively), which we try 4612 // (again) here. 4613 if (I->getParent() == PredBB) { 4614 Worklist.insert(I->op_begin(), I->op_end()); 4615 continue; 4616 } 4617 4618 // It's legal to sink the instruction if all its uses occur in the 4619 // predicated block. Otherwise, there's nothing to do yet, and we may 4620 // need to reanalyze the instruction. 4621 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4622 InstsToReanalyze.push_back(I); 4623 continue; 4624 } 4625 4626 // Move the instruction to the beginning of the predicated block, and add 4627 // it's operands to the worklist. 4628 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4629 Worklist.insert(I->op_begin(), I->op_end()); 4630 4631 // The sinking may have enabled other instructions to be sunk, so we will 4632 // need to iterate. 4633 Changed = true; 4634 } 4635 } while (Changed); 4636 } 4637 4638 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4639 for (PHINode *OrigPhi : OrigPHIsToFix) { 4640 VPWidenPHIRecipe *VPPhi = 4641 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4642 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4643 // Make sure the builder has a valid insert point. 4644 Builder.SetInsertPoint(NewPhi); 4645 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4646 VPValue *Inc = VPPhi->getIncomingValue(i); 4647 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4648 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4649 } 4650 } 4651 } 4652 4653 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4654 VPUser &Operands, unsigned UF, 4655 ElementCount VF, bool IsPtrLoopInvariant, 4656 SmallBitVector &IsIndexLoopInvariant, 4657 VPTransformState &State) { 4658 // Construct a vector GEP by widening the operands of the scalar GEP as 4659 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4660 // results in a vector of pointers when at least one operand of the GEP 4661 // is vector-typed. Thus, to keep the representation compact, we only use 4662 // vector-typed operands for loop-varying values. 4663 4664 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4665 // If we are vectorizing, but the GEP has only loop-invariant operands, 4666 // the GEP we build (by only using vector-typed operands for 4667 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4668 // produce a vector of pointers, we need to either arbitrarily pick an 4669 // operand to broadcast, or broadcast a clone of the original GEP. 4670 // Here, we broadcast a clone of the original. 4671 // 4672 // TODO: If at some point we decide to scalarize instructions having 4673 // loop-invariant operands, this special case will no longer be 4674 // required. We would add the scalarization decision to 4675 // collectLoopScalars() and teach getVectorValue() to broadcast 4676 // the lane-zero scalar value. 4677 auto *Clone = Builder.Insert(GEP->clone()); 4678 for (unsigned Part = 0; Part < UF; ++Part) { 4679 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4680 State.set(VPDef, EntryPart, Part); 4681 addMetadata(EntryPart, GEP); 4682 } 4683 } else { 4684 // If the GEP has at least one loop-varying operand, we are sure to 4685 // produce a vector of pointers. But if we are only unrolling, we want 4686 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4687 // produce with the code below will be scalar (if VF == 1) or vector 4688 // (otherwise). Note that for the unroll-only case, we still maintain 4689 // values in the vector mapping with initVector, as we do for other 4690 // instructions. 4691 for (unsigned Part = 0; Part < UF; ++Part) { 4692 // The pointer operand of the new GEP. If it's loop-invariant, we 4693 // won't broadcast it. 4694 auto *Ptr = IsPtrLoopInvariant 4695 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4696 : State.get(Operands.getOperand(0), Part); 4697 4698 // Collect all the indices for the new GEP. If any index is 4699 // loop-invariant, we won't broadcast it. 4700 SmallVector<Value *, 4> Indices; 4701 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4702 VPValue *Operand = Operands.getOperand(I); 4703 if (IsIndexLoopInvariant[I - 1]) 4704 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4705 else 4706 Indices.push_back(State.get(Operand, Part)); 4707 } 4708 4709 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4710 // but it should be a vector, otherwise. 4711 auto *NewGEP = 4712 GEP->isInBounds() 4713 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4714 Indices) 4715 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4716 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4717 "NewGEP is not a pointer vector"); 4718 State.set(VPDef, NewGEP, Part); 4719 addMetadata(NewGEP, GEP); 4720 } 4721 } 4722 } 4723 4724 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4725 RecurrenceDescriptor *RdxDesc, 4726 VPWidenPHIRecipe *PhiR, 4727 VPTransformState &State) { 4728 PHINode *P = cast<PHINode>(PN); 4729 if (EnableVPlanNativePath) { 4730 // Currently we enter here in the VPlan-native path for non-induction 4731 // PHIs where all control flow is uniform. We simply widen these PHIs. 4732 // Create a vector phi with no operands - the vector phi operands will be 4733 // set at the end of vector code generation. 4734 Type *VecTy = (State.VF.isScalar()) 4735 ? PN->getType() 4736 : VectorType::get(PN->getType(), State.VF); 4737 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4738 State.set(PhiR, VecPhi, 0); 4739 OrigPHIsToFix.push_back(P); 4740 4741 return; 4742 } 4743 4744 assert(PN->getParent() == OrigLoop->getHeader() && 4745 "Non-header phis should have been handled elsewhere"); 4746 4747 VPValue *StartVPV = PhiR->getStartValue(); 4748 Value *StartV = StartVPV ? StartVPV->getLiveInIRValue() : nullptr; 4749 // In order to support recurrences we need to be able to vectorize Phi nodes. 4750 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4751 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4752 // this value when we vectorize all of the instructions that use the PHI. 4753 if (RdxDesc || Legal->isFirstOrderRecurrence(P)) { 4754 Value *Iden = nullptr; 4755 bool ScalarPHI = 4756 (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4757 Type *VecTy = 4758 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 4759 4760 if (RdxDesc) { 4761 assert(Legal->isReductionVariable(P) && StartV && 4762 "RdxDesc should only be set for reduction variables; in that case " 4763 "a StartV is also required"); 4764 RecurKind RK = RdxDesc->getRecurrenceKind(); 4765 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 4766 // MinMax reduction have the start value as their identify. 4767 if (ScalarPHI) { 4768 Iden = StartV; 4769 } else { 4770 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4771 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4772 StartV = Iden = 4773 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 4774 } 4775 } else { 4776 Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity( 4777 RK, VecTy->getScalarType(), RdxDesc->getFastMathFlags()); 4778 Iden = IdenC; 4779 4780 if (!ScalarPHI) { 4781 Iden = ConstantVector::getSplat(State.VF, IdenC); 4782 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4783 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4784 Constant *Zero = Builder.getInt32(0); 4785 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 4786 } 4787 } 4788 } 4789 4790 bool IsOrdered = State.VF.isVector() && 4791 Cost->isInLoopReduction(cast<PHINode>(PN)) && 4792 useOrderedReductions(*RdxDesc); 4793 4794 for (unsigned Part = 0; Part < State.UF; ++Part) { 4795 // This is phase one of vectorizing PHIs. 4796 if (Part > 0 && IsOrdered) 4797 return; 4798 Value *EntryPart = PHINode::Create( 4799 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4800 State.set(PhiR, EntryPart, Part); 4801 if (StartV) { 4802 // Make sure to add the reduction start value only to the 4803 // first unroll part. 4804 Value *StartVal = (Part == 0) ? StartV : Iden; 4805 cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader); 4806 } 4807 } 4808 return; 4809 } 4810 4811 assert(!Legal->isReductionVariable(P) && 4812 "reductions should be handled above"); 4813 4814 setDebugLocFromInst(Builder, P); 4815 4816 // This PHINode must be an induction variable. 4817 // Make sure that we know about it. 4818 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4819 4820 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4821 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4822 4823 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4824 // which can be found from the original scalar operations. 4825 switch (II.getKind()) { 4826 case InductionDescriptor::IK_NoInduction: 4827 llvm_unreachable("Unknown induction"); 4828 case InductionDescriptor::IK_IntInduction: 4829 case InductionDescriptor::IK_FpInduction: 4830 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4831 case InductionDescriptor::IK_PtrInduction: { 4832 // Handle the pointer induction variable case. 4833 assert(P->getType()->isPointerTy() && "Unexpected type."); 4834 4835 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4836 // This is the normalized GEP that starts counting at zero. 4837 Value *PtrInd = 4838 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4839 // Determine the number of scalars we need to generate for each unroll 4840 // iteration. If the instruction is uniform, we only need to generate the 4841 // first lane. Otherwise, we generate all VF values. 4842 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4843 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4844 4845 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4846 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4847 if (NeedsVectorIndex) { 4848 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4849 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4850 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4851 } 4852 4853 for (unsigned Part = 0; Part < UF; ++Part) { 4854 Value *PartStart = createStepForVF( 4855 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4856 4857 if (NeedsVectorIndex) { 4858 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4859 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4860 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4861 Value *SclrGep = 4862 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4863 SclrGep->setName("next.gep"); 4864 State.set(PhiR, SclrGep, Part); 4865 // We've cached the whole vector, which means we can support the 4866 // extraction of any lane. 4867 continue; 4868 } 4869 4870 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4871 Value *Idx = Builder.CreateAdd( 4872 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4873 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4874 Value *SclrGep = 4875 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4876 SclrGep->setName("next.gep"); 4877 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4878 } 4879 } 4880 return; 4881 } 4882 assert(isa<SCEVConstant>(II.getStep()) && 4883 "Induction step not a SCEV constant!"); 4884 Type *PhiType = II.getStep()->getType(); 4885 4886 // Build a pointer phi 4887 Value *ScalarStartValue = II.getStartValue(); 4888 Type *ScStValueType = ScalarStartValue->getType(); 4889 PHINode *NewPointerPhi = 4890 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4891 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4892 4893 // A pointer induction, performed by using a gep 4894 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4895 Instruction *InductionLoc = LoopLatch->getTerminator(); 4896 const SCEV *ScalarStep = II.getStep(); 4897 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4898 Value *ScalarStepValue = 4899 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4900 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4901 Value *NumUnrolledElems = 4902 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4903 Value *InductionGEP = GetElementPtrInst::Create( 4904 ScStValueType->getPointerElementType(), NewPointerPhi, 4905 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4906 InductionLoc); 4907 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4908 4909 // Create UF many actual address geps that use the pointer 4910 // phi as base and a vectorized version of the step value 4911 // (<step*0, ..., step*N>) as offset. 4912 for (unsigned Part = 0; Part < State.UF; ++Part) { 4913 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4914 Value *StartOffsetScalar = 4915 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4916 Value *StartOffset = 4917 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4918 // Create a vector of consecutive numbers from zero to VF. 4919 StartOffset = 4920 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4921 4922 Value *GEP = Builder.CreateGEP( 4923 ScStValueType->getPointerElementType(), NewPointerPhi, 4924 Builder.CreateMul( 4925 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4926 "vector.gep")); 4927 State.set(PhiR, GEP, Part); 4928 } 4929 } 4930 } 4931 } 4932 4933 /// A helper function for checking whether an integer division-related 4934 /// instruction may divide by zero (in which case it must be predicated if 4935 /// executed conditionally in the scalar code). 4936 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4937 /// Non-zero divisors that are non compile-time constants will not be 4938 /// converted into multiplication, so we will still end up scalarizing 4939 /// the division, but can do so w/o predication. 4940 static bool mayDivideByZero(Instruction &I) { 4941 assert((I.getOpcode() == Instruction::UDiv || 4942 I.getOpcode() == Instruction::SDiv || 4943 I.getOpcode() == Instruction::URem || 4944 I.getOpcode() == Instruction::SRem) && 4945 "Unexpected instruction"); 4946 Value *Divisor = I.getOperand(1); 4947 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4948 return !CInt || CInt->isZero(); 4949 } 4950 4951 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4952 VPUser &User, 4953 VPTransformState &State) { 4954 switch (I.getOpcode()) { 4955 case Instruction::Call: 4956 case Instruction::Br: 4957 case Instruction::PHI: 4958 case Instruction::GetElementPtr: 4959 case Instruction::Select: 4960 llvm_unreachable("This instruction is handled by a different recipe."); 4961 case Instruction::UDiv: 4962 case Instruction::SDiv: 4963 case Instruction::SRem: 4964 case Instruction::URem: 4965 case Instruction::Add: 4966 case Instruction::FAdd: 4967 case Instruction::Sub: 4968 case Instruction::FSub: 4969 case Instruction::FNeg: 4970 case Instruction::Mul: 4971 case Instruction::FMul: 4972 case Instruction::FDiv: 4973 case Instruction::FRem: 4974 case Instruction::Shl: 4975 case Instruction::LShr: 4976 case Instruction::AShr: 4977 case Instruction::And: 4978 case Instruction::Or: 4979 case Instruction::Xor: { 4980 // Just widen unops and binops. 4981 setDebugLocFromInst(Builder, &I); 4982 4983 for (unsigned Part = 0; Part < UF; ++Part) { 4984 SmallVector<Value *, 2> Ops; 4985 for (VPValue *VPOp : User.operands()) 4986 Ops.push_back(State.get(VPOp, Part)); 4987 4988 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4989 4990 if (auto *VecOp = dyn_cast<Instruction>(V)) 4991 VecOp->copyIRFlags(&I); 4992 4993 // Use this vector value for all users of the original instruction. 4994 State.set(Def, V, Part); 4995 addMetadata(V, &I); 4996 } 4997 4998 break; 4999 } 5000 case Instruction::ICmp: 5001 case Instruction::FCmp: { 5002 // Widen compares. Generate vector compares. 5003 bool FCmp = (I.getOpcode() == Instruction::FCmp); 5004 auto *Cmp = cast<CmpInst>(&I); 5005 setDebugLocFromInst(Builder, Cmp); 5006 for (unsigned Part = 0; Part < UF; ++Part) { 5007 Value *A = State.get(User.getOperand(0), Part); 5008 Value *B = State.get(User.getOperand(1), Part); 5009 Value *C = nullptr; 5010 if (FCmp) { 5011 // Propagate fast math flags. 5012 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 5013 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 5014 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 5015 } else { 5016 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 5017 } 5018 State.set(Def, C, Part); 5019 addMetadata(C, &I); 5020 } 5021 5022 break; 5023 } 5024 5025 case Instruction::ZExt: 5026 case Instruction::SExt: 5027 case Instruction::FPToUI: 5028 case Instruction::FPToSI: 5029 case Instruction::FPExt: 5030 case Instruction::PtrToInt: 5031 case Instruction::IntToPtr: 5032 case Instruction::SIToFP: 5033 case Instruction::UIToFP: 5034 case Instruction::Trunc: 5035 case Instruction::FPTrunc: 5036 case Instruction::BitCast: { 5037 auto *CI = cast<CastInst>(&I); 5038 setDebugLocFromInst(Builder, CI); 5039 5040 /// Vectorize casts. 5041 Type *DestTy = 5042 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 5043 5044 for (unsigned Part = 0; Part < UF; ++Part) { 5045 Value *A = State.get(User.getOperand(0), Part); 5046 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 5047 State.set(Def, Cast, Part); 5048 addMetadata(Cast, &I); 5049 } 5050 break; 5051 } 5052 default: 5053 // This instruction is not vectorized by simple widening. 5054 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 5055 llvm_unreachable("Unhandled instruction!"); 5056 } // end of switch. 5057 } 5058 5059 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 5060 VPUser &ArgOperands, 5061 VPTransformState &State) { 5062 assert(!isa<DbgInfoIntrinsic>(I) && 5063 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 5064 setDebugLocFromInst(Builder, &I); 5065 5066 Module *M = I.getParent()->getParent()->getParent(); 5067 auto *CI = cast<CallInst>(&I); 5068 5069 SmallVector<Type *, 4> Tys; 5070 for (Value *ArgOperand : CI->arg_operands()) 5071 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 5072 5073 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 5074 5075 // The flag shows whether we use Intrinsic or a usual Call for vectorized 5076 // version of the instruction. 5077 // Is it beneficial to perform intrinsic call compared to lib call? 5078 bool NeedToScalarize = false; 5079 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 5080 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 5081 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 5082 assert((UseVectorIntrinsic || !NeedToScalarize) && 5083 "Instruction should be scalarized elsewhere."); 5084 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 5085 "Either the intrinsic cost or vector call cost must be valid"); 5086 5087 for (unsigned Part = 0; Part < UF; ++Part) { 5088 SmallVector<Value *, 4> Args; 5089 for (auto &I : enumerate(ArgOperands.operands())) { 5090 // Some intrinsics have a scalar argument - don't replace it with a 5091 // vector. 5092 Value *Arg; 5093 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5094 Arg = State.get(I.value(), Part); 5095 else 5096 Arg = State.get(I.value(), VPIteration(0, 0)); 5097 Args.push_back(Arg); 5098 } 5099 5100 Function *VectorF; 5101 if (UseVectorIntrinsic) { 5102 // Use vector version of the intrinsic. 5103 Type *TysForDecl[] = {CI->getType()}; 5104 if (VF.isVector()) 5105 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5106 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5107 assert(VectorF && "Can't retrieve vector intrinsic."); 5108 } else { 5109 // Use vector version of the function call. 5110 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5111 #ifndef NDEBUG 5112 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5113 "Can't create vector function."); 5114 #endif 5115 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5116 } 5117 SmallVector<OperandBundleDef, 1> OpBundles; 5118 CI->getOperandBundlesAsDefs(OpBundles); 5119 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5120 5121 if (isa<FPMathOperator>(V)) 5122 V->copyFastMathFlags(CI); 5123 5124 State.set(Def, V, Part); 5125 addMetadata(V, &I); 5126 } 5127 } 5128 5129 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5130 VPUser &Operands, 5131 bool InvariantCond, 5132 VPTransformState &State) { 5133 setDebugLocFromInst(Builder, &I); 5134 5135 // The condition can be loop invariant but still defined inside the 5136 // loop. This means that we can't just use the original 'cond' value. 5137 // We have to take the 'vectorized' value and pick the first lane. 5138 // Instcombine will make this a no-op. 5139 auto *InvarCond = InvariantCond 5140 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5141 : nullptr; 5142 5143 for (unsigned Part = 0; Part < UF; ++Part) { 5144 Value *Cond = 5145 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5146 Value *Op0 = State.get(Operands.getOperand(1), Part); 5147 Value *Op1 = State.get(Operands.getOperand(2), Part); 5148 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5149 State.set(VPDef, Sel, Part); 5150 addMetadata(Sel, &I); 5151 } 5152 } 5153 5154 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5155 // We should not collect Scalars more than once per VF. Right now, this 5156 // function is called from collectUniformsAndScalars(), which already does 5157 // this check. Collecting Scalars for VF=1 does not make any sense. 5158 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5159 "This function should not be visited twice for the same VF"); 5160 5161 SmallSetVector<Instruction *, 8> Worklist; 5162 5163 // These sets are used to seed the analysis with pointers used by memory 5164 // accesses that will remain scalar. 5165 SmallSetVector<Instruction *, 8> ScalarPtrs; 5166 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5167 auto *Latch = TheLoop->getLoopLatch(); 5168 5169 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5170 // The pointer operands of loads and stores will be scalar as long as the 5171 // memory access is not a gather or scatter operation. The value operand of a 5172 // store will remain scalar if the store is scalarized. 5173 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5174 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5175 assert(WideningDecision != CM_Unknown && 5176 "Widening decision should be ready at this moment"); 5177 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5178 if (Ptr == Store->getValueOperand()) 5179 return WideningDecision == CM_Scalarize; 5180 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5181 "Ptr is neither a value or pointer operand"); 5182 return WideningDecision != CM_GatherScatter; 5183 }; 5184 5185 // A helper that returns true if the given value is a bitcast or 5186 // getelementptr instruction contained in the loop. 5187 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5188 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5189 isa<GetElementPtrInst>(V)) && 5190 !TheLoop->isLoopInvariant(V); 5191 }; 5192 5193 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5194 if (!isa<PHINode>(Ptr) || 5195 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5196 return false; 5197 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5198 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5199 return false; 5200 return isScalarUse(MemAccess, Ptr); 5201 }; 5202 5203 // A helper that evaluates a memory access's use of a pointer. If the 5204 // pointer is actually the pointer induction of a loop, it is being 5205 // inserted into Worklist. If the use will be a scalar use, and the 5206 // pointer is only used by memory accesses, we place the pointer in 5207 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5208 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5209 if (isScalarPtrInduction(MemAccess, Ptr)) { 5210 Worklist.insert(cast<Instruction>(Ptr)); 5211 Instruction *Update = cast<Instruction>( 5212 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5213 Worklist.insert(Update); 5214 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5215 << "\n"); 5216 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 5217 << "\n"); 5218 return; 5219 } 5220 // We only care about bitcast and getelementptr instructions contained in 5221 // the loop. 5222 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5223 return; 5224 5225 // If the pointer has already been identified as scalar (e.g., if it was 5226 // also identified as uniform), there's nothing to do. 5227 auto *I = cast<Instruction>(Ptr); 5228 if (Worklist.count(I)) 5229 return; 5230 5231 // If the use of the pointer will be a scalar use, and all users of the 5232 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5233 // place the pointer in PossibleNonScalarPtrs. 5234 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5235 return isa<LoadInst>(U) || isa<StoreInst>(U); 5236 })) 5237 ScalarPtrs.insert(I); 5238 else 5239 PossibleNonScalarPtrs.insert(I); 5240 }; 5241 5242 // We seed the scalars analysis with three classes of instructions: (1) 5243 // instructions marked uniform-after-vectorization and (2) bitcast, 5244 // getelementptr and (pointer) phi instructions used by memory accesses 5245 // requiring a scalar use. 5246 // 5247 // (1) Add to the worklist all instructions that have been identified as 5248 // uniform-after-vectorization. 5249 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5250 5251 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5252 // memory accesses requiring a scalar use. The pointer operands of loads and 5253 // stores will be scalar as long as the memory accesses is not a gather or 5254 // scatter operation. The value operand of a store will remain scalar if the 5255 // store is scalarized. 5256 for (auto *BB : TheLoop->blocks()) 5257 for (auto &I : *BB) { 5258 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5259 evaluatePtrUse(Load, Load->getPointerOperand()); 5260 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5261 evaluatePtrUse(Store, Store->getPointerOperand()); 5262 evaluatePtrUse(Store, Store->getValueOperand()); 5263 } 5264 } 5265 for (auto *I : ScalarPtrs) 5266 if (!PossibleNonScalarPtrs.count(I)) { 5267 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5268 Worklist.insert(I); 5269 } 5270 5271 // Insert the forced scalars. 5272 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5273 // induction variable when the PHI user is scalarized. 5274 auto ForcedScalar = ForcedScalars.find(VF); 5275 if (ForcedScalar != ForcedScalars.end()) 5276 for (auto *I : ForcedScalar->second) 5277 Worklist.insert(I); 5278 5279 // Expand the worklist by looking through any bitcasts and getelementptr 5280 // instructions we've already identified as scalar. This is similar to the 5281 // expansion step in collectLoopUniforms(); however, here we're only 5282 // expanding to include additional bitcasts and getelementptr instructions. 5283 unsigned Idx = 0; 5284 while (Idx != Worklist.size()) { 5285 Instruction *Dst = Worklist[Idx++]; 5286 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5287 continue; 5288 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5289 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5290 auto *J = cast<Instruction>(U); 5291 return !TheLoop->contains(J) || Worklist.count(J) || 5292 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5293 isScalarUse(J, Src)); 5294 })) { 5295 Worklist.insert(Src); 5296 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5297 } 5298 } 5299 5300 // An induction variable will remain scalar if all users of the induction 5301 // variable and induction variable update remain scalar. 5302 for (auto &Induction : Legal->getInductionVars()) { 5303 auto *Ind = Induction.first; 5304 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5305 5306 // If tail-folding is applied, the primary induction variable will be used 5307 // to feed a vector compare. 5308 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5309 continue; 5310 5311 // Determine if all users of the induction variable are scalar after 5312 // vectorization. 5313 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5314 auto *I = cast<Instruction>(U); 5315 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5316 }); 5317 if (!ScalarInd) 5318 continue; 5319 5320 // Determine if all users of the induction variable update instruction are 5321 // scalar after vectorization. 5322 auto ScalarIndUpdate = 5323 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5324 auto *I = cast<Instruction>(U); 5325 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5326 }); 5327 if (!ScalarIndUpdate) 5328 continue; 5329 5330 // The induction variable and its update instruction will remain scalar. 5331 Worklist.insert(Ind); 5332 Worklist.insert(IndUpdate); 5333 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5334 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5335 << "\n"); 5336 } 5337 5338 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5339 } 5340 5341 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5342 if (!blockNeedsPredication(I->getParent())) 5343 return false; 5344 switch(I->getOpcode()) { 5345 default: 5346 break; 5347 case Instruction::Load: 5348 case Instruction::Store: { 5349 if (!Legal->isMaskRequired(I)) 5350 return false; 5351 auto *Ptr = getLoadStorePointerOperand(I); 5352 auto *Ty = getMemInstValueType(I); 5353 const Align Alignment = getLoadStoreAlignment(I); 5354 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5355 isLegalMaskedGather(Ty, Alignment)) 5356 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5357 isLegalMaskedScatter(Ty, Alignment)); 5358 } 5359 case Instruction::UDiv: 5360 case Instruction::SDiv: 5361 case Instruction::SRem: 5362 case Instruction::URem: 5363 return mayDivideByZero(*I); 5364 } 5365 return false; 5366 } 5367 5368 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5369 Instruction *I, ElementCount VF) { 5370 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5371 assert(getWideningDecision(I, VF) == CM_Unknown && 5372 "Decision should not be set yet."); 5373 auto *Group = getInterleavedAccessGroup(I); 5374 assert(Group && "Must have a group."); 5375 5376 // If the instruction's allocated size doesn't equal it's type size, it 5377 // requires padding and will be scalarized. 5378 auto &DL = I->getModule()->getDataLayout(); 5379 auto *ScalarTy = getMemInstValueType(I); 5380 if (hasIrregularType(ScalarTy, DL)) 5381 return false; 5382 5383 // Check if masking is required. 5384 // A Group may need masking for one of two reasons: it resides in a block that 5385 // needs predication, or it was decided to use masking to deal with gaps. 5386 bool PredicatedAccessRequiresMasking = 5387 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5388 bool AccessWithGapsRequiresMasking = 5389 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5390 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5391 return true; 5392 5393 // If masked interleaving is required, we expect that the user/target had 5394 // enabled it, because otherwise it either wouldn't have been created or 5395 // it should have been invalidated by the CostModel. 5396 assert(useMaskedInterleavedAccesses(TTI) && 5397 "Masked interleave-groups for predicated accesses are not enabled."); 5398 5399 auto *Ty = getMemInstValueType(I); 5400 const Align Alignment = getLoadStoreAlignment(I); 5401 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5402 : TTI.isLegalMaskedStore(Ty, Alignment); 5403 } 5404 5405 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5406 Instruction *I, ElementCount VF) { 5407 // Get and ensure we have a valid memory instruction. 5408 LoadInst *LI = dyn_cast<LoadInst>(I); 5409 StoreInst *SI = dyn_cast<StoreInst>(I); 5410 assert((LI || SI) && "Invalid memory instruction"); 5411 5412 auto *Ptr = getLoadStorePointerOperand(I); 5413 5414 // In order to be widened, the pointer should be consecutive, first of all. 5415 if (!Legal->isConsecutivePtr(Ptr)) 5416 return false; 5417 5418 // If the instruction is a store located in a predicated block, it will be 5419 // scalarized. 5420 if (isScalarWithPredication(I)) 5421 return false; 5422 5423 // If the instruction's allocated size doesn't equal it's type size, it 5424 // requires padding and will be scalarized. 5425 auto &DL = I->getModule()->getDataLayout(); 5426 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5427 if (hasIrregularType(ScalarTy, DL)) 5428 return false; 5429 5430 return true; 5431 } 5432 5433 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5434 // We should not collect Uniforms more than once per VF. Right now, 5435 // this function is called from collectUniformsAndScalars(), which 5436 // already does this check. Collecting Uniforms for VF=1 does not make any 5437 // sense. 5438 5439 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5440 "This function should not be visited twice for the same VF"); 5441 5442 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5443 // not analyze again. Uniforms.count(VF) will return 1. 5444 Uniforms[VF].clear(); 5445 5446 // We now know that the loop is vectorizable! 5447 // Collect instructions inside the loop that will remain uniform after 5448 // vectorization. 5449 5450 // Global values, params and instructions outside of current loop are out of 5451 // scope. 5452 auto isOutOfScope = [&](Value *V) -> bool { 5453 Instruction *I = dyn_cast<Instruction>(V); 5454 return (!I || !TheLoop->contains(I)); 5455 }; 5456 5457 SetVector<Instruction *> Worklist; 5458 BasicBlock *Latch = TheLoop->getLoopLatch(); 5459 5460 // Instructions that are scalar with predication must not be considered 5461 // uniform after vectorization, because that would create an erroneous 5462 // replicating region where only a single instance out of VF should be formed. 5463 // TODO: optimize such seldom cases if found important, see PR40816. 5464 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5465 if (isOutOfScope(I)) { 5466 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5467 << *I << "\n"); 5468 return; 5469 } 5470 if (isScalarWithPredication(I)) { 5471 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5472 << *I << "\n"); 5473 return; 5474 } 5475 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5476 Worklist.insert(I); 5477 }; 5478 5479 // Start with the conditional branch. If the branch condition is an 5480 // instruction contained in the loop that is only used by the branch, it is 5481 // uniform. 5482 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5483 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5484 addToWorklistIfAllowed(Cmp); 5485 5486 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5487 InstWidening WideningDecision = getWideningDecision(I, VF); 5488 assert(WideningDecision != CM_Unknown && 5489 "Widening decision should be ready at this moment"); 5490 5491 // A uniform memory op is itself uniform. We exclude uniform stores 5492 // here as they demand the last lane, not the first one. 5493 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5494 assert(WideningDecision == CM_Scalarize); 5495 return true; 5496 } 5497 5498 return (WideningDecision == CM_Widen || 5499 WideningDecision == CM_Widen_Reverse || 5500 WideningDecision == CM_Interleave); 5501 }; 5502 5503 5504 // Returns true if Ptr is the pointer operand of a memory access instruction 5505 // I, and I is known to not require scalarization. 5506 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5507 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5508 }; 5509 5510 // Holds a list of values which are known to have at least one uniform use. 5511 // Note that there may be other uses which aren't uniform. A "uniform use" 5512 // here is something which only demands lane 0 of the unrolled iterations; 5513 // it does not imply that all lanes produce the same value (e.g. this is not 5514 // the usual meaning of uniform) 5515 SetVector<Value *> HasUniformUse; 5516 5517 // Scan the loop for instructions which are either a) known to have only 5518 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5519 for (auto *BB : TheLoop->blocks()) 5520 for (auto &I : *BB) { 5521 // If there's no pointer operand, there's nothing to do. 5522 auto *Ptr = getLoadStorePointerOperand(&I); 5523 if (!Ptr) 5524 continue; 5525 5526 // A uniform memory op is itself uniform. We exclude uniform stores 5527 // here as they demand the last lane, not the first one. 5528 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5529 addToWorklistIfAllowed(&I); 5530 5531 if (isUniformDecision(&I, VF)) { 5532 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5533 HasUniformUse.insert(Ptr); 5534 } 5535 } 5536 5537 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5538 // demanding) users. Since loops are assumed to be in LCSSA form, this 5539 // disallows uses outside the loop as well. 5540 for (auto *V : HasUniformUse) { 5541 if (isOutOfScope(V)) 5542 continue; 5543 auto *I = cast<Instruction>(V); 5544 auto UsersAreMemAccesses = 5545 llvm::all_of(I->users(), [&](User *U) -> bool { 5546 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5547 }); 5548 if (UsersAreMemAccesses) 5549 addToWorklistIfAllowed(I); 5550 } 5551 5552 // Expand Worklist in topological order: whenever a new instruction 5553 // is added , its users should be already inside Worklist. It ensures 5554 // a uniform instruction will only be used by uniform instructions. 5555 unsigned idx = 0; 5556 while (idx != Worklist.size()) { 5557 Instruction *I = Worklist[idx++]; 5558 5559 for (auto OV : I->operand_values()) { 5560 // isOutOfScope operands cannot be uniform instructions. 5561 if (isOutOfScope(OV)) 5562 continue; 5563 // First order recurrence Phi's should typically be considered 5564 // non-uniform. 5565 auto *OP = dyn_cast<PHINode>(OV); 5566 if (OP && Legal->isFirstOrderRecurrence(OP)) 5567 continue; 5568 // If all the users of the operand are uniform, then add the 5569 // operand into the uniform worklist. 5570 auto *OI = cast<Instruction>(OV); 5571 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5572 auto *J = cast<Instruction>(U); 5573 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5574 })) 5575 addToWorklistIfAllowed(OI); 5576 } 5577 } 5578 5579 // For an instruction to be added into Worklist above, all its users inside 5580 // the loop should also be in Worklist. However, this condition cannot be 5581 // true for phi nodes that form a cyclic dependence. We must process phi 5582 // nodes separately. An induction variable will remain uniform if all users 5583 // of the induction variable and induction variable update remain uniform. 5584 // The code below handles both pointer and non-pointer induction variables. 5585 for (auto &Induction : Legal->getInductionVars()) { 5586 auto *Ind = Induction.first; 5587 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5588 5589 // Determine if all users of the induction variable are uniform after 5590 // vectorization. 5591 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5592 auto *I = cast<Instruction>(U); 5593 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5594 isVectorizedMemAccessUse(I, Ind); 5595 }); 5596 if (!UniformInd) 5597 continue; 5598 5599 // Determine if all users of the induction variable update instruction are 5600 // uniform after vectorization. 5601 auto UniformIndUpdate = 5602 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5603 auto *I = cast<Instruction>(U); 5604 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5605 isVectorizedMemAccessUse(I, IndUpdate); 5606 }); 5607 if (!UniformIndUpdate) 5608 continue; 5609 5610 // The induction variable and its update instruction will remain uniform. 5611 addToWorklistIfAllowed(Ind); 5612 addToWorklistIfAllowed(IndUpdate); 5613 } 5614 5615 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5616 } 5617 5618 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5619 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5620 5621 if (Legal->getRuntimePointerChecking()->Need) { 5622 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5623 "runtime pointer checks needed. Enable vectorization of this " 5624 "loop with '#pragma clang loop vectorize(enable)' when " 5625 "compiling with -Os/-Oz", 5626 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5627 return true; 5628 } 5629 5630 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5631 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5632 "runtime SCEV checks needed. Enable vectorization of this " 5633 "loop with '#pragma clang loop vectorize(enable)' when " 5634 "compiling with -Os/-Oz", 5635 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5636 return true; 5637 } 5638 5639 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5640 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5641 reportVectorizationFailure("Runtime stride check for small trip count", 5642 "runtime stride == 1 checks needed. Enable vectorization of " 5643 "this loop without such check by compiling with -Os/-Oz", 5644 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5645 return true; 5646 } 5647 5648 return false; 5649 } 5650 5651 ElementCount 5652 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5653 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5654 reportVectorizationInfo( 5655 "Disabling scalable vectorization, because target does not " 5656 "support scalable vectors.", 5657 "ScalableVectorsUnsupported", ORE, TheLoop); 5658 return ElementCount::getScalable(0); 5659 } 5660 5661 if (Hints->isScalableVectorizationDisabled()) { 5662 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5663 "ScalableVectorizationDisabled", ORE, TheLoop); 5664 return ElementCount::getScalable(0); 5665 } 5666 5667 auto MaxScalableVF = ElementCount::getScalable( 5668 std::numeric_limits<ElementCount::ScalarTy>::max()); 5669 5670 // Disable scalable vectorization if the loop contains unsupported reductions. 5671 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5672 // FIXME: While for scalable vectors this is currently sufficient, this should 5673 // be replaced by a more detailed mechanism that filters out specific VFs, 5674 // instead of invalidating vectorization for a whole set of VFs based on the 5675 // MaxVF. 5676 if (!canVectorizeReductions(MaxScalableVF)) { 5677 reportVectorizationInfo( 5678 "Scalable vectorization not supported for the reduction " 5679 "operations found in this loop.", 5680 "ScalableVFUnfeasible", ORE, TheLoop); 5681 return ElementCount::getScalable(0); 5682 } 5683 5684 if (Legal->isSafeForAnyVectorWidth()) 5685 return MaxScalableVF; 5686 5687 // Limit MaxScalableVF by the maximum safe dependence distance. 5688 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5689 MaxScalableVF = ElementCount::getScalable( 5690 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5691 if (!MaxScalableVF) 5692 reportVectorizationInfo( 5693 "Max legal vector width too small, scalable vectorization " 5694 "unfeasible.", 5695 "ScalableVFUnfeasible", ORE, TheLoop); 5696 5697 return MaxScalableVF; 5698 } 5699 5700 FixedScalableVFPair 5701 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5702 ElementCount UserVF) { 5703 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5704 unsigned SmallestType, WidestType; 5705 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5706 5707 // Get the maximum safe dependence distance in bits computed by LAA. 5708 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5709 // the memory accesses that is most restrictive (involved in the smallest 5710 // dependence distance). 5711 unsigned MaxSafeElements = 5712 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5713 5714 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5715 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5716 5717 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5718 << ".\n"); 5719 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5720 << ".\n"); 5721 5722 // First analyze the UserVF, fall back if the UserVF should be ignored. 5723 if (UserVF) { 5724 auto MaxSafeUserVF = 5725 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5726 5727 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) 5728 return UserVF; 5729 5730 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5731 5732 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5733 // is better to ignore the hint and let the compiler choose a suitable VF. 5734 if (!UserVF.isScalable()) { 5735 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5736 << " is unsafe, clamping to max safe VF=" 5737 << MaxSafeFixedVF << ".\n"); 5738 ORE->emit([&]() { 5739 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5740 TheLoop->getStartLoc(), 5741 TheLoop->getHeader()) 5742 << "User-specified vectorization factor " 5743 << ore::NV("UserVectorizationFactor", UserVF) 5744 << " is unsafe, clamping to maximum safe vectorization factor " 5745 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5746 }); 5747 return MaxSafeFixedVF; 5748 } 5749 5750 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5751 << " is unsafe. Ignoring scalable UserVF.\n"); 5752 ORE->emit([&]() { 5753 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5754 TheLoop->getStartLoc(), 5755 TheLoop->getHeader()) 5756 << "User-specified vectorization factor " 5757 << ore::NV("UserVectorizationFactor", UserVF) 5758 << " is unsafe. Ignoring the hint to let the compiler pick a " 5759 "suitable VF."; 5760 }); 5761 } 5762 5763 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5764 << " / " << WidestType << " bits.\n"); 5765 5766 FixedScalableVFPair Result(ElementCount::getFixed(1), 5767 ElementCount::getScalable(0)); 5768 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5769 WidestType, MaxSafeFixedVF)) 5770 Result.FixedVF = MaxVF; 5771 5772 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5773 WidestType, MaxSafeScalableVF)) 5774 if (MaxVF.isScalable()) { 5775 Result.ScalableVF = MaxVF; 5776 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5777 << "\n"); 5778 } 5779 5780 return Result; 5781 } 5782 5783 FixedScalableVFPair 5784 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5785 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5786 // TODO: It may by useful to do since it's still likely to be dynamically 5787 // uniform if the target can skip. 5788 reportVectorizationFailure( 5789 "Not inserting runtime ptr check for divergent target", 5790 "runtime pointer checks needed. Not enabled for divergent target", 5791 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5792 return FixedScalableVFPair::getNone(); 5793 } 5794 5795 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5796 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5797 if (TC == 1) { 5798 reportVectorizationFailure("Single iteration (non) loop", 5799 "loop trip count is one, irrelevant for vectorization", 5800 "SingleIterationLoop", ORE, TheLoop); 5801 return FixedScalableVFPair::getNone(); 5802 } 5803 5804 switch (ScalarEpilogueStatus) { 5805 case CM_ScalarEpilogueAllowed: 5806 return computeFeasibleMaxVF(TC, UserVF); 5807 case CM_ScalarEpilogueNotAllowedUsePredicate: 5808 LLVM_FALLTHROUGH; 5809 case CM_ScalarEpilogueNotNeededUsePredicate: 5810 LLVM_DEBUG( 5811 dbgs() << "LV: vector predicate hint/switch found.\n" 5812 << "LV: Not allowing scalar epilogue, creating predicated " 5813 << "vector loop.\n"); 5814 break; 5815 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5816 // fallthrough as a special case of OptForSize 5817 case CM_ScalarEpilogueNotAllowedOptSize: 5818 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5819 LLVM_DEBUG( 5820 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5821 else 5822 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5823 << "count.\n"); 5824 5825 // Bail if runtime checks are required, which are not good when optimising 5826 // for size. 5827 if (runtimeChecksRequired()) 5828 return FixedScalableVFPair::getNone(); 5829 5830 break; 5831 } 5832 5833 // The only loops we can vectorize without a scalar epilogue, are loops with 5834 // a bottom-test and a single exiting block. We'd have to handle the fact 5835 // that not every instruction executes on the last iteration. This will 5836 // require a lane mask which varies through the vector loop body. (TODO) 5837 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5838 // If there was a tail-folding hint/switch, but we can't fold the tail by 5839 // masking, fallback to a vectorization with a scalar epilogue. 5840 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5841 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5842 "scalar epilogue instead.\n"); 5843 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5844 return computeFeasibleMaxVF(TC, UserVF); 5845 } 5846 return FixedScalableVFPair::getNone(); 5847 } 5848 5849 // Now try the tail folding 5850 5851 // Invalidate interleave groups that require an epilogue if we can't mask 5852 // the interleave-group. 5853 if (!useMaskedInterleavedAccesses(TTI)) { 5854 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5855 "No decisions should have been taken at this point"); 5856 // Note: There is no need to invalidate any cost modeling decisions here, as 5857 // non where taken so far. 5858 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5859 } 5860 5861 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5862 // Avoid tail folding if the trip count is known to be a multiple of any VF 5863 // we chose. 5864 // FIXME: The condition below pessimises the case for fixed-width vectors, 5865 // when scalable VFs are also candidates for vectorization. 5866 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5867 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5868 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5869 "MaxFixedVF must be a power of 2"); 5870 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5871 : MaxFixedVF.getFixedValue(); 5872 ScalarEvolution *SE = PSE.getSE(); 5873 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5874 const SCEV *ExitCount = SE->getAddExpr( 5875 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5876 const SCEV *Rem = SE->getURemExpr( 5877 SE->applyLoopGuards(ExitCount, TheLoop), 5878 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5879 if (Rem->isZero()) { 5880 // Accept MaxFixedVF if we do not have a tail. 5881 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5882 return MaxFactors; 5883 } 5884 } 5885 5886 // If we don't know the precise trip count, or if the trip count that we 5887 // found modulo the vectorization factor is not zero, try to fold the tail 5888 // by masking. 5889 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5890 if (Legal->prepareToFoldTailByMasking()) { 5891 FoldTailByMasking = true; 5892 return MaxFactors; 5893 } 5894 5895 // If there was a tail-folding hint/switch, but we can't fold the tail by 5896 // masking, fallback to a vectorization with a scalar epilogue. 5897 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5898 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5899 "scalar epilogue instead.\n"); 5900 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5901 return MaxFactors; 5902 } 5903 5904 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5905 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5906 return FixedScalableVFPair::getNone(); 5907 } 5908 5909 if (TC == 0) { 5910 reportVectorizationFailure( 5911 "Unable to calculate the loop count due to complex control flow", 5912 "unable to calculate the loop count due to complex control flow", 5913 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5914 return FixedScalableVFPair::getNone(); 5915 } 5916 5917 reportVectorizationFailure( 5918 "Cannot optimize for size and vectorize at the same time.", 5919 "cannot optimize for size and vectorize at the same time. " 5920 "Enable vectorization of this loop with '#pragma clang loop " 5921 "vectorize(enable)' when compiling with -Os/-Oz", 5922 "NoTailLoopWithOptForSize", ORE, TheLoop); 5923 return FixedScalableVFPair::getNone(); 5924 } 5925 5926 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5927 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5928 const ElementCount &MaxSafeVF) { 5929 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5930 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5931 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5932 : TargetTransformInfo::RGK_FixedWidthVector); 5933 5934 // Convenience function to return the minimum of two ElementCounts. 5935 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5936 assert((LHS.isScalable() == RHS.isScalable()) && 5937 "Scalable flags must match"); 5938 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5939 }; 5940 5941 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5942 // Note that both WidestRegister and WidestType may not be a powers of 2. 5943 auto MaxVectorElementCount = ElementCount::get( 5944 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5945 ComputeScalableMaxVF); 5946 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5947 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5948 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5949 5950 if (!MaxVectorElementCount) { 5951 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5952 return ElementCount::getFixed(1); 5953 } 5954 5955 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5956 if (ConstTripCount && 5957 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5958 isPowerOf2_32(ConstTripCount)) { 5959 // We need to clamp the VF to be the ConstTripCount. There is no point in 5960 // choosing a higher viable VF as done in the loop below. If 5961 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5962 // the TC is less than or equal to the known number of lanes. 5963 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5964 << ConstTripCount << "\n"); 5965 return TripCountEC; 5966 } 5967 5968 ElementCount MaxVF = MaxVectorElementCount; 5969 if (TTI.shouldMaximizeVectorBandwidth() || 5970 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5971 auto MaxVectorElementCountMaxBW = ElementCount::get( 5972 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5973 ComputeScalableMaxVF); 5974 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5975 5976 // Collect all viable vectorization factors larger than the default MaxVF 5977 // (i.e. MaxVectorElementCount). 5978 SmallVector<ElementCount, 8> VFs; 5979 for (ElementCount VS = MaxVectorElementCount * 2; 5980 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5981 VFs.push_back(VS); 5982 5983 // For each VF calculate its register usage. 5984 auto RUs = calculateRegisterUsage(VFs); 5985 5986 // Select the largest VF which doesn't require more registers than existing 5987 // ones. 5988 for (int i = RUs.size() - 1; i >= 0; --i) { 5989 bool Selected = true; 5990 for (auto &pair : RUs[i].MaxLocalUsers) { 5991 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5992 if (pair.second > TargetNumRegisters) 5993 Selected = false; 5994 } 5995 if (Selected) { 5996 MaxVF = VFs[i]; 5997 break; 5998 } 5999 } 6000 if (ElementCount MinVF = 6001 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 6002 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 6003 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 6004 << ") with target's minimum: " << MinVF << '\n'); 6005 MaxVF = MinVF; 6006 } 6007 } 6008 } 6009 return MaxVF; 6010 } 6011 6012 bool LoopVectorizationCostModel::isMoreProfitable( 6013 const VectorizationFactor &A, const VectorizationFactor &B) const { 6014 InstructionCost::CostType CostA = *A.Cost.getValue(); 6015 InstructionCost::CostType CostB = *B.Cost.getValue(); 6016 6017 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 6018 6019 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 6020 MaxTripCount) { 6021 // If we are folding the tail and the trip count is a known (possibly small) 6022 // constant, the trip count will be rounded up to an integer number of 6023 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 6024 // which we compare directly. When not folding the tail, the total cost will 6025 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 6026 // approximated with the per-lane cost below instead of using the tripcount 6027 // as here. 6028 int64_t RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 6029 int64_t RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 6030 return RTCostA < RTCostB; 6031 } 6032 6033 // To avoid the need for FP division: 6034 // (CostA / A.Width) < (CostB / B.Width) 6035 // <=> (CostA * B.Width) < (CostB * A.Width) 6036 return (CostA * B.Width.getKnownMinValue()) < 6037 (CostB * A.Width.getKnownMinValue()); 6038 } 6039 6040 VectorizationFactor 6041 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 6042 // FIXME: This can be fixed for scalable vectors later, because at this stage 6043 // the LoopVectorizer will only consider vectorizing a loop with scalable 6044 // vectors when the loop has a hint to enable vectorization for a given VF. 6045 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 6046 6047 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6048 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6049 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6050 6051 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6052 VectorizationFactor ChosenFactor = ScalarCost; 6053 6054 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6055 if (ForceVectorization && MaxVF.isVector()) { 6056 // Ignore scalar width, because the user explicitly wants vectorization. 6057 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6058 // evaluation. 6059 ChosenFactor.Cost = std::numeric_limits<InstructionCost::CostType>::max(); 6060 } 6061 6062 for (auto i = ElementCount::getFixed(2); ElementCount::isKnownLE(i, MaxVF); 6063 i *= 2) { 6064 // Notice that the vector loop needs to be executed less times, so 6065 // we need to divide the cost of the vector loops by the width of 6066 // the vector elements. 6067 VectorizationCostTy C = expectedCost(i); 6068 6069 assert(C.first.isValid() && "Unexpected invalid cost for vector loop"); 6070 VectorizationFactor Candidate(i, C.first); 6071 LLVM_DEBUG( 6072 dbgs() << "LV: Vector loop of width " << i << " costs: " 6073 << (*Candidate.Cost.getValue() / Candidate.Width.getFixedValue()) 6074 << ".\n"); 6075 6076 if (!C.second && !ForceVectorization) { 6077 LLVM_DEBUG( 6078 dbgs() << "LV: Not considering vector loop of width " << i 6079 << " because it will not generate any vector instructions.\n"); 6080 continue; 6081 } 6082 6083 // If profitable add it to ProfitableVF list. 6084 if (isMoreProfitable(Candidate, ScalarCost)) 6085 ProfitableVFs.push_back(Candidate); 6086 6087 if (isMoreProfitable(Candidate, ChosenFactor)) 6088 ChosenFactor = Candidate; 6089 } 6090 6091 if (!EnableCondStoresVectorization && NumPredStores) { 6092 reportVectorizationFailure("There are conditional stores.", 6093 "store that is conditionally executed prevents vectorization", 6094 "ConditionalStore", ORE, TheLoop); 6095 ChosenFactor = ScalarCost; 6096 } 6097 6098 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6099 *ChosenFactor.Cost.getValue() >= *ScalarCost.Cost.getValue()) 6100 dbgs() 6101 << "LV: Vectorization seems to be not beneficial, " 6102 << "but was forced by a user.\n"); 6103 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6104 return ChosenFactor; 6105 } 6106 6107 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6108 const Loop &L, ElementCount VF) const { 6109 // Cross iteration phis such as reductions need special handling and are 6110 // currently unsupported. 6111 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6112 return Legal->isFirstOrderRecurrence(&Phi) || 6113 Legal->isReductionVariable(&Phi); 6114 })) 6115 return false; 6116 6117 // Phis with uses outside of the loop require special handling and are 6118 // currently unsupported. 6119 for (auto &Entry : Legal->getInductionVars()) { 6120 // Look for uses of the value of the induction at the last iteration. 6121 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6122 for (User *U : PostInc->users()) 6123 if (!L.contains(cast<Instruction>(U))) 6124 return false; 6125 // Look for uses of penultimate value of the induction. 6126 for (User *U : Entry.first->users()) 6127 if (!L.contains(cast<Instruction>(U))) 6128 return false; 6129 } 6130 6131 // Induction variables that are widened require special handling that is 6132 // currently not supported. 6133 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6134 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6135 this->isProfitableToScalarize(Entry.first, VF)); 6136 })) 6137 return false; 6138 6139 return true; 6140 } 6141 6142 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6143 const ElementCount VF) const { 6144 // FIXME: We need a much better cost-model to take different parameters such 6145 // as register pressure, code size increase and cost of extra branches into 6146 // account. For now we apply a very crude heuristic and only consider loops 6147 // with vectorization factors larger than a certain value. 6148 // We also consider epilogue vectorization unprofitable for targets that don't 6149 // consider interleaving beneficial (eg. MVE). 6150 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6151 return false; 6152 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6153 return true; 6154 return false; 6155 } 6156 6157 VectorizationFactor 6158 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6159 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6160 VectorizationFactor Result = VectorizationFactor::Disabled(); 6161 if (!EnableEpilogueVectorization) { 6162 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6163 return Result; 6164 } 6165 6166 if (!isScalarEpilogueAllowed()) { 6167 LLVM_DEBUG( 6168 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6169 "allowed.\n";); 6170 return Result; 6171 } 6172 6173 // FIXME: This can be fixed for scalable vectors later, because at this stage 6174 // the LoopVectorizer will only consider vectorizing a loop with scalable 6175 // vectors when the loop has a hint to enable vectorization for a given VF. 6176 if (MainLoopVF.isScalable()) { 6177 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6178 "yet supported.\n"); 6179 return Result; 6180 } 6181 6182 // Not really a cost consideration, but check for unsupported cases here to 6183 // simplify the logic. 6184 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6185 LLVM_DEBUG( 6186 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6187 "not a supported candidate.\n";); 6188 return Result; 6189 } 6190 6191 if (EpilogueVectorizationForceVF > 1) { 6192 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6193 if (LVP.hasPlanWithVFs( 6194 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 6195 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 6196 else { 6197 LLVM_DEBUG( 6198 dbgs() 6199 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6200 return Result; 6201 } 6202 } 6203 6204 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6205 TheLoop->getHeader()->getParent()->hasMinSize()) { 6206 LLVM_DEBUG( 6207 dbgs() 6208 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6209 return Result; 6210 } 6211 6212 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6213 return Result; 6214 6215 for (auto &NextVF : ProfitableVFs) 6216 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6217 (Result.Width.getFixedValue() == 1 || 6218 isMoreProfitable(NextVF, Result)) && 6219 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6220 Result = NextVF; 6221 6222 if (Result != VectorizationFactor::Disabled()) 6223 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6224 << Result.Width.getFixedValue() << "\n";); 6225 return Result; 6226 } 6227 6228 std::pair<unsigned, unsigned> 6229 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6230 unsigned MinWidth = -1U; 6231 unsigned MaxWidth = 8; 6232 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6233 6234 // For each block. 6235 for (BasicBlock *BB : TheLoop->blocks()) { 6236 // For each instruction in the loop. 6237 for (Instruction &I : BB->instructionsWithoutDebug()) { 6238 Type *T = I.getType(); 6239 6240 // Skip ignored values. 6241 if (ValuesToIgnore.count(&I)) 6242 continue; 6243 6244 // Only examine Loads, Stores and PHINodes. 6245 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6246 continue; 6247 6248 // Examine PHI nodes that are reduction variables. Update the type to 6249 // account for the recurrence type. 6250 if (auto *PN = dyn_cast<PHINode>(&I)) { 6251 if (!Legal->isReductionVariable(PN)) 6252 continue; 6253 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 6254 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6255 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6256 RdxDesc.getRecurrenceType(), 6257 TargetTransformInfo::ReductionFlags())) 6258 continue; 6259 T = RdxDesc.getRecurrenceType(); 6260 } 6261 6262 // Examine the stored values. 6263 if (auto *ST = dyn_cast<StoreInst>(&I)) 6264 T = ST->getValueOperand()->getType(); 6265 6266 // Ignore loaded pointer types and stored pointer types that are not 6267 // vectorizable. 6268 // 6269 // FIXME: The check here attempts to predict whether a load or store will 6270 // be vectorized. We only know this for certain after a VF has 6271 // been selected. Here, we assume that if an access can be 6272 // vectorized, it will be. We should also look at extending this 6273 // optimization to non-pointer types. 6274 // 6275 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6276 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6277 continue; 6278 6279 MinWidth = std::min(MinWidth, 6280 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6281 MaxWidth = std::max(MaxWidth, 6282 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6283 } 6284 } 6285 6286 return {MinWidth, MaxWidth}; 6287 } 6288 6289 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6290 unsigned LoopCost) { 6291 // -- The interleave heuristics -- 6292 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6293 // There are many micro-architectural considerations that we can't predict 6294 // at this level. For example, frontend pressure (on decode or fetch) due to 6295 // code size, or the number and capabilities of the execution ports. 6296 // 6297 // We use the following heuristics to select the interleave count: 6298 // 1. If the code has reductions, then we interleave to break the cross 6299 // iteration dependency. 6300 // 2. If the loop is really small, then we interleave to reduce the loop 6301 // overhead. 6302 // 3. We don't interleave if we think that we will spill registers to memory 6303 // due to the increased register pressure. 6304 6305 if (!isScalarEpilogueAllowed()) 6306 return 1; 6307 6308 // We used the distance for the interleave count. 6309 if (Legal->getMaxSafeDepDistBytes() != -1U) 6310 return 1; 6311 6312 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6313 const bool HasReductions = !Legal->getReductionVars().empty(); 6314 // Do not interleave loops with a relatively small known or estimated trip 6315 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6316 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6317 // because with the above conditions interleaving can expose ILP and break 6318 // cross iteration dependences for reductions. 6319 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6320 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6321 return 1; 6322 6323 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6324 // We divide by these constants so assume that we have at least one 6325 // instruction that uses at least one register. 6326 for (auto& pair : R.MaxLocalUsers) { 6327 pair.second = std::max(pair.second, 1U); 6328 } 6329 6330 // We calculate the interleave count using the following formula. 6331 // Subtract the number of loop invariants from the number of available 6332 // registers. These registers are used by all of the interleaved instances. 6333 // Next, divide the remaining registers by the number of registers that is 6334 // required by the loop, in order to estimate how many parallel instances 6335 // fit without causing spills. All of this is rounded down if necessary to be 6336 // a power of two. We want power of two interleave count to simplify any 6337 // addressing operations or alignment considerations. 6338 // We also want power of two interleave counts to ensure that the induction 6339 // variable of the vector loop wraps to zero, when tail is folded by masking; 6340 // this currently happens when OptForSize, in which case IC is set to 1 above. 6341 unsigned IC = UINT_MAX; 6342 6343 for (auto& pair : R.MaxLocalUsers) { 6344 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6345 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6346 << " registers of " 6347 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6348 if (VF.isScalar()) { 6349 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6350 TargetNumRegisters = ForceTargetNumScalarRegs; 6351 } else { 6352 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6353 TargetNumRegisters = ForceTargetNumVectorRegs; 6354 } 6355 unsigned MaxLocalUsers = pair.second; 6356 unsigned LoopInvariantRegs = 0; 6357 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6358 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6359 6360 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6361 // Don't count the induction variable as interleaved. 6362 if (EnableIndVarRegisterHeur) { 6363 TmpIC = 6364 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6365 std::max(1U, (MaxLocalUsers - 1))); 6366 } 6367 6368 IC = std::min(IC, TmpIC); 6369 } 6370 6371 // Clamp the interleave ranges to reasonable counts. 6372 unsigned MaxInterleaveCount = 6373 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6374 6375 // Check if the user has overridden the max. 6376 if (VF.isScalar()) { 6377 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6378 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6379 } else { 6380 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6381 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6382 } 6383 6384 // If trip count is known or estimated compile time constant, limit the 6385 // interleave count to be less than the trip count divided by VF, provided it 6386 // is at least 1. 6387 // 6388 // For scalable vectors we can't know if interleaving is beneficial. It may 6389 // not be beneficial for small loops if none of the lanes in the second vector 6390 // iterations is enabled. However, for larger loops, there is likely to be a 6391 // similar benefit as for fixed-width vectors. For now, we choose to leave 6392 // the InterleaveCount as if vscale is '1', although if some information about 6393 // the vector is known (e.g. min vector size), we can make a better decision. 6394 if (BestKnownTC) { 6395 MaxInterleaveCount = 6396 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6397 // Make sure MaxInterleaveCount is greater than 0. 6398 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6399 } 6400 6401 assert(MaxInterleaveCount > 0 && 6402 "Maximum interleave count must be greater than 0"); 6403 6404 // Clamp the calculated IC to be between the 1 and the max interleave count 6405 // that the target and trip count allows. 6406 if (IC > MaxInterleaveCount) 6407 IC = MaxInterleaveCount; 6408 else 6409 // Make sure IC is greater than 0. 6410 IC = std::max(1u, IC); 6411 6412 assert(IC > 0 && "Interleave count must be greater than 0."); 6413 6414 // If we did not calculate the cost for VF (because the user selected the VF) 6415 // then we calculate the cost of VF here. 6416 if (LoopCost == 0) { 6417 assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); 6418 LoopCost = *expectedCost(VF).first.getValue(); 6419 } 6420 6421 assert(LoopCost && "Non-zero loop cost expected"); 6422 6423 // Interleave if we vectorized this loop and there is a reduction that could 6424 // benefit from interleaving. 6425 if (VF.isVector() && HasReductions) { 6426 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6427 return IC; 6428 } 6429 6430 // Note that if we've already vectorized the loop we will have done the 6431 // runtime check and so interleaving won't require further checks. 6432 bool InterleavingRequiresRuntimePointerCheck = 6433 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6434 6435 // We want to interleave small loops in order to reduce the loop overhead and 6436 // potentially expose ILP opportunities. 6437 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6438 << "LV: IC is " << IC << '\n' 6439 << "LV: VF is " << VF << '\n'); 6440 const bool AggressivelyInterleaveReductions = 6441 TTI.enableAggressiveInterleaving(HasReductions); 6442 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6443 // We assume that the cost overhead is 1 and we use the cost model 6444 // to estimate the cost of the loop and interleave until the cost of the 6445 // loop overhead is about 5% of the cost of the loop. 6446 unsigned SmallIC = 6447 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6448 6449 // Interleave until store/load ports (estimated by max interleave count) are 6450 // saturated. 6451 unsigned NumStores = Legal->getNumStores(); 6452 unsigned NumLoads = Legal->getNumLoads(); 6453 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6454 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6455 6456 // If we have a scalar reduction (vector reductions are already dealt with 6457 // by this point), we can increase the critical path length if the loop 6458 // we're interleaving is inside another loop. Limit, by default to 2, so the 6459 // critical path only gets increased by one reduction operation. 6460 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6461 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6462 SmallIC = std::min(SmallIC, F); 6463 StoresIC = std::min(StoresIC, F); 6464 LoadsIC = std::min(LoadsIC, F); 6465 } 6466 6467 if (EnableLoadStoreRuntimeInterleave && 6468 std::max(StoresIC, LoadsIC) > SmallIC) { 6469 LLVM_DEBUG( 6470 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6471 return std::max(StoresIC, LoadsIC); 6472 } 6473 6474 // If there are scalar reductions and TTI has enabled aggressive 6475 // interleaving for reductions, we will interleave to expose ILP. 6476 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6477 AggressivelyInterleaveReductions) { 6478 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6479 // Interleave no less than SmallIC but not as aggressive as the normal IC 6480 // to satisfy the rare situation when resources are too limited. 6481 return std::max(IC / 2, SmallIC); 6482 } else { 6483 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6484 return SmallIC; 6485 } 6486 } 6487 6488 // Interleave if this is a large loop (small loops are already dealt with by 6489 // this point) that could benefit from interleaving. 6490 if (AggressivelyInterleaveReductions) { 6491 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6492 return IC; 6493 } 6494 6495 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6496 return 1; 6497 } 6498 6499 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6500 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6501 // This function calculates the register usage by measuring the highest number 6502 // of values that are alive at a single location. Obviously, this is a very 6503 // rough estimation. We scan the loop in a topological order in order and 6504 // assign a number to each instruction. We use RPO to ensure that defs are 6505 // met before their users. We assume that each instruction that has in-loop 6506 // users starts an interval. We record every time that an in-loop value is 6507 // used, so we have a list of the first and last occurrences of each 6508 // instruction. Next, we transpose this data structure into a multi map that 6509 // holds the list of intervals that *end* at a specific location. This multi 6510 // map allows us to perform a linear search. We scan the instructions linearly 6511 // and record each time that a new interval starts, by placing it in a set. 6512 // If we find this value in the multi-map then we remove it from the set. 6513 // The max register usage is the maximum size of the set. 6514 // We also search for instructions that are defined outside the loop, but are 6515 // used inside the loop. We need this number separately from the max-interval 6516 // usage number because when we unroll, loop-invariant values do not take 6517 // more register. 6518 LoopBlocksDFS DFS(TheLoop); 6519 DFS.perform(LI); 6520 6521 RegisterUsage RU; 6522 6523 // Each 'key' in the map opens a new interval. The values 6524 // of the map are the index of the 'last seen' usage of the 6525 // instruction that is the key. 6526 using IntervalMap = DenseMap<Instruction *, unsigned>; 6527 6528 // Maps instruction to its index. 6529 SmallVector<Instruction *, 64> IdxToInstr; 6530 // Marks the end of each interval. 6531 IntervalMap EndPoint; 6532 // Saves the list of instruction indices that are used in the loop. 6533 SmallPtrSet<Instruction *, 8> Ends; 6534 // Saves the list of values that are used in the loop but are 6535 // defined outside the loop, such as arguments and constants. 6536 SmallPtrSet<Value *, 8> LoopInvariants; 6537 6538 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6539 for (Instruction &I : BB->instructionsWithoutDebug()) { 6540 IdxToInstr.push_back(&I); 6541 6542 // Save the end location of each USE. 6543 for (Value *U : I.operands()) { 6544 auto *Instr = dyn_cast<Instruction>(U); 6545 6546 // Ignore non-instruction values such as arguments, constants, etc. 6547 if (!Instr) 6548 continue; 6549 6550 // If this instruction is outside the loop then record it and continue. 6551 if (!TheLoop->contains(Instr)) { 6552 LoopInvariants.insert(Instr); 6553 continue; 6554 } 6555 6556 // Overwrite previous end points. 6557 EndPoint[Instr] = IdxToInstr.size(); 6558 Ends.insert(Instr); 6559 } 6560 } 6561 } 6562 6563 // Saves the list of intervals that end with the index in 'key'. 6564 using InstrList = SmallVector<Instruction *, 2>; 6565 DenseMap<unsigned, InstrList> TransposeEnds; 6566 6567 // Transpose the EndPoints to a list of values that end at each index. 6568 for (auto &Interval : EndPoint) 6569 TransposeEnds[Interval.second].push_back(Interval.first); 6570 6571 SmallPtrSet<Instruction *, 8> OpenIntervals; 6572 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6573 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6574 6575 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6576 6577 // A lambda that gets the register usage for the given type and VF. 6578 const auto &TTICapture = TTI; 6579 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6580 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6581 return 0; 6582 return *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6583 }; 6584 6585 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6586 Instruction *I = IdxToInstr[i]; 6587 6588 // Remove all of the instructions that end at this location. 6589 InstrList &List = TransposeEnds[i]; 6590 for (Instruction *ToRemove : List) 6591 OpenIntervals.erase(ToRemove); 6592 6593 // Ignore instructions that are never used within the loop. 6594 if (!Ends.count(I)) 6595 continue; 6596 6597 // Skip ignored values. 6598 if (ValuesToIgnore.count(I)) 6599 continue; 6600 6601 // For each VF find the maximum usage of registers. 6602 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6603 // Count the number of live intervals. 6604 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6605 6606 if (VFs[j].isScalar()) { 6607 for (auto Inst : OpenIntervals) { 6608 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6609 if (RegUsage.find(ClassID) == RegUsage.end()) 6610 RegUsage[ClassID] = 1; 6611 else 6612 RegUsage[ClassID] += 1; 6613 } 6614 } else { 6615 collectUniformsAndScalars(VFs[j]); 6616 for (auto Inst : OpenIntervals) { 6617 // Skip ignored values for VF > 1. 6618 if (VecValuesToIgnore.count(Inst)) 6619 continue; 6620 if (isScalarAfterVectorization(Inst, VFs[j])) { 6621 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6622 if (RegUsage.find(ClassID) == RegUsage.end()) 6623 RegUsage[ClassID] = 1; 6624 else 6625 RegUsage[ClassID] += 1; 6626 } else { 6627 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6628 if (RegUsage.find(ClassID) == RegUsage.end()) 6629 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6630 else 6631 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6632 } 6633 } 6634 } 6635 6636 for (auto& pair : RegUsage) { 6637 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6638 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6639 else 6640 MaxUsages[j][pair.first] = pair.second; 6641 } 6642 } 6643 6644 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6645 << OpenIntervals.size() << '\n'); 6646 6647 // Add the current instruction to the list of open intervals. 6648 OpenIntervals.insert(I); 6649 } 6650 6651 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6652 SmallMapVector<unsigned, unsigned, 4> Invariant; 6653 6654 for (auto Inst : LoopInvariants) { 6655 unsigned Usage = 6656 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6657 unsigned ClassID = 6658 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6659 if (Invariant.find(ClassID) == Invariant.end()) 6660 Invariant[ClassID] = Usage; 6661 else 6662 Invariant[ClassID] += Usage; 6663 } 6664 6665 LLVM_DEBUG({ 6666 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6667 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6668 << " item\n"; 6669 for (const auto &pair : MaxUsages[i]) { 6670 dbgs() << "LV(REG): RegisterClass: " 6671 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6672 << " registers\n"; 6673 } 6674 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6675 << " item\n"; 6676 for (const auto &pair : Invariant) { 6677 dbgs() << "LV(REG): RegisterClass: " 6678 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6679 << " registers\n"; 6680 } 6681 }); 6682 6683 RU.LoopInvariantRegs = Invariant; 6684 RU.MaxLocalUsers = MaxUsages[i]; 6685 RUs[i] = RU; 6686 } 6687 6688 return RUs; 6689 } 6690 6691 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6692 // TODO: Cost model for emulated masked load/store is completely 6693 // broken. This hack guides the cost model to use an artificially 6694 // high enough value to practically disable vectorization with such 6695 // operations, except where previously deployed legality hack allowed 6696 // using very low cost values. This is to avoid regressions coming simply 6697 // from moving "masked load/store" check from legality to cost model. 6698 // Masked Load/Gather emulation was previously never allowed. 6699 // Limited number of Masked Store/Scatter emulation was allowed. 6700 assert(isPredicatedInst(I) && 6701 "Expecting a scalar emulated instruction"); 6702 return isa<LoadInst>(I) || 6703 (isa<StoreInst>(I) && 6704 NumPredStores > NumberOfStoresToPredicate); 6705 } 6706 6707 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6708 // If we aren't vectorizing the loop, or if we've already collected the 6709 // instructions to scalarize, there's nothing to do. Collection may already 6710 // have occurred if we have a user-selected VF and are now computing the 6711 // expected cost for interleaving. 6712 if (VF.isScalar() || VF.isZero() || 6713 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6714 return; 6715 6716 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6717 // not profitable to scalarize any instructions, the presence of VF in the 6718 // map will indicate that we've analyzed it already. 6719 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6720 6721 // Find all the instructions that are scalar with predication in the loop and 6722 // determine if it would be better to not if-convert the blocks they are in. 6723 // If so, we also record the instructions to scalarize. 6724 for (BasicBlock *BB : TheLoop->blocks()) { 6725 if (!blockNeedsPredication(BB)) 6726 continue; 6727 for (Instruction &I : *BB) 6728 if (isScalarWithPredication(&I)) { 6729 ScalarCostsTy ScalarCosts; 6730 // Do not apply discount logic if hacked cost is needed 6731 // for emulated masked memrefs. 6732 if (!useEmulatedMaskMemRefHack(&I) && 6733 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6734 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6735 // Remember that BB will remain after vectorization. 6736 PredicatedBBsAfterVectorization.insert(BB); 6737 } 6738 } 6739 } 6740 6741 int LoopVectorizationCostModel::computePredInstDiscount( 6742 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6743 assert(!isUniformAfterVectorization(PredInst, VF) && 6744 "Instruction marked uniform-after-vectorization will be predicated"); 6745 6746 // Initialize the discount to zero, meaning that the scalar version and the 6747 // vector version cost the same. 6748 InstructionCost Discount = 0; 6749 6750 // Holds instructions to analyze. The instructions we visit are mapped in 6751 // ScalarCosts. Those instructions are the ones that would be scalarized if 6752 // we find that the scalar version costs less. 6753 SmallVector<Instruction *, 8> Worklist; 6754 6755 // Returns true if the given instruction can be scalarized. 6756 auto canBeScalarized = [&](Instruction *I) -> bool { 6757 // We only attempt to scalarize instructions forming a single-use chain 6758 // from the original predicated block that would otherwise be vectorized. 6759 // Although not strictly necessary, we give up on instructions we know will 6760 // already be scalar to avoid traversing chains that are unlikely to be 6761 // beneficial. 6762 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6763 isScalarAfterVectorization(I, VF)) 6764 return false; 6765 6766 // If the instruction is scalar with predication, it will be analyzed 6767 // separately. We ignore it within the context of PredInst. 6768 if (isScalarWithPredication(I)) 6769 return false; 6770 6771 // If any of the instruction's operands are uniform after vectorization, 6772 // the instruction cannot be scalarized. This prevents, for example, a 6773 // masked load from being scalarized. 6774 // 6775 // We assume we will only emit a value for lane zero of an instruction 6776 // marked uniform after vectorization, rather than VF identical values. 6777 // Thus, if we scalarize an instruction that uses a uniform, we would 6778 // create uses of values corresponding to the lanes we aren't emitting code 6779 // for. This behavior can be changed by allowing getScalarValue to clone 6780 // the lane zero values for uniforms rather than asserting. 6781 for (Use &U : I->operands()) 6782 if (auto *J = dyn_cast<Instruction>(U.get())) 6783 if (isUniformAfterVectorization(J, VF)) 6784 return false; 6785 6786 // Otherwise, we can scalarize the instruction. 6787 return true; 6788 }; 6789 6790 // Compute the expected cost discount from scalarizing the entire expression 6791 // feeding the predicated instruction. We currently only consider expressions 6792 // that are single-use instruction chains. 6793 Worklist.push_back(PredInst); 6794 while (!Worklist.empty()) { 6795 Instruction *I = Worklist.pop_back_val(); 6796 6797 // If we've already analyzed the instruction, there's nothing to do. 6798 if (ScalarCosts.find(I) != ScalarCosts.end()) 6799 continue; 6800 6801 // Compute the cost of the vector instruction. Note that this cost already 6802 // includes the scalarization overhead of the predicated instruction. 6803 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6804 6805 // Compute the cost of the scalarized instruction. This cost is the cost of 6806 // the instruction as if it wasn't if-converted and instead remained in the 6807 // predicated block. We will scale this cost by block probability after 6808 // computing the scalarization overhead. 6809 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6810 InstructionCost ScalarCost = 6811 VF.getKnownMinValue() * 6812 getInstructionCost(I, ElementCount::getFixed(1)).first; 6813 6814 // Compute the scalarization overhead of needed insertelement instructions 6815 // and phi nodes. 6816 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6817 ScalarCost += TTI.getScalarizationOverhead( 6818 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6819 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6820 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6821 ScalarCost += 6822 VF.getKnownMinValue() * 6823 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6824 } 6825 6826 // Compute the scalarization overhead of needed extractelement 6827 // instructions. For each of the instruction's operands, if the operand can 6828 // be scalarized, add it to the worklist; otherwise, account for the 6829 // overhead. 6830 for (Use &U : I->operands()) 6831 if (auto *J = dyn_cast<Instruction>(U.get())) { 6832 assert(VectorType::isValidElementType(J->getType()) && 6833 "Instruction has non-scalar type"); 6834 if (canBeScalarized(J)) 6835 Worklist.push_back(J); 6836 else if (needsExtract(J, VF)) { 6837 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6838 ScalarCost += TTI.getScalarizationOverhead( 6839 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6840 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6841 } 6842 } 6843 6844 // Scale the total scalar cost by block probability. 6845 ScalarCost /= getReciprocalPredBlockProb(); 6846 6847 // Compute the discount. A non-negative discount means the vector version 6848 // of the instruction costs more, and scalarizing would be beneficial. 6849 Discount += VectorCost - ScalarCost; 6850 ScalarCosts[I] = ScalarCost; 6851 } 6852 6853 return *Discount.getValue(); 6854 } 6855 6856 LoopVectorizationCostModel::VectorizationCostTy 6857 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6858 VectorizationCostTy Cost; 6859 6860 // For each block. 6861 for (BasicBlock *BB : TheLoop->blocks()) { 6862 VectorizationCostTy BlockCost; 6863 6864 // For each instruction in the old loop. 6865 for (Instruction &I : BB->instructionsWithoutDebug()) { 6866 // Skip ignored values. 6867 if (ValuesToIgnore.count(&I) || 6868 (VF.isVector() && VecValuesToIgnore.count(&I))) 6869 continue; 6870 6871 VectorizationCostTy C = getInstructionCost(&I, VF); 6872 6873 // Check if we should override the cost. 6874 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6875 C.first = InstructionCost(ForceTargetInstructionCost); 6876 6877 BlockCost.first += C.first; 6878 BlockCost.second |= C.second; 6879 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6880 << " for VF " << VF << " For instruction: " << I 6881 << '\n'); 6882 } 6883 6884 // If we are vectorizing a predicated block, it will have been 6885 // if-converted. This means that the block's instructions (aside from 6886 // stores and instructions that may divide by zero) will now be 6887 // unconditionally executed. For the scalar case, we may not always execute 6888 // the predicated block, if it is an if-else block. Thus, scale the block's 6889 // cost by the probability of executing it. blockNeedsPredication from 6890 // Legal is used so as to not include all blocks in tail folded loops. 6891 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6892 BlockCost.first /= getReciprocalPredBlockProb(); 6893 6894 Cost.first += BlockCost.first; 6895 Cost.second |= BlockCost.second; 6896 } 6897 6898 return Cost; 6899 } 6900 6901 /// Gets Address Access SCEV after verifying that the access pattern 6902 /// is loop invariant except the induction variable dependence. 6903 /// 6904 /// This SCEV can be sent to the Target in order to estimate the address 6905 /// calculation cost. 6906 static const SCEV *getAddressAccessSCEV( 6907 Value *Ptr, 6908 LoopVectorizationLegality *Legal, 6909 PredicatedScalarEvolution &PSE, 6910 const Loop *TheLoop) { 6911 6912 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6913 if (!Gep) 6914 return nullptr; 6915 6916 // We are looking for a gep with all loop invariant indices except for one 6917 // which should be an induction variable. 6918 auto SE = PSE.getSE(); 6919 unsigned NumOperands = Gep->getNumOperands(); 6920 for (unsigned i = 1; i < NumOperands; ++i) { 6921 Value *Opd = Gep->getOperand(i); 6922 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6923 !Legal->isInductionVariable(Opd)) 6924 return nullptr; 6925 } 6926 6927 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6928 return PSE.getSCEV(Ptr); 6929 } 6930 6931 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6932 return Legal->hasStride(I->getOperand(0)) || 6933 Legal->hasStride(I->getOperand(1)); 6934 } 6935 6936 InstructionCost 6937 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6938 ElementCount VF) { 6939 assert(VF.isVector() && 6940 "Scalarization cost of instruction implies vectorization."); 6941 if (VF.isScalable()) 6942 return InstructionCost::getInvalid(); 6943 6944 Type *ValTy = getMemInstValueType(I); 6945 auto SE = PSE.getSE(); 6946 6947 unsigned AS = getLoadStoreAddressSpace(I); 6948 Value *Ptr = getLoadStorePointerOperand(I); 6949 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6950 6951 // Figure out whether the access is strided and get the stride value 6952 // if it's known in compile time 6953 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6954 6955 // Get the cost of the scalar memory instruction and address computation. 6956 InstructionCost Cost = 6957 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6958 6959 // Don't pass *I here, since it is scalar but will actually be part of a 6960 // vectorized loop where the user of it is a vectorized instruction. 6961 const Align Alignment = getLoadStoreAlignment(I); 6962 Cost += VF.getKnownMinValue() * 6963 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6964 AS, TTI::TCK_RecipThroughput); 6965 6966 // Get the overhead of the extractelement and insertelement instructions 6967 // we might create due to scalarization. 6968 Cost += getScalarizationOverhead(I, VF); 6969 6970 // If we have a predicated load/store, it will need extra i1 extracts and 6971 // conditional branches, but may not be executed for each vector lane. Scale 6972 // the cost by the probability of executing the predicated block. 6973 if (isPredicatedInst(I)) { 6974 Cost /= getReciprocalPredBlockProb(); 6975 6976 // Add the cost of an i1 extract and a branch 6977 auto *Vec_i1Ty = 6978 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6979 Cost += TTI.getScalarizationOverhead( 6980 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 6981 /*Insert=*/false, /*Extract=*/true); 6982 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6983 6984 if (useEmulatedMaskMemRefHack(I)) 6985 // Artificially setting to a high enough value to practically disable 6986 // vectorization with such operations. 6987 Cost = 3000000; 6988 } 6989 6990 return Cost; 6991 } 6992 6993 InstructionCost 6994 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6995 ElementCount VF) { 6996 Type *ValTy = getMemInstValueType(I); 6997 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6998 Value *Ptr = getLoadStorePointerOperand(I); 6999 unsigned AS = getLoadStoreAddressSpace(I); 7000 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7001 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7002 7003 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7004 "Stride should be 1 or -1 for consecutive memory access"); 7005 const Align Alignment = getLoadStoreAlignment(I); 7006 InstructionCost Cost = 0; 7007 if (Legal->isMaskRequired(I)) 7008 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7009 CostKind); 7010 else 7011 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7012 CostKind, I); 7013 7014 bool Reverse = ConsecutiveStride < 0; 7015 if (Reverse) 7016 Cost += 7017 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7018 return Cost; 7019 } 7020 7021 InstructionCost 7022 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7023 ElementCount VF) { 7024 assert(Legal->isUniformMemOp(*I)); 7025 7026 Type *ValTy = getMemInstValueType(I); 7027 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7028 const Align Alignment = getLoadStoreAlignment(I); 7029 unsigned AS = getLoadStoreAddressSpace(I); 7030 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7031 if (isa<LoadInst>(I)) { 7032 return TTI.getAddressComputationCost(ValTy) + 7033 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7034 CostKind) + 7035 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7036 } 7037 StoreInst *SI = cast<StoreInst>(I); 7038 7039 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7040 return TTI.getAddressComputationCost(ValTy) + 7041 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7042 CostKind) + 7043 (isLoopInvariantStoreValue 7044 ? 0 7045 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7046 VF.getKnownMinValue() - 1)); 7047 } 7048 7049 InstructionCost 7050 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7051 ElementCount VF) { 7052 Type *ValTy = getMemInstValueType(I); 7053 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7054 const Align Alignment = getLoadStoreAlignment(I); 7055 const Value *Ptr = getLoadStorePointerOperand(I); 7056 7057 return TTI.getAddressComputationCost(VectorTy) + 7058 TTI.getGatherScatterOpCost( 7059 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7060 TargetTransformInfo::TCK_RecipThroughput, I); 7061 } 7062 7063 InstructionCost 7064 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7065 ElementCount VF) { 7066 // TODO: Once we have support for interleaving with scalable vectors 7067 // we can calculate the cost properly here. 7068 if (VF.isScalable()) 7069 return InstructionCost::getInvalid(); 7070 7071 Type *ValTy = getMemInstValueType(I); 7072 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7073 unsigned AS = getLoadStoreAddressSpace(I); 7074 7075 auto Group = getInterleavedAccessGroup(I); 7076 assert(Group && "Fail to get an interleaved access group."); 7077 7078 unsigned InterleaveFactor = Group->getFactor(); 7079 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7080 7081 // Holds the indices of existing members in an interleaved load group. 7082 // An interleaved store group doesn't need this as it doesn't allow gaps. 7083 SmallVector<unsigned, 4> Indices; 7084 if (isa<LoadInst>(I)) { 7085 for (unsigned i = 0; i < InterleaveFactor; i++) 7086 if (Group->getMember(i)) 7087 Indices.push_back(i); 7088 } 7089 7090 // Calculate the cost of the whole interleaved group. 7091 bool UseMaskForGaps = 7092 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 7093 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7094 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7095 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7096 7097 if (Group->isReverse()) { 7098 // TODO: Add support for reversed masked interleaved access. 7099 assert(!Legal->isMaskRequired(I) && 7100 "Reverse masked interleaved access not supported."); 7101 Cost += 7102 Group->getNumMembers() * 7103 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7104 } 7105 return Cost; 7106 } 7107 7108 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 7109 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7110 // Early exit for no inloop reductions 7111 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7112 return InstructionCost::getInvalid(); 7113 auto *VectorTy = cast<VectorType>(Ty); 7114 7115 // We are looking for a pattern of, and finding the minimal acceptable cost: 7116 // reduce(mul(ext(A), ext(B))) or 7117 // reduce(mul(A, B)) or 7118 // reduce(ext(A)) or 7119 // reduce(A). 7120 // The basic idea is that we walk down the tree to do that, finding the root 7121 // reduction instruction in InLoopReductionImmediateChains. From there we find 7122 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7123 // of the components. If the reduction cost is lower then we return it for the 7124 // reduction instruction and 0 for the other instructions in the pattern. If 7125 // it is not we return an invalid cost specifying the orignal cost method 7126 // should be used. 7127 Instruction *RetI = I; 7128 if ((RetI->getOpcode() == Instruction::SExt || 7129 RetI->getOpcode() == Instruction::ZExt)) { 7130 if (!RetI->hasOneUser()) 7131 return InstructionCost::getInvalid(); 7132 RetI = RetI->user_back(); 7133 } 7134 if (RetI->getOpcode() == Instruction::Mul && 7135 RetI->user_back()->getOpcode() == Instruction::Add) { 7136 if (!RetI->hasOneUser()) 7137 return InstructionCost::getInvalid(); 7138 RetI = RetI->user_back(); 7139 } 7140 7141 // Test if the found instruction is a reduction, and if not return an invalid 7142 // cost specifying the parent to use the original cost modelling. 7143 if (!InLoopReductionImmediateChains.count(RetI)) 7144 return InstructionCost::getInvalid(); 7145 7146 // Find the reduction this chain is a part of and calculate the basic cost of 7147 // the reduction on its own. 7148 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7149 Instruction *ReductionPhi = LastChain; 7150 while (!isa<PHINode>(ReductionPhi)) 7151 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7152 7153 RecurrenceDescriptor RdxDesc = 7154 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7155 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7156 RdxDesc.getOpcode(), VectorTy, false, CostKind); 7157 7158 // Get the operand that was not the reduction chain and match it to one of the 7159 // patterns, returning the better cost if it is found. 7160 Instruction *RedOp = RetI->getOperand(1) == LastChain 7161 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7162 : dyn_cast<Instruction>(RetI->getOperand(1)); 7163 7164 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7165 7166 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 7167 !TheLoop->isLoopInvariant(RedOp)) { 7168 bool IsUnsigned = isa<ZExtInst>(RedOp); 7169 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7170 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7171 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7172 CostKind); 7173 7174 InstructionCost ExtCost = 7175 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7176 TTI::CastContextHint::None, CostKind, RedOp); 7177 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7178 return I == RetI ? *RedCost.getValue() : 0; 7179 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 7180 Instruction *Mul = RedOp; 7181 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 7182 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 7183 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 7184 Op0->getOpcode() == Op1->getOpcode() && 7185 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7186 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7187 bool IsUnsigned = isa<ZExtInst>(Op0); 7188 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7189 // reduce(mul(ext, ext)) 7190 InstructionCost ExtCost = 7191 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7192 TTI::CastContextHint::None, CostKind, Op0); 7193 InstructionCost MulCost = 7194 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7195 7196 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7197 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7198 CostKind); 7199 7200 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7201 return I == RetI ? *RedCost.getValue() : 0; 7202 } else { 7203 InstructionCost MulCost = 7204 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7205 7206 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7207 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7208 CostKind); 7209 7210 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7211 return I == RetI ? *RedCost.getValue() : 0; 7212 } 7213 } 7214 7215 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 7216 } 7217 7218 InstructionCost 7219 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7220 ElementCount VF) { 7221 // Calculate scalar cost only. Vectorization cost should be ready at this 7222 // moment. 7223 if (VF.isScalar()) { 7224 Type *ValTy = getMemInstValueType(I); 7225 const Align Alignment = getLoadStoreAlignment(I); 7226 unsigned AS = getLoadStoreAddressSpace(I); 7227 7228 return TTI.getAddressComputationCost(ValTy) + 7229 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7230 TTI::TCK_RecipThroughput, I); 7231 } 7232 return getWideningCost(I, VF); 7233 } 7234 7235 LoopVectorizationCostModel::VectorizationCostTy 7236 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7237 ElementCount VF) { 7238 // If we know that this instruction will remain uniform, check the cost of 7239 // the scalar version. 7240 if (isUniformAfterVectorization(I, VF)) 7241 VF = ElementCount::getFixed(1); 7242 7243 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7244 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7245 7246 // Forced scalars do not have any scalarization overhead. 7247 auto ForcedScalar = ForcedScalars.find(VF); 7248 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7249 auto InstSet = ForcedScalar->second; 7250 if (InstSet.count(I)) 7251 return VectorizationCostTy( 7252 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7253 VF.getKnownMinValue()), 7254 false); 7255 } 7256 7257 Type *VectorTy; 7258 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7259 7260 bool TypeNotScalarized = 7261 VF.isVector() && VectorTy->isVectorTy() && 7262 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7263 return VectorizationCostTy(C, TypeNotScalarized); 7264 } 7265 7266 InstructionCost 7267 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7268 ElementCount VF) const { 7269 7270 if (VF.isScalable()) 7271 return InstructionCost::getInvalid(); 7272 7273 if (VF.isScalar()) 7274 return 0; 7275 7276 InstructionCost Cost = 0; 7277 Type *RetTy = ToVectorTy(I->getType(), VF); 7278 if (!RetTy->isVoidTy() && 7279 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7280 Cost += TTI.getScalarizationOverhead( 7281 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 7282 true, false); 7283 7284 // Some targets keep addresses scalar. 7285 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7286 return Cost; 7287 7288 // Some targets support efficient element stores. 7289 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7290 return Cost; 7291 7292 // Collect operands to consider. 7293 CallInst *CI = dyn_cast<CallInst>(I); 7294 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7295 7296 // Skip operands that do not require extraction/scalarization and do not incur 7297 // any overhead. 7298 SmallVector<Type *> Tys; 7299 for (auto *V : filterExtractingOperands(Ops, VF)) 7300 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7301 return Cost + TTI.getOperandsScalarizationOverhead( 7302 filterExtractingOperands(Ops, VF), Tys); 7303 } 7304 7305 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7306 if (VF.isScalar()) 7307 return; 7308 NumPredStores = 0; 7309 for (BasicBlock *BB : TheLoop->blocks()) { 7310 // For each instruction in the old loop. 7311 for (Instruction &I : *BB) { 7312 Value *Ptr = getLoadStorePointerOperand(&I); 7313 if (!Ptr) 7314 continue; 7315 7316 // TODO: We should generate better code and update the cost model for 7317 // predicated uniform stores. Today they are treated as any other 7318 // predicated store (see added test cases in 7319 // invariant-store-vectorization.ll). 7320 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7321 NumPredStores++; 7322 7323 if (Legal->isUniformMemOp(I)) { 7324 // TODO: Avoid replicating loads and stores instead of 7325 // relying on instcombine to remove them. 7326 // Load: Scalar load + broadcast 7327 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7328 InstructionCost Cost = getUniformMemOpCost(&I, VF); 7329 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7330 continue; 7331 } 7332 7333 // We assume that widening is the best solution when possible. 7334 if (memoryInstructionCanBeWidened(&I, VF)) { 7335 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7336 int ConsecutiveStride = 7337 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7338 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7339 "Expected consecutive stride."); 7340 InstWidening Decision = 7341 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7342 setWideningDecision(&I, VF, Decision, Cost); 7343 continue; 7344 } 7345 7346 // Choose between Interleaving, Gather/Scatter or Scalarization. 7347 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7348 unsigned NumAccesses = 1; 7349 if (isAccessInterleaved(&I)) { 7350 auto Group = getInterleavedAccessGroup(&I); 7351 assert(Group && "Fail to get an interleaved access group."); 7352 7353 // Make one decision for the whole group. 7354 if (getWideningDecision(&I, VF) != CM_Unknown) 7355 continue; 7356 7357 NumAccesses = Group->getNumMembers(); 7358 if (interleavedAccessCanBeWidened(&I, VF)) 7359 InterleaveCost = getInterleaveGroupCost(&I, VF); 7360 } 7361 7362 InstructionCost GatherScatterCost = 7363 isLegalGatherOrScatter(&I) 7364 ? getGatherScatterCost(&I, VF) * NumAccesses 7365 : InstructionCost::getInvalid(); 7366 7367 InstructionCost ScalarizationCost = 7368 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7369 7370 // Choose better solution for the current VF, 7371 // write down this decision and use it during vectorization. 7372 InstructionCost Cost; 7373 InstWidening Decision; 7374 if (InterleaveCost <= GatherScatterCost && 7375 InterleaveCost < ScalarizationCost) { 7376 Decision = CM_Interleave; 7377 Cost = InterleaveCost; 7378 } else if (GatherScatterCost < ScalarizationCost) { 7379 Decision = CM_GatherScatter; 7380 Cost = GatherScatterCost; 7381 } else { 7382 assert(!VF.isScalable() && 7383 "We cannot yet scalarise for scalable vectors"); 7384 Decision = CM_Scalarize; 7385 Cost = ScalarizationCost; 7386 } 7387 // If the instructions belongs to an interleave group, the whole group 7388 // receives the same decision. The whole group receives the cost, but 7389 // the cost will actually be assigned to one instruction. 7390 if (auto Group = getInterleavedAccessGroup(&I)) 7391 setWideningDecision(Group, VF, Decision, Cost); 7392 else 7393 setWideningDecision(&I, VF, Decision, Cost); 7394 } 7395 } 7396 7397 // Make sure that any load of address and any other address computation 7398 // remains scalar unless there is gather/scatter support. This avoids 7399 // inevitable extracts into address registers, and also has the benefit of 7400 // activating LSR more, since that pass can't optimize vectorized 7401 // addresses. 7402 if (TTI.prefersVectorizedAddressing()) 7403 return; 7404 7405 // Start with all scalar pointer uses. 7406 SmallPtrSet<Instruction *, 8> AddrDefs; 7407 for (BasicBlock *BB : TheLoop->blocks()) 7408 for (Instruction &I : *BB) { 7409 Instruction *PtrDef = 7410 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7411 if (PtrDef && TheLoop->contains(PtrDef) && 7412 getWideningDecision(&I, VF) != CM_GatherScatter) 7413 AddrDefs.insert(PtrDef); 7414 } 7415 7416 // Add all instructions used to generate the addresses. 7417 SmallVector<Instruction *, 4> Worklist; 7418 append_range(Worklist, AddrDefs); 7419 while (!Worklist.empty()) { 7420 Instruction *I = Worklist.pop_back_val(); 7421 for (auto &Op : I->operands()) 7422 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7423 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7424 AddrDefs.insert(InstOp).second) 7425 Worklist.push_back(InstOp); 7426 } 7427 7428 for (auto *I : AddrDefs) { 7429 if (isa<LoadInst>(I)) { 7430 // Setting the desired widening decision should ideally be handled in 7431 // by cost functions, but since this involves the task of finding out 7432 // if the loaded register is involved in an address computation, it is 7433 // instead changed here when we know this is the case. 7434 InstWidening Decision = getWideningDecision(I, VF); 7435 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7436 // Scalarize a widened load of address. 7437 setWideningDecision( 7438 I, VF, CM_Scalarize, 7439 (VF.getKnownMinValue() * 7440 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7441 else if (auto Group = getInterleavedAccessGroup(I)) { 7442 // Scalarize an interleave group of address loads. 7443 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7444 if (Instruction *Member = Group->getMember(I)) 7445 setWideningDecision( 7446 Member, VF, CM_Scalarize, 7447 (VF.getKnownMinValue() * 7448 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7449 } 7450 } 7451 } else 7452 // Make sure I gets scalarized and a cost estimate without 7453 // scalarization overhead. 7454 ForcedScalars[VF].insert(I); 7455 } 7456 } 7457 7458 InstructionCost 7459 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7460 Type *&VectorTy) { 7461 Type *RetTy = I->getType(); 7462 if (canTruncateToMinimalBitwidth(I, VF)) 7463 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7464 auto SE = PSE.getSE(); 7465 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7466 7467 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7468 ElementCount VF) -> bool { 7469 if (VF.isScalar()) 7470 return true; 7471 7472 auto Scalarized = InstsToScalarize.find(VF); 7473 assert(Scalarized != InstsToScalarize.end() && 7474 "VF not yet analyzed for scalarization profitability"); 7475 return !Scalarized->second.count(I) && 7476 llvm::all_of(I->users(), [&](User *U) { 7477 auto *UI = cast<Instruction>(U); 7478 return !Scalarized->second.count(UI); 7479 }); 7480 }; 7481 (void) hasSingleCopyAfterVectorization; 7482 7483 if (isScalarAfterVectorization(I, VF)) { 7484 // With the exception of GEPs and PHIs, after scalarization there should 7485 // only be one copy of the instruction generated in the loop. This is 7486 // because the VF is either 1, or any instructions that need scalarizing 7487 // have already been dealt with by the the time we get here. As a result, 7488 // it means we don't have to multiply the instruction cost by VF. 7489 assert(I->getOpcode() == Instruction::GetElementPtr || 7490 I->getOpcode() == Instruction::PHI || 7491 (I->getOpcode() == Instruction::BitCast && 7492 I->getType()->isPointerTy()) || 7493 hasSingleCopyAfterVectorization(I, VF)); 7494 VectorTy = RetTy; 7495 } else 7496 VectorTy = ToVectorTy(RetTy, VF); 7497 7498 // TODO: We need to estimate the cost of intrinsic calls. 7499 switch (I->getOpcode()) { 7500 case Instruction::GetElementPtr: 7501 // We mark this instruction as zero-cost because the cost of GEPs in 7502 // vectorized code depends on whether the corresponding memory instruction 7503 // is scalarized or not. Therefore, we handle GEPs with the memory 7504 // instruction cost. 7505 return 0; 7506 case Instruction::Br: { 7507 // In cases of scalarized and predicated instructions, there will be VF 7508 // predicated blocks in the vectorized loop. Each branch around these 7509 // blocks requires also an extract of its vector compare i1 element. 7510 bool ScalarPredicatedBB = false; 7511 BranchInst *BI = cast<BranchInst>(I); 7512 if (VF.isVector() && BI->isConditional() && 7513 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7514 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7515 ScalarPredicatedBB = true; 7516 7517 if (ScalarPredicatedBB) { 7518 // Return cost for branches around scalarized and predicated blocks. 7519 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7520 auto *Vec_i1Ty = 7521 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7522 return (TTI.getScalarizationOverhead( 7523 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7524 false, true) + 7525 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7526 VF.getKnownMinValue())); 7527 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7528 // The back-edge branch will remain, as will all scalar branches. 7529 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7530 else 7531 // This branch will be eliminated by if-conversion. 7532 return 0; 7533 // Note: We currently assume zero cost for an unconditional branch inside 7534 // a predicated block since it will become a fall-through, although we 7535 // may decide in the future to call TTI for all branches. 7536 } 7537 case Instruction::PHI: { 7538 auto *Phi = cast<PHINode>(I); 7539 7540 // First-order recurrences are replaced by vector shuffles inside the loop. 7541 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7542 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7543 return TTI.getShuffleCost( 7544 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7545 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7546 7547 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7548 // converted into select instructions. We require N - 1 selects per phi 7549 // node, where N is the number of incoming values. 7550 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7551 return (Phi->getNumIncomingValues() - 1) * 7552 TTI.getCmpSelInstrCost( 7553 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7554 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7555 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7556 7557 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7558 } 7559 case Instruction::UDiv: 7560 case Instruction::SDiv: 7561 case Instruction::URem: 7562 case Instruction::SRem: 7563 // If we have a predicated instruction, it may not be executed for each 7564 // vector lane. Get the scalarization cost and scale this amount by the 7565 // probability of executing the predicated block. If the instruction is not 7566 // predicated, we fall through to the next case. 7567 if (VF.isVector() && isScalarWithPredication(I)) { 7568 InstructionCost Cost = 0; 7569 7570 // These instructions have a non-void type, so account for the phi nodes 7571 // that we will create. This cost is likely to be zero. The phi node 7572 // cost, if any, should be scaled by the block probability because it 7573 // models a copy at the end of each predicated block. 7574 Cost += VF.getKnownMinValue() * 7575 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7576 7577 // The cost of the non-predicated instruction. 7578 Cost += VF.getKnownMinValue() * 7579 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7580 7581 // The cost of insertelement and extractelement instructions needed for 7582 // scalarization. 7583 Cost += getScalarizationOverhead(I, VF); 7584 7585 // Scale the cost by the probability of executing the predicated blocks. 7586 // This assumes the predicated block for each vector lane is equally 7587 // likely. 7588 return Cost / getReciprocalPredBlockProb(); 7589 } 7590 LLVM_FALLTHROUGH; 7591 case Instruction::Add: 7592 case Instruction::FAdd: 7593 case Instruction::Sub: 7594 case Instruction::FSub: 7595 case Instruction::Mul: 7596 case Instruction::FMul: 7597 case Instruction::FDiv: 7598 case Instruction::FRem: 7599 case Instruction::Shl: 7600 case Instruction::LShr: 7601 case Instruction::AShr: 7602 case Instruction::And: 7603 case Instruction::Or: 7604 case Instruction::Xor: { 7605 // Since we will replace the stride by 1 the multiplication should go away. 7606 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7607 return 0; 7608 7609 // Detect reduction patterns 7610 InstructionCost RedCost; 7611 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7612 .isValid()) 7613 return RedCost; 7614 7615 // Certain instructions can be cheaper to vectorize if they have a constant 7616 // second vector operand. One example of this are shifts on x86. 7617 Value *Op2 = I->getOperand(1); 7618 TargetTransformInfo::OperandValueProperties Op2VP; 7619 TargetTransformInfo::OperandValueKind Op2VK = 7620 TTI.getOperandInfo(Op2, Op2VP); 7621 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7622 Op2VK = TargetTransformInfo::OK_UniformValue; 7623 7624 SmallVector<const Value *, 4> Operands(I->operand_values()); 7625 return TTI.getArithmeticInstrCost( 7626 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7627 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7628 } 7629 case Instruction::FNeg: { 7630 return TTI.getArithmeticInstrCost( 7631 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7632 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7633 TargetTransformInfo::OP_None, I->getOperand(0), I); 7634 } 7635 case Instruction::Select: { 7636 SelectInst *SI = cast<SelectInst>(I); 7637 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7638 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7639 7640 const Value *Op0, *Op1; 7641 using namespace llvm::PatternMatch; 7642 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7643 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7644 // select x, y, false --> x & y 7645 // select x, true, y --> x | y 7646 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7647 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7648 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7649 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7650 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7651 Op1->getType()->getScalarSizeInBits() == 1); 7652 7653 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7654 return TTI.getArithmeticInstrCost( 7655 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7656 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7657 } 7658 7659 Type *CondTy = SI->getCondition()->getType(); 7660 if (!ScalarCond) 7661 CondTy = VectorType::get(CondTy, VF); 7662 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7663 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7664 } 7665 case Instruction::ICmp: 7666 case Instruction::FCmp: { 7667 Type *ValTy = I->getOperand(0)->getType(); 7668 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7669 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7670 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7671 VectorTy = ToVectorTy(ValTy, VF); 7672 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7673 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7674 } 7675 case Instruction::Store: 7676 case Instruction::Load: { 7677 ElementCount Width = VF; 7678 if (Width.isVector()) { 7679 InstWidening Decision = getWideningDecision(I, Width); 7680 assert(Decision != CM_Unknown && 7681 "CM decision should be taken at this point"); 7682 if (Decision == CM_Scalarize) 7683 Width = ElementCount::getFixed(1); 7684 } 7685 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7686 return getMemoryInstructionCost(I, VF); 7687 } 7688 case Instruction::BitCast: 7689 if (I->getType()->isPointerTy()) 7690 return 0; 7691 LLVM_FALLTHROUGH; 7692 case Instruction::ZExt: 7693 case Instruction::SExt: 7694 case Instruction::FPToUI: 7695 case Instruction::FPToSI: 7696 case Instruction::FPExt: 7697 case Instruction::PtrToInt: 7698 case Instruction::IntToPtr: 7699 case Instruction::SIToFP: 7700 case Instruction::UIToFP: 7701 case Instruction::Trunc: 7702 case Instruction::FPTrunc: { 7703 // Computes the CastContextHint from a Load/Store instruction. 7704 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7705 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7706 "Expected a load or a store!"); 7707 7708 if (VF.isScalar() || !TheLoop->contains(I)) 7709 return TTI::CastContextHint::Normal; 7710 7711 switch (getWideningDecision(I, VF)) { 7712 case LoopVectorizationCostModel::CM_GatherScatter: 7713 return TTI::CastContextHint::GatherScatter; 7714 case LoopVectorizationCostModel::CM_Interleave: 7715 return TTI::CastContextHint::Interleave; 7716 case LoopVectorizationCostModel::CM_Scalarize: 7717 case LoopVectorizationCostModel::CM_Widen: 7718 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7719 : TTI::CastContextHint::Normal; 7720 case LoopVectorizationCostModel::CM_Widen_Reverse: 7721 return TTI::CastContextHint::Reversed; 7722 case LoopVectorizationCostModel::CM_Unknown: 7723 llvm_unreachable("Instr did not go through cost modelling?"); 7724 } 7725 7726 llvm_unreachable("Unhandled case!"); 7727 }; 7728 7729 unsigned Opcode = I->getOpcode(); 7730 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7731 // For Trunc, the context is the only user, which must be a StoreInst. 7732 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7733 if (I->hasOneUse()) 7734 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7735 CCH = ComputeCCH(Store); 7736 } 7737 // For Z/Sext, the context is the operand, which must be a LoadInst. 7738 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7739 Opcode == Instruction::FPExt) { 7740 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7741 CCH = ComputeCCH(Load); 7742 } 7743 7744 // We optimize the truncation of induction variables having constant 7745 // integer steps. The cost of these truncations is the same as the scalar 7746 // operation. 7747 if (isOptimizableIVTruncate(I, VF)) { 7748 auto *Trunc = cast<TruncInst>(I); 7749 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7750 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7751 } 7752 7753 // Detect reduction patterns 7754 InstructionCost RedCost; 7755 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7756 .isValid()) 7757 return RedCost; 7758 7759 Type *SrcScalarTy = I->getOperand(0)->getType(); 7760 Type *SrcVecTy = 7761 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7762 if (canTruncateToMinimalBitwidth(I, VF)) { 7763 // This cast is going to be shrunk. This may remove the cast or it might 7764 // turn it into slightly different cast. For example, if MinBW == 16, 7765 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7766 // 7767 // Calculate the modified src and dest types. 7768 Type *MinVecTy = VectorTy; 7769 if (Opcode == Instruction::Trunc) { 7770 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7771 VectorTy = 7772 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7773 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7774 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7775 VectorTy = 7776 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7777 } 7778 } 7779 7780 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7781 } 7782 case Instruction::Call: { 7783 bool NeedToScalarize; 7784 CallInst *CI = cast<CallInst>(I); 7785 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7786 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7787 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7788 return std::min(CallCost, IntrinsicCost); 7789 } 7790 return CallCost; 7791 } 7792 case Instruction::ExtractValue: 7793 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7794 default: 7795 // This opcode is unknown. Assume that it is the same as 'mul'. 7796 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7797 } // end of switch. 7798 } 7799 7800 char LoopVectorize::ID = 0; 7801 7802 static const char lv_name[] = "Loop Vectorization"; 7803 7804 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7805 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7806 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7807 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7808 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7809 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7810 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7811 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7812 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7813 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7814 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7815 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7816 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7817 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7818 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7819 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7820 7821 namespace llvm { 7822 7823 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7824 7825 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7826 bool VectorizeOnlyWhenForced) { 7827 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7828 } 7829 7830 } // end namespace llvm 7831 7832 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7833 // Check if the pointer operand of a load or store instruction is 7834 // consecutive. 7835 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7836 return Legal->isConsecutivePtr(Ptr); 7837 return false; 7838 } 7839 7840 void LoopVectorizationCostModel::collectValuesToIgnore() { 7841 // Ignore ephemeral values. 7842 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7843 7844 // Ignore type-promoting instructions we identified during reduction 7845 // detection. 7846 for (auto &Reduction : Legal->getReductionVars()) { 7847 RecurrenceDescriptor &RedDes = Reduction.second; 7848 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7849 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7850 } 7851 // Ignore type-casting instructions we identified during induction 7852 // detection. 7853 for (auto &Induction : Legal->getInductionVars()) { 7854 InductionDescriptor &IndDes = Induction.second; 7855 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7856 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7857 } 7858 } 7859 7860 void LoopVectorizationCostModel::collectInLoopReductions() { 7861 for (auto &Reduction : Legal->getReductionVars()) { 7862 PHINode *Phi = Reduction.first; 7863 RecurrenceDescriptor &RdxDesc = Reduction.second; 7864 7865 // We don't collect reductions that are type promoted (yet). 7866 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7867 continue; 7868 7869 // If the target would prefer this reduction to happen "in-loop", then we 7870 // want to record it as such. 7871 unsigned Opcode = RdxDesc.getOpcode(); 7872 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7873 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7874 TargetTransformInfo::ReductionFlags())) 7875 continue; 7876 7877 // Check that we can correctly put the reductions into the loop, by 7878 // finding the chain of operations that leads from the phi to the loop 7879 // exit value. 7880 SmallVector<Instruction *, 4> ReductionOperations = 7881 RdxDesc.getReductionOpChain(Phi, TheLoop); 7882 bool InLoop = !ReductionOperations.empty(); 7883 if (InLoop) { 7884 InLoopReductionChains[Phi] = ReductionOperations; 7885 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7886 Instruction *LastChain = Phi; 7887 for (auto *I : ReductionOperations) { 7888 InLoopReductionImmediateChains[I] = LastChain; 7889 LastChain = I; 7890 } 7891 } 7892 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7893 << " reduction for phi: " << *Phi << "\n"); 7894 } 7895 } 7896 7897 // TODO: we could return a pair of values that specify the max VF and 7898 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7899 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7900 // doesn't have a cost model that can choose which plan to execute if 7901 // more than one is generated. 7902 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7903 LoopVectorizationCostModel &CM) { 7904 unsigned WidestType; 7905 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7906 return WidestVectorRegBits / WidestType; 7907 } 7908 7909 VectorizationFactor 7910 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7911 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7912 ElementCount VF = UserVF; 7913 // Outer loop handling: They may require CFG and instruction level 7914 // transformations before even evaluating whether vectorization is profitable. 7915 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7916 // the vectorization pipeline. 7917 if (!OrigLoop->isInnermost()) { 7918 // If the user doesn't provide a vectorization factor, determine a 7919 // reasonable one. 7920 if (UserVF.isZero()) { 7921 VF = ElementCount::getFixed(determineVPlanVF( 7922 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7923 .getFixedSize(), 7924 CM)); 7925 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7926 7927 // Make sure we have a VF > 1 for stress testing. 7928 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7929 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7930 << "overriding computed VF.\n"); 7931 VF = ElementCount::getFixed(4); 7932 } 7933 } 7934 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7935 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7936 "VF needs to be a power of two"); 7937 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7938 << "VF " << VF << " to build VPlans.\n"); 7939 buildVPlans(VF, VF); 7940 7941 // For VPlan build stress testing, we bail out after VPlan construction. 7942 if (VPlanBuildStressTest) 7943 return VectorizationFactor::Disabled(); 7944 7945 return {VF, 0 /*Cost*/}; 7946 } 7947 7948 LLVM_DEBUG( 7949 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7950 "VPlan-native path.\n"); 7951 return VectorizationFactor::Disabled(); 7952 } 7953 7954 Optional<VectorizationFactor> 7955 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7956 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7957 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7958 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7959 return None; 7960 7961 // Invalidate interleave groups if all blocks of loop will be predicated. 7962 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7963 !useMaskedInterleavedAccesses(*TTI)) { 7964 LLVM_DEBUG( 7965 dbgs() 7966 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7967 "which requires masked-interleaved support.\n"); 7968 if (CM.InterleaveInfo.invalidateGroups()) 7969 // Invalidating interleave groups also requires invalidating all decisions 7970 // based on them, which includes widening decisions and uniform and scalar 7971 // values. 7972 CM.invalidateCostModelingDecisions(); 7973 } 7974 7975 ElementCount MaxUserVF = 7976 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7977 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7978 if (!UserVF.isZero() && UserVFIsLegal) { 7979 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max") 7980 << " VF " << UserVF << ".\n"); 7981 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7982 "VF needs to be a power of two"); 7983 // Collect the instructions (and their associated costs) that will be more 7984 // profitable to scalarize. 7985 CM.selectUserVectorizationFactor(UserVF); 7986 CM.collectInLoopReductions(); 7987 buildVPlansWithVPRecipes({UserVF}, {UserVF}); 7988 LLVM_DEBUG(printPlans(dbgs())); 7989 return {{UserVF, 0}}; 7990 } 7991 7992 ElementCount MaxVF = MaxFactors.FixedVF; 7993 assert(!MaxVF.isScalable() && 7994 "Scalable vectors not yet supported beyond this point"); 7995 7996 for (ElementCount VF = ElementCount::getFixed(1); 7997 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7998 // Collect Uniform and Scalar instructions after vectorization with VF. 7999 CM.collectUniformsAndScalars(VF); 8000 8001 // Collect the instructions (and their associated costs) that will be more 8002 // profitable to scalarize. 8003 if (VF.isVector()) 8004 CM.collectInstsToScalarize(VF); 8005 } 8006 8007 CM.collectInLoopReductions(); 8008 8009 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 8010 LLVM_DEBUG(printPlans(dbgs())); 8011 if (!MaxFactors.hasVector()) 8012 return VectorizationFactor::Disabled(); 8013 8014 // Select the optimal vectorization factor. 8015 auto SelectedVF = CM.selectVectorizationFactor(MaxVF); 8016 8017 // Check if it is profitable to vectorize with runtime checks. 8018 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8019 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8020 bool PragmaThresholdReached = 8021 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8022 bool ThresholdReached = 8023 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8024 if ((ThresholdReached && !Hints.allowReordering()) || 8025 PragmaThresholdReached) { 8026 ORE->emit([&]() { 8027 return OptimizationRemarkAnalysisAliasing( 8028 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8029 OrigLoop->getHeader()) 8030 << "loop not vectorized: cannot prove it is safe to reorder " 8031 "memory operations"; 8032 }); 8033 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8034 Hints.emitRemarkWithHints(); 8035 return VectorizationFactor::Disabled(); 8036 } 8037 } 8038 return SelectedVF; 8039 } 8040 8041 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 8042 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 8043 << '\n'); 8044 BestVF = VF; 8045 BestUF = UF; 8046 8047 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 8048 return !Plan->hasVF(VF); 8049 }); 8050 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 8051 } 8052 8053 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 8054 DominatorTree *DT) { 8055 // Perform the actual loop transformation. 8056 8057 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8058 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 8059 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 8060 8061 VPTransformState State{ 8062 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 8063 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8064 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8065 State.CanonicalIV = ILV.Induction; 8066 8067 ILV.printDebugTracesAtStart(); 8068 8069 //===------------------------------------------------===// 8070 // 8071 // Notice: any optimization or new instruction that go 8072 // into the code below should also be implemented in 8073 // the cost-model. 8074 // 8075 //===------------------------------------------------===// 8076 8077 // 2. Copy and widen instructions from the old loop into the new loop. 8078 VPlans.front()->execute(&State); 8079 8080 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8081 // predication, updating analyses. 8082 ILV.fixVectorizedLoop(State); 8083 8084 ILV.printDebugTracesAtEnd(); 8085 } 8086 8087 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8088 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8089 for (const auto &Plan : VPlans) 8090 if (PrintVPlansInDotFormat) 8091 Plan->printDOT(O); 8092 else 8093 Plan->print(O); 8094 } 8095 #endif 8096 8097 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8098 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8099 8100 // We create new control-flow for the vectorized loop, so the original exit 8101 // conditions will be dead after vectorization if it's only used by the 8102 // terminator 8103 SmallVector<BasicBlock*> ExitingBlocks; 8104 OrigLoop->getExitingBlocks(ExitingBlocks); 8105 for (auto *BB : ExitingBlocks) { 8106 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8107 if (!Cmp || !Cmp->hasOneUse()) 8108 continue; 8109 8110 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8111 if (!DeadInstructions.insert(Cmp).second) 8112 continue; 8113 8114 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8115 // TODO: can recurse through operands in general 8116 for (Value *Op : Cmp->operands()) { 8117 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8118 DeadInstructions.insert(cast<Instruction>(Op)); 8119 } 8120 } 8121 8122 // We create new "steps" for induction variable updates to which the original 8123 // induction variables map. An original update instruction will be dead if 8124 // all its users except the induction variable are dead. 8125 auto *Latch = OrigLoop->getLoopLatch(); 8126 for (auto &Induction : Legal->getInductionVars()) { 8127 PHINode *Ind = Induction.first; 8128 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8129 8130 // If the tail is to be folded by masking, the primary induction variable, 8131 // if exists, isn't dead: it will be used for masking. Don't kill it. 8132 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8133 continue; 8134 8135 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8136 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8137 })) 8138 DeadInstructions.insert(IndUpdate); 8139 8140 // We record as "Dead" also the type-casting instructions we had identified 8141 // during induction analysis. We don't need any handling for them in the 8142 // vectorized loop because we have proven that, under a proper runtime 8143 // test guarding the vectorized loop, the value of the phi, and the casted 8144 // value of the phi, are the same. The last instruction in this casting chain 8145 // will get its scalar/vector/widened def from the scalar/vector/widened def 8146 // of the respective phi node. Any other casts in the induction def-use chain 8147 // have no other uses outside the phi update chain, and will be ignored. 8148 InductionDescriptor &IndDes = Induction.second; 8149 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8150 DeadInstructions.insert(Casts.begin(), Casts.end()); 8151 } 8152 } 8153 8154 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8155 8156 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8157 8158 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 8159 Instruction::BinaryOps BinOp) { 8160 // When unrolling and the VF is 1, we only need to add a simple scalar. 8161 Type *Ty = Val->getType(); 8162 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8163 8164 if (Ty->isFloatingPointTy()) { 8165 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 8166 8167 // Floating-point operations inherit FMF via the builder's flags. 8168 Value *MulOp = Builder.CreateFMul(C, Step); 8169 return Builder.CreateBinOp(BinOp, Val, MulOp); 8170 } 8171 Constant *C = ConstantInt::get(Ty, StartIdx); 8172 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 8173 } 8174 8175 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8176 SmallVector<Metadata *, 4> MDs; 8177 // Reserve first location for self reference to the LoopID metadata node. 8178 MDs.push_back(nullptr); 8179 bool IsUnrollMetadata = false; 8180 MDNode *LoopID = L->getLoopID(); 8181 if (LoopID) { 8182 // First find existing loop unrolling disable metadata. 8183 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8184 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8185 if (MD) { 8186 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8187 IsUnrollMetadata = 8188 S && S->getString().startswith("llvm.loop.unroll.disable"); 8189 } 8190 MDs.push_back(LoopID->getOperand(i)); 8191 } 8192 } 8193 8194 if (!IsUnrollMetadata) { 8195 // Add runtime unroll disable metadata. 8196 LLVMContext &Context = L->getHeader()->getContext(); 8197 SmallVector<Metadata *, 1> DisableOperands; 8198 DisableOperands.push_back( 8199 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8200 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8201 MDs.push_back(DisableNode); 8202 MDNode *NewLoopID = MDNode::get(Context, MDs); 8203 // Set operand 0 to refer to the loop id itself. 8204 NewLoopID->replaceOperandWith(0, NewLoopID); 8205 L->setLoopID(NewLoopID); 8206 } 8207 } 8208 8209 //===--------------------------------------------------------------------===// 8210 // EpilogueVectorizerMainLoop 8211 //===--------------------------------------------------------------------===// 8212 8213 /// This function is partially responsible for generating the control flow 8214 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8215 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8216 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8217 Loop *Lp = createVectorLoopSkeleton(""); 8218 8219 // Generate the code to check the minimum iteration count of the vector 8220 // epilogue (see below). 8221 EPI.EpilogueIterationCountCheck = 8222 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8223 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8224 8225 // Generate the code to check any assumptions that we've made for SCEV 8226 // expressions. 8227 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8228 8229 // Generate the code that checks at runtime if arrays overlap. We put the 8230 // checks into a separate block to make the more common case of few elements 8231 // faster. 8232 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8233 8234 // Generate the iteration count check for the main loop, *after* the check 8235 // for the epilogue loop, so that the path-length is shorter for the case 8236 // that goes directly through the vector epilogue. The longer-path length for 8237 // the main loop is compensated for, by the gain from vectorizing the larger 8238 // trip count. Note: the branch will get updated later on when we vectorize 8239 // the epilogue. 8240 EPI.MainLoopIterationCountCheck = 8241 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8242 8243 // Generate the induction variable. 8244 OldInduction = Legal->getPrimaryInduction(); 8245 Type *IdxTy = Legal->getWidestInductionType(); 8246 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8247 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8248 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8249 EPI.VectorTripCount = CountRoundDown; 8250 Induction = 8251 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8252 getDebugLocFromInstOrOperands(OldInduction)); 8253 8254 // Skip induction resume value creation here because they will be created in 8255 // the second pass. If we created them here, they wouldn't be used anyway, 8256 // because the vplan in the second pass still contains the inductions from the 8257 // original loop. 8258 8259 return completeLoopSkeleton(Lp, OrigLoopID); 8260 } 8261 8262 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8263 LLVM_DEBUG({ 8264 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8265 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8266 << ", Main Loop UF:" << EPI.MainLoopUF 8267 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8268 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8269 }); 8270 } 8271 8272 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8273 DEBUG_WITH_TYPE(VerboseDebug, { 8274 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8275 }); 8276 } 8277 8278 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8279 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8280 assert(L && "Expected valid Loop."); 8281 assert(Bypass && "Expected valid bypass basic block."); 8282 unsigned VFactor = 8283 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 8284 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8285 Value *Count = getOrCreateTripCount(L); 8286 // Reuse existing vector loop preheader for TC checks. 8287 // Note that new preheader block is generated for vector loop. 8288 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8289 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8290 8291 // Generate code to check if the loop's trip count is less than VF * UF of the 8292 // main vector loop. 8293 auto P = 8294 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8295 8296 Value *CheckMinIters = Builder.CreateICmp( 8297 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8298 "min.iters.check"); 8299 8300 if (!ForEpilogue) 8301 TCCheckBlock->setName("vector.main.loop.iter.check"); 8302 8303 // Create new preheader for vector loop. 8304 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8305 DT, LI, nullptr, "vector.ph"); 8306 8307 if (ForEpilogue) { 8308 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8309 DT->getNode(Bypass)->getIDom()) && 8310 "TC check is expected to dominate Bypass"); 8311 8312 // Update dominator for Bypass & LoopExit. 8313 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8314 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8315 8316 LoopBypassBlocks.push_back(TCCheckBlock); 8317 8318 // Save the trip count so we don't have to regenerate it in the 8319 // vec.epilog.iter.check. This is safe to do because the trip count 8320 // generated here dominates the vector epilog iter check. 8321 EPI.TripCount = Count; 8322 } 8323 8324 ReplaceInstWithInst( 8325 TCCheckBlock->getTerminator(), 8326 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8327 8328 return TCCheckBlock; 8329 } 8330 8331 //===--------------------------------------------------------------------===// 8332 // EpilogueVectorizerEpilogueLoop 8333 //===--------------------------------------------------------------------===// 8334 8335 /// This function is partially responsible for generating the control flow 8336 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8337 BasicBlock * 8338 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8339 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8340 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8341 8342 // Now, compare the remaining count and if there aren't enough iterations to 8343 // execute the vectorized epilogue skip to the scalar part. 8344 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8345 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8346 LoopVectorPreHeader = 8347 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8348 LI, nullptr, "vec.epilog.ph"); 8349 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8350 VecEpilogueIterationCountCheck); 8351 8352 // Adjust the control flow taking the state info from the main loop 8353 // vectorization into account. 8354 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8355 "expected this to be saved from the previous pass."); 8356 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8357 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8358 8359 DT->changeImmediateDominator(LoopVectorPreHeader, 8360 EPI.MainLoopIterationCountCheck); 8361 8362 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8363 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8364 8365 if (EPI.SCEVSafetyCheck) 8366 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8367 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8368 if (EPI.MemSafetyCheck) 8369 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8370 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8371 8372 DT->changeImmediateDominator( 8373 VecEpilogueIterationCountCheck, 8374 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8375 8376 DT->changeImmediateDominator(LoopScalarPreHeader, 8377 EPI.EpilogueIterationCountCheck); 8378 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 8379 8380 // Keep track of bypass blocks, as they feed start values to the induction 8381 // phis in the scalar loop preheader. 8382 if (EPI.SCEVSafetyCheck) 8383 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8384 if (EPI.MemSafetyCheck) 8385 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8386 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8387 8388 // Generate a resume induction for the vector epilogue and put it in the 8389 // vector epilogue preheader 8390 Type *IdxTy = Legal->getWidestInductionType(); 8391 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8392 LoopVectorPreHeader->getFirstNonPHI()); 8393 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8394 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8395 EPI.MainLoopIterationCountCheck); 8396 8397 // Generate the induction variable. 8398 OldInduction = Legal->getPrimaryInduction(); 8399 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8400 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8401 Value *StartIdx = EPResumeVal; 8402 Induction = 8403 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8404 getDebugLocFromInstOrOperands(OldInduction)); 8405 8406 // Generate induction resume values. These variables save the new starting 8407 // indexes for the scalar loop. They are used to test if there are any tail 8408 // iterations left once the vector loop has completed. 8409 // Note that when the vectorized epilogue is skipped due to iteration count 8410 // check, then the resume value for the induction variable comes from 8411 // the trip count of the main vector loop, hence passing the AdditionalBypass 8412 // argument. 8413 createInductionResumeValues(Lp, CountRoundDown, 8414 {VecEpilogueIterationCountCheck, 8415 EPI.VectorTripCount} /* AdditionalBypass */); 8416 8417 AddRuntimeUnrollDisableMetaData(Lp); 8418 return completeLoopSkeleton(Lp, OrigLoopID); 8419 } 8420 8421 BasicBlock * 8422 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8423 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8424 8425 assert(EPI.TripCount && 8426 "Expected trip count to have been safed in the first pass."); 8427 assert( 8428 (!isa<Instruction>(EPI.TripCount) || 8429 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8430 "saved trip count does not dominate insertion point."); 8431 Value *TC = EPI.TripCount; 8432 IRBuilder<> Builder(Insert->getTerminator()); 8433 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8434 8435 // Generate code to check if the loop's trip count is less than VF * UF of the 8436 // vector epilogue loop. 8437 auto P = 8438 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8439 8440 Value *CheckMinIters = Builder.CreateICmp( 8441 P, Count, 8442 ConstantInt::get(Count->getType(), 8443 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8444 "min.epilog.iters.check"); 8445 8446 ReplaceInstWithInst( 8447 Insert->getTerminator(), 8448 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8449 8450 LoopBypassBlocks.push_back(Insert); 8451 return Insert; 8452 } 8453 8454 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8455 LLVM_DEBUG({ 8456 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8457 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8458 << ", Main Loop UF:" << EPI.MainLoopUF 8459 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8460 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8461 }); 8462 } 8463 8464 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8465 DEBUG_WITH_TYPE(VerboseDebug, { 8466 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8467 }); 8468 } 8469 8470 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8471 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8472 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8473 bool PredicateAtRangeStart = Predicate(Range.Start); 8474 8475 for (ElementCount TmpVF = Range.Start * 2; 8476 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8477 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8478 Range.End = TmpVF; 8479 break; 8480 } 8481 8482 return PredicateAtRangeStart; 8483 } 8484 8485 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8486 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8487 /// of VF's starting at a given VF and extending it as much as possible. Each 8488 /// vectorization decision can potentially shorten this sub-range during 8489 /// buildVPlan(). 8490 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8491 ElementCount MaxVF) { 8492 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8493 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8494 VFRange SubRange = {VF, MaxVFPlusOne}; 8495 VPlans.push_back(buildVPlan(SubRange)); 8496 VF = SubRange.End; 8497 } 8498 } 8499 8500 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8501 VPlanPtr &Plan) { 8502 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8503 8504 // Look for cached value. 8505 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8506 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8507 if (ECEntryIt != EdgeMaskCache.end()) 8508 return ECEntryIt->second; 8509 8510 VPValue *SrcMask = createBlockInMask(Src, Plan); 8511 8512 // The terminator has to be a branch inst! 8513 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8514 assert(BI && "Unexpected terminator found"); 8515 8516 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8517 return EdgeMaskCache[Edge] = SrcMask; 8518 8519 // If source is an exiting block, we know the exit edge is dynamically dead 8520 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8521 // adding uses of an otherwise potentially dead instruction. 8522 if (OrigLoop->isLoopExiting(Src)) 8523 return EdgeMaskCache[Edge] = SrcMask; 8524 8525 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8526 assert(EdgeMask && "No Edge Mask found for condition"); 8527 8528 if (BI->getSuccessor(0) != Dst) 8529 EdgeMask = Builder.createNot(EdgeMask); 8530 8531 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8532 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8533 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8534 // The select version does not introduce new UB if SrcMask is false and 8535 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8536 VPValue *False = Plan->getOrAddVPValue( 8537 ConstantInt::getFalse(BI->getCondition()->getType())); 8538 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8539 } 8540 8541 return EdgeMaskCache[Edge] = EdgeMask; 8542 } 8543 8544 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8545 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8546 8547 // Look for cached value. 8548 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8549 if (BCEntryIt != BlockMaskCache.end()) 8550 return BCEntryIt->second; 8551 8552 // All-one mask is modelled as no-mask following the convention for masked 8553 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8554 VPValue *BlockMask = nullptr; 8555 8556 if (OrigLoop->getHeader() == BB) { 8557 if (!CM.blockNeedsPredication(BB)) 8558 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8559 8560 // Create the block in mask as the first non-phi instruction in the block. 8561 VPBuilder::InsertPointGuard Guard(Builder); 8562 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8563 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8564 8565 // Introduce the early-exit compare IV <= BTC to form header block mask. 8566 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8567 // Start by constructing the desired canonical IV. 8568 VPValue *IV = nullptr; 8569 if (Legal->getPrimaryInduction()) 8570 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8571 else { 8572 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8573 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8574 IV = IVRecipe->getVPSingleValue(); 8575 } 8576 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8577 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8578 8579 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8580 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8581 // as a second argument, we only pass the IV here and extract the 8582 // tripcount from the transform state where codegen of the VP instructions 8583 // happen. 8584 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8585 } else { 8586 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8587 } 8588 return BlockMaskCache[BB] = BlockMask; 8589 } 8590 8591 // This is the block mask. We OR all incoming edges. 8592 for (auto *Predecessor : predecessors(BB)) { 8593 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8594 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8595 return BlockMaskCache[BB] = EdgeMask; 8596 8597 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8598 BlockMask = EdgeMask; 8599 continue; 8600 } 8601 8602 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8603 } 8604 8605 return BlockMaskCache[BB] = BlockMask; 8606 } 8607 8608 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8609 ArrayRef<VPValue *> Operands, 8610 VFRange &Range, 8611 VPlanPtr &Plan) { 8612 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8613 "Must be called with either a load or store"); 8614 8615 auto willWiden = [&](ElementCount VF) -> bool { 8616 if (VF.isScalar()) 8617 return false; 8618 LoopVectorizationCostModel::InstWidening Decision = 8619 CM.getWideningDecision(I, VF); 8620 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8621 "CM decision should be taken at this point."); 8622 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8623 return true; 8624 if (CM.isScalarAfterVectorization(I, VF) || 8625 CM.isProfitableToScalarize(I, VF)) 8626 return false; 8627 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8628 }; 8629 8630 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8631 return nullptr; 8632 8633 VPValue *Mask = nullptr; 8634 if (Legal->isMaskRequired(I)) 8635 Mask = createBlockInMask(I->getParent(), Plan); 8636 8637 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8638 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask); 8639 8640 StoreInst *Store = cast<StoreInst>(I); 8641 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8642 Mask); 8643 } 8644 8645 VPWidenIntOrFpInductionRecipe * 8646 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8647 ArrayRef<VPValue *> Operands) const { 8648 // Check if this is an integer or fp induction. If so, build the recipe that 8649 // produces its scalar and vector values. 8650 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8651 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8652 II.getKind() == InductionDescriptor::IK_FpInduction) { 8653 assert(II.getStartValue() == 8654 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8655 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8656 return new VPWidenIntOrFpInductionRecipe( 8657 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8658 } 8659 8660 return nullptr; 8661 } 8662 8663 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8664 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8665 VPlan &Plan) const { 8666 // Optimize the special case where the source is a constant integer 8667 // induction variable. Notice that we can only optimize the 'trunc' case 8668 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8669 // (c) other casts depend on pointer size. 8670 8671 // Determine whether \p K is a truncation based on an induction variable that 8672 // can be optimized. 8673 auto isOptimizableIVTruncate = 8674 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8675 return [=](ElementCount VF) -> bool { 8676 return CM.isOptimizableIVTruncate(K, VF); 8677 }; 8678 }; 8679 8680 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8681 isOptimizableIVTruncate(I), Range)) { 8682 8683 InductionDescriptor II = 8684 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8685 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8686 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8687 Start, nullptr, I); 8688 } 8689 return nullptr; 8690 } 8691 8692 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8693 ArrayRef<VPValue *> Operands, 8694 VPlanPtr &Plan) { 8695 // If all incoming values are equal, the incoming VPValue can be used directly 8696 // instead of creating a new VPBlendRecipe. 8697 VPValue *FirstIncoming = Operands[0]; 8698 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8699 return FirstIncoming == Inc; 8700 })) { 8701 return Operands[0]; 8702 } 8703 8704 // We know that all PHIs in non-header blocks are converted into selects, so 8705 // we don't have to worry about the insertion order and we can just use the 8706 // builder. At this point we generate the predication tree. There may be 8707 // duplications since this is a simple recursive scan, but future 8708 // optimizations will clean it up. 8709 SmallVector<VPValue *, 2> OperandsWithMask; 8710 unsigned NumIncoming = Phi->getNumIncomingValues(); 8711 8712 for (unsigned In = 0; In < NumIncoming; In++) { 8713 VPValue *EdgeMask = 8714 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8715 assert((EdgeMask || NumIncoming == 1) && 8716 "Multiple predecessors with one having a full mask"); 8717 OperandsWithMask.push_back(Operands[In]); 8718 if (EdgeMask) 8719 OperandsWithMask.push_back(EdgeMask); 8720 } 8721 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8722 } 8723 8724 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8725 ArrayRef<VPValue *> Operands, 8726 VFRange &Range) const { 8727 8728 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8729 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8730 Range); 8731 8732 if (IsPredicated) 8733 return nullptr; 8734 8735 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8736 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8737 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8738 ID == Intrinsic::pseudoprobe || 8739 ID == Intrinsic::experimental_noalias_scope_decl)) 8740 return nullptr; 8741 8742 auto willWiden = [&](ElementCount VF) -> bool { 8743 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8744 // The following case may be scalarized depending on the VF. 8745 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8746 // version of the instruction. 8747 // Is it beneficial to perform intrinsic call compared to lib call? 8748 bool NeedToScalarize = false; 8749 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8750 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8751 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8752 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 8753 "Either the intrinsic cost or vector call cost must be valid"); 8754 return UseVectorIntrinsic || !NeedToScalarize; 8755 }; 8756 8757 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8758 return nullptr; 8759 8760 ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands()); 8761 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8762 } 8763 8764 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8765 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8766 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8767 // Instruction should be widened, unless it is scalar after vectorization, 8768 // scalarization is profitable or it is predicated. 8769 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8770 return CM.isScalarAfterVectorization(I, VF) || 8771 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8772 }; 8773 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8774 Range); 8775 } 8776 8777 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8778 ArrayRef<VPValue *> Operands) const { 8779 auto IsVectorizableOpcode = [](unsigned Opcode) { 8780 switch (Opcode) { 8781 case Instruction::Add: 8782 case Instruction::And: 8783 case Instruction::AShr: 8784 case Instruction::BitCast: 8785 case Instruction::FAdd: 8786 case Instruction::FCmp: 8787 case Instruction::FDiv: 8788 case Instruction::FMul: 8789 case Instruction::FNeg: 8790 case Instruction::FPExt: 8791 case Instruction::FPToSI: 8792 case Instruction::FPToUI: 8793 case Instruction::FPTrunc: 8794 case Instruction::FRem: 8795 case Instruction::FSub: 8796 case Instruction::ICmp: 8797 case Instruction::IntToPtr: 8798 case Instruction::LShr: 8799 case Instruction::Mul: 8800 case Instruction::Or: 8801 case Instruction::PtrToInt: 8802 case Instruction::SDiv: 8803 case Instruction::Select: 8804 case Instruction::SExt: 8805 case Instruction::Shl: 8806 case Instruction::SIToFP: 8807 case Instruction::SRem: 8808 case Instruction::Sub: 8809 case Instruction::Trunc: 8810 case Instruction::UDiv: 8811 case Instruction::UIToFP: 8812 case Instruction::URem: 8813 case Instruction::Xor: 8814 case Instruction::ZExt: 8815 return true; 8816 } 8817 return false; 8818 }; 8819 8820 if (!IsVectorizableOpcode(I->getOpcode())) 8821 return nullptr; 8822 8823 // Success: widen this instruction. 8824 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8825 } 8826 8827 void VPRecipeBuilder::fixHeaderPhis() { 8828 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8829 for (VPWidenPHIRecipe *R : PhisToFix) { 8830 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8831 VPRecipeBase *IncR = 8832 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8833 R->addOperand(IncR->getVPSingleValue()); 8834 } 8835 } 8836 8837 VPBasicBlock *VPRecipeBuilder::handleReplication( 8838 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8839 VPlanPtr &Plan) { 8840 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8841 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8842 Range); 8843 8844 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8845 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 8846 8847 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8848 IsUniform, IsPredicated); 8849 setRecipe(I, Recipe); 8850 Plan->addVPValue(I, Recipe); 8851 8852 // Find if I uses a predicated instruction. If so, it will use its scalar 8853 // value. Avoid hoisting the insert-element which packs the scalar value into 8854 // a vector value, as that happens iff all users use the vector value. 8855 for (VPValue *Op : Recipe->operands()) { 8856 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8857 if (!PredR) 8858 continue; 8859 auto *RepR = 8860 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8861 assert(RepR->isPredicated() && 8862 "expected Replicate recipe to be predicated"); 8863 RepR->setAlsoPack(false); 8864 } 8865 8866 // Finalize the recipe for Instr, first if it is not predicated. 8867 if (!IsPredicated) { 8868 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8869 VPBB->appendRecipe(Recipe); 8870 return VPBB; 8871 } 8872 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8873 assert(VPBB->getSuccessors().empty() && 8874 "VPBB has successors when handling predicated replication."); 8875 // Record predicated instructions for above packing optimizations. 8876 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8877 VPBlockUtils::insertBlockAfter(Region, VPBB); 8878 auto *RegSucc = new VPBasicBlock(); 8879 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8880 return RegSucc; 8881 } 8882 8883 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8884 VPRecipeBase *PredRecipe, 8885 VPlanPtr &Plan) { 8886 // Instructions marked for predication are replicated and placed under an 8887 // if-then construct to prevent side-effects. 8888 8889 // Generate recipes to compute the block mask for this region. 8890 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8891 8892 // Build the triangular if-then region. 8893 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8894 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8895 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8896 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8897 auto *PHIRecipe = Instr->getType()->isVoidTy() 8898 ? nullptr 8899 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8900 if (PHIRecipe) { 8901 Plan->removeVPValueFor(Instr); 8902 Plan->addVPValue(Instr, PHIRecipe); 8903 } 8904 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8905 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8906 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8907 8908 // Note: first set Entry as region entry and then connect successors starting 8909 // from it in order, to propagate the "parent" of each VPBasicBlock. 8910 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8911 VPBlockUtils::connectBlocks(Pred, Exit); 8912 8913 return Region; 8914 } 8915 8916 VPRecipeOrVPValueTy 8917 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8918 ArrayRef<VPValue *> Operands, 8919 VFRange &Range, VPlanPtr &Plan) { 8920 // First, check for specific widening recipes that deal with calls, memory 8921 // operations, inductions and Phi nodes. 8922 if (auto *CI = dyn_cast<CallInst>(Instr)) 8923 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8924 8925 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8926 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8927 8928 VPRecipeBase *Recipe; 8929 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8930 if (Phi->getParent() != OrigLoop->getHeader()) 8931 return tryToBlend(Phi, Operands, Plan); 8932 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 8933 return toVPRecipeResult(Recipe); 8934 8935 if (Legal->isReductionVariable(Phi)) { 8936 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8937 assert(RdxDesc.getRecurrenceStartValue() == 8938 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8939 VPValue *StartV = Operands[0]; 8940 8941 auto *PhiRecipe = new VPWidenPHIRecipe(Phi, RdxDesc, *StartV); 8942 PhisToFix.push_back(PhiRecipe); 8943 // Record the incoming value from the backedge, so we can add the incoming 8944 // value from the backedge after all recipes have been created. 8945 recordRecipeOf(cast<Instruction>( 8946 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8947 return toVPRecipeResult(PhiRecipe); 8948 } 8949 8950 return toVPRecipeResult(new VPWidenPHIRecipe(Phi)); 8951 } 8952 8953 if (isa<TruncInst>(Instr) && 8954 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8955 Range, *Plan))) 8956 return toVPRecipeResult(Recipe); 8957 8958 if (!shouldWiden(Instr, Range)) 8959 return nullptr; 8960 8961 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8962 return toVPRecipeResult(new VPWidenGEPRecipe( 8963 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8964 8965 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8966 bool InvariantCond = 8967 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8968 return toVPRecipeResult(new VPWidenSelectRecipe( 8969 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8970 } 8971 8972 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8973 } 8974 8975 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8976 ElementCount MaxVF) { 8977 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8978 8979 // Collect instructions from the original loop that will become trivially dead 8980 // in the vectorized loop. We don't need to vectorize these instructions. For 8981 // example, original induction update instructions can become dead because we 8982 // separately emit induction "steps" when generating code for the new loop. 8983 // Similarly, we create a new latch condition when setting up the structure 8984 // of the new loop, so the old one can become dead. 8985 SmallPtrSet<Instruction *, 4> DeadInstructions; 8986 collectTriviallyDeadInstructions(DeadInstructions); 8987 8988 // Add assume instructions we need to drop to DeadInstructions, to prevent 8989 // them from being added to the VPlan. 8990 // TODO: We only need to drop assumes in blocks that get flattend. If the 8991 // control flow is preserved, we should keep them. 8992 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8993 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8994 8995 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8996 // Dead instructions do not need sinking. Remove them from SinkAfter. 8997 for (Instruction *I : DeadInstructions) 8998 SinkAfter.erase(I); 8999 9000 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9001 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9002 VFRange SubRange = {VF, MaxVFPlusOne}; 9003 VPlans.push_back( 9004 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9005 VF = SubRange.End; 9006 } 9007 } 9008 9009 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9010 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9011 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 9012 9013 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9014 9015 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9016 9017 // --------------------------------------------------------------------------- 9018 // Pre-construction: record ingredients whose recipes we'll need to further 9019 // process after constructing the initial VPlan. 9020 // --------------------------------------------------------------------------- 9021 9022 // Mark instructions we'll need to sink later and their targets as 9023 // ingredients whose recipe we'll need to record. 9024 for (auto &Entry : SinkAfter) { 9025 RecipeBuilder.recordRecipeOf(Entry.first); 9026 RecipeBuilder.recordRecipeOf(Entry.second); 9027 } 9028 for (auto &Reduction : CM.getInLoopReductionChains()) { 9029 PHINode *Phi = Reduction.first; 9030 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9031 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9032 9033 RecipeBuilder.recordRecipeOf(Phi); 9034 for (auto &R : ReductionOperations) { 9035 RecipeBuilder.recordRecipeOf(R); 9036 // For min/max reducitons, where we have a pair of icmp/select, we also 9037 // need to record the ICmp recipe, so it can be removed later. 9038 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9039 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9040 } 9041 } 9042 9043 // For each interleave group which is relevant for this (possibly trimmed) 9044 // Range, add it to the set of groups to be later applied to the VPlan and add 9045 // placeholders for its members' Recipes which we'll be replacing with a 9046 // single VPInterleaveRecipe. 9047 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9048 auto applyIG = [IG, this](ElementCount VF) -> bool { 9049 return (VF.isVector() && // Query is illegal for VF == 1 9050 CM.getWideningDecision(IG->getInsertPos(), VF) == 9051 LoopVectorizationCostModel::CM_Interleave); 9052 }; 9053 if (!getDecisionAndClampRange(applyIG, Range)) 9054 continue; 9055 InterleaveGroups.insert(IG); 9056 for (unsigned i = 0; i < IG->getFactor(); i++) 9057 if (Instruction *Member = IG->getMember(i)) 9058 RecipeBuilder.recordRecipeOf(Member); 9059 }; 9060 9061 // --------------------------------------------------------------------------- 9062 // Build initial VPlan: Scan the body of the loop in a topological order to 9063 // visit each basic block after having visited its predecessor basic blocks. 9064 // --------------------------------------------------------------------------- 9065 9066 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9067 auto Plan = std::make_unique<VPlan>(); 9068 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 9069 Plan->setEntry(VPBB); 9070 9071 // Scan the body of the loop in a topological order to visit each basic block 9072 // after having visited its predecessor basic blocks. 9073 LoopBlocksDFS DFS(OrigLoop); 9074 DFS.perform(LI); 9075 9076 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9077 // Relevant instructions from basic block BB will be grouped into VPRecipe 9078 // ingredients and fill a new VPBasicBlock. 9079 unsigned VPBBsForBB = 0; 9080 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9081 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9082 VPBB = FirstVPBBForBB; 9083 Builder.setInsertPoint(VPBB); 9084 9085 // Introduce each ingredient into VPlan. 9086 // TODO: Model and preserve debug instrinsics in VPlan. 9087 for (Instruction &I : BB->instructionsWithoutDebug()) { 9088 Instruction *Instr = &I; 9089 9090 // First filter out irrelevant instructions, to ensure no recipes are 9091 // built for them. 9092 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9093 continue; 9094 9095 SmallVector<VPValue *, 4> Operands; 9096 auto *Phi = dyn_cast<PHINode>(Instr); 9097 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9098 Operands.push_back(Plan->getOrAddVPValue( 9099 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9100 } else { 9101 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9102 Operands = {OpRange.begin(), OpRange.end()}; 9103 } 9104 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9105 Instr, Operands, Range, Plan)) { 9106 // If Instr can be simplified to an existing VPValue, use it. 9107 if (RecipeOrValue.is<VPValue *>()) { 9108 auto *VPV = RecipeOrValue.get<VPValue *>(); 9109 Plan->addVPValue(Instr, VPV); 9110 // If the re-used value is a recipe, register the recipe for the 9111 // instruction, in case the recipe for Instr needs to be recorded. 9112 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9113 RecipeBuilder.setRecipe(Instr, R); 9114 continue; 9115 } 9116 // Otherwise, add the new recipe. 9117 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9118 for (auto *Def : Recipe->definedValues()) { 9119 auto *UV = Def->getUnderlyingValue(); 9120 Plan->addVPValue(UV, Def); 9121 } 9122 9123 RecipeBuilder.setRecipe(Instr, Recipe); 9124 VPBB->appendRecipe(Recipe); 9125 continue; 9126 } 9127 9128 // Otherwise, if all widening options failed, Instruction is to be 9129 // replicated. This may create a successor for VPBB. 9130 VPBasicBlock *NextVPBB = 9131 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9132 if (NextVPBB != VPBB) { 9133 VPBB = NextVPBB; 9134 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9135 : ""); 9136 } 9137 } 9138 } 9139 9140 RecipeBuilder.fixHeaderPhis(); 9141 9142 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 9143 // may also be empty, such as the last one VPBB, reflecting original 9144 // basic-blocks with no recipes. 9145 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 9146 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 9147 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 9148 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 9149 delete PreEntry; 9150 9151 // --------------------------------------------------------------------------- 9152 // Transform initial VPlan: Apply previously taken decisions, in order, to 9153 // bring the VPlan to its final state. 9154 // --------------------------------------------------------------------------- 9155 9156 // Apply Sink-After legal constraints. 9157 for (auto &Entry : SinkAfter) { 9158 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9159 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9160 9161 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9162 auto *Region = 9163 dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9164 if (Region && Region->isReplicator()) 9165 return Region; 9166 return nullptr; 9167 }; 9168 9169 // If the target is in a replication region, make sure to move Sink to the 9170 // block after it, not into the replication region itself. 9171 if (auto *TargetRegion = GetReplicateRegion(Target)) { 9172 assert(TargetRegion->getNumSuccessors() == 1 && "Expected SESE region!"); 9173 assert(!GetReplicateRegion(Sink) && 9174 "cannot sink a region into another region yet"); 9175 VPBasicBlock *NextBlock = 9176 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9177 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9178 continue; 9179 } 9180 9181 auto *SinkRegion = GetReplicateRegion(Sink); 9182 // Unless the sink source is in a replicate region, sink the recipe 9183 // directly. 9184 if (!SinkRegion) { 9185 Sink->moveAfter(Target); 9186 continue; 9187 } 9188 9189 // If the sink source is in a replicate region, we need to move the whole 9190 // replicate region, which should only contain a single recipe in the main 9191 // block. 9192 assert(Sink->getParent()->size() == 1 && 9193 "parent must be a replicator with a single recipe"); 9194 auto *SplitBlock = 9195 Target->getParent()->splitAt(std::next(Target->getIterator())); 9196 9197 auto *Pred = SinkRegion->getSinglePredecessor(); 9198 auto *Succ = SinkRegion->getSingleSuccessor(); 9199 VPBlockUtils::disconnectBlocks(Pred, SinkRegion); 9200 VPBlockUtils::disconnectBlocks(SinkRegion, Succ); 9201 VPBlockUtils::connectBlocks(Pred, Succ); 9202 9203 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9204 9205 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9206 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9207 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9208 if (VPBB == SplitPred) 9209 VPBB = SplitBlock; 9210 } 9211 9212 // Interleave memory: for each Interleave Group we marked earlier as relevant 9213 // for this VPlan, replace the Recipes widening its memory instructions with a 9214 // single VPInterleaveRecipe at its insertion point. 9215 for (auto IG : InterleaveGroups) { 9216 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9217 RecipeBuilder.getRecipe(IG->getInsertPos())); 9218 SmallVector<VPValue *, 4> StoredValues; 9219 for (unsigned i = 0; i < IG->getFactor(); ++i) 9220 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 9221 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 9222 9223 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9224 Recipe->getMask()); 9225 VPIG->insertBefore(Recipe); 9226 unsigned J = 0; 9227 for (unsigned i = 0; i < IG->getFactor(); ++i) 9228 if (Instruction *Member = IG->getMember(i)) { 9229 if (!Member->getType()->isVoidTy()) { 9230 VPValue *OriginalV = Plan->getVPValue(Member); 9231 Plan->removeVPValueFor(Member); 9232 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9233 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9234 J++; 9235 } 9236 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9237 } 9238 } 9239 9240 // Adjust the recipes for any inloop reductions. 9241 if (Range.Start.isVector()) 9242 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 9243 9244 // Finally, if tail is folded by masking, introduce selects between the phi 9245 // and the live-out instruction of each reduction, at the end of the latch. 9246 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 9247 Builder.setInsertPoint(VPBB); 9248 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9249 for (auto &Reduction : Legal->getReductionVars()) { 9250 if (CM.isInLoopReduction(Reduction.first)) 9251 continue; 9252 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 9253 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 9254 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 9255 } 9256 } 9257 9258 VPlanTransforms::sinkScalarOperands(*Plan); 9259 9260 std::string PlanName; 9261 raw_string_ostream RSO(PlanName); 9262 ElementCount VF = Range.Start; 9263 Plan->addVF(VF); 9264 RSO << "Initial VPlan for VF={" << VF; 9265 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9266 Plan->addVF(VF); 9267 RSO << "," << VF; 9268 } 9269 RSO << "},UF>=1"; 9270 RSO.flush(); 9271 Plan->setName(PlanName); 9272 9273 return Plan; 9274 } 9275 9276 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9277 // Outer loop handling: They may require CFG and instruction level 9278 // transformations before even evaluating whether vectorization is profitable. 9279 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9280 // the vectorization pipeline. 9281 assert(!OrigLoop->isInnermost()); 9282 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9283 9284 // Create new empty VPlan 9285 auto Plan = std::make_unique<VPlan>(); 9286 9287 // Build hierarchical CFG 9288 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9289 HCFGBuilder.buildHierarchicalCFG(); 9290 9291 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9292 VF *= 2) 9293 Plan->addVF(VF); 9294 9295 if (EnableVPlanPredication) { 9296 VPlanPredicator VPP(*Plan); 9297 VPP.predicate(); 9298 9299 // Avoid running transformation to recipes until masked code generation in 9300 // VPlan-native path is in place. 9301 return Plan; 9302 } 9303 9304 SmallPtrSet<Instruction *, 1> DeadInstructions; 9305 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9306 Legal->getInductionVars(), 9307 DeadInstructions, *PSE.getSE()); 9308 return Plan; 9309 } 9310 9311 // Adjust the recipes for any inloop reductions. The chain of instructions 9312 // leading from the loop exit instr to the phi need to be converted to 9313 // reductions, with one operand being vector and the other being the scalar 9314 // reduction chain. 9315 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 9316 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 9317 for (auto &Reduction : CM.getInLoopReductionChains()) { 9318 PHINode *Phi = Reduction.first; 9319 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9320 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9321 9322 // ReductionOperations are orders top-down from the phi's use to the 9323 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9324 // which of the two operands will remain scalar and which will be reduced. 9325 // For minmax the chain will be the select instructions. 9326 Instruction *Chain = Phi; 9327 for (Instruction *R : ReductionOperations) { 9328 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9329 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9330 9331 VPValue *ChainOp = Plan->getVPValue(Chain); 9332 unsigned FirstOpId; 9333 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9334 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9335 "Expected to replace a VPWidenSelectSC"); 9336 FirstOpId = 1; 9337 } else { 9338 assert(isa<VPWidenRecipe>(WidenRecipe) && 9339 "Expected to replace a VPWidenSC"); 9340 FirstOpId = 0; 9341 } 9342 unsigned VecOpId = 9343 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9344 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9345 9346 auto *CondOp = CM.foldTailByMasking() 9347 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9348 : nullptr; 9349 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9350 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9351 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9352 Plan->removeVPValueFor(R); 9353 Plan->addVPValue(R, RedRecipe); 9354 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9355 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9356 WidenRecipe->eraseFromParent(); 9357 9358 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9359 VPRecipeBase *CompareRecipe = 9360 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9361 assert(isa<VPWidenRecipe>(CompareRecipe) && 9362 "Expected to replace a VPWidenSC"); 9363 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9364 "Expected no remaining users"); 9365 CompareRecipe->eraseFromParent(); 9366 } 9367 Chain = R; 9368 } 9369 } 9370 } 9371 9372 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9373 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9374 VPSlotTracker &SlotTracker) const { 9375 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9376 IG->getInsertPos()->printAsOperand(O, false); 9377 O << ", "; 9378 getAddr()->printAsOperand(O, SlotTracker); 9379 VPValue *Mask = getMask(); 9380 if (Mask) { 9381 O << ", "; 9382 Mask->printAsOperand(O, SlotTracker); 9383 } 9384 for (unsigned i = 0; i < IG->getFactor(); ++i) 9385 if (Instruction *I = IG->getMember(i)) 9386 O << "\n" << Indent << " " << VPlanIngredient(I) << " " << i; 9387 } 9388 #endif 9389 9390 void VPWidenCallRecipe::execute(VPTransformState &State) { 9391 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9392 *this, State); 9393 } 9394 9395 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9396 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9397 this, *this, InvariantCond, State); 9398 } 9399 9400 void VPWidenRecipe::execute(VPTransformState &State) { 9401 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9402 } 9403 9404 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9405 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9406 *this, State.UF, State.VF, IsPtrLoopInvariant, 9407 IsIndexLoopInvariant, State); 9408 } 9409 9410 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9411 assert(!State.Instance && "Int or FP induction being replicated."); 9412 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9413 getTruncInst(), getVPValue(0), 9414 getCastValue(), State); 9415 } 9416 9417 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9418 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc, 9419 this, State); 9420 } 9421 9422 void VPBlendRecipe::execute(VPTransformState &State) { 9423 State.ILV->setDebugLocFromInst(State.Builder, Phi); 9424 // We know that all PHIs in non-header blocks are converted into 9425 // selects, so we don't have to worry about the insertion order and we 9426 // can just use the builder. 9427 // At this point we generate the predication tree. There may be 9428 // duplications since this is a simple recursive scan, but future 9429 // optimizations will clean it up. 9430 9431 unsigned NumIncoming = getNumIncomingValues(); 9432 9433 // Generate a sequence of selects of the form: 9434 // SELECT(Mask3, In3, 9435 // SELECT(Mask2, In2, 9436 // SELECT(Mask1, In1, 9437 // In0))) 9438 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9439 // are essentially undef are taken from In0. 9440 InnerLoopVectorizer::VectorParts Entry(State.UF); 9441 for (unsigned In = 0; In < NumIncoming; ++In) { 9442 for (unsigned Part = 0; Part < State.UF; ++Part) { 9443 // We might have single edge PHIs (blocks) - use an identity 9444 // 'select' for the first PHI operand. 9445 Value *In0 = State.get(getIncomingValue(In), Part); 9446 if (In == 0) 9447 Entry[Part] = In0; // Initialize with the first incoming value. 9448 else { 9449 // Select between the current value and the previous incoming edge 9450 // based on the incoming mask. 9451 Value *Cond = State.get(getMask(In), Part); 9452 Entry[Part] = 9453 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9454 } 9455 } 9456 } 9457 for (unsigned Part = 0; Part < State.UF; ++Part) 9458 State.set(this, Entry[Part], Part); 9459 } 9460 9461 void VPInterleaveRecipe::execute(VPTransformState &State) { 9462 assert(!State.Instance && "Interleave group being replicated."); 9463 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9464 getStoredValues(), getMask()); 9465 } 9466 9467 void VPReductionRecipe::execute(VPTransformState &State) { 9468 assert(!State.Instance && "Reduction being replicated."); 9469 Value *PrevInChain = State.get(getChainOp(), 0); 9470 for (unsigned Part = 0; Part < State.UF; ++Part) { 9471 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9472 bool IsOrdered = useOrderedReductions(*RdxDesc); 9473 Value *NewVecOp = State.get(getVecOp(), Part); 9474 if (VPValue *Cond = getCondOp()) { 9475 Value *NewCond = State.get(Cond, Part); 9476 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9477 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9478 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9479 Constant *IdenVec = 9480 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9481 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9482 NewVecOp = Select; 9483 } 9484 Value *NewRed; 9485 Value *NextInChain; 9486 if (IsOrdered) { 9487 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9488 PrevInChain); 9489 PrevInChain = NewRed; 9490 } else { 9491 PrevInChain = State.get(getChainOp(), Part); 9492 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9493 } 9494 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9495 NextInChain = 9496 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9497 NewRed, PrevInChain); 9498 } else if (IsOrdered) 9499 NextInChain = NewRed; 9500 else { 9501 NextInChain = State.Builder.CreateBinOp( 9502 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9503 PrevInChain); 9504 } 9505 State.set(this, NextInChain, Part); 9506 } 9507 } 9508 9509 void VPReplicateRecipe::execute(VPTransformState &State) { 9510 if (State.Instance) { // Generate a single instance. 9511 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9512 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9513 *State.Instance, IsPredicated, State); 9514 // Insert scalar instance packing it into a vector. 9515 if (AlsoPack && State.VF.isVector()) { 9516 // If we're constructing lane 0, initialize to start from poison. 9517 if (State.Instance->Lane.isFirstLane()) { 9518 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9519 Value *Poison = PoisonValue::get( 9520 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9521 State.set(this, Poison, State.Instance->Part); 9522 } 9523 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9524 } 9525 return; 9526 } 9527 9528 // Generate scalar instances for all VF lanes of all UF parts, unless the 9529 // instruction is uniform inwhich case generate only the first lane for each 9530 // of the UF parts. 9531 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9532 assert((!State.VF.isScalable() || IsUniform) && 9533 "Can't scalarize a scalable vector"); 9534 for (unsigned Part = 0; Part < State.UF; ++Part) 9535 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9536 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9537 VPIteration(Part, Lane), IsPredicated, 9538 State); 9539 } 9540 9541 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9542 assert(State.Instance && "Branch on Mask works only on single instance."); 9543 9544 unsigned Part = State.Instance->Part; 9545 unsigned Lane = State.Instance->Lane.getKnownLane(); 9546 9547 Value *ConditionBit = nullptr; 9548 VPValue *BlockInMask = getMask(); 9549 if (BlockInMask) { 9550 ConditionBit = State.get(BlockInMask, Part); 9551 if (ConditionBit->getType()->isVectorTy()) 9552 ConditionBit = State.Builder.CreateExtractElement( 9553 ConditionBit, State.Builder.getInt32(Lane)); 9554 } else // Block in mask is all-one. 9555 ConditionBit = State.Builder.getTrue(); 9556 9557 // Replace the temporary unreachable terminator with a new conditional branch, 9558 // whose two destinations will be set later when they are created. 9559 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9560 assert(isa<UnreachableInst>(CurrentTerminator) && 9561 "Expected to replace unreachable terminator with conditional branch."); 9562 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9563 CondBr->setSuccessor(0, nullptr); 9564 ReplaceInstWithInst(CurrentTerminator, CondBr); 9565 } 9566 9567 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9568 assert(State.Instance && "Predicated instruction PHI works per instance."); 9569 Instruction *ScalarPredInst = 9570 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9571 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9572 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9573 assert(PredicatingBB && "Predicated block has no single predecessor."); 9574 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9575 "operand must be VPReplicateRecipe"); 9576 9577 // By current pack/unpack logic we need to generate only a single phi node: if 9578 // a vector value for the predicated instruction exists at this point it means 9579 // the instruction has vector users only, and a phi for the vector value is 9580 // needed. In this case the recipe of the predicated instruction is marked to 9581 // also do that packing, thereby "hoisting" the insert-element sequence. 9582 // Otherwise, a phi node for the scalar value is needed. 9583 unsigned Part = State.Instance->Part; 9584 if (State.hasVectorValue(getOperand(0), Part)) { 9585 Value *VectorValue = State.get(getOperand(0), Part); 9586 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9587 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9588 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9589 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9590 if (State.hasVectorValue(this, Part)) 9591 State.reset(this, VPhi, Part); 9592 else 9593 State.set(this, VPhi, Part); 9594 // NOTE: Currently we need to update the value of the operand, so the next 9595 // predicated iteration inserts its generated value in the correct vector. 9596 State.reset(getOperand(0), VPhi, Part); 9597 } else { 9598 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9599 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9600 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9601 PredicatingBB); 9602 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9603 if (State.hasScalarValue(this, *State.Instance)) 9604 State.reset(this, Phi, *State.Instance); 9605 else 9606 State.set(this, Phi, *State.Instance); 9607 // NOTE: Currently we need to update the value of the operand, so the next 9608 // predicated iteration inserts its generated value in the correct vector. 9609 State.reset(getOperand(0), Phi, *State.Instance); 9610 } 9611 } 9612 9613 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9614 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9615 State.ILV->vectorizeMemoryInstruction( 9616 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9617 StoredValue, getMask()); 9618 } 9619 9620 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9621 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9622 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9623 // for predication. 9624 static ScalarEpilogueLowering getScalarEpilogueLowering( 9625 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9626 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9627 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9628 LoopVectorizationLegality &LVL) { 9629 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9630 // don't look at hints or options, and don't request a scalar epilogue. 9631 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9632 // LoopAccessInfo (due to code dependency and not being able to reliably get 9633 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9634 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9635 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9636 // back to the old way and vectorize with versioning when forced. See D81345.) 9637 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9638 PGSOQueryType::IRPass) && 9639 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9640 return CM_ScalarEpilogueNotAllowedOptSize; 9641 9642 // 2) If set, obey the directives 9643 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9644 switch (PreferPredicateOverEpilogue) { 9645 case PreferPredicateTy::ScalarEpilogue: 9646 return CM_ScalarEpilogueAllowed; 9647 case PreferPredicateTy::PredicateElseScalarEpilogue: 9648 return CM_ScalarEpilogueNotNeededUsePredicate; 9649 case PreferPredicateTy::PredicateOrDontVectorize: 9650 return CM_ScalarEpilogueNotAllowedUsePredicate; 9651 }; 9652 } 9653 9654 // 3) If set, obey the hints 9655 switch (Hints.getPredicate()) { 9656 case LoopVectorizeHints::FK_Enabled: 9657 return CM_ScalarEpilogueNotNeededUsePredicate; 9658 case LoopVectorizeHints::FK_Disabled: 9659 return CM_ScalarEpilogueAllowed; 9660 }; 9661 9662 // 4) if the TTI hook indicates this is profitable, request predication. 9663 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9664 LVL.getLAI())) 9665 return CM_ScalarEpilogueNotNeededUsePredicate; 9666 9667 return CM_ScalarEpilogueAllowed; 9668 } 9669 9670 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9671 // If Values have been set for this Def return the one relevant for \p Part. 9672 if (hasVectorValue(Def, Part)) 9673 return Data.PerPartOutput[Def][Part]; 9674 9675 if (!hasScalarValue(Def, {Part, 0})) { 9676 Value *IRV = Def->getLiveInIRValue(); 9677 Value *B = ILV->getBroadcastInstrs(IRV); 9678 set(Def, B, Part); 9679 return B; 9680 } 9681 9682 Value *ScalarValue = get(Def, {Part, 0}); 9683 // If we aren't vectorizing, we can just copy the scalar map values over 9684 // to the vector map. 9685 if (VF.isScalar()) { 9686 set(Def, ScalarValue, Part); 9687 return ScalarValue; 9688 } 9689 9690 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9691 bool IsUniform = RepR && RepR->isUniform(); 9692 9693 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9694 // Check if there is a scalar value for the selected lane. 9695 if (!hasScalarValue(Def, {Part, LastLane})) { 9696 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9697 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9698 "unexpected recipe found to be invariant"); 9699 IsUniform = true; 9700 LastLane = 0; 9701 } 9702 9703 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9704 9705 // Set the insert point after the last scalarized instruction. This 9706 // ensures the insertelement sequence will directly follow the scalar 9707 // definitions. 9708 auto OldIP = Builder.saveIP(); 9709 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 9710 Builder.SetInsertPoint(&*NewIP); 9711 9712 // However, if we are vectorizing, we need to construct the vector values. 9713 // If the value is known to be uniform after vectorization, we can just 9714 // broadcast the scalar value corresponding to lane zero for each unroll 9715 // iteration. Otherwise, we construct the vector values using 9716 // insertelement instructions. Since the resulting vectors are stored in 9717 // State, we will only generate the insertelements once. 9718 Value *VectorValue = nullptr; 9719 if (IsUniform) { 9720 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9721 set(Def, VectorValue, Part); 9722 } else { 9723 // Initialize packing with insertelements to start from undef. 9724 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9725 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9726 set(Def, Undef, Part); 9727 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9728 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9729 VectorValue = get(Def, Part); 9730 } 9731 Builder.restoreIP(OldIP); 9732 return VectorValue; 9733 } 9734 9735 // Process the loop in the VPlan-native vectorization path. This path builds 9736 // VPlan upfront in the vectorization pipeline, which allows to apply 9737 // VPlan-to-VPlan transformations from the very beginning without modifying the 9738 // input LLVM IR. 9739 static bool processLoopInVPlanNativePath( 9740 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9741 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9742 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9743 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9744 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 9745 LoopVectorizationRequirements &Requirements) { 9746 9747 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9748 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9749 return false; 9750 } 9751 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9752 Function *F = L->getHeader()->getParent(); 9753 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9754 9755 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9756 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9757 9758 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9759 &Hints, IAI); 9760 // Use the planner for outer loop vectorization. 9761 // TODO: CM is not used at this point inside the planner. Turn CM into an 9762 // optional argument if we don't need it in the future. 9763 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 9764 Requirements, ORE); 9765 9766 // Get user vectorization factor. 9767 ElementCount UserVF = Hints.getWidth(); 9768 9769 // Plan how to best vectorize, return the best VF and its cost. 9770 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9771 9772 // If we are stress testing VPlan builds, do not attempt to generate vector 9773 // code. Masked vector code generation support will follow soon. 9774 // Also, do not attempt to vectorize if no vector code will be produced. 9775 if (VPlanBuildStressTest || EnableVPlanPredication || 9776 VectorizationFactor::Disabled() == VF) 9777 return false; 9778 9779 LVP.setBestPlan(VF.Width, 1); 9780 9781 { 9782 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 9783 F->getParent()->getDataLayout()); 9784 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9785 &CM, BFI, PSI, Checks); 9786 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9787 << L->getHeader()->getParent()->getName() << "\"\n"); 9788 LVP.executePlan(LB, DT); 9789 } 9790 9791 // Mark the loop as already vectorized to avoid vectorizing again. 9792 Hints.setAlreadyVectorized(); 9793 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9794 return true; 9795 } 9796 9797 // Emit a remark if there are stores to floats that required a floating point 9798 // extension. If the vectorized loop was generated with floating point there 9799 // will be a performance penalty from the conversion overhead and the change in 9800 // the vector width. 9801 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9802 SmallVector<Instruction *, 4> Worklist; 9803 for (BasicBlock *BB : L->getBlocks()) { 9804 for (Instruction &Inst : *BB) { 9805 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9806 if (S->getValueOperand()->getType()->isFloatTy()) 9807 Worklist.push_back(S); 9808 } 9809 } 9810 } 9811 9812 // Traverse the floating point stores upwards searching, for floating point 9813 // conversions. 9814 SmallPtrSet<const Instruction *, 4> Visited; 9815 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9816 while (!Worklist.empty()) { 9817 auto *I = Worklist.pop_back_val(); 9818 if (!L->contains(I)) 9819 continue; 9820 if (!Visited.insert(I).second) 9821 continue; 9822 9823 // Emit a remark if the floating point store required a floating 9824 // point conversion. 9825 // TODO: More work could be done to identify the root cause such as a 9826 // constant or a function return type and point the user to it. 9827 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9828 ORE->emit([&]() { 9829 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9830 I->getDebugLoc(), L->getHeader()) 9831 << "floating point conversion changes vector width. " 9832 << "Mixed floating point precision requires an up/down " 9833 << "cast that will negatively impact performance."; 9834 }); 9835 9836 for (Use &Op : I->operands()) 9837 if (auto *OpI = dyn_cast<Instruction>(Op)) 9838 Worklist.push_back(OpI); 9839 } 9840 } 9841 9842 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9843 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9844 !EnableLoopInterleaving), 9845 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9846 !EnableLoopVectorization) {} 9847 9848 bool LoopVectorizePass::processLoop(Loop *L) { 9849 assert((EnableVPlanNativePath || L->isInnermost()) && 9850 "VPlan-native path is not enabled. Only process inner loops."); 9851 9852 #ifndef NDEBUG 9853 const std::string DebugLocStr = getDebugLocString(L); 9854 #endif /* NDEBUG */ 9855 9856 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9857 << L->getHeader()->getParent()->getName() << "\" from " 9858 << DebugLocStr << "\n"); 9859 9860 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9861 9862 LLVM_DEBUG( 9863 dbgs() << "LV: Loop hints:" 9864 << " force=" 9865 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9866 ? "disabled" 9867 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9868 ? "enabled" 9869 : "?")) 9870 << " width=" << Hints.getWidth() 9871 << " interleave=" << Hints.getInterleave() << "\n"); 9872 9873 // Function containing loop 9874 Function *F = L->getHeader()->getParent(); 9875 9876 // Looking at the diagnostic output is the only way to determine if a loop 9877 // was vectorized (other than looking at the IR or machine code), so it 9878 // is important to generate an optimization remark for each loop. Most of 9879 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9880 // generated as OptimizationRemark and OptimizationRemarkMissed are 9881 // less verbose reporting vectorized loops and unvectorized loops that may 9882 // benefit from vectorization, respectively. 9883 9884 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9885 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9886 return false; 9887 } 9888 9889 PredicatedScalarEvolution PSE(*SE, *L); 9890 9891 // Check if it is legal to vectorize the loop. 9892 LoopVectorizationRequirements Requirements; 9893 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9894 &Requirements, &Hints, DB, AC, BFI, PSI); 9895 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9896 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9897 Hints.emitRemarkWithHints(); 9898 return false; 9899 } 9900 9901 // Check the function attributes and profiles to find out if this function 9902 // should be optimized for size. 9903 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9904 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9905 9906 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9907 // here. They may require CFG and instruction level transformations before 9908 // even evaluating whether vectorization is profitable. Since we cannot modify 9909 // the incoming IR, we need to build VPlan upfront in the vectorization 9910 // pipeline. 9911 if (!L->isInnermost()) 9912 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9913 ORE, BFI, PSI, Hints, Requirements); 9914 9915 assert(L->isInnermost() && "Inner loop expected."); 9916 9917 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9918 // count by optimizing for size, to minimize overheads. 9919 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9920 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9921 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9922 << "This loop is worth vectorizing only if no scalar " 9923 << "iteration overheads are incurred."); 9924 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9925 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 9926 else { 9927 LLVM_DEBUG(dbgs() << "\n"); 9928 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 9929 } 9930 } 9931 9932 // Check the function attributes to see if implicit floats are allowed. 9933 // FIXME: This check doesn't seem possibly correct -- what if the loop is 9934 // an integer loop and the vector instructions selected are purely integer 9935 // vector instructions? 9936 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 9937 reportVectorizationFailure( 9938 "Can't vectorize when the NoImplicitFloat attribute is used", 9939 "loop not vectorized due to NoImplicitFloat attribute", 9940 "NoImplicitFloat", ORE, L); 9941 Hints.emitRemarkWithHints(); 9942 return false; 9943 } 9944 9945 // Check if the target supports potentially unsafe FP vectorization. 9946 // FIXME: Add a check for the type of safety issue (denormal, signaling) 9947 // for the target we're vectorizing for, to make sure none of the 9948 // additional fp-math flags can help. 9949 if (Hints.isPotentiallyUnsafe() && 9950 TTI->isFPVectorizationPotentiallyUnsafe()) { 9951 reportVectorizationFailure( 9952 "Potentially unsafe FP op prevents vectorization", 9953 "loop not vectorized due to unsafe FP support.", 9954 "UnsafeFP", ORE, L); 9955 Hints.emitRemarkWithHints(); 9956 return false; 9957 } 9958 9959 if (!Requirements.canVectorizeFPMath(Hints)) { 9960 ORE->emit([&]() { 9961 auto *ExactFPMathInst = Requirements.getExactFPInst(); 9962 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 9963 ExactFPMathInst->getDebugLoc(), 9964 ExactFPMathInst->getParent()) 9965 << "loop not vectorized: cannot prove it is safe to reorder " 9966 "floating-point operations"; 9967 }); 9968 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 9969 "reorder floating-point operations\n"); 9970 Hints.emitRemarkWithHints(); 9971 return false; 9972 } 9973 9974 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 9975 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 9976 9977 // If an override option has been passed in for interleaved accesses, use it. 9978 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 9979 UseInterleaved = EnableInterleavedMemAccesses; 9980 9981 // Analyze interleaved memory accesses. 9982 if (UseInterleaved) { 9983 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 9984 } 9985 9986 // Use the cost model. 9987 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 9988 F, &Hints, IAI); 9989 CM.collectValuesToIgnore(); 9990 9991 // Use the planner for vectorization. 9992 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 9993 Requirements, ORE); 9994 9995 // Get user vectorization factor and interleave count. 9996 ElementCount UserVF = Hints.getWidth(); 9997 unsigned UserIC = Hints.getInterleave(); 9998 9999 // Plan how to best vectorize, return the best VF and its cost. 10000 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10001 10002 VectorizationFactor VF = VectorizationFactor::Disabled(); 10003 unsigned IC = 1; 10004 10005 if (MaybeVF) { 10006 VF = *MaybeVF; 10007 // Select the interleave count. 10008 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10009 } 10010 10011 // Identify the diagnostic messages that should be produced. 10012 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10013 bool VectorizeLoop = true, InterleaveLoop = true; 10014 if (VF.Width.isScalar()) { 10015 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10016 VecDiagMsg = std::make_pair( 10017 "VectorizationNotBeneficial", 10018 "the cost-model indicates that vectorization is not beneficial"); 10019 VectorizeLoop = false; 10020 } 10021 10022 if (!MaybeVF && UserIC > 1) { 10023 // Tell the user interleaving was avoided up-front, despite being explicitly 10024 // requested. 10025 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10026 "interleaving should be avoided up front\n"); 10027 IntDiagMsg = std::make_pair( 10028 "InterleavingAvoided", 10029 "Ignoring UserIC, because interleaving was avoided up front"); 10030 InterleaveLoop = false; 10031 } else if (IC == 1 && UserIC <= 1) { 10032 // Tell the user interleaving is not beneficial. 10033 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10034 IntDiagMsg = std::make_pair( 10035 "InterleavingNotBeneficial", 10036 "the cost-model indicates that interleaving is not beneficial"); 10037 InterleaveLoop = false; 10038 if (UserIC == 1) { 10039 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10040 IntDiagMsg.second += 10041 " and is explicitly disabled or interleave count is set to 1"; 10042 } 10043 } else if (IC > 1 && UserIC == 1) { 10044 // Tell the user interleaving is beneficial, but it explicitly disabled. 10045 LLVM_DEBUG( 10046 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10047 IntDiagMsg = std::make_pair( 10048 "InterleavingBeneficialButDisabled", 10049 "the cost-model indicates that interleaving is beneficial " 10050 "but is explicitly disabled or interleave count is set to 1"); 10051 InterleaveLoop = false; 10052 } 10053 10054 // Override IC if user provided an interleave count. 10055 IC = UserIC > 0 ? UserIC : IC; 10056 10057 // Emit diagnostic messages, if any. 10058 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10059 if (!VectorizeLoop && !InterleaveLoop) { 10060 // Do not vectorize or interleaving the loop. 10061 ORE->emit([&]() { 10062 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10063 L->getStartLoc(), L->getHeader()) 10064 << VecDiagMsg.second; 10065 }); 10066 ORE->emit([&]() { 10067 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10068 L->getStartLoc(), L->getHeader()) 10069 << IntDiagMsg.second; 10070 }); 10071 return false; 10072 } else if (!VectorizeLoop && InterleaveLoop) { 10073 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10074 ORE->emit([&]() { 10075 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10076 L->getStartLoc(), L->getHeader()) 10077 << VecDiagMsg.second; 10078 }); 10079 } else if (VectorizeLoop && !InterleaveLoop) { 10080 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10081 << ") in " << DebugLocStr << '\n'); 10082 ORE->emit([&]() { 10083 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10084 L->getStartLoc(), L->getHeader()) 10085 << IntDiagMsg.second; 10086 }); 10087 } else if (VectorizeLoop && InterleaveLoop) { 10088 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10089 << ") in " << DebugLocStr << '\n'); 10090 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10091 } 10092 10093 bool DisableRuntimeUnroll = false; 10094 MDNode *OrigLoopID = L->getLoopID(); 10095 { 10096 // Optimistically generate runtime checks. Drop them if they turn out to not 10097 // be profitable. Limit the scope of Checks, so the cleanup happens 10098 // immediately after vector codegeneration is done. 10099 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10100 F->getParent()->getDataLayout()); 10101 if (!VF.Width.isScalar() || IC > 1) 10102 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10103 LVP.setBestPlan(VF.Width, IC); 10104 10105 using namespace ore; 10106 if (!VectorizeLoop) { 10107 assert(IC > 1 && "interleave count should not be 1 or 0"); 10108 // If we decided that it is not legal to vectorize the loop, then 10109 // interleave it. 10110 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10111 &CM, BFI, PSI, Checks); 10112 LVP.executePlan(Unroller, DT); 10113 10114 ORE->emit([&]() { 10115 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10116 L->getHeader()) 10117 << "interleaved loop (interleaved count: " 10118 << NV("InterleaveCount", IC) << ")"; 10119 }); 10120 } else { 10121 // If we decided that it is *legal* to vectorize the loop, then do it. 10122 10123 // Consider vectorizing the epilogue too if it's profitable. 10124 VectorizationFactor EpilogueVF = 10125 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10126 if (EpilogueVF.Width.isVector()) { 10127 10128 // The first pass vectorizes the main loop and creates a scalar epilogue 10129 // to be vectorized by executing the plan (potentially with a different 10130 // factor) again shortly afterwards. 10131 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 10132 EpilogueVF.Width.getKnownMinValue(), 10133 1); 10134 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10135 EPI, &LVL, &CM, BFI, PSI, Checks); 10136 10137 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 10138 LVP.executePlan(MainILV, DT); 10139 ++LoopsVectorized; 10140 10141 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10142 formLCSSARecursively(*L, *DT, LI, SE); 10143 10144 // Second pass vectorizes the epilogue and adjusts the control flow 10145 // edges from the first pass. 10146 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 10147 EPI.MainLoopVF = EPI.EpilogueVF; 10148 EPI.MainLoopUF = EPI.EpilogueUF; 10149 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10150 ORE, EPI, &LVL, &CM, BFI, PSI, 10151 Checks); 10152 LVP.executePlan(EpilogILV, DT); 10153 ++LoopsEpilogueVectorized; 10154 10155 if (!MainILV.areSafetyChecksAdded()) 10156 DisableRuntimeUnroll = true; 10157 } else { 10158 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10159 &LVL, &CM, BFI, PSI, Checks); 10160 LVP.executePlan(LB, DT); 10161 ++LoopsVectorized; 10162 10163 // Add metadata to disable runtime unrolling a scalar loop when there 10164 // are no runtime checks about strides and memory. A scalar loop that is 10165 // rarely used is not worth unrolling. 10166 if (!LB.areSafetyChecksAdded()) 10167 DisableRuntimeUnroll = true; 10168 } 10169 // Report the vectorization decision. 10170 ORE->emit([&]() { 10171 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10172 L->getHeader()) 10173 << "vectorized loop (vectorization width: " 10174 << NV("VectorizationFactor", VF.Width) 10175 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10176 }); 10177 } 10178 10179 if (ORE->allowExtraAnalysis(LV_NAME)) 10180 checkMixedPrecision(L, ORE); 10181 } 10182 10183 Optional<MDNode *> RemainderLoopID = 10184 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10185 LLVMLoopVectorizeFollowupEpilogue}); 10186 if (RemainderLoopID.hasValue()) { 10187 L->setLoopID(RemainderLoopID.getValue()); 10188 } else { 10189 if (DisableRuntimeUnroll) 10190 AddRuntimeUnrollDisableMetaData(L); 10191 10192 // Mark the loop as already vectorized to avoid vectorizing again. 10193 Hints.setAlreadyVectorized(); 10194 } 10195 10196 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10197 return true; 10198 } 10199 10200 LoopVectorizeResult LoopVectorizePass::runImpl( 10201 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10202 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10203 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10204 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10205 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10206 SE = &SE_; 10207 LI = &LI_; 10208 TTI = &TTI_; 10209 DT = &DT_; 10210 BFI = &BFI_; 10211 TLI = TLI_; 10212 AA = &AA_; 10213 AC = &AC_; 10214 GetLAA = &GetLAA_; 10215 DB = &DB_; 10216 ORE = &ORE_; 10217 PSI = PSI_; 10218 10219 // Don't attempt if 10220 // 1. the target claims to have no vector registers, and 10221 // 2. interleaving won't help ILP. 10222 // 10223 // The second condition is necessary because, even if the target has no 10224 // vector registers, loop vectorization may still enable scalar 10225 // interleaving. 10226 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10227 TTI->getMaxInterleaveFactor(1) < 2) 10228 return LoopVectorizeResult(false, false); 10229 10230 bool Changed = false, CFGChanged = false; 10231 10232 // The vectorizer requires loops to be in simplified form. 10233 // Since simplification may add new inner loops, it has to run before the 10234 // legality and profitability checks. This means running the loop vectorizer 10235 // will simplify all loops, regardless of whether anything end up being 10236 // vectorized. 10237 for (auto &L : *LI) 10238 Changed |= CFGChanged |= 10239 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10240 10241 // Build up a worklist of inner-loops to vectorize. This is necessary as 10242 // the act of vectorizing or partially unrolling a loop creates new loops 10243 // and can invalidate iterators across the loops. 10244 SmallVector<Loop *, 8> Worklist; 10245 10246 for (Loop *L : *LI) 10247 collectSupportedLoops(*L, LI, ORE, Worklist); 10248 10249 LoopsAnalyzed += Worklist.size(); 10250 10251 // Now walk the identified inner loops. 10252 while (!Worklist.empty()) { 10253 Loop *L = Worklist.pop_back_val(); 10254 10255 // For the inner loops we actually process, form LCSSA to simplify the 10256 // transform. 10257 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10258 10259 Changed |= CFGChanged |= processLoop(L); 10260 } 10261 10262 // Process each loop nest in the function. 10263 return LoopVectorizeResult(Changed, CFGChanged); 10264 } 10265 10266 PreservedAnalyses LoopVectorizePass::run(Function &F, 10267 FunctionAnalysisManager &AM) { 10268 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10269 auto &LI = AM.getResult<LoopAnalysis>(F); 10270 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10271 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10272 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10273 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10274 auto &AA = AM.getResult<AAManager>(F); 10275 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10276 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10277 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10278 MemorySSA *MSSA = EnableMSSALoopDependency 10279 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 10280 : nullptr; 10281 10282 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10283 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10284 [&](Loop &L) -> const LoopAccessInfo & { 10285 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10286 TLI, TTI, nullptr, MSSA}; 10287 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10288 }; 10289 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10290 ProfileSummaryInfo *PSI = 10291 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10292 LoopVectorizeResult Result = 10293 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10294 if (!Result.MadeAnyChange) 10295 return PreservedAnalyses::all(); 10296 PreservedAnalyses PA; 10297 10298 // We currently do not preserve loopinfo/dominator analyses with outer loop 10299 // vectorization. Until this is addressed, mark these analyses as preserved 10300 // only for non-VPlan-native path. 10301 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10302 if (!EnableVPlanNativePath) { 10303 PA.preserve<LoopAnalysis>(); 10304 PA.preserve<DominatorTreeAnalysis>(); 10305 } 10306 if (!Result.MadeCFGChange) 10307 PA.preserveSet<CFGAnalyses>(); 10308 return PA; 10309 } 10310