1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/Hashing.h" 51 #include "llvm/ADT/MapVector.h" 52 #include "llvm/ADT/SetVector.h" 53 #include "llvm/ADT/SmallPtrSet.h" 54 #include "llvm/ADT/SmallSet.h" 55 #include "llvm/ADT/SmallVector.h" 56 #include "llvm/ADT/Statistic.h" 57 #include "llvm/ADT/StringExtras.h" 58 #include "llvm/Analysis/AliasAnalysis.h" 59 #include "llvm/Analysis/AssumptionCache.h" 60 #include "llvm/Analysis/BasicAliasAnalysis.h" 61 #include "llvm/Analysis/BlockFrequencyInfo.h" 62 #include "llvm/Analysis/CodeMetrics.h" 63 #include "llvm/Analysis/DemandedBits.h" 64 #include "llvm/Analysis/GlobalsModRef.h" 65 #include "llvm/Analysis/LoopAccessAnalysis.h" 66 #include "llvm/Analysis/LoopInfo.h" 67 #include "llvm/Analysis/LoopIterator.h" 68 #include "llvm/Analysis/LoopPass.h" 69 #include "llvm/Analysis/ScalarEvolution.h" 70 #include "llvm/Analysis/ScalarEvolutionExpander.h" 71 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 72 #include "llvm/Analysis/TargetTransformInfo.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/Analysis/VectorUtils.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfo.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/DiagnosticInfo.h" 80 #include "llvm/IR/Dominators.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/IRBuilder.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/LLVMContext.h" 86 #include "llvm/IR/Module.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/IR/ValueHandle.h" 91 #include "llvm/IR/Verifier.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/BranchProbability.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Transforms/Scalar.h" 98 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include "llvm/Transforms/Utils/LoopUtils.h" 101 #include "llvm/Transforms/Utils/LoopVersioning.h" 102 #include "llvm/Transforms/Vectorize.h" 103 #include <algorithm> 104 #include <functional> 105 #include <map> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace llvm::PatternMatch; 110 111 #define LV_NAME "loop-vectorize" 112 #define DEBUG_TYPE LV_NAME 113 114 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 115 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 116 117 static cl::opt<bool> 118 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 119 cl::desc("Enable if-conversion during vectorization.")); 120 121 /// We don't vectorize loops with a known constant trip count below this number. 122 static cl::opt<unsigned> TinyTripCountVectorThreshold( 123 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 124 cl::desc("Don't vectorize loops with a constant " 125 "trip count that is smaller than this " 126 "value.")); 127 128 static cl::opt<bool> MaximizeBandwidth( 129 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 130 cl::desc("Maximize bandwidth when selecting vectorization factor which " 131 "will be determined by the smallest type in loop.")); 132 133 /// This enables versioning on the strides of symbolically striding memory 134 /// accesses in code like the following. 135 /// for (i = 0; i < N; ++i) 136 /// A[i * Stride1] += B[i * Stride2] ... 137 /// 138 /// Will be roughly translated to 139 /// if (Stride1 == 1 && Stride2 == 1) { 140 /// for (i = 0; i < N; i+=4) 141 /// A[i:i+3] += ... 142 /// } else 143 /// ... 144 static cl::opt<bool> EnableMemAccessVersioning( 145 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 146 cl::desc("Enable symbolic stride memory access versioning")); 147 148 static cl::opt<bool> EnableInterleavedMemAccesses( 149 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 150 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 151 152 /// Maximum factor for an interleaved memory access. 153 static cl::opt<unsigned> MaxInterleaveGroupFactor( 154 "max-interleave-group-factor", cl::Hidden, 155 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 156 cl::init(8)); 157 158 /// We don't interleave loops with a known constant trip count below this 159 /// number. 160 static const unsigned TinyTripCountInterleaveThreshold = 128; 161 162 static cl::opt<unsigned> ForceTargetNumScalarRegs( 163 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 164 cl::desc("A flag that overrides the target's number of scalar registers.")); 165 166 static cl::opt<unsigned> ForceTargetNumVectorRegs( 167 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 168 cl::desc("A flag that overrides the target's number of vector registers.")); 169 170 /// Maximum vectorization interleave count. 171 static const unsigned MaxInterleaveFactor = 16; 172 173 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 174 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 175 cl::desc("A flag that overrides the target's max interleave factor for " 176 "scalar loops.")); 177 178 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 179 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 180 cl::desc("A flag that overrides the target's max interleave factor for " 181 "vectorized loops.")); 182 183 static cl::opt<unsigned> ForceTargetInstructionCost( 184 "force-target-instruction-cost", cl::init(0), cl::Hidden, 185 cl::desc("A flag that overrides the target's expected cost for " 186 "an instruction to a single constant value. Mostly " 187 "useful for getting consistent testing.")); 188 189 static cl::opt<unsigned> SmallLoopCost( 190 "small-loop-cost", cl::init(20), cl::Hidden, 191 cl::desc( 192 "The cost of a loop that is considered 'small' by the interleaver.")); 193 194 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 195 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 196 cl::desc("Enable the use of the block frequency analysis to access PGO " 197 "heuristics minimizing code growth in cold regions and being more " 198 "aggressive in hot regions.")); 199 200 // Runtime interleave loops for load/store throughput. 201 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 202 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 203 cl::desc( 204 "Enable runtime interleaving until load/store ports are saturated")); 205 206 /// The number of stores in a loop that are allowed to need predication. 207 static cl::opt<unsigned> NumberOfStoresToPredicate( 208 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 209 cl::desc("Max number of stores to be predicated behind an if.")); 210 211 static cl::opt<bool> EnableIndVarRegisterHeur( 212 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 213 cl::desc("Count the induction variable only once when interleaving")); 214 215 static cl::opt<bool> EnableCondStoresVectorization( 216 "enable-cond-stores-vec", cl::init(false), cl::Hidden, 217 cl::desc("Enable if predication of stores during vectorization.")); 218 219 static cl::opt<unsigned> MaxNestedScalarReductionIC( 220 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 221 cl::desc("The maximum interleave count to use when interleaving a scalar " 222 "reduction in a nested loop.")); 223 224 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 225 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 226 cl::desc("The maximum allowed number of runtime memory checks with a " 227 "vectorize(enable) pragma.")); 228 229 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 230 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 231 cl::desc("The maximum number of SCEV checks allowed.")); 232 233 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 234 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 235 cl::desc("The maximum number of SCEV checks allowed with a " 236 "vectorize(enable) pragma")); 237 238 namespace { 239 240 // Forward declarations. 241 class LoopVectorizeHints; 242 class LoopVectorizationLegality; 243 class LoopVectorizationCostModel; 244 class LoopVectorizationRequirements; 245 246 /// \brief This modifies LoopAccessReport to initialize message with 247 /// loop-vectorizer-specific part. 248 class VectorizationReport : public LoopAccessReport { 249 public: 250 VectorizationReport(Instruction *I = nullptr) 251 : LoopAccessReport("loop not vectorized: ", I) {} 252 253 /// \brief This allows promotion of the loop-access analysis report into the 254 /// loop-vectorizer report. It modifies the message to add the 255 /// loop-vectorizer-specific part of the message. 256 explicit VectorizationReport(const LoopAccessReport &R) 257 : LoopAccessReport(Twine("loop not vectorized: ") + R.str(), 258 R.getInstr()) {} 259 }; 260 261 /// A helper function for converting Scalar types to vector types. 262 /// If the incoming type is void, we return void. If the VF is 1, we return 263 /// the scalar type. 264 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 265 if (Scalar->isVoidTy() || VF == 1) 266 return Scalar; 267 return VectorType::get(Scalar, VF); 268 } 269 270 /// A helper function that returns GEP instruction and knows to skip a 271 /// 'bitcast'. The 'bitcast' may be skipped if the source and the destination 272 /// pointee types of the 'bitcast' have the same size. 273 /// For example: 274 /// bitcast double** %var to i64* - can be skipped 275 /// bitcast double** %var to i8* - can not 276 static GetElementPtrInst *getGEPInstruction(Value *Ptr) { 277 278 if (isa<GetElementPtrInst>(Ptr)) 279 return cast<GetElementPtrInst>(Ptr); 280 281 if (isa<BitCastInst>(Ptr) && 282 isa<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0))) { 283 Type *BitcastTy = Ptr->getType(); 284 Type *GEPTy = cast<BitCastInst>(Ptr)->getSrcTy(); 285 if (!isa<PointerType>(BitcastTy) || !isa<PointerType>(GEPTy)) 286 return nullptr; 287 Type *Pointee1Ty = cast<PointerType>(BitcastTy)->getPointerElementType(); 288 Type *Pointee2Ty = cast<PointerType>(GEPTy)->getPointerElementType(); 289 const DataLayout &DL = cast<BitCastInst>(Ptr)->getModule()->getDataLayout(); 290 if (DL.getTypeSizeInBits(Pointee1Ty) == DL.getTypeSizeInBits(Pointee2Ty)) 291 return cast<GetElementPtrInst>(cast<BitCastInst>(Ptr)->getOperand(0)); 292 } 293 return nullptr; 294 } 295 296 /// InnerLoopVectorizer vectorizes loops which contain only one basic 297 /// block to a specified vectorization factor (VF). 298 /// This class performs the widening of scalars into vectors, or multiple 299 /// scalars. This class also implements the following features: 300 /// * It inserts an epilogue loop for handling loops that don't have iteration 301 /// counts that are known to be a multiple of the vectorization factor. 302 /// * It handles the code generation for reduction variables. 303 /// * Scalarization (implementation using scalars) of un-vectorizable 304 /// instructions. 305 /// InnerLoopVectorizer does not perform any vectorization-legality 306 /// checks, and relies on the caller to check for the different legality 307 /// aspects. The InnerLoopVectorizer relies on the 308 /// LoopVectorizationLegality class to provide information about the induction 309 /// and reduction variables that were found to a given vectorization factor. 310 class InnerLoopVectorizer { 311 public: 312 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 313 LoopInfo *LI, DominatorTree *DT, 314 const TargetLibraryInfo *TLI, 315 const TargetTransformInfo *TTI, AssumptionCache *AC, 316 unsigned VecWidth, unsigned UnrollFactor) 317 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 318 AC(AC), VF(VecWidth), UF(UnrollFactor), 319 Builder(PSE.getSE()->getContext()), Induction(nullptr), 320 OldInduction(nullptr), WidenMap(UnrollFactor), TripCount(nullptr), 321 VectorTripCount(nullptr), Legal(nullptr), AddedSafetyChecks(false) {} 322 323 // Perform the actual loop widening (vectorization). 324 // MinimumBitWidths maps scalar integer values to the smallest bitwidth they 325 // can be validly truncated to. The cost model has assumed this truncation 326 // will happen when vectorizing. 327 void vectorize(LoopVectorizationLegality *L, 328 MapVector<Instruction *, uint64_t> MinimumBitWidths) { 329 MinBWs = MinimumBitWidths; 330 Legal = L; 331 // Create a new empty loop. Unlink the old loop and connect the new one. 332 createEmptyLoop(); 333 // Widen each instruction in the old loop to a new one in the new loop. 334 // Use the Legality module to find the induction and reduction variables. 335 vectorizeLoop(); 336 } 337 338 // Return true if any runtime check is added. 339 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 340 341 virtual ~InnerLoopVectorizer() {} 342 343 protected: 344 /// A small list of PHINodes. 345 typedef SmallVector<PHINode *, 4> PhiVector; 346 /// When we unroll loops we have multiple vector values for each scalar. 347 /// This data structure holds the unrolled and vectorized values that 348 /// originated from one scalar instruction. 349 typedef SmallVector<Value *, 2> VectorParts; 350 351 // When we if-convert we need to create edge masks. We have to cache values 352 // so that we don't end up with exponential recursion/IR. 353 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 354 EdgeMaskCache; 355 356 /// Create an empty loop, based on the loop ranges of the old loop. 357 void createEmptyLoop(); 358 /// Create a new induction variable inside L. 359 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 360 Value *Step, Instruction *DL); 361 /// Copy and widen the instructions from the old loop. 362 virtual void vectorizeLoop(); 363 364 /// Fix a first-order recurrence. This is the second phase of vectorizing 365 /// this phi node. 366 void fixFirstOrderRecurrence(PHINode *Phi); 367 368 /// \brief The Loop exit block may have single value PHI nodes where the 369 /// incoming value is 'Undef'. While vectorizing we only handled real values 370 /// that were defined inside the loop. Here we fix the 'undef case'. 371 /// See PR14725. 372 void fixLCSSAPHIs(); 373 374 /// Shrinks vector element sizes based on information in "MinBWs". 375 void truncateToMinimalBitwidths(); 376 377 /// A helper function that computes the predicate of the block BB, assuming 378 /// that the header block of the loop is set to True. It returns the *entry* 379 /// mask for the block BB. 380 VectorParts createBlockInMask(BasicBlock *BB); 381 /// A helper function that computes the predicate of the edge between SRC 382 /// and DST. 383 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 384 385 /// A helper function to vectorize a single BB within the innermost loop. 386 void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV); 387 388 /// Vectorize a single PHINode in a block. This method handles the induction 389 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 390 /// arbitrary length vectors. 391 void widenPHIInstruction(Instruction *PN, VectorParts &Entry, unsigned UF, 392 unsigned VF, PhiVector *PV); 393 394 /// Insert the new loop to the loop hierarchy and pass manager 395 /// and update the analysis passes. 396 void updateAnalysis(); 397 398 /// This instruction is un-vectorizable. Implement it as a sequence 399 /// of scalars. If \p IfPredicateStore is true we need to 'hide' each 400 /// scalarized instruction behind an if block predicated on the control 401 /// dependence of the instruction. 402 virtual void scalarizeInstruction(Instruction *Instr, 403 bool IfPredicateStore = false); 404 405 /// Vectorize Load and Store instructions, 406 virtual void vectorizeMemoryInstruction(Instruction *Instr); 407 408 /// Create a broadcast instruction. This method generates a broadcast 409 /// instruction (shuffle) for loop invariant values and for the induction 410 /// value. If this is the induction variable then we extend it to N, N+1, ... 411 /// this is needed because each iteration in the loop corresponds to a SIMD 412 /// element. 413 virtual Value *getBroadcastInstrs(Value *V); 414 415 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 416 /// to each vector element of Val. The sequence starts at StartIndex. 417 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step); 418 419 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 420 /// to each vector element of Val. The sequence starts at StartIndex. 421 /// Step is a SCEV. In order to get StepValue it takes the existing value 422 /// from SCEV or creates a new using SCEVExpander. 423 virtual Value *getStepVector(Value *Val, int StartIdx, const SCEV *Step); 424 425 /// Create a vector induction variable based on an existing scalar one. 426 /// Currently only works for integer primary induction variables with 427 /// a constant step. 428 /// If TruncType is provided, instead of widening the original IV, we 429 /// widen a version of the IV truncated to TruncType. 430 void widenInductionVariable(const InductionDescriptor &II, VectorParts &Entry, 431 IntegerType *TruncType = nullptr); 432 433 /// When we go over instructions in the basic block we rely on previous 434 /// values within the current basic block or on loop invariant values. 435 /// When we widen (vectorize) values we place them in the map. If the values 436 /// are not within the map, they have to be loop invariant, so we simply 437 /// broadcast them into a vector. 438 VectorParts &getVectorValue(Value *V); 439 440 /// Try to vectorize the interleaved access group that \p Instr belongs to. 441 void vectorizeInterleaveGroup(Instruction *Instr); 442 443 /// Generate a shuffle sequence that will reverse the vector Vec. 444 virtual Value *reverseVector(Value *Vec); 445 446 /// Returns (and creates if needed) the original loop trip count. 447 Value *getOrCreateTripCount(Loop *NewLoop); 448 449 /// Returns (and creates if needed) the trip count of the widened loop. 450 Value *getOrCreateVectorTripCount(Loop *NewLoop); 451 452 /// Emit a bypass check to see if the trip count would overflow, or we 453 /// wouldn't have enough iterations to execute one vector loop. 454 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 455 /// Emit a bypass check to see if the vector trip count is nonzero. 456 void emitVectorLoopEnteredCheck(Loop *L, BasicBlock *Bypass); 457 /// Emit a bypass check to see if all of the SCEV assumptions we've 458 /// had to make are correct. 459 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 460 /// Emit bypass checks to check any memory assumptions we may have made. 461 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 462 463 /// Add additional metadata to \p To that was not present on \p Orig. 464 /// 465 /// Currently this is used to add the noalias annotations based on the 466 /// inserted memchecks. Use this for instructions that are *cloned* into the 467 /// vector loop. 468 void addNewMetadata(Instruction *To, const Instruction *Orig); 469 470 /// Add metadata from one instruction to another. 471 /// 472 /// This includes both the original MDs from \p From and additional ones (\see 473 /// addNewMetadata). Use this for *newly created* instructions in the vector 474 /// loop. 475 void addMetadata(Instruction *To, const Instruction *From); 476 477 /// \brief Similar to the previous function but it adds the metadata to a 478 /// vector of instructions. 479 void addMetadata(SmallVectorImpl<Value *> &To, const Instruction *From); 480 481 /// This is a helper class that holds the vectorizer state. It maps scalar 482 /// instructions to vector instructions. When the code is 'unrolled' then 483 /// then a single scalar value is mapped to multiple vector parts. The parts 484 /// are stored in the VectorPart type. 485 struct ValueMap { 486 /// C'tor. UnrollFactor controls the number of vectors ('parts') that 487 /// are mapped. 488 ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {} 489 490 /// \return True if 'Key' is saved in the Value Map. 491 bool has(Value *Key) const { return MapStorage.count(Key); } 492 493 /// Initializes a new entry in the map. Sets all of the vector parts to the 494 /// save value in 'Val'. 495 /// \return A reference to a vector with splat values. 496 VectorParts &splat(Value *Key, Value *Val) { 497 VectorParts &Entry = MapStorage[Key]; 498 Entry.assign(UF, Val); 499 return Entry; 500 } 501 502 ///\return A reference to the value that is stored at 'Key'. 503 VectorParts &get(Value *Key) { 504 VectorParts &Entry = MapStorage[Key]; 505 if (Entry.empty()) 506 Entry.resize(UF); 507 assert(Entry.size() == UF); 508 return Entry; 509 } 510 511 private: 512 /// The unroll factor. Each entry in the map stores this number of vector 513 /// elements. 514 unsigned UF; 515 516 /// Map storage. We use std::map and not DenseMap because insertions to a 517 /// dense map invalidates its iterators. 518 std::map<Value *, VectorParts> MapStorage; 519 }; 520 521 /// The original loop. 522 Loop *OrigLoop; 523 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 524 /// dynamic knowledge to simplify SCEV expressions and converts them to a 525 /// more usable form. 526 PredicatedScalarEvolution &PSE; 527 /// Loop Info. 528 LoopInfo *LI; 529 /// Dominator Tree. 530 DominatorTree *DT; 531 /// Alias Analysis. 532 AliasAnalysis *AA; 533 /// Target Library Info. 534 const TargetLibraryInfo *TLI; 535 /// Target Transform Info. 536 const TargetTransformInfo *TTI; 537 /// Assumption Cache. 538 AssumptionCache *AC; 539 540 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 541 /// used. 542 /// 543 /// This is currently only used to add no-alias metadata based on the 544 /// memchecks. The actually versioning is performed manually. 545 std::unique_ptr<LoopVersioning> LVer; 546 547 /// The vectorization SIMD factor to use. Each vector will have this many 548 /// vector elements. 549 unsigned VF; 550 551 protected: 552 /// The vectorization unroll factor to use. Each scalar is vectorized to this 553 /// many different vector instructions. 554 unsigned UF; 555 556 /// The builder that we use 557 IRBuilder<> Builder; 558 559 // --- Vectorization state --- 560 561 /// The vector-loop preheader. 562 BasicBlock *LoopVectorPreHeader; 563 /// The scalar-loop preheader. 564 BasicBlock *LoopScalarPreHeader; 565 /// Middle Block between the vector and the scalar. 566 BasicBlock *LoopMiddleBlock; 567 /// The ExitBlock of the scalar loop. 568 BasicBlock *LoopExitBlock; 569 /// The vector loop body. 570 BasicBlock *LoopVectorBody; 571 /// The scalar loop body. 572 BasicBlock *LoopScalarBody; 573 /// A list of all bypass blocks. The first block is the entry of the loop. 574 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 575 576 /// The new Induction variable which was added to the new block. 577 PHINode *Induction; 578 /// The induction variable of the old basic block. 579 PHINode *OldInduction; 580 /// Maps scalars to widened vectors. 581 ValueMap WidenMap; 582 /// Store instructions that should be predicated, as a pair 583 /// <StoreInst, Predicate> 584 SmallVector<std::pair<StoreInst *, Value *>, 4> PredicatedStores; 585 EdgeMaskCache MaskCache; 586 /// Trip count of the original loop. 587 Value *TripCount; 588 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 589 Value *VectorTripCount; 590 591 /// Map of scalar integer values to the smallest bitwidth they can be legally 592 /// represented as. The vector equivalents of these values should be truncated 593 /// to this type. 594 MapVector<Instruction *, uint64_t> MinBWs; 595 LoopVectorizationLegality *Legal; 596 597 // Record whether runtime checks are added. 598 bool AddedSafetyChecks; 599 }; 600 601 class InnerLoopUnroller : public InnerLoopVectorizer { 602 public: 603 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 604 LoopInfo *LI, DominatorTree *DT, 605 const TargetLibraryInfo *TLI, 606 const TargetTransformInfo *TTI, AssumptionCache *AC, 607 unsigned UnrollFactor) 608 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, 1, 609 UnrollFactor) {} 610 611 private: 612 void scalarizeInstruction(Instruction *Instr, 613 bool IfPredicateStore = false) override; 614 void vectorizeMemoryInstruction(Instruction *Instr) override; 615 Value *getBroadcastInstrs(Value *V) override; 616 Value *getStepVector(Value *Val, int StartIdx, Value *Step) override; 617 Value *getStepVector(Value *Val, int StartIdx, const SCEV *StepSCEV) override; 618 Value *reverseVector(Value *Vec) override; 619 }; 620 621 /// \brief Look for a meaningful debug location on the instruction or it's 622 /// operands. 623 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 624 if (!I) 625 return I; 626 627 DebugLoc Empty; 628 if (I->getDebugLoc() != Empty) 629 return I; 630 631 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 632 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 633 if (OpInst->getDebugLoc() != Empty) 634 return OpInst; 635 } 636 637 return I; 638 } 639 640 /// \brief Set the debug location in the builder using the debug location in the 641 /// instruction. 642 static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 643 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) 644 B.SetCurrentDebugLocation(Inst->getDebugLoc()); 645 else 646 B.SetCurrentDebugLocation(DebugLoc()); 647 } 648 649 #ifndef NDEBUG 650 /// \return string containing a file name and a line # for the given loop. 651 static std::string getDebugLocString(const Loop *L) { 652 std::string Result; 653 if (L) { 654 raw_string_ostream OS(Result); 655 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 656 LoopDbgLoc.print(OS); 657 else 658 // Just print the module name. 659 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 660 OS.flush(); 661 } 662 return Result; 663 } 664 #endif 665 666 /// \brief Propagate known metadata from one instruction to another. 667 static void propagateMetadata(Instruction *To, const Instruction *From) { 668 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; 669 From->getAllMetadataOtherThanDebugLoc(Metadata); 670 671 for (auto M : Metadata) { 672 unsigned Kind = M.first; 673 674 // These are safe to transfer (this is safe for TBAA, even when we 675 // if-convert, because should that metadata have had a control dependency 676 // on the condition, and thus actually aliased with some other 677 // non-speculated memory access when the condition was false, this would be 678 // caught by the runtime overlap checks). 679 if (Kind != LLVMContext::MD_tbaa && Kind != LLVMContext::MD_alias_scope && 680 Kind != LLVMContext::MD_noalias && Kind != LLVMContext::MD_fpmath && 681 Kind != LLVMContext::MD_nontemporal) 682 continue; 683 684 To->setMetadata(Kind, M.second); 685 } 686 } 687 688 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 689 const Instruction *Orig) { 690 // If the loop was versioned with memchecks, add the corresponding no-alias 691 // metadata. 692 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 693 LVer->annotateInstWithNoAlias(To, Orig); 694 } 695 696 void InnerLoopVectorizer::addMetadata(Instruction *To, 697 const Instruction *From) { 698 propagateMetadata(To, From); 699 addNewMetadata(To, From); 700 } 701 702 void InnerLoopVectorizer::addMetadata(SmallVectorImpl<Value *> &To, 703 const Instruction *From) { 704 for (Value *V : To) 705 if (Instruction *I = dyn_cast<Instruction>(V)) 706 addMetadata(I, From); 707 } 708 709 /// \brief The group of interleaved loads/stores sharing the same stride and 710 /// close to each other. 711 /// 712 /// Each member in this group has an index starting from 0, and the largest 713 /// index should be less than interleaved factor, which is equal to the absolute 714 /// value of the access's stride. 715 /// 716 /// E.g. An interleaved load group of factor 4: 717 /// for (unsigned i = 0; i < 1024; i+=4) { 718 /// a = A[i]; // Member of index 0 719 /// b = A[i+1]; // Member of index 1 720 /// d = A[i+3]; // Member of index 3 721 /// ... 722 /// } 723 /// 724 /// An interleaved store group of factor 4: 725 /// for (unsigned i = 0; i < 1024; i+=4) { 726 /// ... 727 /// A[i] = a; // Member of index 0 728 /// A[i+1] = b; // Member of index 1 729 /// A[i+2] = c; // Member of index 2 730 /// A[i+3] = d; // Member of index 3 731 /// } 732 /// 733 /// Note: the interleaved load group could have gaps (missing members), but 734 /// the interleaved store group doesn't allow gaps. 735 class InterleaveGroup { 736 public: 737 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 738 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 739 assert(Align && "The alignment should be non-zero"); 740 741 Factor = std::abs(Stride); 742 assert(Factor > 1 && "Invalid interleave factor"); 743 744 Reverse = Stride < 0; 745 Members[0] = Instr; 746 } 747 748 bool isReverse() const { return Reverse; } 749 unsigned getFactor() const { return Factor; } 750 unsigned getAlignment() const { return Align; } 751 unsigned getNumMembers() const { return Members.size(); } 752 753 /// \brief Try to insert a new member \p Instr with index \p Index and 754 /// alignment \p NewAlign. The index is related to the leader and it could be 755 /// negative if it is the new leader. 756 /// 757 /// \returns false if the instruction doesn't belong to the group. 758 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 759 assert(NewAlign && "The new member's alignment should be non-zero"); 760 761 int Key = Index + SmallestKey; 762 763 // Skip if there is already a member with the same index. 764 if (Members.count(Key)) 765 return false; 766 767 if (Key > LargestKey) { 768 // The largest index is always less than the interleave factor. 769 if (Index >= static_cast<int>(Factor)) 770 return false; 771 772 LargestKey = Key; 773 } else if (Key < SmallestKey) { 774 // The largest index is always less than the interleave factor. 775 if (LargestKey - Key >= static_cast<int>(Factor)) 776 return false; 777 778 SmallestKey = Key; 779 } 780 781 // It's always safe to select the minimum alignment. 782 Align = std::min(Align, NewAlign); 783 Members[Key] = Instr; 784 return true; 785 } 786 787 /// \brief Get the member with the given index \p Index 788 /// 789 /// \returns nullptr if contains no such member. 790 Instruction *getMember(unsigned Index) const { 791 int Key = SmallestKey + Index; 792 if (!Members.count(Key)) 793 return nullptr; 794 795 return Members.find(Key)->second; 796 } 797 798 /// \brief Get the index for the given member. Unlike the key in the member 799 /// map, the index starts from 0. 800 unsigned getIndex(Instruction *Instr) const { 801 for (auto I : Members) 802 if (I.second == Instr) 803 return I.first - SmallestKey; 804 805 llvm_unreachable("InterleaveGroup contains no such member"); 806 } 807 808 Instruction *getInsertPos() const { return InsertPos; } 809 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 810 811 private: 812 unsigned Factor; // Interleave Factor. 813 bool Reverse; 814 unsigned Align; 815 DenseMap<int, Instruction *> Members; 816 int SmallestKey; 817 int LargestKey; 818 819 // To avoid breaking dependences, vectorized instructions of an interleave 820 // group should be inserted at either the first load or the last store in 821 // program order. 822 // 823 // E.g. %even = load i32 // Insert Position 824 // %add = add i32 %even // Use of %even 825 // %odd = load i32 826 // 827 // store i32 %even 828 // %odd = add i32 // Def of %odd 829 // store i32 %odd // Insert Position 830 Instruction *InsertPos; 831 }; 832 833 /// \brief Drive the analysis of interleaved memory accesses in the loop. 834 /// 835 /// Use this class to analyze interleaved accesses only when we can vectorize 836 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 837 /// on interleaved accesses is unsafe. 838 /// 839 /// The analysis collects interleave groups and records the relationships 840 /// between the member and the group in a map. 841 class InterleavedAccessInfo { 842 public: 843 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 844 DominatorTree *DT) 845 : PSE(PSE), TheLoop(L), DT(DT), RequiresScalarEpilogue(false) {} 846 847 ~InterleavedAccessInfo() { 848 SmallSet<InterleaveGroup *, 4> DelSet; 849 // Avoid releasing a pointer twice. 850 for (auto &I : InterleaveGroupMap) 851 DelSet.insert(I.second); 852 for (auto *Ptr : DelSet) 853 delete Ptr; 854 } 855 856 /// \brief Analyze the interleaved accesses and collect them in interleave 857 /// groups. Substitute symbolic strides using \p Strides. 858 void analyzeInterleaving(const ValueToValueMap &Strides); 859 860 /// \brief Check if \p Instr belongs to any interleave group. 861 bool isInterleaved(Instruction *Instr) const { 862 return InterleaveGroupMap.count(Instr); 863 } 864 865 /// \brief Return the maximum interleave factor of all interleaved groups. 866 unsigned getMaxInterleaveFactor() const { 867 unsigned MaxFactor = 1; 868 for (auto &Entry : InterleaveGroupMap) 869 MaxFactor = std::max(MaxFactor, Entry.second->getFactor()); 870 return MaxFactor; 871 } 872 873 /// \brief Get the interleave group that \p Instr belongs to. 874 /// 875 /// \returns nullptr if doesn't have such group. 876 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 877 if (InterleaveGroupMap.count(Instr)) 878 return InterleaveGroupMap.find(Instr)->second; 879 return nullptr; 880 } 881 882 /// \brief Returns true if an interleaved group that may access memory 883 /// out-of-bounds requires a scalar epilogue iteration for correctness. 884 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 885 886 private: 887 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 888 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 889 /// The interleaved access analysis can also add new predicates (for example 890 /// by versioning strides of pointers). 891 PredicatedScalarEvolution &PSE; 892 Loop *TheLoop; 893 DominatorTree *DT; 894 895 /// True if the loop may contain non-reversed interleaved groups with 896 /// out-of-bounds accesses. We ensure we don't speculatively access memory 897 /// out-of-bounds by executing at least one scalar epilogue iteration. 898 bool RequiresScalarEpilogue; 899 900 /// Holds the relationships between the members and the interleave group. 901 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 902 903 /// \brief The descriptor for a strided memory access. 904 struct StrideDescriptor { 905 StrideDescriptor(int Stride, const SCEV *Scev, unsigned Size, 906 unsigned Align) 907 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 908 909 StrideDescriptor() : Stride(0), Scev(nullptr), Size(0), Align(0) {} 910 911 int Stride; // The access's stride. It is negative for a reverse access. 912 const SCEV *Scev; // The scalar expression of this access 913 unsigned Size; // The size of the memory object. 914 unsigned Align; // The alignment of this access. 915 }; 916 917 /// \brief Create a new interleave group with the given instruction \p Instr, 918 /// stride \p Stride and alignment \p Align. 919 /// 920 /// \returns the newly created interleave group. 921 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 922 unsigned Align) { 923 assert(!InterleaveGroupMap.count(Instr) && 924 "Already in an interleaved access group"); 925 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 926 return InterleaveGroupMap[Instr]; 927 } 928 929 /// \brief Release the group and remove all the relationships. 930 void releaseGroup(InterleaveGroup *Group) { 931 for (unsigned i = 0; i < Group->getFactor(); i++) 932 if (Instruction *Member = Group->getMember(i)) 933 InterleaveGroupMap.erase(Member); 934 935 delete Group; 936 } 937 938 /// \brief Collect all the accesses with a constant stride in program order. 939 void collectConstStridedAccesses( 940 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 941 const ValueToValueMap &Strides); 942 }; 943 944 /// Utility class for getting and setting loop vectorizer hints in the form 945 /// of loop metadata. 946 /// This class keeps a number of loop annotations locally (as member variables) 947 /// and can, upon request, write them back as metadata on the loop. It will 948 /// initially scan the loop for existing metadata, and will update the local 949 /// values based on information in the loop. 950 /// We cannot write all values to metadata, as the mere presence of some info, 951 /// for example 'force', means a decision has been made. So, we need to be 952 /// careful NOT to add them if the user hasn't specifically asked so. 953 class LoopVectorizeHints { 954 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE }; 955 956 /// Hint - associates name and validation with the hint value. 957 struct Hint { 958 const char *Name; 959 unsigned Value; // This may have to change for non-numeric values. 960 HintKind Kind; 961 962 Hint(const char *Name, unsigned Value, HintKind Kind) 963 : Name(Name), Value(Value), Kind(Kind) {} 964 965 bool validate(unsigned Val) { 966 switch (Kind) { 967 case HK_WIDTH: 968 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 969 case HK_UNROLL: 970 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 971 case HK_FORCE: 972 return (Val <= 1); 973 } 974 return false; 975 } 976 }; 977 978 /// Vectorization width. 979 Hint Width; 980 /// Vectorization interleave factor. 981 Hint Interleave; 982 /// Vectorization forced 983 Hint Force; 984 985 /// Return the loop metadata prefix. 986 static StringRef Prefix() { return "llvm.loop."; } 987 988 /// True if there is any unsafe math in the loop. 989 bool PotentiallyUnsafe; 990 991 public: 992 enum ForceKind { 993 FK_Undefined = -1, ///< Not selected. 994 FK_Disabled = 0, ///< Forcing disabled. 995 FK_Enabled = 1, ///< Forcing enabled. 996 }; 997 998 LoopVectorizeHints(const Loop *L, bool DisableInterleaving) 999 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1000 HK_WIDTH), 1001 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1002 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1003 PotentiallyUnsafe(false), TheLoop(L) { 1004 // Populate values with existing loop metadata. 1005 getHintsFromMetadata(); 1006 1007 // force-vector-interleave overrides DisableInterleaving. 1008 if (VectorizerParams::isInterleaveForced()) 1009 Interleave.Value = VectorizerParams::VectorizationInterleave; 1010 1011 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1012 << "LV: Interleaving disabled by the pass manager\n"); 1013 } 1014 1015 /// Mark the loop L as already vectorized by setting the width to 1. 1016 void setAlreadyVectorized() { 1017 Width.Value = Interleave.Value = 1; 1018 Hint Hints[] = {Width, Interleave}; 1019 writeHintsToMetadata(Hints); 1020 } 1021 1022 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1023 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1024 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1025 emitOptimizationRemarkAnalysis(F->getContext(), 1026 vectorizeAnalysisPassName(), *F, 1027 L->getStartLoc(), emitRemark()); 1028 return false; 1029 } 1030 1031 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1032 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1033 emitOptimizationRemarkAnalysis(F->getContext(), 1034 vectorizeAnalysisPassName(), *F, 1035 L->getStartLoc(), emitRemark()); 1036 return false; 1037 } 1038 1039 if (getWidth() == 1 && getInterleave() == 1) { 1040 // FIXME: Add a separate metadata to indicate when the loop has already 1041 // been vectorized instead of setting width and count to 1. 1042 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1043 // FIXME: Add interleave.disable metadata. This will allow 1044 // vectorize.disable to be used without disabling the pass and errors 1045 // to differentiate between disabled vectorization and a width of 1. 1046 emitOptimizationRemarkAnalysis( 1047 F->getContext(), vectorizeAnalysisPassName(), *F, L->getStartLoc(), 1048 "loop not vectorized: vectorization and interleaving are explicitly " 1049 "disabled, or vectorize width and interleave count are both set to " 1050 "1"); 1051 return false; 1052 } 1053 1054 return true; 1055 } 1056 1057 /// Dumps all the hint information. 1058 std::string emitRemark() const { 1059 VectorizationReport R; 1060 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1061 R << "vectorization is explicitly disabled"; 1062 else { 1063 R << "use -Rpass-analysis=loop-vectorize for more info"; 1064 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1065 R << " (Force=true"; 1066 if (Width.Value != 0) 1067 R << ", Vector Width=" << Width.Value; 1068 if (Interleave.Value != 0) 1069 R << ", Interleave Count=" << Interleave.Value; 1070 R << ")"; 1071 } 1072 } 1073 1074 return R.str(); 1075 } 1076 1077 unsigned getWidth() const { return Width.Value; } 1078 unsigned getInterleave() const { return Interleave.Value; } 1079 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1080 const char *vectorizeAnalysisPassName() const { 1081 // If hints are provided that don't disable vectorization use the 1082 // AlwaysPrint pass name to force the frontend to print the diagnostic. 1083 if (getWidth() == 1) 1084 return LV_NAME; 1085 if (getForce() == LoopVectorizeHints::FK_Disabled) 1086 return LV_NAME; 1087 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1088 return LV_NAME; 1089 return DiagnosticInfo::AlwaysPrint; 1090 } 1091 1092 bool allowReordering() const { 1093 // When enabling loop hints are provided we allow the vectorizer to change 1094 // the order of operations that is given by the scalar loop. This is not 1095 // enabled by default because can be unsafe or inefficient. For example, 1096 // reordering floating-point operations will change the way round-off 1097 // error accumulates in the loop. 1098 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1099 } 1100 1101 bool isPotentiallyUnsafe() const { 1102 // Avoid FP vectorization if the target is unsure about proper support. 1103 // This may be related to the SIMD unit in the target not handling 1104 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1105 // Otherwise, a sequence of vectorized loops, even without reduction, 1106 // could lead to different end results on the destination vectors. 1107 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1108 } 1109 1110 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1111 1112 private: 1113 /// Find hints specified in the loop metadata and update local values. 1114 void getHintsFromMetadata() { 1115 MDNode *LoopID = TheLoop->getLoopID(); 1116 if (!LoopID) 1117 return; 1118 1119 // First operand should refer to the loop id itself. 1120 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1121 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1122 1123 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1124 const MDString *S = nullptr; 1125 SmallVector<Metadata *, 4> Args; 1126 1127 // The expected hint is either a MDString or a MDNode with the first 1128 // operand a MDString. 1129 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1130 if (!MD || MD->getNumOperands() == 0) 1131 continue; 1132 S = dyn_cast<MDString>(MD->getOperand(0)); 1133 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1134 Args.push_back(MD->getOperand(i)); 1135 } else { 1136 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1137 assert(Args.size() == 0 && "too many arguments for MDString"); 1138 } 1139 1140 if (!S) 1141 continue; 1142 1143 // Check if the hint starts with the loop metadata prefix. 1144 StringRef Name = S->getString(); 1145 if (Args.size() == 1) 1146 setHint(Name, Args[0]); 1147 } 1148 } 1149 1150 /// Checks string hint with one operand and set value if valid. 1151 void setHint(StringRef Name, Metadata *Arg) { 1152 if (!Name.startswith(Prefix())) 1153 return; 1154 Name = Name.substr(Prefix().size(), StringRef::npos); 1155 1156 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1157 if (!C) 1158 return; 1159 unsigned Val = C->getZExtValue(); 1160 1161 Hint *Hints[] = {&Width, &Interleave, &Force}; 1162 for (auto H : Hints) { 1163 if (Name == H->Name) { 1164 if (H->validate(Val)) 1165 H->Value = Val; 1166 else 1167 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1168 break; 1169 } 1170 } 1171 } 1172 1173 /// Create a new hint from name / value pair. 1174 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1175 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1176 Metadata *MDs[] = {MDString::get(Context, Name), 1177 ConstantAsMetadata::get( 1178 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1179 return MDNode::get(Context, MDs); 1180 } 1181 1182 /// Matches metadata with hint name. 1183 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1184 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1185 if (!Name) 1186 return false; 1187 1188 for (auto H : HintTypes) 1189 if (Name->getString().endswith(H.Name)) 1190 return true; 1191 return false; 1192 } 1193 1194 /// Sets current hints into loop metadata, keeping other values intact. 1195 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1196 if (HintTypes.size() == 0) 1197 return; 1198 1199 // Reserve the first element to LoopID (see below). 1200 SmallVector<Metadata *, 4> MDs(1); 1201 // If the loop already has metadata, then ignore the existing operands. 1202 MDNode *LoopID = TheLoop->getLoopID(); 1203 if (LoopID) { 1204 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1205 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1206 // If node in update list, ignore old value. 1207 if (!matchesHintMetadataName(Node, HintTypes)) 1208 MDs.push_back(Node); 1209 } 1210 } 1211 1212 // Now, add the missing hints. 1213 for (auto H : HintTypes) 1214 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1215 1216 // Replace current metadata node with new one. 1217 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1218 MDNode *NewLoopID = MDNode::get(Context, MDs); 1219 // Set operand 0 to refer to the loop id itself. 1220 NewLoopID->replaceOperandWith(0, NewLoopID); 1221 1222 TheLoop->setLoopID(NewLoopID); 1223 } 1224 1225 /// The loop these hints belong to. 1226 const Loop *TheLoop; 1227 }; 1228 1229 static void emitAnalysisDiag(const Function *TheFunction, const Loop *TheLoop, 1230 const LoopVectorizeHints &Hints, 1231 const LoopAccessReport &Message) { 1232 const char *Name = Hints.vectorizeAnalysisPassName(); 1233 LoopAccessReport::emitAnalysis(Message, TheFunction, TheLoop, Name); 1234 } 1235 1236 static void emitMissedWarning(Function *F, Loop *L, 1237 const LoopVectorizeHints &LH) { 1238 emitOptimizationRemarkMissed(F->getContext(), LV_NAME, *F, L->getStartLoc(), 1239 LH.emitRemark()); 1240 1241 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1242 if (LH.getWidth() != 1) 1243 emitLoopVectorizeWarning( 1244 F->getContext(), *F, L->getStartLoc(), 1245 "failed explicitly specified loop vectorization"); 1246 else if (LH.getInterleave() != 1) 1247 emitLoopInterleaveWarning( 1248 F->getContext(), *F, L->getStartLoc(), 1249 "failed explicitly specified loop interleaving"); 1250 } 1251 } 1252 1253 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1254 /// to what vectorization factor. 1255 /// This class does not look at the profitability of vectorization, only the 1256 /// legality. This class has two main kinds of checks: 1257 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1258 /// will change the order of memory accesses in a way that will change the 1259 /// correctness of the program. 1260 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1261 /// checks for a number of different conditions, such as the availability of a 1262 /// single induction variable, that all types are supported and vectorize-able, 1263 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1264 /// This class is also used by InnerLoopVectorizer for identifying 1265 /// induction variable and the different reduction variables. 1266 class LoopVectorizationLegality { 1267 public: 1268 LoopVectorizationLegality(Loop *L, PredicatedScalarEvolution &PSE, 1269 DominatorTree *DT, TargetLibraryInfo *TLI, 1270 AliasAnalysis *AA, Function *F, 1271 const TargetTransformInfo *TTI, 1272 LoopAccessAnalysis *LAA, 1273 LoopVectorizationRequirements *R, 1274 LoopVectorizeHints *H) 1275 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TheFunction(F), 1276 TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(PSE, L, DT), 1277 Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1278 Requirements(R), Hints(H) {} 1279 1280 /// ReductionList contains the reduction descriptors for all 1281 /// of the reductions that were found in the loop. 1282 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1283 1284 /// InductionList saves induction variables and maps them to the 1285 /// induction descriptor. 1286 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1287 1288 /// RecurrenceSet contains the phi nodes that are recurrences other than 1289 /// inductions and reductions. 1290 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1291 1292 /// Returns true if it is legal to vectorize this loop. 1293 /// This does not mean that it is profitable to vectorize this 1294 /// loop, only that it is legal to do so. 1295 bool canVectorize(); 1296 1297 /// Returns the Induction variable. 1298 PHINode *getInduction() { return Induction; } 1299 1300 /// Returns the reduction variables found in the loop. 1301 ReductionList *getReductionVars() { return &Reductions; } 1302 1303 /// Returns the induction variables found in the loop. 1304 InductionList *getInductionVars() { return &Inductions; } 1305 1306 /// Return the first-order recurrences found in the loop. 1307 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1308 1309 /// Returns the widest induction type. 1310 Type *getWidestInductionType() { return WidestIndTy; } 1311 1312 /// Returns True if V is an induction variable in this loop. 1313 bool isInductionVariable(const Value *V); 1314 1315 /// Returns True if PN is a reduction variable in this loop. 1316 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1317 1318 /// Returns True if Phi is a first-order recurrence in this loop. 1319 bool isFirstOrderRecurrence(const PHINode *Phi); 1320 1321 /// Return true if the block BB needs to be predicated in order for the loop 1322 /// to be vectorized. 1323 bool blockNeedsPredication(BasicBlock *BB); 1324 1325 /// Check if this pointer is consecutive when vectorizing. This happens 1326 /// when the last index of the GEP is the induction variable, or that the 1327 /// pointer itself is an induction variable. 1328 /// This check allows us to vectorize A[idx] into a wide load/store. 1329 /// Returns: 1330 /// 0 - Stride is unknown or non-consecutive. 1331 /// 1 - Address is consecutive. 1332 /// -1 - Address is consecutive, and decreasing. 1333 int isConsecutivePtr(Value *Ptr); 1334 1335 /// Returns true if the value V is uniform within the loop. 1336 bool isUniform(Value *V); 1337 1338 /// Returns true if this instruction will remain scalar after vectorization. 1339 bool isUniformAfterVectorization(Instruction *I) { return Uniforms.count(I); } 1340 1341 /// Returns the information that we collected about runtime memory check. 1342 const RuntimePointerChecking *getRuntimePointerChecking() const { 1343 return LAI->getRuntimePointerChecking(); 1344 } 1345 1346 const LoopAccessInfo *getLAI() const { return LAI; } 1347 1348 /// \brief Check if \p Instr belongs to any interleaved access group. 1349 bool isAccessInterleaved(Instruction *Instr) { 1350 return InterleaveInfo.isInterleaved(Instr); 1351 } 1352 1353 /// \brief Return the maximum interleave factor of all interleaved groups. 1354 unsigned getMaxInterleaveFactor() const { 1355 return InterleaveInfo.getMaxInterleaveFactor(); 1356 } 1357 1358 /// \brief Get the interleaved access group that \p Instr belongs to. 1359 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1360 return InterleaveInfo.getInterleaveGroup(Instr); 1361 } 1362 1363 /// \brief Returns true if an interleaved group requires a scalar iteration 1364 /// to handle accesses with gaps. 1365 bool requiresScalarEpilogue() const { 1366 return InterleaveInfo.requiresScalarEpilogue(); 1367 } 1368 1369 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1370 1371 bool hasStride(Value *V) { return StrideSet.count(V); } 1372 bool mustCheckStrides() { return !StrideSet.empty(); } 1373 SmallPtrSet<Value *, 8>::iterator strides_begin() { 1374 return StrideSet.begin(); 1375 } 1376 SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); } 1377 1378 /// Returns true if the target machine supports masked store operation 1379 /// for the given \p DataType and kind of access to \p Ptr. 1380 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1381 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1382 } 1383 /// Returns true if the target machine supports masked load operation 1384 /// for the given \p DataType and kind of access to \p Ptr. 1385 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1386 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1387 } 1388 /// Returns true if the target machine supports masked scatter operation 1389 /// for the given \p DataType. 1390 bool isLegalMaskedScatter(Type *DataType) { 1391 return TTI->isLegalMaskedScatter(DataType); 1392 } 1393 /// Returns true if the target machine supports masked gather operation 1394 /// for the given \p DataType. 1395 bool isLegalMaskedGather(Type *DataType) { 1396 return TTI->isLegalMaskedGather(DataType); 1397 } 1398 1399 /// Returns true if vector representation of the instruction \p I 1400 /// requires mask. 1401 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1402 unsigned getNumStores() const { return LAI->getNumStores(); } 1403 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1404 unsigned getNumPredStores() const { return NumPredStores; } 1405 1406 private: 1407 /// Check if a single basic block loop is vectorizable. 1408 /// At this point we know that this is a loop with a constant trip count 1409 /// and we only need to check individual instructions. 1410 bool canVectorizeInstrs(); 1411 1412 /// When we vectorize loops we may change the order in which 1413 /// we read and write from memory. This method checks if it is 1414 /// legal to vectorize the code, considering only memory constrains. 1415 /// Returns true if the loop is vectorizable 1416 bool canVectorizeMemory(); 1417 1418 /// Return true if we can vectorize this loop using the IF-conversion 1419 /// transformation. 1420 bool canVectorizeWithIfConvert(); 1421 1422 /// Collect the variables that need to stay uniform after vectorization. 1423 void collectLoopUniforms(); 1424 1425 /// Return true if all of the instructions in the block can be speculatively 1426 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1427 /// and we know that we can read from them without segfault. 1428 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1429 1430 /// \brief Collect memory access with loop invariant strides. 1431 /// 1432 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop 1433 /// invariant. 1434 void collectStridedAccess(Value *LoadOrStoreInst); 1435 1436 /// \brief Returns true if we can vectorize using this PHI node as an 1437 /// induction. 1438 /// 1439 /// Updates the vectorization state by adding \p Phi to the inductions list. 1440 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1441 /// better choice for the main induction than the existing one. 1442 bool addInductionPhi(PHINode *Phi, InductionDescriptor ID); 1443 1444 /// Report an analysis message to assist the user in diagnosing loops that are 1445 /// not vectorized. These are handled as LoopAccessReport rather than 1446 /// VectorizationReport because the << operator of VectorizationReport returns 1447 /// LoopAccessReport. 1448 void emitAnalysis(const LoopAccessReport &Message) const { 1449 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1450 } 1451 1452 unsigned NumPredStores; 1453 1454 /// The loop that we evaluate. 1455 Loop *TheLoop; 1456 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1457 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1458 /// of existing SCEV assumptions. The analysis will also add a minimal set 1459 /// of new predicates if this is required to enable vectorization and 1460 /// unrolling. 1461 PredicatedScalarEvolution &PSE; 1462 /// Target Library Info. 1463 TargetLibraryInfo *TLI; 1464 /// Parent function 1465 Function *TheFunction; 1466 /// Target Transform Info 1467 const TargetTransformInfo *TTI; 1468 /// Dominator Tree. 1469 DominatorTree *DT; 1470 // LoopAccess analysis. 1471 LoopAccessAnalysis *LAA; 1472 // And the loop-accesses info corresponding to this loop. This pointer is 1473 // null until canVectorizeMemory sets it up. 1474 const LoopAccessInfo *LAI; 1475 1476 /// The interleave access information contains groups of interleaved accesses 1477 /// with the same stride and close to each other. 1478 InterleavedAccessInfo InterleaveInfo; 1479 1480 // --- vectorization state --- // 1481 1482 /// Holds the integer induction variable. This is the counter of the 1483 /// loop. 1484 PHINode *Induction; 1485 /// Holds the reduction variables. 1486 ReductionList Reductions; 1487 /// Holds all of the induction variables that we found in the loop. 1488 /// Notice that inductions don't need to start at zero and that induction 1489 /// variables can be pointers. 1490 InductionList Inductions; 1491 /// Holds the phi nodes that are first-order recurrences. 1492 RecurrenceSet FirstOrderRecurrences; 1493 /// Holds the widest induction type encountered. 1494 Type *WidestIndTy; 1495 1496 /// Allowed outside users. This holds the reduction 1497 /// vars which can be accessed from outside the loop. 1498 SmallPtrSet<Value *, 4> AllowedExit; 1499 /// This set holds the variables which are known to be uniform after 1500 /// vectorization. 1501 SmallPtrSet<Instruction *, 4> Uniforms; 1502 1503 /// Can we assume the absence of NaNs. 1504 bool HasFunNoNaNAttr; 1505 1506 /// Vectorization requirements that will go through late-evaluation. 1507 LoopVectorizationRequirements *Requirements; 1508 1509 /// Used to emit an analysis of any legality issues. 1510 LoopVectorizeHints *Hints; 1511 1512 ValueToValueMap Strides; 1513 SmallPtrSet<Value *, 8> StrideSet; 1514 1515 /// While vectorizing these instructions we have to generate a 1516 /// call to the appropriate masked intrinsic 1517 SmallPtrSet<const Instruction *, 8> MaskedOp; 1518 }; 1519 1520 /// LoopVectorizationCostModel - estimates the expected speedups due to 1521 /// vectorization. 1522 /// In many cases vectorization is not profitable. This can happen because of 1523 /// a number of reasons. In this class we mainly attempt to predict the 1524 /// expected speedup/slowdowns due to the supported instruction set. We use the 1525 /// TargetTransformInfo to query the different backends for the cost of 1526 /// different operations. 1527 class LoopVectorizationCostModel { 1528 public: 1529 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1530 LoopInfo *LI, LoopVectorizationLegality *Legal, 1531 const TargetTransformInfo &TTI, 1532 const TargetLibraryInfo *TLI, DemandedBits *DB, 1533 AssumptionCache *AC, const Function *F, 1534 const LoopVectorizeHints *Hints) 1535 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1536 AC(AC), TheFunction(F), Hints(Hints) {} 1537 1538 /// Information about vectorization costs 1539 struct VectorizationFactor { 1540 unsigned Width; // Vector width with best cost 1541 unsigned Cost; // Cost of the loop with that width 1542 }; 1543 /// \return The most profitable vectorization factor and the cost of that VF. 1544 /// This method checks every power of two up to VF. If UserVF is not ZERO 1545 /// then this vectorization factor will be selected if vectorization is 1546 /// possible. 1547 VectorizationFactor selectVectorizationFactor(bool OptForSize); 1548 1549 /// \return The size (in bits) of the smallest and widest types in the code 1550 /// that needs to be vectorized. We ignore values that remain scalar such as 1551 /// 64 bit loop indices. 1552 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1553 1554 /// \return The desired interleave count. 1555 /// If interleave count has been specified by metadata it will be returned. 1556 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1557 /// are the selected vectorization factor and the cost of the selected VF. 1558 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1559 unsigned LoopCost); 1560 1561 /// \return The most profitable unroll factor. 1562 /// This method finds the best unroll-factor based on register pressure and 1563 /// other parameters. VF and LoopCost are the selected vectorization factor 1564 /// and the cost of the selected VF. 1565 unsigned computeInterleaveCount(bool OptForSize, unsigned VF, 1566 unsigned LoopCost); 1567 1568 /// \brief A struct that represents some properties of the register usage 1569 /// of a loop. 1570 struct RegisterUsage { 1571 /// Holds the number of loop invariant values that are used in the loop. 1572 unsigned LoopInvariantRegs; 1573 /// Holds the maximum number of concurrent live intervals in the loop. 1574 unsigned MaxLocalUsers; 1575 /// Holds the number of instructions in the loop. 1576 unsigned NumInstructions; 1577 }; 1578 1579 /// \return Returns information about the register usages of the loop for the 1580 /// given vectorization factors. 1581 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1582 1583 /// Collect values we want to ignore in the cost model. 1584 void collectValuesToIgnore(); 1585 1586 private: 1587 /// The vectorization cost is a combination of the cost itself and a boolean 1588 /// indicating whether any of the contributing operations will actually 1589 /// operate on 1590 /// vector values after type legalization in the backend. If this latter value 1591 /// is 1592 /// false, then all operations will be scalarized (i.e. no vectorization has 1593 /// actually taken place). 1594 typedef std::pair<unsigned, bool> VectorizationCostTy; 1595 1596 /// Returns the expected execution cost. The unit of the cost does 1597 /// not matter because we use the 'cost' units to compare different 1598 /// vector widths. The cost that is returned is *not* normalized by 1599 /// the factor width. 1600 VectorizationCostTy expectedCost(unsigned VF); 1601 1602 /// Returns the execution time cost of an instruction for a given vector 1603 /// width. Vector width of one means scalar. 1604 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1605 1606 /// The cost-computation logic from getInstructionCost which provides 1607 /// the vector type as an output parameter. 1608 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1609 1610 /// Returns whether the instruction is a load or store and will be a emitted 1611 /// as a vector operation. 1612 bool isConsecutiveLoadOrStore(Instruction *I); 1613 1614 /// Report an analysis message to assist the user in diagnosing loops that are 1615 /// not vectorized. These are handled as LoopAccessReport rather than 1616 /// VectorizationReport because the << operator of VectorizationReport returns 1617 /// LoopAccessReport. 1618 void emitAnalysis(const LoopAccessReport &Message) const { 1619 emitAnalysisDiag(TheFunction, TheLoop, *Hints, Message); 1620 } 1621 1622 public: 1623 /// Map of scalar integer values to the smallest bitwidth they can be legally 1624 /// represented as. The vector equivalents of these values should be truncated 1625 /// to this type. 1626 MapVector<Instruction *, uint64_t> MinBWs; 1627 1628 /// The loop that we evaluate. 1629 Loop *TheLoop; 1630 /// Predicated scalar evolution analysis. 1631 PredicatedScalarEvolution &PSE; 1632 /// Loop Info analysis. 1633 LoopInfo *LI; 1634 /// Vectorization legality. 1635 LoopVectorizationLegality *Legal; 1636 /// Vector target information. 1637 const TargetTransformInfo &TTI; 1638 /// Target Library Info. 1639 const TargetLibraryInfo *TLI; 1640 /// Demanded bits analysis. 1641 DemandedBits *DB; 1642 /// Assumption cache. 1643 AssumptionCache *AC; 1644 const Function *TheFunction; 1645 /// Loop Vectorize Hint. 1646 const LoopVectorizeHints *Hints; 1647 /// Values to ignore in the cost model. 1648 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1649 /// Values to ignore in the cost model when VF > 1. 1650 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1651 }; 1652 1653 /// \brief This holds vectorization requirements that must be verified late in 1654 /// the process. The requirements are set by legalize and costmodel. Once 1655 /// vectorization has been determined to be possible and profitable the 1656 /// requirements can be verified by looking for metadata or compiler options. 1657 /// For example, some loops require FP commutativity which is only allowed if 1658 /// vectorization is explicitly specified or if the fast-math compiler option 1659 /// has been provided. 1660 /// Late evaluation of these requirements allows helpful diagnostics to be 1661 /// composed that tells the user what need to be done to vectorize the loop. For 1662 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 1663 /// evaluation should be used only when diagnostics can generated that can be 1664 /// followed by a non-expert user. 1665 class LoopVectorizationRequirements { 1666 public: 1667 LoopVectorizationRequirements() 1668 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr) {} 1669 1670 void addUnsafeAlgebraInst(Instruction *I) { 1671 // First unsafe algebra instruction. 1672 if (!UnsafeAlgebraInst) 1673 UnsafeAlgebraInst = I; 1674 } 1675 1676 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 1677 1678 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 1679 const char *Name = Hints.vectorizeAnalysisPassName(); 1680 bool Failed = false; 1681 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 1682 emitOptimizationRemarkAnalysisFPCommute( 1683 F->getContext(), Name, *F, UnsafeAlgebraInst->getDebugLoc(), 1684 VectorizationReport() << "cannot prove it is safe to reorder " 1685 "floating-point operations"); 1686 Failed = true; 1687 } 1688 1689 // Test if runtime memcheck thresholds are exceeded. 1690 bool PragmaThresholdReached = 1691 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 1692 bool ThresholdReached = 1693 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 1694 if ((ThresholdReached && !Hints.allowReordering()) || 1695 PragmaThresholdReached) { 1696 emitOptimizationRemarkAnalysisAliasing( 1697 F->getContext(), Name, *F, L->getStartLoc(), 1698 VectorizationReport() 1699 << "cannot prove it is safe to reorder memory operations"); 1700 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 1701 Failed = true; 1702 } 1703 1704 return Failed; 1705 } 1706 1707 private: 1708 unsigned NumRuntimePointerChecks; 1709 Instruction *UnsafeAlgebraInst; 1710 }; 1711 1712 static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 1713 if (L.empty()) 1714 return V.push_back(&L); 1715 1716 for (Loop *InnerL : L) 1717 addInnerLoop(*InnerL, V); 1718 } 1719 1720 /// The LoopVectorize Pass. 1721 struct LoopVectorize : public FunctionPass { 1722 /// Pass identification, replacement for typeid 1723 static char ID; 1724 1725 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 1726 : FunctionPass(ID), DisableUnrolling(NoUnrolling), 1727 AlwaysVectorize(AlwaysVectorize) { 1728 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1729 } 1730 1731 ScalarEvolution *SE; 1732 LoopInfo *LI; 1733 TargetTransformInfo *TTI; 1734 DominatorTree *DT; 1735 BlockFrequencyInfo *BFI; 1736 TargetLibraryInfo *TLI; 1737 DemandedBits *DB; 1738 AliasAnalysis *AA; 1739 AssumptionCache *AC; 1740 LoopAccessAnalysis *LAA; 1741 bool DisableUnrolling; 1742 bool AlwaysVectorize; 1743 1744 BlockFrequency ColdEntryFreq; 1745 1746 bool runOnFunction(Function &F) override { 1747 if (skipFunction(F)) 1748 return false; 1749 1750 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1751 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1752 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1753 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1754 BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1755 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1756 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1757 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1758 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1759 LAA = &getAnalysis<LoopAccessAnalysis>(); 1760 DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1761 1762 // Compute some weights outside of the loop over the loops. Compute this 1763 // using a BranchProbability to re-use its scaling math. 1764 const BranchProbability ColdProb(1, 5); // 20% 1765 ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb; 1766 1767 // Don't attempt if 1768 // 1. the target claims to have no vector registers, and 1769 // 2. interleaving won't help ILP. 1770 // 1771 // The second condition is necessary because, even if the target has no 1772 // vector registers, loop vectorization may still enable scalar 1773 // interleaving. 1774 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 1775 return false; 1776 1777 // Build up a worklist of inner-loops to vectorize. This is necessary as 1778 // the act of vectorizing or partially unrolling a loop creates new loops 1779 // and can invalidate iterators across the loops. 1780 SmallVector<Loop *, 8> Worklist; 1781 1782 for (Loop *L : *LI) 1783 addInnerLoop(*L, Worklist); 1784 1785 LoopsAnalyzed += Worklist.size(); 1786 1787 // Now walk the identified inner loops. 1788 bool Changed = false; 1789 while (!Worklist.empty()) 1790 Changed |= processLoop(Worklist.pop_back_val()); 1791 1792 // Process each loop nest in the function. 1793 return Changed; 1794 } 1795 1796 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 1797 SmallVector<Metadata *, 4> MDs; 1798 // Reserve first location for self reference to the LoopID metadata node. 1799 MDs.push_back(nullptr); 1800 bool IsUnrollMetadata = false; 1801 MDNode *LoopID = L->getLoopID(); 1802 if (LoopID) { 1803 // First find existing loop unrolling disable metadata. 1804 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1805 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1806 if (MD) { 1807 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1808 IsUnrollMetadata = 1809 S && S->getString().startswith("llvm.loop.unroll.disable"); 1810 } 1811 MDs.push_back(LoopID->getOperand(i)); 1812 } 1813 } 1814 1815 if (!IsUnrollMetadata) { 1816 // Add runtime unroll disable metadata. 1817 LLVMContext &Context = L->getHeader()->getContext(); 1818 SmallVector<Metadata *, 1> DisableOperands; 1819 DisableOperands.push_back( 1820 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 1821 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 1822 MDs.push_back(DisableNode); 1823 MDNode *NewLoopID = MDNode::get(Context, MDs); 1824 // Set operand 0 to refer to the loop id itself. 1825 NewLoopID->replaceOperandWith(0, NewLoopID); 1826 L->setLoopID(NewLoopID); 1827 } 1828 } 1829 1830 bool processLoop(Loop *L) { 1831 assert(L->empty() && "Only process inner loops."); 1832 1833 #ifndef NDEBUG 1834 const std::string DebugLocStr = getDebugLocString(L); 1835 #endif /* NDEBUG */ 1836 1837 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 1838 << L->getHeader()->getParent()->getName() << "\" from " 1839 << DebugLocStr << "\n"); 1840 1841 LoopVectorizeHints Hints(L, DisableUnrolling); 1842 1843 DEBUG(dbgs() << "LV: Loop hints:" 1844 << " force=" 1845 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 1846 ? "disabled" 1847 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 1848 ? "enabled" 1849 : "?")) 1850 << " width=" << Hints.getWidth() 1851 << " unroll=" << Hints.getInterleave() << "\n"); 1852 1853 // Function containing loop 1854 Function *F = L->getHeader()->getParent(); 1855 1856 // Looking at the diagnostic output is the only way to determine if a loop 1857 // was vectorized (other than looking at the IR or machine code), so it 1858 // is important to generate an optimization remark for each loop. Most of 1859 // these messages are generated by emitOptimizationRemarkAnalysis. Remarks 1860 // generated by emitOptimizationRemark and emitOptimizationRemarkMissed are 1861 // less verbose reporting vectorized loops and unvectorized loops that may 1862 // benefit from vectorization, respectively. 1863 1864 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 1865 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 1866 return false; 1867 } 1868 1869 // Check the loop for a trip count threshold: 1870 // do not vectorize loops with a tiny trip count. 1871 const unsigned TC = SE->getSmallConstantTripCount(L); 1872 if (TC > 0u && TC < TinyTripCountVectorThreshold) { 1873 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 1874 << "This loop is not worth vectorizing."); 1875 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 1876 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 1877 else { 1878 DEBUG(dbgs() << "\n"); 1879 emitAnalysisDiag(F, L, Hints, VectorizationReport() 1880 << "vectorization is not beneficial " 1881 "and is not explicitly forced"); 1882 return false; 1883 } 1884 } 1885 1886 PredicatedScalarEvolution PSE(*SE, *L); 1887 1888 // Check if it is legal to vectorize the loop. 1889 LoopVectorizationRequirements Requirements; 1890 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, LAA, 1891 &Requirements, &Hints); 1892 if (!LVL.canVectorize()) { 1893 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 1894 emitMissedWarning(F, L, Hints); 1895 return false; 1896 } 1897 1898 // Use the cost model. 1899 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, F, 1900 &Hints); 1901 CM.collectValuesToIgnore(); 1902 1903 // Check the function attributes to find out if this function should be 1904 // optimized for size. 1905 bool OptForSize = 1906 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 1907 1908 // Compute the weighted frequency of this loop being executed and see if it 1909 // is less than 20% of the function entry baseline frequency. Note that we 1910 // always have a canonical loop here because we think we *can* vectorize. 1911 // FIXME: This is hidden behind a flag due to pervasive problems with 1912 // exactly what block frequency models. 1913 if (LoopVectorizeWithBlockFrequency) { 1914 BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader()); 1915 if (Hints.getForce() != LoopVectorizeHints::FK_Enabled && 1916 LoopEntryFreq < ColdEntryFreq) 1917 OptForSize = true; 1918 } 1919 1920 // Check the function attributes to see if implicit floats are allowed. 1921 // FIXME: This check doesn't seem possibly correct -- what if the loop is 1922 // an integer loop and the vector instructions selected are purely integer 1923 // vector instructions? 1924 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 1925 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 1926 "attribute is used.\n"); 1927 emitAnalysisDiag( 1928 F, L, Hints, 1929 VectorizationReport() 1930 << "loop not vectorized due to NoImplicitFloat attribute"); 1931 emitMissedWarning(F, L, Hints); 1932 return false; 1933 } 1934 1935 // Check if the target supports potentially unsafe FP vectorization. 1936 // FIXME: Add a check for the type of safety issue (denormal, signaling) 1937 // for the target we're vectorizing for, to make sure none of the 1938 // additional fp-math flags can help. 1939 if (Hints.isPotentiallyUnsafe() && 1940 TTI->isFPVectorizationPotentiallyUnsafe()) { 1941 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 1942 emitAnalysisDiag(F, L, Hints, 1943 VectorizationReport() 1944 << "loop not vectorized due to unsafe FP support."); 1945 emitMissedWarning(F, L, Hints); 1946 return false; 1947 } 1948 1949 // Select the optimal vectorization factor. 1950 const LoopVectorizationCostModel::VectorizationFactor VF = 1951 CM.selectVectorizationFactor(OptForSize); 1952 1953 // Select the interleave count. 1954 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 1955 1956 // Get user interleave count. 1957 unsigned UserIC = Hints.getInterleave(); 1958 1959 // Identify the diagnostic messages that should be produced. 1960 std::string VecDiagMsg, IntDiagMsg; 1961 bool VectorizeLoop = true, InterleaveLoop = true; 1962 1963 if (Requirements.doesNotMeet(F, L, Hints)) { 1964 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 1965 "requirements.\n"); 1966 emitMissedWarning(F, L, Hints); 1967 return false; 1968 } 1969 1970 if (VF.Width == 1) { 1971 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 1972 VecDiagMsg = 1973 "the cost-model indicates that vectorization is not beneficial"; 1974 VectorizeLoop = false; 1975 } 1976 1977 if (IC == 1 && UserIC <= 1) { 1978 // Tell the user interleaving is not beneficial. 1979 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 1980 IntDiagMsg = 1981 "the cost-model indicates that interleaving is not beneficial"; 1982 InterleaveLoop = false; 1983 if (UserIC == 1) 1984 IntDiagMsg += 1985 " and is explicitly disabled or interleave count is set to 1"; 1986 } else if (IC > 1 && UserIC == 1) { 1987 // Tell the user interleaving is beneficial, but it explicitly disabled. 1988 DEBUG(dbgs() 1989 << "LV: Interleaving is beneficial but is explicitly disabled."); 1990 IntDiagMsg = "the cost-model indicates that interleaving is beneficial " 1991 "but is explicitly disabled or interleave count is set to 1"; 1992 InterleaveLoop = false; 1993 } 1994 1995 // Override IC if user provided an interleave count. 1996 IC = UserIC > 0 ? UserIC : IC; 1997 1998 // Emit diagnostic messages, if any. 1999 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 2000 if (!VectorizeLoop && !InterleaveLoop) { 2001 // Do not vectorize or interleaving the loop. 2002 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 2003 L->getStartLoc(), VecDiagMsg); 2004 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 2005 L->getStartLoc(), IntDiagMsg); 2006 return false; 2007 } else if (!VectorizeLoop && InterleaveLoop) { 2008 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 2009 emitOptimizationRemarkAnalysis(F->getContext(), VAPassName, *F, 2010 L->getStartLoc(), VecDiagMsg); 2011 } else if (VectorizeLoop && !InterleaveLoop) { 2012 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 2013 << DebugLocStr << '\n'); 2014 emitOptimizationRemarkAnalysis(F->getContext(), LV_NAME, *F, 2015 L->getStartLoc(), IntDiagMsg); 2016 } else if (VectorizeLoop && InterleaveLoop) { 2017 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 2018 << DebugLocStr << '\n'); 2019 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 2020 } 2021 2022 if (!VectorizeLoop) { 2023 assert(IC > 1 && "interleave count should not be 1 or 0"); 2024 // If we decided that it is not legal to vectorize the loop, then 2025 // interleave it. 2026 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, IC); 2027 Unroller.vectorize(&LVL, CM.MinBWs); 2028 2029 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2030 Twine("interleaved loop (interleaved count: ") + 2031 Twine(IC) + ")"); 2032 } else { 2033 // If we decided that it is *legal* to vectorize the loop, then do it. 2034 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, VF.Width, IC); 2035 LB.vectorize(&LVL, CM.MinBWs); 2036 ++LoopsVectorized; 2037 2038 // Add metadata to disable runtime unrolling a scalar loop when there are 2039 // no runtime checks about strides and memory. A scalar loop that is 2040 // rarely used is not worth unrolling. 2041 if (!LB.areSafetyChecksAdded()) 2042 AddRuntimeUnrollDisableMetaData(L); 2043 2044 // Report the vectorization decision. 2045 emitOptimizationRemark(F->getContext(), LV_NAME, *F, L->getStartLoc(), 2046 Twine("vectorized loop (vectorization width: ") + 2047 Twine(VF.Width) + ", interleaved count: " + 2048 Twine(IC) + ")"); 2049 } 2050 2051 // Mark the loop as already vectorized to avoid vectorizing again. 2052 Hints.setAlreadyVectorized(); 2053 2054 DEBUG(verifyFunction(*L->getHeader()->getParent())); 2055 return true; 2056 } 2057 2058 void getAnalysisUsage(AnalysisUsage &AU) const override { 2059 AU.addRequired<AssumptionCacheTracker>(); 2060 AU.addRequiredID(LoopSimplifyID); 2061 AU.addRequiredID(LCSSAID); 2062 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2063 AU.addRequired<DominatorTreeWrapperPass>(); 2064 AU.addRequired<LoopInfoWrapperPass>(); 2065 AU.addRequired<ScalarEvolutionWrapperPass>(); 2066 AU.addRequired<TargetTransformInfoWrapperPass>(); 2067 AU.addRequired<AAResultsWrapperPass>(); 2068 AU.addRequired<LoopAccessAnalysis>(); 2069 AU.addRequired<DemandedBitsWrapperPass>(); 2070 AU.addPreserved<LoopInfoWrapperPass>(); 2071 AU.addPreserved<DominatorTreeWrapperPass>(); 2072 AU.addPreserved<BasicAAWrapperPass>(); 2073 AU.addPreserved<GlobalsAAWrapperPass>(); 2074 } 2075 }; 2076 2077 } // end anonymous namespace 2078 2079 //===----------------------------------------------------------------------===// 2080 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2081 // LoopVectorizationCostModel. 2082 //===----------------------------------------------------------------------===// 2083 2084 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2085 // We need to place the broadcast of invariant variables outside the loop. 2086 Instruction *Instr = dyn_cast<Instruction>(V); 2087 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2088 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2089 2090 // Place the code for broadcasting invariant variables in the new preheader. 2091 IRBuilder<>::InsertPointGuard Guard(Builder); 2092 if (Invariant) 2093 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2094 2095 // Broadcast the scalar into all locations in the vector. 2096 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2097 2098 return Shuf; 2099 } 2100 2101 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 2102 const SCEV *StepSCEV) { 2103 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2104 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2105 Value *StepValue = Exp.expandCodeFor(StepSCEV, StepSCEV->getType(), 2106 &*Builder.GetInsertPoint()); 2107 return getStepVector(Val, StartIdx, StepValue); 2108 } 2109 2110 void InnerLoopVectorizer::widenInductionVariable(const InductionDescriptor &II, 2111 VectorParts &Entry, 2112 IntegerType *TruncType) { 2113 Value *Start = II.getStartValue(); 2114 ConstantInt *Step = II.getConstIntStepValue(); 2115 assert(Step && "Can not widen an IV with a non-constant step"); 2116 2117 // Construct the initial value of the vector IV in the vector loop preheader 2118 auto CurrIP = Builder.saveIP(); 2119 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2120 if (TruncType) { 2121 Step = ConstantInt::getSigned(TruncType, Step->getSExtValue()); 2122 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2123 } 2124 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2125 Value *SteppedStart = getStepVector(SplatStart, 0, Step); 2126 Builder.restoreIP(CurrIP); 2127 2128 Value *SplatVF = 2129 ConstantVector::getSplat(VF, ConstantInt::get(Start->getType(), VF)); 2130 // We may need to add the step a number of times, depending on the unroll 2131 // factor. The last of those goes into the PHI. 2132 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2133 &*LoopVectorBody->getFirstInsertionPt()); 2134 Value *LastInduction = VecInd; 2135 for (unsigned Part = 0; Part < UF; ++Part) { 2136 Entry[Part] = LastInduction; 2137 LastInduction = Builder.CreateAdd(LastInduction, SplatVF, "step.add"); 2138 } 2139 2140 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2141 VecInd->addIncoming(LastInduction, LoopVectorBody); 2142 } 2143 2144 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, 2145 Value *Step) { 2146 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2147 assert(Val->getType()->getScalarType()->isIntegerTy() && 2148 "Elem must be an integer"); 2149 assert(Step->getType() == Val->getType()->getScalarType() && 2150 "Step has wrong type"); 2151 // Create the types. 2152 Type *ITy = Val->getType()->getScalarType(); 2153 VectorType *Ty = cast<VectorType>(Val->getType()); 2154 int VLen = Ty->getNumElements(); 2155 SmallVector<Constant *, 8> Indices; 2156 2157 // Create a vector of consecutive numbers from zero to VF. 2158 for (int i = 0; i < VLen; ++i) 2159 Indices.push_back(ConstantInt::get(ITy, StartIdx + i)); 2160 2161 // Add the consecutive indices to the vector value. 2162 Constant *Cv = ConstantVector::get(Indices); 2163 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2164 Step = Builder.CreateVectorSplat(VLen, Step); 2165 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2166 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2167 // which can be found from the original scalar operations. 2168 Step = Builder.CreateMul(Cv, Step); 2169 return Builder.CreateAdd(Val, Step, "induction"); 2170 } 2171 2172 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2173 assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr"); 2174 auto *SE = PSE.getSE(); 2175 // Make sure that the pointer does not point to structs. 2176 if (Ptr->getType()->getPointerElementType()->isAggregateType()) 2177 return 0; 2178 2179 // If this value is a pointer induction variable, we know it is consecutive. 2180 PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr); 2181 if (Phi && Inductions.count(Phi)) { 2182 InductionDescriptor II = Inductions[Phi]; 2183 return II.getConsecutiveDirection(); 2184 } 2185 2186 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2187 if (!Gep) 2188 return 0; 2189 2190 unsigned NumOperands = Gep->getNumOperands(); 2191 Value *GpPtr = Gep->getPointerOperand(); 2192 // If this GEP value is a consecutive pointer induction variable and all of 2193 // the indices are constant, then we know it is consecutive. 2194 Phi = dyn_cast<PHINode>(GpPtr); 2195 if (Phi && Inductions.count(Phi)) { 2196 2197 // Make sure that the pointer does not point to structs. 2198 PointerType *GepPtrType = cast<PointerType>(GpPtr->getType()); 2199 if (GepPtrType->getElementType()->isAggregateType()) 2200 return 0; 2201 2202 // Make sure that all of the index operands are loop invariant. 2203 for (unsigned i = 1; i < NumOperands; ++i) 2204 if (!SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2205 return 0; 2206 2207 InductionDescriptor II = Inductions[Phi]; 2208 return II.getConsecutiveDirection(); 2209 } 2210 2211 unsigned InductionOperand = getGEPInductionOperand(Gep); 2212 2213 // Check that all of the gep indices are uniform except for our induction 2214 // operand. 2215 for (unsigned i = 0; i != NumOperands; ++i) 2216 if (i != InductionOperand && 2217 !SE->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), TheLoop)) 2218 return 0; 2219 2220 // We can emit wide load/stores only if the last non-zero index is the 2221 // induction variable. 2222 const SCEV *Last = nullptr; 2223 if (!Strides.count(Gep)) 2224 Last = PSE.getSCEV(Gep->getOperand(InductionOperand)); 2225 else { 2226 // Because of the multiplication by a stride we can have a s/zext cast. 2227 // We are going to replace this stride by 1 so the cast is safe to ignore. 2228 // 2229 // %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ] 2230 // %0 = trunc i64 %indvars.iv to i32 2231 // %mul = mul i32 %0, %Stride1 2232 // %idxprom = zext i32 %mul to i64 << Safe cast. 2233 // %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom 2234 // 2235 Last = replaceSymbolicStrideSCEV(PSE, Strides, 2236 Gep->getOperand(InductionOperand), Gep); 2237 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last)) 2238 Last = 2239 (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend) 2240 ? C->getOperand() 2241 : Last; 2242 } 2243 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) { 2244 const SCEV *Step = AR->getStepRecurrence(*SE); 2245 2246 // The memory is consecutive because the last index is consecutive 2247 // and all other indices are loop invariant. 2248 if (Step->isOne()) 2249 return 1; 2250 if (Step->isAllOnesValue()) 2251 return -1; 2252 } 2253 2254 return 0; 2255 } 2256 2257 bool LoopVectorizationLegality::isUniform(Value *V) { 2258 return LAI->isUniform(V); 2259 } 2260 2261 InnerLoopVectorizer::VectorParts & 2262 InnerLoopVectorizer::getVectorValue(Value *V) { 2263 assert(V != Induction && "The new induction variable should not be used."); 2264 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2265 2266 // If we have a stride that is replaced by one, do it here. 2267 if (Legal->hasStride(V)) 2268 V = ConstantInt::get(V->getType(), 1); 2269 2270 // If we have this scalar in the map, return it. 2271 if (WidenMap.has(V)) 2272 return WidenMap.get(V); 2273 2274 // If this scalar is unknown, assume that it is a constant or that it is 2275 // loop invariant. Broadcast V and save the value for future uses. 2276 Value *B = getBroadcastInstrs(V); 2277 return WidenMap.splat(V, B); 2278 } 2279 2280 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2281 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2282 SmallVector<Constant *, 8> ShuffleMask; 2283 for (unsigned i = 0; i < VF; ++i) 2284 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2285 2286 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2287 ConstantVector::get(ShuffleMask), 2288 "reverse"); 2289 } 2290 2291 // Get a mask to interleave \p NumVec vectors into a wide vector. 2292 // I.e. <0, VF, VF*2, ..., VF*(NumVec-1), 1, VF+1, VF*2+1, ...> 2293 // E.g. For 2 interleaved vectors, if VF is 4, the mask is: 2294 // <0, 4, 1, 5, 2, 6, 3, 7> 2295 static Constant *getInterleavedMask(IRBuilder<> &Builder, unsigned VF, 2296 unsigned NumVec) { 2297 SmallVector<Constant *, 16> Mask; 2298 for (unsigned i = 0; i < VF; i++) 2299 for (unsigned j = 0; j < NumVec; j++) 2300 Mask.push_back(Builder.getInt32(j * VF + i)); 2301 2302 return ConstantVector::get(Mask); 2303 } 2304 2305 // Get the strided mask starting from index \p Start. 2306 // I.e. <Start, Start + Stride, ..., Start + Stride*(VF-1)> 2307 static Constant *getStridedMask(IRBuilder<> &Builder, unsigned Start, 2308 unsigned Stride, unsigned VF) { 2309 SmallVector<Constant *, 16> Mask; 2310 for (unsigned i = 0; i < VF; i++) 2311 Mask.push_back(Builder.getInt32(Start + i * Stride)); 2312 2313 return ConstantVector::get(Mask); 2314 } 2315 2316 // Get a mask of two parts: The first part consists of sequential integers 2317 // starting from 0, The second part consists of UNDEFs. 2318 // I.e. <0, 1, 2, ..., NumInt - 1, undef, ..., undef> 2319 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned NumInt, 2320 unsigned NumUndef) { 2321 SmallVector<Constant *, 16> Mask; 2322 for (unsigned i = 0; i < NumInt; i++) 2323 Mask.push_back(Builder.getInt32(i)); 2324 2325 Constant *Undef = UndefValue::get(Builder.getInt32Ty()); 2326 for (unsigned i = 0; i < NumUndef; i++) 2327 Mask.push_back(Undef); 2328 2329 return ConstantVector::get(Mask); 2330 } 2331 2332 // Concatenate two vectors with the same element type. The 2nd vector should 2333 // not have more elements than the 1st vector. If the 2nd vector has less 2334 // elements, extend it with UNDEFs. 2335 static Value *ConcatenateTwoVectors(IRBuilder<> &Builder, Value *V1, 2336 Value *V2) { 2337 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); 2338 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); 2339 assert(VecTy1 && VecTy2 && 2340 VecTy1->getScalarType() == VecTy2->getScalarType() && 2341 "Expect two vectors with the same element type"); 2342 2343 unsigned NumElts1 = VecTy1->getNumElements(); 2344 unsigned NumElts2 = VecTy2->getNumElements(); 2345 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); 2346 2347 if (NumElts1 > NumElts2) { 2348 // Extend with UNDEFs. 2349 Constant *ExtMask = 2350 getSequentialMask(Builder, NumElts2, NumElts1 - NumElts2); 2351 V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); 2352 } 2353 2354 Constant *Mask = getSequentialMask(Builder, NumElts1 + NumElts2, 0); 2355 return Builder.CreateShuffleVector(V1, V2, Mask); 2356 } 2357 2358 // Concatenate vectors in the given list. All vectors have the same type. 2359 static Value *ConcatenateVectors(IRBuilder<> &Builder, 2360 ArrayRef<Value *> InputList) { 2361 unsigned NumVec = InputList.size(); 2362 assert(NumVec > 1 && "Should be at least two vectors"); 2363 2364 SmallVector<Value *, 8> ResList; 2365 ResList.append(InputList.begin(), InputList.end()); 2366 do { 2367 SmallVector<Value *, 8> TmpList; 2368 for (unsigned i = 0; i < NumVec - 1; i += 2) { 2369 Value *V0 = ResList[i], *V1 = ResList[i + 1]; 2370 assert((V0->getType() == V1->getType() || i == NumVec - 2) && 2371 "Only the last vector may have a different type"); 2372 2373 TmpList.push_back(ConcatenateTwoVectors(Builder, V0, V1)); 2374 } 2375 2376 // Push the last vector if the total number of vectors is odd. 2377 if (NumVec % 2 != 0) 2378 TmpList.push_back(ResList[NumVec - 1]); 2379 2380 ResList = TmpList; 2381 NumVec = ResList.size(); 2382 } while (NumVec > 1); 2383 2384 return ResList[0]; 2385 } 2386 2387 // Try to vectorize the interleave group that \p Instr belongs to. 2388 // 2389 // E.g. Translate following interleaved load group (factor = 3): 2390 // for (i = 0; i < N; i+=3) { 2391 // R = Pic[i]; // Member of index 0 2392 // G = Pic[i+1]; // Member of index 1 2393 // B = Pic[i+2]; // Member of index 2 2394 // ... // do something to R, G, B 2395 // } 2396 // To: 2397 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2398 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2399 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2400 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2401 // 2402 // Or translate following interleaved store group (factor = 3): 2403 // for (i = 0; i < N; i+=3) { 2404 // ... do something to R, G, B 2405 // Pic[i] = R; // Member of index 0 2406 // Pic[i+1] = G; // Member of index 1 2407 // Pic[i+2] = B; // Member of index 2 2408 // } 2409 // To: 2410 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2411 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2412 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2413 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2414 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2415 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2416 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2417 assert(Group && "Fail to get an interleaved access group."); 2418 2419 // Skip if current instruction is not the insert position. 2420 if (Instr != Group->getInsertPos()) 2421 return; 2422 2423 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2424 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2425 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2426 2427 // Prepare for the vector type of the interleaved load/store. 2428 Type *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2429 unsigned InterleaveFactor = Group->getFactor(); 2430 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2431 Type *PtrTy = VecTy->getPointerTo(Ptr->getType()->getPointerAddressSpace()); 2432 2433 // Prepare for the new pointers. 2434 setDebugLocFromInst(Builder, Ptr); 2435 VectorParts &PtrParts = getVectorValue(Ptr); 2436 SmallVector<Value *, 2> NewPtrs; 2437 unsigned Index = Group->getIndex(Instr); 2438 for (unsigned Part = 0; Part < UF; Part++) { 2439 // Extract the pointer for current instruction from the pointer vector. A 2440 // reverse access uses the pointer in the last lane. 2441 Value *NewPtr = Builder.CreateExtractElement( 2442 PtrParts[Part], 2443 Group->isReverse() ? Builder.getInt32(VF - 1) : Builder.getInt32(0)); 2444 2445 // Notice current instruction could be any index. Need to adjust the address 2446 // to the member of index 0. 2447 // 2448 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2449 // b = A[i]; // Member of index 0 2450 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2451 // 2452 // E.g. A[i+1] = a; // Member of index 1 2453 // A[i] = b; // Member of index 0 2454 // A[i+2] = c; // Member of index 2 (Current instruction) 2455 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2456 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2457 2458 // Cast to the vector pointer type. 2459 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2460 } 2461 2462 setDebugLocFromInst(Builder, Instr); 2463 Value *UndefVec = UndefValue::get(VecTy); 2464 2465 // Vectorize the interleaved load group. 2466 if (LI) { 2467 for (unsigned Part = 0; Part < UF; Part++) { 2468 Instruction *NewLoadInstr = Builder.CreateAlignedLoad( 2469 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2470 2471 for (unsigned i = 0; i < InterleaveFactor; i++) { 2472 Instruction *Member = Group->getMember(i); 2473 2474 // Skip the gaps in the group. 2475 if (!Member) 2476 continue; 2477 2478 Constant *StrideMask = getStridedMask(Builder, i, InterleaveFactor, VF); 2479 Value *StridedVec = Builder.CreateShuffleVector( 2480 NewLoadInstr, UndefVec, StrideMask, "strided.vec"); 2481 2482 // If this member has different type, cast the result type. 2483 if (Member->getType() != ScalarTy) { 2484 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2485 StridedVec = Builder.CreateBitOrPointerCast(StridedVec, OtherVTy); 2486 } 2487 2488 VectorParts &Entry = WidenMap.get(Member); 2489 Entry[Part] = 2490 Group->isReverse() ? reverseVector(StridedVec) : StridedVec; 2491 } 2492 2493 addMetadata(NewLoadInstr, Instr); 2494 } 2495 return; 2496 } 2497 2498 // The sub vector type for current instruction. 2499 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2500 2501 // Vectorize the interleaved store group. 2502 for (unsigned Part = 0; Part < UF; Part++) { 2503 // Collect the stored vector from each member. 2504 SmallVector<Value *, 4> StoredVecs; 2505 for (unsigned i = 0; i < InterleaveFactor; i++) { 2506 // Interleaved store group doesn't allow a gap, so each index has a member 2507 Instruction *Member = Group->getMember(i); 2508 assert(Member && "Fail to get a member from an interleaved store group"); 2509 2510 Value *StoredVec = 2511 getVectorValue(dyn_cast<StoreInst>(Member)->getValueOperand())[Part]; 2512 if (Group->isReverse()) 2513 StoredVec = reverseVector(StoredVec); 2514 2515 // If this member has different type, cast it to an unified type. 2516 if (StoredVec->getType() != SubVT) 2517 StoredVec = Builder.CreateBitOrPointerCast(StoredVec, SubVT); 2518 2519 StoredVecs.push_back(StoredVec); 2520 } 2521 2522 // Concatenate all vectors into a wide vector. 2523 Value *WideVec = ConcatenateVectors(Builder, StoredVecs); 2524 2525 // Interleave the elements in the wide vector. 2526 Constant *IMask = getInterleavedMask(Builder, VF, InterleaveFactor); 2527 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2528 "interleaved.vec"); 2529 2530 Instruction *NewStoreInstr = 2531 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2532 addMetadata(NewStoreInstr, Instr); 2533 } 2534 } 2535 2536 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2537 // Attempt to issue a wide load. 2538 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2539 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2540 2541 assert((LI || SI) && "Invalid Load/Store instruction"); 2542 2543 // Try to vectorize the interleave group if this access is interleaved. 2544 if (Legal->isAccessInterleaved(Instr)) 2545 return vectorizeInterleaveGroup(Instr); 2546 2547 Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 2548 Type *DataTy = VectorType::get(ScalarDataTy, VF); 2549 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 2550 unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment(); 2551 // An alignment of 0 means target abi alignment. We need to use the scalar's 2552 // target abi alignment in such a case. 2553 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2554 if (!Alignment) 2555 Alignment = DL.getABITypeAlignment(ScalarDataTy); 2556 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2557 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ScalarDataTy); 2558 unsigned VectorElementSize = DL.getTypeStoreSize(DataTy) / VF; 2559 2560 if (SI && Legal->blockNeedsPredication(SI->getParent()) && 2561 !Legal->isMaskRequired(SI)) 2562 return scalarizeInstruction(Instr, true); 2563 2564 if (ScalarAllocatedSize != VectorElementSize) 2565 return scalarizeInstruction(Instr); 2566 2567 // If the pointer is loop invariant scalarize the load. 2568 if (LI && Legal->isUniform(Ptr)) 2569 return scalarizeInstruction(Instr); 2570 2571 // If the pointer is non-consecutive and gather/scatter is not supported 2572 // scalarize the instruction. 2573 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 2574 bool Reverse = ConsecutiveStride < 0; 2575 bool CreateGatherScatter = 2576 !ConsecutiveStride && ((LI && Legal->isLegalMaskedGather(ScalarDataTy)) || 2577 (SI && Legal->isLegalMaskedScatter(ScalarDataTy))); 2578 2579 if (!ConsecutiveStride && !CreateGatherScatter) 2580 return scalarizeInstruction(Instr); 2581 2582 Constant *Zero = Builder.getInt32(0); 2583 VectorParts &Entry = WidenMap.get(Instr); 2584 VectorParts VectorGep; 2585 2586 // Handle consecutive loads/stores. 2587 GetElementPtrInst *Gep = getGEPInstruction(Ptr); 2588 if (ConsecutiveStride) { 2589 if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) { 2590 setDebugLocFromInst(Builder, Gep); 2591 Value *PtrOperand = Gep->getPointerOperand(); 2592 Value *FirstBasePtr = getVectorValue(PtrOperand)[0]; 2593 FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero); 2594 2595 // Create the new GEP with the new induction variable. 2596 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2597 Gep2->setOperand(0, FirstBasePtr); 2598 Gep2->setName("gep.indvar.base"); 2599 Ptr = Builder.Insert(Gep2); 2600 } else if (Gep) { 2601 setDebugLocFromInst(Builder, Gep); 2602 assert(PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getPointerOperand()), 2603 OrigLoop) && 2604 "Base ptr must be invariant"); 2605 // The last index does not have to be the induction. It can be 2606 // consecutive and be a function of the index. For example A[I+1]; 2607 unsigned NumOperands = Gep->getNumOperands(); 2608 unsigned InductionOperand = getGEPInductionOperand(Gep); 2609 // Create the new GEP with the new induction variable. 2610 GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone()); 2611 2612 for (unsigned i = 0; i < NumOperands; ++i) { 2613 Value *GepOperand = Gep->getOperand(i); 2614 Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand); 2615 2616 // Update last index or loop invariant instruction anchored in loop. 2617 if (i == InductionOperand || 2618 (GepOperandInst && OrigLoop->contains(GepOperandInst))) { 2619 assert((i == InductionOperand || 2620 PSE.getSE()->isLoopInvariant(PSE.getSCEV(GepOperandInst), 2621 OrigLoop)) && 2622 "Must be last index or loop invariant"); 2623 2624 VectorParts &GEPParts = getVectorValue(GepOperand); 2625 Value *Index = GEPParts[0]; 2626 Index = Builder.CreateExtractElement(Index, Zero); 2627 Gep2->setOperand(i, Index); 2628 Gep2->setName("gep.indvar.idx"); 2629 } 2630 } 2631 Ptr = Builder.Insert(Gep2); 2632 } else { // No GEP 2633 // Use the induction element ptr. 2634 assert(isa<PHINode>(Ptr) && "Invalid induction ptr"); 2635 setDebugLocFromInst(Builder, Ptr); 2636 VectorParts &PtrVal = getVectorValue(Ptr); 2637 Ptr = Builder.CreateExtractElement(PtrVal[0], Zero); 2638 } 2639 } else { 2640 // At this point we should vector version of GEP for Gather or Scatter 2641 assert(CreateGatherScatter && "The instruction should be scalarized"); 2642 if (Gep) { 2643 SmallVector<VectorParts, 4> OpsV; 2644 // Vectorizing GEP, across UF parts, we want to keep each loop-invariant 2645 // base or index of GEP scalar 2646 for (Value *Op : Gep->operands()) { 2647 if (PSE.getSE()->isLoopInvariant(PSE.getSCEV(Op), OrigLoop)) 2648 OpsV.push_back(VectorParts(UF, Op)); 2649 else 2650 OpsV.push_back(getVectorValue(Op)); 2651 } 2652 2653 for (unsigned Part = 0; Part < UF; ++Part) { 2654 SmallVector<Value *, 4> Ops; 2655 Value *GEPBasePtr = OpsV[0][Part]; 2656 for (unsigned i = 1; i < Gep->getNumOperands(); i++) 2657 Ops.push_back(OpsV[i][Part]); 2658 Value *NewGep = 2659 Builder.CreateGEP(nullptr, GEPBasePtr, Ops, "VectorGep"); 2660 assert(NewGep->getType()->isVectorTy() && "Expected vector GEP"); 2661 NewGep = 2662 Builder.CreateBitCast(NewGep, VectorType::get(Ptr->getType(), VF)); 2663 VectorGep.push_back(NewGep); 2664 } 2665 } else 2666 VectorGep = getVectorValue(Ptr); 2667 } 2668 2669 VectorParts Mask = createBlockInMask(Instr->getParent()); 2670 // Handle Stores: 2671 if (SI) { 2672 assert(!Legal->isUniform(SI->getPointerOperand()) && 2673 "We do not allow storing to uniform addresses"); 2674 setDebugLocFromInst(Builder, SI); 2675 // We don't want to update the value in the map as it might be used in 2676 // another expression. So don't use a reference type for "StoredVal". 2677 VectorParts StoredVal = getVectorValue(SI->getValueOperand()); 2678 2679 for (unsigned Part = 0; Part < UF; ++Part) { 2680 Instruction *NewSI = nullptr; 2681 if (CreateGatherScatter) { 2682 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 2683 NewSI = Builder.CreateMaskedScatter(StoredVal[Part], VectorGep[Part], 2684 Alignment, MaskPart); 2685 } else { 2686 // Calculate the pointer for the specific unroll-part. 2687 Value *PartPtr = 2688 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2689 2690 if (Reverse) { 2691 // If we store to reverse consecutive memory locations, then we need 2692 // to reverse the order of elements in the stored value. 2693 StoredVal[Part] = reverseVector(StoredVal[Part]); 2694 // If the address is consecutive but reversed, then the 2695 // wide store needs to start at the last vector element. 2696 PartPtr = 2697 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2698 PartPtr = 2699 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2700 Mask[Part] = reverseVector(Mask[Part]); 2701 } 2702 2703 Value *VecPtr = 2704 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2705 2706 if (Legal->isMaskRequired(SI)) 2707 NewSI = Builder.CreateMaskedStore(StoredVal[Part], VecPtr, Alignment, 2708 Mask[Part]); 2709 else 2710 NewSI = 2711 Builder.CreateAlignedStore(StoredVal[Part], VecPtr, Alignment); 2712 } 2713 addMetadata(NewSI, SI); 2714 } 2715 return; 2716 } 2717 2718 // Handle loads. 2719 assert(LI && "Must have a load instruction"); 2720 setDebugLocFromInst(Builder, LI); 2721 for (unsigned Part = 0; Part < UF; ++Part) { 2722 Instruction *NewLI; 2723 if (CreateGatherScatter) { 2724 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 2725 NewLI = Builder.CreateMaskedGather(VectorGep[Part], Alignment, MaskPart, 2726 0, "wide.masked.gather"); 2727 Entry[Part] = NewLI; 2728 } else { 2729 // Calculate the pointer for the specific unroll-part. 2730 Value *PartPtr = 2731 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 2732 2733 if (Reverse) { 2734 // If the address is consecutive but reversed, then the 2735 // wide load needs to start at the last vector element. 2736 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 2737 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 2738 Mask[Part] = reverseVector(Mask[Part]); 2739 } 2740 2741 Value *VecPtr = 2742 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2743 if (Legal->isMaskRequired(LI)) 2744 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 2745 UndefValue::get(DataTy), 2746 "wide.masked.load"); 2747 else 2748 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 2749 Entry[Part] = Reverse ? reverseVector(NewLI) : NewLI; 2750 } 2751 addMetadata(NewLI, LI); 2752 } 2753 } 2754 2755 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2756 bool IfPredicateStore) { 2757 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2758 // Holds vector parameters or scalars, in case of uniform vals. 2759 SmallVector<VectorParts, 4> Params; 2760 2761 setDebugLocFromInst(Builder, Instr); 2762 2763 // Find all of the vectorized parameters. 2764 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2765 Value *SrcOp = Instr->getOperand(op); 2766 2767 // If we are accessing the old induction variable, use the new one. 2768 if (SrcOp == OldInduction) { 2769 Params.push_back(getVectorValue(SrcOp)); 2770 continue; 2771 } 2772 2773 // Try using previously calculated values. 2774 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 2775 2776 // If the src is an instruction that appeared earlier in the basic block, 2777 // then it should already be vectorized. 2778 if (SrcInst && OrigLoop->contains(SrcInst)) { 2779 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 2780 // The parameter is a vector value from earlier. 2781 Params.push_back(WidenMap.get(SrcInst)); 2782 } else { 2783 // The parameter is a scalar from outside the loop. Maybe even a constant. 2784 VectorParts Scalars; 2785 Scalars.append(UF, SrcOp); 2786 Params.push_back(Scalars); 2787 } 2788 } 2789 2790 assert(Params.size() == Instr->getNumOperands() && 2791 "Invalid number of operands"); 2792 2793 // Does this instruction return a value ? 2794 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2795 2796 Value *UndefVec = 2797 IsVoidRetTy ? nullptr 2798 : UndefValue::get(VectorType::get(Instr->getType(), VF)); 2799 // Create a new entry in the WidenMap and initialize it to Undef or Null. 2800 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 2801 2802 VectorParts Cond; 2803 if (IfPredicateStore) { 2804 assert(Instr->getParent()->getSinglePredecessor() && 2805 "Only support single predecessor blocks"); 2806 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 2807 Instr->getParent()); 2808 } 2809 2810 // For each vector unroll 'part': 2811 for (unsigned Part = 0; Part < UF; ++Part) { 2812 // For each scalar that we create: 2813 for (unsigned Width = 0; Width < VF; ++Width) { 2814 2815 // Start if-block. 2816 Value *Cmp = nullptr; 2817 if (IfPredicateStore) { 2818 Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width)); 2819 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, 2820 ConstantInt::get(Cmp->getType(), 1)); 2821 } 2822 2823 Instruction *Cloned = Instr->clone(); 2824 if (!IsVoidRetTy) 2825 Cloned->setName(Instr->getName() + ".cloned"); 2826 // Replace the operands of the cloned instructions with extracted scalars. 2827 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 2828 Value *Op = Params[op][Part]; 2829 // Param is a vector. Need to extract the right lane. 2830 if (Op->getType()->isVectorTy()) 2831 Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width)); 2832 Cloned->setOperand(op, Op); 2833 } 2834 addNewMetadata(Cloned, Instr); 2835 2836 // Place the cloned scalar in the new loop. 2837 Builder.Insert(Cloned); 2838 2839 // If we just cloned a new assumption, add it the assumption cache. 2840 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2841 if (II->getIntrinsicID() == Intrinsic::assume) 2842 AC->registerAssumption(II); 2843 2844 // If the original scalar returns a value we need to place it in a vector 2845 // so that future users will be able to use it. 2846 if (!IsVoidRetTy) 2847 VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned, 2848 Builder.getInt32(Width)); 2849 // End if-block. 2850 if (IfPredicateStore) 2851 PredicatedStores.push_back( 2852 std::make_pair(cast<StoreInst>(Cloned), Cmp)); 2853 } 2854 } 2855 } 2856 2857 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2858 Value *End, Value *Step, 2859 Instruction *DL) { 2860 BasicBlock *Header = L->getHeader(); 2861 BasicBlock *Latch = L->getLoopLatch(); 2862 // As we're just creating this loop, it's possible no latch exists 2863 // yet. If so, use the header as this will be a single block loop. 2864 if (!Latch) 2865 Latch = Header; 2866 2867 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2868 setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction)); 2869 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2870 2871 Builder.SetInsertPoint(Latch->getTerminator()); 2872 2873 // Create i+1 and fill the PHINode. 2874 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2875 Induction->addIncoming(Start, L->getLoopPreheader()); 2876 Induction->addIncoming(Next, Latch); 2877 // Create the compare. 2878 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2879 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 2880 2881 // Now we have two terminators. Remove the old one from the block. 2882 Latch->getTerminator()->eraseFromParent(); 2883 2884 return Induction; 2885 } 2886 2887 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 2888 if (TripCount) 2889 return TripCount; 2890 2891 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2892 // Find the loop boundaries. 2893 ScalarEvolution *SE = PSE.getSE(); 2894 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2895 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 2896 "Invalid loop count"); 2897 2898 Type *IdxTy = Legal->getWidestInductionType(); 2899 2900 // The exit count might have the type of i64 while the phi is i32. This can 2901 // happen if we have an induction variable that is sign extended before the 2902 // compare. The only way that we get a backedge taken count is that the 2903 // induction variable was signed and as such will not overflow. In such a case 2904 // truncation is legal. 2905 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 2906 IdxTy->getPrimitiveSizeInBits()) 2907 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2908 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2909 2910 // Get the total trip count from the count by adding 1. 2911 const SCEV *ExitCount = SE->getAddExpr( 2912 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2913 2914 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2915 2916 // Expand the trip count and place the new instructions in the preheader. 2917 // Notice that the pre-header does not change, only the loop body. 2918 SCEVExpander Exp(*SE, DL, "induction"); 2919 2920 // Count holds the overall loop count (N). 2921 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2922 L->getLoopPreheader()->getTerminator()); 2923 2924 if (TripCount->getType()->isPointerTy()) 2925 TripCount = 2926 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2927 L->getLoopPreheader()->getTerminator()); 2928 2929 return TripCount; 2930 } 2931 2932 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 2933 if (VectorTripCount) 2934 return VectorTripCount; 2935 2936 Value *TC = getOrCreateTripCount(L); 2937 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2938 2939 // Now we need to generate the expression for the part of the loop that the 2940 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2941 // iterations are not required for correctness, or N - Step, otherwise. Step 2942 // is equal to the vectorization factor (number of SIMD elements) times the 2943 // unroll factor (number of SIMD instructions). 2944 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 2945 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2946 2947 // If there is a non-reversed interleaved group that may speculatively access 2948 // memory out-of-bounds, we need to ensure that there will be at least one 2949 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 2950 // the trip count, we set the remainder to be equal to the step. If the step 2951 // does not evenly divide the trip count, no adjustment is necessary since 2952 // there will already be scalar iterations. Note that the minimum iterations 2953 // check ensures that N >= Step. 2954 if (VF > 1 && Legal->requiresScalarEpilogue()) { 2955 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2956 R = Builder.CreateSelect(IsZero, Step, R); 2957 } 2958 2959 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2960 2961 return VectorTripCount; 2962 } 2963 2964 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 2965 BasicBlock *Bypass) { 2966 Value *Count = getOrCreateTripCount(L); 2967 BasicBlock *BB = L->getLoopPreheader(); 2968 IRBuilder<> Builder(BB->getTerminator()); 2969 2970 // Generate code to check that the loop's trip count that we computed by 2971 // adding one to the backedge-taken count will not overflow. 2972 Value *CheckMinIters = Builder.CreateICmpULT( 2973 Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 2974 2975 BasicBlock *NewBB = 2976 BB->splitBasicBlock(BB->getTerminator(), "min.iters.checked"); 2977 // Update dominator tree immediately if the generated block is a 2978 // LoopBypassBlock because SCEV expansions to generate loop bypass 2979 // checks may query it before the current function is finished. 2980 DT->addNewBlock(NewBB, BB); 2981 if (L->getParentLoop()) 2982 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 2983 ReplaceInstWithInst(BB->getTerminator(), 2984 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 2985 LoopBypassBlocks.push_back(BB); 2986 } 2987 2988 void InnerLoopVectorizer::emitVectorLoopEnteredCheck(Loop *L, 2989 BasicBlock *Bypass) { 2990 Value *TC = getOrCreateVectorTripCount(L); 2991 BasicBlock *BB = L->getLoopPreheader(); 2992 IRBuilder<> Builder(BB->getTerminator()); 2993 2994 // Now, compare the new count to zero. If it is zero skip the vector loop and 2995 // jump to the scalar loop. 2996 Value *Cmp = Builder.CreateICmpEQ(TC, Constant::getNullValue(TC->getType()), 2997 "cmp.zero"); 2998 2999 // Generate code to check that the loop's trip count that we computed by 3000 // adding one to the backedge-taken count will not overflow. 3001 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3002 // Update dominator tree immediately if the generated block is a 3003 // LoopBypassBlock because SCEV expansions to generate loop bypass 3004 // checks may query it before the current function is finished. 3005 DT->addNewBlock(NewBB, BB); 3006 if (L->getParentLoop()) 3007 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3008 ReplaceInstWithInst(BB->getTerminator(), 3009 BranchInst::Create(Bypass, NewBB, Cmp)); 3010 LoopBypassBlocks.push_back(BB); 3011 } 3012 3013 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3014 BasicBlock *BB = L->getLoopPreheader(); 3015 3016 // Generate the code to check that the SCEV assumptions that we made. 3017 // We want the new basic block to start at the first instruction in a 3018 // sequence of instructions that form a check. 3019 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3020 "scev.check"); 3021 Value *SCEVCheck = 3022 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3023 3024 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3025 if (C->isZero()) 3026 return; 3027 3028 // Create a new block containing the stride check. 3029 BB->setName("vector.scevcheck"); 3030 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3031 // Update dominator tree immediately if the generated block is a 3032 // LoopBypassBlock because SCEV expansions to generate loop bypass 3033 // checks may query it before the current function is finished. 3034 DT->addNewBlock(NewBB, BB); 3035 if (L->getParentLoop()) 3036 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3037 ReplaceInstWithInst(BB->getTerminator(), 3038 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3039 LoopBypassBlocks.push_back(BB); 3040 AddedSafetyChecks = true; 3041 } 3042 3043 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3044 BasicBlock *BB = L->getLoopPreheader(); 3045 3046 // Generate the code that checks in runtime if arrays overlap. We put the 3047 // checks into a separate block to make the more common case of few elements 3048 // faster. 3049 Instruction *FirstCheckInst; 3050 Instruction *MemRuntimeCheck; 3051 std::tie(FirstCheckInst, MemRuntimeCheck) = 3052 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3053 if (!MemRuntimeCheck) 3054 return; 3055 3056 // Create a new block containing the memory check. 3057 BB->setName("vector.memcheck"); 3058 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3059 // Update dominator tree immediately if the generated block is a 3060 // LoopBypassBlock because SCEV expansions to generate loop bypass 3061 // checks may query it before the current function is finished. 3062 DT->addNewBlock(NewBB, BB); 3063 if (L->getParentLoop()) 3064 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3065 ReplaceInstWithInst(BB->getTerminator(), 3066 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3067 LoopBypassBlocks.push_back(BB); 3068 AddedSafetyChecks = true; 3069 3070 // We currently don't use LoopVersioning for the actual loop cloning but we 3071 // still use it to add the noalias metadata. 3072 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3073 PSE.getSE()); 3074 LVer->prepareNoAliasMetadata(); 3075 } 3076 3077 void InnerLoopVectorizer::createEmptyLoop() { 3078 /* 3079 In this function we generate a new loop. The new loop will contain 3080 the vectorized instructions while the old loop will continue to run the 3081 scalar remainder. 3082 3083 [ ] <-- loop iteration number check. 3084 / | 3085 / v 3086 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3087 | / | 3088 | / v 3089 || [ ] <-- vector pre header. 3090 |/ | 3091 | v 3092 | [ ] \ 3093 | [ ]_| <-- vector loop. 3094 | | 3095 | v 3096 | -[ ] <--- middle-block. 3097 | / | 3098 | / v 3099 -|- >[ ] <--- new preheader. 3100 | | 3101 | v 3102 | [ ] \ 3103 | [ ]_| <-- old scalar loop to handle remainder. 3104 \ | 3105 \ v 3106 >[ ] <-- exit block. 3107 ... 3108 */ 3109 3110 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3111 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3112 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3113 assert(VectorPH && "Invalid loop structure"); 3114 assert(ExitBlock && "Must have an exit block"); 3115 3116 // Some loops have a single integer induction variable, while other loops 3117 // don't. One example is c++ iterators that often have multiple pointer 3118 // induction variables. In the code below we also support a case where we 3119 // don't have a single induction variable. 3120 // 3121 // We try to obtain an induction variable from the original loop as hard 3122 // as possible. However if we don't find one that: 3123 // - is an integer 3124 // - counts from zero, stepping by one 3125 // - is the size of the widest induction variable type 3126 // then we create a new one. 3127 OldInduction = Legal->getInduction(); 3128 Type *IdxTy = Legal->getWidestInductionType(); 3129 3130 // Split the single block loop into the two loop structure described above. 3131 BasicBlock *VecBody = 3132 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3133 BasicBlock *MiddleBlock = 3134 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3135 BasicBlock *ScalarPH = 3136 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3137 3138 // Create and register the new vector loop. 3139 Loop *Lp = new Loop(); 3140 Loop *ParentLoop = OrigLoop->getParentLoop(); 3141 3142 // Insert the new loop into the loop nest and register the new basic blocks 3143 // before calling any utilities such as SCEV that require valid LoopInfo. 3144 if (ParentLoop) { 3145 ParentLoop->addChildLoop(Lp); 3146 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3147 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3148 } else { 3149 LI->addTopLevelLoop(Lp); 3150 } 3151 Lp->addBasicBlockToLoop(VecBody, *LI); 3152 3153 // Find the loop boundaries. 3154 Value *Count = getOrCreateTripCount(Lp); 3155 3156 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3157 3158 // We need to test whether the backedge-taken count is uint##_max. Adding one 3159 // to it will cause overflow and an incorrect loop trip count in the vector 3160 // body. In case of overflow we want to directly jump to the scalar remainder 3161 // loop. 3162 emitMinimumIterationCountCheck(Lp, ScalarPH); 3163 // Now, compare the new count to zero. If it is zero skip the vector loop and 3164 // jump to the scalar loop. 3165 emitVectorLoopEnteredCheck(Lp, ScalarPH); 3166 // Generate the code to check any assumptions that we've made for SCEV 3167 // expressions. 3168 emitSCEVChecks(Lp, ScalarPH); 3169 3170 // Generate the code that checks in runtime if arrays overlap. We put the 3171 // checks into a separate block to make the more common case of few elements 3172 // faster. 3173 emitMemRuntimeChecks(Lp, ScalarPH); 3174 3175 // Generate the induction variable. 3176 // The loop step is equal to the vectorization factor (num of SIMD elements) 3177 // times the unroll factor (num of SIMD instructions). 3178 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3179 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3180 Induction = 3181 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3182 getDebugLocFromInstOrOperands(OldInduction)); 3183 3184 // We are going to resume the execution of the scalar loop. 3185 // Go over all of the induction variables that we found and fix the 3186 // PHIs that are left in the scalar version of the loop. 3187 // The starting values of PHI nodes depend on the counter of the last 3188 // iteration in the vectorized loop. 3189 // If we come from a bypass edge then we need to start from the original 3190 // start value. 3191 3192 // This variable saves the new starting index for the scalar loop. It is used 3193 // to test if there are any tail iterations left once the vector loop has 3194 // completed. 3195 LoopVectorizationLegality::InductionList::iterator I, E; 3196 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3197 for (I = List->begin(), E = List->end(); I != E; ++I) { 3198 PHINode *OrigPhi = I->first; 3199 InductionDescriptor II = I->second; 3200 3201 // Create phi nodes to merge from the backedge-taken check block. 3202 PHINode *BCResumeVal = PHINode::Create( 3203 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3204 Value *EndValue; 3205 if (OrigPhi == OldInduction) { 3206 // We know what the end value is. 3207 EndValue = CountRoundDown; 3208 } else { 3209 IRBuilder<> B(LoopBypassBlocks.back()->getTerminator()); 3210 Value *CRD = B.CreateSExtOrTrunc(CountRoundDown, 3211 II.getStep()->getType(), "cast.crd"); 3212 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3213 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3214 EndValue->setName("ind.end"); 3215 } 3216 3217 // The new PHI merges the original incoming value, in case of a bypass, 3218 // or the value at the end of the vectorized loop. 3219 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3220 3221 // Fix the scalar body counter (PHI node). 3222 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3223 3224 // The old induction's phi node in the scalar body needs the truncated 3225 // value. 3226 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3227 BCResumeVal->addIncoming(II.getStartValue(), LoopBypassBlocks[I]); 3228 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3229 } 3230 3231 // Add a check in the middle block to see if we have completed 3232 // all of the iterations in the first vector loop. 3233 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3234 Value *CmpN = 3235 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3236 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3237 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3238 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3239 3240 // Get ready to start creating new instructions into the vectorized body. 3241 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3242 3243 // Save the state. 3244 LoopVectorPreHeader = Lp->getLoopPreheader(); 3245 LoopScalarPreHeader = ScalarPH; 3246 LoopMiddleBlock = MiddleBlock; 3247 LoopExitBlock = ExitBlock; 3248 LoopVectorBody = VecBody; 3249 LoopScalarBody = OldBasicBlock; 3250 3251 // Keep all loop hints from the original loop on the vector loop (we'll 3252 // replace the vectorizer-specific hints below). 3253 if (MDNode *LID = OrigLoop->getLoopID()) 3254 Lp->setLoopID(LID); 3255 3256 LoopVectorizeHints Hints(Lp, true); 3257 Hints.setAlreadyVectorized(); 3258 } 3259 3260 namespace { 3261 struct CSEDenseMapInfo { 3262 static bool canHandle(Instruction *I) { 3263 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3264 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3265 } 3266 static inline Instruction *getEmptyKey() { 3267 return DenseMapInfo<Instruction *>::getEmptyKey(); 3268 } 3269 static inline Instruction *getTombstoneKey() { 3270 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3271 } 3272 static unsigned getHashValue(Instruction *I) { 3273 assert(canHandle(I) && "Unknown instruction!"); 3274 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3275 I->value_op_end())); 3276 } 3277 static bool isEqual(Instruction *LHS, Instruction *RHS) { 3278 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3279 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3280 return LHS == RHS; 3281 return LHS->isIdenticalTo(RHS); 3282 } 3283 }; 3284 } 3285 3286 ///\brief Perform cse of induction variable instructions. 3287 static void cse(BasicBlock *BB) { 3288 // Perform simple cse. 3289 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3290 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3291 Instruction *In = &*I++; 3292 3293 if (!CSEDenseMapInfo::canHandle(In)) 3294 continue; 3295 3296 // Check if we can replace this instruction with any of the 3297 // visited instructions. 3298 if (Instruction *V = CSEMap.lookup(In)) { 3299 In->replaceAllUsesWith(V); 3300 In->eraseFromParent(); 3301 continue; 3302 } 3303 3304 CSEMap[In] = In; 3305 } 3306 } 3307 3308 /// \brief Adds a 'fast' flag to floating point operations. 3309 static Value *addFastMathFlag(Value *V) { 3310 if (isa<FPMathOperator>(V)) { 3311 FastMathFlags Flags; 3312 Flags.setUnsafeAlgebra(); 3313 cast<Instruction>(V)->setFastMathFlags(Flags); 3314 } 3315 return V; 3316 } 3317 3318 /// Estimate the overhead of scalarizing a value. Insert and Extract are set if 3319 /// the result needs to be inserted and/or extracted from vectors. 3320 static unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract, 3321 const TargetTransformInfo &TTI) { 3322 if (Ty->isVoidTy()) 3323 return 0; 3324 3325 assert(Ty->isVectorTy() && "Can only scalarize vectors"); 3326 unsigned Cost = 0; 3327 3328 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { 3329 if (Insert) 3330 Cost += TTI.getVectorInstrCost(Instruction::InsertElement, Ty, i); 3331 if (Extract) 3332 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, Ty, i); 3333 } 3334 3335 return Cost; 3336 } 3337 3338 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3339 // Return the cost of the instruction, including scalarization overhead if it's 3340 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3341 // i.e. either vector version isn't available, or is too expensive. 3342 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3343 const TargetTransformInfo &TTI, 3344 const TargetLibraryInfo *TLI, 3345 bool &NeedToScalarize) { 3346 Function *F = CI->getCalledFunction(); 3347 StringRef FnName = CI->getCalledFunction()->getName(); 3348 Type *ScalarRetTy = CI->getType(); 3349 SmallVector<Type *, 4> Tys, ScalarTys; 3350 for (auto &ArgOp : CI->arg_operands()) 3351 ScalarTys.push_back(ArgOp->getType()); 3352 3353 // Estimate cost of scalarized vector call. The source operands are assumed 3354 // to be vectors, so we need to extract individual elements from there, 3355 // execute VF scalar calls, and then gather the result into the vector return 3356 // value. 3357 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3358 if (VF == 1) 3359 return ScalarCallCost; 3360 3361 // Compute corresponding vector type for return value and arguments. 3362 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3363 for (unsigned i = 0, ie = ScalarTys.size(); i != ie; ++i) 3364 Tys.push_back(ToVectorTy(ScalarTys[i], VF)); 3365 3366 // Compute costs of unpacking argument values for the scalar calls and 3367 // packing the return values to a vector. 3368 unsigned ScalarizationCost = 3369 getScalarizationOverhead(RetTy, true, false, TTI); 3370 for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) 3371 ScalarizationCost += getScalarizationOverhead(Tys[i], false, true, TTI); 3372 3373 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3374 3375 // If we can't emit a vector call for this function, then the currently found 3376 // cost is the cost we need to return. 3377 NeedToScalarize = true; 3378 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3379 return Cost; 3380 3381 // If the corresponding vector cost is cheaper, return its cost. 3382 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3383 if (VectorCallCost < Cost) { 3384 NeedToScalarize = false; 3385 return VectorCallCost; 3386 } 3387 return Cost; 3388 } 3389 3390 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3391 // factor VF. Return the cost of the instruction, including scalarization 3392 // overhead if it's needed. 3393 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3394 const TargetTransformInfo &TTI, 3395 const TargetLibraryInfo *TLI) { 3396 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3397 assert(ID && "Expected intrinsic call!"); 3398 3399 Type *RetTy = ToVectorTy(CI->getType(), VF); 3400 SmallVector<Type *, 4> Tys; 3401 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 3402 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 3403 3404 FastMathFlags FMF; 3405 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3406 FMF = FPMO->getFastMathFlags(); 3407 3408 return TTI.getIntrinsicInstrCost(ID, RetTy, Tys, FMF); 3409 } 3410 3411 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3412 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3413 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3414 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3415 } 3416 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3417 IntegerType *I1 = cast<IntegerType>(T1->getVectorElementType()); 3418 IntegerType *I2 = cast<IntegerType>(T2->getVectorElementType()); 3419 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3420 } 3421 3422 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3423 // For every instruction `I` in MinBWs, truncate the operands, create a 3424 // truncated version of `I` and reextend its result. InstCombine runs 3425 // later and will remove any ext/trunc pairs. 3426 // 3427 SmallPtrSet<Value *, 4> Erased; 3428 for (auto &KV : MinBWs) { 3429 VectorParts &Parts = WidenMap.get(KV.first); 3430 for (Value *&I : Parts) { 3431 if (Erased.count(I) || I->use_empty()) 3432 continue; 3433 Type *OriginalTy = I->getType(); 3434 Type *ScalarTruncatedTy = 3435 IntegerType::get(OriginalTy->getContext(), KV.second); 3436 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3437 OriginalTy->getVectorNumElements()); 3438 if (TruncatedTy == OriginalTy) 3439 continue; 3440 3441 if (!isa<Instruction>(I)) 3442 continue; 3443 3444 IRBuilder<> B(cast<Instruction>(I)); 3445 auto ShrinkOperand = [&](Value *V) -> Value * { 3446 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3447 if (ZI->getSrcTy() == TruncatedTy) 3448 return ZI->getOperand(0); 3449 return B.CreateZExtOrTrunc(V, TruncatedTy); 3450 }; 3451 3452 // The actual instruction modification depends on the instruction type, 3453 // unfortunately. 3454 Value *NewI = nullptr; 3455 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 3456 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3457 ShrinkOperand(BO->getOperand(1))); 3458 cast<BinaryOperator>(NewI)->copyIRFlags(I); 3459 } else if (ICmpInst *CI = dyn_cast<ICmpInst>(I)) { 3460 NewI = 3461 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3462 ShrinkOperand(CI->getOperand(1))); 3463 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 3464 NewI = B.CreateSelect(SI->getCondition(), 3465 ShrinkOperand(SI->getTrueValue()), 3466 ShrinkOperand(SI->getFalseValue())); 3467 } else if (CastInst *CI = dyn_cast<CastInst>(I)) { 3468 switch (CI->getOpcode()) { 3469 default: 3470 llvm_unreachable("Unhandled cast!"); 3471 case Instruction::Trunc: 3472 NewI = ShrinkOperand(CI->getOperand(0)); 3473 break; 3474 case Instruction::SExt: 3475 NewI = B.CreateSExtOrTrunc( 3476 CI->getOperand(0), 3477 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3478 break; 3479 case Instruction::ZExt: 3480 NewI = B.CreateZExtOrTrunc( 3481 CI->getOperand(0), 3482 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3483 break; 3484 } 3485 } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) { 3486 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3487 auto *O0 = B.CreateZExtOrTrunc( 3488 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3489 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3490 auto *O1 = B.CreateZExtOrTrunc( 3491 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3492 3493 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3494 } else if (isa<LoadInst>(I)) { 3495 // Don't do anything with the operands, just extend the result. 3496 continue; 3497 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3498 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3499 auto *O0 = B.CreateZExtOrTrunc( 3500 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3501 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3502 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3503 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3504 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3505 auto *O0 = B.CreateZExtOrTrunc( 3506 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3507 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3508 } else { 3509 llvm_unreachable("Unhandled instruction type!"); 3510 } 3511 3512 // Lastly, extend the result. 3513 NewI->takeName(cast<Instruction>(I)); 3514 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3515 I->replaceAllUsesWith(Res); 3516 cast<Instruction>(I)->eraseFromParent(); 3517 Erased.insert(I); 3518 I = Res; 3519 } 3520 } 3521 3522 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3523 for (auto &KV : MinBWs) { 3524 VectorParts &Parts = WidenMap.get(KV.first); 3525 for (Value *&I : Parts) { 3526 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3527 if (Inst && Inst->use_empty()) { 3528 Value *NewI = Inst->getOperand(0); 3529 Inst->eraseFromParent(); 3530 I = NewI; 3531 } 3532 } 3533 } 3534 } 3535 3536 void InnerLoopVectorizer::vectorizeLoop() { 3537 //===------------------------------------------------===// 3538 // 3539 // Notice: any optimization or new instruction that go 3540 // into the code below should be also be implemented in 3541 // the cost-model. 3542 // 3543 //===------------------------------------------------===// 3544 Constant *Zero = Builder.getInt32(0); 3545 3546 // In order to support recurrences we need to be able to vectorize Phi nodes. 3547 // Phi nodes have cycles, so we need to vectorize them in two stages. First, 3548 // we create a new vector PHI node with no incoming edges. We use this value 3549 // when we vectorize all of the instructions that use the PHI. Next, after 3550 // all of the instructions in the block are complete we add the new incoming 3551 // edges to the PHI. At this point all of the instructions in the basic block 3552 // are vectorized, so we can use them to construct the PHI. 3553 PhiVector PHIsToFix; 3554 3555 // Scan the loop in a topological order to ensure that defs are vectorized 3556 // before users. 3557 LoopBlocksDFS DFS(OrigLoop); 3558 DFS.perform(LI); 3559 3560 // Vectorize all of the blocks in the original loop. 3561 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), be = DFS.endRPO(); 3562 bb != be; ++bb) 3563 vectorizeBlockInLoop(*bb, &PHIsToFix); 3564 3565 // Insert truncates and extends for any truncated instructions as hints to 3566 // InstCombine. 3567 if (VF > 1) 3568 truncateToMinimalBitwidths(); 3569 3570 // At this point every instruction in the original loop is widened to a 3571 // vector form. Now we need to fix the recurrences in PHIsToFix. These PHI 3572 // nodes are currently empty because we did not want to introduce cycles. 3573 // This is the second stage of vectorizing recurrences. 3574 for (PHINode *Phi : PHIsToFix) { 3575 assert(Phi && "Unable to recover vectorized PHI"); 3576 3577 // Handle first-order recurrences that need to be fixed. 3578 if (Legal->isFirstOrderRecurrence(Phi)) { 3579 fixFirstOrderRecurrence(Phi); 3580 continue; 3581 } 3582 3583 // If the phi node is not a first-order recurrence, it must be a reduction. 3584 // Get it's reduction variable descriptor. 3585 assert(Legal->isReductionVariable(Phi) && 3586 "Unable to find the reduction variable"); 3587 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 3588 3589 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 3590 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3591 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3592 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 3593 RdxDesc.getMinMaxRecurrenceKind(); 3594 setDebugLocFromInst(Builder, ReductionStartValue); 3595 3596 // We need to generate a reduction vector from the incoming scalar. 3597 // To do so, we need to generate the 'identity' vector and override 3598 // one of the elements with the incoming scalar reduction. We need 3599 // to do it in the vector-loop preheader. 3600 Builder.SetInsertPoint(LoopBypassBlocks[1]->getTerminator()); 3601 3602 // This is the vector-clone of the value that leaves the loop. 3603 VectorParts &VectorExit = getVectorValue(LoopExitInst); 3604 Type *VecTy = VectorExit[0]->getType(); 3605 3606 // Find the reduction identity variable. Zero for addition, or, xor, 3607 // one for multiplication, -1 for And. 3608 Value *Identity; 3609 Value *VectorStart; 3610 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 3611 RK == RecurrenceDescriptor::RK_FloatMinMax) { 3612 // MinMax reduction have the start value as their identify. 3613 if (VF == 1) { 3614 VectorStart = Identity = ReductionStartValue; 3615 } else { 3616 VectorStart = Identity = 3617 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 3618 } 3619 } else { 3620 // Handle other reduction kinds: 3621 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 3622 RK, VecTy->getScalarType()); 3623 if (VF == 1) { 3624 Identity = Iden; 3625 // This vector is the Identity vector where the first element is the 3626 // incoming scalar reduction. 3627 VectorStart = ReductionStartValue; 3628 } else { 3629 Identity = ConstantVector::getSplat(VF, Iden); 3630 3631 // This vector is the Identity vector where the first element is the 3632 // incoming scalar reduction. 3633 VectorStart = 3634 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 3635 } 3636 } 3637 3638 // Fix the vector-loop phi. 3639 3640 // Reductions do not have to start at zero. They can start with 3641 // any loop invariant values. 3642 VectorParts &VecRdxPhi = WidenMap.get(Phi); 3643 BasicBlock *Latch = OrigLoop->getLoopLatch(); 3644 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 3645 VectorParts &Val = getVectorValue(LoopVal); 3646 for (unsigned part = 0; part < UF; ++part) { 3647 // Make sure to add the reduction stat value only to the 3648 // first unroll part. 3649 Value *StartVal = (part == 0) ? VectorStart : Identity; 3650 cast<PHINode>(VecRdxPhi[part]) 3651 ->addIncoming(StartVal, LoopVectorPreHeader); 3652 cast<PHINode>(VecRdxPhi[part]) 3653 ->addIncoming(Val[part], LoopVectorBody); 3654 } 3655 3656 // Before each round, move the insertion point right between 3657 // the PHIs and the values we are going to write. 3658 // This allows us to write both PHINodes and the extractelement 3659 // instructions. 3660 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3661 3662 VectorParts RdxParts = getVectorValue(LoopExitInst); 3663 setDebugLocFromInst(Builder, LoopExitInst); 3664 3665 // If the vector reduction can be performed in a smaller type, we truncate 3666 // then extend the loop exit value to enable InstCombine to evaluate the 3667 // entire expression in the smaller type. 3668 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 3669 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3670 Builder.SetInsertPoint(LoopVectorBody->getTerminator()); 3671 for (unsigned part = 0; part < UF; ++part) { 3672 Value *Trunc = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3673 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3674 : Builder.CreateZExt(Trunc, VecTy); 3675 for (Value::user_iterator UI = RdxParts[part]->user_begin(); 3676 UI != RdxParts[part]->user_end();) 3677 if (*UI != Trunc) { 3678 (*UI++)->replaceUsesOfWith(RdxParts[part], Extnd); 3679 RdxParts[part] = Extnd; 3680 } else { 3681 ++UI; 3682 } 3683 } 3684 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3685 for (unsigned part = 0; part < UF; ++part) 3686 RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy); 3687 } 3688 3689 // Reduce all of the unrolled parts into a single vector. 3690 Value *ReducedPartRdx = RdxParts[0]; 3691 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 3692 setDebugLocFromInst(Builder, ReducedPartRdx); 3693 for (unsigned part = 1; part < UF; ++part) { 3694 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3695 // Floating point operations had to be 'fast' to enable the reduction. 3696 ReducedPartRdx = addFastMathFlag( 3697 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part], 3698 ReducedPartRdx, "bin.rdx")); 3699 else 3700 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 3701 Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]); 3702 } 3703 3704 if (VF > 1) { 3705 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles 3706 // and vector ops, reducing the set of values being computed by half each 3707 // round. 3708 assert(isPowerOf2_32(VF) && 3709 "Reduction emission only supported for pow2 vectors!"); 3710 Value *TmpVec = ReducedPartRdx; 3711 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); 3712 for (unsigned i = VF; i != 1; i >>= 1) { 3713 // Move the upper half of the vector to the lower half. 3714 for (unsigned j = 0; j != i / 2; ++j) 3715 ShuffleMask[j] = Builder.getInt32(i / 2 + j); 3716 3717 // Fill the rest of the mask with undef. 3718 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), 3719 UndefValue::get(Builder.getInt32Ty())); 3720 3721 Value *Shuf = Builder.CreateShuffleVector( 3722 TmpVec, UndefValue::get(TmpVec->getType()), 3723 ConstantVector::get(ShuffleMask), "rdx.shuf"); 3724 3725 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 3726 // Floating point operations had to be 'fast' to enable the reduction. 3727 TmpVec = addFastMathFlag(Builder.CreateBinOp( 3728 (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx")); 3729 else 3730 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, 3731 TmpVec, Shuf); 3732 } 3733 3734 // The result is in the first element of the vector. 3735 ReducedPartRdx = 3736 Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); 3737 3738 // If the reduction can be performed in a smaller type, we need to extend 3739 // the reduction to the wider type before we branch to the original loop. 3740 if (Phi->getType() != RdxDesc.getRecurrenceType()) 3741 ReducedPartRdx = 3742 RdxDesc.isSigned() 3743 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 3744 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 3745 } 3746 3747 // Create a phi node that merges control-flow from the backedge-taken check 3748 // block and the middle block. 3749 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 3750 LoopScalarPreHeader->getTerminator()); 3751 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 3752 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 3753 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3754 3755 // Now, we need to fix the users of the reduction variable 3756 // inside and outside of the scalar remainder loop. 3757 // We know that the loop is in LCSSA form. We need to update the 3758 // PHI nodes in the exit blocks. 3759 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3760 LEE = LoopExitBlock->end(); 3761 LEI != LEE; ++LEI) { 3762 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3763 if (!LCSSAPhi) 3764 break; 3765 3766 // All PHINodes need to have a single entry edge, or two if 3767 // we already fixed them. 3768 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 3769 3770 // We found our reduction value exit-PHI. Update it with the 3771 // incoming bypass edge. 3772 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) { 3773 // Add an edge coming from the bypass. 3774 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 3775 break; 3776 } 3777 } // end of the LCSSA phi scan. 3778 3779 // Fix the scalar loop reduction variable with the incoming reduction sum 3780 // from the vector body and from the backedge value. 3781 int IncomingEdgeBlockIdx = 3782 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 3783 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 3784 // Pick the other block. 3785 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 3786 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 3787 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 3788 } // end of for each Phi in PHIsToFix. 3789 3790 fixLCSSAPHIs(); 3791 3792 // Make sure DomTree is updated. 3793 updateAnalysis(); 3794 3795 // Predicate any stores. 3796 for (auto KV : PredicatedStores) { 3797 BasicBlock::iterator I(KV.first); 3798 auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI); 3799 auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false, 3800 /*BranchWeights=*/nullptr, DT, LI); 3801 I->moveBefore(T); 3802 I->getParent()->setName("pred.store.if"); 3803 BB->setName("pred.store.continue"); 3804 } 3805 DEBUG(DT->verifyDomTree()); 3806 // Remove redundant induction instructions. 3807 cse(LoopVectorBody); 3808 } 3809 3810 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3811 3812 // This is the second phase of vectorizing first-order recurrences. An 3813 // overview of the transformation is described below. Suppose we have the 3814 // following loop. 3815 // 3816 // for (int i = 0; i < n; ++i) 3817 // b[i] = a[i] - a[i - 1]; 3818 // 3819 // There is a first-order recurrence on "a". For this loop, the shorthand 3820 // scalar IR looks like: 3821 // 3822 // scalar.ph: 3823 // s_init = a[-1] 3824 // br scalar.body 3825 // 3826 // scalar.body: 3827 // i = phi [0, scalar.ph], [i+1, scalar.body] 3828 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3829 // s2 = a[i] 3830 // b[i] = s2 - s1 3831 // br cond, scalar.body, ... 3832 // 3833 // In this example, s1 is a recurrence because it's value depends on the 3834 // previous iteration. In the first phase of vectorization, we created a 3835 // temporary value for s1. We now complete the vectorization and produce the 3836 // shorthand vector IR shown below (for VF = 4, UF = 1). 3837 // 3838 // vector.ph: 3839 // v_init = vector(..., ..., ..., a[-1]) 3840 // br vector.body 3841 // 3842 // vector.body 3843 // i = phi [0, vector.ph], [i+4, vector.body] 3844 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3845 // v2 = a[i, i+1, i+2, i+3]; 3846 // v3 = vector(v1(3), v2(0, 1, 2)) 3847 // b[i, i+1, i+2, i+3] = v2 - v3 3848 // br cond, vector.body, middle.block 3849 // 3850 // middle.block: 3851 // x = v2(3) 3852 // br scalar.ph 3853 // 3854 // scalar.ph: 3855 // s_init = phi [x, middle.block], [a[-1], otherwise] 3856 // br scalar.body 3857 // 3858 // After execution completes the vector loop, we extract the next value of 3859 // the recurrence (x) to use as the initial value in the scalar loop. 3860 3861 // Get the original loop preheader and single loop latch. 3862 auto *Preheader = OrigLoop->getLoopPreheader(); 3863 auto *Latch = OrigLoop->getLoopLatch(); 3864 3865 // Get the initial and previous values of the scalar recurrence. 3866 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 3867 auto *Previous = Phi->getIncomingValueForBlock(Latch); 3868 3869 // Create a vector from the initial value. 3870 auto *VectorInit = ScalarInit; 3871 if (VF > 1) { 3872 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 3873 VectorInit = Builder.CreateInsertElement( 3874 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 3875 Builder.getInt32(VF - 1), "vector.recur.init"); 3876 } 3877 3878 // We constructed a temporary phi node in the first phase of vectorization. 3879 // This phi node will eventually be deleted. 3880 auto &PhiParts = getVectorValue(Phi); 3881 Builder.SetInsertPoint(cast<Instruction>(PhiParts[0])); 3882 3883 // Create a phi node for the new recurrence. The current value will either be 3884 // the initial value inserted into a vector or loop-varying vector value. 3885 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 3886 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 3887 3888 // Get the vectorized previous value. We ensured the previous values was an 3889 // instruction when detecting the recurrence. 3890 auto &PreviousParts = getVectorValue(Previous); 3891 3892 // Set the insertion point to be after this instruction. We ensured the 3893 // previous value dominated all uses of the phi when detecting the 3894 // recurrence. 3895 Builder.SetInsertPoint( 3896 &*++BasicBlock::iterator(cast<Instruction>(PreviousParts[UF - 1]))); 3897 3898 // We will construct a vector for the recurrence by combining the values for 3899 // the current and previous iterations. This is the required shuffle mask. 3900 SmallVector<Constant *, 8> ShuffleMask(VF); 3901 ShuffleMask[0] = Builder.getInt32(VF - 1); 3902 for (unsigned I = 1; I < VF; ++I) 3903 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 3904 3905 // The vector from which to take the initial value for the current iteration 3906 // (actual or unrolled). Initially, this is the vector phi node. 3907 Value *Incoming = VecPhi; 3908 3909 // Shuffle the current and previous vector and update the vector parts. 3910 for (unsigned Part = 0; Part < UF; ++Part) { 3911 auto *Shuffle = 3912 VF > 1 3913 ? Builder.CreateShuffleVector(Incoming, PreviousParts[Part], 3914 ConstantVector::get(ShuffleMask)) 3915 : Incoming; 3916 PhiParts[Part]->replaceAllUsesWith(Shuffle); 3917 cast<Instruction>(PhiParts[Part])->eraseFromParent(); 3918 PhiParts[Part] = Shuffle; 3919 Incoming = PreviousParts[Part]; 3920 } 3921 3922 // Fix the latch value of the new recurrence in the vector loop. 3923 VecPhi->addIncoming(Incoming, 3924 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 3925 3926 // Extract the last vector element in the middle block. This will be the 3927 // initial value for the recurrence when jumping to the scalar loop. 3928 auto *Extract = Incoming; 3929 if (VF > 1) { 3930 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3931 Extract = Builder.CreateExtractElement(Extract, Builder.getInt32(VF - 1), 3932 "vector.recur.extract"); 3933 } 3934 3935 // Fix the initial value of the original recurrence in the scalar loop. 3936 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3937 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3938 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3939 auto *Incoming = BB == LoopMiddleBlock ? Extract : ScalarInit; 3940 Start->addIncoming(Incoming, BB); 3941 } 3942 3943 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 3944 Phi->setName("scalar.recur"); 3945 3946 // Finally, fix users of the recurrence outside the loop. The users will need 3947 // either the last value of the scalar recurrence or the last value of the 3948 // vector recurrence we extracted in the middle block. Since the loop is in 3949 // LCSSA form, we just need to find the phi node for the original scalar 3950 // recurrence in the exit block, and then add an edge for the middle block. 3951 for (auto &I : *LoopExitBlock) { 3952 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 3953 if (!LCSSAPhi) 3954 break; 3955 if (LCSSAPhi->getIncomingValue(0) == Phi) { 3956 LCSSAPhi->addIncoming(Extract, LoopMiddleBlock); 3957 break; 3958 } 3959 } 3960 } 3961 3962 void InnerLoopVectorizer::fixLCSSAPHIs() { 3963 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 3964 LEE = LoopExitBlock->end(); 3965 LEI != LEE; ++LEI) { 3966 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 3967 if (!LCSSAPhi) 3968 break; 3969 if (LCSSAPhi->getNumIncomingValues() == 1) 3970 LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()), 3971 LoopMiddleBlock); 3972 } 3973 } 3974 3975 InnerLoopVectorizer::VectorParts 3976 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 3977 assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) && 3978 "Invalid edge"); 3979 3980 // Look for cached value. 3981 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 3982 EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge); 3983 if (ECEntryIt != MaskCache.end()) 3984 return ECEntryIt->second; 3985 3986 VectorParts SrcMask = createBlockInMask(Src); 3987 3988 // The terminator has to be a branch inst! 3989 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 3990 assert(BI && "Unexpected terminator found"); 3991 3992 if (BI->isConditional()) { 3993 VectorParts EdgeMask = getVectorValue(BI->getCondition()); 3994 3995 if (BI->getSuccessor(0) != Dst) 3996 for (unsigned part = 0; part < UF; ++part) 3997 EdgeMask[part] = Builder.CreateNot(EdgeMask[part]); 3998 3999 for (unsigned part = 0; part < UF; ++part) 4000 EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]); 4001 4002 MaskCache[Edge] = EdgeMask; 4003 return EdgeMask; 4004 } 4005 4006 MaskCache[Edge] = SrcMask; 4007 return SrcMask; 4008 } 4009 4010 InnerLoopVectorizer::VectorParts 4011 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4012 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4013 4014 // Loop incoming mask is all-one. 4015 if (OrigLoop->getHeader() == BB) { 4016 Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1); 4017 return getVectorValue(C); 4018 } 4019 4020 // This is the block mask. We OR all incoming edges, and with zero. 4021 Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0); 4022 VectorParts BlockMask = getVectorValue(Zero); 4023 4024 // For each pred: 4025 for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) { 4026 VectorParts EM = createEdgeMask(*it, BB); 4027 for (unsigned part = 0; part < UF; ++part) 4028 BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]); 4029 } 4030 4031 return BlockMask; 4032 } 4033 4034 void InnerLoopVectorizer::widenPHIInstruction( 4035 Instruction *PN, InnerLoopVectorizer::VectorParts &Entry, unsigned UF, 4036 unsigned VF, PhiVector *PV) { 4037 PHINode *P = cast<PHINode>(PN); 4038 // Handle recurrences. 4039 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4040 for (unsigned part = 0; part < UF; ++part) { 4041 // This is phase one of vectorizing PHIs. 4042 Type *VecTy = 4043 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4044 Entry[part] = PHINode::Create( 4045 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4046 } 4047 PV->push_back(P); 4048 return; 4049 } 4050 4051 setDebugLocFromInst(Builder, P); 4052 // Check for PHI nodes that are lowered to vector selects. 4053 if (P->getParent() != OrigLoop->getHeader()) { 4054 // We know that all PHIs in non-header blocks are converted into 4055 // selects, so we don't have to worry about the insertion order and we 4056 // can just use the builder. 4057 // At this point we generate the predication tree. There may be 4058 // duplications since this is a simple recursive scan, but future 4059 // optimizations will clean it up. 4060 4061 unsigned NumIncoming = P->getNumIncomingValues(); 4062 4063 // Generate a sequence of selects of the form: 4064 // SELECT(Mask3, In3, 4065 // SELECT(Mask2, In2, 4066 // ( ...))) 4067 for (unsigned In = 0; In < NumIncoming; In++) { 4068 VectorParts Cond = 4069 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4070 VectorParts &In0 = getVectorValue(P->getIncomingValue(In)); 4071 4072 for (unsigned part = 0; part < UF; ++part) { 4073 // We might have single edge PHIs (blocks) - use an identity 4074 // 'select' for the first PHI operand. 4075 if (In == 0) 4076 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In0[part]); 4077 else 4078 // Select between the current value and the previous incoming edge 4079 // based on the incoming mask. 4080 Entry[part] = Builder.CreateSelect(Cond[part], In0[part], Entry[part], 4081 "predphi"); 4082 } 4083 } 4084 return; 4085 } 4086 4087 // This PHINode must be an induction variable. 4088 // Make sure that we know about it. 4089 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4090 4091 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4092 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4093 4094 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4095 // which can be found from the original scalar operations. 4096 switch (II.getKind()) { 4097 case InductionDescriptor::IK_NoInduction: 4098 llvm_unreachable("Unknown induction"); 4099 case InductionDescriptor::IK_IntInduction: { 4100 assert(P->getType() == II.getStartValue()->getType() && "Types must match"); 4101 if (P != OldInduction || VF == 1) { 4102 Value *V = Induction; 4103 // Handle other induction variables that are now based on the 4104 // canonical one. 4105 if (P != OldInduction) { 4106 V = Builder.CreateSExtOrTrunc(Induction, P->getType()); 4107 V = II.transform(Builder, V, PSE.getSE(), DL); 4108 V->setName("offset.idx"); 4109 } 4110 Value *Broadcasted = getBroadcastInstrs(V); 4111 // After broadcasting the induction variable we need to make the vector 4112 // consecutive by adding 0, 1, 2, etc. 4113 for (unsigned part = 0; part < UF; ++part) 4114 Entry[part] = getStepVector(Broadcasted, VF * part, II.getStep()); 4115 } else { 4116 // Instead of re-creating the vector IV by splatting the scalar IV 4117 // in each iteration, we can make a new independent vector IV. 4118 widenInductionVariable(II, Entry); 4119 } 4120 return; 4121 } 4122 case InductionDescriptor::IK_PtrInduction: 4123 // Handle the pointer induction variable case. 4124 assert(P->getType()->isPointerTy() && "Unexpected type."); 4125 // This is the normalized GEP that starts counting at zero. 4126 Value *PtrInd = Induction; 4127 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4128 // This is the vector of results. Notice that we don't generate 4129 // vector geps because scalar geps result in better code. 4130 for (unsigned part = 0; part < UF; ++part) { 4131 if (VF == 1) { 4132 int EltIndex = part; 4133 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4134 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4135 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4136 SclrGep->setName("next.gep"); 4137 Entry[part] = SclrGep; 4138 continue; 4139 } 4140 4141 Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF)); 4142 for (unsigned int i = 0; i < VF; ++i) { 4143 int EltIndex = i + part * VF; 4144 Constant *Idx = ConstantInt::get(PtrInd->getType(), EltIndex); 4145 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4146 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4147 SclrGep->setName("next.gep"); 4148 VecVal = Builder.CreateInsertElement(VecVal, SclrGep, 4149 Builder.getInt32(i), "insert.gep"); 4150 } 4151 Entry[part] = VecVal; 4152 } 4153 return; 4154 } 4155 } 4156 4157 void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) { 4158 // For each instruction in the old loop. 4159 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4160 VectorParts &Entry = WidenMap.get(&*it); 4161 4162 switch (it->getOpcode()) { 4163 case Instruction::Br: 4164 // Nothing to do for PHIs and BR, since we already took care of the 4165 // loop control flow instructions. 4166 continue; 4167 case Instruction::PHI: { 4168 // Vectorize PHINodes. 4169 widenPHIInstruction(&*it, Entry, UF, VF, PV); 4170 continue; 4171 } // End of PHI. 4172 4173 case Instruction::Add: 4174 case Instruction::FAdd: 4175 case Instruction::Sub: 4176 case Instruction::FSub: 4177 case Instruction::Mul: 4178 case Instruction::FMul: 4179 case Instruction::UDiv: 4180 case Instruction::SDiv: 4181 case Instruction::FDiv: 4182 case Instruction::URem: 4183 case Instruction::SRem: 4184 case Instruction::FRem: 4185 case Instruction::Shl: 4186 case Instruction::LShr: 4187 case Instruction::AShr: 4188 case Instruction::And: 4189 case Instruction::Or: 4190 case Instruction::Xor: { 4191 // Just widen binops. 4192 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it); 4193 setDebugLocFromInst(Builder, BinOp); 4194 VectorParts &A = getVectorValue(it->getOperand(0)); 4195 VectorParts &B = getVectorValue(it->getOperand(1)); 4196 4197 // Use this vector value for all users of the original instruction. 4198 for (unsigned Part = 0; Part < UF; ++Part) { 4199 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]); 4200 4201 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4202 VecOp->copyIRFlags(BinOp); 4203 4204 Entry[Part] = V; 4205 } 4206 4207 addMetadata(Entry, &*it); 4208 break; 4209 } 4210 case Instruction::Select: { 4211 // Widen selects. 4212 // If the selector is loop invariant we can create a select 4213 // instruction with a scalar condition. Otherwise, use vector-select. 4214 auto *SE = PSE.getSE(); 4215 bool InvariantCond = 4216 SE->isLoopInvariant(PSE.getSCEV(it->getOperand(0)), OrigLoop); 4217 setDebugLocFromInst(Builder, &*it); 4218 4219 // The condition can be loop invariant but still defined inside the 4220 // loop. This means that we can't just use the original 'cond' value. 4221 // We have to take the 'vectorized' value and pick the first lane. 4222 // Instcombine will make this a no-op. 4223 VectorParts &Cond = getVectorValue(it->getOperand(0)); 4224 VectorParts &Op0 = getVectorValue(it->getOperand(1)); 4225 VectorParts &Op1 = getVectorValue(it->getOperand(2)); 4226 4227 Value *ScalarCond = 4228 (VF == 1) 4229 ? Cond[0] 4230 : Builder.CreateExtractElement(Cond[0], Builder.getInt32(0)); 4231 4232 for (unsigned Part = 0; Part < UF; ++Part) { 4233 Entry[Part] = Builder.CreateSelect( 4234 InvariantCond ? ScalarCond : Cond[Part], Op0[Part], Op1[Part]); 4235 } 4236 4237 addMetadata(Entry, &*it); 4238 break; 4239 } 4240 4241 case Instruction::ICmp: 4242 case Instruction::FCmp: { 4243 // Widen compares. Generate vector compares. 4244 bool FCmp = (it->getOpcode() == Instruction::FCmp); 4245 CmpInst *Cmp = dyn_cast<CmpInst>(it); 4246 setDebugLocFromInst(Builder, &*it); 4247 VectorParts &A = getVectorValue(it->getOperand(0)); 4248 VectorParts &B = getVectorValue(it->getOperand(1)); 4249 for (unsigned Part = 0; Part < UF; ++Part) { 4250 Value *C = nullptr; 4251 if (FCmp) { 4252 C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]); 4253 cast<FCmpInst>(C)->copyFastMathFlags(&*it); 4254 } else { 4255 C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]); 4256 } 4257 Entry[Part] = C; 4258 } 4259 4260 addMetadata(Entry, &*it); 4261 break; 4262 } 4263 4264 case Instruction::Store: 4265 case Instruction::Load: 4266 vectorizeMemoryInstruction(&*it); 4267 break; 4268 case Instruction::ZExt: 4269 case Instruction::SExt: 4270 case Instruction::FPToUI: 4271 case Instruction::FPToSI: 4272 case Instruction::FPExt: 4273 case Instruction::PtrToInt: 4274 case Instruction::IntToPtr: 4275 case Instruction::SIToFP: 4276 case Instruction::UIToFP: 4277 case Instruction::Trunc: 4278 case Instruction::FPTrunc: 4279 case Instruction::BitCast: { 4280 CastInst *CI = dyn_cast<CastInst>(it); 4281 setDebugLocFromInst(Builder, &*it); 4282 /// Optimize the special case where the source is a constant integer 4283 /// induction variable. Notice that we can only optimize the 'trunc' case 4284 /// because: a. FP conversions lose precision, b. sext/zext may wrap, 4285 /// c. other casts depend on pointer size. 4286 4287 if (CI->getOperand(0) == OldInduction && 4288 it->getOpcode() == Instruction::Trunc) { 4289 InductionDescriptor II = 4290 Legal->getInductionVars()->lookup(OldInduction); 4291 if (auto StepValue = II.getConstIntStepValue()) { 4292 IntegerType *TruncType = cast<IntegerType>(CI->getType()); 4293 if (VF == 1) { 4294 StepValue = 4295 ConstantInt::getSigned(TruncType, StepValue->getSExtValue()); 4296 Value *ScalarCast = 4297 Builder.CreateCast(CI->getOpcode(), Induction, CI->getType()); 4298 Value *Broadcasted = getBroadcastInstrs(ScalarCast); 4299 for (unsigned Part = 0; Part < UF; ++Part) 4300 Entry[Part] = getStepVector(Broadcasted, VF * Part, StepValue); 4301 } else { 4302 // Truncating a vector induction variable on each iteration 4303 // may be expensive. Instead, truncate the initial value, and create 4304 // a new, truncated, vector IV based on that. 4305 widenInductionVariable(II, Entry, TruncType); 4306 } 4307 addMetadata(Entry, &*it); 4308 break; 4309 } 4310 } 4311 /// Vectorize casts. 4312 Type *DestTy = 4313 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4314 4315 VectorParts &A = getVectorValue(it->getOperand(0)); 4316 for (unsigned Part = 0; Part < UF; ++Part) 4317 Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy); 4318 addMetadata(Entry, &*it); 4319 break; 4320 } 4321 4322 case Instruction::Call: { 4323 // Ignore dbg intrinsics. 4324 if (isa<DbgInfoIntrinsic>(it)) 4325 break; 4326 setDebugLocFromInst(Builder, &*it); 4327 4328 Module *M = BB->getParent()->getParent(); 4329 CallInst *CI = cast<CallInst>(it); 4330 4331 StringRef FnName = CI->getCalledFunction()->getName(); 4332 Function *F = CI->getCalledFunction(); 4333 Type *RetTy = ToVectorTy(CI->getType(), VF); 4334 SmallVector<Type *, 4> Tys; 4335 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) 4336 Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF)); 4337 4338 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4339 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 4340 ID == Intrinsic::lifetime_start)) { 4341 scalarizeInstruction(&*it); 4342 break; 4343 } 4344 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4345 // version of the instruction. 4346 // Is it beneficial to perform intrinsic call compared to lib call? 4347 bool NeedToScalarize; 4348 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4349 bool UseVectorIntrinsic = 4350 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4351 if (!UseVectorIntrinsic && NeedToScalarize) { 4352 scalarizeInstruction(&*it); 4353 break; 4354 } 4355 4356 for (unsigned Part = 0; Part < UF; ++Part) { 4357 SmallVector<Value *, 4> Args; 4358 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4359 Value *Arg = CI->getArgOperand(i); 4360 // Some intrinsics have a scalar argument - don't replace it with a 4361 // vector. 4362 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) { 4363 VectorParts &VectorArg = getVectorValue(CI->getArgOperand(i)); 4364 Arg = VectorArg[Part]; 4365 } 4366 Args.push_back(Arg); 4367 } 4368 4369 Function *VectorF; 4370 if (UseVectorIntrinsic) { 4371 // Use vector version of the intrinsic. 4372 Type *TysForDecl[] = {CI->getType()}; 4373 if (VF > 1) 4374 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4375 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4376 } else { 4377 // Use vector version of the library call. 4378 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4379 assert(!VFnName.empty() && "Vector function name is empty."); 4380 VectorF = M->getFunction(VFnName); 4381 if (!VectorF) { 4382 // Generate a declaration 4383 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4384 VectorF = 4385 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4386 VectorF->copyAttributesFrom(F); 4387 } 4388 } 4389 assert(VectorF && "Can't create vector function."); 4390 4391 SmallVector<OperandBundleDef, 1> OpBundles; 4392 CI->getOperandBundlesAsDefs(OpBundles); 4393 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4394 4395 if (isa<FPMathOperator>(V)) 4396 V->copyFastMathFlags(CI); 4397 4398 Entry[Part] = V; 4399 } 4400 4401 addMetadata(Entry, &*it); 4402 break; 4403 } 4404 4405 default: 4406 // All other instructions are unsupported. Scalarize them. 4407 scalarizeInstruction(&*it); 4408 break; 4409 } // end of switch. 4410 } // end of for_each instr. 4411 } 4412 4413 void InnerLoopVectorizer::updateAnalysis() { 4414 // Forget the original basic block. 4415 PSE.getSE()->forgetLoop(OrigLoop); 4416 4417 // Update the dominator tree information. 4418 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4419 "Entry does not dominate exit."); 4420 4421 // We don't predicate stores by this point, so the vector body should be a 4422 // single loop. 4423 DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader); 4424 4425 DT->addNewBlock(LoopMiddleBlock, LoopVectorBody); 4426 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4427 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4428 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4429 4430 DEBUG(DT->verifyDomTree()); 4431 } 4432 4433 /// \brief Check whether it is safe to if-convert this phi node. 4434 /// 4435 /// Phi nodes with constant expressions that can trap are not safe to if 4436 /// convert. 4437 static bool canIfConvertPHINodes(BasicBlock *BB) { 4438 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4439 PHINode *Phi = dyn_cast<PHINode>(I); 4440 if (!Phi) 4441 return true; 4442 for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p) 4443 if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p))) 4444 if (C->canTrap()) 4445 return false; 4446 } 4447 return true; 4448 } 4449 4450 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4451 if (!EnableIfConversion) { 4452 emitAnalysis(VectorizationReport() << "if-conversion is disabled"); 4453 return false; 4454 } 4455 4456 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4457 4458 // A list of pointers that we can safely read and write to. 4459 SmallPtrSet<Value *, 8> SafePointes; 4460 4461 // Collect safe addresses. 4462 for (Loop::block_iterator BI = TheLoop->block_begin(), 4463 BE = TheLoop->block_end(); 4464 BI != BE; ++BI) { 4465 BasicBlock *BB = *BI; 4466 4467 if (blockNeedsPredication(BB)) 4468 continue; 4469 4470 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 4471 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4472 SafePointes.insert(LI->getPointerOperand()); 4473 else if (StoreInst *SI = dyn_cast<StoreInst>(I)) 4474 SafePointes.insert(SI->getPointerOperand()); 4475 } 4476 } 4477 4478 // Collect the blocks that need predication. 4479 BasicBlock *Header = TheLoop->getHeader(); 4480 for (Loop::block_iterator BI = TheLoop->block_begin(), 4481 BE = TheLoop->block_end(); 4482 BI != BE; ++BI) { 4483 BasicBlock *BB = *BI; 4484 4485 // We don't support switch statements inside loops. 4486 if (!isa<BranchInst>(BB->getTerminator())) { 4487 emitAnalysis(VectorizationReport(BB->getTerminator()) 4488 << "loop contains a switch statement"); 4489 return false; 4490 } 4491 4492 // We must be able to predicate all blocks that need to be predicated. 4493 if (blockNeedsPredication(BB)) { 4494 if (!blockCanBePredicated(BB, SafePointes)) { 4495 emitAnalysis(VectorizationReport(BB->getTerminator()) 4496 << "control flow cannot be substituted for a select"); 4497 return false; 4498 } 4499 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4500 emitAnalysis(VectorizationReport(BB->getTerminator()) 4501 << "control flow cannot be substituted for a select"); 4502 return false; 4503 } 4504 } 4505 4506 // We can if-convert this loop. 4507 return true; 4508 } 4509 4510 bool LoopVectorizationLegality::canVectorize() { 4511 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4512 // be canonicalized. 4513 if (!TheLoop->getLoopPreheader()) { 4514 emitAnalysis(VectorizationReport() 4515 << "loop control flow is not understood by vectorizer"); 4516 return false; 4517 } 4518 4519 // We can only vectorize innermost loops. 4520 if (!TheLoop->empty()) { 4521 emitAnalysis(VectorizationReport() << "loop is not the innermost loop"); 4522 return false; 4523 } 4524 4525 // We must have a single backedge. 4526 if (TheLoop->getNumBackEdges() != 1) { 4527 emitAnalysis(VectorizationReport() 4528 << "loop control flow is not understood by vectorizer"); 4529 return false; 4530 } 4531 4532 // We must have a single exiting block. 4533 if (!TheLoop->getExitingBlock()) { 4534 emitAnalysis(VectorizationReport() 4535 << "loop control flow is not understood by vectorizer"); 4536 return false; 4537 } 4538 4539 // We only handle bottom-tested loops, i.e. loop in which the condition is 4540 // checked at the end of each iteration. With that we can assume that all 4541 // instructions in the loop are executed the same number of times. 4542 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 4543 emitAnalysis(VectorizationReport() 4544 << "loop control flow is not understood by vectorizer"); 4545 return false; 4546 } 4547 4548 // We need to have a loop header. 4549 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 4550 << '\n'); 4551 4552 // Check if we can if-convert non-single-bb loops. 4553 unsigned NumBlocks = TheLoop->getNumBlocks(); 4554 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 4555 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 4556 return false; 4557 } 4558 4559 // ScalarEvolution needs to be able to find the exit count. 4560 const SCEV *ExitCount = PSE.getBackedgeTakenCount(); 4561 if (ExitCount == PSE.getSE()->getCouldNotCompute()) { 4562 emitAnalysis(VectorizationReport() 4563 << "could not determine number of loop iterations"); 4564 DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n"); 4565 return false; 4566 } 4567 4568 // Check if we can vectorize the instructions and CFG in this loop. 4569 if (!canVectorizeInstrs()) { 4570 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 4571 return false; 4572 } 4573 4574 // Go over each instruction and look at memory deps. 4575 if (!canVectorizeMemory()) { 4576 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 4577 return false; 4578 } 4579 4580 // Collect all of the variables that remain uniform after vectorization. 4581 collectLoopUniforms(); 4582 4583 DEBUG(dbgs() << "LV: We can vectorize this loop" 4584 << (LAI->getRuntimePointerChecking()->Need 4585 ? " (with a runtime bound check)" 4586 : "") 4587 << "!\n"); 4588 4589 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 4590 4591 // If an override option has been passed in for interleaved accesses, use it. 4592 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 4593 UseInterleaved = EnableInterleavedMemAccesses; 4594 4595 // Analyze interleaved memory accesses. 4596 if (UseInterleaved) 4597 InterleaveInfo.analyzeInterleaving(Strides); 4598 4599 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 4600 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 4601 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 4602 4603 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 4604 emitAnalysis(VectorizationReport() 4605 << "Too many SCEV assumptions need to be made and checked " 4606 << "at runtime"); 4607 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 4608 return false; 4609 } 4610 4611 // Okay! We can vectorize. At this point we don't have any other mem analysis 4612 // which may limit our maximum vectorization factor, so just return true with 4613 // no restrictions. 4614 return true; 4615 } 4616 4617 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 4618 if (Ty->isPointerTy()) 4619 return DL.getIntPtrType(Ty); 4620 4621 // It is possible that char's or short's overflow when we ask for the loop's 4622 // trip count, work around this by changing the type size. 4623 if (Ty->getScalarSizeInBits() < 32) 4624 return Type::getInt32Ty(Ty->getContext()); 4625 4626 return Ty; 4627 } 4628 4629 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 4630 Ty0 = convertPointerToIntegerType(DL, Ty0); 4631 Ty1 = convertPointerToIntegerType(DL, Ty1); 4632 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 4633 return Ty0; 4634 return Ty1; 4635 } 4636 4637 /// \brief Check that the instruction has outside loop users and is not an 4638 /// identified reduction variable. 4639 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 4640 SmallPtrSetImpl<Value *> &Reductions) { 4641 // Reduction instructions are allowed to have exit users. All other 4642 // instructions must not have external users. 4643 if (!Reductions.count(Inst)) 4644 // Check that all of the users of the loop are inside the BB. 4645 for (User *U : Inst->users()) { 4646 Instruction *UI = cast<Instruction>(U); 4647 // This user may be a reduction exit value. 4648 if (!TheLoop->contains(UI)) { 4649 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 4650 return true; 4651 } 4652 } 4653 return false; 4654 } 4655 4656 bool LoopVectorizationLegality::addInductionPhi(PHINode *Phi, 4657 InductionDescriptor ID) { 4658 Inductions[Phi] = ID; 4659 Type *PhiTy = Phi->getType(); 4660 const DataLayout &DL = Phi->getModule()->getDataLayout(); 4661 4662 // Get the widest type. 4663 if (!WidestIndTy) 4664 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 4665 else 4666 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 4667 4668 // Int inductions are special because we only allow one IV. 4669 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 4670 ID.getConstIntStepValue() && 4671 ID.getConstIntStepValue()->isOne() && 4672 isa<Constant>(ID.getStartValue()) && 4673 cast<Constant>(ID.getStartValue())->isNullValue()) { 4674 4675 // Use the phi node with the widest type as induction. Use the last 4676 // one if there are multiple (no good reason for doing this other 4677 // than it is expedient). We've checked that it begins at zero and 4678 // steps by one, so this is a canonical induction variable. 4679 if (!Induction || PhiTy == WidestIndTy) 4680 Induction = Phi; 4681 } 4682 4683 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 4684 4685 // Until we explicitly handle the case of an induction variable with 4686 // an outside loop user we have to give up vectorizing this loop. 4687 if (hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) { 4688 emitAnalysis(VectorizationReport(Phi) << 4689 "use of induction value outside of the " 4690 "loop is not handled by vectorizer"); 4691 return false; 4692 } 4693 4694 return true; 4695 } 4696 4697 bool LoopVectorizationLegality::canVectorizeInstrs() { 4698 BasicBlock *Header = TheLoop->getHeader(); 4699 4700 // Look for the attribute signaling the absence of NaNs. 4701 Function &F = *Header->getParent(); 4702 HasFunNoNaNAttr = 4703 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 4704 4705 // For each block in the loop. 4706 for (Loop::block_iterator bb = TheLoop->block_begin(), 4707 be = TheLoop->block_end(); 4708 bb != be; ++bb) { 4709 4710 // Scan the instructions in the block and look for hazards. 4711 for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e; 4712 ++it) { 4713 4714 if (PHINode *Phi = dyn_cast<PHINode>(it)) { 4715 Type *PhiTy = Phi->getType(); 4716 // Check that this PHI type is allowed. 4717 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 4718 !PhiTy->isPointerTy()) { 4719 emitAnalysis(VectorizationReport(&*it) 4720 << "loop control flow is not understood by vectorizer"); 4721 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 4722 return false; 4723 } 4724 4725 // If this PHINode is not in the header block, then we know that we 4726 // can convert it to select during if-conversion. No need to check if 4727 // the PHIs in this block are induction or reduction variables. 4728 if (*bb != Header) { 4729 // Check that this instruction has no outside users or is an 4730 // identified reduction value with an outside user. 4731 if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) 4732 continue; 4733 emitAnalysis(VectorizationReport(&*it) 4734 << "value could not be identified as " 4735 "an induction or reduction variable"); 4736 return false; 4737 } 4738 4739 // We only allow if-converted PHIs with exactly two incoming values. 4740 if (Phi->getNumIncomingValues() != 2) { 4741 emitAnalysis(VectorizationReport(&*it) 4742 << "control flow not understood by vectorizer"); 4743 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 4744 return false; 4745 } 4746 4747 RecurrenceDescriptor RedDes; 4748 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 4749 if (RedDes.hasUnsafeAlgebra()) 4750 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 4751 AllowedExit.insert(RedDes.getLoopExitInstr()); 4752 Reductions[Phi] = RedDes; 4753 continue; 4754 } 4755 4756 InductionDescriptor ID; 4757 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID)) { 4758 if (!addInductionPhi(Phi, ID)) 4759 return false; 4760 continue; 4761 } 4762 4763 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, DT)) { 4764 FirstOrderRecurrences.insert(Phi); 4765 continue; 4766 } 4767 4768 // As a last resort, coerce the PHI to a AddRec expression 4769 // and re-try classifying it a an induction PHI. 4770 if (InductionDescriptor::isInductionPHI(Phi, PSE, ID, true)) { 4771 if (!addInductionPhi(Phi, ID)) 4772 return false; 4773 continue; 4774 } 4775 4776 emitAnalysis(VectorizationReport(&*it) 4777 << "value that could not be identified as " 4778 "reduction is used outside the loop"); 4779 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 4780 return false; 4781 } // end of PHI handling 4782 4783 // We handle calls that: 4784 // * Are debug info intrinsics. 4785 // * Have a mapping to an IR intrinsic. 4786 // * Have a vector version available. 4787 CallInst *CI = dyn_cast<CallInst>(it); 4788 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 4789 !isa<DbgInfoIntrinsic>(CI) && 4790 !(CI->getCalledFunction() && TLI && 4791 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 4792 emitAnalysis(VectorizationReport(&*it) 4793 << "call instruction cannot be vectorized"); 4794 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 4795 return false; 4796 } 4797 4798 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 4799 // second argument is the same (i.e. loop invariant) 4800 if (CI && hasVectorInstrinsicScalarOpd( 4801 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 4802 auto *SE = PSE.getSE(); 4803 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 4804 emitAnalysis(VectorizationReport(&*it) 4805 << "intrinsic instruction cannot be vectorized"); 4806 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 4807 return false; 4808 } 4809 } 4810 4811 // Check that the instruction return type is vectorizable. 4812 // Also, we can't vectorize extractelement instructions. 4813 if ((!VectorType::isValidElementType(it->getType()) && 4814 !it->getType()->isVoidTy()) || 4815 isa<ExtractElementInst>(it)) { 4816 emitAnalysis(VectorizationReport(&*it) 4817 << "instruction return type cannot be vectorized"); 4818 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 4819 return false; 4820 } 4821 4822 // Check that the stored type is vectorizable. 4823 if (StoreInst *ST = dyn_cast<StoreInst>(it)) { 4824 Type *T = ST->getValueOperand()->getType(); 4825 if (!VectorType::isValidElementType(T)) { 4826 emitAnalysis(VectorizationReport(ST) 4827 << "store instruction cannot be vectorized"); 4828 return false; 4829 } 4830 if (EnableMemAccessVersioning) 4831 collectStridedAccess(ST); 4832 4833 } else if (LoadInst *LI = dyn_cast<LoadInst>(it)) { 4834 if (EnableMemAccessVersioning) 4835 collectStridedAccess(LI); 4836 4837 // FP instructions can allow unsafe algebra, thus vectorizable by 4838 // non-IEEE-754 compliant SIMD units. 4839 // This applies to floating-point math operations and calls, not memory 4840 // operations, shuffles, or casts, as they don't change precision or 4841 // semantics. 4842 } else if (it->getType()->isFloatingPointTy() && 4843 (CI || it->isBinaryOp()) && !it->hasUnsafeAlgebra()) { 4844 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 4845 Hints->setPotentiallyUnsafe(); 4846 } 4847 4848 // Reduction instructions are allowed to have exit users. 4849 // All other instructions must not have external users. 4850 if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) { 4851 emitAnalysis(VectorizationReport(&*it) 4852 << "value cannot be used outside the loop"); 4853 return false; 4854 } 4855 4856 } // next instr. 4857 } 4858 4859 if (!Induction) { 4860 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 4861 if (Inductions.empty()) { 4862 emitAnalysis(VectorizationReport() 4863 << "loop induction variable could not be identified"); 4864 return false; 4865 } 4866 } 4867 4868 // Now we know the widest induction type, check if our found induction 4869 // is the same size. If it's not, unset it here and InnerLoopVectorizer 4870 // will create another. 4871 if (Induction && WidestIndTy != Induction->getType()) 4872 Induction = nullptr; 4873 4874 return true; 4875 } 4876 4877 void LoopVectorizationLegality::collectStridedAccess(Value *MemAccess) { 4878 Value *Ptr = nullptr; 4879 if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess)) 4880 Ptr = LI->getPointerOperand(); 4881 else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess)) 4882 Ptr = SI->getPointerOperand(); 4883 else 4884 return; 4885 4886 Value *Stride = getStrideFromPointer(Ptr, PSE.getSE(), TheLoop); 4887 if (!Stride) 4888 return; 4889 4890 DEBUG(dbgs() << "LV: Found a strided access that we can version"); 4891 DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *Stride << "\n"); 4892 Strides[Ptr] = Stride; 4893 StrideSet.insert(Stride); 4894 } 4895 4896 void LoopVectorizationLegality::collectLoopUniforms() { 4897 // We now know that the loop is vectorizable! 4898 // Collect variables that will remain uniform after vectorization. 4899 std::vector<Value *> Worklist; 4900 BasicBlock *Latch = TheLoop->getLoopLatch(); 4901 4902 // Start with the conditional branch and walk up the block. 4903 Worklist.push_back(Latch->getTerminator()->getOperand(0)); 4904 4905 // Also add all consecutive pointer values; these values will be uniform 4906 // after vectorization (and subsequent cleanup) and, until revectorization is 4907 // supported, all dependencies must also be uniform. 4908 for (Loop::block_iterator B = TheLoop->block_begin(), 4909 BE = TheLoop->block_end(); 4910 B != BE; ++B) 4911 for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end(); I != IE; ++I) 4912 if (I->getType()->isPointerTy() && isConsecutivePtr(&*I)) 4913 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4914 4915 while (!Worklist.empty()) { 4916 Instruction *I = dyn_cast<Instruction>(Worklist.back()); 4917 Worklist.pop_back(); 4918 4919 // Look at instructions inside this loop. 4920 // Stop when reaching PHI nodes. 4921 // TODO: we need to follow values all over the loop, not only in this block. 4922 if (!I || !TheLoop->contains(I) || isa<PHINode>(I)) 4923 continue; 4924 4925 // This is a known uniform. 4926 Uniforms.insert(I); 4927 4928 // Insert all operands. 4929 Worklist.insert(Worklist.end(), I->op_begin(), I->op_end()); 4930 } 4931 } 4932 4933 bool LoopVectorizationLegality::canVectorizeMemory() { 4934 LAI = &LAA->getInfo(TheLoop, Strides); 4935 auto &OptionalReport = LAI->getReport(); 4936 if (OptionalReport) 4937 emitAnalysis(VectorizationReport(*OptionalReport)); 4938 if (!LAI->canVectorizeMemory()) 4939 return false; 4940 4941 if (LAI->hasStoreToLoopInvariantAddress()) { 4942 emitAnalysis( 4943 VectorizationReport() 4944 << "write to a loop invariant address could not be vectorized"); 4945 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 4946 return false; 4947 } 4948 4949 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 4950 PSE.addPredicate(LAI->PSE.getUnionPredicate()); 4951 4952 return true; 4953 } 4954 4955 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 4956 Value *In0 = const_cast<Value *>(V); 4957 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 4958 if (!PN) 4959 return false; 4960 4961 return Inductions.count(PN); 4962 } 4963 4964 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 4965 return FirstOrderRecurrences.count(Phi); 4966 } 4967 4968 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 4969 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 4970 } 4971 4972 bool LoopVectorizationLegality::blockCanBePredicated( 4973 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 4974 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 4975 4976 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 4977 // Check that we don't have a constant expression that can trap as operand. 4978 for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end(); 4979 OI != OE; ++OI) { 4980 if (Constant *C = dyn_cast<Constant>(*OI)) 4981 if (C->canTrap()) 4982 return false; 4983 } 4984 // We might be able to hoist the load. 4985 if (it->mayReadFromMemory()) { 4986 LoadInst *LI = dyn_cast<LoadInst>(it); 4987 if (!LI) 4988 return false; 4989 if (!SafePtrs.count(LI->getPointerOperand())) { 4990 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 4991 isLegalMaskedGather(LI->getType())) { 4992 MaskedOp.insert(LI); 4993 continue; 4994 } 4995 // !llvm.mem.parallel_loop_access implies if-conversion safety. 4996 if (IsAnnotatedParallel) 4997 continue; 4998 return false; 4999 } 5000 } 5001 5002 // We don't predicate stores at the moment. 5003 if (it->mayWriteToMemory()) { 5004 StoreInst *SI = dyn_cast<StoreInst>(it); 5005 // We only support predication of stores in basic blocks with one 5006 // predecessor. 5007 if (!SI) 5008 return false; 5009 5010 // Build a masked store if it is legal for the target. 5011 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5012 SI->getPointerOperand()) || 5013 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5014 MaskedOp.insert(SI); 5015 continue; 5016 } 5017 5018 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5019 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5020 5021 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5022 !isSinglePredecessor) 5023 return false; 5024 } 5025 if (it->mayThrow()) 5026 return false; 5027 5028 // The instructions below can trap. 5029 switch (it->getOpcode()) { 5030 default: 5031 continue; 5032 case Instruction::UDiv: 5033 case Instruction::SDiv: 5034 case Instruction::URem: 5035 case Instruction::SRem: 5036 return false; 5037 } 5038 } 5039 5040 return true; 5041 } 5042 5043 void InterleavedAccessInfo::collectConstStridedAccesses( 5044 MapVector<Instruction *, StrideDescriptor> &StrideAccesses, 5045 const ValueToValueMap &Strides) { 5046 // Holds load/store instructions in program order. 5047 SmallVector<Instruction *, 16> AccessList; 5048 5049 for (auto *BB : TheLoop->getBlocks()) { 5050 bool IsPred = LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5051 5052 for (auto &I : *BB) { 5053 if (!isa<LoadInst>(&I) && !isa<StoreInst>(&I)) 5054 continue; 5055 // FIXME: Currently we can't handle mixed accesses and predicated accesses 5056 if (IsPred) 5057 return; 5058 5059 AccessList.push_back(&I); 5060 } 5061 } 5062 5063 if (AccessList.empty()) 5064 return; 5065 5066 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5067 for (auto I : AccessList) { 5068 LoadInst *LI = dyn_cast<LoadInst>(I); 5069 StoreInst *SI = dyn_cast<StoreInst>(I); 5070 5071 Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand(); 5072 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides); 5073 5074 // The factor of the corresponding interleave group. 5075 unsigned Factor = std::abs(Stride); 5076 5077 // Ignore the access if the factor is too small or too large. 5078 if (Factor < 2 || Factor > MaxInterleaveGroupFactor) 5079 continue; 5080 5081 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5082 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5083 unsigned Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5084 5085 // An alignment of 0 means target ABI alignment. 5086 unsigned Align = LI ? LI->getAlignment() : SI->getAlignment(); 5087 if (!Align) 5088 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5089 5090 StrideAccesses[I] = StrideDescriptor(Stride, Scev, Size, Align); 5091 } 5092 } 5093 5094 // Analyze interleaved accesses and collect them into interleave groups. 5095 // 5096 // Notice that the vectorization on interleaved groups will change instruction 5097 // orders and may break dependences. But the memory dependence check guarantees 5098 // that there is no overlap between two pointers of different strides, element 5099 // sizes or underlying bases. 5100 // 5101 // For pointers sharing the same stride, element size and underlying base, no 5102 // need to worry about Read-After-Write dependences and Write-After-Read 5103 // dependences. 5104 // 5105 // E.g. The RAW dependence: A[i] = a; 5106 // b = A[i]; 5107 // This won't exist as it is a store-load forwarding conflict, which has 5108 // already been checked and forbidden in the dependence check. 5109 // 5110 // E.g. The WAR dependence: a = A[i]; // (1) 5111 // A[i] = b; // (2) 5112 // The store group of (2) is always inserted at or below (2), and the load group 5113 // of (1) is always inserted at or above (1). The dependence is safe. 5114 void InterleavedAccessInfo::analyzeInterleaving( 5115 const ValueToValueMap &Strides) { 5116 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5117 5118 // Holds all the stride accesses. 5119 MapVector<Instruction *, StrideDescriptor> StrideAccesses; 5120 collectConstStridedAccesses(StrideAccesses, Strides); 5121 5122 if (StrideAccesses.empty()) 5123 return; 5124 5125 // Holds all interleaved store groups temporarily. 5126 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5127 // Holds all interleaved load groups temporarily. 5128 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5129 5130 // Search the load-load/write-write pair B-A in bottom-up order and try to 5131 // insert B into the interleave group of A according to 3 rules: 5132 // 1. A and B have the same stride. 5133 // 2. A and B have the same memory object size. 5134 // 3. B belongs to the group according to the distance. 5135 // 5136 // The bottom-up order can avoid breaking the Write-After-Write dependences 5137 // between two pointers of the same base. 5138 // E.g. A[i] = a; (1) 5139 // A[i] = b; (2) 5140 // A[i+1] = c (3) 5141 // We form the group (2)+(3) in front, so (1) has to form groups with accesses 5142 // above (1), which guarantees that (1) is always above (2). 5143 for (auto I = StrideAccesses.rbegin(), E = StrideAccesses.rend(); I != E; 5144 ++I) { 5145 Instruction *A = I->first; 5146 StrideDescriptor DesA = I->second; 5147 5148 InterleaveGroup *Group = getInterleaveGroup(A); 5149 if (!Group) { 5150 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *A << '\n'); 5151 Group = createInterleaveGroup(A, DesA.Stride, DesA.Align); 5152 } 5153 5154 if (A->mayWriteToMemory()) 5155 StoreGroups.insert(Group); 5156 else 5157 LoadGroups.insert(Group); 5158 5159 for (auto II = std::next(I); II != E; ++II) { 5160 Instruction *B = II->first; 5161 StrideDescriptor DesB = II->second; 5162 5163 // Ignore if B is already in a group or B is a different memory operation. 5164 if (isInterleaved(B) || A->mayReadFromMemory() != B->mayReadFromMemory()) 5165 continue; 5166 5167 // Check the rule 1 and 2. 5168 if (DesB.Stride != DesA.Stride || DesB.Size != DesA.Size) 5169 continue; 5170 5171 // Calculate the distance and prepare for the rule 3. 5172 const SCEVConstant *DistToA = dyn_cast<SCEVConstant>( 5173 PSE.getSE()->getMinusSCEV(DesB.Scev, DesA.Scev)); 5174 if (!DistToA) 5175 continue; 5176 5177 int DistanceToA = DistToA->getAPInt().getSExtValue(); 5178 5179 // Skip if the distance is not multiple of size as they are not in the 5180 // same group. 5181 if (DistanceToA % static_cast<int>(DesA.Size)) 5182 continue; 5183 5184 // The index of B is the index of A plus the related index to A. 5185 int IndexB = 5186 Group->getIndex(A) + DistanceToA / static_cast<int>(DesA.Size); 5187 5188 // Try to insert B into the group. 5189 if (Group->insertMember(B, IndexB, DesB.Align)) { 5190 DEBUG(dbgs() << "LV: Inserted:" << *B << '\n' 5191 << " into the interleave group with" << *A << '\n'); 5192 InterleaveGroupMap[B] = Group; 5193 5194 // Set the first load in program order as the insert position. 5195 if (B->mayReadFromMemory()) 5196 Group->setInsertPos(B); 5197 } 5198 } // Iteration on instruction B 5199 } // Iteration on instruction A 5200 5201 // Remove interleaved store groups with gaps. 5202 for (InterleaveGroup *Group : StoreGroups) 5203 if (Group->getNumMembers() != Group->getFactor()) 5204 releaseGroup(Group); 5205 5206 // If there is a non-reversed interleaved load group with gaps, we will need 5207 // to execute at least one scalar epilogue iteration. This will ensure that 5208 // we don't speculatively access memory out-of-bounds. Note that we only need 5209 // to look for a member at index factor - 1, since every group must have a 5210 // member at index zero. 5211 for (InterleaveGroup *Group : LoadGroups) 5212 if (!Group->getMember(Group->getFactor() - 1)) { 5213 if (Group->isReverse()) { 5214 releaseGroup(Group); 5215 } else { 5216 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 5217 RequiresScalarEpilogue = true; 5218 } 5219 } 5220 } 5221 5222 LoopVectorizationCostModel::VectorizationFactor 5223 LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize) { 5224 // Width 1 means no vectorize 5225 VectorizationFactor Factor = {1U, 0U}; 5226 if (OptForSize && Legal->getRuntimePointerChecking()->Need) { 5227 emitAnalysis( 5228 VectorizationReport() 5229 << "runtime pointer checks needed. Enable vectorization of this " 5230 "loop with '#pragma clang loop vectorize(enable)' when " 5231 "compiling with -Os/-Oz"); 5232 DEBUG(dbgs() 5233 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 5234 return Factor; 5235 } 5236 5237 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 5238 emitAnalysis( 5239 VectorizationReport() 5240 << "store that is conditionally executed prevents vectorization"); 5241 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 5242 return Factor; 5243 } 5244 5245 // Find the trip count. 5246 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5247 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5248 5249 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5250 unsigned SmallestType, WidestType; 5251 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5252 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5253 unsigned MaxSafeDepDist = -1U; 5254 5255 // Get the maximum safe dependence distance in bits computed by LAA. If the 5256 // loop contains any interleaved accesses, we divide the dependence distance 5257 // by the maximum interleave factor of all interleaved groups. Note that 5258 // although the division ensures correctness, this is a fairly conservative 5259 // computation because the maximum distance computed by LAA may not involve 5260 // any of the interleaved accesses. 5261 if (Legal->getMaxSafeDepDistBytes() != -1U) 5262 MaxSafeDepDist = 5263 Legal->getMaxSafeDepDistBytes() * 8 / Legal->getMaxInterleaveFactor(); 5264 5265 WidestRegister = 5266 ((WidestRegister < MaxSafeDepDist) ? WidestRegister : MaxSafeDepDist); 5267 unsigned MaxVectorSize = WidestRegister / WidestType; 5268 5269 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 5270 << WidestType << " bits.\n"); 5271 DEBUG(dbgs() << "LV: The Widest register is: " << WidestRegister 5272 << " bits.\n"); 5273 5274 if (MaxVectorSize == 0) { 5275 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5276 MaxVectorSize = 1; 5277 } 5278 5279 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 5280 " into one vector!"); 5281 5282 unsigned VF = MaxVectorSize; 5283 if (MaximizeBandwidth && !OptForSize) { 5284 // Collect all viable vectorization factors. 5285 SmallVector<unsigned, 8> VFs; 5286 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 5287 for (unsigned VS = MaxVectorSize; VS <= NewMaxVectorSize; VS *= 2) 5288 VFs.push_back(VS); 5289 5290 // For each VF calculate its register usage. 5291 auto RUs = calculateRegisterUsage(VFs); 5292 5293 // Select the largest VF which doesn't require more registers than existing 5294 // ones. 5295 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 5296 for (int i = RUs.size() - 1; i >= 0; --i) { 5297 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 5298 VF = VFs[i]; 5299 break; 5300 } 5301 } 5302 } 5303 5304 // If we optimize the program for size, avoid creating the tail loop. 5305 if (OptForSize) { 5306 // If we are unable to calculate the trip count then don't try to vectorize. 5307 if (TC < 2) { 5308 emitAnalysis( 5309 VectorizationReport() 5310 << "unable to calculate the loop count due to complex control flow"); 5311 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5312 return Factor; 5313 } 5314 5315 // Find the maximum SIMD width that can fit within the trip count. 5316 VF = TC % MaxVectorSize; 5317 5318 if (VF == 0) 5319 VF = MaxVectorSize; 5320 else { 5321 // If the trip count that we found modulo the vectorization factor is not 5322 // zero then we require a tail. 5323 emitAnalysis(VectorizationReport() 5324 << "cannot optimize for size and vectorize at the " 5325 "same time. Enable vectorization of this loop " 5326 "with '#pragma clang loop vectorize(enable)' " 5327 "when compiling with -Os/-Oz"); 5328 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 5329 return Factor; 5330 } 5331 } 5332 5333 int UserVF = Hints->getWidth(); 5334 if (UserVF != 0) { 5335 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 5336 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 5337 5338 Factor.Width = UserVF; 5339 return Factor; 5340 } 5341 5342 float Cost = expectedCost(1).first; 5343 #ifndef NDEBUG 5344 const float ScalarCost = Cost; 5345 #endif /* NDEBUG */ 5346 unsigned Width = 1; 5347 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 5348 5349 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5350 // Ignore scalar width, because the user explicitly wants vectorization. 5351 if (ForceVectorization && VF > 1) { 5352 Width = 2; 5353 Cost = expectedCost(Width).first / (float)Width; 5354 } 5355 5356 for (unsigned i = 2; i <= VF; i *= 2) { 5357 // Notice that the vector loop needs to be executed less times, so 5358 // we need to divide the cost of the vector loops by the width of 5359 // the vector elements. 5360 VectorizationCostTy C = expectedCost(i); 5361 float VectorCost = C.first / (float)i; 5362 DEBUG(dbgs() << "LV: Vector loop of width " << i 5363 << " costs: " << (int)VectorCost << ".\n"); 5364 if (!C.second && !ForceVectorization) { 5365 DEBUG( 5366 dbgs() << "LV: Not considering vector loop of width " << i 5367 << " because it will not generate any vector instructions.\n"); 5368 continue; 5369 } 5370 if (VectorCost < Cost) { 5371 Cost = VectorCost; 5372 Width = i; 5373 } 5374 } 5375 5376 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 5377 << "LV: Vectorization seems to be not beneficial, " 5378 << "but was forced by a user.\n"); 5379 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5380 Factor.Width = Width; 5381 Factor.Cost = Width * Cost; 5382 return Factor; 5383 } 5384 5385 std::pair<unsigned, unsigned> 5386 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5387 unsigned MinWidth = -1U; 5388 unsigned MaxWidth = 8; 5389 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5390 5391 // For each block. 5392 for (Loop::block_iterator bb = TheLoop->block_begin(), 5393 be = TheLoop->block_end(); 5394 bb != be; ++bb) { 5395 BasicBlock *BB = *bb; 5396 5397 // For each instruction in the loop. 5398 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5399 Type *T = it->getType(); 5400 5401 // Skip ignored values. 5402 if (ValuesToIgnore.count(&*it)) 5403 continue; 5404 5405 // Only examine Loads, Stores and PHINodes. 5406 if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it)) 5407 continue; 5408 5409 // Examine PHI nodes that are reduction variables. Update the type to 5410 // account for the recurrence type. 5411 if (PHINode *PN = dyn_cast<PHINode>(it)) { 5412 if (!Legal->isReductionVariable(PN)) 5413 continue; 5414 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 5415 T = RdxDesc.getRecurrenceType(); 5416 } 5417 5418 // Examine the stored values. 5419 if (StoreInst *ST = dyn_cast<StoreInst>(it)) 5420 T = ST->getValueOperand()->getType(); 5421 5422 // Ignore loaded pointer types and stored pointer types that are not 5423 // consecutive. However, we do want to take consecutive stores/loads of 5424 // pointer vectors into account. 5425 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it)) 5426 continue; 5427 5428 MinWidth = std::min(MinWidth, 5429 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5430 MaxWidth = std::max(MaxWidth, 5431 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 5432 } 5433 } 5434 5435 return {MinWidth, MaxWidth}; 5436 } 5437 5438 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 5439 unsigned VF, 5440 unsigned LoopCost) { 5441 5442 // -- The interleave heuristics -- 5443 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5444 // There are many micro-architectural considerations that we can't predict 5445 // at this level. For example, frontend pressure (on decode or fetch) due to 5446 // code size, or the number and capabilities of the execution ports. 5447 // 5448 // We use the following heuristics to select the interleave count: 5449 // 1. If the code has reductions, then we interleave to break the cross 5450 // iteration dependency. 5451 // 2. If the loop is really small, then we interleave to reduce the loop 5452 // overhead. 5453 // 3. We don't interleave if we think that we will spill registers to memory 5454 // due to the increased register pressure. 5455 5456 // When we optimize for size, we don't interleave. 5457 if (OptForSize) 5458 return 1; 5459 5460 // We used the distance for the interleave count. 5461 if (Legal->getMaxSafeDepDistBytes() != -1U) 5462 return 1; 5463 5464 // Do not interleave loops with a relatively small trip count. 5465 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5466 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 5467 return 1; 5468 5469 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 5470 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5471 << " registers\n"); 5472 5473 if (VF == 1) { 5474 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5475 TargetNumRegisters = ForceTargetNumScalarRegs; 5476 } else { 5477 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5478 TargetNumRegisters = ForceTargetNumVectorRegs; 5479 } 5480 5481 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5482 // We divide by these constants so assume that we have at least one 5483 // instruction that uses at least one register. 5484 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 5485 R.NumInstructions = std::max(R.NumInstructions, 1U); 5486 5487 // We calculate the interleave count using the following formula. 5488 // Subtract the number of loop invariants from the number of available 5489 // registers. These registers are used by all of the interleaved instances. 5490 // Next, divide the remaining registers by the number of registers that is 5491 // required by the loop, in order to estimate how many parallel instances 5492 // fit without causing spills. All of this is rounded down if necessary to be 5493 // a power of two. We want power of two interleave count to simplify any 5494 // addressing operations or alignment considerations. 5495 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 5496 R.MaxLocalUsers); 5497 5498 // Don't count the induction variable as interleaved. 5499 if (EnableIndVarRegisterHeur) 5500 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 5501 std::max(1U, (R.MaxLocalUsers - 1))); 5502 5503 // Clamp the interleave ranges to reasonable counts. 5504 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 5505 5506 // Check if the user has overridden the max. 5507 if (VF == 1) { 5508 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5509 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5510 } else { 5511 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5512 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5513 } 5514 5515 // If we did not calculate the cost for VF (because the user selected the VF) 5516 // then we calculate the cost of VF here. 5517 if (LoopCost == 0) 5518 LoopCost = expectedCost(VF).first; 5519 5520 // Clamp the calculated IC to be between the 1 and the max interleave count 5521 // that the target allows. 5522 if (IC > MaxInterleaveCount) 5523 IC = MaxInterleaveCount; 5524 else if (IC < 1) 5525 IC = 1; 5526 5527 // Interleave if we vectorized this loop and there is a reduction that could 5528 // benefit from interleaving. 5529 if (VF > 1 && Legal->getReductionVars()->size()) { 5530 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5531 return IC; 5532 } 5533 5534 // Note that if we've already vectorized the loop we will have done the 5535 // runtime check and so interleaving won't require further checks. 5536 bool InterleavingRequiresRuntimePointerCheck = 5537 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 5538 5539 // We want to interleave small loops in order to reduce the loop overhead and 5540 // potentially expose ILP opportunities. 5541 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 5542 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 5543 // We assume that the cost overhead is 1 and we use the cost model 5544 // to estimate the cost of the loop and interleave until the cost of the 5545 // loop overhead is about 5% of the cost of the loop. 5546 unsigned SmallIC = 5547 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5548 5549 // Interleave until store/load ports (estimated by max interleave count) are 5550 // saturated. 5551 unsigned NumStores = Legal->getNumStores(); 5552 unsigned NumLoads = Legal->getNumLoads(); 5553 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5554 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5555 5556 // If we have a scalar reduction (vector reductions are already dealt with 5557 // by this point), we can increase the critical path length if the loop 5558 // we're interleaving is inside another loop. Limit, by default to 2, so the 5559 // critical path only gets increased by one reduction operation. 5560 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 5561 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5562 SmallIC = std::min(SmallIC, F); 5563 StoresIC = std::min(StoresIC, F); 5564 LoadsIC = std::min(LoadsIC, F); 5565 } 5566 5567 if (EnableLoadStoreRuntimeInterleave && 5568 std::max(StoresIC, LoadsIC) > SmallIC) { 5569 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5570 return std::max(StoresIC, LoadsIC); 5571 } 5572 5573 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5574 return SmallIC; 5575 } 5576 5577 // Interleave if this is a large loop (small loops are already dealt with by 5578 // this point) that could benefit from interleaving. 5579 bool HasReductions = (Legal->getReductionVars()->size() > 0); 5580 if (TTI.enableAggressiveInterleaving(HasReductions)) { 5581 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5582 return IC; 5583 } 5584 5585 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5586 return 1; 5587 } 5588 5589 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5590 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 5591 // This function calculates the register usage by measuring the highest number 5592 // of values that are alive at a single location. Obviously, this is a very 5593 // rough estimation. We scan the loop in a topological order in order and 5594 // assign a number to each instruction. We use RPO to ensure that defs are 5595 // met before their users. We assume that each instruction that has in-loop 5596 // users starts an interval. We record every time that an in-loop value is 5597 // used, so we have a list of the first and last occurrences of each 5598 // instruction. Next, we transpose this data structure into a multi map that 5599 // holds the list of intervals that *end* at a specific location. This multi 5600 // map allows us to perform a linear search. We scan the instructions linearly 5601 // and record each time that a new interval starts, by placing it in a set. 5602 // If we find this value in the multi-map then we remove it from the set. 5603 // The max register usage is the maximum size of the set. 5604 // We also search for instructions that are defined outside the loop, but are 5605 // used inside the loop. We need this number separately from the max-interval 5606 // usage number because when we unroll, loop-invariant values do not take 5607 // more register. 5608 LoopBlocksDFS DFS(TheLoop); 5609 DFS.perform(LI); 5610 5611 RegisterUsage RU; 5612 RU.NumInstructions = 0; 5613 5614 // Each 'key' in the map opens a new interval. The values 5615 // of the map are the index of the 'last seen' usage of the 5616 // instruction that is the key. 5617 typedef DenseMap<Instruction *, unsigned> IntervalMap; 5618 // Maps instruction to its index. 5619 DenseMap<unsigned, Instruction *> IdxToInstr; 5620 // Marks the end of each interval. 5621 IntervalMap EndPoint; 5622 // Saves the list of instruction indices that are used in the loop. 5623 SmallSet<Instruction *, 8> Ends; 5624 // Saves the list of values that are used in the loop but are 5625 // defined outside the loop, such as arguments and constants. 5626 SmallPtrSet<Value *, 8> LoopInvariants; 5627 5628 unsigned Index = 0; 5629 for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(), be = DFS.endRPO(); 5630 bb != be; ++bb) { 5631 RU.NumInstructions += (*bb)->size(); 5632 for (Instruction &I : **bb) { 5633 IdxToInstr[Index++] = &I; 5634 5635 // Save the end location of each USE. 5636 for (unsigned i = 0; i < I.getNumOperands(); ++i) { 5637 Value *U = I.getOperand(i); 5638 Instruction *Instr = dyn_cast<Instruction>(U); 5639 5640 // Ignore non-instruction values such as arguments, constants, etc. 5641 if (!Instr) 5642 continue; 5643 5644 // If this instruction is outside the loop then record it and continue. 5645 if (!TheLoop->contains(Instr)) { 5646 LoopInvariants.insert(Instr); 5647 continue; 5648 } 5649 5650 // Overwrite previous end points. 5651 EndPoint[Instr] = Index; 5652 Ends.insert(Instr); 5653 } 5654 } 5655 } 5656 5657 // Saves the list of intervals that end with the index in 'key'. 5658 typedef SmallVector<Instruction *, 2> InstrList; 5659 DenseMap<unsigned, InstrList> TransposeEnds; 5660 5661 // Transpose the EndPoints to a list of values that end at each index. 5662 for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end(); it != e; 5663 ++it) 5664 TransposeEnds[it->second].push_back(it->first); 5665 5666 SmallSet<Instruction *, 8> OpenIntervals; 5667 5668 // Get the size of the widest register. 5669 unsigned MaxSafeDepDist = -1U; 5670 if (Legal->getMaxSafeDepDistBytes() != -1U) 5671 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 5672 unsigned WidestRegister = 5673 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 5674 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5675 5676 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5677 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 5678 5679 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5680 5681 // A lambda that gets the register usage for the given type and VF. 5682 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 5683 if (Ty->isTokenTy()) 5684 return 0U; 5685 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 5686 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 5687 }; 5688 5689 for (unsigned int i = 0; i < Index; ++i) { 5690 Instruction *I = IdxToInstr[i]; 5691 // Ignore instructions that are never used within the loop. 5692 if (!Ends.count(I)) 5693 continue; 5694 5695 // Remove all of the instructions that end at this location. 5696 InstrList &List = TransposeEnds[i]; 5697 for (unsigned int j = 0, e = List.size(); j < e; ++j) 5698 OpenIntervals.erase(List[j]); 5699 5700 // Skip ignored values. 5701 if (ValuesToIgnore.count(I)) 5702 continue; 5703 5704 // For each VF find the maximum usage of registers. 5705 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 5706 if (VFs[j] == 1) { 5707 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 5708 continue; 5709 } 5710 5711 // Count the number of live intervals. 5712 unsigned RegUsage = 0; 5713 for (auto Inst : OpenIntervals) { 5714 // Skip ignored values for VF > 1. 5715 if (VecValuesToIgnore.count(Inst)) 5716 continue; 5717 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 5718 } 5719 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 5720 } 5721 5722 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 5723 << OpenIntervals.size() << '\n'); 5724 5725 // Add the current instruction to the list of open intervals. 5726 OpenIntervals.insert(I); 5727 } 5728 5729 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 5730 unsigned Invariant = 0; 5731 if (VFs[i] == 1) 5732 Invariant = LoopInvariants.size(); 5733 else { 5734 for (auto Inst : LoopInvariants) 5735 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 5736 } 5737 5738 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 5739 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 5740 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 5741 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 5742 5743 RU.LoopInvariantRegs = Invariant; 5744 RU.MaxLocalUsers = MaxUsages[i]; 5745 RUs[i] = RU; 5746 } 5747 5748 return RUs; 5749 } 5750 5751 LoopVectorizationCostModel::VectorizationCostTy 5752 LoopVectorizationCostModel::expectedCost(unsigned VF) { 5753 VectorizationCostTy Cost; 5754 5755 // For each block. 5756 for (Loop::block_iterator bb = TheLoop->block_begin(), 5757 be = TheLoop->block_end(); 5758 bb != be; ++bb) { 5759 VectorizationCostTy BlockCost; 5760 BasicBlock *BB = *bb; 5761 5762 // For each instruction in the old loop. 5763 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) { 5764 // Skip dbg intrinsics. 5765 if (isa<DbgInfoIntrinsic>(it)) 5766 continue; 5767 5768 // Skip ignored values. 5769 if (ValuesToIgnore.count(&*it)) 5770 continue; 5771 5772 VectorizationCostTy C = getInstructionCost(&*it, VF); 5773 5774 // Check if we should override the cost. 5775 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 5776 C.first = ForceTargetInstructionCost; 5777 5778 BlockCost.first += C.first; 5779 BlockCost.second |= C.second; 5780 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 5781 << VF << " For instruction: " << *it << '\n'); 5782 } 5783 5784 // We assume that if-converted blocks have a 50% chance of being executed. 5785 // When the code is scalar then some of the blocks are avoided due to CF. 5786 // When the code is vectorized we execute all code paths. 5787 if (VF == 1 && Legal->blockNeedsPredication(*bb)) 5788 BlockCost.first /= 2; 5789 5790 Cost.first += BlockCost.first; 5791 Cost.second |= BlockCost.second; 5792 } 5793 5794 return Cost; 5795 } 5796 5797 /// \brief Check if the load/store instruction \p I may be translated into 5798 /// gather/scatter during vectorization. 5799 /// 5800 /// Pointer \p Ptr specifies address in memory for the given scalar memory 5801 /// instruction. We need it to retrieve data type. 5802 /// Using gather/scatter is possible when it is supported by target. 5803 static bool isGatherOrScatterLegal(Instruction *I, Value *Ptr, 5804 LoopVectorizationLegality *Legal) { 5805 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType(); 5806 return (isa<LoadInst>(I) && Legal->isLegalMaskedGather(DataTy)) || 5807 (isa<StoreInst>(I) && Legal->isLegalMaskedScatter(DataTy)); 5808 } 5809 5810 /// \brief Check whether the address computation for a non-consecutive memory 5811 /// access looks like an unlikely candidate for being merged into the indexing 5812 /// mode. 5813 /// 5814 /// We look for a GEP which has one index that is an induction variable and all 5815 /// other indices are loop invariant. If the stride of this access is also 5816 /// within a small bound we decide that this address computation can likely be 5817 /// merged into the addressing mode. 5818 /// In all other cases, we identify the address computation as complex. 5819 static bool isLikelyComplexAddressComputation(Value *Ptr, 5820 LoopVectorizationLegality *Legal, 5821 ScalarEvolution *SE, 5822 const Loop *TheLoop) { 5823 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 5824 if (!Gep) 5825 return true; 5826 5827 // We are looking for a gep with all loop invariant indices except for one 5828 // which should be an induction variable. 5829 unsigned NumOperands = Gep->getNumOperands(); 5830 for (unsigned i = 1; i < NumOperands; ++i) { 5831 Value *Opd = Gep->getOperand(i); 5832 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 5833 !Legal->isInductionVariable(Opd)) 5834 return true; 5835 } 5836 5837 // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step 5838 // can likely be merged into the address computation. 5839 unsigned MaxMergeDistance = 64; 5840 5841 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr)); 5842 if (!AddRec) 5843 return true; 5844 5845 // Check the step is constant. 5846 const SCEV *Step = AddRec->getStepRecurrence(*SE); 5847 // Calculate the pointer stride and check if it is consecutive. 5848 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 5849 if (!C) 5850 return true; 5851 5852 const APInt &APStepVal = C->getAPInt(); 5853 5854 // Huge step value - give up. 5855 if (APStepVal.getBitWidth() > 64) 5856 return true; 5857 5858 int64_t StepVal = APStepVal.getSExtValue(); 5859 5860 return StepVal > MaxMergeDistance; 5861 } 5862 5863 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 5864 return Legal->hasStride(I->getOperand(0)) || 5865 Legal->hasStride(I->getOperand(1)); 5866 } 5867 5868 LoopVectorizationCostModel::VectorizationCostTy 5869 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 5870 // If we know that this instruction will remain uniform, check the cost of 5871 // the scalar version. 5872 if (Legal->isUniformAfterVectorization(I)) 5873 VF = 1; 5874 5875 Type *VectorTy; 5876 unsigned C = getInstructionCost(I, VF, VectorTy); 5877 5878 bool TypeNotScalarized = 5879 VF > 1 && !VectorTy->isVoidTy() && TTI.getNumberOfParts(VectorTy) < VF; 5880 return VectorizationCostTy(C, TypeNotScalarized); 5881 } 5882 5883 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 5884 unsigned VF, 5885 Type *&VectorTy) { 5886 Type *RetTy = I->getType(); 5887 if (VF > 1 && MinBWs.count(I)) 5888 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 5889 VectorTy = ToVectorTy(RetTy, VF); 5890 auto SE = PSE.getSE(); 5891 5892 // TODO: We need to estimate the cost of intrinsic calls. 5893 switch (I->getOpcode()) { 5894 case Instruction::GetElementPtr: 5895 // We mark this instruction as zero-cost because the cost of GEPs in 5896 // vectorized code depends on whether the corresponding memory instruction 5897 // is scalarized or not. Therefore, we handle GEPs with the memory 5898 // instruction cost. 5899 return 0; 5900 case Instruction::Br: { 5901 return TTI.getCFInstrCost(I->getOpcode()); 5902 } 5903 case Instruction::PHI: { 5904 auto *Phi = cast<PHINode>(I); 5905 5906 // First-order recurrences are replaced by vector shuffles inside the loop. 5907 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 5908 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 5909 VectorTy, VF - 1, VectorTy); 5910 5911 // TODO: IF-converted IFs become selects. 5912 return 0; 5913 } 5914 case Instruction::Add: 5915 case Instruction::FAdd: 5916 case Instruction::Sub: 5917 case Instruction::FSub: 5918 case Instruction::Mul: 5919 case Instruction::FMul: 5920 case Instruction::UDiv: 5921 case Instruction::SDiv: 5922 case Instruction::FDiv: 5923 case Instruction::URem: 5924 case Instruction::SRem: 5925 case Instruction::FRem: 5926 case Instruction::Shl: 5927 case Instruction::LShr: 5928 case Instruction::AShr: 5929 case Instruction::And: 5930 case Instruction::Or: 5931 case Instruction::Xor: { 5932 // Since we will replace the stride by 1 the multiplication should go away. 5933 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 5934 return 0; 5935 // Certain instructions can be cheaper to vectorize if they have a constant 5936 // second vector operand. One example of this are shifts on x86. 5937 TargetTransformInfo::OperandValueKind Op1VK = 5938 TargetTransformInfo::OK_AnyValue; 5939 TargetTransformInfo::OperandValueKind Op2VK = 5940 TargetTransformInfo::OK_AnyValue; 5941 TargetTransformInfo::OperandValueProperties Op1VP = 5942 TargetTransformInfo::OP_None; 5943 TargetTransformInfo::OperandValueProperties Op2VP = 5944 TargetTransformInfo::OP_None; 5945 Value *Op2 = I->getOperand(1); 5946 5947 // Check for a splat of a constant or for a non uniform vector of constants. 5948 if (isa<ConstantInt>(Op2)) { 5949 ConstantInt *CInt = cast<ConstantInt>(Op2); 5950 if (CInt && CInt->getValue().isPowerOf2()) 5951 Op2VP = TargetTransformInfo::OP_PowerOf2; 5952 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5953 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 5954 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 5955 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 5956 if (SplatValue) { 5957 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 5958 if (CInt && CInt->getValue().isPowerOf2()) 5959 Op2VP = TargetTransformInfo::OP_PowerOf2; 5960 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 5961 } 5962 } 5963 5964 return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK, 5965 Op1VP, Op2VP); 5966 } 5967 case Instruction::Select: { 5968 SelectInst *SI = cast<SelectInst>(I); 5969 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 5970 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 5971 Type *CondTy = SI->getCondition()->getType(); 5972 if (!ScalarCond) 5973 CondTy = VectorType::get(CondTy, VF); 5974 5975 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy); 5976 } 5977 case Instruction::ICmp: 5978 case Instruction::FCmp: { 5979 Type *ValTy = I->getOperand(0)->getType(); 5980 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 5981 auto It = MinBWs.find(Op0AsInstruction); 5982 if (VF > 1 && It != MinBWs.end()) 5983 ValTy = IntegerType::get(ValTy->getContext(), It->second); 5984 VectorTy = ToVectorTy(ValTy, VF); 5985 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy); 5986 } 5987 case Instruction::Store: 5988 case Instruction::Load: { 5989 StoreInst *SI = dyn_cast<StoreInst>(I); 5990 LoadInst *LI = dyn_cast<LoadInst>(I); 5991 Type *ValTy = (SI ? SI->getValueOperand()->getType() : LI->getType()); 5992 VectorTy = ToVectorTy(ValTy, VF); 5993 5994 unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment(); 5995 unsigned AS = 5996 SI ? SI->getPointerAddressSpace() : LI->getPointerAddressSpace(); 5997 Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand(); 5998 // We add the cost of address computation here instead of with the gep 5999 // instruction because only here we know whether the operation is 6000 // scalarized. 6001 if (VF == 1) 6002 return TTI.getAddressComputationCost(VectorTy) + 6003 TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6004 6005 if (LI && Legal->isUniform(Ptr)) { 6006 // Scalar load + broadcast 6007 unsigned Cost = TTI.getAddressComputationCost(ValTy->getScalarType()); 6008 Cost += TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6009 Alignment, AS); 6010 return Cost + 6011 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, ValTy); 6012 } 6013 6014 // For an interleaved access, calculate the total cost of the whole 6015 // interleave group. 6016 if (Legal->isAccessInterleaved(I)) { 6017 auto Group = Legal->getInterleavedAccessGroup(I); 6018 assert(Group && "Fail to get an interleaved access group."); 6019 6020 // Only calculate the cost once at the insert position. 6021 if (Group->getInsertPos() != I) 6022 return 0; 6023 6024 unsigned InterleaveFactor = Group->getFactor(); 6025 Type *WideVecTy = 6026 VectorType::get(VectorTy->getVectorElementType(), 6027 VectorTy->getVectorNumElements() * InterleaveFactor); 6028 6029 // Holds the indices of existing members in an interleaved load group. 6030 // An interleaved store group doesn't need this as it doesn't allow gaps. 6031 SmallVector<unsigned, 4> Indices; 6032 if (LI) { 6033 for (unsigned i = 0; i < InterleaveFactor; i++) 6034 if (Group->getMember(i)) 6035 Indices.push_back(i); 6036 } 6037 6038 // Calculate the cost of the whole interleaved group. 6039 unsigned Cost = TTI.getInterleavedMemoryOpCost( 6040 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, 6041 Group->getAlignment(), AS); 6042 6043 if (Group->isReverse()) 6044 Cost += 6045 Group->getNumMembers() * 6046 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6047 6048 // FIXME: The interleaved load group with a huge gap could be even more 6049 // expensive than scalar operations. Then we could ignore such group and 6050 // use scalar operations instead. 6051 return Cost; 6052 } 6053 6054 // Scalarized loads/stores. 6055 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6056 bool UseGatherOrScatter = 6057 (ConsecutiveStride == 0) && isGatherOrScatterLegal(I, Ptr, Legal); 6058 6059 bool Reverse = ConsecutiveStride < 0; 6060 const DataLayout &DL = I->getModule()->getDataLayout(); 6061 unsigned ScalarAllocatedSize = DL.getTypeAllocSize(ValTy); 6062 unsigned VectorElementSize = DL.getTypeStoreSize(VectorTy) / VF; 6063 if ((!ConsecutiveStride && !UseGatherOrScatter) || 6064 ScalarAllocatedSize != VectorElementSize) { 6065 bool IsComplexComputation = 6066 isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop); 6067 unsigned Cost = 0; 6068 // The cost of extracting from the value vector and pointer vector. 6069 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6070 for (unsigned i = 0; i < VF; ++i) { 6071 // The cost of extracting the pointer operand. 6072 Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i); 6073 // In case of STORE, the cost of ExtractElement from the vector. 6074 // In case of LOAD, the cost of InsertElement into the returned 6075 // vector. 6076 Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement 6077 : Instruction::InsertElement, 6078 VectorTy, i); 6079 } 6080 6081 // The cost of the scalar loads/stores. 6082 Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation); 6083 Cost += VF * 6084 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), 6085 Alignment, AS); 6086 return Cost; 6087 } 6088 6089 unsigned Cost = TTI.getAddressComputationCost(VectorTy); 6090 if (UseGatherOrScatter) { 6091 assert(ConsecutiveStride == 0 && 6092 "Gather/Scatter are not used for consecutive stride"); 6093 return Cost + 6094 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6095 Legal->isMaskRequired(I), Alignment); 6096 } 6097 // Wide load/stores. 6098 if (Legal->isMaskRequired(I)) 6099 Cost += 6100 TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6101 else 6102 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6103 6104 if (Reverse) 6105 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6106 return Cost; 6107 } 6108 case Instruction::ZExt: 6109 case Instruction::SExt: 6110 case Instruction::FPToUI: 6111 case Instruction::FPToSI: 6112 case Instruction::FPExt: 6113 case Instruction::PtrToInt: 6114 case Instruction::IntToPtr: 6115 case Instruction::SIToFP: 6116 case Instruction::UIToFP: 6117 case Instruction::Trunc: 6118 case Instruction::FPTrunc: 6119 case Instruction::BitCast: { 6120 // We optimize the truncation of induction variable. 6121 // The cost of these is the same as the scalar operation. 6122 if (I->getOpcode() == Instruction::Trunc && 6123 Legal->isInductionVariable(I->getOperand(0))) 6124 return TTI.getCastInstrCost(I->getOpcode(), I->getType(), 6125 I->getOperand(0)->getType()); 6126 6127 Type *SrcScalarTy = I->getOperand(0)->getType(); 6128 Type *SrcVecTy = ToVectorTy(SrcScalarTy, VF); 6129 if (VF > 1 && MinBWs.count(I)) { 6130 // This cast is going to be shrunk. This may remove the cast or it might 6131 // turn it into slightly different cast. For example, if MinBW == 16, 6132 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 6133 // 6134 // Calculate the modified src and dest types. 6135 Type *MinVecTy = VectorTy; 6136 if (I->getOpcode() == Instruction::Trunc) { 6137 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 6138 VectorTy = 6139 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6140 } else if (I->getOpcode() == Instruction::ZExt || 6141 I->getOpcode() == Instruction::SExt) { 6142 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 6143 VectorTy = 6144 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 6145 } 6146 } 6147 6148 return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy); 6149 } 6150 case Instruction::Call: { 6151 bool NeedToScalarize; 6152 CallInst *CI = cast<CallInst>(I); 6153 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 6154 if (getVectorIntrinsicIDForCall(CI, TLI)) 6155 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 6156 return CallCost; 6157 } 6158 default: { 6159 // We are scalarizing the instruction. Return the cost of the scalar 6160 // instruction, plus the cost of insert and extract into vector 6161 // elements, times the vector width. 6162 unsigned Cost = 0; 6163 6164 if (!RetTy->isVoidTy() && VF != 1) { 6165 unsigned InsCost = 6166 TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy); 6167 unsigned ExtCost = 6168 TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy); 6169 6170 // The cost of inserting the results plus extracting each one of the 6171 // operands. 6172 Cost += VF * (InsCost + ExtCost * I->getNumOperands()); 6173 } 6174 6175 // The cost of executing VF copies of the scalar instruction. This opcode 6176 // is unknown. Assume that it is the same as 'mul'. 6177 Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy); 6178 return Cost; 6179 } 6180 } // end of switch. 6181 } 6182 6183 char LoopVectorize::ID = 0; 6184 static const char lv_name[] = "Loop Vectorization"; 6185 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 6186 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6187 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 6188 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 6189 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 6190 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 6191 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 6192 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6193 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6194 INITIALIZE_PASS_DEPENDENCY(LCSSA) 6195 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6196 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6197 INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis) 6198 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 6199 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 6200 6201 namespace llvm { 6202 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 6203 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 6204 } 6205 } 6206 6207 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 6208 // Check for a store. 6209 if (StoreInst *ST = dyn_cast<StoreInst>(Inst)) 6210 return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0; 6211 6212 // Check for a load. 6213 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 6214 return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0; 6215 6216 return false; 6217 } 6218 6219 void LoopVectorizationCostModel::collectValuesToIgnore() { 6220 // Ignore ephemeral values. 6221 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 6222 6223 // Ignore type-promoting instructions we identified during reduction 6224 // detection. 6225 for (auto &Reduction : *Legal->getReductionVars()) { 6226 RecurrenceDescriptor &RedDes = Reduction.second; 6227 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 6228 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 6229 } 6230 6231 // Ignore induction phis that are only used in either GetElementPtr or ICmp 6232 // instruction to exit loop. Induction variables usually have large types and 6233 // can have big impact when estimating register usage. 6234 // This is for when VF > 1. 6235 for (auto &Induction : *Legal->getInductionVars()) { 6236 auto *PN = Induction.first; 6237 auto *UpdateV = PN->getIncomingValueForBlock(TheLoop->getLoopLatch()); 6238 6239 // Check that the PHI is only used by the induction increment (UpdateV) or 6240 // by GEPs. Then check that UpdateV is only used by a compare instruction or 6241 // the loop header PHI. 6242 // FIXME: Need precise def-use analysis to determine if this instruction 6243 // variable will be vectorized. 6244 if (std::all_of(PN->user_begin(), PN->user_end(), 6245 [&](const User *U) -> bool { 6246 return U == UpdateV || isa<GetElementPtrInst>(U); 6247 }) && 6248 std::all_of(UpdateV->user_begin(), UpdateV->user_end(), 6249 [&](const User *U) -> bool { 6250 return U == PN || isa<ICmpInst>(U); 6251 })) { 6252 VecValuesToIgnore.insert(PN); 6253 VecValuesToIgnore.insert(UpdateV); 6254 } 6255 } 6256 6257 // Ignore instructions that will not be vectorized. 6258 // This is for when VF > 1. 6259 for (auto bb = TheLoop->block_begin(), be = TheLoop->block_end(); bb != be; 6260 ++bb) { 6261 for (auto &Inst : **bb) { 6262 switch (Inst.getOpcode()) 6263 case Instruction::GetElementPtr: { 6264 // Ignore GEP if its last operand is an induction variable so that it is 6265 // a consecutive load/store and won't be vectorized as scatter/gather 6266 // pattern. 6267 6268 GetElementPtrInst *Gep = cast<GetElementPtrInst>(&Inst); 6269 unsigned NumOperands = Gep->getNumOperands(); 6270 unsigned InductionOperand = getGEPInductionOperand(Gep); 6271 bool GepToIgnore = true; 6272 6273 // Check that all of the gep indices are uniform except for the 6274 // induction operand. 6275 for (unsigned i = 0; i != NumOperands; ++i) { 6276 if (i != InductionOperand && 6277 !PSE.getSE()->isLoopInvariant(PSE.getSCEV(Gep->getOperand(i)), 6278 TheLoop)) { 6279 GepToIgnore = false; 6280 break; 6281 } 6282 } 6283 6284 if (GepToIgnore) 6285 VecValuesToIgnore.insert(&Inst); 6286 break; 6287 } 6288 } 6289 } 6290 } 6291 6292 void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr, 6293 bool IfPredicateStore) { 6294 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 6295 // Holds vector parameters or scalars, in case of uniform vals. 6296 SmallVector<VectorParts, 4> Params; 6297 6298 setDebugLocFromInst(Builder, Instr); 6299 6300 // Find all of the vectorized parameters. 6301 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6302 Value *SrcOp = Instr->getOperand(op); 6303 6304 // If we are accessing the old induction variable, use the new one. 6305 if (SrcOp == OldInduction) { 6306 Params.push_back(getVectorValue(SrcOp)); 6307 continue; 6308 } 6309 6310 // Try using previously calculated values. 6311 Instruction *SrcInst = dyn_cast<Instruction>(SrcOp); 6312 6313 // If the src is an instruction that appeared earlier in the basic block 6314 // then it should already be vectorized. 6315 if (SrcInst && OrigLoop->contains(SrcInst)) { 6316 assert(WidenMap.has(SrcInst) && "Source operand is unavailable"); 6317 // The parameter is a vector value from earlier. 6318 Params.push_back(WidenMap.get(SrcInst)); 6319 } else { 6320 // The parameter is a scalar from outside the loop. Maybe even a constant. 6321 VectorParts Scalars; 6322 Scalars.append(UF, SrcOp); 6323 Params.push_back(Scalars); 6324 } 6325 } 6326 6327 assert(Params.size() == Instr->getNumOperands() && 6328 "Invalid number of operands"); 6329 6330 // Does this instruction return a value ? 6331 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 6332 6333 Value *UndefVec = IsVoidRetTy ? nullptr : UndefValue::get(Instr->getType()); 6334 // Create a new entry in the WidenMap and initialize it to Undef or Null. 6335 VectorParts &VecResults = WidenMap.splat(Instr, UndefVec); 6336 6337 VectorParts Cond; 6338 if (IfPredicateStore) { 6339 assert(Instr->getParent()->getSinglePredecessor() && 6340 "Only support single predecessor blocks"); 6341 Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(), 6342 Instr->getParent()); 6343 } 6344 6345 // For each vector unroll 'part': 6346 for (unsigned Part = 0; Part < UF; ++Part) { 6347 // For each scalar that we create: 6348 6349 // Start an "if (pred) a[i] = ..." block. 6350 Value *Cmp = nullptr; 6351 if (IfPredicateStore) { 6352 if (Cond[Part]->getType()->isVectorTy()) 6353 Cond[Part] = 6354 Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0)); 6355 Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part], 6356 ConstantInt::get(Cond[Part]->getType(), 1)); 6357 } 6358 6359 Instruction *Cloned = Instr->clone(); 6360 if (!IsVoidRetTy) 6361 Cloned->setName(Instr->getName() + ".cloned"); 6362 // Replace the operands of the cloned instructions with extracted scalars. 6363 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 6364 Value *Op = Params[op][Part]; 6365 Cloned->setOperand(op, Op); 6366 } 6367 6368 // Place the cloned scalar in the new loop. 6369 Builder.Insert(Cloned); 6370 6371 // If we just cloned a new assumption, add it the assumption cache. 6372 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 6373 if (II->getIntrinsicID() == Intrinsic::assume) 6374 AC->registerAssumption(II); 6375 6376 // If the original scalar returns a value we need to place it in a vector 6377 // so that future users will be able to use it. 6378 if (!IsVoidRetTy) 6379 VecResults[Part] = Cloned; 6380 6381 // End if-block. 6382 if (IfPredicateStore) 6383 PredicatedStores.push_back(std::make_pair(cast<StoreInst>(Cloned), Cmp)); 6384 } 6385 } 6386 6387 void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) { 6388 StoreInst *SI = dyn_cast<StoreInst>(Instr); 6389 bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent())); 6390 6391 return scalarizeInstruction(Instr, IfPredicateStore); 6392 } 6393 6394 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 6395 6396 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 6397 6398 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, 6399 const SCEV *StepSCEV) { 6400 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 6401 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 6402 Value *StepValue = Exp.expandCodeFor(StepSCEV, StepSCEV->getType(), 6403 &*Builder.GetInsertPoint()); 6404 return getStepVector(Val, StartIdx, StepValue); 6405 } 6406 6407 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step) { 6408 // When unrolling and the VF is 1, we only need to add a simple scalar. 6409 Type *ITy = Val->getType(); 6410 assert(!ITy->isVectorTy() && "Val must be a scalar"); 6411 Constant *C = ConstantInt::get(ITy, StartIdx); 6412 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 6413 } 6414