1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // Other ideas/concepts are from: 38 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 39 // 40 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 41 // Vectorizing Compilers. 42 // 43 //===----------------------------------------------------------------------===// 44 45 #include "llvm/Transforms/Vectorize.h" 46 #include "llvm/ADT/DenseMap.h" 47 #include "llvm/ADT/EquivalenceClasses.h" 48 #include "llvm/ADT/Hashing.h" 49 #include "llvm/ADT/MapVector.h" 50 #include "llvm/ADT/SetVector.h" 51 #include "llvm/ADT/SmallPtrSet.h" 52 #include "llvm/ADT/SmallSet.h" 53 #include "llvm/ADT/SmallVector.h" 54 #include "llvm/ADT/Statistic.h" 55 #include "llvm/ADT/StringExtras.h" 56 #include "llvm/Analysis/AliasAnalysis.h" 57 #include "llvm/Analysis/AliasSetTracker.h" 58 #include "llvm/Analysis/AssumptionCache.h" 59 #include "llvm/Analysis/BlockFrequencyInfo.h" 60 #include "llvm/Analysis/CodeMetrics.h" 61 #include "llvm/Analysis/LoopAccessAnalysis.h" 62 #include "llvm/Analysis/LoopInfo.h" 63 #include "llvm/Analysis/LoopIterator.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolution.h" 66 #include "llvm/Analysis/ScalarEvolutionExpander.h" 67 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 68 #include "llvm/Analysis/TargetTransformInfo.h" 69 #include "llvm/Analysis/ValueTracking.h" 70 #include "llvm/IR/Constants.h" 71 #include "llvm/IR/DataLayout.h" 72 #include "llvm/IR/DebugInfo.h" 73 #include "llvm/IR/DerivedTypes.h" 74 #include "llvm/IR/DiagnosticInfo.h" 75 #include "llvm/IR/Dominators.h" 76 #include "llvm/IR/Function.h" 77 #include "llvm/IR/IRBuilder.h" 78 #include "llvm/IR/Instructions.h" 79 #include "llvm/IR/IntrinsicInst.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/IR/ValueHandle.h" 86 #include "llvm/IR/Verifier.h" 87 #include "llvm/Pass.h" 88 #include "llvm/Support/BranchProbability.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Debug.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 94 #include "llvm/Transforms/Utils/Local.h" 95 #include "llvm/Transforms/Utils/VectorUtils.h" 96 #include <algorithm> 97 #include <map> 98 #include <tuple> 99 100 using namespace llvm; 101 using namespace llvm::PatternMatch; 102 103 #define LV_NAME "loop-vectorize" 104 #define DEBUG_TYPE LV_NAME 105 106 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 107 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 108 109 static cl::opt<bool> 110 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 111 cl::desc("Enable if-conversion during vectorization.")); 112 113 /// We don't vectorize loops with a known constant trip count below this number. 114 static cl::opt<unsigned> 115 TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), 116 cl::Hidden, 117 cl::desc("Don't vectorize loops with a constant " 118 "trip count that is smaller than this " 119 "value.")); 120 121 /// This enables versioning on the strides of symbolically striding memory 122 /// accesses in code like the following. 123 /// for (i = 0; i < N; ++i) 124 /// A[i * Stride1] += B[i * Stride2] ... 125 /// 126 /// Will be roughly translated to 127 /// if (Stride1 == 1 && Stride2 == 1) { 128 /// for (i = 0; i < N; i+=4) 129 /// A[i:i+3] += ... 130 /// } else 131 /// ... 132 static cl::opt<bool> EnableMemAccessVersioning( 133 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 134 cl::desc("Enable symblic stride memory access versioning")); 135 136 /// We don't unroll loops with a known constant trip count below this number. 137 static const unsigned TinyTripCountUnrollThreshold = 128; 138 139 static cl::opt<unsigned> ForceTargetNumScalarRegs( 140 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 141 cl::desc("A flag that overrides the target's number of scalar registers.")); 142 143 static cl::opt<unsigned> ForceTargetNumVectorRegs( 144 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 145 cl::desc("A flag that overrides the target's number of vector registers.")); 146 147 /// Maximum vectorization interleave count. 148 static const unsigned MaxInterleaveFactor = 16; 149 150 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 151 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 152 cl::desc("A flag that overrides the target's max interleave factor for " 153 "scalar loops.")); 154 155 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 156 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 157 cl::desc("A flag that overrides the target's max interleave factor for " 158 "vectorized loops.")); 159 160 static cl::opt<unsigned> ForceTargetInstructionCost( 161 "force-target-instruction-cost", cl::init(0), cl::Hidden, 162 cl::desc("A flag that overrides the target's expected cost for " 163 "an instruction to a single constant value. Mostly " 164 "useful for getting consistent testing.")); 165 166 static cl::opt<unsigned> SmallLoopCost( 167 "small-loop-cost", cl::init(20), cl::Hidden, 168 cl::desc("The cost of a loop that is considered 'small' by the unroller.")); 169 170 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 171 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 172 cl::desc("Enable the use of the block frequency analysis to access PGO " 173 "heuristics minimizing code growth in cold regions and being more " 174 "aggressive in hot regions.")); 175 176 // Runtime unroll loops for load/store throughput. 177 static cl::opt<bool> EnableLoadStoreRuntimeUnroll( 178 "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden, 179 cl::desc("Enable runtime unrolling until load/store ports are saturated")); 180 181 /// The number of stores in a loop that are allowed to need predication. 182 static cl::opt<unsigned> NumberOfStoresToPredicate( 183 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 184 cl::desc("Max number of stores to be predicated behind an if.")); 185 186 static cl::opt<bool> EnableIndVarRegisterHeur( 187 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 188 cl::desc("Count the induction variable only once when unrolling")); 189 190 static cl::opt<bool> EnableCondStoresVectorization( 191 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 192 cl::desc("Enable if predication of stores during vectorization.")); 193 194 static cl::opt<unsigned> MaxNestedScalarReductionUF( 195 "max-nested-scalar-reduction-unroll", cl::init(2), cl::Hidden, 196 cl::desc("The maximum unroll factor to use when unrolling a scalar " 197 "reduction in a nested loop.")); 198 199 namespace { 200 201 // Forward declarations. 202 class LoopVectorizationLegality; 203 class LoopVectorizationCostModel; 204 class LoopVectorizeHints; 205 206 /// \brief This modifies LoopAccessReport to initialize message with 207 /// loop-vectorizer-specific part. 208 class VectorizationReport : public LoopAccessReport { 209 public: 210 VectorizationReport(Instruction *I = nullptr) 211 : LoopAccessReport("loop not vectorized: ", I) {} 212 213 /// \brief This allows promotion of the loop-access analysis report into the 214 /// loop-vectorizer report. It modifies the message to add the 215 /// loop-vectorizer-specific part of the message. 216 explicit VectorizationReport(const LoopAccessReport &R) 217 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 218 R.getInstr()) {} 219 }; 220 221 /// A helper function for converting Scalar types to vector types. 222 /// If the incoming type is void, we return void. If the VF is 1, we return 223 /// the scalar type. 224 static Type* ToVectorTy(Type *Scalar, unsigned VF) { 225 if (Scalar->isVoidTy() || VF == 1) 226 return Scalar; 227 return VectorType::get(Scalar, VF); 228 } 229 230 /// InnerLoopVectorizer vectorizes loops which contain only one basic 231 /// block to a specified vectorization factor (VF). 232 /// This class performs the widening of scalars into vectors, or multiple 233 /// scalars. This class also implements the following features: 234 /// * It inserts an epilogue loop for handling loops that don't have iteration 235 /// counts that are known to be a multiple of the vectorization factor. 236 /// * It handles the code generation for reduction variables. 237 /// * Scalarization (implementation using scalars) of un-vectorizable 238 /// instructions. 239 /// InnerLoopVectorizer does not perform any vectorization-legality 240 /// checks, and relies on the caller to check for the different legality 241 /// aspects. The InnerLoopVectorizer relies on the 242 /// LoopVectorizationLegality class to provide information about the induction 243 /// and reduction variables that were found to a given vectorization factor. 244 class InnerLoopVectorizer { 245 public: 246 InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 247 DominatorTree *DT, const DataLayout *DL, 248 const TargetLibraryInfo *TLI, unsigned VecWidth, 249 unsigned UnrollFactor) 250 : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI), 251 VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), 252 Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor), 253 Legal(nullptr) {} 254 255 // Perform the actual loop widening (vectorization). 256 void vectorize(LoopVectorizationLegality *L) { 257 Legal = L; 258 // Create a new empty loop. Unlink the old loop and connect the new one. 259 createEmptyLoop(); 260 // Widen each instruction in the old loop to a new one in the new loop. 261 // Use the Legality module to find the induction and reduction variables. 262 vectorizeLoop(); 263 // Register the new loop and update the analysis passes. 264 updateAnalysis(); 265 } 266 267 virtual ~InnerLoopVectorizer() {} 268 269 protected: 270 /// A small list of PHINodes. 271 typedef SmallVector<PHINode*, 4> PhiVector; 272 /// When we unroll loops we have multiple vector values for each scalar. 273 /// This data structure holds the unrolled and vectorized values that 274 /// originated from one scalar instruction. 275 typedef SmallVector<Value*, 2> VectorParts; 276 277 // When we if-convert we need create edge masks. We have to cache values so 278 // that we don't end up with exponential recursion/IR. 279 typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>, 280 VectorParts> EdgeMaskCache; 281 282 /// \brief Add checks for strides that where assumed to be 1. 283 /// 284 /// Returns the last check instruction and the first check instruction in the 285 /// pair as (first, last). 286 std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc); 287 288 /// Create an empty loop, based on the loop ranges of the old loop. 289 void createEmptyLoop(); 290 /// Copy and widen the instructions from the old loop. 291 virtual void vectorizeLoop(); 292 293 /// \brief The Loop exit block may have single value PHI nodes where the 294 /// incoming value is 'Undef'. While vectorizing we only handled real values 295 /// that were defined inside the loop. Here we fix the 'undef case'. 296 /// See PR14725. 297 void fixLCSSAPHIs(); 298 299 /// A helper function that computes the predicate of the block BB, assuming 300 /// that the header block of the loop is set to True. It returns the *entry* 301 /// mask for the block BB. 302 VectorParts createBlockInMask(BasicBlock *BB); 303 /// A helper function that computes the predicate of the edge between SRC 304 /// and DST. 305 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 306 307 /// A helper function to vectorize a single BB within the innermost loop. 308 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 309 310 /// Vectorize a single PHINode in a block. This method handles the induction 311 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 312 /// arbitrary length vectors. 313 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, 314 unsigned UF, unsigned VF, PhiVector *PV); 315 316 /// Insert the new loop to the loop hierarchy and pass manager 317 /// and update the analysis passes. 318 void updateAnalysis(); 319 320 /// This instruction is un-vectorizable. Implement it as a sequence 321 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 322 /// scalarized instruction behind an if block predicated on the control 323 /// dependence of the instruction. 324 virtual void scalarizeInstruction(Instruction *Instr, 325 bool IfPredicateStore=false); 326 327 /// Vectorize Load and Store instructions, 328 virtual void vectorizeMemoryInstruction(Instruction *Instr); 329 330 /// Create a broadcast instruction. This method generates a broadcast 331 /// instruction (shuffle) for loop invariant values and for the induction 332 /// value. If this is the induction variable then we extend it to N, N+1, ... 333 /// this is needed because each iteration in the loop corresponds to a SIMD 334 /// element. 335 virtual Value *getBroadcastInstrs(Value *V); 336 337 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 338 /// to each vector element of Val. The sequence starts at StartIndex. 339 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 340 341 /// When we go over instructions in the basic block we rely on previous 342 /// values within the current basic block or on loop invariant values. 343 /// When we widen (vectorize) values we place them in the map. If the values 344 /// are not within the map, they have to be loop invariant, so we simply 345 /// broadcast them into a vector. 346 VectorParts &getVectorValue(Value *V); 347 348 /// Generate a shuffle sequence that will reverse the vector Vec. 349 virtual Value *reverseVector(Value *Vec); 350 351 /// This is a helper class that holds the vectorizer state. It maps scalar 352 /// instructions to vector instructions. When the code is 'unrolled' then 353 /// then a single scalar value is mapped to multiple vector parts. The parts 354 /// are stored in the VectorPart type. 355 struct ValueMap { 356 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 357 /// are mapped. 358 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 359 360 /// \return True if 'Key' is saved in the Value Map. 361 bool has(Value *Key) const { return MapStorage.count(Key); } 362 363 /// Initializes a new entry in the map. Sets all of the vector parts to the 364 /// save value in 'Val'. 365 /// \return A reference to a vector with splat values. 366 VectorParts &splat(Value *Key, Value *Val) { 367 VectorParts &Entry = MapStorage[Key]; 368 Entry.assign(UF, Val); 369 return Entry; 370 } 371 372 ///\return A reference to the value that is stored at 'Key'. 373 VectorParts &get(Value *Key) { 374 VectorParts &Entry = MapStorage[Key]; 375 if (Entry.empty()) 376 Entry.resize(UF); 377 assert(Entry.size() == UF); 378 return Entry; 379 } 380 381 private: 382 /// The unroll factor. Each entry in the map stores this number of vector 383 /// elements. 384 unsigned UF; 385 386 /// Map storage. We use std::map and not DenseMap because insertions to a 387 /// dense map invalidates its iterators. 388 std::map<Value *, VectorParts> MapStorage; 389 }; 390 391 /// The original loop. 392 Loop *OrigLoop; 393 /// Scev analysis to use. 394 ScalarEvolution *SE; 395 /// Loop Info. 396 LoopInfo *LI; 397 /// Dominator Tree. 398 DominatorTree *DT; 399 /// Alias Analysis. 400 AliasAnalysis *AA; 401 /// Data Layout. 402 const DataLayout *DL; 403 /// Target Library Info. 404 const TargetLibraryInfo *TLI; 405 406 /// The vectorization SIMD factor to use. Each vector will have this many 407 /// vector elements. 408 unsigned VF; 409 410 protected: 411 /// The vectorization unroll factor to use. Each scalar is vectorized to this 412 /// many different vector instructions. 413 unsigned UF; 414 415 /// The builder that we use 416 IRBuilder<> Builder; 417 418 // --- Vectorization state --- 419 420 /// The vector-loop preheader. 421 BasicBlock *LoopVectorPreHeader; 422 /// The scalar-loop preheader. 423 BasicBlock *LoopScalarPreHeader; 424 /// Middle Block between the vector and the scalar. 425 BasicBlock *LoopMiddleBlock; 426 ///The ExitBlock of the scalar loop. 427 BasicBlock *LoopExitBlock; 428 ///The vector loop body. 429 SmallVector<BasicBlock *, 4> LoopVectorBody; 430 ///The scalar loop body. 431 BasicBlock *LoopScalarBody; 432 /// A list of all bypass blocks. The first block is the entry of the loop. 433 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 434 435 /// The new Induction variable which was added to the new block. 436 PHINode *Induction; 437 /// The induction variable of the old basic block. 438 PHINode *OldInduction; 439 /// Holds the extended (to the widest induction type) start index. 440 Value *ExtendedIdx; 441 /// Maps scalars to widened vectors. 442 ValueMap WidenMap; 443 EdgeMaskCache MaskCache; 444 445 LoopVectorizationLegality *Legal; 446 }; 447 448 class InnerLoopUnroller : public InnerLoopVectorizer { 449 public: 450 InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI, 451 DominatorTree *DT, const DataLayout *DL, 452 const TargetLibraryInfo *TLI, unsigned UnrollFactor) : 453 InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { } 454 455 private: 456 void scalarizeInstruction(Instruction *Instr, 457 bool IfPredicateStore = false) override; 458 void vectorizeMemoryInstruction(Instruction *Instr) override; 459 Value *getBroadcastInstrs(Value *V) override; 460 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 461 Value *reverseVector(Value *Vec) override; 462 }; 463 464 /// \brief Look for a meaningful debug location on the instruction or it's 465 /// operands. 466 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 467 if (!I) 468 return I; 469 470 DebugLoc Empty; 471 if (I->getDebugLoc() != Empty) 472 return I; 473 474 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 475 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 476 if (OpInst->getDebugLoc() != Empty) 477 return OpInst; 478 } 479 480 return I; 481 } 482 483 /// \brief Set the debug location in the builder using the debug location in the 484 /// instruction. 485 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 486 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 487 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 488 else 489 B.SetCurrentDebugLocation(DebugLoc()); 490 } 491 492 #ifndef NDEBUG 493 /// \return string containing a file name and a line # for the given loop. 494 static std::string getDebugLocString(const Loop *L) { 495 std::string Result; 496 if (L) { 497 raw_string_ostream OS(Result); 498 const DebugLoc LoopDbgLoc = L->getStartLoc(); 499 if (!LoopDbgLoc.isUnknown()) 500 LoopDbgLoc.print(OS); 501 else 502 // Just print the module name. 503 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 504 OS.flush(); 505 } 506 return Result; 507 } 508 #endif 509 510 /// \brief Propagate known metadata from one instruction to another. 511 static void propagateMetadata(Instruction *To, const Instruction *From) { 512 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 513 From->getAllMetadataOtherThanDebugLoc(Metadata); 514 515 for (auto M : Metadata) { 516 unsigned Kind = M.first; 517 518 // These are safe to transfer (this is safe for TBAA, even when we 519 // if-convert, because should that metadata have had a control dependency 520 // on the condition, and thus actually aliased with some other 521 // non-speculated memory access when the condition was false, this would be 522 // caught by the runtime overlap checks). 523 if (Kind != LLVMContext::MD_tbaa && 524 Kind != LLVMContext::MD_alias_scope && 525 Kind != LLVMContext::MD_noalias && 526 Kind != LLVMContext::MD_fpmath) 527 continue; 528 529 To->setMetadata(Kind, M.second); 530 } 531 } 532 533 /// \brief Propagate known metadata from one instruction to a vector of others. 534 static void propagateMetadata(SmallVectorImpl<Value *> &To, const Instruction *From) { 535 for (Value *V : To) 536 if (Instruction *I = dyn_cast<Instruction>(V)) 537 propagateMetadata(I, From); 538 } 539 540 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 541 /// to what vectorization factor. 542 /// This class does not look at the profitability of vectorization, only the 543 /// legality. This class has two main kinds of checks: 544 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 545 /// will change the order of memory accesses in a way that will change the 546 /// correctness of the program. 547 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 548 /// checks for a number of different conditions, such as the availability of a 549 /// single induction variable, that all types are supported and vectorize-able, 550 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 551 /// This class is also used by InnerLoopVectorizer for identifying 552 /// induction variable and the different reduction variables. 553 class LoopVectorizationLegality { 554 public: 555 LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL, 556 DominatorTree *DT, TargetLibraryInfo *TLI, 557 AliasAnalysis *AA, Function *F, 558 const TargetTransformInfo *TTI, 559 LoopAccessAnalysis *LAA) 560 : NumPredStores(0), TheLoop(L), SE(SE), DL(DL), 561 TLI(TLI), TheFunction(F), TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), 562 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false) {} 563 564 /// This enum represents the kinds of reductions that we support. 565 enum ReductionKind { 566 RK_NoReduction, ///< Not a reduction. 567 RK_IntegerAdd, ///< Sum of integers. 568 RK_IntegerMult, ///< Product of integers. 569 RK_IntegerOr, ///< Bitwise or logical OR of numbers. 570 RK_IntegerAnd, ///< Bitwise or logical AND of numbers. 571 RK_IntegerXor, ///< Bitwise or logical XOR of numbers. 572 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). 573 RK_FloatAdd, ///< Sum of floats. 574 RK_FloatMult, ///< Product of floats. 575 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). 576 }; 577 578 /// This enum represents the kinds of inductions that we support. 579 enum InductionKind { 580 IK_NoInduction, ///< Not an induction variable. 581 IK_IntInduction, ///< Integer induction variable. Step = C. 582 IK_PtrInduction ///< Pointer induction var. Step = C / sizeof(elem). 583 }; 584 585 // This enum represents the kind of minmax reduction. 586 enum MinMaxReductionKind { 587 MRK_Invalid, 588 MRK_UIntMin, 589 MRK_UIntMax, 590 MRK_SIntMin, 591 MRK_SIntMax, 592 MRK_FloatMin, 593 MRK_FloatMax 594 }; 595 596 /// This struct holds information about reduction variables. 597 struct ReductionDescriptor { 598 ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr), 599 Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {} 600 601 ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K, 602 MinMaxReductionKind MK) 603 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {} 604 605 // The starting value of the reduction. 606 // It does not have to be zero! 607 TrackingVH<Value> StartValue; 608 // The instruction who's value is used outside the loop. 609 Instruction *LoopExitInstr; 610 // The kind of the reduction. 611 ReductionKind Kind; 612 // If this a min/max reduction the kind of reduction. 613 MinMaxReductionKind MinMaxKind; 614 }; 615 616 /// This POD struct holds information about a potential reduction operation. 617 struct ReductionInstDesc { 618 ReductionInstDesc(bool IsRedux, Instruction *I) : 619 IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {} 620 621 ReductionInstDesc(Instruction *I, MinMaxReductionKind K) : 622 IsReduction(true), PatternLastInst(I), MinMaxKind(K) {} 623 624 // Is this instruction a reduction candidate. 625 bool IsReduction; 626 // The last instruction in a min/max pattern (select of the select(icmp()) 627 // pattern), or the current reduction instruction otherwise. 628 Instruction *PatternLastInst; 629 // If this is a min/max pattern the comparison predicate. 630 MinMaxReductionKind MinMaxKind; 631 }; 632 633 /// A struct for saving information about induction variables. 634 struct InductionInfo { 635 InductionInfo(Value *Start, InductionKind K, ConstantInt *Step) 636 : StartValue(Start), IK(K), StepValue(Step) { 637 assert(IK != IK_NoInduction && "Not an induction"); 638 assert(StartValue && "StartValue is null"); 639 assert(StepValue && !StepValue->isZero() && "StepValue is zero"); 640 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && 641 "StartValue is not a pointer for pointer induction"); 642 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && 643 "StartValue is not an integer for integer induction"); 644 assert(StepValue->getType()->isIntegerTy() && 645 "StepValue is not an integer"); 646 } 647 InductionInfo() 648 : StartValue(nullptr), IK(IK_NoInduction), StepValue(nullptr) {} 649 650 /// Get the consecutive direction. Returns: 651 /// 0 - unknown or non-consecutive. 652 /// 1 - consecutive and increasing. 653 /// -1 - consecutive and decreasing. 654 int getConsecutiveDirection() const { 655 if (StepValue && (StepValue->isOne() || StepValue->isMinusOne())) 656 return StepValue->getSExtValue(); 657 return 0; 658 } 659 660 /// Compute the transformed value of Index at offset StartValue using step 661 /// StepValue. 662 /// For integer induction, returns StartValue + Index * StepValue. 663 /// For pointer induction, returns StartValue[Index * StepValue]. 664 /// FIXME: The newly created binary instructions should contain nsw/nuw 665 /// flags, which can be found from the original scalar operations. 666 Value *transform(IRBuilder<> &B, Value *Index) const { 667 switch (IK) { 668 case IK_IntInduction: 669 assert(Index->getType() == StartValue->getType() && 670 "Index type does not match StartValue type"); 671 if (StepValue->isMinusOne()) 672 return B.CreateSub(StartValue, Index); 673 if (!StepValue->isOne()) 674 Index = B.CreateMul(Index, StepValue); 675 return B.CreateAdd(StartValue, Index); 676 677 case IK_PtrInduction: 678 if (StepValue->isMinusOne()) 679 Index = B.CreateNeg(Index); 680 else if (!StepValue->isOne()) 681 Index = B.CreateMul(Index, StepValue); 682 return B.CreateGEP(StartValue, Index); 683 684 case IK_NoInduction: 685 return nullptr; 686 } 687 llvm_unreachable("invalid enum"); 688 } 689 690 /// Start value. 691 TrackingVH<Value> StartValue; 692 /// Induction kind. 693 InductionKind IK; 694 /// Step value. 695 ConstantInt *StepValue; 696 }; 697 698 /// ReductionList contains the reduction descriptors for all 699 /// of the reductions that were found in the loop. 700 typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList; 701 702 /// InductionList saves induction variables and maps them to the 703 /// induction descriptor. 704 typedef MapVector<PHINode*, InductionInfo> InductionList; 705 706 /// Returns true if it is legal to vectorize this loop. 707 /// This does not mean that it is profitable to vectorize this 708 /// loop, only that it is legal to do so. 709 bool canVectorize(); 710 711 /// Returns the Induction variable. 712 PHINode *getInduction() { return Induction; } 713 714 /// Returns the reduction variables found in the loop. 715 ReductionList *getReductionVars() { return &Reductions; } 716 717 /// Returns the induction variables found in the loop. 718 InductionList *getInductionVars() { return &Inductions; } 719 720 /// Returns the widest induction type. 721 Type *getWidestInductionType() { return WidestIndTy; } 722 723 /// Returns True if V is an induction variable in this loop. 724 bool isInductionVariable(const Value *V); 725 726 /// Return true if the block BB needs to be predicated in order for the loop 727 /// to be vectorized. 728 bool blockNeedsPredication(BasicBlock *BB); 729 730 /// Check if this pointer is consecutive when vectorizing. This happens 731 /// when the last index of the GEP is the induction variable, or that the 732 /// pointer itself is an induction variable. 733 /// This check allows us to vectorize A[idx] into a wide load/store. 734 /// Returns: 735 /// 0 - Stride is unknown or non-consecutive. 736 /// 1 - Address is consecutive. 737 /// -1 - Address is consecutive, and decreasing. 738 int isConsecutivePtr(Value *Ptr); 739 740 /// Returns true if the value V is uniform within the loop. 741 bool isUniform(Value *V); 742 743 /// Returns true if this instruction will remain scalar after vectorization. 744 bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); } 745 746 /// Returns the information that we collected about runtime memory check. 747 const LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() const { 748 return LAI->getRuntimePointerCheck(); 749 } 750 751 const LoopAccessInfo *getLAI() const { 752 return LAI; 753 } 754 755 /// This function returns the identity element (or neutral element) for 756 /// the operation K. 757 static Constant *getReductionIdentity(ReductionKind K, Type *Tp); 758 759 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 760 761 bool hasStride(Value *V) { return StrideSet.count(V); } 762 bool mustCheckStrides() { return !StrideSet.empty(); } 763 SmallPtrSet<Value *, 8>::iterator strides_begin() { 764 return StrideSet.begin(); 765 } 766 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 767 768 /// Returns true if the target machine supports masked store operation 769 /// for the given \p DataType and kind of access to \p Ptr. 770 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 771 return TTI->isLegalMaskedStore(DataType, isConsecutivePtr(Ptr)); 772 } 773 /// Returns true if the target machine supports masked load operation 774 /// for the given \p DataType and kind of access to \p Ptr. 775 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 776 return TTI->isLegalMaskedLoad(DataType, isConsecutivePtr(Ptr)); 777 } 778 /// Returns true if vector representation of the instruction \p I 779 /// requires mask. 780 bool isMaskRequired(const Instruction* I) { 781 return (MaskedOp.count(I) != 0); 782 } 783 unsigned getNumStores() const { 784 return LAI->getNumStores(); 785 } 786 unsigned getNumLoads() const { 787 return LAI->getNumLoads(); 788 } 789 unsigned getNumPredStores() const { 790 return NumPredStores; 791 } 792 private: 793 /// Check if a single basic block loop is vectorizable. 794 /// At this point we know that this is a loop with a constant trip count 795 /// and we only need to check individual instructions. 796 bool canVectorizeInstrs(); 797 798 /// When we vectorize loops we may change the order in which 799 /// we read and write from memory. This method checks if it is 800 /// legal to vectorize the code, considering only memory constrains. 801 /// Returns true if the loop is vectorizable 802 bool canVectorizeMemory(); 803 804 /// Return true if we can vectorize this loop using the IF-conversion 805 /// transformation. 806 bool canVectorizeWithIfConvert(); 807 808 /// Collect the variables that need to stay uniform after vectorization. 809 void collectLoopUniforms(); 810 811 /// Return true if all of the instructions in the block can be speculatively 812 /// executed. \p SafePtrs is a list of addresses that are known to be legal 813 /// and we know that we can read from them without segfault. 814 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 815 816 /// Returns True, if 'Phi' is the kind of reduction variable for type 817 /// 'Kind'. If this is a reduction variable, it adds it to ReductionList. 818 bool AddReductionVar(PHINode *Phi, ReductionKind Kind); 819 /// Returns a struct describing if the instruction 'I' can be a reduction 820 /// variable of type 'Kind'. If the reduction is a min/max pattern of 821 /// select(icmp()) this function advances the instruction pointer 'I' from the 822 /// compare instruction to the select instruction and stores this pointer in 823 /// 'PatternLastInst' member of the returned struct. 824 ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind, 825 ReductionInstDesc &Desc); 826 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 827 /// pattern corresponding to a min(X, Y) or max(X, Y). 828 static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I, 829 ReductionInstDesc &Prev); 830 /// Returns the induction kind of Phi and record the step. This function may 831 /// return NoInduction if the PHI is not an induction variable. 832 InductionKind isInductionVariable(PHINode *Phi, ConstantInt *&StepValue); 833 834 /// \brief Collect memory access with loop invariant strides. 835 /// 836 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 837 /// invariant. 838 void collectStridedAccess(Value *LoadOrStoreInst); 839 840 /// Report an analysis message to assist the user in diagnosing loops that are 841 /// not vectorized. These are handled as LoopAccessReport rather than 842 /// VectorizationReport because the << operator of VectorizationReport returns 843 /// LoopAccessReport. 844 void emitAnalysis(const LoopAccessReport &Message) { 845 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 846 } 847 848 unsigned NumPredStores; 849 850 /// The loop that we evaluate. 851 Loop *TheLoop; 852 /// Scev analysis. 853 ScalarEvolution *SE; 854 /// DataLayout analysis. 855 const DataLayout *DL; 856 /// Target Library Info. 857 TargetLibraryInfo *TLI; 858 /// Parent function 859 Function *TheFunction; 860 /// Target Transform Info 861 const TargetTransformInfo *TTI; 862 /// Dominator Tree. 863 DominatorTree *DT; 864 // LoopAccess analysis. 865 LoopAccessAnalysis *LAA; 866 // And the loop-accesses info corresponding to this loop. This pointer is 867 // null until canVectorizeMemory sets it up. 868 const LoopAccessInfo *LAI; 869 870 // --- vectorization state --- // 871 872 /// Holds the integer induction variable. This is the counter of the 873 /// loop. 874 PHINode *Induction; 875 /// Holds the reduction variables. 876 ReductionList Reductions; 877 /// Holds all of the induction variables that we found in the loop. 878 /// Notice that inductions don't need to start at zero and that induction 879 /// variables can be pointers. 880 InductionList Inductions; 881 /// Holds the widest induction type encountered. 882 Type *WidestIndTy; 883 884 /// Allowed outside users. This holds the reduction 885 /// vars which can be accessed from outside the loop. 886 SmallPtrSet<Value*, 4> AllowedExit; 887 /// This set holds the variables which are known to be uniform after 888 /// vectorization. 889 SmallPtrSet<Instruction*, 4> Uniforms; 890 891 /// Can we assume the absence of NaNs. 892 bool HasFunNoNaNAttr; 893 894 ValueToValueMap Strides; 895 SmallPtrSet<Value *, 8> StrideSet; 896 897 /// While vectorizing these instructions we have to generate a 898 /// call to the appropriate masked intrinsic 899 SmallPtrSet<const Instruction*, 8> MaskedOp; 900 }; 901 902 /// LoopVectorizationCostModel - estimates the expected speedups due to 903 /// vectorization. 904 /// In many cases vectorization is not profitable. This can happen because of 905 /// a number of reasons. In this class we mainly attempt to predict the 906 /// expected speedup/slowdowns due to the supported instruction set. We use the 907 /// TargetTransformInfo to query the different backends for the cost of 908 /// different operations. 909 class LoopVectorizationCostModel { 910 public: 911 LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI, 912 LoopVectorizationLegality *Legal, 913 const TargetTransformInfo &TTI, 914 const DataLayout *DL, const TargetLibraryInfo *TLI, 915 AssumptionCache *AC, const Function *F, 916 const LoopVectorizeHints *Hints) 917 : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI), 918 TheFunction(F), Hints(Hints) { 919 CodeMetrics::collectEphemeralValues(L, AC, EphValues); 920 } 921 922 /// Information about vectorization costs 923 struct VectorizationFactor { 924 unsigned Width; // Vector width with best cost 925 unsigned Cost; // Cost of the loop with that width 926 }; 927 /// \return The most profitable vectorization factor and the cost of that VF. 928 /// This method checks every power of two up to VF. If UserVF is not ZERO 929 /// then this vectorization factor will be selected if vectorization is 930 /// possible. 931 VectorizationFactor selectVectorizationFactor(bool OptForSize); 932 933 /// \return The size (in bits) of the widest type in the code that 934 /// needs to be vectorized. We ignore values that remain scalar such as 935 /// 64 bit loop indices. 936 unsigned getWidestType(); 937 938 /// \return The most profitable unroll factor. 939 /// If UserUF is non-zero then this method finds the best unroll-factor 940 /// based on register pressure and other parameters. 941 /// VF and LoopCost are the selected vectorization factor and the cost of the 942 /// selected VF. 943 unsigned selectUnrollFactor(bool OptForSize, unsigned VF, unsigned LoopCost); 944 945 /// \brief A struct that represents some properties of the register usage 946 /// of a loop. 947 struct RegisterUsage { 948 /// Holds the number of loop invariant values that are used in the loop. 949 unsigned LoopInvariantRegs; 950 /// Holds the maximum number of concurrent live intervals in the loop. 951 unsigned MaxLocalUsers; 952 /// Holds the number of instructions in the loop. 953 unsigned NumInstructions; 954 }; 955 956 /// \return information about the register usage of the loop. 957 RegisterUsage calculateRegisterUsage(); 958 959 private: 960 /// Returns the expected execution cost. The unit of the cost does 961 /// not matter because we use the 'cost' units to compare different 962 /// vector widths. The cost that is returned is *not* normalized by 963 /// the factor width. 964 unsigned expectedCost(unsigned VF); 965 966 /// Returns the execution time cost of an instruction for a given vector 967 /// width. Vector width of one means scalar. 968 unsigned getInstructionCost(Instruction *I, unsigned VF); 969 970 /// Returns whether the instruction is a load or store and will be a emitted 971 /// as a vector operation. 972 bool isConsecutiveLoadOrStore(Instruction *I); 973 974 /// Report an analysis message to assist the user in diagnosing loops that are 975 /// not vectorized. These are handled as LoopAccessReport rather than 976 /// VectorizationReport because the << operator of VectorizationReport returns 977 /// LoopAccessReport. 978 void emitAnalysis(const LoopAccessReport &Message) { 979 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, LV_NAME); 980 } 981 982 /// Values used only by @llvm.assume calls. 983 SmallPtrSet<const Value *, 32> EphValues; 984 985 /// The loop that we evaluate. 986 Loop *TheLoop; 987 /// Scev analysis. 988 ScalarEvolution *SE; 989 /// Loop Info analysis. 990 LoopInfo *LI; 991 /// Vectorization legality. 992 LoopVectorizationLegality *Legal; 993 /// Vector target information. 994 const TargetTransformInfo &TTI; 995 /// Target data layout information. 996 const DataLayout *DL; 997 /// Target Library Info. 998 const TargetLibraryInfo *TLI; 999 const Function *TheFunction; 1000 // Loop Vectorize Hint. 1001 const LoopVectorizeHints *Hints; 1002 }; 1003 1004 /// Utility class for getting and setting loop vectorizer hints in the form 1005 /// of loop metadata. 1006 /// This class keeps a number of loop annotations locally (as member variables) 1007 /// and can, upon request, write them back as metadata on the loop. It will 1008 /// initially scan the loop for existing metadata, and will update the local 1009 /// values based on information in the loop. 1010 /// We cannot write all values to metadata, as the mere presence of some info, 1011 /// for example 'force', means a decision has been made. So, we need to be 1012 /// careful NOT to add them if the user hasn't specifically asked so. 1013 class LoopVectorizeHints { 1014 enum HintKind { 1015 HK_WIDTH, 1016 HK_UNROLL, 1017 HK_FORCE 1018 }; 1019 1020 /// Hint - associates name and validation with the hint value. 1021 struct Hint { 1022 const char * Name; 1023 unsigned Value; // This may have to change for non-numeric values. 1024 HintKind Kind; 1025 1026 Hint(const char * Name, unsigned Value, HintKind Kind) 1027 : Name(Name), Value(Value), Kind(Kind) { } 1028 1029 bool validate(unsigned Val) { 1030 switch (Kind) { 1031 case HK_WIDTH: 1032 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1033 case HK_UNROLL: 1034 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1035 case HK_FORCE: 1036 return (Val <= 1); 1037 } 1038 return false; 1039 } 1040 }; 1041 1042 /// Vectorization width. 1043 Hint Width; 1044 /// Vectorization interleave factor. 1045 Hint Interleave; 1046 /// Vectorization forced 1047 Hint Force; 1048 1049 /// Return the loop metadata prefix. 1050 static StringRef Prefix() { return "llvm.loop."; } 1051 1052 public: 1053 enum ForceKind { 1054 FK_Undefined = -1, ///< Not selected. 1055 FK_Disabled = 0, ///< Forcing disabled. 1056 FK_Enabled = 1, ///< Forcing enabled. 1057 }; 1058 1059 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 1060 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1061 HK_WIDTH), 1062 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1063 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1064 TheLoop(L) { 1065 // Populate values with existing loop metadata. 1066 getHintsFromMetadata(); 1067 1068 // force-vector-interleave overrides DisableInterleaving. 1069 if (VectorizerParams::isInterleaveForced()) 1070 Interleave.Value = VectorizerParams::VectorizationInterleave; 1071 1072 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1073 << "LV: Interleaving disabled by the pass manager\n"); 1074 } 1075 1076 /// Mark the loop L as already vectorized by setting the width to 1. 1077 void setAlreadyVectorized() { 1078 Width.Value = Interleave.Value = 1; 1079 Hint Hints[] = {Width, Interleave}; 1080 writeHintsToMetadata(Hints); 1081 } 1082 1083 /// Dumps all the hint information. 1084 std::string emitRemark() const { 1085 VectorizationReport R; 1086 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1087 R << "vectorization is explicitly disabled"; 1088 else { 1089 R << "use -Rpass-analysis=loop-vectorize for more info"; 1090 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1091 R << " (Force=true"; 1092 if (Width.Value != 0) 1093 R << ", Vector Width=" << Width.Value; 1094 if (Interleave.Value != 0) 1095 R << ", Interleave Count=" << Interleave.Value; 1096 R << ")"; 1097 } 1098 } 1099 1100 return R.str(); 1101 } 1102 1103 unsigned getWidth() const { return Width.Value; } 1104 unsigned getInterleave() const { return Interleave.Value; } 1105 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1106 1107 private: 1108 /// Find hints specified in the loop metadata and update local values. 1109 void getHintsFromMetadata() { 1110 MDNode *LoopID = TheLoop->getLoopID(); 1111 if (!LoopID) 1112 return; 1113 1114 // First operand should refer to the loop id itself. 1115 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1116 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1117 1118 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1119 const MDString *S = nullptr; 1120 SmallVector<Metadata *, 4> Args; 1121 1122 // The expected hint is either a MDString or a MDNode with the first 1123 // operand a MDString. 1124 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1125 if (!MD || MD->getNumOperands() == 0) 1126 continue; 1127 S = dyn_cast<MDString>(MD->getOperand(0)); 1128 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1129 Args.push_back(MD->getOperand(i)); 1130 } else { 1131 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1132 assert(Args.size() == 0 && "too many arguments for MDString"); 1133 } 1134 1135 if (!S) 1136 continue; 1137 1138 // Check if the hint starts with the loop metadata prefix. 1139 StringRef Name = S->getString(); 1140 if (Args.size() == 1) 1141 setHint(Name, Args[0]); 1142 } 1143 } 1144 1145 /// Checks string hint with one operand and set value if valid. 1146 void setHint(StringRef Name, Metadata *Arg) { 1147 if (!Name.startswith(Prefix())) 1148 return; 1149 Name = Name.substr(Prefix().size(), StringRef::npos); 1150 1151 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1152 if (!C) return; 1153 unsigned Val = C->getZExtValue(); 1154 1155 Hint *Hints[] = {&Width, &Interleave, &Force}; 1156 for (auto H : Hints) { 1157 if (Name == H->Name) { 1158 if (H->validate(Val)) 1159 H->Value = Val; 1160 else 1161 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1162 break; 1163 } 1164 } 1165 } 1166 1167 /// Create a new hint from name / value pair. 1168 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1169 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1170 Metadata *MDs[] = {MDString::get(Context, Name), 1171 ConstantAsMetadata::get( 1172 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1173 return MDNode::get(Context, MDs); 1174 } 1175 1176 /// Matches metadata with hint name. 1177 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1178 MDString* Name = dyn_cast<MDString>(Node->getOperand(0)); 1179 if (!Name) 1180 return false; 1181 1182 for (auto H : HintTypes) 1183 if (Name->getString().endswith(H.Name)) 1184 return true; 1185 return false; 1186 } 1187 1188 /// Sets current hints into loop metadata, keeping other values intact. 1189 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1190 if (HintTypes.size() == 0) 1191 return; 1192 1193 // Reserve the first element to LoopID (see below). 1194 SmallVector<Metadata *, 4> MDs(1); 1195 // If the loop already has metadata, then ignore the existing operands. 1196 MDNode *LoopID = TheLoop->getLoopID(); 1197 if (LoopID) { 1198 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1199 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1200 // If node in update list, ignore old value. 1201 if (!matchesHintMetadataName(Node, HintTypes)) 1202 MDs.push_back(Node); 1203 } 1204 } 1205 1206 // Now, add the missing hints. 1207 for (auto H : HintTypes) 1208 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1209 1210 // Replace current metadata node with new one. 1211 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1212 MDNode *NewLoopID = MDNode::get(Context, MDs); 1213 // Set operand 0 to refer to the loop id itself. 1214 NewLoopID->replaceOperandWith(0, NewLoopID); 1215 1216 TheLoop->setLoopID(NewLoopID); 1217 } 1218 1219 /// The loop these hints belong to. 1220 const Loop *TheLoop; 1221 }; 1222 1223 static void emitMissedWarning(Function *F, Loop *L, 1224 const LoopVectorizeHints &LH) { 1225 emitOptimizationRemarkMissed(F->getContext(), DEBUG_TYPE, *F, 1226 L->getStartLoc(), LH.emitRemark()); 1227 1228 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1229 if (LH.getWidth() != 1) 1230 emitLoopVectorizeWarning( 1231 F->getContext(), *F, L->getStartLoc(), 1232 "failed explicitly specified loop vectorization"); 1233 else if (LH.getInterleave() != 1) 1234 emitLoopInterleaveWarning( 1235 F->getContext(), *F, L->getStartLoc(), 1236 "failed explicitly specified loop interleaving"); 1237 } 1238 } 1239 1240 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1241 if (L.empty()) 1242 return V.push_back(&L); 1243 1244 for (Loop *InnerL : L) 1245 addInnerLoop(*InnerL, V); 1246 } 1247 1248 /// The LoopVectorize Pass. 1249 struct LoopVectorize : public FunctionPass { 1250 /// Pass identification, replacement for typeid 1251 static char ID; 1252 1253 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1254 : FunctionPass(ID), 1255 DisableUnrolling(NoUnrolling), 1256 AlwaysVectorize(AlwaysVectorize) { 1257 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1258 } 1259 1260 ScalarEvolution *SE; 1261 const DataLayout *DL; 1262 LoopInfo *LI; 1263 TargetTransformInfo *TTI; 1264 DominatorTree *DT; 1265 BlockFrequencyInfo *BFI; 1266 TargetLibraryInfo *TLI; 1267 AliasAnalysis *AA; 1268 AssumptionCache *AC; 1269 LoopAccessAnalysis *LAA; 1270 bool DisableUnrolling; 1271 bool AlwaysVectorize; 1272 1273 BlockFrequency ColdEntryFreq; 1274 1275 bool runOnFunction(Function &F) override { 1276 SE = &getAnalysis<ScalarEvolution>(); 1277 DL = &F.getParent()->getDataLayout(); 1278 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1279 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1280 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1281 BFI = &getAnalysis<BlockFrequencyInfo>(); 1282 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1283 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1284 AA = &getAnalysis<AliasAnalysis>(); 1285 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1286 LAA = &getAnalysis<LoopAccessAnalysis>(); 1287 1288 // Compute some weights outside of the loop over the loops. Compute this 1289 // using a BranchProbability to re-use its scaling math. 1290 const BranchProbability ColdProb(1, 5); // 20% 1291 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1292 1293 // If the target claims to have no vector registers don't attempt 1294 // vectorization. 1295 if (!TTI->getNumberOfRegisters(true)) 1296 return false; 1297 1298 if (!DL) { 1299 DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName() 1300 << ": Missing data layout\n"); 1301 return false; 1302 } 1303 1304 // Build up a worklist of inner-loops to vectorize. This is necessary as 1305 // the act of vectorizing or partially unrolling a loop creates new loops 1306 // and can invalidate iterators across the loops. 1307 SmallVector<Loop *, 8> Worklist; 1308 1309 for (Loop *L : *LI) 1310 addInnerLoop(*L, Worklist); 1311 1312 LoopsAnalyzed += Worklist.size(); 1313 1314 // Now walk the identified inner loops. 1315 bool Changed = false; 1316 while (!Worklist.empty()) 1317 Changed |= processLoop(Worklist.pop_back_val()); 1318 1319 // Process each loop nest in the function. 1320 return Changed; 1321 } 1322 1323 bool processLoop(Loop *L) { 1324 assert(L->empty() && "Only process inner loops."); 1325 1326 #ifndef NDEBUG 1327 const std::string DebugLocStr = getDebugLocString(L); 1328 #endif /* NDEBUG */ 1329 1330 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1331 << L->getHeader()->getParent()->getName() << "\" from " 1332 << DebugLocStr << "\n"); 1333 1334 LoopVectorizeHints Hints(L, DisableUnrolling); 1335 1336 DEBUG(dbgs() << "LV: Loop hints:" 1337 << " force=" 1338 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1339 ? "disabled" 1340 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1341 ? "enabled" 1342 : "?")) << " width=" << Hints.getWidth() 1343 << " unroll=" << Hints.getInterleave() << "\n"); 1344 1345 // Function containing loop 1346 Function *F = L->getHeader()->getParent(); 1347 1348 // Looking at the diagnostic output is the only way to determine if a loop 1349 // was vectorized (other than looking at the IR or machine code), so it 1350 // is important to generate an optimization remark for each loop. Most of 1351 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1352 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1353 // less verbose reporting vectorized loops and unvectorized loops that may 1354 // benefit from vectorization, respectively. 1355 1356 if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) { 1357 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1358 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1359 L->getStartLoc(), Hints.emitRemark()); 1360 return false; 1361 } 1362 1363 if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) { 1364 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1365 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE, *F, 1366 L->getStartLoc(), Hints.emitRemark()); 1367 return false; 1368 } 1369 1370 if (Hints.getWidth() == 1 && Hints.getInterleave() == 1) { 1371 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1372 emitOptimizationRemarkAnalysis( 1373 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1374 "loop not vectorized: vector width and interleave count are " 1375 "explicitly set to 1"); 1376 return false; 1377 } 1378 1379 // Check the loop for a trip count threshold: 1380 // do not vectorize loops with a tiny trip count. 1381 const unsigned TC = SE->getSmallConstantTripCount(L); 1382 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1383 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1384 << "This loop is not worth vectorizing."); 1385 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1386 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1387 else { 1388 DEBUG(dbgs() << "\n"); 1389 emitOptimizationRemarkAnalysis( 1390 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1391 "vectorization is not beneficial and is not explicitly forced"); 1392 return false; 1393 } 1394 } 1395 1396 // Check if it is legal to vectorize the loop. 1397 LoopVectorizationLegality LVL(L, SE, DL, DT, TLI, AA, F, TTI, LAA); 1398 if (!LVL.canVectorize()) { 1399 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1400 emitMissedWarning(F, L, Hints); 1401 return false; 1402 } 1403 1404 // Use the cost model. 1405 LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI, AC, F, 1406 &Hints); 1407 1408 // Check the function attributes to find out if this function should be 1409 // optimized for size. 1410 bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1411 F->hasFnAttribute(Attribute::OptimizeForSize); 1412 1413 // Compute the weighted frequency of this loop being executed and see if it 1414 // is less than 20% of the function entry baseline frequency. Note that we 1415 // always have a canonical loop here because we think we *can* vectoriez. 1416 // FIXME: This is hidden behind a flag due to pervasive problems with 1417 // exactly what block frequency models. 1418 if (LoopVectorizeWithBlockFrequency) { 1419 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1420 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1421 LoopEntryFreq < ColdEntryFreq) 1422 OptForSize = true; 1423 } 1424 1425 // Check the function attributes to see if implicit floats are allowed.a 1426 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1427 // an integer loop and the vector instructions selected are purely integer 1428 // vector instructions? 1429 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1430 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1431 "attribute is used.\n"); 1432 emitOptimizationRemarkAnalysis( 1433 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1434 "loop not vectorized due to NoImplicitFloat attribute"); 1435 emitMissedWarning(F, L, Hints); 1436 return false; 1437 } 1438 1439 // Select the optimal vectorization factor. 1440 const LoopVectorizationCostModel::VectorizationFactor VF = 1441 CM.selectVectorizationFactor(OptForSize); 1442 1443 // Select the unroll factor. 1444 const unsigned UF = 1445 CM.selectUnrollFactor(OptForSize, VF.Width, VF.Cost); 1446 1447 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 1448 << DebugLocStr << '\n'); 1449 DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n'); 1450 1451 if (VF.Width == 1) { 1452 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial\n"); 1453 1454 if (UF == 1) { 1455 emitOptimizationRemarkAnalysis( 1456 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1457 "not beneficial to vectorize and user disabled interleaving"); 1458 return false; 1459 } 1460 DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n"); 1461 1462 // Report the unrolling decision. 1463 emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1464 Twine("unrolled with interleaving factor " + 1465 Twine(UF) + 1466 " (vectorization not beneficial)")); 1467 1468 // We decided not to vectorize, but we may want to unroll. 1469 1470 InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF); 1471 Unroller.vectorize(&LVL); 1472 } else { 1473 // If we decided that it is *legal* to vectorize the loop then do it. 1474 InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF); 1475 LB.vectorize(&LVL); 1476 ++LoopsVectorized; 1477 1478 // Report the vectorization decision. 1479 emitOptimizationRemark( 1480 F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(), 1481 Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) + 1482 ", unrolling interleave factor: " + Twine(UF) + ")"); 1483 } 1484 1485 // Mark the loop as already vectorized to avoid vectorizing again. 1486 Hints.setAlreadyVectorized(); 1487 1488 DEBUG(verifyFunction(*L->getHeader()->getParent())); 1489 return true; 1490 } 1491 1492 void getAnalysisUsage(AnalysisUsage &AU) const override { 1493 AU.addRequired<AssumptionCacheTracker>(); 1494 AU.addRequiredID(LoopSimplifyID); 1495 AU.addRequiredID(LCSSAID); 1496 AU.addRequired<BlockFrequencyInfo>(); 1497 AU.addRequired<DominatorTreeWrapperPass>(); 1498 AU.addRequired<LoopInfoWrapperPass>(); 1499 AU.addRequired<ScalarEvolution>(); 1500 AU.addRequired<TargetTransformInfoWrapperPass>(); 1501 AU.addRequired<AliasAnalysis>(); 1502 AU.addRequired<LoopAccessAnalysis>(); 1503 AU.addPreserved<LoopInfoWrapperPass>(); 1504 AU.addPreserved<DominatorTreeWrapperPass>(); 1505 AU.addPreserved<AliasAnalysis>(); 1506 } 1507 1508 }; 1509 1510 } // end anonymous namespace 1511 1512 //===----------------------------------------------------------------------===// 1513 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 1514 // LoopVectorizationCostModel. 1515 //===----------------------------------------------------------------------===// 1516 1517 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 1518 // We need to place the broadcast of invariant variables outside the loop. 1519 Instruction *Instr = dyn_cast<Instruction>(V); 1520 bool NewInstr = 1521 (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(), 1522 Instr->getParent()) != LoopVectorBody.end()); 1523 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 1524 1525 // Place the code for broadcasting invariant variables in the new preheader. 1526 IRBuilder<>::InsertPointGuard Guard(Builder); 1527 if (Invariant) 1528 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 1529 1530 // Broadcast the scalar into all locations in the vector. 1531 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 1532 1533 return Shuf; 1534 } 1535 1536 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 1537 Value *Step) { 1538 assert(Val->getType()->isVectorTy() && "Must be a vector"); 1539 assert(Val->getType()->getScalarType()->isIntegerTy() && 1540 "Elem must be an integer"); 1541 assert(Step->getType() == Val->getType()->getScalarType() && 1542 "Step has wrong type"); 1543 // Create the types. 1544 Type *ITy = Val->getType()->getScalarType(); 1545 VectorType *Ty = cast<VectorType>(Val->getType()); 1546 int VLen = Ty->getNumElements(); 1547 SmallVector<Constant*, 8> Indices; 1548 1549 // Create a vector of consecutive numbers from zero to VF. 1550 for (int i = 0; i < VLen; ++i) 1551 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 1552 1553 // Add the consecutive indices to the vector value. 1554 Constant *Cv = ConstantVector::get(Indices); 1555 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 1556 Step = Builder.CreateVectorSplat(VLen, Step); 1557 assert(Step->getType() == Val->getType() && "Invalid step vec"); 1558 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 1559 // which can be found from the original scalar operations. 1560 Step = Builder.CreateMul(Cv, Step); 1561 return Builder.CreateAdd(Val, Step, "induction"); 1562 } 1563 1564 /// \brief Find the operand of the GEP that should be checked for consecutive 1565 /// stores. This ignores trailing indices that have no effect on the final 1566 /// pointer. 1567 static unsigned getGEPInductionOperand(const DataLayout *DL, 1568 const GetElementPtrInst *Gep) { 1569 unsigned LastOperand = Gep->getNumOperands() - 1; 1570 unsigned GEPAllocSize = DL->getTypeAllocSize( 1571 cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); 1572 1573 // Walk backwards and try to peel off zeros. 1574 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 1575 // Find the type we're currently indexing into. 1576 gep_type_iterator GEPTI = gep_type_begin(Gep); 1577 std::advance(GEPTI, LastOperand - 1); 1578 1579 // If it's a type with the same allocation size as the result of the GEP we 1580 // can peel off the zero index. 1581 if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize) 1582 break; 1583 --LastOperand; 1584 } 1585 1586 return LastOperand; 1587 } 1588 1589 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 1590 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 1591 // Make sure that the pointer does not point to structs. 1592 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 1593 return 0; 1594 1595 // If this value is a pointer induction variable we know it is consecutive. 1596 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 1597 if (Phi && Inductions.count(Phi)) { 1598 InductionInfo II = Inductions[Phi]; 1599 return II.getConsecutiveDirection(); 1600 } 1601 1602 GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr); 1603 if (!Gep) 1604 return 0; 1605 1606 unsigned NumOperands = Gep->getNumOperands(); 1607 Value *GpPtr = Gep->getPointerOperand(); 1608 // If this GEP value is a consecutive pointer induction variable and all of 1609 // the indices are constant then we know it is consecutive. We can 1610 Phi = dyn_cast<PHINode>(GpPtr); 1611 if (Phi && Inductions.count(Phi)) { 1612 1613 // Make sure that the pointer does not point to structs. 1614 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 1615 if (GepPtrType->getElementType()->isAggregateType()) 1616 return 0; 1617 1618 // Make sure that all of the index operands are loop invariant. 1619 for (unsigned i = 1; i < NumOperands; ++i) 1620 if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1621 return 0; 1622 1623 InductionInfo II = Inductions[Phi]; 1624 return II.getConsecutiveDirection(); 1625 } 1626 1627 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1628 1629 // Check that all of the gep indices are uniform except for our induction 1630 // operand. 1631 for (unsigned i = 0; i != NumOperands; ++i) 1632 if (i != InductionOperand && 1633 !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop)) 1634 return 0; 1635 1636 // We can emit wide load/stores only if the last non-zero index is the 1637 // induction variable. 1638 const SCEV *Last = nullptr; 1639 if (!Strides.count(Gep)) 1640 Last = SE->getSCEV(Gep->getOperand(InductionOperand)); 1641 else { 1642 // Because of the multiplication by a stride we can have a s/zext cast. 1643 // We are going to replace this stride by 1 so the cast is safe to ignore. 1644 // 1645 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 1646 // %0 = trunc i64 %indvars.iv to i32 1647 // %mul = mul i32 %0, %Stride1 1648 // %idxprom = zext i32 %mul to i64 << Safe cast. 1649 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 1650 // 1651 Last = replaceSymbolicStrideSCEV(SE, Strides, 1652 Gep->getOperand(InductionOperand), Gep); 1653 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 1654 Last = 1655 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 1656 ? C->getOperand() 1657 : Last; 1658 } 1659 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 1660 const SCEV *Step = AR->getStepRecurrence(*SE); 1661 1662 // The memory is consecutive because the last index is consecutive 1663 // and all other indices are loop invariant. 1664 if (Step->isOne()) 1665 return 1; 1666 if (Step->isAllOnesValue()) 1667 return -1; 1668 } 1669 1670 return 0; 1671 } 1672 1673 bool LoopVectorizationLegality::isUniform(Value *V) { 1674 return LAI->isUniform(V); 1675 } 1676 1677 InnerLoopVectorizer::VectorParts& 1678 InnerLoopVectorizer::getVectorValue(Value *V) { 1679 assert(V != Induction && "The new induction variable should not be used."); 1680 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 1681 1682 // If we have a stride that is replaced by one, do it here. 1683 if (Legal->hasStride(V)) 1684 V = ConstantInt::get(V->getType(), 1); 1685 1686 // If we have this scalar in the map, return it. 1687 if (WidenMap.has(V)) 1688 return WidenMap.get(V); 1689 1690 // If this scalar is unknown, assume that it is a constant or that it is 1691 // loop invariant. Broadcast V and save the value for future uses. 1692 Value *B = getBroadcastInstrs(V); 1693 return WidenMap.splat(V, B); 1694 } 1695 1696 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 1697 assert(Vec->getType()->isVectorTy() && "Invalid type"); 1698 SmallVector<Constant*, 8> ShuffleMask; 1699 for (unsigned i = 0; i < VF; ++i) 1700 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 1701 1702 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 1703 ConstantVector::get(ShuffleMask), 1704 "reverse"); 1705 } 1706 1707 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 1708 // Attempt to issue a wide load. 1709 LoadInst *LI = dyn_cast<LoadInst>(Instr); 1710 StoreInst *SI = dyn_cast<StoreInst>(Instr); 1711 1712 assert((LI || SI) && "Invalid Load/Store instruction"); 1713 1714 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 1715 Type *DataTy = VectorType::get(ScalarDataTy, VF); 1716 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 1717 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 1718 // An alignment of 0 means target abi alignment. We need to use the scalar's 1719 // target abi alignment in such a case. 1720 if (!Alignment) 1721 Alignment = DL->getABITypeAlignment(ScalarDataTy); 1722 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 1723 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy); 1724 unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF; 1725 1726 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 1727 !Legal->isMaskRequired(SI)) 1728 return scalarizeInstruction(Instr, true); 1729 1730 if (ScalarAllocatedSize != VectorElementSize) 1731 return scalarizeInstruction(Instr); 1732 1733 // If the pointer is loop invariant or if it is non-consecutive, 1734 // scalarize the load. 1735 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 1736 bool Reverse = ConsecutiveStride < 0; 1737 bool UniformLoad = LI && Legal->isUniform(Ptr); 1738 if (!ConsecutiveStride || UniformLoad) 1739 return scalarizeInstruction(Instr); 1740 1741 Constant *Zero = Builder.getInt32(0); 1742 VectorParts &Entry = WidenMap.get(Instr); 1743 1744 // Handle consecutive loads/stores. 1745 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 1746 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 1747 setDebugLocFromInst(Builder, Gep); 1748 Value *PtrOperand = Gep->getPointerOperand(); 1749 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 1750 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 1751 1752 // Create the new GEP with the new induction variable. 1753 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1754 Gep2->setOperand(0, FirstBasePtr); 1755 Gep2->setName("gep.indvar.base"); 1756 Ptr = Builder.Insert(Gep2); 1757 } else if (Gep) { 1758 setDebugLocFromInst(Builder, Gep); 1759 assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()), 1760 OrigLoop) && "Base ptr must be invariant"); 1761 1762 // The last index does not have to be the induction. It can be 1763 // consecutive and be a function of the index. For example A[I+1]; 1764 unsigned NumOperands = Gep->getNumOperands(); 1765 unsigned InductionOperand = getGEPInductionOperand(DL, Gep); 1766 // Create the new GEP with the new induction variable. 1767 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 1768 1769 for (unsigned i = 0; i < NumOperands; ++i) { 1770 Value *GepOperand = Gep->getOperand(i); 1771 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 1772 1773 // Update last index or loop invariant instruction anchored in loop. 1774 if (i == InductionOperand || 1775 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 1776 assert((i == InductionOperand || 1777 SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) && 1778 "Must be last index or loop invariant"); 1779 1780 VectorParts &GEPParts = getVectorValue(GepOperand); 1781 Value *Index = GEPParts[0]; 1782 Index = Builder.CreateExtractElement(Index, Zero); 1783 Gep2->setOperand(i, Index); 1784 Gep2->setName("gep.indvar.idx"); 1785 } 1786 } 1787 Ptr = Builder.Insert(Gep2); 1788 } else { 1789 // Use the induction element ptr. 1790 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 1791 setDebugLocFromInst(Builder, Ptr); 1792 VectorParts &PtrVal = getVectorValue(Ptr); 1793 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 1794 } 1795 1796 VectorParts Mask = createBlockInMask(Instr->getParent()); 1797 // Handle Stores: 1798 if (SI) { 1799 assert(!Legal->isUniform(SI->getPointerOperand()) && 1800 "We do not allow storing to uniform addresses"); 1801 setDebugLocFromInst(Builder, SI); 1802 // We don't want to update the value in the map as it might be used in 1803 // another expression. So don't use a reference type for "StoredVal". 1804 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 1805 1806 for (unsigned Part = 0; Part < UF; ++Part) { 1807 // Calculate the pointer for the specific unroll-part. 1808 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1809 1810 if (Reverse) { 1811 // If we store to reverse consecutive memory locations then we need 1812 // to reverse the order of elements in the stored value. 1813 StoredVal[Part] = reverseVector(StoredVal[Part]); 1814 // If the address is consecutive but reversed, then the 1815 // wide store needs to start at the last vector element. 1816 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1817 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1818 Mask[Part] = reverseVector(Mask[Part]); 1819 } 1820 1821 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1822 DataTy->getPointerTo(AddressSpace)); 1823 1824 Instruction *NewSI; 1825 if (Legal->isMaskRequired(SI)) 1826 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 1827 Mask[Part]); 1828 else 1829 NewSI = Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 1830 propagateMetadata(NewSI, SI); 1831 } 1832 return; 1833 } 1834 1835 // Handle loads. 1836 assert(LI && "Must have a load instruction"); 1837 setDebugLocFromInst(Builder, LI); 1838 for (unsigned Part = 0; Part < UF; ++Part) { 1839 // Calculate the pointer for the specific unroll-part. 1840 Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)); 1841 1842 if (Reverse) { 1843 // If the address is consecutive but reversed, then the 1844 // wide load needs to start at the last vector element. 1845 PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)); 1846 PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)); 1847 Mask[Part] = reverseVector(Mask[Part]); 1848 } 1849 1850 Instruction* NewLI; 1851 Value *VecPtr = Builder.CreateBitCast(PartPtr, 1852 DataTy->getPointerTo(AddressSpace)); 1853 if (Legal->isMaskRequired(LI)) 1854 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 1855 UndefValue::get(DataTy), 1856 "wide.masked.load"); 1857 else 1858 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 1859 propagateMetadata(NewLI, LI); 1860 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 1861 } 1862 } 1863 1864 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) { 1865 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 1866 // Holds vector parameters or scalars, in case of uniform vals. 1867 SmallVector<VectorParts, 4> Params; 1868 1869 setDebugLocFromInst(Builder, Instr); 1870 1871 // Find all of the vectorized parameters. 1872 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1873 Value *SrcOp = Instr->getOperand(op); 1874 1875 // If we are accessing the old induction variable, use the new one. 1876 if (SrcOp == OldInduction) { 1877 Params.push_back(getVectorValue(SrcOp)); 1878 continue; 1879 } 1880 1881 // Try using previously calculated values. 1882 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 1883 1884 // If the src is an instruction that appeared earlier in the basic block 1885 // then it should already be vectorized. 1886 if (SrcInst && OrigLoop->contains(SrcInst)) { 1887 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 1888 // The parameter is a vector value from earlier. 1889 Params.push_back(WidenMap.get(SrcInst)); 1890 } else { 1891 // The parameter is a scalar from outside the loop. Maybe even a constant. 1892 VectorParts Scalars; 1893 Scalars.append(UF, SrcOp); 1894 Params.push_back(Scalars); 1895 } 1896 } 1897 1898 assert(Params.size() == Instr->getNumOperands() && 1899 "Invalid number of operands"); 1900 1901 // Does this instruction return a value ? 1902 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 1903 1904 Value *UndefVec = IsVoidRetTy ? nullptr : 1905 UndefValue::get(VectorType::get(Instr->getType(), VF)); 1906 // Create a new entry in the WidenMap and initialize it to Undef or Null. 1907 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 1908 1909 Instruction *InsertPt = Builder.GetInsertPoint(); 1910 BasicBlock *IfBlock = Builder.GetInsertBlock(); 1911 BasicBlock *CondBlock = nullptr; 1912 1913 VectorParts Cond; 1914 Loop *VectorLp = nullptr; 1915 if (IfPredicateStore) { 1916 assert(Instr->getParent()->getSinglePredecessor() && 1917 "Only support single predecessor blocks"); 1918 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 1919 Instr->getParent()); 1920 VectorLp = LI->getLoopFor(IfBlock); 1921 assert(VectorLp && "Must have a loop for this block"); 1922 } 1923 1924 // For each vector unroll 'part': 1925 for (unsigned Part = 0; Part < UF; ++Part) { 1926 // For each scalar that we create: 1927 for (unsigned Width = 0; Width < VF; ++Width) { 1928 1929 // Start if-block. 1930 Value *Cmp = nullptr; 1931 if (IfPredicateStore) { 1932 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 1933 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1)); 1934 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 1935 LoopVectorBody.push_back(CondBlock); 1936 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 1937 // Update Builder with newly created basic block. 1938 Builder.SetInsertPoint(InsertPt); 1939 } 1940 1941 Instruction *Cloned = Instr->clone(); 1942 if (!IsVoidRetTy) 1943 Cloned->setName(Instr->getName() + ".cloned"); 1944 // Replace the operands of the cloned instructions with extracted scalars. 1945 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 1946 Value *Op = Params[op][Part]; 1947 // Param is a vector. Need to extract the right lane. 1948 if (Op->getType()->isVectorTy()) 1949 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 1950 Cloned->setOperand(op, Op); 1951 } 1952 1953 // Place the cloned scalar in the new loop. 1954 Builder.Insert(Cloned); 1955 1956 // If the original scalar returns a value we need to place it in a vector 1957 // so that future users will be able to use it. 1958 if (!IsVoidRetTy) 1959 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 1960 Builder.getInt32(Width)); 1961 // End if-block. 1962 if (IfPredicateStore) { 1963 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 1964 LoopVectorBody.push_back(NewIfBlock); 1965 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 1966 Builder.SetInsertPoint(InsertPt); 1967 Instruction *OldBr = IfBlock->getTerminator(); 1968 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 1969 OldBr->eraseFromParent(); 1970 IfBlock = NewIfBlock; 1971 } 1972 } 1973 } 1974 } 1975 1976 static Instruction *getFirstInst(Instruction *FirstInst, Value *V, 1977 Instruction *Loc) { 1978 if (FirstInst) 1979 return FirstInst; 1980 if (Instruction *I = dyn_cast<Instruction>(V)) 1981 return I->getParent() == Loc->getParent() ? I : nullptr; 1982 return nullptr; 1983 } 1984 1985 std::pair<Instruction *, Instruction *> 1986 InnerLoopVectorizer::addStrideCheck(Instruction *Loc) { 1987 Instruction *tnullptr = nullptr; 1988 if (!Legal->mustCheckStrides()) 1989 return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr); 1990 1991 IRBuilder<> ChkBuilder(Loc); 1992 1993 // Emit checks. 1994 Value *Check = nullptr; 1995 Instruction *FirstInst = nullptr; 1996 for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(), 1997 SE = Legal->strides_end(); 1998 SI != SE; ++SI) { 1999 Value *Ptr = stripIntegerCast(*SI); 2000 Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1), 2001 "stride.chk"); 2002 // Store the first instruction we create. 2003 FirstInst = getFirstInst(FirstInst, C, Loc); 2004 if (Check) 2005 Check = ChkBuilder.CreateOr(Check, C); 2006 else 2007 Check = C; 2008 } 2009 2010 // We have to do this trickery because the IRBuilder might fold the check to a 2011 // constant expression in which case there is no Instruction anchored in a 2012 // the block. 2013 LLVMContext &Ctx = Loc->getContext(); 2014 Instruction *TheCheck = 2015 BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx)); 2016 ChkBuilder.Insert(TheCheck, "stride.not.one"); 2017 FirstInst = getFirstInst(FirstInst, TheCheck, Loc); 2018 2019 return std::make_pair(FirstInst, TheCheck); 2020 } 2021 2022 void InnerLoopVectorizer::createEmptyLoop() { 2023 /* 2024 In this function we generate a new loop. The new loop will contain 2025 the vectorized instructions while the old loop will continue to run the 2026 scalar remainder. 2027 2028 [ ] <-- Back-edge taken count overflow check. 2029 / | 2030 / v 2031 | [ ] <-- vector loop bypass (may consist of multiple blocks). 2032 | / | 2033 | / v 2034 || [ ] <-- vector pre header. 2035 || | 2036 || v 2037 || [ ] \ 2038 || [ ]_| <-- vector loop. 2039 || | 2040 | \ v 2041 | >[ ] <--- middle-block. 2042 | / | 2043 | / v 2044 -|- >[ ] <--- new preheader. 2045 | | 2046 | v 2047 | [ ] \ 2048 | [ ]_| <-- old scalar loop to handle remainder. 2049 \ | 2050 \ v 2051 >[ ] <-- exit block. 2052 ... 2053 */ 2054 2055 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 2056 BasicBlock *BypassBlock = OrigLoop->getLoopPreheader(); 2057 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 2058 assert(BypassBlock && "Invalid loop structure"); 2059 assert(ExitBlock && "Must have an exit block"); 2060 2061 // Some loops have a single integer induction variable, while other loops 2062 // don't. One example is c++ iterators that often have multiple pointer 2063 // induction variables. In the code below we also support a case where we 2064 // don't have a single induction variable. 2065 OldInduction = Legal->getInduction(); 2066 Type *IdxTy = Legal->getWidestInductionType(); 2067 2068 // Find the loop boundaries. 2069 const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop); 2070 assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count"); 2071 2072 // The exit count might have the type of i64 while the phi is i32. This can 2073 // happen if we have an induction variable that is sign extended before the 2074 // compare. The only way that we get a backedge taken count is that the 2075 // induction variable was signed and as such will not overflow. In such a case 2076 // truncation is legal. 2077 if (ExitCount->getType()->getPrimitiveSizeInBits() > 2078 IdxTy->getPrimitiveSizeInBits()) 2079 ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy); 2080 2081 const SCEV *BackedgeTakeCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy); 2082 // Get the total trip count from the count by adding 1. 2083 ExitCount = SE->getAddExpr(BackedgeTakeCount, 2084 SE->getConstant(BackedgeTakeCount->getType(), 1)); 2085 2086 // Expand the trip count and place the new instructions in the preheader. 2087 // Notice that the pre-header does not change, only the loop body. 2088 SCEVExpander Exp(*SE, "induction"); 2089 2090 // We need to test whether the backedge-taken count is uint##_max. Adding one 2091 // to it will cause overflow and an incorrect loop trip count in the vector 2092 // body. In case of overflow we want to directly jump to the scalar remainder 2093 // loop. 2094 Value *BackedgeCount = 2095 Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(), 2096 BypassBlock->getTerminator()); 2097 if (BackedgeCount->getType()->isPointerTy()) 2098 BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy, 2099 "backedge.ptrcnt.to.int", 2100 BypassBlock->getTerminator()); 2101 Instruction *CheckBCOverflow = 2102 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount, 2103 Constant::getAllOnesValue(BackedgeCount->getType()), 2104 "backedge.overflow", BypassBlock->getTerminator()); 2105 2106 // The loop index does not have to start at Zero. Find the original start 2107 // value from the induction PHI node. If we don't have an induction variable 2108 // then we know that it starts at zero. 2109 Builder.SetInsertPoint(BypassBlock->getTerminator()); 2110 Value *StartIdx = ExtendedIdx = OldInduction ? 2111 Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock), 2112 IdxTy): 2113 ConstantInt::get(IdxTy, 0); 2114 2115 // We need an instruction to anchor the overflow check on. StartIdx needs to 2116 // be defined before the overflow check branch. Because the scalar preheader 2117 // is going to merge the start index and so the overflow branch block needs to 2118 // contain a definition of the start index. 2119 Instruction *OverflowCheckAnchor = BinaryOperator::CreateAdd( 2120 StartIdx, ConstantInt::get(IdxTy, 0), "overflow.check.anchor", 2121 BypassBlock->getTerminator()); 2122 2123 // Count holds the overall loop count (N). 2124 Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2125 BypassBlock->getTerminator()); 2126 2127 LoopBypassBlocks.push_back(BypassBlock); 2128 2129 // Split the single block loop into the two loop structure described above. 2130 BasicBlock *VectorPH = 2131 BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph"); 2132 BasicBlock *VecBody = 2133 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 2134 BasicBlock *MiddleBlock = 2135 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 2136 BasicBlock *ScalarPH = 2137 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 2138 2139 // Create and register the new vector loop. 2140 Loop* Lp = new Loop(); 2141 Loop *ParentLoop = OrigLoop->getParentLoop(); 2142 2143 // Insert the new loop into the loop nest and register the new basic blocks 2144 // before calling any utilities such as SCEV that require valid LoopInfo. 2145 if (ParentLoop) { 2146 ParentLoop->addChildLoop(Lp); 2147 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 2148 ParentLoop->addBasicBlockToLoop(VectorPH, *LI); 2149 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 2150 } else { 2151 LI->addTopLevelLoop(Lp); 2152 } 2153 Lp->addBasicBlockToLoop(VecBody, *LI); 2154 2155 // Use this IR builder to create the loop instructions (Phi, Br, Cmp) 2156 // inside the loop. 2157 Builder.SetInsertPoint(VecBody->getFirstNonPHI()); 2158 2159 // Generate the induction variable. 2160 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2161 Induction = Builder.CreatePHI(IdxTy, 2, "index"); 2162 // The loop step is equal to the vectorization factor (num of SIMD elements) 2163 // times the unroll factor (num of SIMD instructions). 2164 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 2165 2166 // This is the IR builder that we use to add all of the logic for bypassing 2167 // the new vector loop. 2168 IRBuilder<> BypassBuilder(BypassBlock->getTerminator()); 2169 setDebugLocFromInst(BypassBuilder, 2170 getDebugLocFromInstOrOperands(OldInduction)); 2171 2172 // We may need to extend the index in case there is a type mismatch. 2173 // We know that the count starts at zero and does not overflow. 2174 if (Count->getType() != IdxTy) { 2175 // The exit count can be of pointer type. Convert it to the correct 2176 // integer type. 2177 if (ExitCount->getType()->isPointerTy()) 2178 Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int"); 2179 else 2180 Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast"); 2181 } 2182 2183 // Add the start index to the loop count to get the new end index. 2184 Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx"); 2185 2186 // Now we need to generate the expression for N - (N % VF), which is 2187 // the part that the vectorized body will execute. 2188 Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf"); 2189 Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec"); 2190 Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx, 2191 "end.idx.rnd.down"); 2192 2193 // Now, compare the new count to zero. If it is zero skip the vector loop and 2194 // jump to the scalar loop. 2195 Value *Cmp = 2196 BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx, "cmp.zero"); 2197 2198 BasicBlock *LastBypassBlock = BypassBlock; 2199 2200 // Generate code to check that the loops trip count that we computed by adding 2201 // one to the backedge-taken count will not overflow. 2202 { 2203 auto PastOverflowCheck = 2204 std::next(BasicBlock::iterator(OverflowCheckAnchor)); 2205 BasicBlock *CheckBlock = 2206 LastBypassBlock->splitBasicBlock(PastOverflowCheck, "overflow.checked"); 2207 if (ParentLoop) 2208 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2209 LoopBypassBlocks.push_back(CheckBlock); 2210 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2211 BranchInst::Create(ScalarPH, CheckBlock, CheckBCOverflow, OldTerm); 2212 OldTerm->eraseFromParent(); 2213 LastBypassBlock = CheckBlock; 2214 } 2215 2216 // Generate the code to check that the strides we assumed to be one are really 2217 // one. We want the new basic block to start at the first instruction in a 2218 // sequence of instructions that form a check. 2219 Instruction *StrideCheck; 2220 Instruction *FirstCheckInst; 2221 std::tie(FirstCheckInst, StrideCheck) = 2222 addStrideCheck(LastBypassBlock->getTerminator()); 2223 if (StrideCheck) { 2224 // Create a new block containing the stride check. 2225 BasicBlock *CheckBlock = 2226 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck"); 2227 if (ParentLoop) 2228 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2229 LoopBypassBlocks.push_back(CheckBlock); 2230 2231 // Replace the branch into the memory check block with a conditional branch 2232 // for the "few elements case". 2233 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2234 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2235 OldTerm->eraseFromParent(); 2236 2237 Cmp = StrideCheck; 2238 LastBypassBlock = CheckBlock; 2239 } 2240 2241 // Generate the code that checks in runtime if arrays overlap. We put the 2242 // checks into a separate block to make the more common case of few elements 2243 // faster. 2244 Instruction *MemRuntimeCheck; 2245 std::tie(FirstCheckInst, MemRuntimeCheck) = 2246 Legal->getLAI()->addRuntimeCheck(LastBypassBlock->getTerminator()); 2247 if (MemRuntimeCheck) { 2248 // Create a new block containing the memory check. 2249 BasicBlock *CheckBlock = 2250 LastBypassBlock->splitBasicBlock(FirstCheckInst, "vector.memcheck"); 2251 if (ParentLoop) 2252 ParentLoop->addBasicBlockToLoop(CheckBlock, *LI); 2253 LoopBypassBlocks.push_back(CheckBlock); 2254 2255 // Replace the branch into the memory check block with a conditional branch 2256 // for the "few elements case". 2257 Instruction *OldTerm = LastBypassBlock->getTerminator(); 2258 BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm); 2259 OldTerm->eraseFromParent(); 2260 2261 Cmp = MemRuntimeCheck; 2262 LastBypassBlock = CheckBlock; 2263 } 2264 2265 LastBypassBlock->getTerminator()->eraseFromParent(); 2266 BranchInst::Create(MiddleBlock, VectorPH, Cmp, 2267 LastBypassBlock); 2268 2269 // We are going to resume the execution of the scalar loop. 2270 // Go over all of the induction variables that we found and fix the 2271 // PHIs that are left in the scalar version of the loop. 2272 // The starting values of PHI nodes depend on the counter of the last 2273 // iteration in the vectorized loop. 2274 // If we come from a bypass edge then we need to start from the original 2275 // start value. 2276 2277 // This variable saves the new starting index for the scalar loop. 2278 PHINode *ResumeIndex = nullptr; 2279 LoopVectorizationLegality::InductionList::iterator I, E; 2280 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 2281 // Set builder to point to last bypass block. 2282 BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator()); 2283 for (I = List->begin(), E = List->end(); I != E; ++I) { 2284 PHINode *OrigPhi = I->first; 2285 LoopVectorizationLegality::InductionInfo II = I->second; 2286 2287 Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType(); 2288 PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val", 2289 MiddleBlock->getTerminator()); 2290 // We might have extended the type of the induction variable but we need a 2291 // truncated version for the scalar loop. 2292 PHINode *TruncResumeVal = (OrigPhi == OldInduction) ? 2293 PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val", 2294 MiddleBlock->getTerminator()) : nullptr; 2295 2296 // Create phi nodes to merge from the backedge-taken check block. 2297 PHINode *BCResumeVal = PHINode::Create(ResumeValTy, 3, "bc.resume.val", 2298 ScalarPH->getTerminator()); 2299 BCResumeVal->addIncoming(ResumeVal, MiddleBlock); 2300 2301 PHINode *BCTruncResumeVal = nullptr; 2302 if (OrigPhi == OldInduction) { 2303 BCTruncResumeVal = 2304 PHINode::Create(OrigPhi->getType(), 2, "bc.trunc.resume.val", 2305 ScalarPH->getTerminator()); 2306 BCTruncResumeVal->addIncoming(TruncResumeVal, MiddleBlock); 2307 } 2308 2309 Value *EndValue = nullptr; 2310 switch (II.IK) { 2311 case LoopVectorizationLegality::IK_NoInduction: 2312 llvm_unreachable("Unknown induction"); 2313 case LoopVectorizationLegality::IK_IntInduction: { 2314 // Handle the integer induction counter. 2315 assert(OrigPhi->getType()->isIntegerTy() && "Invalid type"); 2316 2317 // We have the canonical induction variable. 2318 if (OrigPhi == OldInduction) { 2319 // Create a truncated version of the resume value for the scalar loop, 2320 // we might have promoted the type to a larger width. 2321 EndValue = 2322 BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType()); 2323 // The new PHI merges the original incoming value, in case of a bypass, 2324 // or the value at the end of the vectorized loop. 2325 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2326 TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2327 TruncResumeVal->addIncoming(EndValue, VecBody); 2328 2329 BCTruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2330 2331 // We know what the end value is. 2332 EndValue = IdxEndRoundDown; 2333 // We also know which PHI node holds it. 2334 ResumeIndex = ResumeVal; 2335 break; 2336 } 2337 2338 // Not the canonical induction variable - add the vector loop count to the 2339 // start value. 2340 Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown, 2341 II.StartValue->getType(), 2342 "cast.crd"); 2343 EndValue = II.transform(BypassBuilder, CRD); 2344 EndValue->setName("ind.end"); 2345 break; 2346 } 2347 case LoopVectorizationLegality::IK_PtrInduction: { 2348 EndValue = II.transform(BypassBuilder, CountRoundDown); 2349 EndValue->setName("ptr.ind.end"); 2350 break; 2351 } 2352 }// end of case 2353 2354 // The new PHI merges the original incoming value, in case of a bypass, 2355 // or the value at the end of the vectorized loop. 2356 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) { 2357 if (OrigPhi == OldInduction) 2358 ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]); 2359 else 2360 ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]); 2361 } 2362 ResumeVal->addIncoming(EndValue, VecBody); 2363 2364 // Fix the scalar body counter (PHI node). 2365 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 2366 2367 // The old induction's phi node in the scalar body needs the truncated 2368 // value. 2369 if (OrigPhi == OldInduction) { 2370 BCResumeVal->addIncoming(StartIdx, LoopBypassBlocks[0]); 2371 OrigPhi->setIncomingValue(BlockIdx, BCTruncResumeVal); 2372 } else { 2373 BCResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[0]); 2374 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 2375 } 2376 } 2377 2378 // If we are generating a new induction variable then we also need to 2379 // generate the code that calculates the exit value. This value is not 2380 // simply the end of the counter because we may skip the vectorized body 2381 // in case of a runtime check. 2382 if (!OldInduction){ 2383 assert(!ResumeIndex && "Unexpected resume value found"); 2384 ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val", 2385 MiddleBlock->getTerminator()); 2386 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2387 ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]); 2388 ResumeIndex->addIncoming(IdxEndRoundDown, VecBody); 2389 } 2390 2391 // Make sure that we found the index where scalar loop needs to continue. 2392 assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() && 2393 "Invalid resume Index"); 2394 2395 // Add a check in the middle block to see if we have completed 2396 // all of the iterations in the first vector loop. 2397 // If (N - N%VF) == N, then we *don't* need to run the remainder. 2398 Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd, 2399 ResumeIndex, "cmp.n", 2400 MiddleBlock->getTerminator()); 2401 2402 BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator()); 2403 // Remove the old terminator. 2404 MiddleBlock->getTerminator()->eraseFromParent(); 2405 2406 // Create i+1 and fill the PHINode. 2407 Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next"); 2408 Induction->addIncoming(StartIdx, VectorPH); 2409 Induction->addIncoming(NextIdx, VecBody); 2410 // Create the compare. 2411 Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown); 2412 Builder.CreateCondBr(ICmp, MiddleBlock, VecBody); 2413 2414 // Now we have two terminators. Remove the old one from the block. 2415 VecBody->getTerminator()->eraseFromParent(); 2416 2417 // Get ready to start creating new instructions into the vectorized body. 2418 Builder.SetInsertPoint(VecBody->getFirstInsertionPt()); 2419 2420 // Save the state. 2421 LoopVectorPreHeader = VectorPH; 2422 LoopScalarPreHeader = ScalarPH; 2423 LoopMiddleBlock = MiddleBlock; 2424 LoopExitBlock = ExitBlock; 2425 LoopVectorBody.push_back(VecBody); 2426 LoopScalarBody = OldBasicBlock; 2427 2428 LoopVectorizeHints Hints(Lp, true); 2429 Hints.setAlreadyVectorized(); 2430 } 2431 2432 /// This function returns the identity element (or neutral element) for 2433 /// the operation K. 2434 Constant* 2435 LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) { 2436 switch (K) { 2437 case RK_IntegerXor: 2438 case RK_IntegerAdd: 2439 case RK_IntegerOr: 2440 // Adding, Xoring, Oring zero to a number does not change it. 2441 return ConstantInt::get(Tp, 0); 2442 case RK_IntegerMult: 2443 // Multiplying a number by 1 does not change it. 2444 return ConstantInt::get(Tp, 1); 2445 case RK_IntegerAnd: 2446 // AND-ing a number with an all-1 value does not change it. 2447 return ConstantInt::get(Tp, -1, true); 2448 case RK_FloatMult: 2449 // Multiplying a number by 1 does not change it. 2450 return ConstantFP::get(Tp, 1.0L); 2451 case RK_FloatAdd: 2452 // Adding zero to a number does not change it. 2453 return ConstantFP::get(Tp, 0.0L); 2454 default: 2455 llvm_unreachable("Unknown reduction kind"); 2456 } 2457 } 2458 2459 /// This function translates the reduction kind to an LLVM binary operator. 2460 static unsigned 2461 getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) { 2462 switch (Kind) { 2463 case LoopVectorizationLegality::RK_IntegerAdd: 2464 return Instruction::Add; 2465 case LoopVectorizationLegality::RK_IntegerMult: 2466 return Instruction::Mul; 2467 case LoopVectorizationLegality::RK_IntegerOr: 2468 return Instruction::Or; 2469 case LoopVectorizationLegality::RK_IntegerAnd: 2470 return Instruction::And; 2471 case LoopVectorizationLegality::RK_IntegerXor: 2472 return Instruction::Xor; 2473 case LoopVectorizationLegality::RK_FloatMult: 2474 return Instruction::FMul; 2475 case LoopVectorizationLegality::RK_FloatAdd: 2476 return Instruction::FAdd; 2477 case LoopVectorizationLegality::RK_IntegerMinMax: 2478 return Instruction::ICmp; 2479 case LoopVectorizationLegality::RK_FloatMinMax: 2480 return Instruction::FCmp; 2481 default: 2482 llvm_unreachable("Unknown reduction operation"); 2483 } 2484 } 2485 2486 Value *createMinMaxOp(IRBuilder<> &Builder, 2487 LoopVectorizationLegality::MinMaxReductionKind RK, 2488 Value *Left, 2489 Value *Right) { 2490 CmpInst::Predicate P = CmpInst::ICMP_NE; 2491 switch (RK) { 2492 default: 2493 llvm_unreachable("Unknown min/max reduction kind"); 2494 case LoopVectorizationLegality::MRK_UIntMin: 2495 P = CmpInst::ICMP_ULT; 2496 break; 2497 case LoopVectorizationLegality::MRK_UIntMax: 2498 P = CmpInst::ICMP_UGT; 2499 break; 2500 case LoopVectorizationLegality::MRK_SIntMin: 2501 P = CmpInst::ICMP_SLT; 2502 break; 2503 case LoopVectorizationLegality::MRK_SIntMax: 2504 P = CmpInst::ICMP_SGT; 2505 break; 2506 case LoopVectorizationLegality::MRK_FloatMin: 2507 P = CmpInst::FCMP_OLT; 2508 break; 2509 case LoopVectorizationLegality::MRK_FloatMax: 2510 P = CmpInst::FCMP_OGT; 2511 break; 2512 } 2513 2514 Value *Cmp; 2515 if (RK == LoopVectorizationLegality::MRK_FloatMin || 2516 RK == LoopVectorizationLegality::MRK_FloatMax) 2517 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); 2518 else 2519 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); 2520 2521 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); 2522 return Select; 2523 } 2524 2525 namespace { 2526 struct CSEDenseMapInfo { 2527 static bool canHandle(Instruction *I) { 2528 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 2529 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 2530 } 2531 static inline Instruction *getEmptyKey() { 2532 return DenseMapInfo<Instruction *>::getEmptyKey(); 2533 } 2534 static inline Instruction *getTombstoneKey() { 2535 return DenseMapInfo<Instruction *>::getTombstoneKey(); 2536 } 2537 static unsigned getHashValue(Instruction *I) { 2538 assert(canHandle(I) && "Unknown instruction!"); 2539 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 2540 I->value_op_end())); 2541 } 2542 static bool isEqual(Instruction *LHS, Instruction *RHS) { 2543 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 2544 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 2545 return LHS == RHS; 2546 return LHS->isIdenticalTo(RHS); 2547 } 2548 }; 2549 } 2550 2551 /// \brief Check whether this block is a predicated block. 2552 /// Due to if predication of stores we might create a sequence of "if(pred) a[i] 2553 /// = ...; " blocks. We start with one vectorized basic block. For every 2554 /// conditional block we split this vectorized block. Therefore, every second 2555 /// block will be a predicated one. 2556 static bool isPredicatedBlock(unsigned BlockNum) { 2557 return BlockNum % 2; 2558 } 2559 2560 ///\brief Perform cse of induction variable instructions. 2561 static void cse(SmallVector<BasicBlock *, 4> &BBs) { 2562 // Perform simple cse. 2563 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 2564 for (unsigned i = 0, e = BBs.size(); i != e; ++i) { 2565 BasicBlock *BB = BBs[i]; 2566 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 2567 Instruction *In = I++; 2568 2569 if (!CSEDenseMapInfo::canHandle(In)) 2570 continue; 2571 2572 // Check if we can replace this instruction with any of the 2573 // visited instructions. 2574 if (Instruction *V = CSEMap.lookup(In)) { 2575 In->replaceAllUsesWith(V); 2576 In->eraseFromParent(); 2577 continue; 2578 } 2579 // Ignore instructions in conditional blocks. We create "if (pred) a[i] = 2580 // ...;" blocks for predicated stores. Every second block is a predicated 2581 // block. 2582 if (isPredicatedBlock(i)) 2583 continue; 2584 2585 CSEMap[In] = In; 2586 } 2587 } 2588 } 2589 2590 /// \brief Adds a 'fast' flag to floating point operations. 2591 static Value *addFastMathFlag(Value *V) { 2592 if (isa<FPMathOperator>(V)){ 2593 FastMathFlags Flags; 2594 Flags.setUnsafeAlgebra(); 2595 cast<Instruction>(V)->setFastMathFlags(Flags); 2596 } 2597 return V; 2598 } 2599 2600 void InnerLoopVectorizer::vectorizeLoop() { 2601 //===------------------------------------------------===// 2602 // 2603 // Notice: any optimization or new instruction that go 2604 // into the code below should be also be implemented in 2605 // the cost-model. 2606 // 2607 //===------------------------------------------------===// 2608 Constant *Zero = Builder.getInt32(0); 2609 2610 // In order to support reduction variables we need to be able to vectorize 2611 // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two 2612 // stages. First, we create a new vector PHI node with no incoming edges. 2613 // We use this value when we vectorize all of the instructions that use the 2614 // PHI. Next, after all of the instructions in the block are complete we 2615 // add the new incoming edges to the PHI. At this point all of the 2616 // instructions in the basic block are vectorized, so we can use them to 2617 // construct the PHI. 2618 PhiVector RdxPHIsToFix; 2619 2620 // Scan the loop in a topological order to ensure that defs are vectorized 2621 // before users. 2622 LoopBlocksDFS DFS(OrigLoop); 2623 DFS.perform(LI); 2624 2625 // Vectorize all of the blocks in the original loop. 2626 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 2627 be = DFS.endRPO(); bb != be; ++bb) 2628 vectorizeBlockInLoop(*bb, &RdxPHIsToFix); 2629 2630 // At this point every instruction in the original loop is widened to 2631 // a vector form. We are almost done. Now, we need to fix the PHI nodes 2632 // that we vectorized. The PHI nodes are currently empty because we did 2633 // not want to introduce cycles. Notice that the remaining PHI nodes 2634 // that we need to fix are reduction variables. 2635 2636 // Create the 'reduced' values for each of the induction vars. 2637 // The reduced values are the vector values that we scalarize and combine 2638 // after the loop is finished. 2639 for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end(); 2640 it != e; ++it) { 2641 PHINode *RdxPhi = *it; 2642 assert(RdxPhi && "Unable to recover vectorized PHI"); 2643 2644 // Find the reduction variable descriptor. 2645 assert(Legal->getReductionVars()->count(RdxPhi) && 2646 "Unable to find the reduction variable"); 2647 LoopVectorizationLegality::ReductionDescriptor RdxDesc = 2648 (*Legal->getReductionVars())[RdxPhi]; 2649 2650 setDebugLocFromInst(Builder, RdxDesc.StartValue); 2651 2652 // We need to generate a reduction vector from the incoming scalar. 2653 // To do so, we need to generate the 'identity' vector and override 2654 // one of the elements with the incoming scalar reduction. We need 2655 // to do it in the vector-loop preheader. 2656 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 2657 2658 // This is the vector-clone of the value that leaves the loop. 2659 VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr); 2660 Type *VecTy = VectorExit[0]->getType(); 2661 2662 // Find the reduction identity variable. Zero for addition, or, xor, 2663 // one for multiplication, -1 for And. 2664 Value *Identity; 2665 Value *VectorStart; 2666 if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax || 2667 RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) { 2668 // MinMax reduction have the start value as their identify. 2669 if (VF == 1) { 2670 VectorStart = Identity = RdxDesc.StartValue; 2671 } else { 2672 VectorStart = Identity = Builder.CreateVectorSplat(VF, 2673 RdxDesc.StartValue, 2674 "minmax.ident"); 2675 } 2676 } else { 2677 // Handle other reduction kinds: 2678 Constant *Iden = 2679 LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind, 2680 VecTy->getScalarType()); 2681 if (VF == 1) { 2682 Identity = Iden; 2683 // This vector is the Identity vector where the first element is the 2684 // incoming scalar reduction. 2685 VectorStart = RdxDesc.StartValue; 2686 } else { 2687 Identity = ConstantVector::getSplat(VF, Iden); 2688 2689 // This vector is the Identity vector where the first element is the 2690 // incoming scalar reduction. 2691 VectorStart = Builder.CreateInsertElement(Identity, 2692 RdxDesc.StartValue, Zero); 2693 } 2694 } 2695 2696 // Fix the vector-loop phi. 2697 2698 // Reductions do not have to start at zero. They can start with 2699 // any loop invariant values. 2700 VectorParts &VecRdxPhi = WidenMap.get(RdxPhi); 2701 BasicBlock *Latch = OrigLoop->getLoopLatch(); 2702 Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch); 2703 VectorParts &Val = getVectorValue(LoopVal); 2704 for (unsigned part = 0; part < UF; ++part) { 2705 // Make sure to add the reduction stat value only to the 2706 // first unroll part. 2707 Value *StartVal = (part == 0) ? VectorStart : Identity; 2708 cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, 2709 LoopVectorPreHeader); 2710 cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], 2711 LoopVectorBody.back()); 2712 } 2713 2714 // Before each round, move the insertion point right between 2715 // the PHIs and the values we are going to write. 2716 // This allows us to write both PHINodes and the extractelement 2717 // instructions. 2718 Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt()); 2719 2720 VectorParts RdxParts; 2721 setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr); 2722 for (unsigned part = 0; part < UF; ++part) { 2723 // This PHINode contains the vectorized reduction variable, or 2724 // the initial value vector, if we bypass the vector loop. 2725 VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr); 2726 PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi"); 2727 Value *StartVal = (part == 0) ? VectorStart : Identity; 2728 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 2729 NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]); 2730 NewPhi->addIncoming(RdxExitVal[part], 2731 LoopVectorBody.back()); 2732 RdxParts.push_back(NewPhi); 2733 } 2734 2735 // Reduce all of the unrolled parts into a single vector. 2736 Value *ReducedPartRdx = RdxParts[0]; 2737 unsigned Op = getReductionBinOp(RdxDesc.Kind); 2738 setDebugLocFromInst(Builder, ReducedPartRdx); 2739 for (unsigned part = 1; part < UF; ++part) { 2740 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2741 // Floating point operations had to be 'fast' to enable the reduction. 2742 ReducedPartRdx = addFastMathFlag( 2743 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 2744 ReducedPartRdx, "bin.rdx")); 2745 else 2746 ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind, 2747 ReducedPartRdx, RdxParts[part]); 2748 } 2749 2750 if (VF > 1) { 2751 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 2752 // and vector ops, reducing the set of values being computed by half each 2753 // round. 2754 assert(isPowerOf2_32(VF) && 2755 "Reduction emission only supported for pow2 vectors!"); 2756 Value *TmpVec = ReducedPartRdx; 2757 SmallVector<Constant*, 32> ShuffleMask(VF, nullptr); 2758 for (unsigned i = VF; i != 1; i >>= 1) { 2759 // Move the upper half of the vector to the lower half. 2760 for (unsigned j = 0; j != i/2; ++j) 2761 ShuffleMask[j] = Builder.getInt32(i/2 + j); 2762 2763 // Fill the rest of the mask with undef. 2764 std::fill(&ShuffleMask[i/2], ShuffleMask.end(), 2765 UndefValue::get(Builder.getInt32Ty())); 2766 2767 Value *Shuf = 2768 Builder.CreateShuffleVector(TmpVec, 2769 UndefValue::get(TmpVec->getType()), 2770 ConstantVector::get(ShuffleMask), 2771 "rdx.shuf"); 2772 2773 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 2774 // Floating point operations had to be 'fast' to enable the reduction. 2775 TmpVec = addFastMathFlag(Builder.CreateBinOp( 2776 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 2777 else 2778 TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf); 2779 } 2780 2781 // The result is in the first element of the vector. 2782 ReducedPartRdx = Builder.CreateExtractElement(TmpVec, 2783 Builder.getInt32(0)); 2784 } 2785 2786 // Create a phi node that merges control-flow from the backedge-taken check 2787 // block and the middle block. 2788 PHINode *BCBlockPhi = PHINode::Create(RdxPhi->getType(), 2, "bc.merge.rdx", 2789 LoopScalarPreHeader->getTerminator()); 2790 BCBlockPhi->addIncoming(RdxDesc.StartValue, LoopBypassBlocks[0]); 2791 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2792 2793 // Now, we need to fix the users of the reduction variable 2794 // inside and outside of the scalar remainder loop. 2795 // We know that the loop is in LCSSA form. We need to update the 2796 // PHI nodes in the exit blocks. 2797 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2798 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2799 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2800 if (!LCSSAPhi) break; 2801 2802 // All PHINodes need to have a single entry edge, or two if 2803 // we already fixed them. 2804 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 2805 2806 // We found our reduction value exit-PHI. Update it with the 2807 // incoming bypass edge. 2808 if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) { 2809 // Add an edge coming from the bypass. 2810 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 2811 break; 2812 } 2813 }// end of the LCSSA phi scan. 2814 2815 // Fix the scalar loop reduction variable with the incoming reduction sum 2816 // from the vector body and from the backedge value. 2817 int IncomingEdgeBlockIdx = 2818 (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch()); 2819 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 2820 // Pick the other block. 2821 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 2822 (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 2823 (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr); 2824 }// end of for each redux variable. 2825 2826 fixLCSSAPHIs(); 2827 2828 // Remove redundant induction instructions. 2829 cse(LoopVectorBody); 2830 } 2831 2832 void InnerLoopVectorizer::fixLCSSAPHIs() { 2833 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 2834 LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) { 2835 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 2836 if (!LCSSAPhi) break; 2837 if (LCSSAPhi->getNumIncomingValues() == 1) 2838 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 2839 LoopMiddleBlock); 2840 } 2841 } 2842 2843 InnerLoopVectorizer::VectorParts 2844 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 2845 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 2846 "Invalid edge"); 2847 2848 // Look for cached value. 2849 std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst); 2850 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 2851 if (ECEntryIt != MaskCache.end()) 2852 return ECEntryIt->second; 2853 2854 VectorParts SrcMask = createBlockInMask(Src); 2855 2856 // The terminator has to be a branch inst! 2857 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 2858 assert(BI && "Unexpected terminator found"); 2859 2860 if (BI->isConditional()) { 2861 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 2862 2863 if (BI->getSuccessor(0) != Dst) 2864 for (unsigned part = 0; part < UF; ++part) 2865 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 2866 2867 for (unsigned part = 0; part < UF; ++part) 2868 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 2869 2870 MaskCache[Edge] = EdgeMask; 2871 return EdgeMask; 2872 } 2873 2874 MaskCache[Edge] = SrcMask; 2875 return SrcMask; 2876 } 2877 2878 InnerLoopVectorizer::VectorParts 2879 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 2880 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 2881 2882 // Loop incoming mask is all-one. 2883 if (OrigLoop->getHeader() == BB) { 2884 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 2885 return getVectorValue(C); 2886 } 2887 2888 // This is the block mask. We OR all incoming edges, and with zero. 2889 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 2890 VectorParts BlockMask = getVectorValue(Zero); 2891 2892 // For each pred: 2893 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 2894 VectorParts EM = createEdgeMask(*it, BB); 2895 for (unsigned part = 0; part < UF; ++part) 2896 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 2897 } 2898 2899 return BlockMask; 2900 } 2901 2902 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 2903 InnerLoopVectorizer::VectorParts &Entry, 2904 unsigned UF, unsigned VF, PhiVector *PV) { 2905 PHINode* P = cast<PHINode>(PN); 2906 // Handle reduction variables: 2907 if (Legal->getReductionVars()->count(P)) { 2908 for (unsigned part = 0; part < UF; ++part) { 2909 // This is phase one of vectorizing PHIs. 2910 Type *VecTy = (VF == 1) ? PN->getType() : 2911 VectorType::get(PN->getType(), VF); 2912 Entry[part] = PHINode::Create(VecTy, 2, "vec.phi", 2913 LoopVectorBody.back()-> getFirstInsertionPt()); 2914 } 2915 PV->push_back(P); 2916 return; 2917 } 2918 2919 setDebugLocFromInst(Builder, P); 2920 // Check for PHI nodes that are lowered to vector selects. 2921 if (P->getParent() != OrigLoop->getHeader()) { 2922 // We know that all PHIs in non-header blocks are converted into 2923 // selects, so we don't have to worry about the insertion order and we 2924 // can just use the builder. 2925 // At this point we generate the predication tree. There may be 2926 // duplications since this is a simple recursive scan, but future 2927 // optimizations will clean it up. 2928 2929 unsigned NumIncoming = P->getNumIncomingValues(); 2930 2931 // Generate a sequence of selects of the form: 2932 // SELECT(Mask3, In3, 2933 // SELECT(Mask2, In2, 2934 // ( ...))) 2935 for (unsigned In = 0; In < NumIncoming; In++) { 2936 VectorParts Cond = createEdgeMask(P->getIncomingBlock(In), 2937 P->getParent()); 2938 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 2939 2940 for (unsigned part = 0; part < UF; ++part) { 2941 // We might have single edge PHIs (blocks) - use an identity 2942 // 'select' for the first PHI operand. 2943 if (In == 0) 2944 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2945 In0[part]); 2946 else 2947 // Select between the current value and the previous incoming edge 2948 // based on the incoming mask. 2949 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], 2950 Entry[part], "predphi"); 2951 } 2952 } 2953 return; 2954 } 2955 2956 // This PHINode must be an induction variable. 2957 // Make sure that we know about it. 2958 assert(Legal->getInductionVars()->count(P) && 2959 "Not an induction variable"); 2960 2961 LoopVectorizationLegality::InductionInfo II = 2962 Legal->getInductionVars()->lookup(P); 2963 2964 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2965 // which can be found from the original scalar operations. 2966 switch (II.IK) { 2967 case LoopVectorizationLegality::IK_NoInduction: 2968 llvm_unreachable("Unknown induction"); 2969 case LoopVectorizationLegality::IK_IntInduction: { 2970 assert(P->getType() == II.StartValue->getType() && "Types must match"); 2971 Type *PhiTy = P->getType(); 2972 Value *Broadcasted; 2973 if (P == OldInduction) { 2974 // Handle the canonical induction variable. We might have had to 2975 // extend the type. 2976 Broadcasted = Builder.CreateTrunc(Induction, PhiTy); 2977 } else { 2978 // Handle other induction variables that are now based on the 2979 // canonical one. 2980 Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx, 2981 "normalized.idx"); 2982 NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy); 2983 Broadcasted = II.transform(Builder, NormalizedIdx); 2984 Broadcasted->setName("offset.idx"); 2985 } 2986 Broadcasted = getBroadcastInstrs(Broadcasted); 2987 // After broadcasting the induction variable we need to make the vector 2988 // consecutive by adding 0, 1, 2, etc. 2989 for (unsigned part = 0; part < UF; ++part) 2990 Entry[part] = getStepVector(Broadcasted, VF * part, II.StepValue); 2991 return; 2992 } 2993 case LoopVectorizationLegality::IK_PtrInduction: 2994 // Handle the pointer induction variable case. 2995 assert(P->getType()->isPointerTy() && "Unexpected type."); 2996 // This is the normalized GEP that starts counting at zero. 2997 Value *NormalizedIdx = 2998 Builder.CreateSub(Induction, ExtendedIdx, "normalized.idx"); 2999 // This is the vector of results. Notice that we don't generate 3000 // vector geps because scalar geps result in better code. 3001 for (unsigned part = 0; part < UF; ++part) { 3002 if (VF == 1) { 3003 int EltIndex = part; 3004 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3005 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3006 Value *SclrGep = II.transform(Builder, GlobalIdx); 3007 SclrGep->setName("next.gep"); 3008 Entry[part] = SclrGep; 3009 continue; 3010 } 3011 3012 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 3013 for (unsigned int i = 0; i < VF; ++i) { 3014 int EltIndex = i + part * VF; 3015 Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex); 3016 Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx); 3017 Value *SclrGep = II.transform(Builder, GlobalIdx); 3018 SclrGep->setName("next.gep"); 3019 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 3020 Builder.getInt32(i), 3021 "insert.gep"); 3022 } 3023 Entry[part] = VecVal; 3024 } 3025 return; 3026 } 3027 } 3028 3029 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 3030 // For each instruction in the old loop. 3031 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 3032 VectorParts &Entry = WidenMap.get(it); 3033 switch (it->getOpcode()) { 3034 case Instruction::Br: 3035 // Nothing to do for PHIs and BR, since we already took care of the 3036 // loop control flow instructions. 3037 continue; 3038 case Instruction::PHI: { 3039 // Vectorize PHINodes. 3040 widenPHIInstruction(it, Entry, UF, VF, PV); 3041 continue; 3042 }// End of PHI. 3043 3044 case Instruction::Add: 3045 case Instruction::FAdd: 3046 case Instruction::Sub: 3047 case Instruction::FSub: 3048 case Instruction::Mul: 3049 case Instruction::FMul: 3050 case Instruction::UDiv: 3051 case Instruction::SDiv: 3052 case Instruction::FDiv: 3053 case Instruction::URem: 3054 case Instruction::SRem: 3055 case Instruction::FRem: 3056 case Instruction::Shl: 3057 case Instruction::LShr: 3058 case Instruction::AShr: 3059 case Instruction::And: 3060 case Instruction::Or: 3061 case Instruction::Xor: { 3062 // Just widen binops. 3063 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 3064 setDebugLocFromInst(Builder, BinOp); 3065 VectorParts &A = getVectorValue(it->getOperand(0)); 3066 VectorParts &B = getVectorValue(it->getOperand(1)); 3067 3068 // Use this vector value for all users of the original instruction. 3069 for (unsigned Part = 0; Part < UF; ++Part) { 3070 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 3071 3072 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 3073 VecOp->copyIRFlags(BinOp); 3074 3075 Entry[Part] = V; 3076 } 3077 3078 propagateMetadata(Entry, it); 3079 break; 3080 } 3081 case Instruction::Select: { 3082 // Widen selects. 3083 // If the selector is loop invariant we can create a select 3084 // instruction with a scalar condition. Otherwise, use vector-select. 3085 bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)), 3086 OrigLoop); 3087 setDebugLocFromInst(Builder, it); 3088 3089 // The condition can be loop invariant but still defined inside the 3090 // loop. This means that we can't just use the original 'cond' value. 3091 // We have to take the 'vectorized' value and pick the first lane. 3092 // Instcombine will make this a no-op. 3093 VectorParts &Cond = getVectorValue(it->getOperand(0)); 3094 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 3095 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 3096 3097 Value *ScalarCond = (VF == 1) ? Cond[0] : 3098 Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 3099 3100 for (unsigned Part = 0; Part < UF; ++Part) { 3101 Entry[Part] = Builder.CreateSelect( 3102 InvariantCond ? ScalarCond : Cond[Part], 3103 Op0[Part], 3104 Op1[Part]); 3105 } 3106 3107 propagateMetadata(Entry, it); 3108 break; 3109 } 3110 3111 case Instruction::ICmp: 3112 case Instruction::FCmp: { 3113 // Widen compares. Generate vector compares. 3114 bool FCmp = (it->getOpcode() == Instruction::FCmp); 3115 CmpInst *Cmp = dyn_cast<CmpInst>(it); 3116 setDebugLocFromInst(Builder, it); 3117 VectorParts &A = getVectorValue(it->getOperand(0)); 3118 VectorParts &B = getVectorValue(it->getOperand(1)); 3119 for (unsigned Part = 0; Part < UF; ++Part) { 3120 Value *C = nullptr; 3121 if (FCmp) 3122 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 3123 else 3124 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 3125 Entry[Part] = C; 3126 } 3127 3128 propagateMetadata(Entry, it); 3129 break; 3130 } 3131 3132 case Instruction::Store: 3133 case Instruction::Load: 3134 vectorizeMemoryInstruction(it); 3135 break; 3136 case Instruction::ZExt: 3137 case Instruction::SExt: 3138 case Instruction::FPToUI: 3139 case Instruction::FPToSI: 3140 case Instruction::FPExt: 3141 case Instruction::PtrToInt: 3142 case Instruction::IntToPtr: 3143 case Instruction::SIToFP: 3144 case Instruction::UIToFP: 3145 case Instruction::Trunc: 3146 case Instruction::FPTrunc: 3147 case Instruction::BitCast: { 3148 CastInst *CI = dyn_cast<CastInst>(it); 3149 setDebugLocFromInst(Builder, it); 3150 /// Optimize the special case where the source is the induction 3151 /// variable. Notice that we can only optimize the 'trunc' case 3152 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 3153 /// c. other casts depend on pointer size. 3154 if (CI->getOperand(0) == OldInduction && 3155 it->getOpcode() == Instruction::Trunc) { 3156 Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction, 3157 CI->getType()); 3158 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 3159 LoopVectorizationLegality::InductionInfo II = 3160 Legal->getInductionVars()->lookup(OldInduction); 3161 Constant *Step = 3162 ConstantInt::getSigned(CI->getType(), II.StepValue->getSExtValue()); 3163 for (unsigned Part = 0; Part < UF; ++Part) 3164 Entry[Part] = getStepVector(Broadcasted, VF * Part, Step); 3165 propagateMetadata(Entry, it); 3166 break; 3167 } 3168 /// Vectorize casts. 3169 Type *DestTy = (VF == 1) ? CI->getType() : 3170 VectorType::get(CI->getType(), VF); 3171 3172 VectorParts &A = getVectorValue(it->getOperand(0)); 3173 for (unsigned Part = 0; Part < UF; ++Part) 3174 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 3175 propagateMetadata(Entry, it); 3176 break; 3177 } 3178 3179 case Instruction::Call: { 3180 // Ignore dbg intrinsics. 3181 if (isa<DbgInfoIntrinsic>(it)) 3182 break; 3183 setDebugLocFromInst(Builder, it); 3184 3185 Module *M = BB->getParent()->getParent(); 3186 CallInst *CI = cast<CallInst>(it); 3187 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 3188 assert(ID && "Not an intrinsic call!"); 3189 switch (ID) { 3190 case Intrinsic::assume: 3191 case Intrinsic::lifetime_end: 3192 case Intrinsic::lifetime_start: 3193 scalarizeInstruction(it); 3194 break; 3195 default: 3196 bool HasScalarOpd = hasVectorInstrinsicScalarOpd(ID, 1); 3197 for (unsigned Part = 0; Part < UF; ++Part) { 3198 SmallVector<Value *, 4> Args; 3199 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 3200 if (HasScalarOpd && i == 1) { 3201 Args.push_back(CI->getArgOperand(i)); 3202 continue; 3203 } 3204 VectorParts &Arg = getVectorValue(CI->getArgOperand(i)); 3205 Args.push_back(Arg[Part]); 3206 } 3207 Type *Tys[] = {CI->getType()}; 3208 if (VF > 1) 3209 Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF); 3210 3211 Function *F = Intrinsic::getDeclaration(M, ID, Tys); 3212 Entry[Part] = Builder.CreateCall(F, Args); 3213 } 3214 3215 propagateMetadata(Entry, it); 3216 break; 3217 } 3218 break; 3219 } 3220 3221 default: 3222 // All other instructions are unsupported. Scalarize them. 3223 scalarizeInstruction(it); 3224 break; 3225 }// end of switch. 3226 }// end of for_each instr. 3227 } 3228 3229 void InnerLoopVectorizer::updateAnalysis() { 3230 // Forget the original basic block. 3231 SE->forgetLoop(OrigLoop); 3232 3233 // Update the dominator tree information. 3234 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 3235 "Entry does not dominate exit."); 3236 3237 for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I) 3238 DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]); 3239 DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back()); 3240 3241 // Due to if predication of stores we might create a sequence of "if(pred) 3242 // a[i] = ...; " blocks. 3243 for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) { 3244 if (i == 0) 3245 DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader); 3246 else if (isPredicatedBlock(i)) { 3247 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]); 3248 } else { 3249 DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]); 3250 } 3251 } 3252 3253 DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks[1]); 3254 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 3255 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 3256 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 3257 3258 DEBUG(DT->verifyDomTree()); 3259 } 3260 3261 /// \brief Check whether it is safe to if-convert this phi node. 3262 /// 3263 /// Phi nodes with constant expressions that can trap are not safe to if 3264 /// convert. 3265 static bool canIfConvertPHINodes(BasicBlock *BB) { 3266 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3267 PHINode *Phi = dyn_cast<PHINode>(I); 3268 if (!Phi) 3269 return true; 3270 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 3271 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 3272 if (C->canTrap()) 3273 return false; 3274 } 3275 return true; 3276 } 3277 3278 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 3279 if (!EnableIfConversion) { 3280 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 3281 return false; 3282 } 3283 3284 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 3285 3286 // A list of pointers that we can safely read and write to. 3287 SmallPtrSet<Value *, 8> SafePointes; 3288 3289 // Collect safe addresses. 3290 for (Loop::block_iterator BI = TheLoop->block_begin(), 3291 BE = TheLoop->block_end(); BI != BE; ++BI) { 3292 BasicBlock *BB = *BI; 3293 3294 if (blockNeedsPredication(BB)) 3295 continue; 3296 3297 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 3298 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3299 SafePointes.insert(LI->getPointerOperand()); 3300 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 3301 SafePointes.insert(SI->getPointerOperand()); 3302 } 3303 } 3304 3305 // Collect the blocks that need predication. 3306 BasicBlock *Header = TheLoop->getHeader(); 3307 for (Loop::block_iterator BI = TheLoop->block_begin(), 3308 BE = TheLoop->block_end(); BI != BE; ++BI) { 3309 BasicBlock *BB = *BI; 3310 3311 // We don't support switch statements inside loops. 3312 if (!isa<BranchInst>(BB->getTerminator())) { 3313 emitAnalysis(VectorizationReport(BB->getTerminator()) 3314 << "loop contains a switch statement"); 3315 return false; 3316 } 3317 3318 // We must be able to predicate all blocks that need to be predicated. 3319 if (blockNeedsPredication(BB)) { 3320 if (!blockCanBePredicated(BB, SafePointes)) { 3321 emitAnalysis(VectorizationReport(BB->getTerminator()) 3322 << "control flow cannot be substituted for a select"); 3323 return false; 3324 } 3325 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 3326 emitAnalysis(VectorizationReport(BB->getTerminator()) 3327 << "control flow cannot be substituted for a select"); 3328 return false; 3329 } 3330 } 3331 3332 // We can if-convert this loop. 3333 return true; 3334 } 3335 3336 bool LoopVectorizationLegality::canVectorize() { 3337 // We must have a loop in canonical form. Loops with indirectbr in them cannot 3338 // be canonicalized. 3339 if (!TheLoop->getLoopPreheader()) { 3340 emitAnalysis( 3341 VectorizationReport() << 3342 "loop control flow is not understood by vectorizer"); 3343 return false; 3344 } 3345 3346 // We can only vectorize innermost loops. 3347 if (!TheLoop->getSubLoopsVector().empty()) { 3348 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 3349 return false; 3350 } 3351 3352 // We must have a single backedge. 3353 if (TheLoop->getNumBackEdges() != 1) { 3354 emitAnalysis( 3355 VectorizationReport() << 3356 "loop control flow is not understood by vectorizer"); 3357 return false; 3358 } 3359 3360 // We must have a single exiting block. 3361 if (!TheLoop->getExitingBlock()) { 3362 emitAnalysis( 3363 VectorizationReport() << 3364 "loop control flow is not understood by vectorizer"); 3365 return false; 3366 } 3367 3368 // We only handle bottom-tested loops, i.e. loop in which the condition is 3369 // checked at the end of each iteration. With that we can assume that all 3370 // instructions in the loop are executed the same number of times. 3371 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 3372 emitAnalysis( 3373 VectorizationReport() << 3374 "loop control flow is not understood by vectorizer"); 3375 return false; 3376 } 3377 3378 // We need to have a loop header. 3379 DEBUG(dbgs() << "LV: Found a loop: " << 3380 TheLoop->getHeader()->getName() << '\n'); 3381 3382 // Check if we can if-convert non-single-bb loops. 3383 unsigned NumBlocks = TheLoop->getNumBlocks(); 3384 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 3385 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 3386 return false; 3387 } 3388 3389 // ScalarEvolution needs to be able to find the exit count. 3390 const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop); 3391 if (ExitCount == SE->getCouldNotCompute()) { 3392 emitAnalysis(VectorizationReport() << 3393 "could not determine number of loop iterations"); 3394 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 3395 return false; 3396 } 3397 3398 // Check if we can vectorize the instructions and CFG in this loop. 3399 if (!canVectorizeInstrs()) { 3400 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 3401 return false; 3402 } 3403 3404 // Go over each instruction and look at memory deps. 3405 if (!canVectorizeMemory()) { 3406 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 3407 return false; 3408 } 3409 3410 // Collect all of the variables that remain uniform after vectorization. 3411 collectLoopUniforms(); 3412 3413 DEBUG(dbgs() << "LV: We can vectorize this loop" << 3414 (LAI->getRuntimePointerCheck()->Need ? " (with a runtime bound check)" : 3415 "") 3416 <<"!\n"); 3417 3418 // Okay! We can vectorize. At this point we don't have any other mem analysis 3419 // which may limit our maximum vectorization factor, so just return true with 3420 // no restrictions. 3421 return true; 3422 } 3423 3424 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 3425 if (Ty->isPointerTy()) 3426 return DL.getIntPtrType(Ty); 3427 3428 // It is possible that char's or short's overflow when we ask for the loop's 3429 // trip count, work around this by changing the type size. 3430 if (Ty->getScalarSizeInBits() < 32) 3431 return Type::getInt32Ty(Ty->getContext()); 3432 3433 return Ty; 3434 } 3435 3436 static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 3437 Ty0 = convertPointerToIntegerType(DL, Ty0); 3438 Ty1 = convertPointerToIntegerType(DL, Ty1); 3439 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 3440 return Ty0; 3441 return Ty1; 3442 } 3443 3444 /// \brief Check that the instruction has outside loop users and is not an 3445 /// identified reduction variable. 3446 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 3447 SmallPtrSetImpl<Value *> &Reductions) { 3448 // Reduction instructions are allowed to have exit users. All other 3449 // instructions must not have external users. 3450 if (!Reductions.count(Inst)) 3451 //Check that all of the users of the loop are inside the BB. 3452 for (User *U : Inst->users()) { 3453 Instruction *UI = cast<Instruction>(U); 3454 // This user may be a reduction exit value. 3455 if (!TheLoop->contains(UI)) { 3456 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 3457 return true; 3458 } 3459 } 3460 return false; 3461 } 3462 3463 bool LoopVectorizationLegality::canVectorizeInstrs() { 3464 BasicBlock *PreHeader = TheLoop->getLoopPreheader(); 3465 BasicBlock *Header = TheLoop->getHeader(); 3466 3467 // Look for the attribute signaling the absence of NaNs. 3468 Function &F = *Header->getParent(); 3469 if (F.hasFnAttribute("no-nans-fp-math")) 3470 HasFunNoNaNAttr = 3471 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 3472 3473 // For each block in the loop. 3474 for (Loop::block_iterator bb = TheLoop->block_begin(), 3475 be = TheLoop->block_end(); bb != be; ++bb) { 3476 3477 // Scan the instructions in the block and look for hazards. 3478 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 3479 ++it) { 3480 3481 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 3482 Type *PhiTy = Phi->getType(); 3483 // Check that this PHI type is allowed. 3484 if (!PhiTy->isIntegerTy() && 3485 !PhiTy->isFloatingPointTy() && 3486 !PhiTy->isPointerTy()) { 3487 emitAnalysis(VectorizationReport(it) 3488 << "loop control flow is not understood by vectorizer"); 3489 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 3490 return false; 3491 } 3492 3493 // If this PHINode is not in the header block, then we know that we 3494 // can convert it to select during if-conversion. No need to check if 3495 // the PHIs in this block are induction or reduction variables. 3496 if (*bb != Header) { 3497 // Check that this instruction has no outside users or is an 3498 // identified reduction value with an outside user. 3499 if (!hasOutsideLoopUser(TheLoop, it, AllowedExit)) 3500 continue; 3501 emitAnalysis(VectorizationReport(it) << 3502 "value could not be identified as " 3503 "an induction or reduction variable"); 3504 return false; 3505 } 3506 3507 // We only allow if-converted PHIs with exactly two incoming values. 3508 if (Phi->getNumIncomingValues() != 2) { 3509 emitAnalysis(VectorizationReport(it) 3510 << "control flow not understood by vectorizer"); 3511 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 3512 return false; 3513 } 3514 3515 // This is the value coming from the preheader. 3516 Value *StartValue = Phi->getIncomingValueForBlock(PreHeader); 3517 ConstantInt *StepValue = nullptr; 3518 // Check if this is an induction variable. 3519 InductionKind IK = isInductionVariable(Phi, StepValue); 3520 3521 if (IK_NoInduction != IK) { 3522 // Get the widest type. 3523 if (!WidestIndTy) 3524 WidestIndTy = convertPointerToIntegerType(*DL, PhiTy); 3525 else 3526 WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy); 3527 3528 // Int inductions are special because we only allow one IV. 3529 if (IK == IK_IntInduction && StepValue->isOne()) { 3530 // Use the phi node with the widest type as induction. Use the last 3531 // one if there are multiple (no good reason for doing this other 3532 // than it is expedient). 3533 if (!Induction || PhiTy == WidestIndTy) 3534 Induction = Phi; 3535 } 3536 3537 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 3538 Inductions[Phi] = InductionInfo(StartValue, IK, StepValue); 3539 3540 // Until we explicitly handle the case of an induction variable with 3541 // an outside loop user we have to give up vectorizing this loop. 3542 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3543 emitAnalysis(VectorizationReport(it) << 3544 "use of induction value outside of the " 3545 "loop is not handled by vectorizer"); 3546 return false; 3547 } 3548 3549 continue; 3550 } 3551 3552 if (AddReductionVar(Phi, RK_IntegerAdd)) { 3553 DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n"); 3554 continue; 3555 } 3556 if (AddReductionVar(Phi, RK_IntegerMult)) { 3557 DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n"); 3558 continue; 3559 } 3560 if (AddReductionVar(Phi, RK_IntegerOr)) { 3561 DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n"); 3562 continue; 3563 } 3564 if (AddReductionVar(Phi, RK_IntegerAnd)) { 3565 DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n"); 3566 continue; 3567 } 3568 if (AddReductionVar(Phi, RK_IntegerXor)) { 3569 DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n"); 3570 continue; 3571 } 3572 if (AddReductionVar(Phi, RK_IntegerMinMax)) { 3573 DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n"); 3574 continue; 3575 } 3576 if (AddReductionVar(Phi, RK_FloatMult)) { 3577 DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n"); 3578 continue; 3579 } 3580 if (AddReductionVar(Phi, RK_FloatAdd)) { 3581 DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n"); 3582 continue; 3583 } 3584 if (AddReductionVar(Phi, RK_FloatMinMax)) { 3585 DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi << 3586 "\n"); 3587 continue; 3588 } 3589 3590 emitAnalysis(VectorizationReport(it) << 3591 "value that could not be identified as " 3592 "reduction is used outside the loop"); 3593 DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n"); 3594 return false; 3595 }// end of PHI handling 3596 3597 // We still don't handle functions. However, we can ignore dbg intrinsic 3598 // calls and we do handle certain intrinsic and libm functions. 3599 CallInst *CI = dyn_cast<CallInst>(it); 3600 if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) { 3601 emitAnalysis(VectorizationReport(it) << 3602 "call instruction cannot be vectorized"); 3603 DEBUG(dbgs() << "LV: Found a call site.\n"); 3604 return false; 3605 } 3606 3607 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 3608 // second argument is the same (i.e. loop invariant) 3609 if (CI && 3610 hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) { 3611 if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) { 3612 emitAnalysis(VectorizationReport(it) 3613 << "intrinsic instruction cannot be vectorized"); 3614 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 3615 return false; 3616 } 3617 } 3618 3619 // Check that the instruction return type is vectorizable. 3620 // Also, we can't vectorize extractelement instructions. 3621 if ((!VectorType::isValidElementType(it->getType()) && 3622 !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) { 3623 emitAnalysis(VectorizationReport(it) 3624 << "instruction return type cannot be vectorized"); 3625 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 3626 return false; 3627 } 3628 3629 // Check that the stored type is vectorizable. 3630 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 3631 Type *T = ST->getValueOperand()->getType(); 3632 if (!VectorType::isValidElementType(T)) { 3633 emitAnalysis(VectorizationReport(ST) << 3634 "store instruction cannot be vectorized"); 3635 return false; 3636 } 3637 if (EnableMemAccessVersioning) 3638 collectStridedAccess(ST); 3639 } 3640 3641 if (EnableMemAccessVersioning) 3642 if (LoadInst *LI = dyn_cast<LoadInst>(it)) 3643 collectStridedAccess(LI); 3644 3645 // Reduction instructions are allowed to have exit users. 3646 // All other instructions must not have external users. 3647 if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) { 3648 emitAnalysis(VectorizationReport(it) << 3649 "value cannot be used outside the loop"); 3650 return false; 3651 } 3652 3653 } // next instr. 3654 3655 } 3656 3657 if (!Induction) { 3658 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 3659 if (Inductions.empty()) { 3660 emitAnalysis(VectorizationReport() 3661 << "loop induction variable could not be identified"); 3662 return false; 3663 } 3664 } 3665 3666 return true; 3667 } 3668 3669 ///\brief Remove GEPs whose indices but the last one are loop invariant and 3670 /// return the induction operand of the gep pointer. 3671 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, 3672 const DataLayout *DL, Loop *Lp) { 3673 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3674 if (!GEP) 3675 return Ptr; 3676 3677 unsigned InductionOperand = getGEPInductionOperand(DL, GEP); 3678 3679 // Check that all of the gep indices are uniform except for our induction 3680 // operand. 3681 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) 3682 if (i != InductionOperand && 3683 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) 3684 return Ptr; 3685 return GEP->getOperand(InductionOperand); 3686 } 3687 3688 ///\brief Look for a cast use of the passed value. 3689 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { 3690 Value *UniqueCast = nullptr; 3691 for (User *U : Ptr->users()) { 3692 CastInst *CI = dyn_cast<CastInst>(U); 3693 if (CI && CI->getType() == Ty) { 3694 if (!UniqueCast) 3695 UniqueCast = CI; 3696 else 3697 return nullptr; 3698 } 3699 } 3700 return UniqueCast; 3701 } 3702 3703 ///\brief Get the stride of a pointer access in a loop. 3704 /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a 3705 /// pointer to the Value, or null otherwise. 3706 static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, 3707 const DataLayout *DL, Loop *Lp) { 3708 const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 3709 if (!PtrTy || PtrTy->isAggregateType()) 3710 return nullptr; 3711 3712 // Try to remove a gep instruction to make the pointer (actually index at this 3713 // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the 3714 // pointer, otherwise, we are analyzing the index. 3715 Value *OrigPtr = Ptr; 3716 3717 // The size of the pointer access. 3718 int64_t PtrAccessSize = 1; 3719 3720 Ptr = stripGetElementPtr(Ptr, SE, DL, Lp); 3721 const SCEV *V = SE->getSCEV(Ptr); 3722 3723 if (Ptr != OrigPtr) 3724 // Strip off casts. 3725 while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) 3726 V = C->getOperand(); 3727 3728 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 3729 if (!S) 3730 return nullptr; 3731 3732 V = S->getStepRecurrence(*SE); 3733 if (!V) 3734 return nullptr; 3735 3736 // Strip off the size of access multiplication if we are still analyzing the 3737 // pointer. 3738 if (OrigPtr == Ptr) { 3739 DL->getTypeAllocSize(PtrTy->getElementType()); 3740 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 3741 if (M->getOperand(0)->getSCEVType() != scConstant) 3742 return nullptr; 3743 3744 const APInt &APStepVal = 3745 cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); 3746 3747 // Huge step value - give up. 3748 if (APStepVal.getBitWidth() > 64) 3749 return nullptr; 3750 3751 int64_t StepVal = APStepVal.getSExtValue(); 3752 if (PtrAccessSize != StepVal) 3753 return nullptr; 3754 V = M->getOperand(1); 3755 } 3756 } 3757 3758 // Strip off casts. 3759 Type *StripedOffRecurrenceCast = nullptr; 3760 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { 3761 StripedOffRecurrenceCast = C->getType(); 3762 V = C->getOperand(); 3763 } 3764 3765 // Look for the loop invariant symbolic value. 3766 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); 3767 if (!U) 3768 return nullptr; 3769 3770 Value *Stride = U->getValue(); 3771 if (!Lp->isLoopInvariant(Stride)) 3772 return nullptr; 3773 3774 // If we have stripped off the recurrence cast we have to make sure that we 3775 // return the value that is used in this loop so that we can replace it later. 3776 if (StripedOffRecurrenceCast) 3777 Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); 3778 3779 return Stride; 3780 } 3781 3782 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 3783 Value *Ptr = nullptr; 3784 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 3785 Ptr = LI->getPointerOperand(); 3786 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 3787 Ptr = SI->getPointerOperand(); 3788 else 3789 return; 3790 3791 Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop); 3792 if (!Stride) 3793 return; 3794 3795 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 3796 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 3797 Strides[Ptr] = Stride; 3798 StrideSet.insert(Stride); 3799 } 3800 3801 void LoopVectorizationLegality::collectLoopUniforms() { 3802 // We now know that the loop is vectorizable! 3803 // Collect variables that will remain uniform after vectorization. 3804 std::vector<Value*> Worklist; 3805 BasicBlock *Latch = TheLoop->getLoopLatch(); 3806 3807 // Start with the conditional branch and walk up the block. 3808 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 3809 3810 // Also add all consecutive pointer values; these values will be uniform 3811 // after vectorization (and subsequent cleanup) and, until revectorization is 3812 // supported, all dependencies must also be uniform. 3813 for (Loop::block_iterator B = TheLoop->block_begin(), 3814 BE = TheLoop->block_end(); B != BE; ++B) 3815 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); 3816 I != IE; ++I) 3817 if (I->getType()->isPointerTy() && isConsecutivePtr(I)) 3818 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3819 3820 while (!Worklist.empty()) { 3821 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 3822 Worklist.pop_back(); 3823 3824 // Look at instructions inside this loop. 3825 // Stop when reaching PHI nodes. 3826 // TODO: we need to follow values all over the loop, not only in this block. 3827 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 3828 continue; 3829 3830 // This is a known uniform. 3831 Uniforms.insert(I); 3832 3833 // Insert all operands. 3834 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 3835 } 3836 } 3837 3838 bool LoopVectorizationLegality::canVectorizeMemory() { 3839 LAI = &LAA->getInfo(TheLoop, Strides); 3840 auto &OptionalReport = LAI->getReport(); 3841 if (OptionalReport) 3842 emitAnalysis(VectorizationReport(*OptionalReport)); 3843 return LAI->canVectorizeMemory(); 3844 } 3845 3846 static bool hasMultipleUsesOf(Instruction *I, 3847 SmallPtrSetImpl<Instruction *> &Insts) { 3848 unsigned NumUses = 0; 3849 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { 3850 if (Insts.count(dyn_cast<Instruction>(*Use))) 3851 ++NumUses; 3852 if (NumUses > 1) 3853 return true; 3854 } 3855 3856 return false; 3857 } 3858 3859 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) { 3860 for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) 3861 if (!Set.count(dyn_cast<Instruction>(*Use))) 3862 return false; 3863 return true; 3864 } 3865 3866 bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi, 3867 ReductionKind Kind) { 3868 if (Phi->getNumIncomingValues() != 2) 3869 return false; 3870 3871 // Reduction variables are only found in the loop header block. 3872 if (Phi->getParent() != TheLoop->getHeader()) 3873 return false; 3874 3875 // Obtain the reduction start value from the value that comes from the loop 3876 // preheader. 3877 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); 3878 3879 // ExitInstruction is the single value which is used outside the loop. 3880 // We only allow for a single reduction value to be used outside the loop. 3881 // This includes users of the reduction, variables (which form a cycle 3882 // which ends in the phi node). 3883 Instruction *ExitInstruction = nullptr; 3884 // Indicates that we found a reduction operation in our scan. 3885 bool FoundReduxOp = false; 3886 3887 // We start with the PHI node and scan for all of the users of this 3888 // instruction. All users must be instructions that can be used as reduction 3889 // variables (such as ADD). We must have a single out-of-block user. The cycle 3890 // must include the original PHI. 3891 bool FoundStartPHI = false; 3892 3893 // To recognize min/max patterns formed by a icmp select sequence, we store 3894 // the number of instruction we saw from the recognized min/max pattern, 3895 // to make sure we only see exactly the two instructions. 3896 unsigned NumCmpSelectPatternInst = 0; 3897 ReductionInstDesc ReduxDesc(false, nullptr); 3898 3899 SmallPtrSet<Instruction *, 8> VisitedInsts; 3900 SmallVector<Instruction *, 8> Worklist; 3901 Worklist.push_back(Phi); 3902 VisitedInsts.insert(Phi); 3903 3904 // A value in the reduction can be used: 3905 // - By the reduction: 3906 // - Reduction operation: 3907 // - One use of reduction value (safe). 3908 // - Multiple use of reduction value (not safe). 3909 // - PHI: 3910 // - All uses of the PHI must be the reduction (safe). 3911 // - Otherwise, not safe. 3912 // - By one instruction outside of the loop (safe). 3913 // - By further instructions outside of the loop (not safe). 3914 // - By an instruction that is not part of the reduction (not safe). 3915 // This is either: 3916 // * An instruction type other than PHI or the reduction operation. 3917 // * A PHI in the header other than the initial PHI. 3918 while (!Worklist.empty()) { 3919 Instruction *Cur = Worklist.back(); 3920 Worklist.pop_back(); 3921 3922 // No Users. 3923 // If the instruction has no users then this is a broken chain and can't be 3924 // a reduction variable. 3925 if (Cur->use_empty()) 3926 return false; 3927 3928 bool IsAPhi = isa<PHINode>(Cur); 3929 3930 // A header PHI use other than the original PHI. 3931 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) 3932 return false; 3933 3934 // Reductions of instructions such as Div, and Sub is only possible if the 3935 // LHS is the reduction variable. 3936 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && 3937 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && 3938 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) 3939 return false; 3940 3941 // Any reduction instruction must be of one of the allowed kinds. 3942 ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc); 3943 if (!ReduxDesc.IsReduction) 3944 return false; 3945 3946 // A reduction operation must only have one use of the reduction value. 3947 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && 3948 hasMultipleUsesOf(Cur, VisitedInsts)) 3949 return false; 3950 3951 // All inputs to a PHI node must be a reduction value. 3952 if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) 3953 return false; 3954 3955 if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || 3956 isa<SelectInst>(Cur))) 3957 ++NumCmpSelectPatternInst; 3958 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || 3959 isa<SelectInst>(Cur))) 3960 ++NumCmpSelectPatternInst; 3961 3962 // Check whether we found a reduction operator. 3963 FoundReduxOp |= !IsAPhi; 3964 3965 // Process users of current instruction. Push non-PHI nodes after PHI nodes 3966 // onto the stack. This way we are going to have seen all inputs to PHI 3967 // nodes once we get to them. 3968 SmallVector<Instruction *, 8> NonPHIs; 3969 SmallVector<Instruction *, 8> PHIs; 3970 for (User *U : Cur->users()) { 3971 Instruction *UI = cast<Instruction>(U); 3972 3973 // Check if we found the exit user. 3974 BasicBlock *Parent = UI->getParent(); 3975 if (!TheLoop->contains(Parent)) { 3976 // Exit if you find multiple outside users or if the header phi node is 3977 // being used. In this case the user uses the value of the previous 3978 // iteration, in which case we would loose "VF-1" iterations of the 3979 // reduction operation if we vectorize. 3980 if (ExitInstruction != nullptr || Cur == Phi) 3981 return false; 3982 3983 // The instruction used by an outside user must be the last instruction 3984 // before we feed back to the reduction phi. Otherwise, we loose VF-1 3985 // operations on the value. 3986 if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) 3987 return false; 3988 3989 ExitInstruction = Cur; 3990 continue; 3991 } 3992 3993 // Process instructions only once (termination). Each reduction cycle 3994 // value must only be used once, except by phi nodes and min/max 3995 // reductions which are represented as a cmp followed by a select. 3996 ReductionInstDesc IgnoredVal(false, nullptr); 3997 if (VisitedInsts.insert(UI).second) { 3998 if (isa<PHINode>(UI)) 3999 PHIs.push_back(UI); 4000 else 4001 NonPHIs.push_back(UI); 4002 } else if (!isa<PHINode>(UI) && 4003 ((!isa<FCmpInst>(UI) && 4004 !isa<ICmpInst>(UI) && 4005 !isa<SelectInst>(UI)) || 4006 !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction)) 4007 return false; 4008 4009 // Remember that we completed the cycle. 4010 if (UI == Phi) 4011 FoundStartPHI = true; 4012 } 4013 Worklist.append(PHIs.begin(), PHIs.end()); 4014 Worklist.append(NonPHIs.begin(), NonPHIs.end()); 4015 } 4016 4017 // This means we have seen one but not the other instruction of the 4018 // pattern or more than just a select and cmp. 4019 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && 4020 NumCmpSelectPatternInst != 2) 4021 return false; 4022 4023 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) 4024 return false; 4025 4026 // We found a reduction var if we have reached the original phi node and we 4027 // only have a single instruction with out-of-loop users. 4028 4029 // This instruction is allowed to have out-of-loop users. 4030 AllowedExit.insert(ExitInstruction); 4031 4032 // Save the description of this reduction variable. 4033 ReductionDescriptor RD(RdxStart, ExitInstruction, Kind, 4034 ReduxDesc.MinMaxKind); 4035 Reductions[Phi] = RD; 4036 // We've ended the cycle. This is a reduction variable if we have an 4037 // outside user and it has a binary op. 4038 4039 return true; 4040 } 4041 4042 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction 4043 /// pattern corresponding to a min(X, Y) or max(X, Y). 4044 LoopVectorizationLegality::ReductionInstDesc 4045 LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, 4046 ReductionInstDesc &Prev) { 4047 4048 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && 4049 "Expect a select instruction"); 4050 Instruction *Cmp = nullptr; 4051 SelectInst *Select = nullptr; 4052 4053 // We must handle the select(cmp()) as a single instruction. Advance to the 4054 // select. 4055 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { 4056 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) 4057 return ReductionInstDesc(false, I); 4058 return ReductionInstDesc(Select, Prev.MinMaxKind); 4059 } 4060 4061 // Only handle single use cases for now. 4062 if (!(Select = dyn_cast<SelectInst>(I))) 4063 return ReductionInstDesc(false, I); 4064 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && 4065 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) 4066 return ReductionInstDesc(false, I); 4067 if (!Cmp->hasOneUse()) 4068 return ReductionInstDesc(false, I); 4069 4070 Value *CmpLeft; 4071 Value *CmpRight; 4072 4073 // Look for a min/max pattern. 4074 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4075 return ReductionInstDesc(Select, MRK_UIntMin); 4076 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4077 return ReductionInstDesc(Select, MRK_UIntMax); 4078 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4079 return ReductionInstDesc(Select, MRK_SIntMax); 4080 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4081 return ReductionInstDesc(Select, MRK_SIntMin); 4082 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4083 return ReductionInstDesc(Select, MRK_FloatMin); 4084 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4085 return ReductionInstDesc(Select, MRK_FloatMax); 4086 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4087 return ReductionInstDesc(Select, MRK_FloatMin); 4088 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) 4089 return ReductionInstDesc(Select, MRK_FloatMax); 4090 4091 return ReductionInstDesc(false, I); 4092 } 4093 4094 LoopVectorizationLegality::ReductionInstDesc 4095 LoopVectorizationLegality::isReductionInstr(Instruction *I, 4096 ReductionKind Kind, 4097 ReductionInstDesc &Prev) { 4098 bool FP = I->getType()->isFloatingPointTy(); 4099 bool FastMath = FP && I->hasUnsafeAlgebra(); 4100 switch (I->getOpcode()) { 4101 default: 4102 return ReductionInstDesc(false, I); 4103 case Instruction::PHI: 4104 if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd && 4105 Kind != RK_FloatMinMax)) 4106 return ReductionInstDesc(false, I); 4107 return ReductionInstDesc(I, Prev.MinMaxKind); 4108 case Instruction::Sub: 4109 case Instruction::Add: 4110 return ReductionInstDesc(Kind == RK_IntegerAdd, I); 4111 case Instruction::Mul: 4112 return ReductionInstDesc(Kind == RK_IntegerMult, I); 4113 case Instruction::And: 4114 return ReductionInstDesc(Kind == RK_IntegerAnd, I); 4115 case Instruction::Or: 4116 return ReductionInstDesc(Kind == RK_IntegerOr, I); 4117 case Instruction::Xor: 4118 return ReductionInstDesc(Kind == RK_IntegerXor, I); 4119 case Instruction::FMul: 4120 return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I); 4121 case Instruction::FSub: 4122 case Instruction::FAdd: 4123 return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I); 4124 case Instruction::FCmp: 4125 case Instruction::ICmp: 4126 case Instruction::Select: 4127 if (Kind != RK_IntegerMinMax && 4128 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) 4129 return ReductionInstDesc(false, I); 4130 return isMinMaxSelectCmpPattern(I, Prev); 4131 } 4132 } 4133 4134 LoopVectorizationLegality::InductionKind 4135 LoopVectorizationLegality::isInductionVariable(PHINode *Phi, 4136 ConstantInt *&StepValue) { 4137 Type *PhiTy = Phi->getType(); 4138 // We only handle integer and pointer inductions variables. 4139 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) 4140 return IK_NoInduction; 4141 4142 // Check that the PHI is consecutive. 4143 const SCEV *PhiScev = SE->getSCEV(Phi); 4144 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); 4145 if (!AR) { 4146 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); 4147 return IK_NoInduction; 4148 } 4149 4150 const SCEV *Step = AR->getStepRecurrence(*SE); 4151 // Calculate the pointer stride and check if it is consecutive. 4152 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4153 if (!C) 4154 return IK_NoInduction; 4155 4156 ConstantInt *CV = C->getValue(); 4157 if (PhiTy->isIntegerTy()) { 4158 StepValue = CV; 4159 return IK_IntInduction; 4160 } 4161 4162 assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); 4163 Type *PointerElementType = PhiTy->getPointerElementType(); 4164 // The pointer stride cannot be determined if the pointer element type is not 4165 // sized. 4166 if (!PointerElementType->isSized()) 4167 return IK_NoInduction; 4168 4169 int64_t Size = static_cast<int64_t>(DL->getTypeAllocSize(PointerElementType)); 4170 int64_t CVSize = CV->getSExtValue(); 4171 if (CVSize % Size) 4172 return IK_NoInduction; 4173 StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size); 4174 return IK_PtrInduction; 4175 } 4176 4177 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4178 Value *In0 = const_cast<Value*>(V); 4179 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4180 if (!PN) 4181 return false; 4182 4183 return Inductions.count(PN); 4184 } 4185 4186 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4187 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4188 } 4189 4190 bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB, 4191 SmallPtrSetImpl<Value *> &SafePtrs) { 4192 4193 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4194 // Check that we don't have a constant expression that can trap as operand. 4195 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4196 OI != OE; ++OI) { 4197 if (Constant *C = dyn_cast<Constant>(*OI)) 4198 if (C->canTrap()) 4199 return false; 4200 } 4201 // We might be able to hoist the load. 4202 if (it->mayReadFromMemory()) { 4203 LoadInst *LI = dyn_cast<LoadInst>(it); 4204 if (!LI) 4205 return false; 4206 if (!SafePtrs.count(LI->getPointerOperand())) { 4207 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand())) { 4208 MaskedOp.insert(LI); 4209 continue; 4210 } 4211 return false; 4212 } 4213 } 4214 4215 // We don't predicate stores at the moment. 4216 if (it->mayWriteToMemory()) { 4217 StoreInst *SI = dyn_cast<StoreInst>(it); 4218 // We only support predication of stores in basic blocks with one 4219 // predecessor. 4220 if (!SI) 4221 return false; 4222 4223 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 4224 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 4225 4226 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 4227 !isSinglePredecessor) { 4228 // Build a masked store if it is legal for the target, otherwise scalarize 4229 // the block. 4230 bool isLegalMaskedOp = 4231 isLegalMaskedStore(SI->getValueOperand()->getType(), 4232 SI->getPointerOperand()); 4233 if (isLegalMaskedOp) { 4234 --NumPredStores; 4235 MaskedOp.insert(SI); 4236 continue; 4237 } 4238 return false; 4239 } 4240 } 4241 if (it->mayThrow()) 4242 return false; 4243 4244 // The instructions below can trap. 4245 switch (it->getOpcode()) { 4246 default: continue; 4247 case Instruction::UDiv: 4248 case Instruction::SDiv: 4249 case Instruction::URem: 4250 case Instruction::SRem: 4251 return false; 4252 } 4253 } 4254 4255 return true; 4256 } 4257 4258 LoopVectorizationCostModel::VectorizationFactor 4259 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 4260 // Width 1 means no vectorize 4261 VectorizationFactor Factor = { 1U, 0U }; 4262 if (OptForSize && Legal->getRuntimePointerCheck()->Need) { 4263 emitAnalysis(VectorizationReport() << 4264 "runtime pointer checks needed. Enable vectorization of this " 4265 "loop with '#pragma clang loop vectorize(enable)' when " 4266 "compiling with -Os"); 4267 DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n"); 4268 return Factor; 4269 } 4270 4271 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 4272 emitAnalysis(VectorizationReport() << 4273 "store that is conditionally executed prevents vectorization"); 4274 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 4275 return Factor; 4276 } 4277 4278 // Find the trip count. 4279 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4280 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 4281 4282 unsigned WidestType = getWidestType(); 4283 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 4284 unsigned MaxSafeDepDist = -1U; 4285 if (Legal->getMaxSafeDepDistBytes() != -1U) 4286 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 4287 WidestRegister = ((WidestRegister < MaxSafeDepDist) ? 4288 WidestRegister : MaxSafeDepDist); 4289 unsigned MaxVectorSize = WidestRegister / WidestType; 4290 DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n"); 4291 DEBUG(dbgs() << "LV: The Widest register is: " 4292 << WidestRegister << " bits.\n"); 4293 4294 if (MaxVectorSize == 0) { 4295 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 4296 MaxVectorSize = 1; 4297 } 4298 4299 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 4300 " into one vector!"); 4301 4302 unsigned VF = MaxVectorSize; 4303 4304 // If we optimize the program for size, avoid creating the tail loop. 4305 if (OptForSize) { 4306 // If we are unable to calculate the trip count then don't try to vectorize. 4307 if (TC < 2) { 4308 emitAnalysis 4309 (VectorizationReport() << 4310 "unable to calculate the loop count due to complex control flow"); 4311 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4312 return Factor; 4313 } 4314 4315 // Find the maximum SIMD width that can fit within the trip count. 4316 VF = TC % MaxVectorSize; 4317 4318 if (VF == 0) 4319 VF = MaxVectorSize; 4320 4321 // If the trip count that we found modulo the vectorization factor is not 4322 // zero then we require a tail. 4323 if (VF < 2) { 4324 emitAnalysis(VectorizationReport() << 4325 "cannot optimize for size and vectorize at the " 4326 "same time. Enable vectorization of this loop " 4327 "with '#pragma clang loop vectorize(enable)' " 4328 "when compiling with -Os"); 4329 DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n"); 4330 return Factor; 4331 } 4332 } 4333 4334 int UserVF = Hints->getWidth(); 4335 if (UserVF != 0) { 4336 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 4337 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 4338 4339 Factor.Width = UserVF; 4340 return Factor; 4341 } 4342 4343 float Cost = expectedCost(1); 4344 #ifndef NDEBUG 4345 const float ScalarCost = Cost; 4346 #endif /* NDEBUG */ 4347 unsigned Width = 1; 4348 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 4349 4350 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 4351 // Ignore scalar width, because the user explicitly wants vectorization. 4352 if (ForceVectorization && VF > 1) { 4353 Width = 2; 4354 Cost = expectedCost(Width) / (float)Width; 4355 } 4356 4357 for (unsigned i=2; i <= VF; i*=2) { 4358 // Notice that the vector loop needs to be executed less times, so 4359 // we need to divide the cost of the vector loops by the width of 4360 // the vector elements. 4361 float VectorCost = expectedCost(i) / (float)i; 4362 DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " << 4363 (int)VectorCost << ".\n"); 4364 if (VectorCost < Cost) { 4365 Cost = VectorCost; 4366 Width = i; 4367 } 4368 } 4369 4370 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 4371 << "LV: Vectorization seems to be not beneficial, " 4372 << "but was forced by a user.\n"); 4373 DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n"); 4374 Factor.Width = Width; 4375 Factor.Cost = Width * Cost; 4376 return Factor; 4377 } 4378 4379 unsigned LoopVectorizationCostModel::getWidestType() { 4380 unsigned MaxWidth = 8; 4381 4382 // For each block. 4383 for (Loop::block_iterator bb = TheLoop->block_begin(), 4384 be = TheLoop->block_end(); bb != be; ++bb) { 4385 BasicBlock *BB = *bb; 4386 4387 // For each instruction in the loop. 4388 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4389 Type *T = it->getType(); 4390 4391 // Ignore ephemeral values. 4392 if (EphValues.count(it)) 4393 continue; 4394 4395 // Only examine Loads, Stores and PHINodes. 4396 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 4397 continue; 4398 4399 // Examine PHI nodes that are reduction variables. 4400 if (PHINode *PN = dyn_cast<PHINode>(it)) 4401 if (!Legal->getReductionVars()->count(PN)) 4402 continue; 4403 4404 // Examine the stored values. 4405 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 4406 T = ST->getValueOperand()->getType(); 4407 4408 // Ignore loaded pointer types and stored pointer types that are not 4409 // consecutive. However, we do want to take consecutive stores/loads of 4410 // pointer vectors into account. 4411 if (T->isPointerTy() && !isConsecutiveLoadOrStore(it)) 4412 continue; 4413 4414 MaxWidth = std::max(MaxWidth, 4415 (unsigned)DL->getTypeSizeInBits(T->getScalarType())); 4416 } 4417 } 4418 4419 return MaxWidth; 4420 } 4421 4422 unsigned 4423 LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize, 4424 unsigned VF, 4425 unsigned LoopCost) { 4426 4427 // -- The unroll heuristics -- 4428 // We unroll the loop in order to expose ILP and reduce the loop overhead. 4429 // There are many micro-architectural considerations that we can't predict 4430 // at this level. For example, frontend pressure (on decode or fetch) due to 4431 // code size, or the number and capabilities of the execution ports. 4432 // 4433 // We use the following heuristics to select the unroll factor: 4434 // 1. If the code has reductions, then we unroll in order to break the cross 4435 // iteration dependency. 4436 // 2. If the loop is really small, then we unroll in order to reduce the loop 4437 // overhead. 4438 // 3. We don't unroll if we think that we will spill registers to memory due 4439 // to the increased register pressure. 4440 4441 // Use the user preference, unless 'auto' is selected. 4442 int UserUF = Hints->getInterleave(); 4443 if (UserUF != 0) 4444 return UserUF; 4445 4446 // When we optimize for size, we don't unroll. 4447 if (OptForSize) 4448 return 1; 4449 4450 // We used the distance for the unroll factor. 4451 if (Legal->getMaxSafeDepDistBytes() != -1U) 4452 return 1; 4453 4454 // Do not unroll loops with a relatively small trip count. 4455 unsigned TC = SE->getSmallConstantTripCount(TheLoop); 4456 if (TC > 1 && TC < TinyTripCountUnrollThreshold) 4457 return 1; 4458 4459 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 4460 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters << 4461 " registers\n"); 4462 4463 if (VF == 1) { 4464 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 4465 TargetNumRegisters = ForceTargetNumScalarRegs; 4466 } else { 4467 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 4468 TargetNumRegisters = ForceTargetNumVectorRegs; 4469 } 4470 4471 LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage(); 4472 // We divide by these constants so assume that we have at least one 4473 // instruction that uses at least one register. 4474 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 4475 R.NumInstructions = std::max(R.NumInstructions, 1U); 4476 4477 // We calculate the unroll factor using the following formula. 4478 // Subtract the number of loop invariants from the number of available 4479 // registers. These registers are used by all of the unrolled instances. 4480 // Next, divide the remaining registers by the number of registers that is 4481 // required by the loop, in order to estimate how many parallel instances 4482 // fit without causing spills. All of this is rounded down if necessary to be 4483 // a power of two. We want power of two unroll factors to simplify any 4484 // addressing operations or alignment considerations. 4485 unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 4486 R.MaxLocalUsers); 4487 4488 // Don't count the induction variable as unrolled. 4489 if (EnableIndVarRegisterHeur) 4490 UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 4491 std::max(1U, (R.MaxLocalUsers - 1))); 4492 4493 // Clamp the unroll factor ranges to reasonable factors. 4494 unsigned MaxInterleaveSize = TTI.getMaxInterleaveFactor(); 4495 4496 // Check if the user has overridden the unroll max. 4497 if (VF == 1) { 4498 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 4499 MaxInterleaveSize = ForceTargetMaxScalarInterleaveFactor; 4500 } else { 4501 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 4502 MaxInterleaveSize = ForceTargetMaxVectorInterleaveFactor; 4503 } 4504 4505 // If we did not calculate the cost for VF (because the user selected the VF) 4506 // then we calculate the cost of VF here. 4507 if (LoopCost == 0) 4508 LoopCost = expectedCost(VF); 4509 4510 // Clamp the calculated UF to be between the 1 and the max unroll factor 4511 // that the target allows. 4512 if (UF > MaxInterleaveSize) 4513 UF = MaxInterleaveSize; 4514 else if (UF < 1) 4515 UF = 1; 4516 4517 // Unroll if we vectorized this loop and there is a reduction that could 4518 // benefit from unrolling. 4519 if (VF > 1 && Legal->getReductionVars()->size()) { 4520 DEBUG(dbgs() << "LV: Unrolling because of reductions.\n"); 4521 return UF; 4522 } 4523 4524 // Note that if we've already vectorized the loop we will have done the 4525 // runtime check and so unrolling won't require further checks. 4526 bool UnrollingRequiresRuntimePointerCheck = 4527 (VF == 1 && Legal->getRuntimePointerCheck()->Need); 4528 4529 // We want to unroll small loops in order to reduce the loop overhead and 4530 // potentially expose ILP opportunities. 4531 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 4532 if (!UnrollingRequiresRuntimePointerCheck && 4533 LoopCost < SmallLoopCost) { 4534 // We assume that the cost overhead is 1 and we use the cost model 4535 // to estimate the cost of the loop and unroll until the cost of the 4536 // loop overhead is about 5% of the cost of the loop. 4537 unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 4538 4539 // Unroll until store/load ports (estimated by max unroll factor) are 4540 // saturated. 4541 unsigned NumStores = Legal->getNumStores(); 4542 unsigned NumLoads = Legal->getNumLoads(); 4543 unsigned StoresUF = UF / (NumStores ? NumStores : 1); 4544 unsigned LoadsUF = UF / (NumLoads ? NumLoads : 1); 4545 4546 // If we have a scalar reduction (vector reductions are already dealt with 4547 // by this point), we can increase the critical path length if the loop 4548 // we're unrolling is inside another loop. Limit, by default to 2, so the 4549 // critical path only gets increased by one reduction operation. 4550 if (Legal->getReductionVars()->size() && 4551 TheLoop->getLoopDepth() > 1) { 4552 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionUF); 4553 SmallUF = std::min(SmallUF, F); 4554 StoresUF = std::min(StoresUF, F); 4555 LoadsUF = std::min(LoadsUF, F); 4556 } 4557 4558 if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) { 4559 DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n"); 4560 return std::max(StoresUF, LoadsUF); 4561 } 4562 4563 DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n"); 4564 return SmallUF; 4565 } 4566 4567 DEBUG(dbgs() << "LV: Not Unrolling.\n"); 4568 return 1; 4569 } 4570 4571 LoopVectorizationCostModel::RegisterUsage 4572 LoopVectorizationCostModel::calculateRegisterUsage() { 4573 // This function calculates the register usage by measuring the highest number 4574 // of values that are alive at a single location. Obviously, this is a very 4575 // rough estimation. We scan the loop in a topological order in order and 4576 // assign a number to each instruction. We use RPO to ensure that defs are 4577 // met before their users. We assume that each instruction that has in-loop 4578 // users starts an interval. We record every time that an in-loop value is 4579 // used, so we have a list of the first and last occurrences of each 4580 // instruction. Next, we transpose this data structure into a multi map that 4581 // holds the list of intervals that *end* at a specific location. This multi 4582 // map allows us to perform a linear search. We scan the instructions linearly 4583 // and record each time that a new interval starts, by placing it in a set. 4584 // If we find this value in the multi-map then we remove it from the set. 4585 // The max register usage is the maximum size of the set. 4586 // We also search for instructions that are defined outside the loop, but are 4587 // used inside the loop. We need this number separately from the max-interval 4588 // usage number because when we unroll, loop-invariant values do not take 4589 // more register. 4590 LoopBlocksDFS DFS(TheLoop); 4591 DFS.perform(LI); 4592 4593 RegisterUsage R; 4594 R.NumInstructions = 0; 4595 4596 // Each 'key' in the map opens a new interval. The values 4597 // of the map are the index of the 'last seen' usage of the 4598 // instruction that is the key. 4599 typedef DenseMap<Instruction*, unsigned> IntervalMap; 4600 // Maps instruction to its index. 4601 DenseMap<unsigned, Instruction*> IdxToInstr; 4602 // Marks the end of each interval. 4603 IntervalMap EndPoint; 4604 // Saves the list of instruction indices that are used in the loop. 4605 SmallSet<Instruction*, 8> Ends; 4606 // Saves the list of values that are used in the loop but are 4607 // defined outside the loop, such as arguments and constants. 4608 SmallPtrSet<Value*, 8> LoopInvariants; 4609 4610 unsigned Index = 0; 4611 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), 4612 be = DFS.endRPO(); bb != be; ++bb) { 4613 R.NumInstructions += (*bb)->size(); 4614 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4615 ++it) { 4616 Instruction *I = it; 4617 IdxToInstr[Index++] = I; 4618 4619 // Save the end location of each USE. 4620 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 4621 Value *U = I->getOperand(i); 4622 Instruction *Instr = dyn_cast<Instruction>(U); 4623 4624 // Ignore non-instruction values such as arguments, constants, etc. 4625 if (!Instr) continue; 4626 4627 // If this instruction is outside the loop then record it and continue. 4628 if (!TheLoop->contains(Instr)) { 4629 LoopInvariants.insert(Instr); 4630 continue; 4631 } 4632 4633 // Overwrite previous end points. 4634 EndPoint[Instr] = Index; 4635 Ends.insert(Instr); 4636 } 4637 } 4638 } 4639 4640 // Saves the list of intervals that end with the index in 'key'. 4641 typedef SmallVector<Instruction*, 2> InstrList; 4642 DenseMap<unsigned, InstrList> TransposeEnds; 4643 4644 // Transpose the EndPoints to a list of values that end at each index. 4645 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); 4646 it != e; ++it) 4647 TransposeEnds[it->second].push_back(it->first); 4648 4649 SmallSet<Instruction*, 8> OpenIntervals; 4650 unsigned MaxUsage = 0; 4651 4652 4653 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 4654 for (unsigned int i = 0; i < Index; ++i) { 4655 Instruction *I = IdxToInstr[i]; 4656 // Ignore instructions that are never used within the loop. 4657 if (!Ends.count(I)) continue; 4658 4659 // Ignore ephemeral values. 4660 if (EphValues.count(I)) 4661 continue; 4662 4663 // Remove all of the instructions that end at this location. 4664 InstrList &List = TransposeEnds[i]; 4665 for (unsigned int j=0, e = List.size(); j < e; ++j) 4666 OpenIntervals.erase(List[j]); 4667 4668 // Count the number of live interals. 4669 MaxUsage = std::max(MaxUsage, OpenIntervals.size()); 4670 4671 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " << 4672 OpenIntervals.size() << '\n'); 4673 4674 // Add the current instruction to the list of open intervals. 4675 OpenIntervals.insert(I); 4676 } 4677 4678 unsigned Invariant = LoopInvariants.size(); 4679 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n'); 4680 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 4681 DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n'); 4682 4683 R.LoopInvariantRegs = Invariant; 4684 R.MaxLocalUsers = MaxUsage; 4685 return R; 4686 } 4687 4688 unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) { 4689 unsigned Cost = 0; 4690 4691 // For each block. 4692 for (Loop::block_iterator bb = TheLoop->block_begin(), 4693 be = TheLoop->block_end(); bb != be; ++bb) { 4694 unsigned BlockCost = 0; 4695 BasicBlock *BB = *bb; 4696 4697 // For each instruction in the old loop. 4698 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4699 // Skip dbg intrinsics. 4700 if (isa<DbgInfoIntrinsic>(it)) 4701 continue; 4702 4703 // Ignore ephemeral values. 4704 if (EphValues.count(it)) 4705 continue; 4706 4707 unsigned C = getInstructionCost(it, VF); 4708 4709 // Check if we should override the cost. 4710 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 4711 C = ForceTargetInstructionCost; 4712 4713 BlockCost += C; 4714 DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " << 4715 VF << " For instruction: " << *it << '\n'); 4716 } 4717 4718 // We assume that if-converted blocks have a 50% chance of being executed. 4719 // When the code is scalar then some of the blocks are avoided due to CF. 4720 // When the code is vectorized we execute all code paths. 4721 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 4722 BlockCost /= 2; 4723 4724 Cost += BlockCost; 4725 } 4726 4727 return Cost; 4728 } 4729 4730 /// \brief Check whether the address computation for a non-consecutive memory 4731 /// access looks like an unlikely candidate for being merged into the indexing 4732 /// mode. 4733 /// 4734 /// We look for a GEP which has one index that is an induction variable and all 4735 /// other indices are loop invariant. If the stride of this access is also 4736 /// within a small bound we decide that this address computation can likely be 4737 /// merged into the addressing mode. 4738 /// In all other cases, we identify the address computation as complex. 4739 static bool isLikelyComplexAddressComputation(Value *Ptr, 4740 LoopVectorizationLegality *Legal, 4741 ScalarEvolution *SE, 4742 const Loop *TheLoop) { 4743 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 4744 if (!Gep) 4745 return true; 4746 4747 // We are looking for a gep with all loop invariant indices except for one 4748 // which should be an induction variable. 4749 unsigned NumOperands = Gep->getNumOperands(); 4750 for (unsigned i = 1; i < NumOperands; ++i) { 4751 Value *Opd = Gep->getOperand(i); 4752 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 4753 !Legal->isInductionVariable(Opd)) 4754 return true; 4755 } 4756 4757 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 4758 // can likely be merged into the address computation. 4759 unsigned MaxMergeDistance = 64; 4760 4761 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 4762 if (!AddRec) 4763 return true; 4764 4765 // Check the step is constant. 4766 const SCEV *Step = AddRec->getStepRecurrence(*SE); 4767 // Calculate the pointer stride and check if it is consecutive. 4768 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 4769 if (!C) 4770 return true; 4771 4772 const APInt &APStepVal = C->getValue()->getValue(); 4773 4774 // Huge step value - give up. 4775 if (APStepVal.getBitWidth() > 64) 4776 return true; 4777 4778 int64_t StepVal = APStepVal.getSExtValue(); 4779 4780 return StepVal > MaxMergeDistance; 4781 } 4782 4783 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 4784 if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1))) 4785 return true; 4786 return false; 4787 } 4788 4789 unsigned 4790 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 4791 // If we know that this instruction will remain uniform, check the cost of 4792 // the scalar version. 4793 if (Legal->isUniformAfterVectorization(I)) 4794 VF = 1; 4795 4796 Type *RetTy = I->getType(); 4797 Type *VectorTy = ToVectorTy(RetTy, VF); 4798 4799 // TODO: We need to estimate the cost of intrinsic calls. 4800 switch (I->getOpcode()) { 4801 case Instruction::GetElementPtr: 4802 // We mark this instruction as zero-cost because the cost of GEPs in 4803 // vectorized code depends on whether the corresponding memory instruction 4804 // is scalarized or not. Therefore, we handle GEPs with the memory 4805 // instruction cost. 4806 return 0; 4807 case Instruction::Br: { 4808 return TTI.getCFInstrCost(I->getOpcode()); 4809 } 4810 case Instruction::PHI: 4811 //TODO: IF-converted IFs become selects. 4812 return 0; 4813 case Instruction::Add: 4814 case Instruction::FAdd: 4815 case Instruction::Sub: 4816 case Instruction::FSub: 4817 case Instruction::Mul: 4818 case Instruction::FMul: 4819 case Instruction::UDiv: 4820 case Instruction::SDiv: 4821 case Instruction::FDiv: 4822 case Instruction::URem: 4823 case Instruction::SRem: 4824 case Instruction::FRem: 4825 case Instruction::Shl: 4826 case Instruction::LShr: 4827 case Instruction::AShr: 4828 case Instruction::And: 4829 case Instruction::Or: 4830 case Instruction::Xor: { 4831 // Since we will replace the stride by 1 the multiplication should go away. 4832 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 4833 return 0; 4834 // Certain instructions can be cheaper to vectorize if they have a constant 4835 // second vector operand. One example of this are shifts on x86. 4836 TargetTransformInfo::OperandValueKind Op1VK = 4837 TargetTransformInfo::OK_AnyValue; 4838 TargetTransformInfo::OperandValueKind Op2VK = 4839 TargetTransformInfo::OK_AnyValue; 4840 TargetTransformInfo::OperandValueProperties Op1VP = 4841 TargetTransformInfo::OP_None; 4842 TargetTransformInfo::OperandValueProperties Op2VP = 4843 TargetTransformInfo::OP_None; 4844 Value *Op2 = I->getOperand(1); 4845 4846 // Check for a splat of a constant or for a non uniform vector of constants. 4847 if (isa<ConstantInt>(Op2)) { 4848 ConstantInt *CInt = cast<ConstantInt>(Op2); 4849 if (CInt && CInt->getValue().isPowerOf2()) 4850 Op2VP = TargetTransformInfo::OP_PowerOf2; 4851 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 4852 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 4853 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 4854 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 4855 if (SplatValue) { 4856 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 4857 if (CInt && CInt->getValue().isPowerOf2()) 4858 Op2VP = TargetTransformInfo::OP_PowerOf2; 4859 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 4860 } 4861 } 4862 4863 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 4864 Op1VP, Op2VP); 4865 } 4866 case Instruction::Select: { 4867 SelectInst *SI = cast<SelectInst>(I); 4868 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 4869 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 4870 Type *CondTy = SI->getCondition()->getType(); 4871 if (!ScalarCond) 4872 CondTy = VectorType::get(CondTy, VF); 4873 4874 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 4875 } 4876 case Instruction::ICmp: 4877 case Instruction::FCmp: { 4878 Type *ValTy = I->getOperand(0)->getType(); 4879 VectorTy = ToVectorTy(ValTy, VF); 4880 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 4881 } 4882 case Instruction::Store: 4883 case Instruction::Load: { 4884 StoreInst *SI = dyn_cast<StoreInst>(I); 4885 LoadInst *LI = dyn_cast<LoadInst>(I); 4886 Type *ValTy = (SI ? SI->getValueOperand()->getType() : 4887 LI->getType()); 4888 VectorTy = ToVectorTy(ValTy, VF); 4889 4890 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 4891 unsigned AS = SI ? SI->getPointerAddressSpace() : 4892 LI->getPointerAddressSpace(); 4893 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 4894 // We add the cost of address computation here instead of with the gep 4895 // instruction because only here we know whether the operation is 4896 // scalarized. 4897 if (VF == 1) 4898 return TTI.getAddressComputationCost(VectorTy) + 4899 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 4900 4901 // Scalarized loads/stores. 4902 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 4903 bool Reverse = ConsecutiveStride < 0; 4904 unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy); 4905 unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF; 4906 if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) { 4907 bool IsComplexComputation = 4908 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 4909 unsigned Cost = 0; 4910 // The cost of extracting from the value vector and pointer vector. 4911 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 4912 for (unsigned i = 0; i < VF; ++i) { 4913 // The cost of extracting the pointer operand. 4914 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 4915 // In case of STORE, the cost of ExtractElement from the vector. 4916 // In case of LOAD, the cost of InsertElement into the returned 4917 // vector. 4918 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement : 4919 Instruction::InsertElement, 4920 VectorTy, i); 4921 } 4922 4923 // The cost of the scalar loads/stores. 4924 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 4925 Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 4926 Alignment, AS); 4927 return Cost; 4928 } 4929 4930 // Wide load/stores. 4931 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 4932 if (Legal->isMaskRequired(I)) 4933 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, 4934 AS); 4935 else 4936 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 4937 4938 if (Reverse) 4939 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, 4940 VectorTy, 0); 4941 return Cost; 4942 } 4943 case Instruction::ZExt: 4944 case Instruction::SExt: 4945 case Instruction::FPToUI: 4946 case Instruction::FPToSI: 4947 case Instruction::FPExt: 4948 case Instruction::PtrToInt: 4949 case Instruction::IntToPtr: 4950 case Instruction::SIToFP: 4951 case Instruction::UIToFP: 4952 case Instruction::Trunc: 4953 case Instruction::FPTrunc: 4954 case Instruction::BitCast: { 4955 // We optimize the truncation of induction variable. 4956 // The cost of these is the same as the scalar operation. 4957 if (I->getOpcode() == Instruction::Trunc && 4958 Legal->isInductionVariable(I->getOperand(0))) 4959 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 4960 I->getOperand(0)->getType()); 4961 4962 Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF); 4963 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 4964 } 4965 case Instruction::Call: { 4966 CallInst *CI = cast<CallInst>(I); 4967 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI); 4968 assert(ID && "Not an intrinsic call!"); 4969 Type *RetTy = ToVectorTy(CI->getType(), VF); 4970 SmallVector<Type*, 4> Tys; 4971 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 4972 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 4973 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys); 4974 } 4975 default: { 4976 // We are scalarizing the instruction. Return the cost of the scalar 4977 // instruction, plus the cost of insert and extract into vector 4978 // elements, times the vector width. 4979 unsigned Cost = 0; 4980 4981 if (!RetTy->isVoidTy() && VF != 1) { 4982 unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement, 4983 VectorTy); 4984 unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement, 4985 VectorTy); 4986 4987 // The cost of inserting the results plus extracting each one of the 4988 // operands. 4989 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 4990 } 4991 4992 // The cost of executing VF copies of the scalar instruction. This opcode 4993 // is unknown. Assume that it is the same as 'mul'. 4994 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 4995 return Cost; 4996 } 4997 }// end of switch. 4998 } 4999 5000 char LoopVectorize::ID = 0; 5001 static const char lv_name[] = "Loop Vectorization"; 5002 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 5003 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5004 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 5005 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5006 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo) 5007 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5008 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5009 INITIALIZE_PASS_DEPENDENCY(LCSSA) 5010 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5011 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5012 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 5013 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 5014 5015 namespace llvm { 5016 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 5017 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 5018 } 5019 } 5020 5021 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 5022 // Check for a store. 5023 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 5024 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 5025 5026 // Check for a load. 5027 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 5028 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 5029 5030 return false; 5031 } 5032 5033 5034 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 5035 bool IfPredicateStore) { 5036 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 5037 // Holds vector parameters or scalars, in case of uniform vals. 5038 SmallVector<VectorParts, 4> Params; 5039 5040 setDebugLocFromInst(Builder, Instr); 5041 5042 // Find all of the vectorized parameters. 5043 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5044 Value *SrcOp = Instr->getOperand(op); 5045 5046 // If we are accessing the old induction variable, use the new one. 5047 if (SrcOp == OldInduction) { 5048 Params.push_back(getVectorValue(SrcOp)); 5049 continue; 5050 } 5051 5052 // Try using previously calculated values. 5053 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 5054 5055 // If the src is an instruction that appeared earlier in the basic block 5056 // then it should already be vectorized. 5057 if (SrcInst && OrigLoop->contains(SrcInst)) { 5058 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 5059 // The parameter is a vector value from earlier. 5060 Params.push_back(WidenMap.get(SrcInst)); 5061 } else { 5062 // The parameter is a scalar from outside the loop. Maybe even a constant. 5063 VectorParts Scalars; 5064 Scalars.append(UF, SrcOp); 5065 Params.push_back(Scalars); 5066 } 5067 } 5068 5069 assert(Params.size() == Instr->getNumOperands() && 5070 "Invalid number of operands"); 5071 5072 // Does this instruction return a value ? 5073 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 5074 5075 Value *UndefVec = IsVoidRetTy ? nullptr : 5076 UndefValue::get(Instr->getType()); 5077 // Create a new entry in the WidenMap and initialize it to Undef or Null. 5078 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 5079 5080 Instruction *InsertPt = Builder.GetInsertPoint(); 5081 BasicBlock *IfBlock = Builder.GetInsertBlock(); 5082 BasicBlock *CondBlock = nullptr; 5083 5084 VectorParts Cond; 5085 Loop *VectorLp = nullptr; 5086 if (IfPredicateStore) { 5087 assert(Instr->getParent()->getSinglePredecessor() && 5088 "Only support single predecessor blocks"); 5089 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 5090 Instr->getParent()); 5091 VectorLp = LI->getLoopFor(IfBlock); 5092 assert(VectorLp && "Must have a loop for this block"); 5093 } 5094 5095 // For each vector unroll 'part': 5096 for (unsigned Part = 0; Part < UF; ++Part) { 5097 // For each scalar that we create: 5098 5099 // Start an "if (pred) a[i] = ..." block. 5100 Value *Cmp = nullptr; 5101 if (IfPredicateStore) { 5102 if (Cond[Part]->getType()->isVectorTy()) 5103 Cond[Part] = 5104 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 5105 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 5106 ConstantInt::get(Cond[Part]->getType(), 1)); 5107 CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store"); 5108 LoopVectorBody.push_back(CondBlock); 5109 VectorLp->addBasicBlockToLoop(CondBlock, *LI); 5110 // Update Builder with newly created basic block. 5111 Builder.SetInsertPoint(InsertPt); 5112 } 5113 5114 Instruction *Cloned = Instr->clone(); 5115 if (!IsVoidRetTy) 5116 Cloned->setName(Instr->getName() + ".cloned"); 5117 // Replace the operands of the cloned instructions with extracted scalars. 5118 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 5119 Value *Op = Params[op][Part]; 5120 Cloned->setOperand(op, Op); 5121 } 5122 5123 // Place the cloned scalar in the new loop. 5124 Builder.Insert(Cloned); 5125 5126 // If the original scalar returns a value we need to place it in a vector 5127 // so that future users will be able to use it. 5128 if (!IsVoidRetTy) 5129 VecResults[Part] = Cloned; 5130 5131 // End if-block. 5132 if (IfPredicateStore) { 5133 BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else"); 5134 LoopVectorBody.push_back(NewIfBlock); 5135 VectorLp->addBasicBlockToLoop(NewIfBlock, *LI); 5136 Builder.SetInsertPoint(InsertPt); 5137 Instruction *OldBr = IfBlock->getTerminator(); 5138 BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr); 5139 OldBr->eraseFromParent(); 5140 IfBlock = NewIfBlock; 5141 } 5142 } 5143 } 5144 5145 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 5146 StoreInst *SI = dyn_cast<StoreInst>(Instr); 5147 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 5148 5149 return scalarizeInstruction(Instr, IfPredicateStore); 5150 } 5151 5152 Value *InnerLoopUnroller::reverseVector(Value *Vec) { 5153 return Vec; 5154 } 5155 5156 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { 5157 return V; 5158 } 5159 5160 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 5161 // When unrolling and the VF is 1, we only need to add a simple scalar. 5162 Type *ITy = Val->getType(); 5163 assert(!ITy->isVectorTy() && "Val must be a scalar"); 5164 Constant *C = ConstantInt::get(ITy, StartIdx); 5165 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 5166 } 5167