1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanTransforms.h" 62 #include "llvm/ADT/APInt.h" 63 #include "llvm/ADT/ArrayRef.h" 64 #include "llvm/ADT/DenseMap.h" 65 #include "llvm/ADT/DenseMapInfo.h" 66 #include "llvm/ADT/Hashing.h" 67 #include "llvm/ADT/MapVector.h" 68 #include "llvm/ADT/None.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/STLExtras.h" 71 #include "llvm/ADT/SmallPtrSet.h" 72 #include "llvm/ADT/SmallSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 90 #include "llvm/Analysis/ProfileSummaryInfo.h" 91 #include "llvm/Analysis/ScalarEvolution.h" 92 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 93 #include "llvm/Analysis/TargetLibraryInfo.h" 94 #include "llvm/Analysis/TargetTransformInfo.h" 95 #include "llvm/Analysis/VectorUtils.h" 96 #include "llvm/IR/Attributes.h" 97 #include "llvm/IR/BasicBlock.h" 98 #include "llvm/IR/CFG.h" 99 #include "llvm/IR/Constant.h" 100 #include "llvm/IR/Constants.h" 101 #include "llvm/IR/DataLayout.h" 102 #include "llvm/IR/DebugInfoMetadata.h" 103 #include "llvm/IR/DebugLoc.h" 104 #include "llvm/IR/DerivedTypes.h" 105 #include "llvm/IR/DiagnosticInfo.h" 106 #include "llvm/IR/Dominators.h" 107 #include "llvm/IR/Function.h" 108 #include "llvm/IR/IRBuilder.h" 109 #include "llvm/IR/InstrTypes.h" 110 #include "llvm/IR/Instruction.h" 111 #include "llvm/IR/Instructions.h" 112 #include "llvm/IR/IntrinsicInst.h" 113 #include "llvm/IR/Intrinsics.h" 114 #include "llvm/IR/Metadata.h" 115 #include "llvm/IR/Module.h" 116 #include "llvm/IR/Operator.h" 117 #include "llvm/IR/PatternMatch.h" 118 #include "llvm/IR/Type.h" 119 #include "llvm/IR/Use.h" 120 #include "llvm/IR/User.h" 121 #include "llvm/IR/Value.h" 122 #include "llvm/IR/ValueHandle.h" 123 #include "llvm/IR/Verifier.h" 124 #include "llvm/InitializePasses.h" 125 #include "llvm/Pass.h" 126 #include "llvm/Support/Casting.h" 127 #include "llvm/Support/CommandLine.h" 128 #include "llvm/Support/Compiler.h" 129 #include "llvm/Support/Debug.h" 130 #include "llvm/Support/ErrorHandling.h" 131 #include "llvm/Support/InstructionCost.h" 132 #include "llvm/Support/MathExtras.h" 133 #include "llvm/Support/raw_ostream.h" 134 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 135 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 136 #include "llvm/Transforms/Utils/LoopSimplify.h" 137 #include "llvm/Transforms/Utils/LoopUtils.h" 138 #include "llvm/Transforms/Utils/LoopVersioning.h" 139 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 140 #include "llvm/Transforms/Utils/SizeOpts.h" 141 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 142 #include <algorithm> 143 #include <cassert> 144 #include <cstdint> 145 #include <functional> 146 #include <iterator> 147 #include <limits> 148 #include <map> 149 #include <memory> 150 #include <string> 151 #include <tuple> 152 #include <utility> 153 154 using namespace llvm; 155 156 #define LV_NAME "loop-vectorize" 157 #define DEBUG_TYPE LV_NAME 158 159 #ifndef NDEBUG 160 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 161 #endif 162 163 /// @{ 164 /// Metadata attribute names 165 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 166 const char LLVMLoopVectorizeFollowupVectorized[] = 167 "llvm.loop.vectorize.followup_vectorized"; 168 const char LLVMLoopVectorizeFollowupEpilogue[] = 169 "llvm.loop.vectorize.followup_epilogue"; 170 /// @} 171 172 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 173 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 174 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 175 176 static cl::opt<bool> EnableEpilogueVectorization( 177 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 178 cl::desc("Enable vectorization of epilogue loops.")); 179 180 static cl::opt<unsigned> EpilogueVectorizationForceVF( 181 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 182 cl::desc("When epilogue vectorization is enabled, and a value greater than " 183 "1 is specified, forces the given VF for all applicable epilogue " 184 "loops.")); 185 186 static cl::opt<unsigned> EpilogueVectorizationMinVF( 187 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 188 cl::desc("Only loops with vectorization factor equal to or larger than " 189 "the specified value are considered for epilogue vectorization.")); 190 191 /// Loops with a known constant trip count below this number are vectorized only 192 /// if no scalar iteration overheads are incurred. 193 static cl::opt<unsigned> TinyTripCountVectorThreshold( 194 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 195 cl::desc("Loops with a constant trip count that is smaller than this " 196 "value are vectorized only if no scalar iteration overheads " 197 "are incurred.")); 198 199 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 200 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 201 cl::desc("The maximum allowed number of runtime memory checks with a " 202 "vectorize(enable) pragma.")); 203 204 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 205 // that predication is preferred, and this lists all options. I.e., the 206 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 207 // and predicate the instructions accordingly. If tail-folding fails, there are 208 // different fallback strategies depending on these values: 209 namespace PreferPredicateTy { 210 enum Option { 211 ScalarEpilogue = 0, 212 PredicateElseScalarEpilogue, 213 PredicateOrDontVectorize 214 }; 215 } // namespace PreferPredicateTy 216 217 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 218 "prefer-predicate-over-epilogue", 219 cl::init(PreferPredicateTy::ScalarEpilogue), 220 cl::Hidden, 221 cl::desc("Tail-folding and predication preferences over creating a scalar " 222 "epilogue loop."), 223 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 224 "scalar-epilogue", 225 "Don't tail-predicate loops, create scalar epilogue"), 226 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 227 "predicate-else-scalar-epilogue", 228 "prefer tail-folding, create scalar epilogue if tail " 229 "folding fails."), 230 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 231 "predicate-dont-vectorize", 232 "prefers tail-folding, don't attempt vectorization if " 233 "tail-folding fails."))); 234 235 static cl::opt<bool> MaximizeBandwidth( 236 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 237 cl::desc("Maximize bandwidth when selecting vectorization factor which " 238 "will be determined by the smallest type in loop.")); 239 240 static cl::opt<bool> EnableInterleavedMemAccesses( 241 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 242 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 243 244 /// An interleave-group may need masking if it resides in a block that needs 245 /// predication, or in order to mask away gaps. 246 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 247 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 248 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 249 250 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 251 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 252 cl::desc("We don't interleave loops with a estimated constant trip count " 253 "below this number")); 254 255 static cl::opt<unsigned> ForceTargetNumScalarRegs( 256 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 257 cl::desc("A flag that overrides the target's number of scalar registers.")); 258 259 static cl::opt<unsigned> ForceTargetNumVectorRegs( 260 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 261 cl::desc("A flag that overrides the target's number of vector registers.")); 262 263 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 264 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 265 cl::desc("A flag that overrides the target's max interleave factor for " 266 "scalar loops.")); 267 268 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 269 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 270 cl::desc("A flag that overrides the target's max interleave factor for " 271 "vectorized loops.")); 272 273 static cl::opt<unsigned> ForceTargetInstructionCost( 274 "force-target-instruction-cost", cl::init(0), cl::Hidden, 275 cl::desc("A flag that overrides the target's expected cost for " 276 "an instruction to a single constant value. Mostly " 277 "useful for getting consistent testing.")); 278 279 static cl::opt<bool> ForceTargetSupportsScalableVectors( 280 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 281 cl::desc( 282 "Pretend that scalable vectors are supported, even if the target does " 283 "not support them. This flag should only be used for testing.")); 284 285 static cl::opt<unsigned> SmallLoopCost( 286 "small-loop-cost", cl::init(20), cl::Hidden, 287 cl::desc( 288 "The cost of a loop that is considered 'small' by the interleaver.")); 289 290 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 291 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 292 cl::desc("Enable the use of the block frequency analysis to access PGO " 293 "heuristics minimizing code growth in cold regions and being more " 294 "aggressive in hot regions.")); 295 296 // Runtime interleave loops for load/store throughput. 297 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 298 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 299 cl::desc( 300 "Enable runtime interleaving until load/store ports are saturated")); 301 302 /// Interleave small loops with scalar reductions. 303 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 304 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 305 cl::desc("Enable interleaving for loops with small iteration counts that " 306 "contain scalar reductions to expose ILP.")); 307 308 /// The number of stores in a loop that are allowed to need predication. 309 static cl::opt<unsigned> NumberOfStoresToPredicate( 310 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 311 cl::desc("Max number of stores to be predicated behind an if.")); 312 313 static cl::opt<bool> EnableIndVarRegisterHeur( 314 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 315 cl::desc("Count the induction variable only once when interleaving")); 316 317 static cl::opt<bool> EnableCondStoresVectorization( 318 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 319 cl::desc("Enable if predication of stores during vectorization.")); 320 321 static cl::opt<unsigned> MaxNestedScalarReductionIC( 322 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 323 cl::desc("The maximum interleave count to use when interleaving a scalar " 324 "reduction in a nested loop.")); 325 326 static cl::opt<bool> 327 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 328 cl::Hidden, 329 cl::desc("Prefer in-loop vector reductions, " 330 "overriding the targets preference.")); 331 332 static cl::opt<bool> ForceOrderedReductions( 333 "force-ordered-reductions", cl::init(false), cl::Hidden, 334 cl::desc("Enable the vectorisation of loops with in-order (strict) " 335 "FP reductions")); 336 337 static cl::opt<bool> PreferPredicatedReductionSelect( 338 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 339 cl::desc( 340 "Prefer predicating a reduction operation over an after loop select.")); 341 342 cl::opt<bool> EnableVPlanNativePath( 343 "enable-vplan-native-path", cl::init(false), cl::Hidden, 344 cl::desc("Enable VPlan-native vectorization path with " 345 "support for outer loop vectorization.")); 346 347 // This flag enables the stress testing of the VPlan H-CFG construction in the 348 // VPlan-native vectorization path. It must be used in conjuction with 349 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 350 // verification of the H-CFGs built. 351 static cl::opt<bool> VPlanBuildStressTest( 352 "vplan-build-stress-test", cl::init(false), cl::Hidden, 353 cl::desc( 354 "Build VPlan for every supported loop nest in the function and bail " 355 "out right after the build (stress test the VPlan H-CFG construction " 356 "in the VPlan-native vectorization path).")); 357 358 cl::opt<bool> llvm::EnableLoopInterleaving( 359 "interleave-loops", cl::init(true), cl::Hidden, 360 cl::desc("Enable loop interleaving in Loop vectorization passes")); 361 cl::opt<bool> llvm::EnableLoopVectorization( 362 "vectorize-loops", cl::init(true), cl::Hidden, 363 cl::desc("Run the Loop vectorization passes")); 364 365 cl::opt<bool> PrintVPlansInDotFormat( 366 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 367 cl::desc("Use dot format instead of plain text when dumping VPlans")); 368 369 /// A helper function that returns true if the given type is irregular. The 370 /// type is irregular if its allocated size doesn't equal the store size of an 371 /// element of the corresponding vector type. 372 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 373 // Determine if an array of N elements of type Ty is "bitcast compatible" 374 // with a <N x Ty> vector. 375 // This is only true if there is no padding between the array elements. 376 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 377 } 378 379 /// A helper function that returns the reciprocal of the block probability of 380 /// predicated blocks. If we return X, we are assuming the predicated block 381 /// will execute once for every X iterations of the loop header. 382 /// 383 /// TODO: We should use actual block probability here, if available. Currently, 384 /// we always assume predicated blocks have a 50% chance of executing. 385 static unsigned getReciprocalPredBlockProb() { return 2; } 386 387 /// A helper function that returns an integer or floating-point constant with 388 /// value C. 389 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 390 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 391 : ConstantFP::get(Ty, C); 392 } 393 394 /// Returns "best known" trip count for the specified loop \p L as defined by 395 /// the following procedure: 396 /// 1) Returns exact trip count if it is known. 397 /// 2) Returns expected trip count according to profile data if any. 398 /// 3) Returns upper bound estimate if it is known. 399 /// 4) Returns None if all of the above failed. 400 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 401 // Check if exact trip count is known. 402 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 403 return ExpectedTC; 404 405 // Check if there is an expected trip count available from profile data. 406 if (LoopVectorizeWithBlockFrequency) 407 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 408 return EstimatedTC; 409 410 // Check if upper bound estimate is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 412 return ExpectedTC; 413 414 return None; 415 } 416 417 // Forward declare GeneratedRTChecks. 418 class GeneratedRTChecks; 419 420 namespace llvm { 421 422 AnalysisKey ShouldRunExtraVectorPasses::Key; 423 424 /// InnerLoopVectorizer vectorizes loops which contain only one basic 425 /// block to a specified vectorization factor (VF). 426 /// This class performs the widening of scalars into vectors, or multiple 427 /// scalars. This class also implements the following features: 428 /// * It inserts an epilogue loop for handling loops that don't have iteration 429 /// counts that are known to be a multiple of the vectorization factor. 430 /// * It handles the code generation for reduction variables. 431 /// * Scalarization (implementation using scalars) of un-vectorizable 432 /// instructions. 433 /// InnerLoopVectorizer does not perform any vectorization-legality 434 /// checks, and relies on the caller to check for the different legality 435 /// aspects. The InnerLoopVectorizer relies on the 436 /// LoopVectorizationLegality class to provide information about the induction 437 /// and reduction variables that were found to a given vectorization factor. 438 class InnerLoopVectorizer { 439 public: 440 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 441 LoopInfo *LI, DominatorTree *DT, 442 const TargetLibraryInfo *TLI, 443 const TargetTransformInfo *TTI, AssumptionCache *AC, 444 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 445 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 446 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 447 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 448 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 449 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 450 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 451 PSI(PSI), RTChecks(RTChecks) { 452 // Query this against the original loop and save it here because the profile 453 // of the original loop header may change as the transformation happens. 454 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 455 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 456 } 457 458 virtual ~InnerLoopVectorizer() = default; 459 460 /// Create a new empty loop that will contain vectorized instructions later 461 /// on, while the old loop will be used as the scalar remainder. Control flow 462 /// is generated around the vectorized (and scalar epilogue) loops consisting 463 /// of various checks and bypasses. Return the pre-header block of the new 464 /// loop and the start value for the canonical induction, if it is != 0. The 465 /// latter is the case when vectorizing the epilogue loop. In the case of 466 /// epilogue vectorization, this function is overriden to handle the more 467 /// complex control flow around the loops. 468 virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); 469 470 /// Widen a single call instruction within the innermost loop. 471 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 472 VPTransformState &State); 473 474 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 475 void fixVectorizedLoop(VPTransformState &State, VPlan &Plan); 476 477 // Return true if any runtime check is added. 478 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 479 480 /// A type for vectorized values in the new loop. Each value from the 481 /// original loop, when vectorized, is represented by UF vector values in the 482 /// new unrolled loop, where UF is the unroll factor. 483 using VectorParts = SmallVector<Value *, 2>; 484 485 /// Vectorize a single vector PHINode in a block in the VPlan-native path 486 /// only. 487 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 488 VPTransformState &State); 489 490 /// A helper function to scalarize a single Instruction in the innermost loop. 491 /// Generates a sequence of scalar instances for each lane between \p MinLane 492 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 493 /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p 494 /// Instr's operands. 495 void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe, 496 const VPIteration &Instance, bool IfPredicateInstr, 497 VPTransformState &State); 498 499 /// Construct the vector value of a scalarized value \p V one lane at a time. 500 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 501 VPTransformState &State); 502 503 /// Try to vectorize interleaved access group \p Group with the base address 504 /// given in \p Addr, optionally masking the vector operations if \p 505 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 506 /// values in the vectorized loop. 507 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 508 ArrayRef<VPValue *> VPDefs, 509 VPTransformState &State, VPValue *Addr, 510 ArrayRef<VPValue *> StoredValues, 511 VPValue *BlockInMask = nullptr); 512 513 /// Set the debug location in the builder \p Ptr using the debug location in 514 /// \p V. If \p Ptr is None then it uses the class member's Builder. 515 void setDebugLocFromInst(const Value *V, 516 Optional<IRBuilderBase *> CustomBuilder = None); 517 518 /// Fix the non-induction PHIs in \p Plan. 519 void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State); 520 521 /// Returns true if the reordering of FP operations is not allowed, but we are 522 /// able to vectorize with strict in-order reductions for the given RdxDesc. 523 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); 524 525 /// Create a broadcast instruction. This method generates a broadcast 526 /// instruction (shuffle) for loop invariant values and for the induction 527 /// value. If this is the induction variable then we extend it to N, N+1, ... 528 /// this is needed because each iteration in the loop corresponds to a SIMD 529 /// element. 530 virtual Value *getBroadcastInstrs(Value *V); 531 532 /// Add metadata from one instruction to another. 533 /// 534 /// This includes both the original MDs from \p From and additional ones (\see 535 /// addNewMetadata). Use this for *newly created* instructions in the vector 536 /// loop. 537 void addMetadata(Instruction *To, Instruction *From); 538 539 /// Similar to the previous function but it adds the metadata to a 540 /// vector of instructions. 541 void addMetadata(ArrayRef<Value *> To, Instruction *From); 542 543 // Returns the resume value (bc.merge.rdx) for a reduction as 544 // generated by fixReduction. 545 PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); 546 547 protected: 548 friend class LoopVectorizationPlanner; 549 550 /// A small list of PHINodes. 551 using PhiVector = SmallVector<PHINode *, 4>; 552 553 /// A type for scalarized values in the new loop. Each value from the 554 /// original loop, when scalarized, is represented by UF x VF scalar values 555 /// in the new unrolled loop, where UF is the unroll factor and VF is the 556 /// vectorization factor. 557 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 558 559 /// Set up the values of the IVs correctly when exiting the vector loop. 560 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 561 Value *VectorTripCount, Value *EndValue, 562 BasicBlock *MiddleBlock, BasicBlock *VectorHeader, 563 VPlan &Plan); 564 565 /// Handle all cross-iteration phis in the header. 566 void fixCrossIterationPHIs(VPTransformState &State); 567 568 /// Create the exit value of first order recurrences in the middle block and 569 /// update their users. 570 void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, 571 VPTransformState &State); 572 573 /// Create code for the loop exit value of the reduction. 574 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 575 576 /// Clear NSW/NUW flags from reduction instructions if necessary. 577 void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 578 VPTransformState &State); 579 580 /// Iteratively sink the scalarized operands of a predicated instruction into 581 /// the block that was created for it. 582 void sinkScalarOperands(Instruction *PredInst); 583 584 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 585 /// represented as. 586 void truncateToMinimalBitwidths(VPTransformState &State); 587 588 /// Returns (and creates if needed) the original loop trip count. 589 Value *getOrCreateTripCount(BasicBlock *InsertBlock); 590 591 /// Returns (and creates if needed) the trip count of the widened loop. 592 Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); 593 594 /// Returns a bitcasted value to the requested vector type. 595 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 596 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 597 const DataLayout &DL); 598 599 /// Emit a bypass check to see if the vector trip count is zero, including if 600 /// it overflows. 601 void emitIterationCountCheck(BasicBlock *Bypass); 602 603 /// Emit a bypass check to see if all of the SCEV assumptions we've 604 /// had to make are correct. Returns the block containing the checks or 605 /// nullptr if no checks have been added. 606 BasicBlock *emitSCEVChecks(BasicBlock *Bypass); 607 608 /// Emit bypass checks to check any memory assumptions we may have made. 609 /// Returns the block containing the checks or nullptr if no checks have been 610 /// added. 611 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); 612 613 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 614 /// vector loop preheader, middle block and scalar preheader. 615 void createVectorLoopSkeleton(StringRef Prefix); 616 617 /// Create new phi nodes for the induction variables to resume iteration count 618 /// in the scalar epilogue, from where the vectorized loop left off. 619 /// In cases where the loop skeleton is more complicated (eg. epilogue 620 /// vectorization) and the resume values can come from an additional bypass 621 /// block, the \p AdditionalBypass pair provides information about the bypass 622 /// block and the end value on the edge from bypass to this loop. 623 void createInductionResumeValues( 624 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 625 626 /// Complete the loop skeleton by adding debug MDs, creating appropriate 627 /// conditional branches in the middle block, preparing the builder and 628 /// running the verifier. Return the preheader of the completed vector loop. 629 BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID); 630 631 /// Add additional metadata to \p To that was not present on \p Orig. 632 /// 633 /// Currently this is used to add the noalias annotations based on the 634 /// inserted memchecks. Use this for instructions that are *cloned* into the 635 /// vector loop. 636 void addNewMetadata(Instruction *To, const Instruction *Orig); 637 638 /// Collect poison-generating recipes that may generate a poison value that is 639 /// used after vectorization, even when their operands are not poison. Those 640 /// recipes meet the following conditions: 641 /// * Contribute to the address computation of a recipe generating a widen 642 /// memory load/store (VPWidenMemoryInstructionRecipe or 643 /// VPInterleaveRecipe). 644 /// * Such a widen memory load/store has at least one underlying Instruction 645 /// that is in a basic block that needs predication and after vectorization 646 /// the generated instruction won't be predicated. 647 void collectPoisonGeneratingRecipes(VPTransformState &State); 648 649 /// Allow subclasses to override and print debug traces before/after vplan 650 /// execution, when trace information is requested. 651 virtual void printDebugTracesAtStart(){}; 652 virtual void printDebugTracesAtEnd(){}; 653 654 /// The original loop. 655 Loop *OrigLoop; 656 657 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 658 /// dynamic knowledge to simplify SCEV expressions and converts them to a 659 /// more usable form. 660 PredicatedScalarEvolution &PSE; 661 662 /// Loop Info. 663 LoopInfo *LI; 664 665 /// Dominator Tree. 666 DominatorTree *DT; 667 668 /// Alias Analysis. 669 AAResults *AA; 670 671 /// Target Library Info. 672 const TargetLibraryInfo *TLI; 673 674 /// Target Transform Info. 675 const TargetTransformInfo *TTI; 676 677 /// Assumption Cache. 678 AssumptionCache *AC; 679 680 /// Interface to emit optimization remarks. 681 OptimizationRemarkEmitter *ORE; 682 683 /// LoopVersioning. It's only set up (non-null) if memchecks were 684 /// used. 685 /// 686 /// This is currently only used to add no-alias metadata based on the 687 /// memchecks. The actually versioning is performed manually. 688 std::unique_ptr<LoopVersioning> LVer; 689 690 /// The vectorization SIMD factor to use. Each vector will have this many 691 /// vector elements. 692 ElementCount VF; 693 694 /// The vectorization unroll factor to use. Each scalar is vectorized to this 695 /// many different vector instructions. 696 unsigned UF; 697 698 /// The builder that we use 699 IRBuilder<> Builder; 700 701 // --- Vectorization state --- 702 703 /// The vector-loop preheader. 704 BasicBlock *LoopVectorPreHeader; 705 706 /// The scalar-loop preheader. 707 BasicBlock *LoopScalarPreHeader; 708 709 /// Middle Block between the vector and the scalar. 710 BasicBlock *LoopMiddleBlock; 711 712 /// The unique ExitBlock of the scalar loop if one exists. Note that 713 /// there can be multiple exiting edges reaching this block. 714 BasicBlock *LoopExitBlock; 715 716 /// The scalar loop body. 717 BasicBlock *LoopScalarBody; 718 719 /// A list of all bypass blocks. The first block is the entry of the loop. 720 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 721 722 /// Store instructions that were predicated. 723 SmallVector<Instruction *, 4> PredicatedInstructions; 724 725 /// Trip count of the original loop. 726 Value *TripCount = nullptr; 727 728 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 729 Value *VectorTripCount = nullptr; 730 731 /// The legality analysis. 732 LoopVectorizationLegality *Legal; 733 734 /// The profitablity analysis. 735 LoopVectorizationCostModel *Cost; 736 737 // Record whether runtime checks are added. 738 bool AddedSafetyChecks = false; 739 740 // Holds the end values for each induction variable. We save the end values 741 // so we can later fix-up the external users of the induction variables. 742 DenseMap<PHINode *, Value *> IVEndValues; 743 744 /// BFI and PSI are used to check for profile guided size optimizations. 745 BlockFrequencyInfo *BFI; 746 ProfileSummaryInfo *PSI; 747 748 // Whether this loop should be optimized for size based on profile guided size 749 // optimizatios. 750 bool OptForSizeBasedOnProfile; 751 752 /// Structure to hold information about generated runtime checks, responsible 753 /// for cleaning the checks, if vectorization turns out unprofitable. 754 GeneratedRTChecks &RTChecks; 755 756 // Holds the resume values for reductions in the loops, used to set the 757 // correct start value of reduction PHIs when vectorizing the epilogue. 758 SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> 759 ReductionResumeValues; 760 }; 761 762 class InnerLoopUnroller : public InnerLoopVectorizer { 763 public: 764 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 765 LoopInfo *LI, DominatorTree *DT, 766 const TargetLibraryInfo *TLI, 767 const TargetTransformInfo *TTI, AssumptionCache *AC, 768 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 769 LoopVectorizationLegality *LVL, 770 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 771 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 772 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 773 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 774 BFI, PSI, Check) {} 775 776 private: 777 Value *getBroadcastInstrs(Value *V) override; 778 }; 779 780 /// Encapsulate information regarding vectorization of a loop and its epilogue. 781 /// This information is meant to be updated and used across two stages of 782 /// epilogue vectorization. 783 struct EpilogueLoopVectorizationInfo { 784 ElementCount MainLoopVF = ElementCount::getFixed(0); 785 unsigned MainLoopUF = 0; 786 ElementCount EpilogueVF = ElementCount::getFixed(0); 787 unsigned EpilogueUF = 0; 788 BasicBlock *MainLoopIterationCountCheck = nullptr; 789 BasicBlock *EpilogueIterationCountCheck = nullptr; 790 BasicBlock *SCEVSafetyCheck = nullptr; 791 BasicBlock *MemSafetyCheck = nullptr; 792 Value *TripCount = nullptr; 793 Value *VectorTripCount = nullptr; 794 795 EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, 796 ElementCount EVF, unsigned EUF) 797 : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { 798 assert(EUF == 1 && 799 "A high UF for the epilogue loop is likely not beneficial."); 800 } 801 }; 802 803 /// An extension of the inner loop vectorizer that creates a skeleton for a 804 /// vectorized loop that has its epilogue (residual) also vectorized. 805 /// The idea is to run the vplan on a given loop twice, firstly to setup the 806 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 807 /// from the first step and vectorize the epilogue. This is achieved by 808 /// deriving two concrete strategy classes from this base class and invoking 809 /// them in succession from the loop vectorizer planner. 810 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 811 public: 812 InnerLoopAndEpilogueVectorizer( 813 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 814 DominatorTree *DT, const TargetLibraryInfo *TLI, 815 const TargetTransformInfo *TTI, AssumptionCache *AC, 816 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 817 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 818 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 819 GeneratedRTChecks &Checks) 820 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 821 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 822 Checks), 823 EPI(EPI) {} 824 825 // Override this function to handle the more complex control flow around the 826 // three loops. 827 std::pair<BasicBlock *, Value *> 828 createVectorizedLoopSkeleton() final override { 829 return createEpilogueVectorizedLoopSkeleton(); 830 } 831 832 /// The interface for creating a vectorized skeleton using one of two 833 /// different strategies, each corresponding to one execution of the vplan 834 /// as described above. 835 virtual std::pair<BasicBlock *, Value *> 836 createEpilogueVectorizedLoopSkeleton() = 0; 837 838 /// Holds and updates state information required to vectorize the main loop 839 /// and its epilogue in two separate passes. This setup helps us avoid 840 /// regenerating and recomputing runtime safety checks. It also helps us to 841 /// shorten the iteration-count-check path length for the cases where the 842 /// iteration count of the loop is so small that the main vector loop is 843 /// completely skipped. 844 EpilogueLoopVectorizationInfo &EPI; 845 }; 846 847 /// A specialized derived class of inner loop vectorizer that performs 848 /// vectorization of *main* loops in the process of vectorizing loops and their 849 /// epilogues. 850 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 851 public: 852 EpilogueVectorizerMainLoop( 853 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 854 DominatorTree *DT, const TargetLibraryInfo *TLI, 855 const TargetTransformInfo *TTI, AssumptionCache *AC, 856 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 857 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 858 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 859 GeneratedRTChecks &Check) 860 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 861 EPI, LVL, CM, BFI, PSI, Check) {} 862 /// Implements the interface for creating a vectorized skeleton using the 863 /// *main loop* strategy (ie the first pass of vplan execution). 864 std::pair<BasicBlock *, Value *> 865 createEpilogueVectorizedLoopSkeleton() final override; 866 867 protected: 868 /// Emits an iteration count bypass check once for the main loop (when \p 869 /// ForEpilogue is false) and once for the epilogue loop (when \p 870 /// ForEpilogue is true). 871 BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue); 872 void printDebugTracesAtStart() override; 873 void printDebugTracesAtEnd() override; 874 }; 875 876 // A specialized derived class of inner loop vectorizer that performs 877 // vectorization of *epilogue* loops in the process of vectorizing loops and 878 // their epilogues. 879 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 880 public: 881 EpilogueVectorizerEpilogueLoop( 882 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 883 DominatorTree *DT, const TargetLibraryInfo *TLI, 884 const TargetTransformInfo *TTI, AssumptionCache *AC, 885 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 886 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 887 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 888 GeneratedRTChecks &Checks) 889 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 890 EPI, LVL, CM, BFI, PSI, Checks) { 891 TripCount = EPI.TripCount; 892 } 893 /// Implements the interface for creating a vectorized skeleton using the 894 /// *epilogue loop* strategy (ie the second pass of vplan execution). 895 std::pair<BasicBlock *, Value *> 896 createEpilogueVectorizedLoopSkeleton() final override; 897 898 protected: 899 /// Emits an iteration count bypass check after the main vector loop has 900 /// finished to see if there are any iterations left to execute by either 901 /// the vector epilogue or the scalar epilogue. 902 BasicBlock *emitMinimumVectorEpilogueIterCountCheck( 903 BasicBlock *Bypass, 904 BasicBlock *Insert); 905 void printDebugTracesAtStart() override; 906 void printDebugTracesAtEnd() override; 907 }; 908 } // end namespace llvm 909 910 /// Look for a meaningful debug location on the instruction or it's 911 /// operands. 912 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 913 if (!I) 914 return I; 915 916 DebugLoc Empty; 917 if (I->getDebugLoc() != Empty) 918 return I; 919 920 for (Use &Op : I->operands()) { 921 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 922 if (OpInst->getDebugLoc() != Empty) 923 return OpInst; 924 } 925 926 return I; 927 } 928 929 void InnerLoopVectorizer::setDebugLocFromInst( 930 const Value *V, Optional<IRBuilderBase *> CustomBuilder) { 931 IRBuilderBase *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 932 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 933 const DILocation *DIL = Inst->getDebugLoc(); 934 935 // When a FSDiscriminator is enabled, we don't need to add the multiply 936 // factors to the discriminators. 937 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 938 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 939 // FIXME: For scalable vectors, assume vscale=1. 940 auto NewDIL = 941 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 942 if (NewDIL) 943 B->SetCurrentDebugLocation(NewDIL.getValue()); 944 else 945 LLVM_DEBUG(dbgs() 946 << "Failed to create new discriminator: " 947 << DIL->getFilename() << " Line: " << DIL->getLine()); 948 } else 949 B->SetCurrentDebugLocation(DIL); 950 } else 951 B->SetCurrentDebugLocation(DebugLoc()); 952 } 953 954 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 955 /// is passed, the message relates to that particular instruction. 956 #ifndef NDEBUG 957 static void debugVectorizationMessage(const StringRef Prefix, 958 const StringRef DebugMsg, 959 Instruction *I) { 960 dbgs() << "LV: " << Prefix << DebugMsg; 961 if (I != nullptr) 962 dbgs() << " " << *I; 963 else 964 dbgs() << '.'; 965 dbgs() << '\n'; 966 } 967 #endif 968 969 /// Create an analysis remark that explains why vectorization failed 970 /// 971 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 972 /// RemarkName is the identifier for the remark. If \p I is passed it is an 973 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 974 /// the location of the remark. \return the remark object that can be 975 /// streamed to. 976 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 977 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 978 Value *CodeRegion = TheLoop->getHeader(); 979 DebugLoc DL = TheLoop->getStartLoc(); 980 981 if (I) { 982 CodeRegion = I->getParent(); 983 // If there is no debug location attached to the instruction, revert back to 984 // using the loop's. 985 if (I->getDebugLoc()) 986 DL = I->getDebugLoc(); 987 } 988 989 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 990 } 991 992 namespace llvm { 993 994 /// Return a value for Step multiplied by VF. 995 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 996 int64_t Step) { 997 assert(Ty->isIntegerTy() && "Expected an integer step"); 998 Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); 999 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1000 } 1001 1002 /// Return the runtime value for VF. 1003 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { 1004 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1005 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1006 } 1007 1008 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, 1009 ElementCount VF) { 1010 assert(FTy->isFloatingPointTy() && "Expected floating point type!"); 1011 Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); 1012 Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); 1013 return B.CreateUIToFP(RuntimeVF, FTy); 1014 } 1015 1016 void reportVectorizationFailure(const StringRef DebugMsg, 1017 const StringRef OREMsg, const StringRef ORETag, 1018 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1019 Instruction *I) { 1020 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1021 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1022 ORE->emit( 1023 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1024 << "loop not vectorized: " << OREMsg); 1025 } 1026 1027 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1028 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1029 Instruction *I) { 1030 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1031 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1032 ORE->emit( 1033 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1034 << Msg); 1035 } 1036 1037 } // end namespace llvm 1038 1039 #ifndef NDEBUG 1040 /// \return string containing a file name and a line # for the given loop. 1041 static std::string getDebugLocString(const Loop *L) { 1042 std::string Result; 1043 if (L) { 1044 raw_string_ostream OS(Result); 1045 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1046 LoopDbgLoc.print(OS); 1047 else 1048 // Just print the module name. 1049 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1050 OS.flush(); 1051 } 1052 return Result; 1053 } 1054 #endif 1055 1056 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1057 const Instruction *Orig) { 1058 // If the loop was versioned with memchecks, add the corresponding no-alias 1059 // metadata. 1060 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1061 LVer->annotateInstWithNoAlias(To, Orig); 1062 } 1063 1064 void InnerLoopVectorizer::collectPoisonGeneratingRecipes( 1065 VPTransformState &State) { 1066 1067 // Collect recipes in the backward slice of `Root` that may generate a poison 1068 // value that is used after vectorization. 1069 SmallPtrSet<VPRecipeBase *, 16> Visited; 1070 auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { 1071 SmallVector<VPRecipeBase *, 16> Worklist; 1072 Worklist.push_back(Root); 1073 1074 // Traverse the backward slice of Root through its use-def chain. 1075 while (!Worklist.empty()) { 1076 VPRecipeBase *CurRec = Worklist.back(); 1077 Worklist.pop_back(); 1078 1079 if (!Visited.insert(CurRec).second) 1080 continue; 1081 1082 // Prune search if we find another recipe generating a widen memory 1083 // instruction. Widen memory instructions involved in address computation 1084 // will lead to gather/scatter instructions, which don't need to be 1085 // handled. 1086 if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || 1087 isa<VPInterleaveRecipe>(CurRec) || 1088 isa<VPScalarIVStepsRecipe>(CurRec) || 1089 isa<VPCanonicalIVPHIRecipe>(CurRec)) 1090 continue; 1091 1092 // This recipe contributes to the address computation of a widen 1093 // load/store. Collect recipe if its underlying instruction has 1094 // poison-generating flags. 1095 Instruction *Instr = CurRec->getUnderlyingInstr(); 1096 if (Instr && Instr->hasPoisonGeneratingFlags()) 1097 State.MayGeneratePoisonRecipes.insert(CurRec); 1098 1099 // Add new definitions to the worklist. 1100 for (VPValue *operand : CurRec->operands()) 1101 if (VPDef *OpDef = operand->getDef()) 1102 Worklist.push_back(cast<VPRecipeBase>(OpDef)); 1103 } 1104 }); 1105 1106 // Traverse all the recipes in the VPlan and collect the poison-generating 1107 // recipes in the backward slice starting at the address of a VPWidenRecipe or 1108 // VPInterleaveRecipe. 1109 auto Iter = depth_first( 1110 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry())); 1111 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 1112 for (VPRecipeBase &Recipe : *VPBB) { 1113 if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { 1114 Instruction &UnderlyingInstr = WidenRec->getIngredient(); 1115 VPDef *AddrDef = WidenRec->getAddr()->getDef(); 1116 if (AddrDef && WidenRec->isConsecutive() && 1117 Legal->blockNeedsPredication(UnderlyingInstr.getParent())) 1118 collectPoisonGeneratingInstrsInBackwardSlice( 1119 cast<VPRecipeBase>(AddrDef)); 1120 } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { 1121 VPDef *AddrDef = InterleaveRec->getAddr()->getDef(); 1122 if (AddrDef) { 1123 // Check if any member of the interleave group needs predication. 1124 const InterleaveGroup<Instruction> *InterGroup = 1125 InterleaveRec->getInterleaveGroup(); 1126 bool NeedPredication = false; 1127 for (int I = 0, NumMembers = InterGroup->getNumMembers(); 1128 I < NumMembers; ++I) { 1129 Instruction *Member = InterGroup->getMember(I); 1130 if (Member) 1131 NeedPredication |= 1132 Legal->blockNeedsPredication(Member->getParent()); 1133 } 1134 1135 if (NeedPredication) 1136 collectPoisonGeneratingInstrsInBackwardSlice( 1137 cast<VPRecipeBase>(AddrDef)); 1138 } 1139 } 1140 } 1141 } 1142 } 1143 1144 void InnerLoopVectorizer::addMetadata(Instruction *To, 1145 Instruction *From) { 1146 propagateMetadata(To, From); 1147 addNewMetadata(To, From); 1148 } 1149 1150 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1151 Instruction *From) { 1152 for (Value *V : To) { 1153 if (Instruction *I = dyn_cast<Instruction>(V)) 1154 addMetadata(I, From); 1155 } 1156 } 1157 1158 PHINode *InnerLoopVectorizer::getReductionResumeValue( 1159 const RecurrenceDescriptor &RdxDesc) { 1160 auto It = ReductionResumeValues.find(&RdxDesc); 1161 assert(It != ReductionResumeValues.end() && 1162 "Expected to find a resume value for the reduction."); 1163 return It->second; 1164 } 1165 1166 namespace llvm { 1167 1168 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1169 // lowered. 1170 enum ScalarEpilogueLowering { 1171 1172 // The default: allowing scalar epilogues. 1173 CM_ScalarEpilogueAllowed, 1174 1175 // Vectorization with OptForSize: don't allow epilogues. 1176 CM_ScalarEpilogueNotAllowedOptSize, 1177 1178 // A special case of vectorisation with OptForSize: loops with a very small 1179 // trip count are considered for vectorization under OptForSize, thereby 1180 // making sure the cost of their loop body is dominant, free of runtime 1181 // guards and scalar iteration overheads. 1182 CM_ScalarEpilogueNotAllowedLowTripLoop, 1183 1184 // Loop hint predicate indicating an epilogue is undesired. 1185 CM_ScalarEpilogueNotNeededUsePredicate, 1186 1187 // Directive indicating we must either tail fold or not vectorize 1188 CM_ScalarEpilogueNotAllowedUsePredicate 1189 }; 1190 1191 /// ElementCountComparator creates a total ordering for ElementCount 1192 /// for the purposes of using it in a set structure. 1193 struct ElementCountComparator { 1194 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1195 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1196 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1197 } 1198 }; 1199 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1200 1201 /// LoopVectorizationCostModel - estimates the expected speedups due to 1202 /// vectorization. 1203 /// In many cases vectorization is not profitable. This can happen because of 1204 /// a number of reasons. In this class we mainly attempt to predict the 1205 /// expected speedup/slowdowns due to the supported instruction set. We use the 1206 /// TargetTransformInfo to query the different backends for the cost of 1207 /// different operations. 1208 class LoopVectorizationCostModel { 1209 public: 1210 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1211 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1212 LoopVectorizationLegality *Legal, 1213 const TargetTransformInfo &TTI, 1214 const TargetLibraryInfo *TLI, DemandedBits *DB, 1215 AssumptionCache *AC, 1216 OptimizationRemarkEmitter *ORE, const Function *F, 1217 const LoopVectorizeHints *Hints, 1218 InterleavedAccessInfo &IAI) 1219 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1220 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1221 Hints(Hints), InterleaveInfo(IAI) {} 1222 1223 /// \return An upper bound for the vectorization factors (both fixed and 1224 /// scalable). If the factors are 0, vectorization and interleaving should be 1225 /// avoided up front. 1226 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1227 1228 /// \return True if runtime checks are required for vectorization, and false 1229 /// otherwise. 1230 bool runtimeChecksRequired(); 1231 1232 /// \return The most profitable vectorization factor and the cost of that VF. 1233 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1234 /// then this vectorization factor will be selected if vectorization is 1235 /// possible. 1236 VectorizationFactor 1237 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1238 1239 VectorizationFactor 1240 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1241 const LoopVectorizationPlanner &LVP); 1242 1243 /// Setup cost-based decisions for user vectorization factor. 1244 /// \return true if the UserVF is a feasible VF to be chosen. 1245 bool selectUserVectorizationFactor(ElementCount UserVF) { 1246 collectUniformsAndScalars(UserVF); 1247 collectInstsToScalarize(UserVF); 1248 return expectedCost(UserVF).first.isValid(); 1249 } 1250 1251 /// \return The size (in bits) of the smallest and widest types in the code 1252 /// that needs to be vectorized. We ignore values that remain scalar such as 1253 /// 64 bit loop indices. 1254 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1255 1256 /// \return The desired interleave count. 1257 /// If interleave count has been specified by metadata it will be returned. 1258 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1259 /// are the selected vectorization factor and the cost of the selected VF. 1260 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1261 1262 /// Memory access instruction may be vectorized in more than one way. 1263 /// Form of instruction after vectorization depends on cost. 1264 /// This function takes cost-based decisions for Load/Store instructions 1265 /// and collects them in a map. This decisions map is used for building 1266 /// the lists of loop-uniform and loop-scalar instructions. 1267 /// The calculated cost is saved with widening decision in order to 1268 /// avoid redundant calculations. 1269 void setCostBasedWideningDecision(ElementCount VF); 1270 1271 /// A struct that represents some properties of the register usage 1272 /// of a loop. 1273 struct RegisterUsage { 1274 /// Holds the number of loop invariant values that are used in the loop. 1275 /// The key is ClassID of target-provided register class. 1276 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1277 /// Holds the maximum number of concurrent live intervals in the loop. 1278 /// The key is ClassID of target-provided register class. 1279 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1280 }; 1281 1282 /// \return Returns information about the register usages of the loop for the 1283 /// given vectorization factors. 1284 SmallVector<RegisterUsage, 8> 1285 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1286 1287 /// Collect values we want to ignore in the cost model. 1288 void collectValuesToIgnore(); 1289 1290 /// Collect all element types in the loop for which widening is needed. 1291 void collectElementTypesForWidening(); 1292 1293 /// Split reductions into those that happen in the loop, and those that happen 1294 /// outside. In loop reductions are collected into InLoopReductionChains. 1295 void collectInLoopReductions(); 1296 1297 /// Returns true if we should use strict in-order reductions for the given 1298 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1299 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1300 /// of FP operations. 1301 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const { 1302 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1303 } 1304 1305 /// \returns The smallest bitwidth each instruction can be represented with. 1306 /// The vector equivalents of these instructions should be truncated to this 1307 /// type. 1308 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1309 return MinBWs; 1310 } 1311 1312 /// \returns True if it is more profitable to scalarize instruction \p I for 1313 /// vectorization factor \p VF. 1314 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1315 assert(VF.isVector() && 1316 "Profitable to scalarize relevant only for VF > 1."); 1317 1318 // Cost model is not run in the VPlan-native path - return conservative 1319 // result until this changes. 1320 if (EnableVPlanNativePath) 1321 return false; 1322 1323 auto Scalars = InstsToScalarize.find(VF); 1324 assert(Scalars != InstsToScalarize.end() && 1325 "VF not yet analyzed for scalarization profitability"); 1326 return Scalars->second.find(I) != Scalars->second.end(); 1327 } 1328 1329 /// Returns true if \p I is known to be uniform after vectorization. 1330 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1331 if (VF.isScalar()) 1332 return true; 1333 1334 // Cost model is not run in the VPlan-native path - return conservative 1335 // result until this changes. 1336 if (EnableVPlanNativePath) 1337 return false; 1338 1339 auto UniformsPerVF = Uniforms.find(VF); 1340 assert(UniformsPerVF != Uniforms.end() && 1341 "VF not yet analyzed for uniformity"); 1342 return UniformsPerVF->second.count(I); 1343 } 1344 1345 /// Returns true if \p I is known to be scalar after vectorization. 1346 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1347 if (VF.isScalar()) 1348 return true; 1349 1350 // Cost model is not run in the VPlan-native path - return conservative 1351 // result until this changes. 1352 if (EnableVPlanNativePath) 1353 return false; 1354 1355 auto ScalarsPerVF = Scalars.find(VF); 1356 assert(ScalarsPerVF != Scalars.end() && 1357 "Scalar values are not calculated for VF"); 1358 return ScalarsPerVF->second.count(I); 1359 } 1360 1361 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1362 /// for vectorization factor \p VF. 1363 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1364 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1365 !isProfitableToScalarize(I, VF) && 1366 !isScalarAfterVectorization(I, VF); 1367 } 1368 1369 /// Decision that was taken during cost calculation for memory instruction. 1370 enum InstWidening { 1371 CM_Unknown, 1372 CM_Widen, // For consecutive accesses with stride +1. 1373 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1374 CM_Interleave, 1375 CM_GatherScatter, 1376 CM_Scalarize 1377 }; 1378 1379 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1380 /// instruction \p I and vector width \p VF. 1381 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1382 InstructionCost Cost) { 1383 assert(VF.isVector() && "Expected VF >=2"); 1384 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1385 } 1386 1387 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1388 /// interleaving group \p Grp and vector width \p VF. 1389 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1390 ElementCount VF, InstWidening W, 1391 InstructionCost Cost) { 1392 assert(VF.isVector() && "Expected VF >=2"); 1393 /// Broadcast this decicion to all instructions inside the group. 1394 /// But the cost will be assigned to one instruction only. 1395 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1396 if (auto *I = Grp->getMember(i)) { 1397 if (Grp->getInsertPos() == I) 1398 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1399 else 1400 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1401 } 1402 } 1403 } 1404 1405 /// Return the cost model decision for the given instruction \p I and vector 1406 /// width \p VF. Return CM_Unknown if this instruction did not pass 1407 /// through the cost modeling. 1408 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1409 assert(VF.isVector() && "Expected VF to be a vector VF"); 1410 // Cost model is not run in the VPlan-native path - return conservative 1411 // result until this changes. 1412 if (EnableVPlanNativePath) 1413 return CM_GatherScatter; 1414 1415 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1416 auto Itr = WideningDecisions.find(InstOnVF); 1417 if (Itr == WideningDecisions.end()) 1418 return CM_Unknown; 1419 return Itr->second.first; 1420 } 1421 1422 /// Return the vectorization cost for the given instruction \p I and vector 1423 /// width \p VF. 1424 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1425 assert(VF.isVector() && "Expected VF >=2"); 1426 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1427 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1428 "The cost is not calculated"); 1429 return WideningDecisions[InstOnVF].second; 1430 } 1431 1432 /// Return True if instruction \p I is an optimizable truncate whose operand 1433 /// is an induction variable. Such a truncate will be removed by adding a new 1434 /// induction variable with the destination type. 1435 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1436 // If the instruction is not a truncate, return false. 1437 auto *Trunc = dyn_cast<TruncInst>(I); 1438 if (!Trunc) 1439 return false; 1440 1441 // Get the source and destination types of the truncate. 1442 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1443 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1444 1445 // If the truncate is free for the given types, return false. Replacing a 1446 // free truncate with an induction variable would add an induction variable 1447 // update instruction to each iteration of the loop. We exclude from this 1448 // check the primary induction variable since it will need an update 1449 // instruction regardless. 1450 Value *Op = Trunc->getOperand(0); 1451 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1452 return false; 1453 1454 // If the truncated value is not an induction variable, return false. 1455 return Legal->isInductionPhi(Op); 1456 } 1457 1458 /// Collects the instructions to scalarize for each predicated instruction in 1459 /// the loop. 1460 void collectInstsToScalarize(ElementCount VF); 1461 1462 /// Collect Uniform and Scalar values for the given \p VF. 1463 /// The sets depend on CM decision for Load/Store instructions 1464 /// that may be vectorized as interleave, gather-scatter or scalarized. 1465 void collectUniformsAndScalars(ElementCount VF) { 1466 // Do the analysis once. 1467 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1468 return; 1469 setCostBasedWideningDecision(VF); 1470 collectLoopUniforms(VF); 1471 collectLoopScalars(VF); 1472 } 1473 1474 /// Returns true if the target machine supports masked store operation 1475 /// for the given \p DataType and kind of access to \p Ptr. 1476 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1477 return Legal->isConsecutivePtr(DataType, Ptr) && 1478 TTI.isLegalMaskedStore(DataType, Alignment); 1479 } 1480 1481 /// Returns true if the target machine supports masked load operation 1482 /// for the given \p DataType and kind of access to \p Ptr. 1483 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1484 return Legal->isConsecutivePtr(DataType, Ptr) && 1485 TTI.isLegalMaskedLoad(DataType, Alignment); 1486 } 1487 1488 /// Returns true if the target machine can represent \p V as a masked gather 1489 /// or scatter operation. 1490 bool isLegalGatherOrScatter(Value *V, 1491 ElementCount VF = ElementCount::getFixed(1)) { 1492 bool LI = isa<LoadInst>(V); 1493 bool SI = isa<StoreInst>(V); 1494 if (!LI && !SI) 1495 return false; 1496 auto *Ty = getLoadStoreType(V); 1497 Align Align = getLoadStoreAlignment(V); 1498 if (VF.isVector()) 1499 Ty = VectorType::get(Ty, VF); 1500 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1501 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1502 } 1503 1504 /// Returns true if the target machine supports all of the reduction 1505 /// variables found for the given VF. 1506 bool canVectorizeReductions(ElementCount VF) const { 1507 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1508 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1509 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1510 })); 1511 } 1512 1513 /// Returns true if \p I is an instruction that will be scalarized with 1514 /// predication when vectorizing \p I with vectorization factor \p VF. Such 1515 /// instructions include conditional stores and instructions that may divide 1516 /// by zero. 1517 bool isScalarWithPredication(Instruction *I, ElementCount VF) const; 1518 1519 // Returns true if \p I is an instruction that will be predicated either 1520 // through scalar predication or masked load/store or masked gather/scatter. 1521 // \p VF is the vectorization factor that will be used to vectorize \p I. 1522 // Superset of instructions that return true for isScalarWithPredication. 1523 bool isPredicatedInst(Instruction *I, ElementCount VF, 1524 bool IsKnownUniform = false) { 1525 // When we know the load is uniform and the original scalar loop was not 1526 // predicated we don't need to mark it as a predicated instruction. Any 1527 // vectorised blocks created when tail-folding are something artificial we 1528 // have introduced and we know there is always at least one active lane. 1529 // That's why we call Legal->blockNeedsPredication here because it doesn't 1530 // query tail-folding. 1531 if (IsKnownUniform && isa<LoadInst>(I) && 1532 !Legal->blockNeedsPredication(I->getParent())) 1533 return false; 1534 if (!blockNeedsPredicationForAnyReason(I->getParent())) 1535 return false; 1536 // Loads and stores that need some form of masked operation are predicated 1537 // instructions. 1538 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1539 return Legal->isMaskRequired(I); 1540 return isScalarWithPredication(I, VF); 1541 } 1542 1543 /// Returns true if \p I is a memory instruction with consecutive memory 1544 /// access that can be widened. 1545 bool 1546 memoryInstructionCanBeWidened(Instruction *I, 1547 ElementCount VF = ElementCount::getFixed(1)); 1548 1549 /// Returns true if \p I is a memory instruction in an interleaved-group 1550 /// of memory accesses that can be vectorized with wide vector loads/stores 1551 /// and shuffles. 1552 bool 1553 interleavedAccessCanBeWidened(Instruction *I, 1554 ElementCount VF = ElementCount::getFixed(1)); 1555 1556 /// Check if \p Instr belongs to any interleaved access group. 1557 bool isAccessInterleaved(Instruction *Instr) { 1558 return InterleaveInfo.isInterleaved(Instr); 1559 } 1560 1561 /// Get the interleaved access group that \p Instr belongs to. 1562 const InterleaveGroup<Instruction> * 1563 getInterleavedAccessGroup(Instruction *Instr) { 1564 return InterleaveInfo.getInterleaveGroup(Instr); 1565 } 1566 1567 /// Returns true if we're required to use a scalar epilogue for at least 1568 /// the final iteration of the original loop. 1569 bool requiresScalarEpilogue(ElementCount VF) const { 1570 if (!isScalarEpilogueAllowed()) 1571 return false; 1572 // If we might exit from anywhere but the latch, must run the exiting 1573 // iteration in scalar form. 1574 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1575 return true; 1576 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1577 } 1578 1579 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1580 /// loop hint annotation. 1581 bool isScalarEpilogueAllowed() const { 1582 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1583 } 1584 1585 /// Returns true if all loop blocks should be masked to fold tail loop. 1586 bool foldTailByMasking() const { return FoldTailByMasking; } 1587 1588 /// Returns true if the instructions in this block requires predication 1589 /// for any reason, e.g. because tail folding now requires a predicate 1590 /// or because the block in the original loop was predicated. 1591 bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { 1592 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1593 } 1594 1595 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1596 /// nodes to the chain of instructions representing the reductions. Uses a 1597 /// MapVector to ensure deterministic iteration order. 1598 using ReductionChainMap = 1599 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1600 1601 /// Return the chain of instructions representing an inloop reduction. 1602 const ReductionChainMap &getInLoopReductionChains() const { 1603 return InLoopReductionChains; 1604 } 1605 1606 /// Returns true if the Phi is part of an inloop reduction. 1607 bool isInLoopReduction(PHINode *Phi) const { 1608 return InLoopReductionChains.count(Phi); 1609 } 1610 1611 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1612 /// with factor VF. Return the cost of the instruction, including 1613 /// scalarization overhead if it's needed. 1614 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1615 1616 /// Estimate cost of a call instruction CI if it were vectorized with factor 1617 /// VF. Return the cost of the instruction, including scalarization overhead 1618 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1619 /// scalarized - 1620 /// i.e. either vector version isn't available, or is too expensive. 1621 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1622 bool &NeedToScalarize) const; 1623 1624 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1625 /// that of B. 1626 bool isMoreProfitable(const VectorizationFactor &A, 1627 const VectorizationFactor &B) const; 1628 1629 /// Invalidates decisions already taken by the cost model. 1630 void invalidateCostModelingDecisions() { 1631 WideningDecisions.clear(); 1632 Uniforms.clear(); 1633 Scalars.clear(); 1634 } 1635 1636 private: 1637 unsigned NumPredStores = 0; 1638 1639 /// Convenience function that returns the value of vscale_range iff 1640 /// vscale_range.min == vscale_range.max or otherwise returns the value 1641 /// returned by the corresponding TLI method. 1642 Optional<unsigned> getVScaleForTuning() const; 1643 1644 /// \return An upper bound for the vectorization factors for both 1645 /// fixed and scalable vectorization, where the minimum-known number of 1646 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1647 /// disabled or unsupported, then the scalable part will be equal to 1648 /// ElementCount::getScalable(0). 1649 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1650 ElementCount UserVF, 1651 bool FoldTailByMasking); 1652 1653 /// \return the maximized element count based on the targets vector 1654 /// registers and the loop trip-count, but limited to a maximum safe VF. 1655 /// This is a helper function of computeFeasibleMaxVF. 1656 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1657 unsigned SmallestType, 1658 unsigned WidestType, 1659 ElementCount MaxSafeVF, 1660 bool FoldTailByMasking); 1661 1662 /// \return the maximum legal scalable VF, based on the safe max number 1663 /// of elements. 1664 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1665 1666 /// The vectorization cost is a combination of the cost itself and a boolean 1667 /// indicating whether any of the contributing operations will actually 1668 /// operate on vector values after type legalization in the backend. If this 1669 /// latter value is false, then all operations will be scalarized (i.e. no 1670 /// vectorization has actually taken place). 1671 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1672 1673 /// Returns the expected execution cost. The unit of the cost does 1674 /// not matter because we use the 'cost' units to compare different 1675 /// vector widths. The cost that is returned is *not* normalized by 1676 /// the factor width. If \p Invalid is not nullptr, this function 1677 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1678 /// each instruction that has an Invalid cost for the given VF. 1679 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1680 VectorizationCostTy 1681 expectedCost(ElementCount VF, 1682 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1683 1684 /// Returns the execution time cost of an instruction for a given vector 1685 /// width. Vector width of one means scalar. 1686 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1687 1688 /// The cost-computation logic from getInstructionCost which provides 1689 /// the vector type as an output parameter. 1690 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1691 Type *&VectorTy); 1692 1693 /// Return the cost of instructions in an inloop reduction pattern, if I is 1694 /// part of that pattern. 1695 Optional<InstructionCost> 1696 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1697 TTI::TargetCostKind CostKind); 1698 1699 /// Calculate vectorization cost of memory instruction \p I. 1700 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1701 1702 /// The cost computation for scalarized memory instruction. 1703 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1704 1705 /// The cost computation for interleaving group of memory instructions. 1706 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1707 1708 /// The cost computation for Gather/Scatter instruction. 1709 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1710 1711 /// The cost computation for widening instruction \p I with consecutive 1712 /// memory access. 1713 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1714 1715 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1716 /// Load: scalar load + broadcast. 1717 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1718 /// element) 1719 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1720 1721 /// Estimate the overhead of scalarizing an instruction. This is a 1722 /// convenience wrapper for the type-based getScalarizationOverhead API. 1723 InstructionCost getScalarizationOverhead(Instruction *I, 1724 ElementCount VF) const; 1725 1726 /// Returns whether the instruction is a load or store and will be a emitted 1727 /// as a vector operation. 1728 bool isConsecutiveLoadOrStore(Instruction *I); 1729 1730 /// Returns true if an artificially high cost for emulated masked memrefs 1731 /// should be used. 1732 bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); 1733 1734 /// Map of scalar integer values to the smallest bitwidth they can be legally 1735 /// represented as. The vector equivalents of these values should be truncated 1736 /// to this type. 1737 MapVector<Instruction *, uint64_t> MinBWs; 1738 1739 /// A type representing the costs for instructions if they were to be 1740 /// scalarized rather than vectorized. The entries are Instruction-Cost 1741 /// pairs. 1742 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1743 1744 /// A set containing all BasicBlocks that are known to present after 1745 /// vectorization as a predicated block. 1746 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1747 1748 /// Records whether it is allowed to have the original scalar loop execute at 1749 /// least once. This may be needed as a fallback loop in case runtime 1750 /// aliasing/dependence checks fail, or to handle the tail/remainder 1751 /// iterations when the trip count is unknown or doesn't divide by the VF, 1752 /// or as a peel-loop to handle gaps in interleave-groups. 1753 /// Under optsize and when the trip count is very small we don't allow any 1754 /// iterations to execute in the scalar loop. 1755 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1756 1757 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1758 bool FoldTailByMasking = false; 1759 1760 /// A map holding scalar costs for different vectorization factors. The 1761 /// presence of a cost for an instruction in the mapping indicates that the 1762 /// instruction will be scalarized when vectorizing with the associated 1763 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1764 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1765 1766 /// Holds the instructions known to be uniform after vectorization. 1767 /// The data is collected per VF. 1768 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1769 1770 /// Holds the instructions known to be scalar after vectorization. 1771 /// The data is collected per VF. 1772 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1773 1774 /// Holds the instructions (address computations) that are forced to be 1775 /// scalarized. 1776 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1777 1778 /// PHINodes of the reductions that should be expanded in-loop along with 1779 /// their associated chains of reduction operations, in program order from top 1780 /// (PHI) to bottom 1781 ReductionChainMap InLoopReductionChains; 1782 1783 /// A Map of inloop reduction operations and their immediate chain operand. 1784 /// FIXME: This can be removed once reductions can be costed correctly in 1785 /// vplan. This was added to allow quick lookup to the inloop operations, 1786 /// without having to loop through InLoopReductionChains. 1787 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1788 1789 /// Returns the expected difference in cost from scalarizing the expression 1790 /// feeding a predicated instruction \p PredInst. The instructions to 1791 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1792 /// non-negative return value implies the expression will be scalarized. 1793 /// Currently, only single-use chains are considered for scalarization. 1794 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1795 ElementCount VF); 1796 1797 /// Collect the instructions that are uniform after vectorization. An 1798 /// instruction is uniform if we represent it with a single scalar value in 1799 /// the vectorized loop corresponding to each vector iteration. Examples of 1800 /// uniform instructions include pointer operands of consecutive or 1801 /// interleaved memory accesses. Note that although uniformity implies an 1802 /// instruction will be scalar, the reverse is not true. In general, a 1803 /// scalarized instruction will be represented by VF scalar values in the 1804 /// vectorized loop, each corresponding to an iteration of the original 1805 /// scalar loop. 1806 void collectLoopUniforms(ElementCount VF); 1807 1808 /// Collect the instructions that are scalar after vectorization. An 1809 /// instruction is scalar if it is known to be uniform or will be scalarized 1810 /// during vectorization. collectLoopScalars should only add non-uniform nodes 1811 /// to the list if they are used by a load/store instruction that is marked as 1812 /// CM_Scalarize. Non-uniform scalarized instructions will be represented by 1813 /// VF values in the vectorized loop, each corresponding to an iteration of 1814 /// the original scalar loop. 1815 void collectLoopScalars(ElementCount VF); 1816 1817 /// Keeps cost model vectorization decision and cost for instructions. 1818 /// Right now it is used for memory instructions only. 1819 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1820 std::pair<InstWidening, InstructionCost>>; 1821 1822 DecisionList WideningDecisions; 1823 1824 /// Returns true if \p V is expected to be vectorized and it needs to be 1825 /// extracted. 1826 bool needsExtract(Value *V, ElementCount VF) const { 1827 Instruction *I = dyn_cast<Instruction>(V); 1828 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1829 TheLoop->isLoopInvariant(I)) 1830 return false; 1831 1832 // Assume we can vectorize V (and hence we need extraction) if the 1833 // scalars are not computed yet. This can happen, because it is called 1834 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1835 // the scalars are collected. That should be a safe assumption in most 1836 // cases, because we check if the operands have vectorizable types 1837 // beforehand in LoopVectorizationLegality. 1838 return Scalars.find(VF) == Scalars.end() || 1839 !isScalarAfterVectorization(I, VF); 1840 }; 1841 1842 /// Returns a range containing only operands needing to be extracted. 1843 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1844 ElementCount VF) const { 1845 return SmallVector<Value *, 4>(make_filter_range( 1846 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1847 } 1848 1849 /// Determines if we have the infrastructure to vectorize loop \p L and its 1850 /// epilogue, assuming the main loop is vectorized by \p VF. 1851 bool isCandidateForEpilogueVectorization(const Loop &L, 1852 const ElementCount VF) const; 1853 1854 /// Returns true if epilogue vectorization is considered profitable, and 1855 /// false otherwise. 1856 /// \p VF is the vectorization factor chosen for the original loop. 1857 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1858 1859 public: 1860 /// The loop that we evaluate. 1861 Loop *TheLoop; 1862 1863 /// Predicated scalar evolution analysis. 1864 PredicatedScalarEvolution &PSE; 1865 1866 /// Loop Info analysis. 1867 LoopInfo *LI; 1868 1869 /// Vectorization legality. 1870 LoopVectorizationLegality *Legal; 1871 1872 /// Vector target information. 1873 const TargetTransformInfo &TTI; 1874 1875 /// Target Library Info. 1876 const TargetLibraryInfo *TLI; 1877 1878 /// Demanded bits analysis. 1879 DemandedBits *DB; 1880 1881 /// Assumption cache. 1882 AssumptionCache *AC; 1883 1884 /// Interface to emit optimization remarks. 1885 OptimizationRemarkEmitter *ORE; 1886 1887 const Function *TheFunction; 1888 1889 /// Loop Vectorize Hint. 1890 const LoopVectorizeHints *Hints; 1891 1892 /// The interleave access information contains groups of interleaved accesses 1893 /// with the same stride and close to each other. 1894 InterleavedAccessInfo &InterleaveInfo; 1895 1896 /// Values to ignore in the cost model. 1897 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1898 1899 /// Values to ignore in the cost model when VF > 1. 1900 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1901 1902 /// All element types found in the loop. 1903 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1904 1905 /// Profitable vector factors. 1906 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1907 }; 1908 } // end namespace llvm 1909 1910 /// Helper struct to manage generating runtime checks for vectorization. 1911 /// 1912 /// The runtime checks are created up-front in temporary blocks to allow better 1913 /// estimating the cost and un-linked from the existing IR. After deciding to 1914 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1915 /// temporary blocks are completely removed. 1916 class GeneratedRTChecks { 1917 /// Basic block which contains the generated SCEV checks, if any. 1918 BasicBlock *SCEVCheckBlock = nullptr; 1919 1920 /// The value representing the result of the generated SCEV checks. If it is 1921 /// nullptr, either no SCEV checks have been generated or they have been used. 1922 Value *SCEVCheckCond = nullptr; 1923 1924 /// Basic block which contains the generated memory runtime checks, if any. 1925 BasicBlock *MemCheckBlock = nullptr; 1926 1927 /// The value representing the result of the generated memory runtime checks. 1928 /// If it is nullptr, either no memory runtime checks have been generated or 1929 /// they have been used. 1930 Value *MemRuntimeCheckCond = nullptr; 1931 1932 DominatorTree *DT; 1933 LoopInfo *LI; 1934 1935 SCEVExpander SCEVExp; 1936 SCEVExpander MemCheckExp; 1937 1938 public: 1939 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1940 const DataLayout &DL) 1941 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1942 MemCheckExp(SE, DL, "scev.check") {} 1943 1944 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1945 /// accurately estimate the cost of the runtime checks. The blocks are 1946 /// un-linked from the IR and is added back during vector code generation. If 1947 /// there is no vector code generation, the check blocks are removed 1948 /// completely. 1949 void Create(Loop *L, const LoopAccessInfo &LAI, 1950 const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) { 1951 1952 BasicBlock *LoopHeader = L->getHeader(); 1953 BasicBlock *Preheader = L->getLoopPreheader(); 1954 1955 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1956 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1957 // may be used by SCEVExpander. The blocks will be un-linked from their 1958 // predecessors and removed from LI & DT at the end of the function. 1959 if (!UnionPred.isAlwaysTrue()) { 1960 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1961 nullptr, "vector.scevcheck"); 1962 1963 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1964 &UnionPred, SCEVCheckBlock->getTerminator()); 1965 } 1966 1967 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1968 if (RtPtrChecking.Need) { 1969 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1970 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1971 "vector.memcheck"); 1972 1973 auto DiffChecks = RtPtrChecking.getDiffChecks(); 1974 if (DiffChecks) { 1975 MemRuntimeCheckCond = addDiffRuntimeChecks( 1976 MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp, 1977 [VF](IRBuilderBase &B, unsigned Bits) { 1978 return getRuntimeVF(B, B.getIntNTy(Bits), VF); 1979 }, 1980 IC); 1981 } else { 1982 MemRuntimeCheckCond = 1983 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1984 RtPtrChecking.getChecks(), MemCheckExp); 1985 } 1986 assert(MemRuntimeCheckCond && 1987 "no RT checks generated although RtPtrChecking " 1988 "claimed checks are required"); 1989 } 1990 1991 if (!MemCheckBlock && !SCEVCheckBlock) 1992 return; 1993 1994 // Unhook the temporary block with the checks, update various places 1995 // accordingly. 1996 if (SCEVCheckBlock) 1997 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1998 if (MemCheckBlock) 1999 MemCheckBlock->replaceAllUsesWith(Preheader); 2000 2001 if (SCEVCheckBlock) { 2002 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2003 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 2004 Preheader->getTerminator()->eraseFromParent(); 2005 } 2006 if (MemCheckBlock) { 2007 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 2008 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 2009 Preheader->getTerminator()->eraseFromParent(); 2010 } 2011 2012 DT->changeImmediateDominator(LoopHeader, Preheader); 2013 if (MemCheckBlock) { 2014 DT->eraseNode(MemCheckBlock); 2015 LI->removeBlock(MemCheckBlock); 2016 } 2017 if (SCEVCheckBlock) { 2018 DT->eraseNode(SCEVCheckBlock); 2019 LI->removeBlock(SCEVCheckBlock); 2020 } 2021 } 2022 2023 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2024 /// unused. 2025 ~GeneratedRTChecks() { 2026 SCEVExpanderCleaner SCEVCleaner(SCEVExp); 2027 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); 2028 if (!SCEVCheckCond) 2029 SCEVCleaner.markResultUsed(); 2030 2031 if (!MemRuntimeCheckCond) 2032 MemCheckCleaner.markResultUsed(); 2033 2034 if (MemRuntimeCheckCond) { 2035 auto &SE = *MemCheckExp.getSE(); 2036 // Memory runtime check generation creates compares that use expanded 2037 // values. Remove them before running the SCEVExpanderCleaners. 2038 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2039 if (MemCheckExp.isInsertedInstruction(&I)) 2040 continue; 2041 SE.forgetValue(&I); 2042 I.eraseFromParent(); 2043 } 2044 } 2045 MemCheckCleaner.cleanup(); 2046 SCEVCleaner.cleanup(); 2047 2048 if (SCEVCheckCond) 2049 SCEVCheckBlock->eraseFromParent(); 2050 if (MemRuntimeCheckCond) 2051 MemCheckBlock->eraseFromParent(); 2052 } 2053 2054 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2055 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2056 /// depending on the generated condition. 2057 BasicBlock *emitSCEVChecks(BasicBlock *Bypass, 2058 BasicBlock *LoopVectorPreHeader, 2059 BasicBlock *LoopExitBlock) { 2060 if (!SCEVCheckCond) 2061 return nullptr; 2062 2063 Value *Cond = SCEVCheckCond; 2064 // Mark the check as used, to prevent it from being removed during cleanup. 2065 SCEVCheckCond = nullptr; 2066 if (auto *C = dyn_cast<ConstantInt>(Cond)) 2067 if (C->isZero()) 2068 return nullptr; 2069 2070 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2071 2072 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2073 // Create new preheader for vector loop. 2074 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2075 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2076 2077 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2078 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2079 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2080 SCEVCheckBlock); 2081 2082 DT->addNewBlock(SCEVCheckBlock, Pred); 2083 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2084 2085 ReplaceInstWithInst(SCEVCheckBlock->getTerminator(), 2086 BranchInst::Create(Bypass, LoopVectorPreHeader, Cond)); 2087 return SCEVCheckBlock; 2088 } 2089 2090 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2091 /// the branches to branch to the vector preheader or \p Bypass, depending on 2092 /// the generated condition. 2093 BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, 2094 BasicBlock *LoopVectorPreHeader) { 2095 // Check if we generated code that checks in runtime if arrays overlap. 2096 if (!MemRuntimeCheckCond) 2097 return nullptr; 2098 2099 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2100 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2101 MemCheckBlock); 2102 2103 DT->addNewBlock(MemCheckBlock, Pred); 2104 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2105 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2106 2107 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2108 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2109 2110 ReplaceInstWithInst( 2111 MemCheckBlock->getTerminator(), 2112 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2113 MemCheckBlock->getTerminator()->setDebugLoc( 2114 Pred->getTerminator()->getDebugLoc()); 2115 2116 // Mark the check as used, to prevent it from being removed during cleanup. 2117 MemRuntimeCheckCond = nullptr; 2118 return MemCheckBlock; 2119 } 2120 }; 2121 2122 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2123 // vectorization. The loop needs to be annotated with #pragma omp simd 2124 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2125 // vector length information is not provided, vectorization is not considered 2126 // explicit. Interleave hints are not allowed either. These limitations will be 2127 // relaxed in the future. 2128 // Please, note that we are currently forced to abuse the pragma 'clang 2129 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2130 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2131 // provides *explicit vectorization hints* (LV can bypass legal checks and 2132 // assume that vectorization is legal). However, both hints are implemented 2133 // using the same metadata (llvm.loop.vectorize, processed by 2134 // LoopVectorizeHints). This will be fixed in the future when the native IR 2135 // representation for pragma 'omp simd' is introduced. 2136 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2137 OptimizationRemarkEmitter *ORE) { 2138 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2139 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2140 2141 // Only outer loops with an explicit vectorization hint are supported. 2142 // Unannotated outer loops are ignored. 2143 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2144 return false; 2145 2146 Function *Fn = OuterLp->getHeader()->getParent(); 2147 if (!Hints.allowVectorization(Fn, OuterLp, 2148 true /*VectorizeOnlyWhenForced*/)) { 2149 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2150 return false; 2151 } 2152 2153 if (Hints.getInterleave() > 1) { 2154 // TODO: Interleave support is future work. 2155 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2156 "outer loops.\n"); 2157 Hints.emitRemarkWithHints(); 2158 return false; 2159 } 2160 2161 return true; 2162 } 2163 2164 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2165 OptimizationRemarkEmitter *ORE, 2166 SmallVectorImpl<Loop *> &V) { 2167 // Collect inner loops and outer loops without irreducible control flow. For 2168 // now, only collect outer loops that have explicit vectorization hints. If we 2169 // are stress testing the VPlan H-CFG construction, we collect the outermost 2170 // loop of every loop nest. 2171 if (L.isInnermost() || VPlanBuildStressTest || 2172 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2173 LoopBlocksRPO RPOT(&L); 2174 RPOT.perform(LI); 2175 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2176 V.push_back(&L); 2177 // TODO: Collect inner loops inside marked outer loops in case 2178 // vectorization fails for the outer loop. Do not invoke 2179 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2180 // already known to be reducible. We can use an inherited attribute for 2181 // that. 2182 return; 2183 } 2184 } 2185 for (Loop *InnerL : L) 2186 collectSupportedLoops(*InnerL, LI, ORE, V); 2187 } 2188 2189 namespace { 2190 2191 /// The LoopVectorize Pass. 2192 struct LoopVectorize : public FunctionPass { 2193 /// Pass identification, replacement for typeid 2194 static char ID; 2195 2196 LoopVectorizePass Impl; 2197 2198 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2199 bool VectorizeOnlyWhenForced = false) 2200 : FunctionPass(ID), 2201 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2202 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2203 } 2204 2205 bool runOnFunction(Function &F) override { 2206 if (skipFunction(F)) 2207 return false; 2208 2209 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2210 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2211 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2212 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2213 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2214 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2215 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2216 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2217 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2218 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2219 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2220 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2221 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2222 2223 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2224 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2225 2226 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2227 GetLAA, *ORE, PSI).MadeAnyChange; 2228 } 2229 2230 void getAnalysisUsage(AnalysisUsage &AU) const override { 2231 AU.addRequired<AssumptionCacheTracker>(); 2232 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2233 AU.addRequired<DominatorTreeWrapperPass>(); 2234 AU.addRequired<LoopInfoWrapperPass>(); 2235 AU.addRequired<ScalarEvolutionWrapperPass>(); 2236 AU.addRequired<TargetTransformInfoWrapperPass>(); 2237 AU.addRequired<AAResultsWrapperPass>(); 2238 AU.addRequired<LoopAccessLegacyAnalysis>(); 2239 AU.addRequired<DemandedBitsWrapperPass>(); 2240 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2241 AU.addRequired<InjectTLIMappingsLegacy>(); 2242 2243 // We currently do not preserve loopinfo/dominator analyses with outer loop 2244 // vectorization. Until this is addressed, mark these analyses as preserved 2245 // only for non-VPlan-native path. 2246 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2247 if (!EnableVPlanNativePath) { 2248 AU.addPreserved<LoopInfoWrapperPass>(); 2249 AU.addPreserved<DominatorTreeWrapperPass>(); 2250 } 2251 2252 AU.addPreserved<BasicAAWrapperPass>(); 2253 AU.addPreserved<GlobalsAAWrapperPass>(); 2254 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2255 } 2256 }; 2257 2258 } // end anonymous namespace 2259 2260 //===----------------------------------------------------------------------===// 2261 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2262 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2263 //===----------------------------------------------------------------------===// 2264 2265 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2266 // We need to place the broadcast of invariant variables outside the loop, 2267 // but only if it's proven safe to do so. Else, broadcast will be inside 2268 // vector loop body. 2269 Instruction *Instr = dyn_cast<Instruction>(V); 2270 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2271 (!Instr || 2272 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2273 // Place the code for broadcasting invariant variables in the new preheader. 2274 IRBuilder<>::InsertPointGuard Guard(Builder); 2275 if (SafeToHoist) 2276 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2277 2278 // Broadcast the scalar into all locations in the vector. 2279 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2280 2281 return Shuf; 2282 } 2283 2284 /// This function adds 2285 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 2286 /// to each vector element of Val. The sequence starts at StartIndex. 2287 /// \p Opcode is relevant for FP induction variable. 2288 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, 2289 Instruction::BinaryOps BinOp, ElementCount VF, 2290 IRBuilderBase &Builder) { 2291 assert(VF.isVector() && "only vector VFs are supported"); 2292 2293 // Create and check the types. 2294 auto *ValVTy = cast<VectorType>(Val->getType()); 2295 ElementCount VLen = ValVTy->getElementCount(); 2296 2297 Type *STy = Val->getType()->getScalarType(); 2298 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2299 "Induction Step must be an integer or FP"); 2300 assert(Step->getType() == STy && "Step has wrong type"); 2301 2302 SmallVector<Constant *, 8> Indices; 2303 2304 // Create a vector of consecutive numbers from zero to VF. 2305 VectorType *InitVecValVTy = ValVTy; 2306 if (STy->isFloatingPointTy()) { 2307 Type *InitVecValSTy = 2308 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2309 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2310 } 2311 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2312 2313 // Splat the StartIdx 2314 Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); 2315 2316 if (STy->isIntegerTy()) { 2317 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2318 Step = Builder.CreateVectorSplat(VLen, Step); 2319 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2320 // FIXME: The newly created binary instructions should contain nsw/nuw 2321 // flags, which can be found from the original scalar operations. 2322 Step = Builder.CreateMul(InitVec, Step); 2323 return Builder.CreateAdd(Val, Step, "induction"); 2324 } 2325 2326 // Floating point induction. 2327 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2328 "Binary Opcode should be specified for FP induction"); 2329 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2330 InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); 2331 2332 Step = Builder.CreateVectorSplat(VLen, Step); 2333 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2334 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2335 } 2336 2337 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 2338 /// variable on which to base the steps, \p Step is the size of the step. 2339 static void buildScalarSteps(Value *ScalarIV, Value *Step, 2340 const InductionDescriptor &ID, VPValue *Def, 2341 VPTransformState &State) { 2342 IRBuilderBase &Builder = State.Builder; 2343 // We shouldn't have to build scalar steps if we aren't vectorizing. 2344 assert(State.VF.isVector() && "VF should be greater than one"); 2345 // Get the value type and ensure it and the step have the same integer type. 2346 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2347 assert(ScalarIVTy == Step->getType() && 2348 "Val and Step should have the same type"); 2349 2350 // We build scalar steps for both integer and floating-point induction 2351 // variables. Here, we determine the kind of arithmetic we will perform. 2352 Instruction::BinaryOps AddOp; 2353 Instruction::BinaryOps MulOp; 2354 if (ScalarIVTy->isIntegerTy()) { 2355 AddOp = Instruction::Add; 2356 MulOp = Instruction::Mul; 2357 } else { 2358 AddOp = ID.getInductionOpcode(); 2359 MulOp = Instruction::FMul; 2360 } 2361 2362 // Determine the number of scalars we need to generate for each unroll 2363 // iteration. 2364 bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); 2365 unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); 2366 // Compute the scalar steps and save the results in State. 2367 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2368 ScalarIVTy->getScalarSizeInBits()); 2369 Type *VecIVTy = nullptr; 2370 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2371 if (!FirstLaneOnly && State.VF.isScalable()) { 2372 VecIVTy = VectorType::get(ScalarIVTy, State.VF); 2373 UnitStepVec = 2374 Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); 2375 SplatStep = Builder.CreateVectorSplat(State.VF, Step); 2376 SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); 2377 } 2378 2379 for (unsigned Part = 0; Part < State.UF; ++Part) { 2380 Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); 2381 2382 if (!FirstLaneOnly && State.VF.isScalable()) { 2383 auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); 2384 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2385 if (ScalarIVTy->isFloatingPointTy()) 2386 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2387 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2388 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2389 State.set(Def, Add, Part); 2390 // It's useful to record the lane values too for the known minimum number 2391 // of elements so we do those below. This improves the code quality when 2392 // trying to extract the first element, for example. 2393 } 2394 2395 if (ScalarIVTy->isFloatingPointTy()) 2396 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2397 2398 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2399 Value *StartIdx = Builder.CreateBinOp( 2400 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2401 // The step returned by `createStepForVF` is a runtime-evaluated value 2402 // when VF is scalable. Otherwise, it should be folded into a Constant. 2403 assert((State.VF.isScalable() || isa<Constant>(StartIdx)) && 2404 "Expected StartIdx to be folded to a constant when VF is not " 2405 "scalable"); 2406 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2407 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2408 State.set(Def, Add, VPIteration(Part, Lane)); 2409 } 2410 } 2411 } 2412 2413 // Generate code for the induction step. Note that induction steps are 2414 // required to be loop-invariant 2415 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, 2416 Instruction *InsertBefore, 2417 Loop *OrigLoop = nullptr) { 2418 const DataLayout &DL = SE.getDataLayout(); 2419 assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && 2420 "Induction step should be loop invariant"); 2421 if (auto *E = dyn_cast<SCEVUnknown>(Step)) 2422 return E->getValue(); 2423 2424 SCEVExpander Exp(SE, DL, "induction"); 2425 return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); 2426 } 2427 2428 /// Compute the transformed value of Index at offset StartValue using step 2429 /// StepValue. 2430 /// For integer induction, returns StartValue + Index * StepValue. 2431 /// For pointer induction, returns StartValue[Index * StepValue]. 2432 /// FIXME: The newly created binary instructions should contain nsw/nuw 2433 /// flags, which can be found from the original scalar operations. 2434 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, 2435 Value *StartValue, Value *Step, 2436 const InductionDescriptor &ID) { 2437 assert(Index->getType()->getScalarType() == Step->getType() && 2438 "Index scalar type does not match StepValue type"); 2439 2440 // Note: the IR at this point is broken. We cannot use SE to create any new 2441 // SCEV and then expand it, hoping that SCEV's simplification will give us 2442 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 2443 // lead to various SCEV crashes. So all we can do is to use builder and rely 2444 // on InstCombine for future simplifications. Here we handle some trivial 2445 // cases only. 2446 auto CreateAdd = [&B](Value *X, Value *Y) { 2447 assert(X->getType() == Y->getType() && "Types don't match!"); 2448 if (auto *CX = dyn_cast<ConstantInt>(X)) 2449 if (CX->isZero()) 2450 return Y; 2451 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2452 if (CY->isZero()) 2453 return X; 2454 return B.CreateAdd(X, Y); 2455 }; 2456 2457 // We allow X to be a vector type, in which case Y will potentially be 2458 // splatted into a vector with the same element count. 2459 auto CreateMul = [&B](Value *X, Value *Y) { 2460 assert(X->getType()->getScalarType() == Y->getType() && 2461 "Types don't match!"); 2462 if (auto *CX = dyn_cast<ConstantInt>(X)) 2463 if (CX->isOne()) 2464 return Y; 2465 if (auto *CY = dyn_cast<ConstantInt>(Y)) 2466 if (CY->isOne()) 2467 return X; 2468 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 2469 if (XVTy && !isa<VectorType>(Y->getType())) 2470 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 2471 return B.CreateMul(X, Y); 2472 }; 2473 2474 switch (ID.getKind()) { 2475 case InductionDescriptor::IK_IntInduction: { 2476 assert(!isa<VectorType>(Index->getType()) && 2477 "Vector indices not supported for integer inductions yet"); 2478 assert(Index->getType() == StartValue->getType() && 2479 "Index type does not match StartValue type"); 2480 if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) 2481 return B.CreateSub(StartValue, Index); 2482 auto *Offset = CreateMul(Index, Step); 2483 return CreateAdd(StartValue, Offset); 2484 } 2485 case InductionDescriptor::IK_PtrInduction: { 2486 assert(isa<Constant>(Step) && 2487 "Expected constant step for pointer induction"); 2488 return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); 2489 } 2490 case InductionDescriptor::IK_FpInduction: { 2491 assert(!isa<VectorType>(Index->getType()) && 2492 "Vector indices not supported for FP inductions yet"); 2493 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 2494 auto InductionBinOp = ID.getInductionBinOp(); 2495 assert(InductionBinOp && 2496 (InductionBinOp->getOpcode() == Instruction::FAdd || 2497 InductionBinOp->getOpcode() == Instruction::FSub) && 2498 "Original bin op should be defined for FP induction"); 2499 2500 Value *MulExp = B.CreateFMul(Step, Index); 2501 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 2502 "induction"); 2503 } 2504 case InductionDescriptor::IK_NoInduction: 2505 return nullptr; 2506 } 2507 llvm_unreachable("invalid enum"); 2508 } 2509 2510 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2511 const VPIteration &Instance, 2512 VPTransformState &State) { 2513 Value *ScalarInst = State.get(Def, Instance); 2514 Value *VectorValue = State.get(Def, Instance.Part); 2515 VectorValue = Builder.CreateInsertElement( 2516 VectorValue, ScalarInst, 2517 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2518 State.set(Def, VectorValue, Instance.Part); 2519 } 2520 2521 // Return whether we allow using masked interleave-groups (for dealing with 2522 // strided loads/stores that reside in predicated blocks, or for dealing 2523 // with gaps). 2524 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2525 // If an override option has been passed in for interleaved accesses, use it. 2526 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2527 return EnableMaskedInterleavedMemAccesses; 2528 2529 return TTI.enableMaskedInterleavedAccessVectorization(); 2530 } 2531 2532 // Try to vectorize the interleave group that \p Instr belongs to. 2533 // 2534 // E.g. Translate following interleaved load group (factor = 3): 2535 // for (i = 0; i < N; i+=3) { 2536 // R = Pic[i]; // Member of index 0 2537 // G = Pic[i+1]; // Member of index 1 2538 // B = Pic[i+2]; // Member of index 2 2539 // ... // do something to R, G, B 2540 // } 2541 // To: 2542 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2543 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2544 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2545 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2546 // 2547 // Or translate following interleaved store group (factor = 3): 2548 // for (i = 0; i < N; i+=3) { 2549 // ... do something to R, G, B 2550 // Pic[i] = R; // Member of index 0 2551 // Pic[i+1] = G; // Member of index 1 2552 // Pic[i+2] = B; // Member of index 2 2553 // } 2554 // To: 2555 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2556 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2557 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2558 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2559 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2560 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2561 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2562 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2563 VPValue *BlockInMask) { 2564 Instruction *Instr = Group->getInsertPos(); 2565 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2566 2567 // Prepare for the vector type of the interleaved load/store. 2568 Type *ScalarTy = getLoadStoreType(Instr); 2569 unsigned InterleaveFactor = Group->getFactor(); 2570 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2571 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2572 2573 // Prepare for the new pointers. 2574 SmallVector<Value *, 2> AddrParts; 2575 unsigned Index = Group->getIndex(Instr); 2576 2577 // TODO: extend the masked interleaved-group support to reversed access. 2578 assert((!BlockInMask || !Group->isReverse()) && 2579 "Reversed masked interleave-group not supported."); 2580 2581 // If the group is reverse, adjust the index to refer to the last vector lane 2582 // instead of the first. We adjust the index from the first vector lane, 2583 // rather than directly getting the pointer for lane VF - 1, because the 2584 // pointer operand of the interleaved access is supposed to be uniform. For 2585 // uniform instructions, we're only required to generate a value for the 2586 // first vector lane in each unroll iteration. 2587 if (Group->isReverse()) 2588 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2589 2590 for (unsigned Part = 0; Part < UF; Part++) { 2591 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2592 setDebugLocFromInst(AddrPart); 2593 2594 // Notice current instruction could be any index. Need to adjust the address 2595 // to the member of index 0. 2596 // 2597 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2598 // b = A[i]; // Member of index 0 2599 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2600 // 2601 // E.g. A[i+1] = a; // Member of index 1 2602 // A[i] = b; // Member of index 0 2603 // A[i+2] = c; // Member of index 2 (Current instruction) 2604 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2605 2606 bool InBounds = false; 2607 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2608 InBounds = gep->isInBounds(); 2609 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2610 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2611 2612 // Cast to the vector pointer type. 2613 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2614 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2615 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2616 } 2617 2618 setDebugLocFromInst(Instr); 2619 Value *PoisonVec = PoisonValue::get(VecTy); 2620 2621 Value *MaskForGaps = nullptr; 2622 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2623 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2624 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2625 } 2626 2627 // Vectorize the interleaved load group. 2628 if (isa<LoadInst>(Instr)) { 2629 // For each unroll part, create a wide load for the group. 2630 SmallVector<Value *, 2> NewLoads; 2631 for (unsigned Part = 0; Part < UF; Part++) { 2632 Instruction *NewLoad; 2633 if (BlockInMask || MaskForGaps) { 2634 assert(useMaskedInterleavedAccesses(*TTI) && 2635 "masked interleaved groups are not allowed."); 2636 Value *GroupMask = MaskForGaps; 2637 if (BlockInMask) { 2638 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2639 Value *ShuffledMask = Builder.CreateShuffleVector( 2640 BlockInMaskPart, 2641 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2642 "interleaved.mask"); 2643 GroupMask = MaskForGaps 2644 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2645 MaskForGaps) 2646 : ShuffledMask; 2647 } 2648 NewLoad = 2649 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2650 GroupMask, PoisonVec, "wide.masked.vec"); 2651 } 2652 else 2653 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2654 Group->getAlign(), "wide.vec"); 2655 Group->addMetadata(NewLoad); 2656 NewLoads.push_back(NewLoad); 2657 } 2658 2659 // For each member in the group, shuffle out the appropriate data from the 2660 // wide loads. 2661 unsigned J = 0; 2662 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2663 Instruction *Member = Group->getMember(I); 2664 2665 // Skip the gaps in the group. 2666 if (!Member) 2667 continue; 2668 2669 auto StrideMask = 2670 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2671 for (unsigned Part = 0; Part < UF; Part++) { 2672 Value *StridedVec = Builder.CreateShuffleVector( 2673 NewLoads[Part], StrideMask, "strided.vec"); 2674 2675 // If this member has different type, cast the result type. 2676 if (Member->getType() != ScalarTy) { 2677 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2678 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2679 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2680 } 2681 2682 if (Group->isReverse()) 2683 StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); 2684 2685 State.set(VPDefs[J], StridedVec, Part); 2686 } 2687 ++J; 2688 } 2689 return; 2690 } 2691 2692 // The sub vector type for current instruction. 2693 auto *SubVT = VectorType::get(ScalarTy, VF); 2694 2695 // Vectorize the interleaved store group. 2696 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2697 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2698 "masked interleaved groups are not allowed."); 2699 assert((!MaskForGaps || !VF.isScalable()) && 2700 "masking gaps for scalable vectors is not yet supported."); 2701 for (unsigned Part = 0; Part < UF; Part++) { 2702 // Collect the stored vector from each member. 2703 SmallVector<Value *, 4> StoredVecs; 2704 for (unsigned i = 0; i < InterleaveFactor; i++) { 2705 assert((Group->getMember(i) || MaskForGaps) && 2706 "Fail to get a member from an interleaved store group"); 2707 Instruction *Member = Group->getMember(i); 2708 2709 // Skip the gaps in the group. 2710 if (!Member) { 2711 Value *Undef = PoisonValue::get(SubVT); 2712 StoredVecs.push_back(Undef); 2713 continue; 2714 } 2715 2716 Value *StoredVec = State.get(StoredValues[i], Part); 2717 2718 if (Group->isReverse()) 2719 StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); 2720 2721 // If this member has different type, cast it to a unified type. 2722 2723 if (StoredVec->getType() != SubVT) 2724 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2725 2726 StoredVecs.push_back(StoredVec); 2727 } 2728 2729 // Concatenate all vectors into a wide vector. 2730 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2731 2732 // Interleave the elements in the wide vector. 2733 Value *IVec = Builder.CreateShuffleVector( 2734 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2735 "interleaved.vec"); 2736 2737 Instruction *NewStoreInstr; 2738 if (BlockInMask || MaskForGaps) { 2739 Value *GroupMask = MaskForGaps; 2740 if (BlockInMask) { 2741 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2742 Value *ShuffledMask = Builder.CreateShuffleVector( 2743 BlockInMaskPart, 2744 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2745 "interleaved.mask"); 2746 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2747 ShuffledMask, MaskForGaps) 2748 : ShuffledMask; 2749 } 2750 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2751 Group->getAlign(), GroupMask); 2752 } else 2753 NewStoreInstr = 2754 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2755 2756 Group->addMetadata(NewStoreInstr); 2757 } 2758 } 2759 2760 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 2761 VPReplicateRecipe *RepRecipe, 2762 const VPIteration &Instance, 2763 bool IfPredicateInstr, 2764 VPTransformState &State) { 2765 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2766 2767 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2768 // the first lane and part. 2769 if (isa<NoAliasScopeDeclInst>(Instr)) 2770 if (!Instance.isFirstIteration()) 2771 return; 2772 2773 // Does this instruction return a value ? 2774 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2775 2776 Instruction *Cloned = Instr->clone(); 2777 if (!IsVoidRetTy) 2778 Cloned->setName(Instr->getName() + ".cloned"); 2779 2780 // If the scalarized instruction contributes to the address computation of a 2781 // widen masked load/store which was in a basic block that needed predication 2782 // and is not predicated after vectorization, we can't propagate 2783 // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized 2784 // instruction could feed a poison value to the base address of the widen 2785 // load/store. 2786 if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) 2787 Cloned->dropPoisonGeneratingFlags(); 2788 2789 if (Instr->getDebugLoc()) 2790 setDebugLocFromInst(Instr); 2791 2792 // Replace the operands of the cloned instructions with their scalar 2793 // equivalents in the new loop. 2794 for (auto &I : enumerate(RepRecipe->operands())) { 2795 auto InputInstance = Instance; 2796 VPValue *Operand = I.value(); 2797 VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand); 2798 if (OperandR && OperandR->isUniform()) 2799 InputInstance.Lane = VPLane::getFirstLane(); 2800 Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); 2801 } 2802 addNewMetadata(Cloned, Instr); 2803 2804 // Place the cloned scalar in the new loop. 2805 State.Builder.Insert(Cloned); 2806 2807 State.set(RepRecipe, Cloned, Instance); 2808 2809 // If we just cloned a new assumption, add it the assumption cache. 2810 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 2811 AC->registerAssumption(II); 2812 2813 // End if-block. 2814 if (IfPredicateInstr) 2815 PredicatedInstructions.push_back(Cloned); 2816 } 2817 2818 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { 2819 if (TripCount) 2820 return TripCount; 2821 2822 assert(InsertBlock); 2823 IRBuilder<> Builder(InsertBlock->getTerminator()); 2824 // Find the loop boundaries. 2825 ScalarEvolution *SE = PSE.getSE(); 2826 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 2827 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 2828 "Invalid loop count"); 2829 2830 Type *IdxTy = Legal->getWidestInductionType(); 2831 assert(IdxTy && "No type for induction"); 2832 2833 // The exit count might have the type of i64 while the phi is i32. This can 2834 // happen if we have an induction variable that is sign extended before the 2835 // compare. The only way that we get a backedge taken count is that the 2836 // induction variable was signed and as such will not overflow. In such a case 2837 // truncation is legal. 2838 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 2839 IdxTy->getPrimitiveSizeInBits()) 2840 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 2841 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 2842 2843 // Get the total trip count from the count by adding 1. 2844 const SCEV *ExitCount = SE->getAddExpr( 2845 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 2846 2847 const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); 2848 2849 // Expand the trip count and place the new instructions in the preheader. 2850 // Notice that the pre-header does not change, only the loop body. 2851 SCEVExpander Exp(*SE, DL, "induction"); 2852 2853 // Count holds the overall loop count (N). 2854 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 2855 InsertBlock->getTerminator()); 2856 2857 if (TripCount->getType()->isPointerTy()) 2858 TripCount = 2859 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 2860 InsertBlock->getTerminator()); 2861 2862 return TripCount; 2863 } 2864 2865 Value * 2866 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { 2867 if (VectorTripCount) 2868 return VectorTripCount; 2869 2870 Value *TC = getOrCreateTripCount(InsertBlock); 2871 IRBuilder<> Builder(InsertBlock->getTerminator()); 2872 2873 Type *Ty = TC->getType(); 2874 // This is where we can make the step a runtime constant. 2875 Value *Step = createStepForVF(Builder, Ty, VF, UF); 2876 2877 // If the tail is to be folded by masking, round the number of iterations N 2878 // up to a multiple of Step instead of rounding down. This is done by first 2879 // adding Step-1 and then rounding down. Note that it's ok if this addition 2880 // overflows: the vector induction variable will eventually wrap to zero given 2881 // that it starts at zero and its Step is a power of two; the loop will then 2882 // exit, with the last early-exit vector comparison also producing all-true. 2883 // For scalable vectors the VF is not guaranteed to be a power of 2, but this 2884 // is accounted for in emitIterationCountCheck that adds an overflow check. 2885 if (Cost->foldTailByMasking()) { 2886 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 2887 "VF*UF must be a power of 2 when folding tail by masking"); 2888 Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); 2889 TC = Builder.CreateAdd( 2890 TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); 2891 } 2892 2893 // Now we need to generate the expression for the part of the loop that the 2894 // vectorized body will execute. This is equal to N - (N % Step) if scalar 2895 // iterations are not required for correctness, or N - Step, otherwise. Step 2896 // is equal to the vectorization factor (number of SIMD elements) times the 2897 // unroll factor (number of SIMD instructions). 2898 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 2899 2900 // There are cases where we *must* run at least one iteration in the remainder 2901 // loop. See the cost model for when this can happen. If the step evenly 2902 // divides the trip count, we set the remainder to be equal to the step. If 2903 // the step does not evenly divide the trip count, no adjustment is necessary 2904 // since there will already be scalar iterations. Note that the minimum 2905 // iterations check ensures that N >= Step. 2906 if (Cost->requiresScalarEpilogue(VF)) { 2907 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 2908 R = Builder.CreateSelect(IsZero, Step, R); 2909 } 2910 2911 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 2912 2913 return VectorTripCount; 2914 } 2915 2916 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 2917 const DataLayout &DL) { 2918 // Verify that V is a vector type with same number of elements as DstVTy. 2919 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 2920 unsigned VF = DstFVTy->getNumElements(); 2921 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 2922 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 2923 Type *SrcElemTy = SrcVecTy->getElementType(); 2924 Type *DstElemTy = DstFVTy->getElementType(); 2925 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 2926 "Vector elements must have same size"); 2927 2928 // Do a direct cast if element types are castable. 2929 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 2930 return Builder.CreateBitOrPointerCast(V, DstFVTy); 2931 } 2932 // V cannot be directly casted to desired vector type. 2933 // May happen when V is a floating point vector but DstVTy is a vector of 2934 // pointers or vice-versa. Handle this using a two-step bitcast using an 2935 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 2936 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 2937 "Only one type should be a pointer type"); 2938 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 2939 "Only one type should be a floating point type"); 2940 Type *IntTy = 2941 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 2942 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 2943 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 2944 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 2945 } 2946 2947 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) { 2948 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 2949 // Reuse existing vector loop preheader for TC checks. 2950 // Note that new preheader block is generated for vector loop. 2951 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 2952 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 2953 2954 // Generate code to check if the loop's trip count is less than VF * UF, or 2955 // equal to it in case a scalar epilogue is required; this implies that the 2956 // vector trip count is zero. This check also covers the case where adding one 2957 // to the backedge-taken count overflowed leading to an incorrect trip count 2958 // of zero. In this case we will also jump to the scalar loop. 2959 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 2960 : ICmpInst::ICMP_ULT; 2961 2962 // If tail is to be folded, vector loop takes care of all iterations. 2963 Type *CountTy = Count->getType(); 2964 Value *CheckMinIters = Builder.getFalse(); 2965 Value *Step = createStepForVF(Builder, CountTy, VF, UF); 2966 if (!Cost->foldTailByMasking()) 2967 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 2968 else if (VF.isScalable()) { 2969 // vscale is not necessarily a power-of-2, which means we cannot guarantee 2970 // an overflow to zero when updating induction variables and so an 2971 // additional overflow check is required before entering the vector loop. 2972 2973 // Get the maximum unsigned value for the type. 2974 Value *MaxUIntTripCount = 2975 ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask()); 2976 Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count); 2977 2978 // Don't execute the vector loop if (UMax - n) < (VF * UF). 2979 CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, Step); 2980 } 2981 // Create new preheader for vector loop. 2982 LoopVectorPreHeader = 2983 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 2984 "vector.ph"); 2985 2986 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 2987 DT->getNode(Bypass)->getIDom()) && 2988 "TC check is expected to dominate Bypass"); 2989 2990 // Update dominator for Bypass & LoopExit (if needed). 2991 DT->changeImmediateDominator(Bypass, TCCheckBlock); 2992 if (!Cost->requiresScalarEpilogue(VF)) 2993 // If there is an epilogue which must run, there's no edge from the 2994 // middle block to exit blocks and thus no need to update the immediate 2995 // dominator of the exit blocks. 2996 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 2997 2998 ReplaceInstWithInst( 2999 TCCheckBlock->getTerminator(), 3000 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3001 LoopBypassBlocks.push_back(TCCheckBlock); 3002 } 3003 3004 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { 3005 3006 BasicBlock *const SCEVCheckBlock = 3007 RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); 3008 if (!SCEVCheckBlock) 3009 return nullptr; 3010 3011 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3012 (OptForSizeBasedOnProfile && 3013 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3014 "Cannot SCEV check stride or overflow when optimizing for size"); 3015 3016 3017 // Update dominator only if this is first RT check. 3018 if (LoopBypassBlocks.empty()) { 3019 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3020 if (!Cost->requiresScalarEpilogue(VF)) 3021 // If there is an epilogue which must run, there's no edge from the 3022 // middle block to exit blocks and thus no need to update the immediate 3023 // dominator of the exit blocks. 3024 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3025 } 3026 3027 LoopBypassBlocks.push_back(SCEVCheckBlock); 3028 AddedSafetyChecks = true; 3029 return SCEVCheckBlock; 3030 } 3031 3032 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { 3033 // VPlan-native path does not do any analysis for runtime checks currently. 3034 if (EnableVPlanNativePath) 3035 return nullptr; 3036 3037 BasicBlock *const MemCheckBlock = 3038 RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); 3039 3040 // Check if we generated code that checks in runtime if arrays overlap. We put 3041 // the checks into a separate block to make the more common case of few 3042 // elements faster. 3043 if (!MemCheckBlock) 3044 return nullptr; 3045 3046 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3047 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3048 "Cannot emit memory checks when optimizing for size, unless forced " 3049 "to vectorize."); 3050 ORE->emit([&]() { 3051 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3052 OrigLoop->getStartLoc(), 3053 OrigLoop->getHeader()) 3054 << "Code-size may be reduced by not forcing " 3055 "vectorization, or by source-code modifications " 3056 "eliminating the need for runtime checks " 3057 "(e.g., adding 'restrict')."; 3058 }); 3059 } 3060 3061 LoopBypassBlocks.push_back(MemCheckBlock); 3062 3063 AddedSafetyChecks = true; 3064 3065 // Only use noalias metadata when using memory checks guaranteeing no overlap 3066 // across all iterations. 3067 if (!Legal->getLAI()->getRuntimePointerChecking()->getDiffChecks()) { 3068 // We currently don't use LoopVersioning for the actual loop cloning but we 3069 // still use it to add the noalias metadata. 3070 LVer = std::make_unique<LoopVersioning>( 3071 *Legal->getLAI(), 3072 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3073 DT, PSE.getSE()); 3074 LVer->prepareNoAliasMetadata(); 3075 } 3076 return MemCheckBlock; 3077 } 3078 3079 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3080 LoopScalarBody = OrigLoop->getHeader(); 3081 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3082 assert(LoopVectorPreHeader && "Invalid loop structure"); 3083 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3084 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3085 "multiple exit loop without required epilogue?"); 3086 3087 LoopMiddleBlock = 3088 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3089 LI, nullptr, Twine(Prefix) + "middle.block"); 3090 LoopScalarPreHeader = 3091 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3092 nullptr, Twine(Prefix) + "scalar.ph"); 3093 3094 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3095 3096 // Set up the middle block terminator. Two cases: 3097 // 1) If we know that we must execute the scalar epilogue, emit an 3098 // unconditional branch. 3099 // 2) Otherwise, we must have a single unique exit block (due to how we 3100 // implement the multiple exit case). In this case, set up a conditonal 3101 // branch from the middle block to the loop scalar preheader, and the 3102 // exit block. completeLoopSkeleton will update the condition to use an 3103 // iteration check, if required to decide whether to execute the remainder. 3104 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3105 BranchInst::Create(LoopScalarPreHeader) : 3106 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3107 Builder.getTrue()); 3108 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3109 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3110 3111 // Update dominator for loop exit. During skeleton creation, only the vector 3112 // pre-header and the middle block are created. The vector loop is entirely 3113 // created during VPlan exection. 3114 if (!Cost->requiresScalarEpilogue(VF)) 3115 // If there is an epilogue which must run, there's no edge from the 3116 // middle block to exit blocks and thus no need to update the immediate 3117 // dominator of the exit blocks. 3118 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3119 } 3120 3121 void InnerLoopVectorizer::createInductionResumeValues( 3122 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3123 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3124 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3125 "Inconsistent information about additional bypass."); 3126 3127 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3128 assert(VectorTripCount && "Expected valid arguments"); 3129 // We are going to resume the execution of the scalar loop. 3130 // Go over all of the induction variables that we found and fix the 3131 // PHIs that are left in the scalar version of the loop. 3132 // The starting values of PHI nodes depend on the counter of the last 3133 // iteration in the vectorized loop. 3134 // If we come from a bypass edge then we need to start from the original 3135 // start value. 3136 Instruction *OldInduction = Legal->getPrimaryInduction(); 3137 for (auto &InductionEntry : Legal->getInductionVars()) { 3138 PHINode *OrigPhi = InductionEntry.first; 3139 InductionDescriptor II = InductionEntry.second; 3140 3141 // Create phi nodes to merge from the backedge-taken check block. 3142 PHINode *BCResumeVal = 3143 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3144 LoopScalarPreHeader->getTerminator()); 3145 // Copy original phi DL over to the new one. 3146 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3147 Value *&EndValue = IVEndValues[OrigPhi]; 3148 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3149 if (OrigPhi == OldInduction) { 3150 // We know what the end value is. 3151 EndValue = VectorTripCount; 3152 } else { 3153 IRBuilder<> B(LoopVectorPreHeader->getTerminator()); 3154 3155 // Fast-math-flags propagate from the original induction instruction. 3156 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3157 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3158 3159 Type *StepType = II.getStep()->getType(); 3160 Instruction::CastOps CastOp = 3161 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3162 Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc"); 3163 Value *Step = 3164 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3165 EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3166 EndValue->setName("ind.end"); 3167 3168 // Compute the end value for the additional bypass (if applicable). 3169 if (AdditionalBypass.first) { 3170 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3171 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3172 StepType, true); 3173 Value *Step = 3174 CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); 3175 VTC = 3176 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc"); 3177 EndValueFromAdditionalBypass = 3178 emitTransformedIndex(B, VTC, II.getStartValue(), Step, II); 3179 EndValueFromAdditionalBypass->setName("ind.end"); 3180 } 3181 } 3182 // The new PHI merges the original incoming value, in case of a bypass, 3183 // or the value at the end of the vectorized loop. 3184 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3185 3186 // Fix the scalar body counter (PHI node). 3187 // The old induction's phi node in the scalar body needs the truncated 3188 // value. 3189 for (BasicBlock *BB : LoopBypassBlocks) 3190 BCResumeVal->addIncoming(II.getStartValue(), BB); 3191 3192 if (AdditionalBypass.first) 3193 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3194 EndValueFromAdditionalBypass); 3195 3196 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3197 } 3198 } 3199 3200 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) { 3201 // The trip counts should be cached by now. 3202 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 3203 Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 3204 3205 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3206 3207 // Add a check in the middle block to see if we have completed 3208 // all of the iterations in the first vector loop. Three cases: 3209 // 1) If we require a scalar epilogue, there is no conditional branch as 3210 // we unconditionally branch to the scalar preheader. Do nothing. 3211 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3212 // Thus if tail is to be folded, we know we don't need to run the 3213 // remainder and we can use the previous value for the condition (true). 3214 // 3) Otherwise, construct a runtime check. 3215 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3216 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3217 Count, VectorTripCount, "cmp.n", 3218 LoopMiddleBlock->getTerminator()); 3219 3220 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3221 // of the corresponding compare because they may have ended up with 3222 // different line numbers and we want to avoid awkward line stepping while 3223 // debugging. Eg. if the compare has got a line number inside the loop. 3224 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3225 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3226 } 3227 3228 #ifdef EXPENSIVE_CHECKS 3229 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3230 #endif 3231 3232 return LoopVectorPreHeader; 3233 } 3234 3235 std::pair<BasicBlock *, Value *> 3236 InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3237 /* 3238 In this function we generate a new loop. The new loop will contain 3239 the vectorized instructions while the old loop will continue to run the 3240 scalar remainder. 3241 3242 [ ] <-- loop iteration number check. 3243 / | 3244 / v 3245 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3246 | / | 3247 | / v 3248 || [ ] <-- vector pre header. 3249 |/ | 3250 | v 3251 | [ ] \ 3252 | [ ]_| <-- vector loop (created during VPlan execution). 3253 | | 3254 | v 3255 \ -[ ] <--- middle-block. 3256 \/ | 3257 /\ v 3258 | ->[ ] <--- new preheader. 3259 | | 3260 (opt) v <-- edge from middle to exit iff epilogue is not required. 3261 | [ ] \ 3262 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3263 \ | 3264 \ v 3265 >[ ] <-- exit block(s). 3266 ... 3267 */ 3268 3269 // Get the metadata of the original loop before it gets modified. 3270 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3271 3272 // Workaround! Compute the trip count of the original loop and cache it 3273 // before we start modifying the CFG. This code has a systemic problem 3274 // wherein it tries to run analysis over partially constructed IR; this is 3275 // wrong, and not simply for SCEV. The trip count of the original loop 3276 // simply happens to be prone to hitting this in practice. In theory, we 3277 // can hit the same issue for any SCEV, or ValueTracking query done during 3278 // mutation. See PR49900. 3279 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 3280 3281 // Create an empty vector loop, and prepare basic blocks for the runtime 3282 // checks. 3283 createVectorLoopSkeleton(""); 3284 3285 // Now, compare the new count to zero. If it is zero skip the vector loop and 3286 // jump to the scalar loop. This check also covers the case where the 3287 // backedge-taken count is uint##_max: adding one to it will overflow leading 3288 // to an incorrect trip count of zero. In this (rare) case we will also jump 3289 // to the scalar loop. 3290 emitIterationCountCheck(LoopScalarPreHeader); 3291 3292 // Generate the code to check any assumptions that we've made for SCEV 3293 // expressions. 3294 emitSCEVChecks(LoopScalarPreHeader); 3295 3296 // Generate the code that checks in runtime if arrays overlap. We put the 3297 // checks into a separate block to make the more common case of few elements 3298 // faster. 3299 emitMemRuntimeChecks(LoopScalarPreHeader); 3300 3301 // Emit phis for the new starting index of the scalar loop. 3302 createInductionResumeValues(); 3303 3304 return {completeLoopSkeleton(OrigLoopID), nullptr}; 3305 } 3306 3307 // Fix up external users of the induction variable. At this point, we are 3308 // in LCSSA form, with all external PHIs that use the IV having one input value, 3309 // coming from the remainder loop. We need those PHIs to also have a correct 3310 // value for the IV when arriving directly from the middle block. 3311 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3312 const InductionDescriptor &II, 3313 Value *VectorTripCount, Value *EndValue, 3314 BasicBlock *MiddleBlock, 3315 BasicBlock *VectorHeader, VPlan &Plan) { 3316 // There are two kinds of external IV usages - those that use the value 3317 // computed in the last iteration (the PHI) and those that use the penultimate 3318 // value (the value that feeds into the phi from the loop latch). 3319 // We allow both, but they, obviously, have different values. 3320 3321 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3322 3323 DenseMap<Value *, Value *> MissingVals; 3324 3325 // An external user of the last iteration's value should see the value that 3326 // the remainder loop uses to initialize its own IV. 3327 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3328 for (User *U : PostInc->users()) { 3329 Instruction *UI = cast<Instruction>(U); 3330 if (!OrigLoop->contains(UI)) { 3331 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3332 MissingVals[UI] = EndValue; 3333 } 3334 } 3335 3336 // An external user of the penultimate value need to see EndValue - Step. 3337 // The simplest way to get this is to recompute it from the constituent SCEVs, 3338 // that is Start + (Step * (CRD - 1)). 3339 for (User *U : OrigPhi->users()) { 3340 auto *UI = cast<Instruction>(U); 3341 if (!OrigLoop->contains(UI)) { 3342 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3343 3344 IRBuilder<> B(MiddleBlock->getTerminator()); 3345 3346 // Fast-math-flags propagate from the original induction instruction. 3347 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3348 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3349 3350 Value *CountMinusOne = B.CreateSub( 3351 VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1)); 3352 Value *CMO = 3353 !II.getStep()->getType()->isIntegerTy() 3354 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3355 II.getStep()->getType()) 3356 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3357 CMO->setName("cast.cmo"); 3358 3359 Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), 3360 VectorHeader->getTerminator()); 3361 Value *Escape = 3362 emitTransformedIndex(B, CMO, II.getStartValue(), Step, II); 3363 Escape->setName("ind.escape"); 3364 MissingVals[UI] = Escape; 3365 } 3366 } 3367 3368 for (auto &I : MissingVals) { 3369 PHINode *PHI = cast<PHINode>(I.first); 3370 // One corner case we have to handle is two IVs "chasing" each-other, 3371 // that is %IV2 = phi [...], [ %IV1, %latch ] 3372 // In this case, if IV1 has an external use, we need to avoid adding both 3373 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3374 // don't already have an incoming value for the middle block. 3375 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) { 3376 PHI->addIncoming(I.second, MiddleBlock); 3377 Plan.removeLiveOut(PHI); 3378 } 3379 } 3380 } 3381 3382 namespace { 3383 3384 struct CSEDenseMapInfo { 3385 static bool canHandle(const Instruction *I) { 3386 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3387 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3388 } 3389 3390 static inline Instruction *getEmptyKey() { 3391 return DenseMapInfo<Instruction *>::getEmptyKey(); 3392 } 3393 3394 static inline Instruction *getTombstoneKey() { 3395 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3396 } 3397 3398 static unsigned getHashValue(const Instruction *I) { 3399 assert(canHandle(I) && "Unknown instruction!"); 3400 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3401 I->value_op_end())); 3402 } 3403 3404 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3405 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3406 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3407 return LHS == RHS; 3408 return LHS->isIdenticalTo(RHS); 3409 } 3410 }; 3411 3412 } // end anonymous namespace 3413 3414 ///Perform cse of induction variable instructions. 3415 static void cse(BasicBlock *BB) { 3416 // Perform simple cse. 3417 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3418 for (Instruction &In : llvm::make_early_inc_range(*BB)) { 3419 if (!CSEDenseMapInfo::canHandle(&In)) 3420 continue; 3421 3422 // Check if we can replace this instruction with any of the 3423 // visited instructions. 3424 if (Instruction *V = CSEMap.lookup(&In)) { 3425 In.replaceAllUsesWith(V); 3426 In.eraseFromParent(); 3427 continue; 3428 } 3429 3430 CSEMap[&In] = &In; 3431 } 3432 } 3433 3434 InstructionCost 3435 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3436 bool &NeedToScalarize) const { 3437 Function *F = CI->getCalledFunction(); 3438 Type *ScalarRetTy = CI->getType(); 3439 SmallVector<Type *, 4> Tys, ScalarTys; 3440 for (auto &ArgOp : CI->args()) 3441 ScalarTys.push_back(ArgOp->getType()); 3442 3443 // Estimate cost of scalarized vector call. The source operands are assumed 3444 // to be vectors, so we need to extract individual elements from there, 3445 // execute VF scalar calls, and then gather the result into the vector return 3446 // value. 3447 InstructionCost ScalarCallCost = 3448 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3449 if (VF.isScalar()) 3450 return ScalarCallCost; 3451 3452 // Compute corresponding vector type for return value and arguments. 3453 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3454 for (Type *ScalarTy : ScalarTys) 3455 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3456 3457 // Compute costs of unpacking argument values for the scalar calls and 3458 // packing the return values to a vector. 3459 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3460 3461 InstructionCost Cost = 3462 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3463 3464 // If we can't emit a vector call for this function, then the currently found 3465 // cost is the cost we need to return. 3466 NeedToScalarize = true; 3467 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3468 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3469 3470 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3471 return Cost; 3472 3473 // If the corresponding vector cost is cheaper, return its cost. 3474 InstructionCost VectorCallCost = 3475 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3476 if (VectorCallCost < Cost) { 3477 NeedToScalarize = false; 3478 Cost = VectorCallCost; 3479 } 3480 return Cost; 3481 } 3482 3483 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3484 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3485 return Elt; 3486 return VectorType::get(Elt, VF); 3487 } 3488 3489 InstructionCost 3490 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3491 ElementCount VF) const { 3492 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3493 assert(ID && "Expected intrinsic call!"); 3494 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3495 FastMathFlags FMF; 3496 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3497 FMF = FPMO->getFastMathFlags(); 3498 3499 SmallVector<const Value *> Arguments(CI->args()); 3500 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3501 SmallVector<Type *> ParamTys; 3502 std::transform(FTy->param_begin(), FTy->param_end(), 3503 std::back_inserter(ParamTys), 3504 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3505 3506 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3507 dyn_cast<IntrinsicInst>(CI)); 3508 return TTI.getIntrinsicInstrCost(CostAttrs, 3509 TargetTransformInfo::TCK_RecipThroughput); 3510 } 3511 3512 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3513 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3514 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3515 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3516 } 3517 3518 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3519 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3520 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3521 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3522 } 3523 3524 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3525 // For every instruction `I` in MinBWs, truncate the operands, create a 3526 // truncated version of `I` and reextend its result. InstCombine runs 3527 // later and will remove any ext/trunc pairs. 3528 SmallPtrSet<Value *, 4> Erased; 3529 for (const auto &KV : Cost->getMinimalBitwidths()) { 3530 // If the value wasn't vectorized, we must maintain the original scalar 3531 // type. The absence of the value from State indicates that it 3532 // wasn't vectorized. 3533 // FIXME: Should not rely on getVPValue at this point. 3534 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3535 if (!State.hasAnyVectorValue(Def)) 3536 continue; 3537 for (unsigned Part = 0; Part < UF; ++Part) { 3538 Value *I = State.get(Def, Part); 3539 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3540 continue; 3541 Type *OriginalTy = I->getType(); 3542 Type *ScalarTruncatedTy = 3543 IntegerType::get(OriginalTy->getContext(), KV.second); 3544 auto *TruncatedTy = VectorType::get( 3545 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 3546 if (TruncatedTy == OriginalTy) 3547 continue; 3548 3549 IRBuilder<> B(cast<Instruction>(I)); 3550 auto ShrinkOperand = [&](Value *V) -> Value * { 3551 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3552 if (ZI->getSrcTy() == TruncatedTy) 3553 return ZI->getOperand(0); 3554 return B.CreateZExtOrTrunc(V, TruncatedTy); 3555 }; 3556 3557 // The actual instruction modification depends on the instruction type, 3558 // unfortunately. 3559 Value *NewI = nullptr; 3560 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3561 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3562 ShrinkOperand(BO->getOperand(1))); 3563 3564 // Any wrapping introduced by shrinking this operation shouldn't be 3565 // considered undefined behavior. So, we can't unconditionally copy 3566 // arithmetic wrapping flags to NewI. 3567 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3568 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3569 NewI = 3570 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3571 ShrinkOperand(CI->getOperand(1))); 3572 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3573 NewI = B.CreateSelect(SI->getCondition(), 3574 ShrinkOperand(SI->getTrueValue()), 3575 ShrinkOperand(SI->getFalseValue())); 3576 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3577 switch (CI->getOpcode()) { 3578 default: 3579 llvm_unreachable("Unhandled cast!"); 3580 case Instruction::Trunc: 3581 NewI = ShrinkOperand(CI->getOperand(0)); 3582 break; 3583 case Instruction::SExt: 3584 NewI = B.CreateSExtOrTrunc( 3585 CI->getOperand(0), 3586 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3587 break; 3588 case Instruction::ZExt: 3589 NewI = B.CreateZExtOrTrunc( 3590 CI->getOperand(0), 3591 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3592 break; 3593 } 3594 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3595 auto Elements0 = 3596 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 3597 auto *O0 = B.CreateZExtOrTrunc( 3598 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3599 auto Elements1 = 3600 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 3601 auto *O1 = B.CreateZExtOrTrunc( 3602 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3603 3604 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3605 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3606 // Don't do anything with the operands, just extend the result. 3607 continue; 3608 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3609 auto Elements = 3610 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 3611 auto *O0 = B.CreateZExtOrTrunc( 3612 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3613 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3614 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3615 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3616 auto Elements = 3617 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 3618 auto *O0 = B.CreateZExtOrTrunc( 3619 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3620 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3621 } else { 3622 // If we don't know what to do, be conservative and don't do anything. 3623 continue; 3624 } 3625 3626 // Lastly, extend the result. 3627 NewI->takeName(cast<Instruction>(I)); 3628 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3629 I->replaceAllUsesWith(Res); 3630 cast<Instruction>(I)->eraseFromParent(); 3631 Erased.insert(I); 3632 State.reset(Def, Res, Part); 3633 } 3634 } 3635 3636 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3637 for (const auto &KV : Cost->getMinimalBitwidths()) { 3638 // If the value wasn't vectorized, we must maintain the original scalar 3639 // type. The absence of the value from State indicates that it 3640 // wasn't vectorized. 3641 // FIXME: Should not rely on getVPValue at this point. 3642 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3643 if (!State.hasAnyVectorValue(Def)) 3644 continue; 3645 for (unsigned Part = 0; Part < UF; ++Part) { 3646 Value *I = State.get(Def, Part); 3647 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3648 if (Inst && Inst->use_empty()) { 3649 Value *NewI = Inst->getOperand(0); 3650 Inst->eraseFromParent(); 3651 State.reset(Def, NewI, Part); 3652 } 3653 } 3654 } 3655 } 3656 3657 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State, 3658 VPlan &Plan) { 3659 // Insert truncates and extends for any truncated instructions as hints to 3660 // InstCombine. 3661 if (VF.isVector()) 3662 truncateToMinimalBitwidths(State); 3663 3664 // Fix widened non-induction PHIs by setting up the PHI operands. 3665 if (EnableVPlanNativePath) 3666 fixNonInductionPHIs(Plan, State); 3667 3668 // At this point every instruction in the original loop is widened to a 3669 // vector form. Now we need to fix the recurrences in the loop. These PHI 3670 // nodes are currently empty because we did not want to introduce cycles. 3671 // This is the second stage of vectorizing recurrences. 3672 fixCrossIterationPHIs(State); 3673 3674 // Forget the original basic block. 3675 PSE.getSE()->forgetLoop(OrigLoop); 3676 3677 VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock(); 3678 Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]); 3679 if (Cost->requiresScalarEpilogue(VF)) { 3680 // No edge from the middle block to the unique exit block has been inserted 3681 // and there is nothing to fix from vector loop; phis should have incoming 3682 // from scalar loop only. 3683 Plan.clearLiveOuts(); 3684 } else { 3685 // If we inserted an edge from the middle block to the unique exit block, 3686 // update uses outside the loop (phis) to account for the newly inserted 3687 // edge. 3688 3689 // Fix-up external users of the induction variables. 3690 for (auto &Entry : Legal->getInductionVars()) 3691 fixupIVUsers(Entry.first, Entry.second, 3692 getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), 3693 IVEndValues[Entry.first], LoopMiddleBlock, 3694 VectorLoop->getHeader(), Plan); 3695 } 3696 3697 // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated 3698 // in the exit block, so update the builder. 3699 State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI()); 3700 for (auto &KV : Plan.getLiveOuts()) 3701 KV.second->fixPhi(Plan, State); 3702 3703 for (Instruction *PI : PredicatedInstructions) 3704 sinkScalarOperands(&*PI); 3705 3706 // Remove redundant induction instructions. 3707 cse(VectorLoop->getHeader()); 3708 3709 // Set/update profile weights for the vector and remainder loops as original 3710 // loop iterations are now distributed among them. Note that original loop 3711 // represented by LoopScalarBody becomes remainder loop after vectorization. 3712 // 3713 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 3714 // end up getting slightly roughened result but that should be OK since 3715 // profile is not inherently precise anyway. Note also possible bypass of 3716 // vector code caused by legality checks is ignored, assigning all the weight 3717 // to the vector loop, optimistically. 3718 // 3719 // For scalable vectorization we can't know at compile time how many iterations 3720 // of the loop are handled in one vector iteration, so instead assume a pessimistic 3721 // vscale of '1'. 3722 setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, 3723 LI->getLoopFor(LoopScalarBody), 3724 VF.getKnownMinValue() * UF); 3725 } 3726 3727 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 3728 // In order to support recurrences we need to be able to vectorize Phi nodes. 3729 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3730 // stage #2: We now need to fix the recurrences by adding incoming edges to 3731 // the currently empty PHI nodes. At this point every instruction in the 3732 // original loop is widened to a vector form so we can use them to construct 3733 // the incoming edges. 3734 VPBasicBlock *Header = 3735 State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); 3736 for (VPRecipeBase &R : Header->phis()) { 3737 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 3738 fixReduction(ReductionPhi, State); 3739 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 3740 fixFirstOrderRecurrence(FOR, State); 3741 } 3742 } 3743 3744 void InnerLoopVectorizer::fixFirstOrderRecurrence( 3745 VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { 3746 // This is the second phase of vectorizing first-order recurrences. An 3747 // overview of the transformation is described below. Suppose we have the 3748 // following loop. 3749 // 3750 // for (int i = 0; i < n; ++i) 3751 // b[i] = a[i] - a[i - 1]; 3752 // 3753 // There is a first-order recurrence on "a". For this loop, the shorthand 3754 // scalar IR looks like: 3755 // 3756 // scalar.ph: 3757 // s_init = a[-1] 3758 // br scalar.body 3759 // 3760 // scalar.body: 3761 // i = phi [0, scalar.ph], [i+1, scalar.body] 3762 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3763 // s2 = a[i] 3764 // b[i] = s2 - s1 3765 // br cond, scalar.body, ... 3766 // 3767 // In this example, s1 is a recurrence because it's value depends on the 3768 // previous iteration. In the first phase of vectorization, we created a 3769 // vector phi v1 for s1. We now complete the vectorization and produce the 3770 // shorthand vector IR shown below (for VF = 4, UF = 1). 3771 // 3772 // vector.ph: 3773 // v_init = vector(..., ..., ..., a[-1]) 3774 // br vector.body 3775 // 3776 // vector.body 3777 // i = phi [0, vector.ph], [i+4, vector.body] 3778 // v1 = phi [v_init, vector.ph], [v2, vector.body] 3779 // v2 = a[i, i+1, i+2, i+3]; 3780 // v3 = vector(v1(3), v2(0, 1, 2)) 3781 // b[i, i+1, i+2, i+3] = v2 - v3 3782 // br cond, vector.body, middle.block 3783 // 3784 // middle.block: 3785 // x = v2(3) 3786 // br scalar.ph 3787 // 3788 // scalar.ph: 3789 // s_init = phi [x, middle.block], [a[-1], otherwise] 3790 // br scalar.body 3791 // 3792 // After execution completes the vector loop, we extract the next value of 3793 // the recurrence (x) to use as the initial value in the scalar loop. 3794 3795 // Extract the last vector element in the middle block. This will be the 3796 // initial value for the recurrence when jumping to the scalar loop. 3797 VPValue *PreviousDef = PhiR->getBackedgeValue(); 3798 Value *Incoming = State.get(PreviousDef, UF - 1); 3799 auto *ExtractForScalar = Incoming; 3800 auto *IdxTy = Builder.getInt32Ty(); 3801 if (VF.isVector()) { 3802 auto *One = ConstantInt::get(IdxTy, 1); 3803 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 3804 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3805 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 3806 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 3807 "vector.recur.extract"); 3808 } 3809 // Extract the second last element in the middle block if the 3810 // Phi is used outside the loop. We need to extract the phi itself 3811 // and not the last element (the phi update in the current iteration). This 3812 // will be the value when jumping to the exit block from the LoopMiddleBlock, 3813 // when the scalar loop is not run at all. 3814 Value *ExtractForPhiUsedOutsideLoop = nullptr; 3815 if (VF.isVector()) { 3816 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 3817 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 3818 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 3819 Incoming, Idx, "vector.recur.extract.for.phi"); 3820 } else if (UF > 1) 3821 // When loop is unrolled without vectorizing, initialize 3822 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 3823 // of `Incoming`. This is analogous to the vectorized case above: extracting 3824 // the second last element when VF > 1. 3825 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 3826 3827 // Fix the initial value of the original recurrence in the scalar loop. 3828 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 3829 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 3830 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 3831 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 3832 for (auto *BB : predecessors(LoopScalarPreHeader)) { 3833 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 3834 Start->addIncoming(Incoming, BB); 3835 } 3836 3837 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 3838 Phi->setName("scalar.recur"); 3839 3840 // Finally, fix users of the recurrence outside the loop. The users will need 3841 // either the last value of the scalar recurrence or the last value of the 3842 // vector recurrence we extracted in the middle block. Since the loop is in 3843 // LCSSA form, we just need to find all the phi nodes for the original scalar 3844 // recurrence in the exit block, and then add an edge for the middle block. 3845 // Note that LCSSA does not imply single entry when the original scalar loop 3846 // had multiple exiting edges (as we always run the last iteration in the 3847 // scalar epilogue); in that case, there is no edge from middle to exit and 3848 // and thus no phis which needed updated. 3849 if (!Cost->requiresScalarEpilogue(VF)) 3850 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 3851 if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) { 3852 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 3853 State.Plan->removeLiveOut(&LCSSAPhi); 3854 } 3855 } 3856 3857 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 3858 VPTransformState &State) { 3859 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 3860 // Get it's reduction variable descriptor. 3861 assert(Legal->isReductionVariable(OrigPhi) && 3862 "Unable to find the reduction variable"); 3863 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 3864 3865 RecurKind RK = RdxDesc.getRecurrenceKind(); 3866 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 3867 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 3868 setDebugLocFromInst(ReductionStartValue); 3869 3870 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 3871 // This is the vector-clone of the value that leaves the loop. 3872 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 3873 3874 // Wrap flags are in general invalid after vectorization, clear them. 3875 clearReductionWrapFlags(PhiR, State); 3876 3877 // Before each round, move the insertion point right between 3878 // the PHIs and the values we are going to write. 3879 // This allows us to write both PHINodes and the extractelement 3880 // instructions. 3881 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3882 3883 setDebugLocFromInst(LoopExitInst); 3884 3885 Type *PhiTy = OrigPhi->getType(); 3886 3887 VPBasicBlock *LatchVPBB = 3888 PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock(); 3889 BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB]; 3890 // If tail is folded by masking, the vector value to leave the loop should be 3891 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 3892 // instead of the former. For an inloop reduction the reduction will already 3893 // be predicated, and does not need to be handled here. 3894 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 3895 for (unsigned Part = 0; Part < UF; ++Part) { 3896 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 3897 SelectInst *Sel = nullptr; 3898 for (User *U : VecLoopExitInst->users()) { 3899 if (isa<SelectInst>(U)) { 3900 assert(!Sel && "Reduction exit feeding two selects"); 3901 Sel = cast<SelectInst>(U); 3902 } else 3903 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 3904 } 3905 assert(Sel && "Reduction exit feeds no select"); 3906 State.reset(LoopExitInstDef, Sel, Part); 3907 3908 if (isa<FPMathOperator>(Sel)) 3909 Sel->setFastMathFlags(RdxDesc.getFastMathFlags()); 3910 3911 // If the target can create a predicated operator for the reduction at no 3912 // extra cost in the loop (for example a predicated vadd), it can be 3913 // cheaper for the select to remain in the loop than be sunk out of it, 3914 // and so use the select value for the phi instead of the old 3915 // LoopExitValue. 3916 if (PreferPredicatedReductionSelect || 3917 TTI->preferPredicatedReductionSelect( 3918 RdxDesc.getOpcode(), PhiTy, 3919 TargetTransformInfo::ReductionFlags())) { 3920 auto *VecRdxPhi = 3921 cast<PHINode>(State.get(PhiR, Part)); 3922 VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); 3923 } 3924 } 3925 } 3926 3927 // If the vector reduction can be performed in a smaller type, we truncate 3928 // then extend the loop exit value to enable InstCombine to evaluate the 3929 // entire expression in the smaller type. 3930 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 3931 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 3932 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 3933 Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); 3934 VectorParts RdxParts(UF); 3935 for (unsigned Part = 0; Part < UF; ++Part) { 3936 RdxParts[Part] = State.get(LoopExitInstDef, Part); 3937 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3938 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 3939 : Builder.CreateZExt(Trunc, VecTy); 3940 for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) 3941 if (U != Trunc) { 3942 U->replaceUsesOfWith(RdxParts[Part], Extnd); 3943 RdxParts[Part] = Extnd; 3944 } 3945 } 3946 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 3947 for (unsigned Part = 0; Part < UF; ++Part) { 3948 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 3949 State.reset(LoopExitInstDef, RdxParts[Part], Part); 3950 } 3951 } 3952 3953 // Reduce all of the unrolled parts into a single vector. 3954 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 3955 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 3956 3957 // The middle block terminator has already been assigned a DebugLoc here (the 3958 // OrigLoop's single latch terminator). We want the whole middle block to 3959 // appear to execute on this line because: (a) it is all compiler generated, 3960 // (b) these instructions are always executed after evaluating the latch 3961 // conditional branch, and (c) other passes may add new predecessors which 3962 // terminate on this line. This is the easiest way to ensure we don't 3963 // accidentally cause an extra step back into the loop while debugging. 3964 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 3965 if (PhiR->isOrdered()) 3966 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 3967 else { 3968 // Floating-point operations should have some FMF to enable the reduction. 3969 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 3970 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 3971 for (unsigned Part = 1; Part < UF; ++Part) { 3972 Value *RdxPart = State.get(LoopExitInstDef, Part); 3973 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 3974 ReducedPartRdx = Builder.CreateBinOp( 3975 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 3976 } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) 3977 ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, 3978 ReducedPartRdx, RdxPart); 3979 else 3980 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 3981 } 3982 } 3983 3984 // Create the reduction after the loop. Note that inloop reductions create the 3985 // target reduction in the loop using a Reduction recipe. 3986 if (VF.isVector() && !PhiR->isInLoop()) { 3987 ReducedPartRdx = 3988 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); 3989 // If the reduction can be performed in a smaller type, we need to extend 3990 // the reduction to the wider type before we branch to the original loop. 3991 if (PhiTy != RdxDesc.getRecurrenceType()) 3992 ReducedPartRdx = RdxDesc.isSigned() 3993 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 3994 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 3995 } 3996 3997 PHINode *ResumePhi = 3998 dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); 3999 4000 // Create a phi node that merges control-flow from the backedge-taken check 4001 // block and the middle block. 4002 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4003 LoopScalarPreHeader->getTerminator()); 4004 4005 // If we are fixing reductions in the epilogue loop then we should already 4006 // have created a bc.merge.rdx Phi after the main vector body. Ensure that 4007 // we carry over the incoming values correctly. 4008 for (auto *Incoming : predecessors(LoopScalarPreHeader)) { 4009 if (Incoming == LoopMiddleBlock) 4010 BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); 4011 else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) 4012 BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), 4013 Incoming); 4014 else 4015 BCBlockPhi->addIncoming(ReductionStartValue, Incoming); 4016 } 4017 4018 // Set the resume value for this reduction 4019 ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); 4020 4021 // If there were stores of the reduction value to a uniform memory address 4022 // inside the loop, create the final store here. 4023 if (StoreInst *SI = RdxDesc.IntermediateStore) { 4024 StoreInst *NewSI = 4025 Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand()); 4026 propagateMetadata(NewSI, SI); 4027 4028 // If the reduction value is used in other places, 4029 // then let the code below create PHI's for that. 4030 } 4031 4032 // Now, we need to fix the users of the reduction variable 4033 // inside and outside of the scalar remainder loop. 4034 4035 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4036 // in the exit blocks. See comment on analogous loop in 4037 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4038 if (!Cost->requiresScalarEpilogue(VF)) 4039 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4040 if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) { 4041 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4042 State.Plan->removeLiveOut(&LCSSAPhi); 4043 } 4044 4045 // Fix the scalar loop reduction variable with the incoming reduction sum 4046 // from the vector body and from the backedge value. 4047 int IncomingEdgeBlockIdx = 4048 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4049 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4050 // Pick the other block. 4051 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4052 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4053 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4054 } 4055 4056 void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, 4057 VPTransformState &State) { 4058 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4059 RecurKind RK = RdxDesc.getRecurrenceKind(); 4060 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4061 return; 4062 4063 SmallVector<VPValue *, 8> Worklist; 4064 SmallPtrSet<VPValue *, 8> Visited; 4065 Worklist.push_back(PhiR); 4066 Visited.insert(PhiR); 4067 4068 while (!Worklist.empty()) { 4069 VPValue *Cur = Worklist.pop_back_val(); 4070 for (unsigned Part = 0; Part < UF; ++Part) { 4071 Value *V = State.get(Cur, Part); 4072 if (!isa<OverflowingBinaryOperator>(V)) 4073 break; 4074 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4075 } 4076 4077 for (VPUser *U : Cur->users()) { 4078 auto *UserRecipe = dyn_cast<VPRecipeBase>(U); 4079 if (!UserRecipe) 4080 continue; 4081 for (VPValue *V : UserRecipe->definedValues()) 4082 if (Visited.insert(V).second) 4083 Worklist.push_back(V); 4084 } 4085 } 4086 } 4087 4088 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4089 // The basic block and loop containing the predicated instruction. 4090 auto *PredBB = PredInst->getParent(); 4091 auto *VectorLoop = LI->getLoopFor(PredBB); 4092 4093 // Initialize a worklist with the operands of the predicated instruction. 4094 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4095 4096 // Holds instructions that we need to analyze again. An instruction may be 4097 // reanalyzed if we don't yet know if we can sink it or not. 4098 SmallVector<Instruction *, 8> InstsToReanalyze; 4099 4100 // Returns true if a given use occurs in the predicated block. Phi nodes use 4101 // their operands in their corresponding predecessor blocks. 4102 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4103 auto *I = cast<Instruction>(U.getUser()); 4104 BasicBlock *BB = I->getParent(); 4105 if (auto *Phi = dyn_cast<PHINode>(I)) 4106 BB = Phi->getIncomingBlock( 4107 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4108 return BB == PredBB; 4109 }; 4110 4111 // Iteratively sink the scalarized operands of the predicated instruction 4112 // into the block we created for it. When an instruction is sunk, it's 4113 // operands are then added to the worklist. The algorithm ends after one pass 4114 // through the worklist doesn't sink a single instruction. 4115 bool Changed; 4116 do { 4117 // Add the instructions that need to be reanalyzed to the worklist, and 4118 // reset the changed indicator. 4119 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4120 InstsToReanalyze.clear(); 4121 Changed = false; 4122 4123 while (!Worklist.empty()) { 4124 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4125 4126 // We can't sink an instruction if it is a phi node, is not in the loop, 4127 // or may have side effects. 4128 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4129 I->mayHaveSideEffects()) 4130 continue; 4131 4132 // If the instruction is already in PredBB, check if we can sink its 4133 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4134 // sinking the scalar instruction I, hence it appears in PredBB; but it 4135 // may have failed to sink I's operands (recursively), which we try 4136 // (again) here. 4137 if (I->getParent() == PredBB) { 4138 Worklist.insert(I->op_begin(), I->op_end()); 4139 continue; 4140 } 4141 4142 // It's legal to sink the instruction if all its uses occur in the 4143 // predicated block. Otherwise, there's nothing to do yet, and we may 4144 // need to reanalyze the instruction. 4145 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4146 InstsToReanalyze.push_back(I); 4147 continue; 4148 } 4149 4150 // Move the instruction to the beginning of the predicated block, and add 4151 // it's operands to the worklist. 4152 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4153 Worklist.insert(I->op_begin(), I->op_end()); 4154 4155 // The sinking may have enabled other instructions to be sunk, so we will 4156 // need to iterate. 4157 Changed = true; 4158 } 4159 } while (Changed); 4160 } 4161 4162 void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan, 4163 VPTransformState &State) { 4164 auto Iter = depth_first( 4165 VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry())); 4166 for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { 4167 for (VPRecipeBase &P : VPBB->phis()) { 4168 VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P); 4169 if (!VPPhi) 4170 continue; 4171 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4172 // Make sure the builder has a valid insert point. 4173 Builder.SetInsertPoint(NewPhi); 4174 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4175 VPValue *Inc = VPPhi->getIncomingValue(i); 4176 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4177 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4178 } 4179 } 4180 } 4181 } 4182 4183 bool InnerLoopVectorizer::useOrderedReductions( 4184 const RecurrenceDescriptor &RdxDesc) { 4185 return Cost->useOrderedReductions(RdxDesc); 4186 } 4187 4188 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4189 VPWidenPHIRecipe *PhiR, 4190 VPTransformState &State) { 4191 assert(EnableVPlanNativePath && 4192 "Non-native vplans are not expected to have VPWidenPHIRecipes."); 4193 // Currently we enter here in the VPlan-native path for non-induction 4194 // PHIs where all control flow is uniform. We simply widen these PHIs. 4195 // Create a vector phi with no operands - the vector phi operands will be 4196 // set at the end of vector code generation. 4197 Type *VecTy = (State.VF.isScalar()) 4198 ? PN->getType() 4199 : VectorType::get(PN->getType(), State.VF); 4200 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4201 State.set(PhiR, VecPhi, 0); 4202 } 4203 4204 /// A helper function for checking whether an integer division-related 4205 /// instruction may divide by zero (in which case it must be predicated if 4206 /// executed conditionally in the scalar code). 4207 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4208 /// Non-zero divisors that are non compile-time constants will not be 4209 /// converted into multiplication, so we will still end up scalarizing 4210 /// the division, but can do so w/o predication. 4211 static bool mayDivideByZero(Instruction &I) { 4212 assert((I.getOpcode() == Instruction::UDiv || 4213 I.getOpcode() == Instruction::SDiv || 4214 I.getOpcode() == Instruction::URem || 4215 I.getOpcode() == Instruction::SRem) && 4216 "Unexpected instruction"); 4217 Value *Divisor = I.getOperand(1); 4218 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4219 return !CInt || CInt->isZero(); 4220 } 4221 4222 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4223 VPUser &ArgOperands, 4224 VPTransformState &State) { 4225 assert(!isa<DbgInfoIntrinsic>(I) && 4226 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4227 setDebugLocFromInst(&I); 4228 4229 Module *M = I.getParent()->getParent()->getParent(); 4230 auto *CI = cast<CallInst>(&I); 4231 4232 SmallVector<Type *, 4> Tys; 4233 for (Value *ArgOperand : CI->args()) 4234 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4235 4236 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4237 4238 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4239 // version of the instruction. 4240 // Is it beneficial to perform intrinsic call compared to lib call? 4241 bool NeedToScalarize = false; 4242 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4243 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4244 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4245 assert((UseVectorIntrinsic || !NeedToScalarize) && 4246 "Instruction should be scalarized elsewhere."); 4247 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 4248 "Either the intrinsic cost or vector call cost must be valid"); 4249 4250 for (unsigned Part = 0; Part < UF; ++Part) { 4251 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 4252 SmallVector<Value *, 4> Args; 4253 for (auto &I : enumerate(ArgOperands.operands())) { 4254 // Some intrinsics have a scalar argument - don't replace it with a 4255 // vector. 4256 Value *Arg; 4257 if (!UseVectorIntrinsic || 4258 !isVectorIntrinsicWithScalarOpAtArg(ID, I.index())) 4259 Arg = State.get(I.value(), Part); 4260 else 4261 Arg = State.get(I.value(), VPIteration(0, 0)); 4262 if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index())) 4263 TysForDecl.push_back(Arg->getType()); 4264 Args.push_back(Arg); 4265 } 4266 4267 Function *VectorF; 4268 if (UseVectorIntrinsic) { 4269 // Use vector version of the intrinsic. 4270 if (VF.isVector()) 4271 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4272 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4273 assert(VectorF && "Can't retrieve vector intrinsic."); 4274 } else { 4275 // Use vector version of the function call. 4276 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4277 #ifndef NDEBUG 4278 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4279 "Can't create vector function."); 4280 #endif 4281 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4282 } 4283 SmallVector<OperandBundleDef, 1> OpBundles; 4284 CI->getOperandBundlesAsDefs(OpBundles); 4285 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4286 4287 if (isa<FPMathOperator>(V)) 4288 V->copyFastMathFlags(CI); 4289 4290 State.set(Def, V, Part); 4291 addMetadata(V, &I); 4292 } 4293 } 4294 4295 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 4296 // We should not collect Scalars more than once per VF. Right now, this 4297 // function is called from collectUniformsAndScalars(), which already does 4298 // this check. Collecting Scalars for VF=1 does not make any sense. 4299 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 4300 "This function should not be visited twice for the same VF"); 4301 4302 // This avoids any chances of creating a REPLICATE recipe during planning 4303 // since that would result in generation of scalarized code during execution, 4304 // which is not supported for scalable vectors. 4305 if (VF.isScalable()) { 4306 Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4307 return; 4308 } 4309 4310 SmallSetVector<Instruction *, 8> Worklist; 4311 4312 // These sets are used to seed the analysis with pointers used by memory 4313 // accesses that will remain scalar. 4314 SmallSetVector<Instruction *, 8> ScalarPtrs; 4315 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 4316 auto *Latch = TheLoop->getLoopLatch(); 4317 4318 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 4319 // The pointer operands of loads and stores will be scalar as long as the 4320 // memory access is not a gather or scatter operation. The value operand of a 4321 // store will remain scalar if the store is scalarized. 4322 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 4323 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 4324 assert(WideningDecision != CM_Unknown && 4325 "Widening decision should be ready at this moment"); 4326 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 4327 if (Ptr == Store->getValueOperand()) 4328 return WideningDecision == CM_Scalarize; 4329 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 4330 "Ptr is neither a value or pointer operand"); 4331 return WideningDecision != CM_GatherScatter; 4332 }; 4333 4334 // A helper that returns true if the given value is a bitcast or 4335 // getelementptr instruction contained in the loop. 4336 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 4337 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 4338 isa<GetElementPtrInst>(V)) && 4339 !TheLoop->isLoopInvariant(V); 4340 }; 4341 4342 // A helper that evaluates a memory access's use of a pointer. If the use will 4343 // be a scalar use and the pointer is only used by memory accesses, we place 4344 // the pointer in ScalarPtrs. Otherwise, the pointer is placed in 4345 // PossibleNonScalarPtrs. 4346 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 4347 // We only care about bitcast and getelementptr instructions contained in 4348 // the loop. 4349 if (!isLoopVaryingBitCastOrGEP(Ptr)) 4350 return; 4351 4352 // If the pointer has already been identified as scalar (e.g., if it was 4353 // also identified as uniform), there's nothing to do. 4354 auto *I = cast<Instruction>(Ptr); 4355 if (Worklist.count(I)) 4356 return; 4357 4358 // If the use of the pointer will be a scalar use, and all users of the 4359 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 4360 // place the pointer in PossibleNonScalarPtrs. 4361 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 4362 return isa<LoadInst>(U) || isa<StoreInst>(U); 4363 })) 4364 ScalarPtrs.insert(I); 4365 else 4366 PossibleNonScalarPtrs.insert(I); 4367 }; 4368 4369 // We seed the scalars analysis with three classes of instructions: (1) 4370 // instructions marked uniform-after-vectorization and (2) bitcast, 4371 // getelementptr and (pointer) phi instructions used by memory accesses 4372 // requiring a scalar use. 4373 // 4374 // (1) Add to the worklist all instructions that have been identified as 4375 // uniform-after-vectorization. 4376 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 4377 4378 // (2) Add to the worklist all bitcast and getelementptr instructions used by 4379 // memory accesses requiring a scalar use. The pointer operands of loads and 4380 // stores will be scalar as long as the memory accesses is not a gather or 4381 // scatter operation. The value operand of a store will remain scalar if the 4382 // store is scalarized. 4383 for (auto *BB : TheLoop->blocks()) 4384 for (auto &I : *BB) { 4385 if (auto *Load = dyn_cast<LoadInst>(&I)) { 4386 evaluatePtrUse(Load, Load->getPointerOperand()); 4387 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 4388 evaluatePtrUse(Store, Store->getPointerOperand()); 4389 evaluatePtrUse(Store, Store->getValueOperand()); 4390 } 4391 } 4392 for (auto *I : ScalarPtrs) 4393 if (!PossibleNonScalarPtrs.count(I)) { 4394 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 4395 Worklist.insert(I); 4396 } 4397 4398 // Insert the forced scalars. 4399 // FIXME: Currently widenPHIInstruction() often creates a dead vector 4400 // induction variable when the PHI user is scalarized. 4401 auto ForcedScalar = ForcedScalars.find(VF); 4402 if (ForcedScalar != ForcedScalars.end()) 4403 for (auto *I : ForcedScalar->second) 4404 Worklist.insert(I); 4405 4406 // Expand the worklist by looking through any bitcasts and getelementptr 4407 // instructions we've already identified as scalar. This is similar to the 4408 // expansion step in collectLoopUniforms(); however, here we're only 4409 // expanding to include additional bitcasts and getelementptr instructions. 4410 unsigned Idx = 0; 4411 while (Idx != Worklist.size()) { 4412 Instruction *Dst = Worklist[Idx++]; 4413 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 4414 continue; 4415 auto *Src = cast<Instruction>(Dst->getOperand(0)); 4416 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 4417 auto *J = cast<Instruction>(U); 4418 return !TheLoop->contains(J) || Worklist.count(J) || 4419 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 4420 isScalarUse(J, Src)); 4421 })) { 4422 Worklist.insert(Src); 4423 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 4424 } 4425 } 4426 4427 // An induction variable will remain scalar if all users of the induction 4428 // variable and induction variable update remain scalar. 4429 for (auto &Induction : Legal->getInductionVars()) { 4430 auto *Ind = Induction.first; 4431 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4432 4433 // If tail-folding is applied, the primary induction variable will be used 4434 // to feed a vector compare. 4435 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 4436 continue; 4437 4438 // Returns true if \p Indvar is a pointer induction that is used directly by 4439 // load/store instruction \p I. 4440 auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, 4441 Instruction *I) { 4442 return Induction.second.getKind() == 4443 InductionDescriptor::IK_PtrInduction && 4444 (isa<LoadInst>(I) || isa<StoreInst>(I)) && 4445 Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); 4446 }; 4447 4448 // Determine if all users of the induction variable are scalar after 4449 // vectorization. 4450 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4451 auto *I = cast<Instruction>(U); 4452 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4453 IsDirectLoadStoreFromPtrIndvar(Ind, I); 4454 }); 4455 if (!ScalarInd) 4456 continue; 4457 4458 // Determine if all users of the induction variable update instruction are 4459 // scalar after vectorization. 4460 auto ScalarIndUpdate = 4461 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4462 auto *I = cast<Instruction>(U); 4463 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4464 IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); 4465 }); 4466 if (!ScalarIndUpdate) 4467 continue; 4468 4469 // The induction variable and its update instruction will remain scalar. 4470 Worklist.insert(Ind); 4471 Worklist.insert(IndUpdate); 4472 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 4473 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 4474 << "\n"); 4475 } 4476 4477 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 4478 } 4479 4480 bool LoopVectorizationCostModel::isScalarWithPredication( 4481 Instruction *I, ElementCount VF) const { 4482 if (!blockNeedsPredicationForAnyReason(I->getParent())) 4483 return false; 4484 switch(I->getOpcode()) { 4485 default: 4486 break; 4487 case Instruction::Load: 4488 case Instruction::Store: { 4489 if (!Legal->isMaskRequired(I)) 4490 return false; 4491 auto *Ptr = getLoadStorePointerOperand(I); 4492 auto *Ty = getLoadStoreType(I); 4493 Type *VTy = Ty; 4494 if (VF.isVector()) 4495 VTy = VectorType::get(Ty, VF); 4496 const Align Alignment = getLoadStoreAlignment(I); 4497 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 4498 TTI.isLegalMaskedGather(VTy, Alignment)) 4499 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 4500 TTI.isLegalMaskedScatter(VTy, Alignment)); 4501 } 4502 case Instruction::UDiv: 4503 case Instruction::SDiv: 4504 case Instruction::SRem: 4505 case Instruction::URem: 4506 return mayDivideByZero(*I); 4507 } 4508 return false; 4509 } 4510 4511 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 4512 Instruction *I, ElementCount VF) { 4513 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 4514 assert(getWideningDecision(I, VF) == CM_Unknown && 4515 "Decision should not be set yet."); 4516 auto *Group = getInterleavedAccessGroup(I); 4517 assert(Group && "Must have a group."); 4518 4519 // If the instruction's allocated size doesn't equal it's type size, it 4520 // requires padding and will be scalarized. 4521 auto &DL = I->getModule()->getDataLayout(); 4522 auto *ScalarTy = getLoadStoreType(I); 4523 if (hasIrregularType(ScalarTy, DL)) 4524 return false; 4525 4526 // If the group involves a non-integral pointer, we may not be able to 4527 // losslessly cast all values to a common type. 4528 unsigned InterleaveFactor = Group->getFactor(); 4529 bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); 4530 for (unsigned i = 0; i < InterleaveFactor; i++) { 4531 Instruction *Member = Group->getMember(i); 4532 if (!Member) 4533 continue; 4534 auto *MemberTy = getLoadStoreType(Member); 4535 bool MemberNI = DL.isNonIntegralPointerType(MemberTy); 4536 // Don't coerce non-integral pointers to integers or vice versa. 4537 if (MemberNI != ScalarNI) { 4538 // TODO: Consider adding special nullptr value case here 4539 return false; 4540 } else if (MemberNI && ScalarNI && 4541 ScalarTy->getPointerAddressSpace() != 4542 MemberTy->getPointerAddressSpace()) { 4543 return false; 4544 } 4545 } 4546 4547 // Check if masking is required. 4548 // A Group may need masking for one of two reasons: it resides in a block that 4549 // needs predication, or it was decided to use masking to deal with gaps 4550 // (either a gap at the end of a load-access that may result in a speculative 4551 // load, or any gaps in a store-access). 4552 bool PredicatedAccessRequiresMasking = 4553 blockNeedsPredicationForAnyReason(I->getParent()) && 4554 Legal->isMaskRequired(I); 4555 bool LoadAccessWithGapsRequiresEpilogMasking = 4556 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 4557 !isScalarEpilogueAllowed(); 4558 bool StoreAccessWithGapsRequiresMasking = 4559 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 4560 if (!PredicatedAccessRequiresMasking && 4561 !LoadAccessWithGapsRequiresEpilogMasking && 4562 !StoreAccessWithGapsRequiresMasking) 4563 return true; 4564 4565 // If masked interleaving is required, we expect that the user/target had 4566 // enabled it, because otherwise it either wouldn't have been created or 4567 // it should have been invalidated by the CostModel. 4568 assert(useMaskedInterleavedAccesses(TTI) && 4569 "Masked interleave-groups for predicated accesses are not enabled."); 4570 4571 if (Group->isReverse()) 4572 return false; 4573 4574 auto *Ty = getLoadStoreType(I); 4575 const Align Alignment = getLoadStoreAlignment(I); 4576 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 4577 : TTI.isLegalMaskedStore(Ty, Alignment); 4578 } 4579 4580 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 4581 Instruction *I, ElementCount VF) { 4582 // Get and ensure we have a valid memory instruction. 4583 assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction"); 4584 4585 auto *Ptr = getLoadStorePointerOperand(I); 4586 auto *ScalarTy = getLoadStoreType(I); 4587 4588 // In order to be widened, the pointer should be consecutive, first of all. 4589 if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) 4590 return false; 4591 4592 // If the instruction is a store located in a predicated block, it will be 4593 // scalarized. 4594 if (isScalarWithPredication(I, VF)) 4595 return false; 4596 4597 // If the instruction's allocated size doesn't equal it's type size, it 4598 // requires padding and will be scalarized. 4599 auto &DL = I->getModule()->getDataLayout(); 4600 if (hasIrregularType(ScalarTy, DL)) 4601 return false; 4602 4603 return true; 4604 } 4605 4606 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 4607 // We should not collect Uniforms more than once per VF. Right now, 4608 // this function is called from collectUniformsAndScalars(), which 4609 // already does this check. Collecting Uniforms for VF=1 does not make any 4610 // sense. 4611 4612 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 4613 "This function should not be visited twice for the same VF"); 4614 4615 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 4616 // not analyze again. Uniforms.count(VF) will return 1. 4617 Uniforms[VF].clear(); 4618 4619 // We now know that the loop is vectorizable! 4620 // Collect instructions inside the loop that will remain uniform after 4621 // vectorization. 4622 4623 // Global values, params and instructions outside of current loop are out of 4624 // scope. 4625 auto isOutOfScope = [&](Value *V) -> bool { 4626 Instruction *I = dyn_cast<Instruction>(V); 4627 return (!I || !TheLoop->contains(I)); 4628 }; 4629 4630 // Worklist containing uniform instructions demanding lane 0. 4631 SetVector<Instruction *> Worklist; 4632 BasicBlock *Latch = TheLoop->getLoopLatch(); 4633 4634 // Add uniform instructions demanding lane 0 to the worklist. Instructions 4635 // that are scalar with predication must not be considered uniform after 4636 // vectorization, because that would create an erroneous replicating region 4637 // where only a single instance out of VF should be formed. 4638 // TODO: optimize such seldom cases if found important, see PR40816. 4639 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 4640 if (isOutOfScope(I)) { 4641 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 4642 << *I << "\n"); 4643 return; 4644 } 4645 if (isScalarWithPredication(I, VF)) { 4646 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 4647 << *I << "\n"); 4648 return; 4649 } 4650 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 4651 Worklist.insert(I); 4652 }; 4653 4654 // Start with the conditional branch. If the branch condition is an 4655 // instruction contained in the loop that is only used by the branch, it is 4656 // uniform. 4657 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 4658 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 4659 addToWorklistIfAllowed(Cmp); 4660 4661 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 4662 InstWidening WideningDecision = getWideningDecision(I, VF); 4663 assert(WideningDecision != CM_Unknown && 4664 "Widening decision should be ready at this moment"); 4665 4666 // A uniform memory op is itself uniform. We exclude uniform stores 4667 // here as they demand the last lane, not the first one. 4668 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 4669 assert(WideningDecision == CM_Scalarize); 4670 return true; 4671 } 4672 4673 return (WideningDecision == CM_Widen || 4674 WideningDecision == CM_Widen_Reverse || 4675 WideningDecision == CM_Interleave); 4676 }; 4677 4678 4679 // Returns true if Ptr is the pointer operand of a memory access instruction 4680 // I, and I is known to not require scalarization. 4681 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 4682 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 4683 }; 4684 4685 // Holds a list of values which are known to have at least one uniform use. 4686 // Note that there may be other uses which aren't uniform. A "uniform use" 4687 // here is something which only demands lane 0 of the unrolled iterations; 4688 // it does not imply that all lanes produce the same value (e.g. this is not 4689 // the usual meaning of uniform) 4690 SetVector<Value *> HasUniformUse; 4691 4692 // Scan the loop for instructions which are either a) known to have only 4693 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 4694 for (auto *BB : TheLoop->blocks()) 4695 for (auto &I : *BB) { 4696 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 4697 switch (II->getIntrinsicID()) { 4698 case Intrinsic::sideeffect: 4699 case Intrinsic::experimental_noalias_scope_decl: 4700 case Intrinsic::assume: 4701 case Intrinsic::lifetime_start: 4702 case Intrinsic::lifetime_end: 4703 if (TheLoop->hasLoopInvariantOperands(&I)) 4704 addToWorklistIfAllowed(&I); 4705 break; 4706 default: 4707 break; 4708 } 4709 } 4710 4711 // ExtractValue instructions must be uniform, because the operands are 4712 // known to be loop-invariant. 4713 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 4714 assert(isOutOfScope(EVI->getAggregateOperand()) && 4715 "Expected aggregate value to be loop invariant"); 4716 addToWorklistIfAllowed(EVI); 4717 continue; 4718 } 4719 4720 // If there's no pointer operand, there's nothing to do. 4721 auto *Ptr = getLoadStorePointerOperand(&I); 4722 if (!Ptr) 4723 continue; 4724 4725 // A uniform memory op is itself uniform. We exclude uniform stores 4726 // here as they demand the last lane, not the first one. 4727 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 4728 addToWorklistIfAllowed(&I); 4729 4730 if (isUniformDecision(&I, VF)) { 4731 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 4732 HasUniformUse.insert(Ptr); 4733 } 4734 } 4735 4736 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 4737 // demanding) users. Since loops are assumed to be in LCSSA form, this 4738 // disallows uses outside the loop as well. 4739 for (auto *V : HasUniformUse) { 4740 if (isOutOfScope(V)) 4741 continue; 4742 auto *I = cast<Instruction>(V); 4743 auto UsersAreMemAccesses = 4744 llvm::all_of(I->users(), [&](User *U) -> bool { 4745 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 4746 }); 4747 if (UsersAreMemAccesses) 4748 addToWorklistIfAllowed(I); 4749 } 4750 4751 // Expand Worklist in topological order: whenever a new instruction 4752 // is added , its users should be already inside Worklist. It ensures 4753 // a uniform instruction will only be used by uniform instructions. 4754 unsigned idx = 0; 4755 while (idx != Worklist.size()) { 4756 Instruction *I = Worklist[idx++]; 4757 4758 for (auto OV : I->operand_values()) { 4759 // isOutOfScope operands cannot be uniform instructions. 4760 if (isOutOfScope(OV)) 4761 continue; 4762 // First order recurrence Phi's should typically be considered 4763 // non-uniform. 4764 auto *OP = dyn_cast<PHINode>(OV); 4765 if (OP && Legal->isFirstOrderRecurrence(OP)) 4766 continue; 4767 // If all the users of the operand are uniform, then add the 4768 // operand into the uniform worklist. 4769 auto *OI = cast<Instruction>(OV); 4770 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 4771 auto *J = cast<Instruction>(U); 4772 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 4773 })) 4774 addToWorklistIfAllowed(OI); 4775 } 4776 } 4777 4778 // For an instruction to be added into Worklist above, all its users inside 4779 // the loop should also be in Worklist. However, this condition cannot be 4780 // true for phi nodes that form a cyclic dependence. We must process phi 4781 // nodes separately. An induction variable will remain uniform if all users 4782 // of the induction variable and induction variable update remain uniform. 4783 // The code below handles both pointer and non-pointer induction variables. 4784 for (auto &Induction : Legal->getInductionVars()) { 4785 auto *Ind = Induction.first; 4786 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 4787 4788 // Determine if all users of the induction variable are uniform after 4789 // vectorization. 4790 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 4791 auto *I = cast<Instruction>(U); 4792 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 4793 isVectorizedMemAccessUse(I, Ind); 4794 }); 4795 if (!UniformInd) 4796 continue; 4797 4798 // Determine if all users of the induction variable update instruction are 4799 // uniform after vectorization. 4800 auto UniformIndUpdate = 4801 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 4802 auto *I = cast<Instruction>(U); 4803 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 4804 isVectorizedMemAccessUse(I, IndUpdate); 4805 }); 4806 if (!UniformIndUpdate) 4807 continue; 4808 4809 // The induction variable and its update instruction will remain uniform. 4810 addToWorklistIfAllowed(Ind); 4811 addToWorklistIfAllowed(IndUpdate); 4812 } 4813 4814 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 4815 } 4816 4817 bool LoopVectorizationCostModel::runtimeChecksRequired() { 4818 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 4819 4820 if (Legal->getRuntimePointerChecking()->Need) { 4821 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 4822 "runtime pointer checks needed. Enable vectorization of this " 4823 "loop with '#pragma clang loop vectorize(enable)' when " 4824 "compiling with -Os/-Oz", 4825 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4826 return true; 4827 } 4828 4829 if (!PSE.getPredicate().isAlwaysTrue()) { 4830 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 4831 "runtime SCEV checks needed. Enable vectorization of this " 4832 "loop with '#pragma clang loop vectorize(enable)' when " 4833 "compiling with -Os/-Oz", 4834 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4835 return true; 4836 } 4837 4838 // FIXME: Avoid specializing for stride==1 instead of bailing out. 4839 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 4840 reportVectorizationFailure("Runtime stride check for small trip count", 4841 "runtime stride == 1 checks needed. Enable vectorization of " 4842 "this loop without such check by compiling with -Os/-Oz", 4843 "CantVersionLoopWithOptForSize", ORE, TheLoop); 4844 return true; 4845 } 4846 4847 return false; 4848 } 4849 4850 ElementCount 4851 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 4852 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 4853 return ElementCount::getScalable(0); 4854 4855 if (Hints->isScalableVectorizationDisabled()) { 4856 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 4857 "ScalableVectorizationDisabled", ORE, TheLoop); 4858 return ElementCount::getScalable(0); 4859 } 4860 4861 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 4862 4863 auto MaxScalableVF = ElementCount::getScalable( 4864 std::numeric_limits<ElementCount::ScalarTy>::max()); 4865 4866 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 4867 // FIXME: While for scalable vectors this is currently sufficient, this should 4868 // be replaced by a more detailed mechanism that filters out specific VFs, 4869 // instead of invalidating vectorization for a whole set of VFs based on the 4870 // MaxVF. 4871 4872 // Disable scalable vectorization if the loop contains unsupported reductions. 4873 if (!canVectorizeReductions(MaxScalableVF)) { 4874 reportVectorizationInfo( 4875 "Scalable vectorization not supported for the reduction " 4876 "operations found in this loop.", 4877 "ScalableVFUnfeasible", ORE, TheLoop); 4878 return ElementCount::getScalable(0); 4879 } 4880 4881 // Disable scalable vectorization if the loop contains any instructions 4882 // with element types not supported for scalable vectors. 4883 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 4884 return !Ty->isVoidTy() && 4885 !this->TTI.isElementTypeLegalForScalableVector(Ty); 4886 })) { 4887 reportVectorizationInfo("Scalable vectorization is not supported " 4888 "for all element types found in this loop.", 4889 "ScalableVFUnfeasible", ORE, TheLoop); 4890 return ElementCount::getScalable(0); 4891 } 4892 4893 if (Legal->isSafeForAnyVectorWidth()) 4894 return MaxScalableVF; 4895 4896 // Limit MaxScalableVF by the maximum safe dependence distance. 4897 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 4898 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) 4899 MaxVScale = 4900 TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); 4901 MaxScalableVF = ElementCount::getScalable( 4902 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 4903 if (!MaxScalableVF) 4904 reportVectorizationInfo( 4905 "Max legal vector width too small, scalable vectorization " 4906 "unfeasible.", 4907 "ScalableVFUnfeasible", ORE, TheLoop); 4908 4909 return MaxScalableVF; 4910 } 4911 4912 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( 4913 unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { 4914 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 4915 unsigned SmallestType, WidestType; 4916 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 4917 4918 // Get the maximum safe dependence distance in bits computed by LAA. 4919 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 4920 // the memory accesses that is most restrictive (involved in the smallest 4921 // dependence distance). 4922 unsigned MaxSafeElements = 4923 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 4924 4925 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 4926 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 4927 4928 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 4929 << ".\n"); 4930 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 4931 << ".\n"); 4932 4933 // First analyze the UserVF, fall back if the UserVF should be ignored. 4934 if (UserVF) { 4935 auto MaxSafeUserVF = 4936 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 4937 4938 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 4939 // If `VF=vscale x N` is safe, then so is `VF=N` 4940 if (UserVF.isScalable()) 4941 return FixedScalableVFPair( 4942 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 4943 else 4944 return UserVF; 4945 } 4946 4947 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 4948 4949 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 4950 // is better to ignore the hint and let the compiler choose a suitable VF. 4951 if (!UserVF.isScalable()) { 4952 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4953 << " is unsafe, clamping to max safe VF=" 4954 << MaxSafeFixedVF << ".\n"); 4955 ORE->emit([&]() { 4956 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4957 TheLoop->getStartLoc(), 4958 TheLoop->getHeader()) 4959 << "User-specified vectorization factor " 4960 << ore::NV("UserVectorizationFactor", UserVF) 4961 << " is unsafe, clamping to maximum safe vectorization factor " 4962 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 4963 }); 4964 return MaxSafeFixedVF; 4965 } 4966 4967 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 4968 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4969 << " is ignored because scalable vectors are not " 4970 "available.\n"); 4971 ORE->emit([&]() { 4972 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4973 TheLoop->getStartLoc(), 4974 TheLoop->getHeader()) 4975 << "User-specified vectorization factor " 4976 << ore::NV("UserVectorizationFactor", UserVF) 4977 << " is ignored because the target does not support scalable " 4978 "vectors. The compiler will pick a more suitable value."; 4979 }); 4980 } else { 4981 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 4982 << " is unsafe. Ignoring scalable UserVF.\n"); 4983 ORE->emit([&]() { 4984 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 4985 TheLoop->getStartLoc(), 4986 TheLoop->getHeader()) 4987 << "User-specified vectorization factor " 4988 << ore::NV("UserVectorizationFactor", UserVF) 4989 << " is unsafe. Ignoring the hint to let the compiler pick a " 4990 "more suitable value."; 4991 }); 4992 } 4993 } 4994 4995 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 4996 << " / " << WidestType << " bits.\n"); 4997 4998 FixedScalableVFPair Result(ElementCount::getFixed(1), 4999 ElementCount::getScalable(0)); 5000 if (auto MaxVF = 5001 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5002 MaxSafeFixedVF, FoldTailByMasking)) 5003 Result.FixedVF = MaxVF; 5004 5005 if (auto MaxVF = 5006 getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, 5007 MaxSafeScalableVF, FoldTailByMasking)) 5008 if (MaxVF.isScalable()) { 5009 Result.ScalableVF = MaxVF; 5010 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5011 << "\n"); 5012 } 5013 5014 return Result; 5015 } 5016 5017 FixedScalableVFPair 5018 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5019 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5020 // TODO: It may by useful to do since it's still likely to be dynamically 5021 // uniform if the target can skip. 5022 reportVectorizationFailure( 5023 "Not inserting runtime ptr check for divergent target", 5024 "runtime pointer checks needed. Not enabled for divergent target", 5025 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5026 return FixedScalableVFPair::getNone(); 5027 } 5028 5029 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5030 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5031 if (TC == 1) { 5032 reportVectorizationFailure("Single iteration (non) loop", 5033 "loop trip count is one, irrelevant for vectorization", 5034 "SingleIterationLoop", ORE, TheLoop); 5035 return FixedScalableVFPair::getNone(); 5036 } 5037 5038 switch (ScalarEpilogueStatus) { 5039 case CM_ScalarEpilogueAllowed: 5040 return computeFeasibleMaxVF(TC, UserVF, false); 5041 case CM_ScalarEpilogueNotAllowedUsePredicate: 5042 LLVM_FALLTHROUGH; 5043 case CM_ScalarEpilogueNotNeededUsePredicate: 5044 LLVM_DEBUG( 5045 dbgs() << "LV: vector predicate hint/switch found.\n" 5046 << "LV: Not allowing scalar epilogue, creating predicated " 5047 << "vector loop.\n"); 5048 break; 5049 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5050 // fallthrough as a special case of OptForSize 5051 case CM_ScalarEpilogueNotAllowedOptSize: 5052 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5053 LLVM_DEBUG( 5054 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5055 else 5056 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5057 << "count.\n"); 5058 5059 // Bail if runtime checks are required, which are not good when optimising 5060 // for size. 5061 if (runtimeChecksRequired()) 5062 return FixedScalableVFPair::getNone(); 5063 5064 break; 5065 } 5066 5067 // The only loops we can vectorize without a scalar epilogue, are loops with 5068 // a bottom-test and a single exiting block. We'd have to handle the fact 5069 // that not every instruction executes on the last iteration. This will 5070 // require a lane mask which varies through the vector loop body. (TODO) 5071 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5072 // If there was a tail-folding hint/switch, but we can't fold the tail by 5073 // masking, fallback to a vectorization with a scalar epilogue. 5074 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5075 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5076 "scalar epilogue instead.\n"); 5077 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5078 return computeFeasibleMaxVF(TC, UserVF, false); 5079 } 5080 return FixedScalableVFPair::getNone(); 5081 } 5082 5083 // Now try the tail folding 5084 5085 // Invalidate interleave groups that require an epilogue if we can't mask 5086 // the interleave-group. 5087 if (!useMaskedInterleavedAccesses(TTI)) { 5088 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5089 "No decisions should have been taken at this point"); 5090 // Note: There is no need to invalidate any cost modeling decisions here, as 5091 // non where taken so far. 5092 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5093 } 5094 5095 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); 5096 // Avoid tail folding if the trip count is known to be a multiple of any VF 5097 // we chose. 5098 // FIXME: The condition below pessimises the case for fixed-width vectors, 5099 // when scalable VFs are also candidates for vectorization. 5100 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5101 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5102 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5103 "MaxFixedVF must be a power of 2"); 5104 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5105 : MaxFixedVF.getFixedValue(); 5106 ScalarEvolution *SE = PSE.getSE(); 5107 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5108 const SCEV *ExitCount = SE->getAddExpr( 5109 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5110 const SCEV *Rem = SE->getURemExpr( 5111 SE->applyLoopGuards(ExitCount, TheLoop), 5112 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5113 if (Rem->isZero()) { 5114 // Accept MaxFixedVF if we do not have a tail. 5115 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5116 return MaxFactors; 5117 } 5118 } 5119 5120 // If we don't know the precise trip count, or if the trip count that we 5121 // found modulo the vectorization factor is not zero, try to fold the tail 5122 // by masking. 5123 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5124 if (Legal->prepareToFoldTailByMasking()) { 5125 FoldTailByMasking = true; 5126 return MaxFactors; 5127 } 5128 5129 // If there was a tail-folding hint/switch, but we can't fold the tail by 5130 // masking, fallback to a vectorization with a scalar epilogue. 5131 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5132 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5133 "scalar epilogue instead.\n"); 5134 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5135 return MaxFactors; 5136 } 5137 5138 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5139 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5140 return FixedScalableVFPair::getNone(); 5141 } 5142 5143 if (TC == 0) { 5144 reportVectorizationFailure( 5145 "Unable to calculate the loop count due to complex control flow", 5146 "unable to calculate the loop count due to complex control flow", 5147 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5148 return FixedScalableVFPair::getNone(); 5149 } 5150 5151 reportVectorizationFailure( 5152 "Cannot optimize for size and vectorize at the same time.", 5153 "cannot optimize for size and vectorize at the same time. " 5154 "Enable vectorization of this loop with '#pragma clang loop " 5155 "vectorize(enable)' when compiling with -Os/-Oz", 5156 "NoTailLoopWithOptForSize", ORE, TheLoop); 5157 return FixedScalableVFPair::getNone(); 5158 } 5159 5160 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5161 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5162 ElementCount MaxSafeVF, bool FoldTailByMasking) { 5163 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5164 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5165 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5166 : TargetTransformInfo::RGK_FixedWidthVector); 5167 5168 // Convenience function to return the minimum of two ElementCounts. 5169 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5170 assert((LHS.isScalable() == RHS.isScalable()) && 5171 "Scalable flags must match"); 5172 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5173 }; 5174 5175 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5176 // Note that both WidestRegister and WidestType may not be a powers of 2. 5177 auto MaxVectorElementCount = ElementCount::get( 5178 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5179 ComputeScalableMaxVF); 5180 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5181 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5182 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5183 5184 if (!MaxVectorElementCount) { 5185 LLVM_DEBUG(dbgs() << "LV: The target has no " 5186 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5187 << " vector registers.\n"); 5188 return ElementCount::getFixed(1); 5189 } 5190 5191 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5192 if (ConstTripCount && 5193 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5194 (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { 5195 // If loop trip count (TC) is known at compile time there is no point in 5196 // choosing VF greater than TC (as done in the loop below). Select maximum 5197 // power of two which doesn't exceed TC. 5198 // If MaxVectorElementCount is scalable, we only fall back on a fixed VF 5199 // when the TC is less than or equal to the known number of lanes. 5200 auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); 5201 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " 5202 "exceeding the constant trip count: " 5203 << ClampedConstTripCount << "\n"); 5204 return ElementCount::getFixed(ClampedConstTripCount); 5205 } 5206 5207 TargetTransformInfo::RegisterKind RegKind = 5208 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5209 : TargetTransformInfo::RGK_FixedWidthVector; 5210 ElementCount MaxVF = MaxVectorElementCount; 5211 if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && 5212 TTI.shouldMaximizeVectorBandwidth(RegKind))) { 5213 auto MaxVectorElementCountMaxBW = ElementCount::get( 5214 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5215 ComputeScalableMaxVF); 5216 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5217 5218 // Collect all viable vectorization factors larger than the default MaxVF 5219 // (i.e. MaxVectorElementCount). 5220 SmallVector<ElementCount, 8> VFs; 5221 for (ElementCount VS = MaxVectorElementCount * 2; 5222 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5223 VFs.push_back(VS); 5224 5225 // For each VF calculate its register usage. 5226 auto RUs = calculateRegisterUsage(VFs); 5227 5228 // Select the largest VF which doesn't require more registers than existing 5229 // ones. 5230 for (int i = RUs.size() - 1; i >= 0; --i) { 5231 bool Selected = true; 5232 for (auto &pair : RUs[i].MaxLocalUsers) { 5233 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5234 if (pair.second > TargetNumRegisters) 5235 Selected = false; 5236 } 5237 if (Selected) { 5238 MaxVF = VFs[i]; 5239 break; 5240 } 5241 } 5242 if (ElementCount MinVF = 5243 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5244 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5245 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5246 << ") with target's minimum: " << MinVF << '\n'); 5247 MaxVF = MinVF; 5248 } 5249 } 5250 5251 // Invalidate any widening decisions we might have made, in case the loop 5252 // requires prediction (decided later), but we have already made some 5253 // load/store widening decisions. 5254 invalidateCostModelingDecisions(); 5255 } 5256 return MaxVF; 5257 } 5258 5259 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { 5260 if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5261 auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); 5262 auto Min = Attr.getVScaleRangeMin(); 5263 auto Max = Attr.getVScaleRangeMax(); 5264 if (Max && Min == Max) 5265 return Max; 5266 } 5267 5268 return TTI.getVScaleForTuning(); 5269 } 5270 5271 bool LoopVectorizationCostModel::isMoreProfitable( 5272 const VectorizationFactor &A, const VectorizationFactor &B) const { 5273 InstructionCost CostA = A.Cost; 5274 InstructionCost CostB = B.Cost; 5275 5276 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 5277 5278 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 5279 MaxTripCount) { 5280 // If we are folding the tail and the trip count is a known (possibly small) 5281 // constant, the trip count will be rounded up to an integer number of 5282 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 5283 // which we compare directly. When not folding the tail, the total cost will 5284 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 5285 // approximated with the per-lane cost below instead of using the tripcount 5286 // as here. 5287 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 5288 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 5289 return RTCostA < RTCostB; 5290 } 5291 5292 // Improve estimate for the vector width if it is scalable. 5293 unsigned EstimatedWidthA = A.Width.getKnownMinValue(); 5294 unsigned EstimatedWidthB = B.Width.getKnownMinValue(); 5295 if (Optional<unsigned> VScale = getVScaleForTuning()) { 5296 if (A.Width.isScalable()) 5297 EstimatedWidthA *= VScale.getValue(); 5298 if (B.Width.isScalable()) 5299 EstimatedWidthB *= VScale.getValue(); 5300 } 5301 5302 // Assume vscale may be larger than 1 (or the value being tuned for), 5303 // so that scalable vectorization is slightly favorable over fixed-width 5304 // vectorization. 5305 if (A.Width.isScalable() && !B.Width.isScalable()) 5306 return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); 5307 5308 // To avoid the need for FP division: 5309 // (CostA / A.Width) < (CostB / B.Width) 5310 // <=> (CostA * B.Width) < (CostB * A.Width) 5311 return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); 5312 } 5313 5314 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 5315 const ElementCountSet &VFCandidates) { 5316 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5317 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5318 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5319 assert(VFCandidates.count(ElementCount::getFixed(1)) && 5320 "Expected Scalar VF to be a candidate"); 5321 5322 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 5323 VectorizationFactor ChosenFactor = ScalarCost; 5324 5325 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5326 if (ForceVectorization && VFCandidates.size() > 1) { 5327 // Ignore scalar width, because the user explicitly wants vectorization. 5328 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5329 // evaluation. 5330 ChosenFactor.Cost = InstructionCost::getMax(); 5331 } 5332 5333 SmallVector<InstructionVFPair> InvalidCosts; 5334 for (const auto &i : VFCandidates) { 5335 // The cost for scalar VF=1 is already calculated, so ignore it. 5336 if (i.isScalar()) 5337 continue; 5338 5339 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 5340 VectorizationFactor Candidate(i, C.first); 5341 5342 #ifndef NDEBUG 5343 unsigned AssumedMinimumVscale = 1; 5344 if (Optional<unsigned> VScale = getVScaleForTuning()) 5345 AssumedMinimumVscale = VScale.getValue(); 5346 unsigned Width = 5347 Candidate.Width.isScalable() 5348 ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale 5349 : Candidate.Width.getFixedValue(); 5350 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5351 << " costs: " << (Candidate.Cost / Width)); 5352 if (i.isScalable()) 5353 LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of " 5354 << AssumedMinimumVscale << ")"); 5355 LLVM_DEBUG(dbgs() << ".\n"); 5356 #endif 5357 5358 if (!C.second && !ForceVectorization) { 5359 LLVM_DEBUG( 5360 dbgs() << "LV: Not considering vector loop of width " << i 5361 << " because it will not generate any vector instructions.\n"); 5362 continue; 5363 } 5364 5365 // If profitable add it to ProfitableVF list. 5366 if (isMoreProfitable(Candidate, ScalarCost)) 5367 ProfitableVFs.push_back(Candidate); 5368 5369 if (isMoreProfitable(Candidate, ChosenFactor)) 5370 ChosenFactor = Candidate; 5371 } 5372 5373 // Emit a report of VFs with invalid costs in the loop. 5374 if (!InvalidCosts.empty()) { 5375 // Group the remarks per instruction, keeping the instruction order from 5376 // InvalidCosts. 5377 std::map<Instruction *, unsigned> Numbering; 5378 unsigned I = 0; 5379 for (auto &Pair : InvalidCosts) 5380 if (!Numbering.count(Pair.first)) 5381 Numbering[Pair.first] = I++; 5382 5383 // Sort the list, first on instruction(number) then on VF. 5384 llvm::sort(InvalidCosts, 5385 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 5386 if (Numbering[A.first] != Numbering[B.first]) 5387 return Numbering[A.first] < Numbering[B.first]; 5388 ElementCountComparator ECC; 5389 return ECC(A.second, B.second); 5390 }); 5391 5392 // For a list of ordered instruction-vf pairs: 5393 // [(load, vf1), (load, vf2), (store, vf1)] 5394 // Group the instructions together to emit separate remarks for: 5395 // load (vf1, vf2) 5396 // store (vf1) 5397 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 5398 auto Subset = ArrayRef<InstructionVFPair>(); 5399 do { 5400 if (Subset.empty()) 5401 Subset = Tail.take_front(1); 5402 5403 Instruction *I = Subset.front().first; 5404 5405 // If the next instruction is different, or if there are no other pairs, 5406 // emit a remark for the collated subset. e.g. 5407 // [(load, vf1), (load, vf2))] 5408 // to emit: 5409 // remark: invalid costs for 'load' at VF=(vf, vf2) 5410 if (Subset == Tail || Tail[Subset.size()].first != I) { 5411 std::string OutString; 5412 raw_string_ostream OS(OutString); 5413 assert(!Subset.empty() && "Unexpected empty range"); 5414 OS << "Instruction with invalid costs prevented vectorization at VF=("; 5415 for (auto &Pair : Subset) 5416 OS << (Pair.second == Subset.front().second ? "" : ", ") 5417 << Pair.second; 5418 OS << "):"; 5419 if (auto *CI = dyn_cast<CallInst>(I)) 5420 OS << " call to " << CI->getCalledFunction()->getName(); 5421 else 5422 OS << " " << I->getOpcodeName(); 5423 OS.flush(); 5424 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 5425 Tail = Tail.drop_front(Subset.size()); 5426 Subset = {}; 5427 } else 5428 // Grow the subset by one element 5429 Subset = Tail.take_front(Subset.size() + 1); 5430 } while (!Tail.empty()); 5431 } 5432 5433 if (!EnableCondStoresVectorization && NumPredStores) { 5434 reportVectorizationFailure("There are conditional stores.", 5435 "store that is conditionally executed prevents vectorization", 5436 "ConditionalStore", ORE, TheLoop); 5437 ChosenFactor = ScalarCost; 5438 } 5439 5440 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 5441 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 5442 << "LV: Vectorization seems to be not beneficial, " 5443 << "but was forced by a user.\n"); 5444 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 5445 return ChosenFactor; 5446 } 5447 5448 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5449 const Loop &L, ElementCount VF) const { 5450 // Cross iteration phis such as reductions need special handling and are 5451 // currently unsupported. 5452 if (any_of(L.getHeader()->phis(), 5453 [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); })) 5454 return false; 5455 5456 // Phis with uses outside of the loop require special handling and are 5457 // currently unsupported. 5458 for (auto &Entry : Legal->getInductionVars()) { 5459 // Look for uses of the value of the induction at the last iteration. 5460 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5461 for (User *U : PostInc->users()) 5462 if (!L.contains(cast<Instruction>(U))) 5463 return false; 5464 // Look for uses of penultimate value of the induction. 5465 for (User *U : Entry.first->users()) 5466 if (!L.contains(cast<Instruction>(U))) 5467 return false; 5468 } 5469 5470 // Induction variables that are widened require special handling that is 5471 // currently not supported. 5472 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5473 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5474 this->isProfitableToScalarize(Entry.first, VF)); 5475 })) 5476 return false; 5477 5478 // Epilogue vectorization code has not been auditted to ensure it handles 5479 // non-latch exits properly. It may be fine, but it needs auditted and 5480 // tested. 5481 if (L.getExitingBlock() != L.getLoopLatch()) 5482 return false; 5483 5484 return true; 5485 } 5486 5487 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5488 const ElementCount VF) const { 5489 // FIXME: We need a much better cost-model to take different parameters such 5490 // as register pressure, code size increase and cost of extra branches into 5491 // account. For now we apply a very crude heuristic and only consider loops 5492 // with vectorization factors larger than a certain value. 5493 // We also consider epilogue vectorization unprofitable for targets that don't 5494 // consider interleaving beneficial (eg. MVE). 5495 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5496 return false; 5497 // FIXME: We should consider changing the threshold for scalable 5498 // vectors to take VScaleForTuning into account. 5499 if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) 5500 return true; 5501 return false; 5502 } 5503 5504 VectorizationFactor 5505 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5506 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5507 VectorizationFactor Result = VectorizationFactor::Disabled(); 5508 if (!EnableEpilogueVectorization) { 5509 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5510 return Result; 5511 } 5512 5513 if (!isScalarEpilogueAllowed()) { 5514 LLVM_DEBUG( 5515 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5516 "allowed.\n";); 5517 return Result; 5518 } 5519 5520 // Not really a cost consideration, but check for unsupported cases here to 5521 // simplify the logic. 5522 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5523 LLVM_DEBUG( 5524 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5525 "not a supported candidate.\n";); 5526 return Result; 5527 } 5528 5529 if (EpilogueVectorizationForceVF > 1) { 5530 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5531 ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); 5532 if (LVP.hasPlanWithVF(ForcedEC)) 5533 return {ForcedEC, 0}; 5534 else { 5535 LLVM_DEBUG( 5536 dbgs() 5537 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5538 return Result; 5539 } 5540 } 5541 5542 if (TheLoop->getHeader()->getParent()->hasOptSize() || 5543 TheLoop->getHeader()->getParent()->hasMinSize()) { 5544 LLVM_DEBUG( 5545 dbgs() 5546 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 5547 return Result; 5548 } 5549 5550 if (!isEpilogueVectorizationProfitable(MainLoopVF)) { 5551 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for " 5552 "this loop\n"); 5553 return Result; 5554 } 5555 5556 // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know 5557 // the main loop handles 8 lanes per iteration. We could still benefit from 5558 // vectorizing the epilogue loop with VF=4. 5559 ElementCount EstimatedRuntimeVF = MainLoopVF; 5560 if (MainLoopVF.isScalable()) { 5561 EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); 5562 if (Optional<unsigned> VScale = getVScaleForTuning()) 5563 EstimatedRuntimeVF *= VScale.getValue(); 5564 } 5565 5566 for (auto &NextVF : ProfitableVFs) 5567 if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && 5568 ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || 5569 ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && 5570 (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && 5571 LVP.hasPlanWithVF(NextVF.Width)) 5572 Result = NextVF; 5573 5574 if (Result != VectorizationFactor::Disabled()) 5575 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 5576 << Result.Width << "\n";); 5577 return Result; 5578 } 5579 5580 std::pair<unsigned, unsigned> 5581 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 5582 unsigned MinWidth = -1U; 5583 unsigned MaxWidth = 8; 5584 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 5585 // For in-loop reductions, no element types are added to ElementTypesInLoop 5586 // if there are no loads/stores in the loop. In this case, check through the 5587 // reduction variables to determine the maximum width. 5588 if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { 5589 // Reset MaxWidth so that we can find the smallest type used by recurrences 5590 // in the loop. 5591 MaxWidth = -1U; 5592 for (auto &PhiDescriptorPair : Legal->getReductionVars()) { 5593 const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; 5594 // When finding the min width used by the recurrence we need to account 5595 // for casts on the input operands of the recurrence. 5596 MaxWidth = std::min<unsigned>( 5597 MaxWidth, std::min<unsigned>( 5598 RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), 5599 RdxDesc.getRecurrenceType()->getScalarSizeInBits())); 5600 } 5601 } else { 5602 for (Type *T : ElementTypesInLoop) { 5603 MinWidth = std::min<unsigned>( 5604 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5605 MaxWidth = std::max<unsigned>( 5606 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 5607 } 5608 } 5609 return {MinWidth, MaxWidth}; 5610 } 5611 5612 void LoopVectorizationCostModel::collectElementTypesForWidening() { 5613 ElementTypesInLoop.clear(); 5614 // For each block. 5615 for (BasicBlock *BB : TheLoop->blocks()) { 5616 // For each instruction in the loop. 5617 for (Instruction &I : BB->instructionsWithoutDebug()) { 5618 Type *T = I.getType(); 5619 5620 // Skip ignored values. 5621 if (ValuesToIgnore.count(&I)) 5622 continue; 5623 5624 // Only examine Loads, Stores and PHINodes. 5625 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 5626 continue; 5627 5628 // Examine PHI nodes that are reduction variables. Update the type to 5629 // account for the recurrence type. 5630 if (auto *PN = dyn_cast<PHINode>(&I)) { 5631 if (!Legal->isReductionVariable(PN)) 5632 continue; 5633 const RecurrenceDescriptor &RdxDesc = 5634 Legal->getReductionVars().find(PN)->second; 5635 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 5636 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 5637 RdxDesc.getRecurrenceType(), 5638 TargetTransformInfo::ReductionFlags())) 5639 continue; 5640 T = RdxDesc.getRecurrenceType(); 5641 } 5642 5643 // Examine the stored values. 5644 if (auto *ST = dyn_cast<StoreInst>(&I)) 5645 T = ST->getValueOperand()->getType(); 5646 5647 assert(T->isSized() && 5648 "Expected the load/store/recurrence type to be sized"); 5649 5650 ElementTypesInLoop.insert(T); 5651 } 5652 } 5653 } 5654 5655 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 5656 unsigned LoopCost) { 5657 // -- The interleave heuristics -- 5658 // We interleave the loop in order to expose ILP and reduce the loop overhead. 5659 // There are many micro-architectural considerations that we can't predict 5660 // at this level. For example, frontend pressure (on decode or fetch) due to 5661 // code size, or the number and capabilities of the execution ports. 5662 // 5663 // We use the following heuristics to select the interleave count: 5664 // 1. If the code has reductions, then we interleave to break the cross 5665 // iteration dependency. 5666 // 2. If the loop is really small, then we interleave to reduce the loop 5667 // overhead. 5668 // 3. We don't interleave if we think that we will spill registers to memory 5669 // due to the increased register pressure. 5670 5671 if (!isScalarEpilogueAllowed()) 5672 return 1; 5673 5674 // We used the distance for the interleave count. 5675 if (Legal->getMaxSafeDepDistBytes() != -1U) 5676 return 1; 5677 5678 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 5679 const bool HasReductions = !Legal->getReductionVars().empty(); 5680 // Do not interleave loops with a relatively small known or estimated trip 5681 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 5682 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 5683 // because with the above conditions interleaving can expose ILP and break 5684 // cross iteration dependences for reductions. 5685 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 5686 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 5687 return 1; 5688 5689 // If we did not calculate the cost for VF (because the user selected the VF) 5690 // then we calculate the cost of VF here. 5691 if (LoopCost == 0) { 5692 InstructionCost C = expectedCost(VF).first; 5693 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 5694 LoopCost = *C.getValue(); 5695 5696 // Loop body is free and there is no need for interleaving. 5697 if (LoopCost == 0) 5698 return 1; 5699 } 5700 5701 RegisterUsage R = calculateRegisterUsage({VF})[0]; 5702 // We divide by these constants so assume that we have at least one 5703 // instruction that uses at least one register. 5704 for (auto& pair : R.MaxLocalUsers) { 5705 pair.second = std::max(pair.second, 1U); 5706 } 5707 5708 // We calculate the interleave count using the following formula. 5709 // Subtract the number of loop invariants from the number of available 5710 // registers. These registers are used by all of the interleaved instances. 5711 // Next, divide the remaining registers by the number of registers that is 5712 // required by the loop, in order to estimate how many parallel instances 5713 // fit without causing spills. All of this is rounded down if necessary to be 5714 // a power of two. We want power of two interleave count to simplify any 5715 // addressing operations or alignment considerations. 5716 // We also want power of two interleave counts to ensure that the induction 5717 // variable of the vector loop wraps to zero, when tail is folded by masking; 5718 // this currently happens when OptForSize, in which case IC is set to 1 above. 5719 unsigned IC = UINT_MAX; 5720 5721 for (auto& pair : R.MaxLocalUsers) { 5722 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5723 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 5724 << " registers of " 5725 << TTI.getRegisterClassName(pair.first) << " register class\n"); 5726 if (VF.isScalar()) { 5727 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 5728 TargetNumRegisters = ForceTargetNumScalarRegs; 5729 } else { 5730 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 5731 TargetNumRegisters = ForceTargetNumVectorRegs; 5732 } 5733 unsigned MaxLocalUsers = pair.second; 5734 unsigned LoopInvariantRegs = 0; 5735 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 5736 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 5737 5738 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 5739 // Don't count the induction variable as interleaved. 5740 if (EnableIndVarRegisterHeur) { 5741 TmpIC = 5742 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 5743 std::max(1U, (MaxLocalUsers - 1))); 5744 } 5745 5746 IC = std::min(IC, TmpIC); 5747 } 5748 5749 // Clamp the interleave ranges to reasonable counts. 5750 unsigned MaxInterleaveCount = 5751 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 5752 5753 // Check if the user has overridden the max. 5754 if (VF.isScalar()) { 5755 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 5756 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 5757 } else { 5758 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 5759 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 5760 } 5761 5762 // If trip count is known or estimated compile time constant, limit the 5763 // interleave count to be less than the trip count divided by VF, provided it 5764 // is at least 1. 5765 // 5766 // For scalable vectors we can't know if interleaving is beneficial. It may 5767 // not be beneficial for small loops if none of the lanes in the second vector 5768 // iterations is enabled. However, for larger loops, there is likely to be a 5769 // similar benefit as for fixed-width vectors. For now, we choose to leave 5770 // the InterleaveCount as if vscale is '1', although if some information about 5771 // the vector is known (e.g. min vector size), we can make a better decision. 5772 if (BestKnownTC) { 5773 MaxInterleaveCount = 5774 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 5775 // Make sure MaxInterleaveCount is greater than 0. 5776 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 5777 } 5778 5779 assert(MaxInterleaveCount > 0 && 5780 "Maximum interleave count must be greater than 0"); 5781 5782 // Clamp the calculated IC to be between the 1 and the max interleave count 5783 // that the target and trip count allows. 5784 if (IC > MaxInterleaveCount) 5785 IC = MaxInterleaveCount; 5786 else 5787 // Make sure IC is greater than 0. 5788 IC = std::max(1u, IC); 5789 5790 assert(IC > 0 && "Interleave count must be greater than 0."); 5791 5792 // Interleave if we vectorized this loop and there is a reduction that could 5793 // benefit from interleaving. 5794 if (VF.isVector() && HasReductions) { 5795 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 5796 return IC; 5797 } 5798 5799 // For any scalar loop that either requires runtime checks or predication we 5800 // are better off leaving this to the unroller. Note that if we've already 5801 // vectorized the loop we will have done the runtime check and so interleaving 5802 // won't require further checks. 5803 bool ScalarInterleavingRequiresPredication = 5804 (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { 5805 return Legal->blockNeedsPredication(BB); 5806 })); 5807 bool ScalarInterleavingRequiresRuntimePointerCheck = 5808 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 5809 5810 // We want to interleave small loops in order to reduce the loop overhead and 5811 // potentially expose ILP opportunities. 5812 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 5813 << "LV: IC is " << IC << '\n' 5814 << "LV: VF is " << VF << '\n'); 5815 const bool AggressivelyInterleaveReductions = 5816 TTI.enableAggressiveInterleaving(HasReductions); 5817 if (!ScalarInterleavingRequiresRuntimePointerCheck && 5818 !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { 5819 // We assume that the cost overhead is 1 and we use the cost model 5820 // to estimate the cost of the loop and interleave until the cost of the 5821 // loop overhead is about 5% of the cost of the loop. 5822 unsigned SmallIC = 5823 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 5824 5825 // Interleave until store/load ports (estimated by max interleave count) are 5826 // saturated. 5827 unsigned NumStores = Legal->getNumStores(); 5828 unsigned NumLoads = Legal->getNumLoads(); 5829 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 5830 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 5831 5832 // There is little point in interleaving for reductions containing selects 5833 // and compares when VF=1 since it may just create more overhead than it's 5834 // worth for loops with small trip counts. This is because we still have to 5835 // do the final reduction after the loop. 5836 bool HasSelectCmpReductions = 5837 HasReductions && 5838 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5839 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5840 return RecurrenceDescriptor::isSelectCmpRecurrenceKind( 5841 RdxDesc.getRecurrenceKind()); 5842 }); 5843 if (HasSelectCmpReductions) { 5844 LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n"); 5845 return 1; 5846 } 5847 5848 // If we have a scalar reduction (vector reductions are already dealt with 5849 // by this point), we can increase the critical path length if the loop 5850 // we're interleaving is inside another loop. For tree-wise reductions 5851 // set the limit to 2, and for ordered reductions it's best to disable 5852 // interleaving entirely. 5853 if (HasReductions && TheLoop->getLoopDepth() > 1) { 5854 bool HasOrderedReductions = 5855 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 5856 const RecurrenceDescriptor &RdxDesc = Reduction.second; 5857 return RdxDesc.isOrdered(); 5858 }); 5859 if (HasOrderedReductions) { 5860 LLVM_DEBUG( 5861 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 5862 return 1; 5863 } 5864 5865 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 5866 SmallIC = std::min(SmallIC, F); 5867 StoresIC = std::min(StoresIC, F); 5868 LoadsIC = std::min(LoadsIC, F); 5869 } 5870 5871 if (EnableLoadStoreRuntimeInterleave && 5872 std::max(StoresIC, LoadsIC) > SmallIC) { 5873 LLVM_DEBUG( 5874 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 5875 return std::max(StoresIC, LoadsIC); 5876 } 5877 5878 // If there are scalar reductions and TTI has enabled aggressive 5879 // interleaving for reductions, we will interleave to expose ILP. 5880 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 5881 AggressivelyInterleaveReductions) { 5882 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5883 // Interleave no less than SmallIC but not as aggressive as the normal IC 5884 // to satisfy the rare situation when resources are too limited. 5885 return std::max(IC / 2, SmallIC); 5886 } else { 5887 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 5888 return SmallIC; 5889 } 5890 } 5891 5892 // Interleave if this is a large loop (small loops are already dealt with by 5893 // this point) that could benefit from interleaving. 5894 if (AggressivelyInterleaveReductions) { 5895 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 5896 return IC; 5897 } 5898 5899 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 5900 return 1; 5901 } 5902 5903 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 5904 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 5905 // This function calculates the register usage by measuring the highest number 5906 // of values that are alive at a single location. Obviously, this is a very 5907 // rough estimation. We scan the loop in a topological order in order and 5908 // assign a number to each instruction. We use RPO to ensure that defs are 5909 // met before their users. We assume that each instruction that has in-loop 5910 // users starts an interval. We record every time that an in-loop value is 5911 // used, so we have a list of the first and last occurrences of each 5912 // instruction. Next, we transpose this data structure into a multi map that 5913 // holds the list of intervals that *end* at a specific location. This multi 5914 // map allows us to perform a linear search. We scan the instructions linearly 5915 // and record each time that a new interval starts, by placing it in a set. 5916 // If we find this value in the multi-map then we remove it from the set. 5917 // The max register usage is the maximum size of the set. 5918 // We also search for instructions that are defined outside the loop, but are 5919 // used inside the loop. We need this number separately from the max-interval 5920 // usage number because when we unroll, loop-invariant values do not take 5921 // more register. 5922 LoopBlocksDFS DFS(TheLoop); 5923 DFS.perform(LI); 5924 5925 RegisterUsage RU; 5926 5927 // Each 'key' in the map opens a new interval. The values 5928 // of the map are the index of the 'last seen' usage of the 5929 // instruction that is the key. 5930 using IntervalMap = DenseMap<Instruction *, unsigned>; 5931 5932 // Maps instruction to its index. 5933 SmallVector<Instruction *, 64> IdxToInstr; 5934 // Marks the end of each interval. 5935 IntervalMap EndPoint; 5936 // Saves the list of instruction indices that are used in the loop. 5937 SmallPtrSet<Instruction *, 8> Ends; 5938 // Saves the list of values that are used in the loop but are 5939 // defined outside the loop, such as arguments and constants. 5940 SmallPtrSet<Value *, 8> LoopInvariants; 5941 5942 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 5943 for (Instruction &I : BB->instructionsWithoutDebug()) { 5944 IdxToInstr.push_back(&I); 5945 5946 // Save the end location of each USE. 5947 for (Value *U : I.operands()) { 5948 auto *Instr = dyn_cast<Instruction>(U); 5949 5950 // Ignore non-instruction values such as arguments, constants, etc. 5951 if (!Instr) 5952 continue; 5953 5954 // If this instruction is outside the loop then record it and continue. 5955 if (!TheLoop->contains(Instr)) { 5956 LoopInvariants.insert(Instr); 5957 continue; 5958 } 5959 5960 // Overwrite previous end points. 5961 EndPoint[Instr] = IdxToInstr.size(); 5962 Ends.insert(Instr); 5963 } 5964 } 5965 } 5966 5967 // Saves the list of intervals that end with the index in 'key'. 5968 using InstrList = SmallVector<Instruction *, 2>; 5969 DenseMap<unsigned, InstrList> TransposeEnds; 5970 5971 // Transpose the EndPoints to a list of values that end at each index. 5972 for (auto &Interval : EndPoint) 5973 TransposeEnds[Interval.second].push_back(Interval.first); 5974 5975 SmallPtrSet<Instruction *, 8> OpenIntervals; 5976 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 5977 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 5978 5979 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 5980 5981 auto GetRegUsage = [&TTI = TTI](Type *Ty, ElementCount VF) -> unsigned { 5982 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 5983 return 0; 5984 return TTI.getRegUsageForType(VectorType::get(Ty, VF)); 5985 }; 5986 5987 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 5988 Instruction *I = IdxToInstr[i]; 5989 5990 // Remove all of the instructions that end at this location. 5991 InstrList &List = TransposeEnds[i]; 5992 for (Instruction *ToRemove : List) 5993 OpenIntervals.erase(ToRemove); 5994 5995 // Ignore instructions that are never used within the loop. 5996 if (!Ends.count(I)) 5997 continue; 5998 5999 // Skip ignored values. 6000 if (ValuesToIgnore.count(I)) 6001 continue; 6002 6003 // For each VF find the maximum usage of registers. 6004 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6005 // Count the number of live intervals. 6006 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6007 6008 if (VFs[j].isScalar()) { 6009 for (auto Inst : OpenIntervals) { 6010 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6011 if (RegUsage.find(ClassID) == RegUsage.end()) 6012 RegUsage[ClassID] = 1; 6013 else 6014 RegUsage[ClassID] += 1; 6015 } 6016 } else { 6017 collectUniformsAndScalars(VFs[j]); 6018 for (auto Inst : OpenIntervals) { 6019 // Skip ignored values for VF > 1. 6020 if (VecValuesToIgnore.count(Inst)) 6021 continue; 6022 if (isScalarAfterVectorization(Inst, VFs[j])) { 6023 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6024 if (RegUsage.find(ClassID) == RegUsage.end()) 6025 RegUsage[ClassID] = 1; 6026 else 6027 RegUsage[ClassID] += 1; 6028 } else { 6029 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6030 if (RegUsage.find(ClassID) == RegUsage.end()) 6031 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6032 else 6033 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6034 } 6035 } 6036 } 6037 6038 for (auto& pair : RegUsage) { 6039 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6040 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6041 else 6042 MaxUsages[j][pair.first] = pair.second; 6043 } 6044 } 6045 6046 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6047 << OpenIntervals.size() << '\n'); 6048 6049 // Add the current instruction to the list of open intervals. 6050 OpenIntervals.insert(I); 6051 } 6052 6053 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6054 SmallMapVector<unsigned, unsigned, 4> Invariant; 6055 6056 for (auto Inst : LoopInvariants) { 6057 unsigned Usage = 6058 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6059 unsigned ClassID = 6060 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6061 if (Invariant.find(ClassID) == Invariant.end()) 6062 Invariant[ClassID] = Usage; 6063 else 6064 Invariant[ClassID] += Usage; 6065 } 6066 6067 LLVM_DEBUG({ 6068 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6069 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6070 << " item\n"; 6071 for (const auto &pair : MaxUsages[i]) { 6072 dbgs() << "LV(REG): RegisterClass: " 6073 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6074 << " registers\n"; 6075 } 6076 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6077 << " item\n"; 6078 for (const auto &pair : Invariant) { 6079 dbgs() << "LV(REG): RegisterClass: " 6080 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6081 << " registers\n"; 6082 } 6083 }); 6084 6085 RU.LoopInvariantRegs = Invariant; 6086 RU.MaxLocalUsers = MaxUsages[i]; 6087 RUs[i] = RU; 6088 } 6089 6090 return RUs; 6091 } 6092 6093 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, 6094 ElementCount VF) { 6095 // TODO: Cost model for emulated masked load/store is completely 6096 // broken. This hack guides the cost model to use an artificially 6097 // high enough value to practically disable vectorization with such 6098 // operations, except where previously deployed legality hack allowed 6099 // using very low cost values. This is to avoid regressions coming simply 6100 // from moving "masked load/store" check from legality to cost model. 6101 // Masked Load/Gather emulation was previously never allowed. 6102 // Limited number of Masked Store/Scatter emulation was allowed. 6103 assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction"); 6104 return isa<LoadInst>(I) || 6105 (isa<StoreInst>(I) && 6106 NumPredStores > NumberOfStoresToPredicate); 6107 } 6108 6109 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6110 // If we aren't vectorizing the loop, or if we've already collected the 6111 // instructions to scalarize, there's nothing to do. Collection may already 6112 // have occurred if we have a user-selected VF and are now computing the 6113 // expected cost for interleaving. 6114 if (VF.isScalar() || VF.isZero() || 6115 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6116 return; 6117 6118 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6119 // not profitable to scalarize any instructions, the presence of VF in the 6120 // map will indicate that we've analyzed it already. 6121 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6122 6123 // Find all the instructions that are scalar with predication in the loop and 6124 // determine if it would be better to not if-convert the blocks they are in. 6125 // If so, we also record the instructions to scalarize. 6126 for (BasicBlock *BB : TheLoop->blocks()) { 6127 if (!blockNeedsPredicationForAnyReason(BB)) 6128 continue; 6129 for (Instruction &I : *BB) 6130 if (isScalarWithPredication(&I, VF)) { 6131 ScalarCostsTy ScalarCosts; 6132 // Do not apply discount if scalable, because that would lead to 6133 // invalid scalarization costs. 6134 // Do not apply discount logic if hacked cost is needed 6135 // for emulated masked memrefs. 6136 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && 6137 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6138 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6139 // Remember that BB will remain after vectorization. 6140 PredicatedBBsAfterVectorization.insert(BB); 6141 } 6142 } 6143 } 6144 6145 int LoopVectorizationCostModel::computePredInstDiscount( 6146 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6147 assert(!isUniformAfterVectorization(PredInst, VF) && 6148 "Instruction marked uniform-after-vectorization will be predicated"); 6149 6150 // Initialize the discount to zero, meaning that the scalar version and the 6151 // vector version cost the same. 6152 InstructionCost Discount = 0; 6153 6154 // Holds instructions to analyze. The instructions we visit are mapped in 6155 // ScalarCosts. Those instructions are the ones that would be scalarized if 6156 // we find that the scalar version costs less. 6157 SmallVector<Instruction *, 8> Worklist; 6158 6159 // Returns true if the given instruction can be scalarized. 6160 auto canBeScalarized = [&](Instruction *I) -> bool { 6161 // We only attempt to scalarize instructions forming a single-use chain 6162 // from the original predicated block that would otherwise be vectorized. 6163 // Although not strictly necessary, we give up on instructions we know will 6164 // already be scalar to avoid traversing chains that are unlikely to be 6165 // beneficial. 6166 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6167 isScalarAfterVectorization(I, VF)) 6168 return false; 6169 6170 // If the instruction is scalar with predication, it will be analyzed 6171 // separately. We ignore it within the context of PredInst. 6172 if (isScalarWithPredication(I, VF)) 6173 return false; 6174 6175 // If any of the instruction's operands are uniform after vectorization, 6176 // the instruction cannot be scalarized. This prevents, for example, a 6177 // masked load from being scalarized. 6178 // 6179 // We assume we will only emit a value for lane zero of an instruction 6180 // marked uniform after vectorization, rather than VF identical values. 6181 // Thus, if we scalarize an instruction that uses a uniform, we would 6182 // create uses of values corresponding to the lanes we aren't emitting code 6183 // for. This behavior can be changed by allowing getScalarValue to clone 6184 // the lane zero values for uniforms rather than asserting. 6185 for (Use &U : I->operands()) 6186 if (auto *J = dyn_cast<Instruction>(U.get())) 6187 if (isUniformAfterVectorization(J, VF)) 6188 return false; 6189 6190 // Otherwise, we can scalarize the instruction. 6191 return true; 6192 }; 6193 6194 // Compute the expected cost discount from scalarizing the entire expression 6195 // feeding the predicated instruction. We currently only consider expressions 6196 // that are single-use instruction chains. 6197 Worklist.push_back(PredInst); 6198 while (!Worklist.empty()) { 6199 Instruction *I = Worklist.pop_back_val(); 6200 6201 // If we've already analyzed the instruction, there's nothing to do. 6202 if (ScalarCosts.find(I) != ScalarCosts.end()) 6203 continue; 6204 6205 // Compute the cost of the vector instruction. Note that this cost already 6206 // includes the scalarization overhead of the predicated instruction. 6207 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6208 6209 // Compute the cost of the scalarized instruction. This cost is the cost of 6210 // the instruction as if it wasn't if-converted and instead remained in the 6211 // predicated block. We will scale this cost by block probability after 6212 // computing the scalarization overhead. 6213 InstructionCost ScalarCost = 6214 VF.getFixedValue() * 6215 getInstructionCost(I, ElementCount::getFixed(1)).first; 6216 6217 // Compute the scalarization overhead of needed insertelement instructions 6218 // and phi nodes. 6219 if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { 6220 ScalarCost += TTI.getScalarizationOverhead( 6221 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6222 APInt::getAllOnes(VF.getFixedValue()), true, false); 6223 ScalarCost += 6224 VF.getFixedValue() * 6225 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6226 } 6227 6228 // Compute the scalarization overhead of needed extractelement 6229 // instructions. For each of the instruction's operands, if the operand can 6230 // be scalarized, add it to the worklist; otherwise, account for the 6231 // overhead. 6232 for (Use &U : I->operands()) 6233 if (auto *J = dyn_cast<Instruction>(U.get())) { 6234 assert(VectorType::isValidElementType(J->getType()) && 6235 "Instruction has non-scalar type"); 6236 if (canBeScalarized(J)) 6237 Worklist.push_back(J); 6238 else if (needsExtract(J, VF)) { 6239 ScalarCost += TTI.getScalarizationOverhead( 6240 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6241 APInt::getAllOnes(VF.getFixedValue()), false, true); 6242 } 6243 } 6244 6245 // Scale the total scalar cost by block probability. 6246 ScalarCost /= getReciprocalPredBlockProb(); 6247 6248 // Compute the discount. A non-negative discount means the vector version 6249 // of the instruction costs more, and scalarizing would be beneficial. 6250 Discount += VectorCost - ScalarCost; 6251 ScalarCosts[I] = ScalarCost; 6252 } 6253 6254 return *Discount.getValue(); 6255 } 6256 6257 LoopVectorizationCostModel::VectorizationCostTy 6258 LoopVectorizationCostModel::expectedCost( 6259 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6260 VectorizationCostTy Cost; 6261 6262 // For each block. 6263 for (BasicBlock *BB : TheLoop->blocks()) { 6264 VectorizationCostTy BlockCost; 6265 6266 // For each instruction in the old loop. 6267 for (Instruction &I : BB->instructionsWithoutDebug()) { 6268 // Skip ignored values. 6269 if (ValuesToIgnore.count(&I) || 6270 (VF.isVector() && VecValuesToIgnore.count(&I))) 6271 continue; 6272 6273 VectorizationCostTy C = getInstructionCost(&I, VF); 6274 6275 // Check if we should override the cost. 6276 if (C.first.isValid() && 6277 ForceTargetInstructionCost.getNumOccurrences() > 0) 6278 C.first = InstructionCost(ForceTargetInstructionCost); 6279 6280 // Keep a list of instructions with invalid costs. 6281 if (Invalid && !C.first.isValid()) 6282 Invalid->emplace_back(&I, VF); 6283 6284 BlockCost.first += C.first; 6285 BlockCost.second |= C.second; 6286 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6287 << " for VF " << VF << " For instruction: " << I 6288 << '\n'); 6289 } 6290 6291 // If we are vectorizing a predicated block, it will have been 6292 // if-converted. This means that the block's instructions (aside from 6293 // stores and instructions that may divide by zero) will now be 6294 // unconditionally executed. For the scalar case, we may not always execute 6295 // the predicated block, if it is an if-else block. Thus, scale the block's 6296 // cost by the probability of executing it. blockNeedsPredication from 6297 // Legal is used so as to not include all blocks in tail folded loops. 6298 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6299 BlockCost.first /= getReciprocalPredBlockProb(); 6300 6301 Cost.first += BlockCost.first; 6302 Cost.second |= BlockCost.second; 6303 } 6304 6305 return Cost; 6306 } 6307 6308 /// Gets Address Access SCEV after verifying that the access pattern 6309 /// is loop invariant except the induction variable dependence. 6310 /// 6311 /// This SCEV can be sent to the Target in order to estimate the address 6312 /// calculation cost. 6313 static const SCEV *getAddressAccessSCEV( 6314 Value *Ptr, 6315 LoopVectorizationLegality *Legal, 6316 PredicatedScalarEvolution &PSE, 6317 const Loop *TheLoop) { 6318 6319 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6320 if (!Gep) 6321 return nullptr; 6322 6323 // We are looking for a gep with all loop invariant indices except for one 6324 // which should be an induction variable. 6325 auto SE = PSE.getSE(); 6326 unsigned NumOperands = Gep->getNumOperands(); 6327 for (unsigned i = 1; i < NumOperands; ++i) { 6328 Value *Opd = Gep->getOperand(i); 6329 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6330 !Legal->isInductionVariable(Opd)) 6331 return nullptr; 6332 } 6333 6334 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6335 return PSE.getSCEV(Ptr); 6336 } 6337 6338 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6339 return Legal->hasStride(I->getOperand(0)) || 6340 Legal->hasStride(I->getOperand(1)); 6341 } 6342 6343 InstructionCost 6344 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6345 ElementCount VF) { 6346 assert(VF.isVector() && 6347 "Scalarization cost of instruction implies vectorization."); 6348 if (VF.isScalable()) 6349 return InstructionCost::getInvalid(); 6350 6351 Type *ValTy = getLoadStoreType(I); 6352 auto SE = PSE.getSE(); 6353 6354 unsigned AS = getLoadStoreAddressSpace(I); 6355 Value *Ptr = getLoadStorePointerOperand(I); 6356 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6357 // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` 6358 // that it is being called from this specific place. 6359 6360 // Figure out whether the access is strided and get the stride value 6361 // if it's known in compile time 6362 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6363 6364 // Get the cost of the scalar memory instruction and address computation. 6365 InstructionCost Cost = 6366 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6367 6368 // Don't pass *I here, since it is scalar but will actually be part of a 6369 // vectorized loop where the user of it is a vectorized instruction. 6370 const Align Alignment = getLoadStoreAlignment(I); 6371 Cost += VF.getKnownMinValue() * 6372 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6373 AS, TTI::TCK_RecipThroughput); 6374 6375 // Get the overhead of the extractelement and insertelement instructions 6376 // we might create due to scalarization. 6377 Cost += getScalarizationOverhead(I, VF); 6378 6379 // If we have a predicated load/store, it will need extra i1 extracts and 6380 // conditional branches, but may not be executed for each vector lane. Scale 6381 // the cost by the probability of executing the predicated block. 6382 if (isPredicatedInst(I, VF)) { 6383 Cost /= getReciprocalPredBlockProb(); 6384 6385 // Add the cost of an i1 extract and a branch 6386 auto *Vec_i1Ty = 6387 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 6388 Cost += TTI.getScalarizationOverhead( 6389 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 6390 /*Insert=*/false, /*Extract=*/true); 6391 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 6392 6393 if (useEmulatedMaskMemRefHack(I, VF)) 6394 // Artificially setting to a high enough value to practically disable 6395 // vectorization with such operations. 6396 Cost = 3000000; 6397 } 6398 6399 return Cost; 6400 } 6401 6402 InstructionCost 6403 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6404 ElementCount VF) { 6405 Type *ValTy = getLoadStoreType(I); 6406 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6407 Value *Ptr = getLoadStorePointerOperand(I); 6408 unsigned AS = getLoadStoreAddressSpace(I); 6409 int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); 6410 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6411 6412 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6413 "Stride should be 1 or -1 for consecutive memory access"); 6414 const Align Alignment = getLoadStoreAlignment(I); 6415 InstructionCost Cost = 0; 6416 if (Legal->isMaskRequired(I)) 6417 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6418 CostKind); 6419 else 6420 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6421 CostKind, I); 6422 6423 bool Reverse = ConsecutiveStride < 0; 6424 if (Reverse) 6425 Cost += 6426 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6427 return Cost; 6428 } 6429 6430 InstructionCost 6431 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6432 ElementCount VF) { 6433 assert(Legal->isUniformMemOp(*I)); 6434 6435 Type *ValTy = getLoadStoreType(I); 6436 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6437 const Align Alignment = getLoadStoreAlignment(I); 6438 unsigned AS = getLoadStoreAddressSpace(I); 6439 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6440 if (isa<LoadInst>(I)) { 6441 return TTI.getAddressComputationCost(ValTy) + 6442 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6443 CostKind) + 6444 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6445 } 6446 StoreInst *SI = cast<StoreInst>(I); 6447 6448 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6449 return TTI.getAddressComputationCost(ValTy) + 6450 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6451 CostKind) + 6452 (isLoopInvariantStoreValue 6453 ? 0 6454 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6455 VF.getKnownMinValue() - 1)); 6456 } 6457 6458 InstructionCost 6459 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6460 ElementCount VF) { 6461 Type *ValTy = getLoadStoreType(I); 6462 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6463 const Align Alignment = getLoadStoreAlignment(I); 6464 const Value *Ptr = getLoadStorePointerOperand(I); 6465 6466 return TTI.getAddressComputationCost(VectorTy) + 6467 TTI.getGatherScatterOpCost( 6468 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6469 TargetTransformInfo::TCK_RecipThroughput, I); 6470 } 6471 6472 InstructionCost 6473 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6474 ElementCount VF) { 6475 // TODO: Once we have support for interleaving with scalable vectors 6476 // we can calculate the cost properly here. 6477 if (VF.isScalable()) 6478 return InstructionCost::getInvalid(); 6479 6480 Type *ValTy = getLoadStoreType(I); 6481 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6482 unsigned AS = getLoadStoreAddressSpace(I); 6483 6484 auto Group = getInterleavedAccessGroup(I); 6485 assert(Group && "Fail to get an interleaved access group."); 6486 6487 unsigned InterleaveFactor = Group->getFactor(); 6488 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6489 6490 // Holds the indices of existing members in the interleaved group. 6491 SmallVector<unsigned, 4> Indices; 6492 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 6493 if (Group->getMember(IF)) 6494 Indices.push_back(IF); 6495 6496 // Calculate the cost of the whole interleaved group. 6497 bool UseMaskForGaps = 6498 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 6499 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 6500 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6501 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6502 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6503 6504 if (Group->isReverse()) { 6505 // TODO: Add support for reversed masked interleaved access. 6506 assert(!Legal->isMaskRequired(I) && 6507 "Reverse masked interleaved access not supported."); 6508 Cost += 6509 Group->getNumMembers() * 6510 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 6511 } 6512 return Cost; 6513 } 6514 6515 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 6516 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6517 using namespace llvm::PatternMatch; 6518 // Early exit for no inloop reductions 6519 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6520 return None; 6521 auto *VectorTy = cast<VectorType>(Ty); 6522 6523 // We are looking for a pattern of, and finding the minimal acceptable cost: 6524 // reduce(mul(ext(A), ext(B))) or 6525 // reduce(mul(A, B)) or 6526 // reduce(ext(A)) or 6527 // reduce(A). 6528 // The basic idea is that we walk down the tree to do that, finding the root 6529 // reduction instruction in InLoopReductionImmediateChains. From there we find 6530 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6531 // of the components. If the reduction cost is lower then we return it for the 6532 // reduction instruction and 0 for the other instructions in the pattern. If 6533 // it is not we return an invalid cost specifying the orignal cost method 6534 // should be used. 6535 Instruction *RetI = I; 6536 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 6537 if (!RetI->hasOneUser()) 6538 return None; 6539 RetI = RetI->user_back(); 6540 } 6541 if (match(RetI, m_Mul(m_Value(), m_Value())) && 6542 RetI->user_back()->getOpcode() == Instruction::Add) { 6543 if (!RetI->hasOneUser()) 6544 return None; 6545 RetI = RetI->user_back(); 6546 } 6547 6548 // Test if the found instruction is a reduction, and if not return an invalid 6549 // cost specifying the parent to use the original cost modelling. 6550 if (!InLoopReductionImmediateChains.count(RetI)) 6551 return None; 6552 6553 // Find the reduction this chain is a part of and calculate the basic cost of 6554 // the reduction on its own. 6555 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6556 Instruction *ReductionPhi = LastChain; 6557 while (!isa<PHINode>(ReductionPhi)) 6558 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6559 6560 const RecurrenceDescriptor &RdxDesc = 6561 Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; 6562 6563 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 6564 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 6565 6566 // For a call to the llvm.fmuladd intrinsic we need to add the cost of a 6567 // normal fmul instruction to the cost of the fadd reduction. 6568 if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) 6569 BaseCost += 6570 TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); 6571 6572 // If we're using ordered reductions then we can just return the base cost 6573 // here, since getArithmeticReductionCost calculates the full ordered 6574 // reduction cost when FP reassociation is not allowed. 6575 if (useOrderedReductions(RdxDesc)) 6576 return BaseCost; 6577 6578 // Get the operand that was not the reduction chain and match it to one of the 6579 // patterns, returning the better cost if it is found. 6580 Instruction *RedOp = RetI->getOperand(1) == LastChain 6581 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6582 : dyn_cast<Instruction>(RetI->getOperand(1)); 6583 6584 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6585 6586 Instruction *Op0, *Op1; 6587 if (RedOp && 6588 match(RedOp, 6589 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 6590 match(Op0, m_ZExtOrSExt(m_Value())) && 6591 Op0->getOpcode() == Op1->getOpcode() && 6592 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6593 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 6594 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 6595 6596 // Matched reduce(ext(mul(ext(A), ext(B))) 6597 // Note that the extend opcodes need to all match, or if A==B they will have 6598 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 6599 // which is equally fine. 6600 bool IsUnsigned = isa<ZExtInst>(Op0); 6601 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6602 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 6603 6604 InstructionCost ExtCost = 6605 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 6606 TTI::CastContextHint::None, CostKind, Op0); 6607 InstructionCost MulCost = 6608 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 6609 InstructionCost Ext2Cost = 6610 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 6611 TTI::CastContextHint::None, CostKind, RedOp); 6612 6613 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6614 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6615 CostKind); 6616 6617 if (RedCost.isValid() && 6618 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 6619 return I == RetI ? RedCost : 0; 6620 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 6621 !TheLoop->isLoopInvariant(RedOp)) { 6622 // Matched reduce(ext(A)) 6623 bool IsUnsigned = isa<ZExtInst>(RedOp); 6624 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6625 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6626 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6627 CostKind); 6628 6629 InstructionCost ExtCost = 6630 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6631 TTI::CastContextHint::None, CostKind, RedOp); 6632 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6633 return I == RetI ? RedCost : 0; 6634 } else if (RedOp && 6635 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 6636 if (match(Op0, m_ZExtOrSExt(m_Value())) && 6637 Op0->getOpcode() == Op1->getOpcode() && 6638 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6639 bool IsUnsigned = isa<ZExtInst>(Op0); 6640 Type *Op0Ty = Op0->getOperand(0)->getType(); 6641 Type *Op1Ty = Op1->getOperand(0)->getType(); 6642 Type *LargestOpTy = 6643 Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty 6644 : Op0Ty; 6645 auto *ExtType = VectorType::get(LargestOpTy, VectorTy); 6646 6647 // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of 6648 // different sizes. We take the largest type as the ext to reduce, and add 6649 // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). 6650 InstructionCost ExtCost0 = TTI.getCastInstrCost( 6651 Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), 6652 TTI::CastContextHint::None, CostKind, Op0); 6653 InstructionCost ExtCost1 = TTI.getCastInstrCost( 6654 Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), 6655 TTI::CastContextHint::None, CostKind, Op1); 6656 InstructionCost MulCost = 6657 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6658 6659 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6660 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6661 CostKind); 6662 InstructionCost ExtraExtCost = 0; 6663 if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { 6664 Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; 6665 ExtraExtCost = TTI.getCastInstrCost( 6666 ExtraExtOp->getOpcode(), ExtType, 6667 VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), 6668 TTI::CastContextHint::None, CostKind, ExtraExtOp); 6669 } 6670 6671 if (RedCost.isValid() && 6672 (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) 6673 return I == RetI ? RedCost : 0; 6674 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 6675 // Matched reduce(mul()) 6676 InstructionCost MulCost = 6677 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 6678 6679 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6680 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6681 CostKind); 6682 6683 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6684 return I == RetI ? RedCost : 0; 6685 } 6686 } 6687 6688 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 6689 } 6690 6691 InstructionCost 6692 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 6693 ElementCount VF) { 6694 // Calculate scalar cost only. Vectorization cost should be ready at this 6695 // moment. 6696 if (VF.isScalar()) { 6697 Type *ValTy = getLoadStoreType(I); 6698 const Align Alignment = getLoadStoreAlignment(I); 6699 unsigned AS = getLoadStoreAddressSpace(I); 6700 6701 return TTI.getAddressComputationCost(ValTy) + 6702 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 6703 TTI::TCK_RecipThroughput, I); 6704 } 6705 return getWideningCost(I, VF); 6706 } 6707 6708 LoopVectorizationCostModel::VectorizationCostTy 6709 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 6710 ElementCount VF) { 6711 // If we know that this instruction will remain uniform, check the cost of 6712 // the scalar version. 6713 if (isUniformAfterVectorization(I, VF)) 6714 VF = ElementCount::getFixed(1); 6715 6716 if (VF.isVector() && isProfitableToScalarize(I, VF)) 6717 return VectorizationCostTy(InstsToScalarize[VF][I], false); 6718 6719 // Forced scalars do not have any scalarization overhead. 6720 auto ForcedScalar = ForcedScalars.find(VF); 6721 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 6722 auto InstSet = ForcedScalar->second; 6723 if (InstSet.count(I)) 6724 return VectorizationCostTy( 6725 (getInstructionCost(I, ElementCount::getFixed(1)).first * 6726 VF.getKnownMinValue()), 6727 false); 6728 } 6729 6730 Type *VectorTy; 6731 InstructionCost C = getInstructionCost(I, VF, VectorTy); 6732 6733 bool TypeNotScalarized = false; 6734 if (VF.isVector() && VectorTy->isVectorTy()) { 6735 unsigned NumParts = TTI.getNumberOfParts(VectorTy); 6736 if (NumParts) 6737 TypeNotScalarized = NumParts < VF.getKnownMinValue(); 6738 else 6739 C = InstructionCost::getInvalid(); 6740 } 6741 return VectorizationCostTy(C, TypeNotScalarized); 6742 } 6743 6744 InstructionCost 6745 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 6746 ElementCount VF) const { 6747 6748 // There is no mechanism yet to create a scalable scalarization loop, 6749 // so this is currently Invalid. 6750 if (VF.isScalable()) 6751 return InstructionCost::getInvalid(); 6752 6753 if (VF.isScalar()) 6754 return 0; 6755 6756 InstructionCost Cost = 0; 6757 Type *RetTy = ToVectorTy(I->getType(), VF); 6758 if (!RetTy->isVoidTy() && 6759 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 6760 Cost += TTI.getScalarizationOverhead( 6761 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 6762 false); 6763 6764 // Some targets keep addresses scalar. 6765 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 6766 return Cost; 6767 6768 // Some targets support efficient element stores. 6769 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 6770 return Cost; 6771 6772 // Collect operands to consider. 6773 CallInst *CI = dyn_cast<CallInst>(I); 6774 Instruction::op_range Ops = CI ? CI->args() : I->operands(); 6775 6776 // Skip operands that do not require extraction/scalarization and do not incur 6777 // any overhead. 6778 SmallVector<Type *> Tys; 6779 for (auto *V : filterExtractingOperands(Ops, VF)) 6780 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 6781 return Cost + TTI.getOperandsScalarizationOverhead( 6782 filterExtractingOperands(Ops, VF), Tys); 6783 } 6784 6785 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 6786 if (VF.isScalar()) 6787 return; 6788 NumPredStores = 0; 6789 for (BasicBlock *BB : TheLoop->blocks()) { 6790 // For each instruction in the old loop. 6791 for (Instruction &I : *BB) { 6792 Value *Ptr = getLoadStorePointerOperand(&I); 6793 if (!Ptr) 6794 continue; 6795 6796 // TODO: We should generate better code and update the cost model for 6797 // predicated uniform stores. Today they are treated as any other 6798 // predicated store (see added test cases in 6799 // invariant-store-vectorization.ll). 6800 if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) 6801 NumPredStores++; 6802 6803 if (Legal->isUniformMemOp(I)) { 6804 // TODO: Avoid replicating loads and stores instead of 6805 // relying on instcombine to remove them. 6806 // Load: Scalar load + broadcast 6807 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 6808 InstructionCost Cost; 6809 if (isa<StoreInst>(&I) && VF.isScalable() && 6810 isLegalGatherOrScatter(&I, VF)) { 6811 Cost = getGatherScatterCost(&I, VF); 6812 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 6813 } else { 6814 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 6815 "Cannot yet scalarize uniform stores"); 6816 Cost = getUniformMemOpCost(&I, VF); 6817 setWideningDecision(&I, VF, CM_Scalarize, Cost); 6818 } 6819 continue; 6820 } 6821 6822 // We assume that widening is the best solution when possible. 6823 if (memoryInstructionCanBeWidened(&I, VF)) { 6824 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 6825 int ConsecutiveStride = Legal->isConsecutivePtr( 6826 getLoadStoreType(&I), getLoadStorePointerOperand(&I)); 6827 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6828 "Expected consecutive stride."); 6829 InstWidening Decision = 6830 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 6831 setWideningDecision(&I, VF, Decision, Cost); 6832 continue; 6833 } 6834 6835 // Choose between Interleaving, Gather/Scatter or Scalarization. 6836 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 6837 unsigned NumAccesses = 1; 6838 if (isAccessInterleaved(&I)) { 6839 auto Group = getInterleavedAccessGroup(&I); 6840 assert(Group && "Fail to get an interleaved access group."); 6841 6842 // Make one decision for the whole group. 6843 if (getWideningDecision(&I, VF) != CM_Unknown) 6844 continue; 6845 6846 NumAccesses = Group->getNumMembers(); 6847 if (interleavedAccessCanBeWidened(&I, VF)) 6848 InterleaveCost = getInterleaveGroupCost(&I, VF); 6849 } 6850 6851 InstructionCost GatherScatterCost = 6852 isLegalGatherOrScatter(&I, VF) 6853 ? getGatherScatterCost(&I, VF) * NumAccesses 6854 : InstructionCost::getInvalid(); 6855 6856 InstructionCost ScalarizationCost = 6857 getMemInstScalarizationCost(&I, VF) * NumAccesses; 6858 6859 // Choose better solution for the current VF, 6860 // write down this decision and use it during vectorization. 6861 InstructionCost Cost; 6862 InstWidening Decision; 6863 if (InterleaveCost <= GatherScatterCost && 6864 InterleaveCost < ScalarizationCost) { 6865 Decision = CM_Interleave; 6866 Cost = InterleaveCost; 6867 } else if (GatherScatterCost < ScalarizationCost) { 6868 Decision = CM_GatherScatter; 6869 Cost = GatherScatterCost; 6870 } else { 6871 Decision = CM_Scalarize; 6872 Cost = ScalarizationCost; 6873 } 6874 // If the instructions belongs to an interleave group, the whole group 6875 // receives the same decision. The whole group receives the cost, but 6876 // the cost will actually be assigned to one instruction. 6877 if (auto Group = getInterleavedAccessGroup(&I)) 6878 setWideningDecision(Group, VF, Decision, Cost); 6879 else 6880 setWideningDecision(&I, VF, Decision, Cost); 6881 } 6882 } 6883 6884 // Make sure that any load of address and any other address computation 6885 // remains scalar unless there is gather/scatter support. This avoids 6886 // inevitable extracts into address registers, and also has the benefit of 6887 // activating LSR more, since that pass can't optimize vectorized 6888 // addresses. 6889 if (TTI.prefersVectorizedAddressing()) 6890 return; 6891 6892 // Start with all scalar pointer uses. 6893 SmallPtrSet<Instruction *, 8> AddrDefs; 6894 for (BasicBlock *BB : TheLoop->blocks()) 6895 for (Instruction &I : *BB) { 6896 Instruction *PtrDef = 6897 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 6898 if (PtrDef && TheLoop->contains(PtrDef) && 6899 getWideningDecision(&I, VF) != CM_GatherScatter) 6900 AddrDefs.insert(PtrDef); 6901 } 6902 6903 // Add all instructions used to generate the addresses. 6904 SmallVector<Instruction *, 4> Worklist; 6905 append_range(Worklist, AddrDefs); 6906 while (!Worklist.empty()) { 6907 Instruction *I = Worklist.pop_back_val(); 6908 for (auto &Op : I->operands()) 6909 if (auto *InstOp = dyn_cast<Instruction>(Op)) 6910 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 6911 AddrDefs.insert(InstOp).second) 6912 Worklist.push_back(InstOp); 6913 } 6914 6915 for (auto *I : AddrDefs) { 6916 if (isa<LoadInst>(I)) { 6917 // Setting the desired widening decision should ideally be handled in 6918 // by cost functions, but since this involves the task of finding out 6919 // if the loaded register is involved in an address computation, it is 6920 // instead changed here when we know this is the case. 6921 InstWidening Decision = getWideningDecision(I, VF); 6922 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 6923 // Scalarize a widened load of address. 6924 setWideningDecision( 6925 I, VF, CM_Scalarize, 6926 (VF.getKnownMinValue() * 6927 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 6928 else if (auto Group = getInterleavedAccessGroup(I)) { 6929 // Scalarize an interleave group of address loads. 6930 for (unsigned I = 0; I < Group->getFactor(); ++I) { 6931 if (Instruction *Member = Group->getMember(I)) 6932 setWideningDecision( 6933 Member, VF, CM_Scalarize, 6934 (VF.getKnownMinValue() * 6935 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 6936 } 6937 } 6938 } else 6939 // Make sure I gets scalarized and a cost estimate without 6940 // scalarization overhead. 6941 ForcedScalars[VF].insert(I); 6942 } 6943 } 6944 6945 InstructionCost 6946 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 6947 Type *&VectorTy) { 6948 Type *RetTy = I->getType(); 6949 if (canTruncateToMinimalBitwidth(I, VF)) 6950 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 6951 auto SE = PSE.getSE(); 6952 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6953 6954 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 6955 ElementCount VF) -> bool { 6956 if (VF.isScalar()) 6957 return true; 6958 6959 auto Scalarized = InstsToScalarize.find(VF); 6960 assert(Scalarized != InstsToScalarize.end() && 6961 "VF not yet analyzed for scalarization profitability"); 6962 return !Scalarized->second.count(I) && 6963 llvm::all_of(I->users(), [&](User *U) { 6964 auto *UI = cast<Instruction>(U); 6965 return !Scalarized->second.count(UI); 6966 }); 6967 }; 6968 (void) hasSingleCopyAfterVectorization; 6969 6970 if (isScalarAfterVectorization(I, VF)) { 6971 // With the exception of GEPs and PHIs, after scalarization there should 6972 // only be one copy of the instruction generated in the loop. This is 6973 // because the VF is either 1, or any instructions that need scalarizing 6974 // have already been dealt with by the the time we get here. As a result, 6975 // it means we don't have to multiply the instruction cost by VF. 6976 assert(I->getOpcode() == Instruction::GetElementPtr || 6977 I->getOpcode() == Instruction::PHI || 6978 (I->getOpcode() == Instruction::BitCast && 6979 I->getType()->isPointerTy()) || 6980 hasSingleCopyAfterVectorization(I, VF)); 6981 VectorTy = RetTy; 6982 } else 6983 VectorTy = ToVectorTy(RetTy, VF); 6984 6985 // TODO: We need to estimate the cost of intrinsic calls. 6986 switch (I->getOpcode()) { 6987 case Instruction::GetElementPtr: 6988 // We mark this instruction as zero-cost because the cost of GEPs in 6989 // vectorized code depends on whether the corresponding memory instruction 6990 // is scalarized or not. Therefore, we handle GEPs with the memory 6991 // instruction cost. 6992 return 0; 6993 case Instruction::Br: { 6994 // In cases of scalarized and predicated instructions, there will be VF 6995 // predicated blocks in the vectorized loop. Each branch around these 6996 // blocks requires also an extract of its vector compare i1 element. 6997 bool ScalarPredicatedBB = false; 6998 BranchInst *BI = cast<BranchInst>(I); 6999 if (VF.isVector() && BI->isConditional() && 7000 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7001 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7002 ScalarPredicatedBB = true; 7003 7004 if (ScalarPredicatedBB) { 7005 // Not possible to scalarize scalable vector with predicated instructions. 7006 if (VF.isScalable()) 7007 return InstructionCost::getInvalid(); 7008 // Return cost for branches around scalarized and predicated blocks. 7009 auto *Vec_i1Ty = 7010 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7011 return ( 7012 TTI.getScalarizationOverhead( 7013 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7014 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7015 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7016 // The back-edge branch will remain, as will all scalar branches. 7017 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7018 else 7019 // This branch will be eliminated by if-conversion. 7020 return 0; 7021 // Note: We currently assume zero cost for an unconditional branch inside 7022 // a predicated block since it will become a fall-through, although we 7023 // may decide in the future to call TTI for all branches. 7024 } 7025 case Instruction::PHI: { 7026 auto *Phi = cast<PHINode>(I); 7027 7028 // First-order recurrences are replaced by vector shuffles inside the loop. 7029 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7030 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7031 return TTI.getShuffleCost( 7032 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7033 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7034 7035 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7036 // converted into select instructions. We require N - 1 selects per phi 7037 // node, where N is the number of incoming values. 7038 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7039 return (Phi->getNumIncomingValues() - 1) * 7040 TTI.getCmpSelInstrCost( 7041 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7042 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7043 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7044 7045 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7046 } 7047 case Instruction::UDiv: 7048 case Instruction::SDiv: 7049 case Instruction::URem: 7050 case Instruction::SRem: 7051 // If we have a predicated instruction, it may not be executed for each 7052 // vector lane. Get the scalarization cost and scale this amount by the 7053 // probability of executing the predicated block. If the instruction is not 7054 // predicated, we fall through to the next case. 7055 if (VF.isVector() && isScalarWithPredication(I, VF)) { 7056 InstructionCost Cost = 0; 7057 7058 // These instructions have a non-void type, so account for the phi nodes 7059 // that we will create. This cost is likely to be zero. The phi node 7060 // cost, if any, should be scaled by the block probability because it 7061 // models a copy at the end of each predicated block. 7062 Cost += VF.getKnownMinValue() * 7063 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7064 7065 // The cost of the non-predicated instruction. 7066 Cost += VF.getKnownMinValue() * 7067 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7068 7069 // The cost of insertelement and extractelement instructions needed for 7070 // scalarization. 7071 Cost += getScalarizationOverhead(I, VF); 7072 7073 // Scale the cost by the probability of executing the predicated blocks. 7074 // This assumes the predicated block for each vector lane is equally 7075 // likely. 7076 return Cost / getReciprocalPredBlockProb(); 7077 } 7078 LLVM_FALLTHROUGH; 7079 case Instruction::Add: 7080 case Instruction::FAdd: 7081 case Instruction::Sub: 7082 case Instruction::FSub: 7083 case Instruction::Mul: 7084 case Instruction::FMul: 7085 case Instruction::FDiv: 7086 case Instruction::FRem: 7087 case Instruction::Shl: 7088 case Instruction::LShr: 7089 case Instruction::AShr: 7090 case Instruction::And: 7091 case Instruction::Or: 7092 case Instruction::Xor: { 7093 // Since we will replace the stride by 1 the multiplication should go away. 7094 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7095 return 0; 7096 7097 // Detect reduction patterns 7098 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7099 return *RedCost; 7100 7101 // Certain instructions can be cheaper to vectorize if they have a constant 7102 // second vector operand. One example of this are shifts on x86. 7103 Value *Op2 = I->getOperand(1); 7104 TargetTransformInfo::OperandValueProperties Op2VP; 7105 TargetTransformInfo::OperandValueKind Op2VK = 7106 TTI.getOperandInfo(Op2, Op2VP); 7107 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7108 Op2VK = TargetTransformInfo::OK_UniformValue; 7109 7110 SmallVector<const Value *, 4> Operands(I->operand_values()); 7111 return TTI.getArithmeticInstrCost( 7112 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7113 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7114 } 7115 case Instruction::FNeg: { 7116 return TTI.getArithmeticInstrCost( 7117 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7118 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7119 TargetTransformInfo::OP_None, I->getOperand(0), I); 7120 } 7121 case Instruction::Select: { 7122 SelectInst *SI = cast<SelectInst>(I); 7123 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7124 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7125 7126 const Value *Op0, *Op1; 7127 using namespace llvm::PatternMatch; 7128 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7129 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7130 // select x, y, false --> x & y 7131 // select x, true, y --> x | y 7132 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7133 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7134 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7135 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7136 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7137 Op1->getType()->getScalarSizeInBits() == 1); 7138 7139 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7140 return TTI.getArithmeticInstrCost( 7141 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7142 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7143 } 7144 7145 Type *CondTy = SI->getCondition()->getType(); 7146 if (!ScalarCond) 7147 CondTy = VectorType::get(CondTy, VF); 7148 7149 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; 7150 if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) 7151 Pred = Cmp->getPredicate(); 7152 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, 7153 CostKind, I); 7154 } 7155 case Instruction::ICmp: 7156 case Instruction::FCmp: { 7157 Type *ValTy = I->getOperand(0)->getType(); 7158 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7159 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7160 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7161 VectorTy = ToVectorTy(ValTy, VF); 7162 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7163 cast<CmpInst>(I)->getPredicate(), CostKind, 7164 I); 7165 } 7166 case Instruction::Store: 7167 case Instruction::Load: { 7168 ElementCount Width = VF; 7169 if (Width.isVector()) { 7170 InstWidening Decision = getWideningDecision(I, Width); 7171 assert(Decision != CM_Unknown && 7172 "CM decision should be taken at this point"); 7173 if (Decision == CM_Scalarize) 7174 Width = ElementCount::getFixed(1); 7175 } 7176 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7177 return getMemoryInstructionCost(I, VF); 7178 } 7179 case Instruction::BitCast: 7180 if (I->getType()->isPointerTy()) 7181 return 0; 7182 LLVM_FALLTHROUGH; 7183 case Instruction::ZExt: 7184 case Instruction::SExt: 7185 case Instruction::FPToUI: 7186 case Instruction::FPToSI: 7187 case Instruction::FPExt: 7188 case Instruction::PtrToInt: 7189 case Instruction::IntToPtr: 7190 case Instruction::SIToFP: 7191 case Instruction::UIToFP: 7192 case Instruction::Trunc: 7193 case Instruction::FPTrunc: { 7194 // Computes the CastContextHint from a Load/Store instruction. 7195 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7196 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7197 "Expected a load or a store!"); 7198 7199 if (VF.isScalar() || !TheLoop->contains(I)) 7200 return TTI::CastContextHint::Normal; 7201 7202 switch (getWideningDecision(I, VF)) { 7203 case LoopVectorizationCostModel::CM_GatherScatter: 7204 return TTI::CastContextHint::GatherScatter; 7205 case LoopVectorizationCostModel::CM_Interleave: 7206 return TTI::CastContextHint::Interleave; 7207 case LoopVectorizationCostModel::CM_Scalarize: 7208 case LoopVectorizationCostModel::CM_Widen: 7209 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7210 : TTI::CastContextHint::Normal; 7211 case LoopVectorizationCostModel::CM_Widen_Reverse: 7212 return TTI::CastContextHint::Reversed; 7213 case LoopVectorizationCostModel::CM_Unknown: 7214 llvm_unreachable("Instr did not go through cost modelling?"); 7215 } 7216 7217 llvm_unreachable("Unhandled case!"); 7218 }; 7219 7220 unsigned Opcode = I->getOpcode(); 7221 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7222 // For Trunc, the context is the only user, which must be a StoreInst. 7223 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7224 if (I->hasOneUse()) 7225 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7226 CCH = ComputeCCH(Store); 7227 } 7228 // For Z/Sext, the context is the operand, which must be a LoadInst. 7229 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7230 Opcode == Instruction::FPExt) { 7231 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7232 CCH = ComputeCCH(Load); 7233 } 7234 7235 // We optimize the truncation of induction variables having constant 7236 // integer steps. The cost of these truncations is the same as the scalar 7237 // operation. 7238 if (isOptimizableIVTruncate(I, VF)) { 7239 auto *Trunc = cast<TruncInst>(I); 7240 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7241 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7242 } 7243 7244 // Detect reduction patterns 7245 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7246 return *RedCost; 7247 7248 Type *SrcScalarTy = I->getOperand(0)->getType(); 7249 Type *SrcVecTy = 7250 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7251 if (canTruncateToMinimalBitwidth(I, VF)) { 7252 // This cast is going to be shrunk. This may remove the cast or it might 7253 // turn it into slightly different cast. For example, if MinBW == 16, 7254 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7255 // 7256 // Calculate the modified src and dest types. 7257 Type *MinVecTy = VectorTy; 7258 if (Opcode == Instruction::Trunc) { 7259 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7260 VectorTy = 7261 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7262 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7263 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7264 VectorTy = 7265 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7266 } 7267 } 7268 7269 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7270 } 7271 case Instruction::Call: { 7272 if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) 7273 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7274 return *RedCost; 7275 bool NeedToScalarize; 7276 CallInst *CI = cast<CallInst>(I); 7277 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7278 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7279 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7280 return std::min(CallCost, IntrinsicCost); 7281 } 7282 return CallCost; 7283 } 7284 case Instruction::ExtractValue: 7285 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7286 case Instruction::Alloca: 7287 // We cannot easily widen alloca to a scalable alloca, as 7288 // the result would need to be a vector of pointers. 7289 if (VF.isScalable()) 7290 return InstructionCost::getInvalid(); 7291 LLVM_FALLTHROUGH; 7292 default: 7293 // This opcode is unknown. Assume that it is the same as 'mul'. 7294 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7295 } // end of switch. 7296 } 7297 7298 char LoopVectorize::ID = 0; 7299 7300 static const char lv_name[] = "Loop Vectorization"; 7301 7302 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7303 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7304 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7305 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7306 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7307 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7308 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7309 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7310 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7311 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7312 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7313 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7314 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7315 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7316 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7317 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7318 7319 namespace llvm { 7320 7321 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7322 7323 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7324 bool VectorizeOnlyWhenForced) { 7325 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7326 } 7327 7328 } // end namespace llvm 7329 7330 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7331 // Check if the pointer operand of a load or store instruction is 7332 // consecutive. 7333 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7334 return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr); 7335 return false; 7336 } 7337 7338 void LoopVectorizationCostModel::collectValuesToIgnore() { 7339 // Ignore ephemeral values. 7340 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7341 7342 // Find all stores to invariant variables. Since they are going to sink 7343 // outside the loop we do not need calculate cost for them. 7344 for (BasicBlock *BB : TheLoop->blocks()) 7345 for (Instruction &I : *BB) { 7346 StoreInst *SI; 7347 if ((SI = dyn_cast<StoreInst>(&I)) && 7348 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 7349 ValuesToIgnore.insert(&I); 7350 } 7351 7352 // Ignore type-promoting instructions we identified during reduction 7353 // detection. 7354 for (auto &Reduction : Legal->getReductionVars()) { 7355 const RecurrenceDescriptor &RedDes = Reduction.second; 7356 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7357 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7358 } 7359 // Ignore type-casting instructions we identified during induction 7360 // detection. 7361 for (auto &Induction : Legal->getInductionVars()) { 7362 const InductionDescriptor &IndDes = Induction.second; 7363 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7364 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7365 } 7366 } 7367 7368 void LoopVectorizationCostModel::collectInLoopReductions() { 7369 for (auto &Reduction : Legal->getReductionVars()) { 7370 PHINode *Phi = Reduction.first; 7371 const RecurrenceDescriptor &RdxDesc = Reduction.second; 7372 7373 // We don't collect reductions that are type promoted (yet). 7374 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7375 continue; 7376 7377 // If the target would prefer this reduction to happen "in-loop", then we 7378 // want to record it as such. 7379 unsigned Opcode = RdxDesc.getOpcode(); 7380 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 7381 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7382 TargetTransformInfo::ReductionFlags())) 7383 continue; 7384 7385 // Check that we can correctly put the reductions into the loop, by 7386 // finding the chain of operations that leads from the phi to the loop 7387 // exit value. 7388 SmallVector<Instruction *, 4> ReductionOperations = 7389 RdxDesc.getReductionOpChain(Phi, TheLoop); 7390 bool InLoop = !ReductionOperations.empty(); 7391 if (InLoop) { 7392 InLoopReductionChains[Phi] = ReductionOperations; 7393 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7394 Instruction *LastChain = Phi; 7395 for (auto *I : ReductionOperations) { 7396 InLoopReductionImmediateChains[I] = LastChain; 7397 LastChain = I; 7398 } 7399 } 7400 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7401 << " reduction for phi: " << *Phi << "\n"); 7402 } 7403 } 7404 7405 // TODO: we could return a pair of values that specify the max VF and 7406 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7407 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7408 // doesn't have a cost model that can choose which plan to execute if 7409 // more than one is generated. 7410 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7411 LoopVectorizationCostModel &CM) { 7412 unsigned WidestType; 7413 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7414 return WidestVectorRegBits / WidestType; 7415 } 7416 7417 VectorizationFactor 7418 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7419 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7420 ElementCount VF = UserVF; 7421 // Outer loop handling: They may require CFG and instruction level 7422 // transformations before even evaluating whether vectorization is profitable. 7423 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7424 // the vectorization pipeline. 7425 if (!OrigLoop->isInnermost()) { 7426 // If the user doesn't provide a vectorization factor, determine a 7427 // reasonable one. 7428 if (UserVF.isZero()) { 7429 VF = ElementCount::getFixed(determineVPlanVF( 7430 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 7431 .getFixedSize(), 7432 CM)); 7433 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7434 7435 // Make sure we have a VF > 1 for stress testing. 7436 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7437 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7438 << "overriding computed VF.\n"); 7439 VF = ElementCount::getFixed(4); 7440 } 7441 } 7442 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7443 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7444 "VF needs to be a power of two"); 7445 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7446 << "VF " << VF << " to build VPlans.\n"); 7447 buildVPlans(VF, VF); 7448 7449 // For VPlan build stress testing, we bail out after VPlan construction. 7450 if (VPlanBuildStressTest) 7451 return VectorizationFactor::Disabled(); 7452 7453 return {VF, 0 /*Cost*/}; 7454 } 7455 7456 LLVM_DEBUG( 7457 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7458 "VPlan-native path.\n"); 7459 return VectorizationFactor::Disabled(); 7460 } 7461 7462 bool LoopVectorizationPlanner::requiresTooManyRuntimeChecks() const { 7463 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 7464 return (NumRuntimePointerChecks > 7465 VectorizerParams::RuntimeMemoryCheckThreshold && 7466 !Hints.allowReordering()) || 7467 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 7468 } 7469 7470 Optional<VectorizationFactor> 7471 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7472 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7473 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 7474 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 7475 return None; 7476 7477 // Invalidate interleave groups if all blocks of loop will be predicated. 7478 if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && 7479 !useMaskedInterleavedAccesses(*TTI)) { 7480 LLVM_DEBUG( 7481 dbgs() 7482 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7483 "which requires masked-interleaved support.\n"); 7484 if (CM.InterleaveInfo.invalidateGroups()) 7485 // Invalidating interleave groups also requires invalidating all decisions 7486 // based on them, which includes widening decisions and uniform and scalar 7487 // values. 7488 CM.invalidateCostModelingDecisions(); 7489 } 7490 7491 ElementCount MaxUserVF = 7492 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 7493 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 7494 if (!UserVF.isZero() && UserVFIsLegal) { 7495 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 7496 "VF needs to be a power of two"); 7497 // Collect the instructions (and their associated costs) that will be more 7498 // profitable to scalarize. 7499 if (CM.selectUserVectorizationFactor(UserVF)) { 7500 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7501 CM.collectInLoopReductions(); 7502 buildVPlansWithVPRecipes(UserVF, UserVF); 7503 LLVM_DEBUG(printPlans(dbgs())); 7504 return {{UserVF, 0}}; 7505 } else 7506 reportVectorizationInfo("UserVF ignored because of invalid costs.", 7507 "InvalidCost", ORE, OrigLoop); 7508 } 7509 7510 // Populate the set of Vectorization Factor Candidates. 7511 ElementCountSet VFCandidates; 7512 for (auto VF = ElementCount::getFixed(1); 7513 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 7514 VFCandidates.insert(VF); 7515 for (auto VF = ElementCount::getScalable(1); 7516 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 7517 VFCandidates.insert(VF); 7518 7519 for (const auto &VF : VFCandidates) { 7520 // Collect Uniform and Scalar instructions after vectorization with VF. 7521 CM.collectUniformsAndScalars(VF); 7522 7523 // Collect the instructions (and their associated costs) that will be more 7524 // profitable to scalarize. 7525 if (VF.isVector()) 7526 CM.collectInstsToScalarize(VF); 7527 } 7528 7529 CM.collectInLoopReductions(); 7530 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 7531 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 7532 7533 LLVM_DEBUG(printPlans(dbgs())); 7534 if (!MaxFactors.hasVector()) 7535 return VectorizationFactor::Disabled(); 7536 7537 // Select the optimal vectorization factor. 7538 return CM.selectVectorizationFactor(VFCandidates); 7539 } 7540 7541 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { 7542 assert(count_if(VPlans, 7543 [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 7544 1 && 7545 "Best VF has not a single VPlan."); 7546 7547 for (const VPlanPtr &Plan : VPlans) { 7548 if (Plan->hasVF(VF)) 7549 return *Plan.get(); 7550 } 7551 llvm_unreachable("No plan found!"); 7552 } 7553 7554 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7555 SmallVector<Metadata *, 4> MDs; 7556 // Reserve first location for self reference to the LoopID metadata node. 7557 MDs.push_back(nullptr); 7558 bool IsUnrollMetadata = false; 7559 MDNode *LoopID = L->getLoopID(); 7560 if (LoopID) { 7561 // First find existing loop unrolling disable metadata. 7562 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7563 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7564 if (MD) { 7565 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7566 IsUnrollMetadata = 7567 S && S->getString().startswith("llvm.loop.unroll.disable"); 7568 } 7569 MDs.push_back(LoopID->getOperand(i)); 7570 } 7571 } 7572 7573 if (!IsUnrollMetadata) { 7574 // Add runtime unroll disable metadata. 7575 LLVMContext &Context = L->getHeader()->getContext(); 7576 SmallVector<Metadata *, 1> DisableOperands; 7577 DisableOperands.push_back( 7578 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7579 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7580 MDs.push_back(DisableNode); 7581 MDNode *NewLoopID = MDNode::get(Context, MDs); 7582 // Set operand 0 to refer to the loop id itself. 7583 NewLoopID->replaceOperandWith(0, NewLoopID); 7584 L->setLoopID(NewLoopID); 7585 } 7586 } 7587 7588 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, 7589 VPlan &BestVPlan, 7590 InnerLoopVectorizer &ILV, 7591 DominatorTree *DT) { 7592 LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF 7593 << '\n'); 7594 7595 // Perform the actual loop transformation. 7596 7597 // 1. Set up the skeleton for vectorization, including vector pre-header and 7598 // middle block. The vector loop is created during VPlan execution. 7599 VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; 7600 Value *CanonicalIVStartValue; 7601 std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = 7602 ILV.createVectorizedLoopSkeleton(); 7603 ILV.collectPoisonGeneratingRecipes(State); 7604 7605 ILV.printDebugTracesAtStart(); 7606 7607 //===------------------------------------------------===// 7608 // 7609 // Notice: any optimization or new instruction that go 7610 // into the code below should also be implemented in 7611 // the cost-model. 7612 // 7613 //===------------------------------------------------===// 7614 7615 // 2. Copy and widen instructions from the old loop into the new loop. 7616 BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), 7617 ILV.getOrCreateVectorTripCount(nullptr), 7618 CanonicalIVStartValue, State); 7619 BestVPlan.execute(&State); 7620 7621 // Keep all loop hints from the original loop on the vector loop (we'll 7622 // replace the vectorizer-specific hints below). 7623 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7624 7625 Optional<MDNode *> VectorizedLoopID = 7626 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 7627 LLVMLoopVectorizeFollowupVectorized}); 7628 7629 VPBasicBlock *HeaderVPBB = 7630 BestVPlan.getVectorLoopRegion()->getEntryBasicBlock(); 7631 Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); 7632 if (VectorizedLoopID.hasValue()) 7633 L->setLoopID(VectorizedLoopID.getValue()); 7634 else { 7635 // Keep all loop hints from the original loop on the vector loop (we'll 7636 // replace the vectorizer-specific hints below). 7637 if (MDNode *LID = OrigLoop->getLoopID()) 7638 L->setLoopID(LID); 7639 7640 LoopVectorizeHints Hints(L, true, *ORE); 7641 Hints.setAlreadyVectorized(); 7642 } 7643 // Disable runtime unrolling when vectorizing the epilogue loop. 7644 if (CanonicalIVStartValue) 7645 AddRuntimeUnrollDisableMetaData(L); 7646 7647 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7648 // predication, updating analyses. 7649 ILV.fixVectorizedLoop(State, BestVPlan); 7650 7651 ILV.printDebugTracesAtEnd(); 7652 } 7653 7654 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 7655 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 7656 for (const auto &Plan : VPlans) 7657 if (PrintVPlansInDotFormat) 7658 Plan->printDOT(O); 7659 else 7660 Plan->print(O); 7661 } 7662 #endif 7663 7664 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7665 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7666 7667 // We create new control-flow for the vectorized loop, so the original exit 7668 // conditions will be dead after vectorization if it's only used by the 7669 // terminator 7670 SmallVector<BasicBlock*> ExitingBlocks; 7671 OrigLoop->getExitingBlocks(ExitingBlocks); 7672 for (auto *BB : ExitingBlocks) { 7673 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7674 if (!Cmp || !Cmp->hasOneUse()) 7675 continue; 7676 7677 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7678 if (!DeadInstructions.insert(Cmp).second) 7679 continue; 7680 7681 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7682 // TODO: can recurse through operands in general 7683 for (Value *Op : Cmp->operands()) { 7684 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7685 DeadInstructions.insert(cast<Instruction>(Op)); 7686 } 7687 } 7688 7689 // We create new "steps" for induction variable updates to which the original 7690 // induction variables map. An original update instruction will be dead if 7691 // all its users except the induction variable are dead. 7692 auto *Latch = OrigLoop->getLoopLatch(); 7693 for (auto &Induction : Legal->getInductionVars()) { 7694 PHINode *Ind = Induction.first; 7695 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7696 7697 // If the tail is to be folded by masking, the primary induction variable, 7698 // if exists, isn't dead: it will be used for masking. Don't kill it. 7699 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7700 continue; 7701 7702 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7703 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7704 })) 7705 DeadInstructions.insert(IndUpdate); 7706 } 7707 } 7708 7709 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7710 7711 //===--------------------------------------------------------------------===// 7712 // EpilogueVectorizerMainLoop 7713 //===--------------------------------------------------------------------===// 7714 7715 /// This function is partially responsible for generating the control flow 7716 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7717 std::pair<BasicBlock *, Value *> 7718 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7719 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7720 7721 // Workaround! Compute the trip count of the original loop and cache it 7722 // before we start modifying the CFG. This code has a systemic problem 7723 // wherein it tries to run analysis over partially constructed IR; this is 7724 // wrong, and not simply for SCEV. The trip count of the original loop 7725 // simply happens to be prone to hitting this in practice. In theory, we 7726 // can hit the same issue for any SCEV, or ValueTracking query done during 7727 // mutation. See PR49900. 7728 getOrCreateTripCount(OrigLoop->getLoopPreheader()); 7729 createVectorLoopSkeleton(""); 7730 7731 // Generate the code to check the minimum iteration count of the vector 7732 // epilogue (see below). 7733 EPI.EpilogueIterationCountCheck = 7734 emitIterationCountCheck(LoopScalarPreHeader, true); 7735 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7736 7737 // Generate the code to check any assumptions that we've made for SCEV 7738 // expressions. 7739 EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); 7740 7741 // Generate the code that checks at runtime if arrays overlap. We put the 7742 // checks into a separate block to make the more common case of few elements 7743 // faster. 7744 EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); 7745 7746 // Generate the iteration count check for the main loop, *after* the check 7747 // for the epilogue loop, so that the path-length is shorter for the case 7748 // that goes directly through the vector epilogue. The longer-path length for 7749 // the main loop is compensated for, by the gain from vectorizing the larger 7750 // trip count. Note: the branch will get updated later on when we vectorize 7751 // the epilogue. 7752 EPI.MainLoopIterationCountCheck = 7753 emitIterationCountCheck(LoopScalarPreHeader, false); 7754 7755 // Generate the induction variable. 7756 EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); 7757 7758 // Skip induction resume value creation here because they will be created in 7759 // the second pass. If we created them here, they wouldn't be used anyway, 7760 // because the vplan in the second pass still contains the inductions from the 7761 // original loop. 7762 7763 return {completeLoopSkeleton(OrigLoopID), nullptr}; 7764 } 7765 7766 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7767 LLVM_DEBUG({ 7768 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7769 << "Main Loop VF:" << EPI.MainLoopVF 7770 << ", Main Loop UF:" << EPI.MainLoopUF 7771 << ", Epilogue Loop VF:" << EPI.EpilogueVF 7772 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7773 }); 7774 } 7775 7776 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7777 DEBUG_WITH_TYPE(VerboseDebug, { 7778 dbgs() << "intermediate fn:\n" 7779 << *OrigLoop->getHeader()->getParent() << "\n"; 7780 }); 7781 } 7782 7783 BasicBlock * 7784 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass, 7785 bool ForEpilogue) { 7786 assert(Bypass && "Expected valid bypass basic block."); 7787 ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; 7788 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 7789 Value *Count = getOrCreateTripCount(LoopVectorPreHeader); 7790 // Reuse existing vector loop preheader for TC checks. 7791 // Note that new preheader block is generated for vector loop. 7792 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 7793 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 7794 7795 // Generate code to check if the loop's trip count is less than VF * UF of the 7796 // main vector loop. 7797 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 7798 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7799 7800 Value *CheckMinIters = Builder.CreateICmp( 7801 P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), 7802 "min.iters.check"); 7803 7804 if (!ForEpilogue) 7805 TCCheckBlock->setName("vector.main.loop.iter.check"); 7806 7807 // Create new preheader for vector loop. 7808 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 7809 DT, LI, nullptr, "vector.ph"); 7810 7811 if (ForEpilogue) { 7812 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 7813 DT->getNode(Bypass)->getIDom()) && 7814 "TC check is expected to dominate Bypass"); 7815 7816 // Update dominator for Bypass & LoopExit. 7817 DT->changeImmediateDominator(Bypass, TCCheckBlock); 7818 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7819 // For loops with multiple exits, there's no edge from the middle block 7820 // to exit blocks (as the epilogue must run) and thus no need to update 7821 // the immediate dominator of the exit blocks. 7822 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 7823 7824 LoopBypassBlocks.push_back(TCCheckBlock); 7825 7826 // Save the trip count so we don't have to regenerate it in the 7827 // vec.epilog.iter.check. This is safe to do because the trip count 7828 // generated here dominates the vector epilog iter check. 7829 EPI.TripCount = Count; 7830 } 7831 7832 ReplaceInstWithInst( 7833 TCCheckBlock->getTerminator(), 7834 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7835 7836 return TCCheckBlock; 7837 } 7838 7839 //===--------------------------------------------------------------------===// 7840 // EpilogueVectorizerEpilogueLoop 7841 //===--------------------------------------------------------------------===// 7842 7843 /// This function is partially responsible for generating the control flow 7844 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7845 std::pair<BasicBlock *, Value *> 7846 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 7847 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7848 createVectorLoopSkeleton("vec.epilog."); 7849 7850 // Now, compare the remaining count and if there aren't enough iterations to 7851 // execute the vectorized epilogue skip to the scalar part. 7852 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 7853 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 7854 LoopVectorPreHeader = 7855 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 7856 LI, nullptr, "vec.epilog.ph"); 7857 emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, 7858 VecEpilogueIterationCountCheck); 7859 7860 // Adjust the control flow taking the state info from the main loop 7861 // vectorization into account. 7862 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 7863 "expected this to be saved from the previous pass."); 7864 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 7865 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 7866 7867 DT->changeImmediateDominator(LoopVectorPreHeader, 7868 EPI.MainLoopIterationCountCheck); 7869 7870 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 7871 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7872 7873 if (EPI.SCEVSafetyCheck) 7874 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 7875 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7876 if (EPI.MemSafetyCheck) 7877 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 7878 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 7879 7880 DT->changeImmediateDominator( 7881 VecEpilogueIterationCountCheck, 7882 VecEpilogueIterationCountCheck->getSinglePredecessor()); 7883 7884 DT->changeImmediateDominator(LoopScalarPreHeader, 7885 EPI.EpilogueIterationCountCheck); 7886 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 7887 // If there is an epilogue which must run, there's no edge from the 7888 // middle block to exit blocks and thus no need to update the immediate 7889 // dominator of the exit blocks. 7890 DT->changeImmediateDominator(LoopExitBlock, 7891 EPI.EpilogueIterationCountCheck); 7892 7893 // Keep track of bypass blocks, as they feed start values to the induction 7894 // phis in the scalar loop preheader. 7895 if (EPI.SCEVSafetyCheck) 7896 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 7897 if (EPI.MemSafetyCheck) 7898 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 7899 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 7900 7901 // The vec.epilog.iter.check block may contain Phi nodes from reductions which 7902 // merge control-flow from the latch block and the middle block. Update the 7903 // incoming values here and move the Phi into the preheader. 7904 SmallVector<PHINode *, 4> PhisInBlock; 7905 for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) 7906 PhisInBlock.push_back(&Phi); 7907 7908 for (PHINode *Phi : PhisInBlock) { 7909 Phi->replaceIncomingBlockWith( 7910 VecEpilogueIterationCountCheck->getSinglePredecessor(), 7911 VecEpilogueIterationCountCheck); 7912 Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); 7913 if (EPI.SCEVSafetyCheck) 7914 Phi->removeIncomingValue(EPI.SCEVSafetyCheck); 7915 if (EPI.MemSafetyCheck) 7916 Phi->removeIncomingValue(EPI.MemSafetyCheck); 7917 Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); 7918 } 7919 7920 // Generate a resume induction for the vector epilogue and put it in the 7921 // vector epilogue preheader 7922 Type *IdxTy = Legal->getWidestInductionType(); 7923 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 7924 LoopVectorPreHeader->getFirstNonPHI()); 7925 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 7926 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 7927 EPI.MainLoopIterationCountCheck); 7928 7929 // Generate induction resume values. These variables save the new starting 7930 // indexes for the scalar loop. They are used to test if there are any tail 7931 // iterations left once the vector loop has completed. 7932 // Note that when the vectorized epilogue is skipped due to iteration count 7933 // check, then the resume value for the induction variable comes from 7934 // the trip count of the main vector loop, hence passing the AdditionalBypass 7935 // argument. 7936 createInductionResumeValues({VecEpilogueIterationCountCheck, 7937 EPI.VectorTripCount} /* AdditionalBypass */); 7938 7939 return {completeLoopSkeleton(OrigLoopID), EPResumeVal}; 7940 } 7941 7942 BasicBlock * 7943 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 7944 BasicBlock *Bypass, BasicBlock *Insert) { 7945 7946 assert(EPI.TripCount && 7947 "Expected trip count to have been safed in the first pass."); 7948 assert( 7949 (!isa<Instruction>(EPI.TripCount) || 7950 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 7951 "saved trip count does not dominate insertion point."); 7952 Value *TC = EPI.TripCount; 7953 IRBuilder<> Builder(Insert->getTerminator()); 7954 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 7955 7956 // Generate code to check if the loop's trip count is less than VF * UF of the 7957 // vector epilogue loop. 7958 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 7959 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 7960 7961 Value *CheckMinIters = 7962 Builder.CreateICmp(P, Count, 7963 createStepForVF(Builder, Count->getType(), 7964 EPI.EpilogueVF, EPI.EpilogueUF), 7965 "min.epilog.iters.check"); 7966 7967 ReplaceInstWithInst( 7968 Insert->getTerminator(), 7969 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 7970 7971 LoopBypassBlocks.push_back(Insert); 7972 return Insert; 7973 } 7974 7975 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 7976 LLVM_DEBUG({ 7977 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 7978 << "Epilogue Loop VF:" << EPI.EpilogueVF 7979 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7980 }); 7981 } 7982 7983 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 7984 DEBUG_WITH_TYPE(VerboseDebug, { 7985 dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; 7986 }); 7987 } 7988 7989 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7990 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 7991 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 7992 bool PredicateAtRangeStart = Predicate(Range.Start); 7993 7994 for (ElementCount TmpVF = Range.Start * 2; 7995 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 7996 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7997 Range.End = TmpVF; 7998 break; 7999 } 8000 8001 return PredicateAtRangeStart; 8002 } 8003 8004 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8005 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8006 /// of VF's starting at a given VF and extending it as much as possible. Each 8007 /// vectorization decision can potentially shorten this sub-range during 8008 /// buildVPlan(). 8009 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8010 ElementCount MaxVF) { 8011 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8012 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8013 VFRange SubRange = {VF, MaxVFPlusOne}; 8014 VPlans.push_back(buildVPlan(SubRange)); 8015 VF = SubRange.End; 8016 } 8017 } 8018 8019 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8020 VPlanPtr &Plan) { 8021 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8022 8023 // Look for cached value. 8024 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8025 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8026 if (ECEntryIt != EdgeMaskCache.end()) 8027 return ECEntryIt->second; 8028 8029 VPValue *SrcMask = createBlockInMask(Src, Plan); 8030 8031 // The terminator has to be a branch inst! 8032 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8033 assert(BI && "Unexpected terminator found"); 8034 8035 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8036 return EdgeMaskCache[Edge] = SrcMask; 8037 8038 // If source is an exiting block, we know the exit edge is dynamically dead 8039 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8040 // adding uses of an otherwise potentially dead instruction. 8041 if (OrigLoop->isLoopExiting(Src)) 8042 return EdgeMaskCache[Edge] = SrcMask; 8043 8044 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8045 assert(EdgeMask && "No Edge Mask found for condition"); 8046 8047 if (BI->getSuccessor(0) != Dst) 8048 EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); 8049 8050 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8051 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8052 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8053 // The select version does not introduce new UB if SrcMask is false and 8054 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8055 VPValue *False = Plan->getOrAddVPValue( 8056 ConstantInt::getFalse(BI->getCondition()->getType())); 8057 EdgeMask = 8058 Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); 8059 } 8060 8061 return EdgeMaskCache[Edge] = EdgeMask; 8062 } 8063 8064 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8065 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8066 8067 // Look for cached value. 8068 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8069 if (BCEntryIt != BlockMaskCache.end()) 8070 return BCEntryIt->second; 8071 8072 // All-one mask is modelled as no-mask following the convention for masked 8073 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8074 VPValue *BlockMask = nullptr; 8075 8076 if (OrigLoop->getHeader() == BB) { 8077 if (!CM.blockNeedsPredicationForAnyReason(BB)) 8078 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8079 8080 // Introduce the early-exit compare IV <= BTC to form header block mask. 8081 // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by 8082 // constructing the desired canonical IV in the header block as its first 8083 // non-phi instructions. 8084 assert(CM.foldTailByMasking() && "must fold the tail"); 8085 VPBasicBlock *HeaderVPBB = 8086 Plan->getVectorLoopRegion()->getEntryBasicBlock(); 8087 auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); 8088 auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); 8089 HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); 8090 8091 VPBuilder::InsertPointGuard Guard(Builder); 8092 Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); 8093 if (CM.TTI.emitGetActiveLaneMask()) { 8094 VPValue *TC = Plan->getOrCreateTripCount(); 8095 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}); 8096 } else { 8097 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8098 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8099 } 8100 return BlockMaskCache[BB] = BlockMask; 8101 } 8102 8103 // This is the block mask. We OR all incoming edges. 8104 for (auto *Predecessor : predecessors(BB)) { 8105 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8106 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8107 return BlockMaskCache[BB] = EdgeMask; 8108 8109 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8110 BlockMask = EdgeMask; 8111 continue; 8112 } 8113 8114 BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); 8115 } 8116 8117 return BlockMaskCache[BB] = BlockMask; 8118 } 8119 8120 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8121 ArrayRef<VPValue *> Operands, 8122 VFRange &Range, 8123 VPlanPtr &Plan) { 8124 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8125 "Must be called with either a load or store"); 8126 8127 auto willWiden = [&](ElementCount VF) -> bool { 8128 LoopVectorizationCostModel::InstWidening Decision = 8129 CM.getWideningDecision(I, VF); 8130 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8131 "CM decision should be taken at this point."); 8132 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8133 return true; 8134 if (CM.isScalarAfterVectorization(I, VF) || 8135 CM.isProfitableToScalarize(I, VF)) 8136 return false; 8137 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8138 }; 8139 8140 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8141 return nullptr; 8142 8143 VPValue *Mask = nullptr; 8144 if (Legal->isMaskRequired(I)) 8145 Mask = createBlockInMask(I->getParent(), Plan); 8146 8147 // Determine if the pointer operand of the access is either consecutive or 8148 // reverse consecutive. 8149 LoopVectorizationCostModel::InstWidening Decision = 8150 CM.getWideningDecision(I, Range.Start); 8151 bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; 8152 bool Consecutive = 8153 Reverse || Decision == LoopVectorizationCostModel::CM_Widen; 8154 8155 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8156 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, 8157 Consecutive, Reverse); 8158 8159 StoreInst *Store = cast<StoreInst>(I); 8160 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8161 Mask, Consecutive, Reverse); 8162 } 8163 8164 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also 8165 /// insert a recipe to expand the step for the induction recipe. 8166 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes( 8167 PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, 8168 const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM, 8169 VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) { 8170 // Returns true if an instruction \p I should be scalarized instead of 8171 // vectorized for the chosen vectorization factor. 8172 auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { 8173 return CM.isScalarAfterVectorization(I, VF) || 8174 CM.isProfitableToScalarize(I, VF); 8175 }; 8176 8177 bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( 8178 [&](ElementCount VF) { 8179 return ShouldScalarizeInstruction(PhiOrTrunc, VF); 8180 }, 8181 Range); 8182 assert(IndDesc.getStartValue() == 8183 Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())); 8184 assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && 8185 "step must be loop invariant"); 8186 8187 VPValue *Step = 8188 vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); 8189 if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { 8190 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI, 8191 !NeedsScalarIVOnly); 8192 } 8193 assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here"); 8194 return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, 8195 !NeedsScalarIVOnly); 8196 } 8197 8198 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( 8199 PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) { 8200 8201 // Check if this is an integer or fp induction. If so, build the recipe that 8202 // produces its scalar and vector values. 8203 if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) 8204 return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan, 8205 *PSE.getSE(), *OrigLoop, Range); 8206 8207 // Check if this is pointer induction. If so, build the recipe for it. 8208 if (auto *II = Legal->getPointerInductionDescriptor(Phi)) 8209 return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II, 8210 *PSE.getSE()); 8211 return nullptr; 8212 } 8213 8214 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8215 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) { 8216 // Optimize the special case where the source is a constant integer 8217 // induction variable. Notice that we can only optimize the 'trunc' case 8218 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8219 // (c) other casts depend on pointer size. 8220 8221 // Determine whether \p K is a truncation based on an induction variable that 8222 // can be optimized. 8223 auto isOptimizableIVTruncate = 8224 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8225 return [=](ElementCount VF) -> bool { 8226 return CM.isOptimizableIVTruncate(K, VF); 8227 }; 8228 }; 8229 8230 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8231 isOptimizableIVTruncate(I), Range)) { 8232 8233 auto *Phi = cast<PHINode>(I->getOperand(0)); 8234 const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); 8235 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8236 return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan, 8237 *PSE.getSE(), *OrigLoop, Range); 8238 } 8239 return nullptr; 8240 } 8241 8242 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8243 ArrayRef<VPValue *> Operands, 8244 VPlanPtr &Plan) { 8245 // If all incoming values are equal, the incoming VPValue can be used directly 8246 // instead of creating a new VPBlendRecipe. 8247 VPValue *FirstIncoming = Operands[0]; 8248 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8249 return FirstIncoming == Inc; 8250 })) { 8251 return Operands[0]; 8252 } 8253 8254 unsigned NumIncoming = Phi->getNumIncomingValues(); 8255 // For in-loop reductions, we do not need to create an additional select. 8256 VPValue *InLoopVal = nullptr; 8257 for (unsigned In = 0; In < NumIncoming; In++) { 8258 PHINode *PhiOp = 8259 dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); 8260 if (PhiOp && CM.isInLoopReduction(PhiOp)) { 8261 assert(!InLoopVal && "Found more than one in-loop reduction!"); 8262 InLoopVal = Operands[In]; 8263 } 8264 } 8265 8266 assert((!InLoopVal || NumIncoming == 2) && 8267 "Found an in-loop reduction for PHI with unexpected number of " 8268 "incoming values"); 8269 if (InLoopVal) 8270 return Operands[Operands[0] == InLoopVal ? 1 : 0]; 8271 8272 // We know that all PHIs in non-header blocks are converted into selects, so 8273 // we don't have to worry about the insertion order and we can just use the 8274 // builder. At this point we generate the predication tree. There may be 8275 // duplications since this is a simple recursive scan, but future 8276 // optimizations will clean it up. 8277 SmallVector<VPValue *, 2> OperandsWithMask; 8278 8279 for (unsigned In = 0; In < NumIncoming; In++) { 8280 VPValue *EdgeMask = 8281 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8282 assert((EdgeMask || NumIncoming == 1) && 8283 "Multiple predecessors with one having a full mask"); 8284 OperandsWithMask.push_back(Operands[In]); 8285 if (EdgeMask) 8286 OperandsWithMask.push_back(EdgeMask); 8287 } 8288 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8289 } 8290 8291 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8292 ArrayRef<VPValue *> Operands, 8293 VFRange &Range) const { 8294 8295 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8296 [this, CI](ElementCount VF) { 8297 return CM.isScalarWithPredication(CI, VF); 8298 }, 8299 Range); 8300 8301 if (IsPredicated) 8302 return nullptr; 8303 8304 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8305 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8306 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8307 ID == Intrinsic::pseudoprobe || 8308 ID == Intrinsic::experimental_noalias_scope_decl)) 8309 return nullptr; 8310 8311 auto willWiden = [&](ElementCount VF) -> bool { 8312 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8313 // The following case may be scalarized depending on the VF. 8314 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8315 // version of the instruction. 8316 // Is it beneficial to perform intrinsic call compared to lib call? 8317 bool NeedToScalarize = false; 8318 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8319 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8320 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8321 return UseVectorIntrinsic || !NeedToScalarize; 8322 }; 8323 8324 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8325 return nullptr; 8326 8327 ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); 8328 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8329 } 8330 8331 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8332 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8333 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8334 // Instruction should be widened, unless it is scalar after vectorization, 8335 // scalarization is profitable or it is predicated. 8336 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8337 return CM.isScalarAfterVectorization(I, VF) || 8338 CM.isProfitableToScalarize(I, VF) || 8339 CM.isScalarWithPredication(I, VF); 8340 }; 8341 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8342 Range); 8343 } 8344 8345 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8346 ArrayRef<VPValue *> Operands) const { 8347 auto IsVectorizableOpcode = [](unsigned Opcode) { 8348 switch (Opcode) { 8349 case Instruction::Add: 8350 case Instruction::And: 8351 case Instruction::AShr: 8352 case Instruction::BitCast: 8353 case Instruction::FAdd: 8354 case Instruction::FCmp: 8355 case Instruction::FDiv: 8356 case Instruction::FMul: 8357 case Instruction::FNeg: 8358 case Instruction::FPExt: 8359 case Instruction::FPToSI: 8360 case Instruction::FPToUI: 8361 case Instruction::FPTrunc: 8362 case Instruction::FRem: 8363 case Instruction::FSub: 8364 case Instruction::ICmp: 8365 case Instruction::IntToPtr: 8366 case Instruction::LShr: 8367 case Instruction::Mul: 8368 case Instruction::Or: 8369 case Instruction::PtrToInt: 8370 case Instruction::SDiv: 8371 case Instruction::Select: 8372 case Instruction::SExt: 8373 case Instruction::Shl: 8374 case Instruction::SIToFP: 8375 case Instruction::SRem: 8376 case Instruction::Sub: 8377 case Instruction::Trunc: 8378 case Instruction::UDiv: 8379 case Instruction::UIToFP: 8380 case Instruction::URem: 8381 case Instruction::Xor: 8382 case Instruction::ZExt: 8383 case Instruction::Freeze: 8384 return true; 8385 } 8386 return false; 8387 }; 8388 8389 if (!IsVectorizableOpcode(I->getOpcode())) 8390 return nullptr; 8391 8392 // Success: widen this instruction. 8393 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8394 } 8395 8396 void VPRecipeBuilder::fixHeaderPhis() { 8397 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8398 for (VPHeaderPHIRecipe *R : PhisToFix) { 8399 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8400 VPRecipeBase *IncR = 8401 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8402 R->addOperand(IncR->getVPSingleValue()); 8403 } 8404 } 8405 8406 VPBasicBlock *VPRecipeBuilder::handleReplication( 8407 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8408 VPlanPtr &Plan) { 8409 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8410 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8411 Range); 8412 8413 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8414 [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); }, 8415 Range); 8416 8417 // Even if the instruction is not marked as uniform, there are certain 8418 // intrinsic calls that can be effectively treated as such, so we check for 8419 // them here. Conservatively, we only do this for scalable vectors, since 8420 // for fixed-width VFs we can always fall back on full scalarization. 8421 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 8422 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 8423 case Intrinsic::assume: 8424 case Intrinsic::lifetime_start: 8425 case Intrinsic::lifetime_end: 8426 // For scalable vectors if one of the operands is variant then we still 8427 // want to mark as uniform, which will generate one instruction for just 8428 // the first lane of the vector. We can't scalarize the call in the same 8429 // way as for fixed-width vectors because we don't know how many lanes 8430 // there are. 8431 // 8432 // The reasons for doing it this way for scalable vectors are: 8433 // 1. For the assume intrinsic generating the instruction for the first 8434 // lane is still be better than not generating any at all. For 8435 // example, the input may be a splat across all lanes. 8436 // 2. For the lifetime start/end intrinsics the pointer operand only 8437 // does anything useful when the input comes from a stack object, 8438 // which suggests it should always be uniform. For non-stack objects 8439 // the effect is to poison the object, which still allows us to 8440 // remove the call. 8441 IsUniform = true; 8442 break; 8443 default: 8444 break; 8445 } 8446 } 8447 8448 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8449 IsUniform, IsPredicated); 8450 setRecipe(I, Recipe); 8451 Plan->addVPValue(I, Recipe); 8452 8453 // Find if I uses a predicated instruction. If so, it will use its scalar 8454 // value. Avoid hoisting the insert-element which packs the scalar value into 8455 // a vector value, as that happens iff all users use the vector value. 8456 for (VPValue *Op : Recipe->operands()) { 8457 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 8458 if (!PredR) 8459 continue; 8460 auto *RepR = 8461 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 8462 assert(RepR->isPredicated() && 8463 "expected Replicate recipe to be predicated"); 8464 RepR->setAlsoPack(false); 8465 } 8466 8467 // Finalize the recipe for Instr, first if it is not predicated. 8468 if (!IsPredicated) { 8469 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8470 VPBB->appendRecipe(Recipe); 8471 return VPBB; 8472 } 8473 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8474 8475 VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); 8476 assert(SingleSucc && "VPBB must have a single successor when handling " 8477 "predicated replication."); 8478 VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); 8479 // Record predicated instructions for above packing optimizations. 8480 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8481 VPBlockUtils::insertBlockAfter(Region, VPBB); 8482 auto *RegSucc = new VPBasicBlock(); 8483 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8484 VPBlockUtils::connectBlocks(RegSucc, SingleSucc); 8485 return RegSucc; 8486 } 8487 8488 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8489 VPRecipeBase *PredRecipe, 8490 VPlanPtr &Plan) { 8491 // Instructions marked for predication are replicated and placed under an 8492 // if-then construct to prevent side-effects. 8493 8494 // Generate recipes to compute the block mask for this region. 8495 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8496 8497 // Build the triangular if-then region. 8498 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8499 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8500 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8501 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8502 auto *PHIRecipe = Instr->getType()->isVoidTy() 8503 ? nullptr 8504 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8505 if (PHIRecipe) { 8506 Plan->removeVPValueFor(Instr); 8507 Plan->addVPValue(Instr, PHIRecipe); 8508 } 8509 auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8510 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8511 VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true); 8512 8513 // Note: first set Entry as region entry and then connect successors starting 8514 // from it in order, to propagate the "parent" of each VPBasicBlock. 8515 VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry); 8516 VPBlockUtils::connectBlocks(Pred, Exiting); 8517 8518 return Region; 8519 } 8520 8521 VPRecipeOrVPValueTy 8522 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8523 ArrayRef<VPValue *> Operands, 8524 VFRange &Range, VPlanPtr &Plan) { 8525 // First, check for specific widening recipes that deal with inductions, Phi 8526 // nodes, calls and memory operations. 8527 VPRecipeBase *Recipe; 8528 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8529 if (Phi->getParent() != OrigLoop->getHeader()) 8530 return tryToBlend(Phi, Operands, Plan); 8531 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range))) 8532 return toVPRecipeResult(Recipe); 8533 8534 VPHeaderPHIRecipe *PhiRecipe = nullptr; 8535 assert((Legal->isReductionVariable(Phi) || 8536 Legal->isFirstOrderRecurrence(Phi)) && 8537 "can only widen reductions and first-order recurrences here"); 8538 VPValue *StartV = Operands[0]; 8539 if (Legal->isReductionVariable(Phi)) { 8540 const RecurrenceDescriptor &RdxDesc = 8541 Legal->getReductionVars().find(Phi)->second; 8542 assert(RdxDesc.getRecurrenceStartValue() == 8543 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8544 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 8545 CM.isInLoopReduction(Phi), 8546 CM.useOrderedReductions(RdxDesc)); 8547 } else { 8548 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 8549 } 8550 8551 // Record the incoming value from the backedge, so we can add the incoming 8552 // value from the backedge after all recipes have been created. 8553 recordRecipeOf(cast<Instruction>( 8554 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 8555 PhisToFix.push_back(PhiRecipe); 8556 return toVPRecipeResult(PhiRecipe); 8557 } 8558 8559 if (isa<TruncInst>(Instr) && 8560 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 8561 Range, *Plan))) 8562 return toVPRecipeResult(Recipe); 8563 8564 // All widen recipes below deal only with VF > 1. 8565 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8566 [&](ElementCount VF) { return VF.isScalar(); }, Range)) 8567 return nullptr; 8568 8569 if (auto *CI = dyn_cast<CallInst>(Instr)) 8570 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 8571 8572 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8573 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 8574 8575 if (!shouldWiden(Instr, Range)) 8576 return nullptr; 8577 8578 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8579 return toVPRecipeResult(new VPWidenGEPRecipe( 8580 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 8581 8582 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8583 bool InvariantCond = 8584 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8585 return toVPRecipeResult(new VPWidenSelectRecipe( 8586 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 8587 } 8588 8589 return toVPRecipeResult(tryToWiden(Instr, Operands)); 8590 } 8591 8592 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8593 ElementCount MaxVF) { 8594 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8595 8596 // Collect instructions from the original loop that will become trivially dead 8597 // in the vectorized loop. We don't need to vectorize these instructions. For 8598 // example, original induction update instructions can become dead because we 8599 // separately emit induction "steps" when generating code for the new loop. 8600 // Similarly, we create a new latch condition when setting up the structure 8601 // of the new loop, so the old one can become dead. 8602 SmallPtrSet<Instruction *, 4> DeadInstructions; 8603 collectTriviallyDeadInstructions(DeadInstructions); 8604 8605 // Add assume instructions we need to drop to DeadInstructions, to prevent 8606 // them from being added to the VPlan. 8607 // TODO: We only need to drop assumes in blocks that get flattend. If the 8608 // control flow is preserved, we should keep them. 8609 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8610 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8611 8612 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8613 // Dead instructions do not need sinking. Remove them from SinkAfter. 8614 for (Instruction *I : DeadInstructions) 8615 SinkAfter.erase(I); 8616 8617 // Cannot sink instructions after dead instructions (there won't be any 8618 // recipes for them). Instead, find the first non-dead previous instruction. 8619 for (auto &P : Legal->getSinkAfter()) { 8620 Instruction *SinkTarget = P.second; 8621 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 8622 (void)FirstInst; 8623 while (DeadInstructions.contains(SinkTarget)) { 8624 assert( 8625 SinkTarget != FirstInst && 8626 "Must find a live instruction (at least the one feeding the " 8627 "first-order recurrence PHI) before reaching beginning of the block"); 8628 SinkTarget = SinkTarget->getPrevNode(); 8629 assert(SinkTarget != P.first && 8630 "sink source equals target, no sinking required"); 8631 } 8632 P.second = SinkTarget; 8633 } 8634 8635 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8636 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8637 VFRange SubRange = {VF, MaxVFPlusOne}; 8638 VPlans.push_back( 8639 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8640 VF = SubRange.End; 8641 } 8642 } 8643 8644 // Add a VPCanonicalIVPHIRecipe starting at 0 to the header, a 8645 // CanonicalIVIncrement{NUW} VPInstruction to increment it by VF * UF and a 8646 // BranchOnCount VPInstruction to the latch. 8647 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, 8648 bool HasNUW) { 8649 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8650 auto *StartV = Plan.getOrAddVPValue(StartIdx); 8651 8652 auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); 8653 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); 8654 VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); 8655 Header->insert(CanonicalIVPHI, Header->begin()); 8656 8657 auto *CanonicalIVIncrement = 8658 new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW 8659 : VPInstruction::CanonicalIVIncrement, 8660 {CanonicalIVPHI}, DL); 8661 CanonicalIVPHI->addOperand(CanonicalIVIncrement); 8662 8663 VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); 8664 EB->appendRecipe(CanonicalIVIncrement); 8665 8666 auto *BranchOnCount = 8667 new VPInstruction(VPInstruction::BranchOnCount, 8668 {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); 8669 EB->appendRecipe(BranchOnCount); 8670 } 8671 8672 // Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the 8673 // original exit block. 8674 static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB, 8675 VPBasicBlock *MiddleVPBB, Loop *OrigLoop, 8676 VPlan &Plan) { 8677 BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock(); 8678 BasicBlock *ExitingBB = OrigLoop->getExitingBlock(); 8679 // Only handle single-exit loops with unique exit blocks for now. 8680 if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB) 8681 return; 8682 8683 // Introduce VPUsers modeling the exit values. 8684 for (PHINode &ExitPhi : ExitBB->phis()) { 8685 Value *IncomingValue = 8686 ExitPhi.getIncomingValueForBlock(ExitingBB); 8687 VPValue *V = Plan.getOrAddVPValue(IncomingValue, true); 8688 Plan.addLiveOut(&ExitPhi, V); 8689 } 8690 } 8691 8692 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8693 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8694 const MapVector<Instruction *, Instruction *> &SinkAfter) { 8695 8696 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8697 8698 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8699 8700 // --------------------------------------------------------------------------- 8701 // Pre-construction: record ingredients whose recipes we'll need to further 8702 // process after constructing the initial VPlan. 8703 // --------------------------------------------------------------------------- 8704 8705 // Mark instructions we'll need to sink later and their targets as 8706 // ingredients whose recipe we'll need to record. 8707 for (auto &Entry : SinkAfter) { 8708 RecipeBuilder.recordRecipeOf(Entry.first); 8709 RecipeBuilder.recordRecipeOf(Entry.second); 8710 } 8711 for (auto &Reduction : CM.getInLoopReductionChains()) { 8712 PHINode *Phi = Reduction.first; 8713 RecurKind Kind = 8714 Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); 8715 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8716 8717 RecipeBuilder.recordRecipeOf(Phi); 8718 for (auto &R : ReductionOperations) { 8719 RecipeBuilder.recordRecipeOf(R); 8720 // For min/max reductions, where we have a pair of icmp/select, we also 8721 // need to record the ICmp recipe, so it can be removed later. 8722 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 8723 "Only min/max recurrences allowed for inloop reductions"); 8724 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8725 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8726 } 8727 } 8728 8729 // For each interleave group which is relevant for this (possibly trimmed) 8730 // Range, add it to the set of groups to be later applied to the VPlan and add 8731 // placeholders for its members' Recipes which we'll be replacing with a 8732 // single VPInterleaveRecipe. 8733 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8734 auto applyIG = [IG, this](ElementCount VF) -> bool { 8735 return (VF.isVector() && // Query is illegal for VF == 1 8736 CM.getWideningDecision(IG->getInsertPos(), VF) == 8737 LoopVectorizationCostModel::CM_Interleave); 8738 }; 8739 if (!getDecisionAndClampRange(applyIG, Range)) 8740 continue; 8741 InterleaveGroups.insert(IG); 8742 for (unsigned i = 0; i < IG->getFactor(); i++) 8743 if (Instruction *Member = IG->getMember(i)) 8744 RecipeBuilder.recordRecipeOf(Member); 8745 }; 8746 8747 // --------------------------------------------------------------------------- 8748 // Build initial VPlan: Scan the body of the loop in a topological order to 8749 // visit each basic block after having visited its predecessor basic blocks. 8750 // --------------------------------------------------------------------------- 8751 8752 // Create initial VPlan skeleton, starting with a block for the pre-header, 8753 // followed by a region for the vector loop, followed by the middle block. The 8754 // skeleton vector loop region contains a header and latch block. 8755 VPBasicBlock *Preheader = new VPBasicBlock("vector.ph"); 8756 auto Plan = std::make_unique<VPlan>(Preheader); 8757 8758 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 8759 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 8760 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 8761 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); 8762 VPBlockUtils::insertBlockAfter(TopRegion, Preheader); 8763 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 8764 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 8765 8766 Instruction *DLInst = 8767 getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); 8768 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), 8769 DLInst ? DLInst->getDebugLoc() : DebugLoc(), 8770 !CM.foldTailByMasking()); 8771 8772 // Scan the body of the loop in a topological order to visit each basic block 8773 // after having visited its predecessor basic blocks. 8774 LoopBlocksDFS DFS(OrigLoop); 8775 DFS.perform(LI); 8776 8777 VPBasicBlock *VPBB = HeaderVPBB; 8778 SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; 8779 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8780 // Relevant instructions from basic block BB will be grouped into VPRecipe 8781 // ingredients and fill a new VPBasicBlock. 8782 unsigned VPBBsForBB = 0; 8783 if (VPBB != HeaderVPBB) 8784 VPBB->setName(BB->getName()); 8785 Builder.setInsertPoint(VPBB); 8786 8787 // Introduce each ingredient into VPlan. 8788 // TODO: Model and preserve debug intrinsics in VPlan. 8789 for (Instruction &I : BB->instructionsWithoutDebug()) { 8790 Instruction *Instr = &I; 8791 8792 // First filter out irrelevant instructions, to ensure no recipes are 8793 // built for them. 8794 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8795 continue; 8796 8797 SmallVector<VPValue *, 4> Operands; 8798 auto *Phi = dyn_cast<PHINode>(Instr); 8799 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 8800 Operands.push_back(Plan->getOrAddVPValue( 8801 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 8802 } else { 8803 auto OpRange = Plan->mapToVPValues(Instr->operands()); 8804 Operands = {OpRange.begin(), OpRange.end()}; 8805 } 8806 8807 // Invariant stores inside loop will be deleted and a single store 8808 // with the final reduction value will be added to the exit block 8809 StoreInst *SI; 8810 if ((SI = dyn_cast<StoreInst>(&I)) && 8811 Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) 8812 continue; 8813 8814 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 8815 Instr, Operands, Range, Plan)) { 8816 // If Instr can be simplified to an existing VPValue, use it. 8817 if (RecipeOrValue.is<VPValue *>()) { 8818 auto *VPV = RecipeOrValue.get<VPValue *>(); 8819 Plan->addVPValue(Instr, VPV); 8820 // If the re-used value is a recipe, register the recipe for the 8821 // instruction, in case the recipe for Instr needs to be recorded. 8822 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 8823 RecipeBuilder.setRecipe(Instr, R); 8824 continue; 8825 } 8826 // Otherwise, add the new recipe. 8827 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8828 for (auto *Def : Recipe->definedValues()) { 8829 auto *UV = Def->getUnderlyingValue(); 8830 Plan->addVPValue(UV, Def); 8831 } 8832 8833 if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && 8834 HeaderVPBB->getFirstNonPhi() != VPBB->end()) { 8835 // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section 8836 // of the header block. That can happen for truncates of induction 8837 // variables. Those recipes are moved to the phi section of the header 8838 // block after applying SinkAfter, which relies on the original 8839 // position of the trunc. 8840 assert(isa<TruncInst>(Instr)); 8841 InductionsToMove.push_back( 8842 cast<VPWidenIntOrFpInductionRecipe>(Recipe)); 8843 } 8844 RecipeBuilder.setRecipe(Instr, Recipe); 8845 VPBB->appendRecipe(Recipe); 8846 continue; 8847 } 8848 8849 // Otherwise, if all widening options failed, Instruction is to be 8850 // replicated. This may create a successor for VPBB. 8851 VPBasicBlock *NextVPBB = 8852 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 8853 if (NextVPBB != VPBB) { 8854 VPBB = NextVPBB; 8855 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8856 : ""); 8857 } 8858 } 8859 8860 VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); 8861 VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); 8862 } 8863 8864 HeaderVPBB->setName("vector.body"); 8865 8866 // Fold the last, empty block into its predecessor. 8867 VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB); 8868 assert(VPBB && "expected to fold last (empty) block"); 8869 // After here, VPBB should not be used. 8870 VPBB = nullptr; 8871 8872 addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan); 8873 8874 assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && 8875 !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && 8876 "entry block must be set to a VPRegionBlock having a non-empty entry " 8877 "VPBasicBlock"); 8878 RecipeBuilder.fixHeaderPhis(); 8879 8880 // --------------------------------------------------------------------------- 8881 // Transform initial VPlan: Apply previously taken decisions, in order, to 8882 // bring the VPlan to its final state. 8883 // --------------------------------------------------------------------------- 8884 8885 // Apply Sink-After legal constraints. 8886 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 8887 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 8888 if (Region && Region->isReplicator()) { 8889 assert(Region->getNumSuccessors() == 1 && 8890 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 8891 assert(R->getParent()->size() == 1 && 8892 "A recipe in an original replicator region must be the only " 8893 "recipe in its block"); 8894 return Region; 8895 } 8896 return nullptr; 8897 }; 8898 for (auto &Entry : SinkAfter) { 8899 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8900 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8901 8902 auto *TargetRegion = GetReplicateRegion(Target); 8903 auto *SinkRegion = GetReplicateRegion(Sink); 8904 if (!SinkRegion) { 8905 // If the sink source is not a replicate region, sink the recipe directly. 8906 if (TargetRegion) { 8907 // The target is in a replication region, make sure to move Sink to 8908 // the block after it, not into the replication region itself. 8909 VPBasicBlock *NextBlock = 8910 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 8911 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8912 } else 8913 Sink->moveAfter(Target); 8914 continue; 8915 } 8916 8917 // The sink source is in a replicate region. Unhook the region from the CFG. 8918 auto *SinkPred = SinkRegion->getSinglePredecessor(); 8919 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 8920 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 8921 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 8922 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 8923 8924 if (TargetRegion) { 8925 // The target recipe is also in a replicate region, move the sink region 8926 // after the target region. 8927 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 8928 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 8929 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 8930 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 8931 } else { 8932 // The sink source is in a replicate region, we need to move the whole 8933 // replicate region, which should only contain a single recipe in the 8934 // main block. 8935 auto *SplitBlock = 8936 Target->getParent()->splitAt(std::next(Target->getIterator())); 8937 8938 auto *SplitPred = SplitBlock->getSinglePredecessor(); 8939 8940 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 8941 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 8942 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 8943 } 8944 } 8945 8946 VPlanTransforms::removeRedundantCanonicalIVs(*Plan); 8947 VPlanTransforms::removeRedundantInductionCasts(*Plan); 8948 8949 // Now that sink-after is done, move induction recipes for optimized truncates 8950 // to the phi section of the header block. 8951 for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) 8952 Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); 8953 8954 // Adjust the recipes for any inloop reductions. 8955 adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan, 8956 RecipeBuilder, Range.Start); 8957 8958 // Introduce a recipe to combine the incoming and previous values of a 8959 // first-order recurrence. 8960 for (VPRecipeBase &R : 8961 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 8962 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 8963 if (!RecurPhi) 8964 continue; 8965 8966 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 8967 VPBasicBlock *InsertBlock = PrevRecipe->getParent(); 8968 auto *Region = GetReplicateRegion(PrevRecipe); 8969 if (Region) 8970 InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor()); 8971 if (Region || PrevRecipe->isPhi()) 8972 Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); 8973 else 8974 Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); 8975 8976 auto *RecurSplice = cast<VPInstruction>( 8977 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 8978 {RecurPhi, RecurPhi->getBackedgeValue()})); 8979 8980 RecurPhi->replaceAllUsesWith(RecurSplice); 8981 // Set the first operand of RecurSplice to RecurPhi again, after replacing 8982 // all users. 8983 RecurSplice->setOperand(0, RecurPhi); 8984 } 8985 8986 // Interleave memory: for each Interleave Group we marked earlier as relevant 8987 // for this VPlan, replace the Recipes widening its memory instructions with a 8988 // single VPInterleaveRecipe at its insertion point. 8989 for (auto IG : InterleaveGroups) { 8990 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 8991 RecipeBuilder.getRecipe(IG->getInsertPos())); 8992 SmallVector<VPValue *, 4> StoredValues; 8993 for (unsigned i = 0; i < IG->getFactor(); ++i) 8994 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 8995 auto *StoreR = 8996 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 8997 StoredValues.push_back(StoreR->getStoredValue()); 8998 } 8999 9000 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9001 Recipe->getMask()); 9002 VPIG->insertBefore(Recipe); 9003 unsigned J = 0; 9004 for (unsigned i = 0; i < IG->getFactor(); ++i) 9005 if (Instruction *Member = IG->getMember(i)) { 9006 if (!Member->getType()->isVoidTy()) { 9007 VPValue *OriginalV = Plan->getVPValue(Member); 9008 Plan->removeVPValueFor(Member); 9009 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9010 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9011 J++; 9012 } 9013 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9014 } 9015 } 9016 9017 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9018 // in ways that accessing values using original IR values is incorrect. 9019 Plan->disableValue2VPValue(); 9020 9021 VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); 9022 VPlanTransforms::sinkScalarOperands(*Plan); 9023 VPlanTransforms::mergeReplicateRegions(*Plan); 9024 VPlanTransforms::removeDeadRecipes(*Plan); 9025 VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan); 9026 9027 std::string PlanName; 9028 raw_string_ostream RSO(PlanName); 9029 ElementCount VF = Range.Start; 9030 Plan->addVF(VF); 9031 RSO << "Initial VPlan for VF={" << VF; 9032 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9033 Plan->addVF(VF); 9034 RSO << "," << VF; 9035 } 9036 RSO << "},UF>=1"; 9037 RSO.flush(); 9038 Plan->setName(PlanName); 9039 9040 // Fold Exit block into its predecessor if possible. 9041 // TODO: Fold block earlier once all VPlan transforms properly maintain a 9042 // VPBasicBlock as exit. 9043 VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExiting()); 9044 9045 assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid"); 9046 return Plan; 9047 } 9048 9049 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9050 // Outer loop handling: They may require CFG and instruction level 9051 // transformations before even evaluating whether vectorization is profitable. 9052 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9053 // the vectorization pipeline. 9054 assert(!OrigLoop->isInnermost()); 9055 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9056 9057 // Create new empty VPlan 9058 auto Plan = std::make_unique<VPlan>(); 9059 9060 // Build hierarchical CFG 9061 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9062 HCFGBuilder.buildHierarchicalCFG(); 9063 9064 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9065 VF *= 2) 9066 Plan->addVF(VF); 9067 9068 SmallPtrSet<Instruction *, 1> DeadInstructions; 9069 VPlanTransforms::VPInstructionsToVPRecipes( 9070 OrigLoop, Plan, 9071 [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, 9072 DeadInstructions, *PSE.getSE()); 9073 9074 // Remove the existing terminator of the exiting block of the top-most region. 9075 // A BranchOnCount will be added instead when adding the canonical IV recipes. 9076 auto *Term = 9077 Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator(); 9078 Term->eraseFromParent(); 9079 9080 addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), 9081 true); 9082 return Plan; 9083 } 9084 9085 // Adjust the recipes for reductions. For in-loop reductions the chain of 9086 // instructions leading from the loop exit instr to the phi need to be converted 9087 // to reductions, with one operand being vector and the other being the scalar 9088 // reduction chain. For other reductions, a select is introduced between the phi 9089 // and live-out recipes when folding the tail. 9090 void LoopVectorizationPlanner::adjustRecipesForReductions( 9091 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9092 ElementCount MinVF) { 9093 for (auto &Reduction : CM.getInLoopReductionChains()) { 9094 PHINode *Phi = Reduction.first; 9095 const RecurrenceDescriptor &RdxDesc = 9096 Legal->getReductionVars().find(Phi)->second; 9097 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9098 9099 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9100 continue; 9101 9102 // ReductionOperations are orders top-down from the phi's use to the 9103 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9104 // which of the two operands will remain scalar and which will be reduced. 9105 // For minmax the chain will be the select instructions. 9106 Instruction *Chain = Phi; 9107 for (Instruction *R : ReductionOperations) { 9108 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9109 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9110 9111 VPValue *ChainOp = Plan->getVPValue(Chain); 9112 unsigned FirstOpId; 9113 assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && 9114 "Only min/max recurrences allowed for inloop reductions"); 9115 // Recognize a call to the llvm.fmuladd intrinsic. 9116 bool IsFMulAdd = (Kind == RecurKind::FMulAdd); 9117 assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && 9118 "Expected instruction to be a call to the llvm.fmuladd intrinsic"); 9119 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9120 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9121 "Expected to replace a VPWidenSelectSC"); 9122 FirstOpId = 1; 9123 } else { 9124 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || 9125 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && 9126 "Expected to replace a VPWidenSC"); 9127 FirstOpId = 0; 9128 } 9129 unsigned VecOpId = 9130 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9131 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9132 9133 auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent()) 9134 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9135 : nullptr; 9136 9137 if (IsFMulAdd) { 9138 // If the instruction is a call to the llvm.fmuladd intrinsic then we 9139 // need to create an fmul recipe to use as the vector operand for the 9140 // fadd reduction. 9141 VPInstruction *FMulRecipe = new VPInstruction( 9142 Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); 9143 FMulRecipe->setFastMathFlags(R->getFastMathFlags()); 9144 WidenRecipe->getParent()->insert(FMulRecipe, 9145 WidenRecipe->getIterator()); 9146 VecOp = FMulRecipe; 9147 } 9148 VPReductionRecipe *RedRecipe = 9149 new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9150 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9151 Plan->removeVPValueFor(R); 9152 Plan->addVPValue(R, RedRecipe); 9153 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9154 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9155 WidenRecipe->eraseFromParent(); 9156 9157 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9158 VPRecipeBase *CompareRecipe = 9159 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9160 assert(isa<VPWidenRecipe>(CompareRecipe) && 9161 "Expected to replace a VPWidenSC"); 9162 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9163 "Expected no remaining users"); 9164 CompareRecipe->eraseFromParent(); 9165 } 9166 Chain = R; 9167 } 9168 } 9169 9170 // If tail is folded by masking, introduce selects between the phi 9171 // and the live-out instruction of each reduction, at the beginning of the 9172 // dedicated latch block. 9173 if (CM.foldTailByMasking()) { 9174 Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); 9175 for (VPRecipeBase &R : 9176 Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { 9177 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9178 if (!PhiR || PhiR->isInLoop()) 9179 continue; 9180 VPValue *Cond = 9181 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9182 VPValue *Red = PhiR->getBackedgeValue(); 9183 assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB && 9184 "reduction recipe must be defined before latch"); 9185 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9186 } 9187 } 9188 } 9189 9190 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9191 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9192 VPSlotTracker &SlotTracker) const { 9193 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9194 IG->getInsertPos()->printAsOperand(O, false); 9195 O << ", "; 9196 getAddr()->printAsOperand(O, SlotTracker); 9197 VPValue *Mask = getMask(); 9198 if (Mask) { 9199 O << ", "; 9200 Mask->printAsOperand(O, SlotTracker); 9201 } 9202 9203 unsigned OpIdx = 0; 9204 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9205 if (!IG->getMember(i)) 9206 continue; 9207 if (getNumStoreOperands() > 0) { 9208 O << "\n" << Indent << " store "; 9209 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9210 O << " to index " << i; 9211 } else { 9212 O << "\n" << Indent << " "; 9213 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9214 O << " = load from index " << i; 9215 } 9216 ++OpIdx; 9217 } 9218 } 9219 #endif 9220 9221 void VPWidenCallRecipe::execute(VPTransformState &State) { 9222 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9223 *this, State); 9224 } 9225 9226 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9227 auto &I = *cast<SelectInst>(getUnderlyingInstr()); 9228 State.ILV->setDebugLocFromInst(&I); 9229 9230 // The condition can be loop invariant but still defined inside the 9231 // loop. This means that we can't just use the original 'cond' value. 9232 // We have to take the 'vectorized' value and pick the first lane. 9233 // Instcombine will make this a no-op. 9234 auto *InvarCond = 9235 InvariantCond ? State.get(getOperand(0), VPIteration(0, 0)) : nullptr; 9236 9237 for (unsigned Part = 0; Part < State.UF; ++Part) { 9238 Value *Cond = InvarCond ? InvarCond : State.get(getOperand(0), Part); 9239 Value *Op0 = State.get(getOperand(1), Part); 9240 Value *Op1 = State.get(getOperand(2), Part); 9241 Value *Sel = State.Builder.CreateSelect(Cond, Op0, Op1); 9242 State.set(this, Sel, Part); 9243 State.ILV->addMetadata(Sel, &I); 9244 } 9245 } 9246 9247 void VPWidenRecipe::execute(VPTransformState &State) { 9248 auto &I = *cast<Instruction>(getUnderlyingValue()); 9249 auto &Builder = State.Builder; 9250 switch (I.getOpcode()) { 9251 case Instruction::Call: 9252 case Instruction::Br: 9253 case Instruction::PHI: 9254 case Instruction::GetElementPtr: 9255 case Instruction::Select: 9256 llvm_unreachable("This instruction is handled by a different recipe."); 9257 case Instruction::UDiv: 9258 case Instruction::SDiv: 9259 case Instruction::SRem: 9260 case Instruction::URem: 9261 case Instruction::Add: 9262 case Instruction::FAdd: 9263 case Instruction::Sub: 9264 case Instruction::FSub: 9265 case Instruction::FNeg: 9266 case Instruction::Mul: 9267 case Instruction::FMul: 9268 case Instruction::FDiv: 9269 case Instruction::FRem: 9270 case Instruction::Shl: 9271 case Instruction::LShr: 9272 case Instruction::AShr: 9273 case Instruction::And: 9274 case Instruction::Or: 9275 case Instruction::Xor: { 9276 // Just widen unops and binops. 9277 State.ILV->setDebugLocFromInst(&I); 9278 9279 for (unsigned Part = 0; Part < State.UF; ++Part) { 9280 SmallVector<Value *, 2> Ops; 9281 for (VPValue *VPOp : operands()) 9282 Ops.push_back(State.get(VPOp, Part)); 9283 9284 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 9285 9286 if (auto *VecOp = dyn_cast<Instruction>(V)) { 9287 VecOp->copyIRFlags(&I); 9288 9289 // If the instruction is vectorized and was in a basic block that needed 9290 // predication, we can't propagate poison-generating flags (nuw/nsw, 9291 // exact, etc.). The control flow has been linearized and the 9292 // instruction is no longer guarded by the predicate, which could make 9293 // the flag properties to no longer hold. 9294 if (State.MayGeneratePoisonRecipes.contains(this)) 9295 VecOp->dropPoisonGeneratingFlags(); 9296 } 9297 9298 // Use this vector value for all users of the original instruction. 9299 State.set(this, V, Part); 9300 State.ILV->addMetadata(V, &I); 9301 } 9302 9303 break; 9304 } 9305 case Instruction::Freeze: { 9306 State.ILV->setDebugLocFromInst(&I); 9307 9308 for (unsigned Part = 0; Part < State.UF; ++Part) { 9309 Value *Op = State.get(getOperand(0), Part); 9310 9311 Value *Freeze = Builder.CreateFreeze(Op); 9312 State.set(this, Freeze, Part); 9313 } 9314 break; 9315 } 9316 case Instruction::ICmp: 9317 case Instruction::FCmp: { 9318 // Widen compares. Generate vector compares. 9319 bool FCmp = (I.getOpcode() == Instruction::FCmp); 9320 auto *Cmp = cast<CmpInst>(&I); 9321 State.ILV->setDebugLocFromInst(Cmp); 9322 for (unsigned Part = 0; Part < State.UF; ++Part) { 9323 Value *A = State.get(getOperand(0), Part); 9324 Value *B = State.get(getOperand(1), Part); 9325 Value *C = nullptr; 9326 if (FCmp) { 9327 // Propagate fast math flags. 9328 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9329 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 9330 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 9331 } else { 9332 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 9333 } 9334 State.set(this, C, Part); 9335 State.ILV->addMetadata(C, &I); 9336 } 9337 9338 break; 9339 } 9340 9341 case Instruction::ZExt: 9342 case Instruction::SExt: 9343 case Instruction::FPToUI: 9344 case Instruction::FPToSI: 9345 case Instruction::FPExt: 9346 case Instruction::PtrToInt: 9347 case Instruction::IntToPtr: 9348 case Instruction::SIToFP: 9349 case Instruction::UIToFP: 9350 case Instruction::Trunc: 9351 case Instruction::FPTrunc: 9352 case Instruction::BitCast: { 9353 auto *CI = cast<CastInst>(&I); 9354 State.ILV->setDebugLocFromInst(CI); 9355 9356 /// Vectorize casts. 9357 Type *DestTy = (State.VF.isScalar()) 9358 ? CI->getType() 9359 : VectorType::get(CI->getType(), State.VF); 9360 9361 for (unsigned Part = 0; Part < State.UF; ++Part) { 9362 Value *A = State.get(getOperand(0), Part); 9363 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 9364 State.set(this, Cast, Part); 9365 State.ILV->addMetadata(Cast, &I); 9366 } 9367 break; 9368 } 9369 default: 9370 // This instruction is not vectorized by simple widening. 9371 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 9372 llvm_unreachable("Unhandled instruction!"); 9373 } // end of switch. 9374 } 9375 9376 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9377 auto *GEP = cast<GetElementPtrInst>(getUnderlyingInstr()); 9378 // Construct a vector GEP by widening the operands of the scalar GEP as 9379 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 9380 // results in a vector of pointers when at least one operand of the GEP 9381 // is vector-typed. Thus, to keep the representation compact, we only use 9382 // vector-typed operands for loop-varying values. 9383 9384 if (State.VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 9385 // If we are vectorizing, but the GEP has only loop-invariant operands, 9386 // the GEP we build (by only using vector-typed operands for 9387 // loop-varying values) would be a scalar pointer. Thus, to ensure we 9388 // produce a vector of pointers, we need to either arbitrarily pick an 9389 // operand to broadcast, or broadcast a clone of the original GEP. 9390 // Here, we broadcast a clone of the original. 9391 // 9392 // TODO: If at some point we decide to scalarize instructions having 9393 // loop-invariant operands, this special case will no longer be 9394 // required. We would add the scalarization decision to 9395 // collectLoopScalars() and teach getVectorValue() to broadcast 9396 // the lane-zero scalar value. 9397 auto *Clone = State.Builder.Insert(GEP->clone()); 9398 for (unsigned Part = 0; Part < State.UF; ++Part) { 9399 Value *EntryPart = State.Builder.CreateVectorSplat(State.VF, Clone); 9400 State.set(this, EntryPart, Part); 9401 State.ILV->addMetadata(EntryPart, GEP); 9402 } 9403 } else { 9404 // If the GEP has at least one loop-varying operand, we are sure to 9405 // produce a vector of pointers. But if we are only unrolling, we want 9406 // to produce a scalar GEP for each unroll part. Thus, the GEP we 9407 // produce with the code below will be scalar (if VF == 1) or vector 9408 // (otherwise). Note that for the unroll-only case, we still maintain 9409 // values in the vector mapping with initVector, as we do for other 9410 // instructions. 9411 for (unsigned Part = 0; Part < State.UF; ++Part) { 9412 // The pointer operand of the new GEP. If it's loop-invariant, we 9413 // won't broadcast it. 9414 auto *Ptr = IsPtrLoopInvariant 9415 ? State.get(getOperand(0), VPIteration(0, 0)) 9416 : State.get(getOperand(0), Part); 9417 9418 // Collect all the indices for the new GEP. If any index is 9419 // loop-invariant, we won't broadcast it. 9420 SmallVector<Value *, 4> Indices; 9421 for (unsigned I = 1, E = getNumOperands(); I < E; I++) { 9422 VPValue *Operand = getOperand(I); 9423 if (IsIndexLoopInvariant[I - 1]) 9424 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 9425 else 9426 Indices.push_back(State.get(Operand, Part)); 9427 } 9428 9429 // If the GEP instruction is vectorized and was in a basic block that 9430 // needed predication, we can't propagate the poison-generating 'inbounds' 9431 // flag. The control flow has been linearized and the GEP is no longer 9432 // guarded by the predicate, which could make the 'inbounds' properties to 9433 // no longer hold. 9434 bool IsInBounds = 9435 GEP->isInBounds() && State.MayGeneratePoisonRecipes.count(this) == 0; 9436 9437 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 9438 // but it should be a vector, otherwise. 9439 auto *NewGEP = State.Builder.CreateGEP(GEP->getSourceElementType(), Ptr, 9440 Indices, "", IsInBounds); 9441 assert((State.VF.isScalar() || NewGEP->getType()->isVectorTy()) && 9442 "NewGEP is not a pointer vector"); 9443 State.set(this, NewGEP, Part); 9444 State.ILV->addMetadata(NewGEP, GEP); 9445 } 9446 } 9447 } 9448 9449 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9450 assert(!State.Instance && "Int or FP induction being replicated."); 9451 9452 Value *Start = getStartValue()->getLiveInIRValue(); 9453 const InductionDescriptor &ID = getInductionDescriptor(); 9454 TruncInst *Trunc = getTruncInst(); 9455 IRBuilderBase &Builder = State.Builder; 9456 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 9457 assert(State.VF.isVector() && "must have vector VF"); 9458 9459 // The value from the original loop to which we are mapping the new induction 9460 // variable. 9461 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 9462 9463 // Fast-math-flags propagate from the original induction instruction. 9464 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 9465 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 9466 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 9467 9468 // Now do the actual transformations, and start with fetching the step value. 9469 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9470 9471 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 9472 "Expected either an induction phi-node or a truncate of it!"); 9473 9474 // Construct the initial value of the vector IV in the vector loop preheader 9475 auto CurrIP = Builder.saveIP(); 9476 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9477 Builder.SetInsertPoint(VectorPH->getTerminator()); 9478 if (isa<TruncInst>(EntryVal)) { 9479 assert(Start->getType()->isIntegerTy() && 9480 "Truncation requires an integer type"); 9481 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 9482 Step = Builder.CreateTrunc(Step, TruncType); 9483 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 9484 } 9485 9486 Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); 9487 Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); 9488 Value *SteppedStart = getStepVector( 9489 SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); 9490 9491 // We create vector phi nodes for both integer and floating-point induction 9492 // variables. Here, we determine the kind of arithmetic we will perform. 9493 Instruction::BinaryOps AddOp; 9494 Instruction::BinaryOps MulOp; 9495 if (Step->getType()->isIntegerTy()) { 9496 AddOp = Instruction::Add; 9497 MulOp = Instruction::Mul; 9498 } else { 9499 AddOp = ID.getInductionOpcode(); 9500 MulOp = Instruction::FMul; 9501 } 9502 9503 // Multiply the vectorization factor by the step using integer or 9504 // floating-point arithmetic as appropriate. 9505 Type *StepType = Step->getType(); 9506 Value *RuntimeVF; 9507 if (Step->getType()->isFloatingPointTy()) 9508 RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); 9509 else 9510 RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); 9511 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 9512 9513 // Create a vector splat to use in the induction update. 9514 // 9515 // FIXME: If the step is non-constant, we create the vector splat with 9516 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 9517 // handle a constant vector splat. 9518 Value *SplatVF = isa<Constant>(Mul) 9519 ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) 9520 : Builder.CreateVectorSplat(State.VF, Mul); 9521 Builder.restoreIP(CurrIP); 9522 9523 // We may need to add the step a number of times, depending on the unroll 9524 // factor. The last of those goes into the PHI. 9525 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 9526 &*State.CFG.PrevBB->getFirstInsertionPt()); 9527 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 9528 Instruction *LastInduction = VecInd; 9529 for (unsigned Part = 0; Part < State.UF; ++Part) { 9530 State.set(this, LastInduction, Part); 9531 9532 if (isa<TruncInst>(EntryVal)) 9533 State.ILV->addMetadata(LastInduction, EntryVal); 9534 9535 LastInduction = cast<Instruction>( 9536 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 9537 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 9538 } 9539 9540 LastInduction->setName("vec.ind.next"); 9541 VecInd->addIncoming(SteppedStart, VectorPH); 9542 // Add induction update using an incorrect block temporarily. The phi node 9543 // will be fixed after VPlan execution. Note that at this point the latch 9544 // block cannot be used, as it does not exist yet. 9545 // TODO: Model increment value in VPlan, by turning the recipe into a 9546 // multi-def and a subclass of VPHeaderPHIRecipe. 9547 VecInd->addIncoming(LastInduction, VectorPH); 9548 } 9549 9550 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { 9551 assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && 9552 "Not a pointer induction according to InductionDescriptor!"); 9553 assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && 9554 "Unexpected type."); 9555 9556 auto *IVR = getParent()->getPlan()->getCanonicalIV(); 9557 PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); 9558 9559 if (onlyScalarsGenerated(State.VF)) { 9560 // This is the normalized GEP that starts counting at zero. 9561 Value *PtrInd = State.Builder.CreateSExtOrTrunc( 9562 CanonicalIV, IndDesc.getStep()->getType()); 9563 // Determine the number of scalars we need to generate for each unroll 9564 // iteration. If the instruction is uniform, we only need to generate the 9565 // first lane. Otherwise, we generate all VF values. 9566 bool IsUniform = vputils::onlyFirstLaneUsed(this); 9567 assert((IsUniform || !State.VF.isScalable()) && 9568 "Cannot scalarize a scalable VF"); 9569 unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); 9570 9571 for (unsigned Part = 0; Part < State.UF; ++Part) { 9572 Value *PartStart = 9573 createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); 9574 9575 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 9576 Value *Idx = State.Builder.CreateAdd( 9577 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 9578 Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); 9579 9580 Value *Step = CreateStepValue(IndDesc.getStep(), SE, 9581 State.CFG.PrevBB->getTerminator()); 9582 Value *SclrGep = emitTransformedIndex( 9583 State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); 9584 SclrGep->setName("next.gep"); 9585 State.set(this, SclrGep, VPIteration(Part, Lane)); 9586 } 9587 } 9588 return; 9589 } 9590 9591 assert(isa<SCEVConstant>(IndDesc.getStep()) && 9592 "Induction step not a SCEV constant!"); 9593 Type *PhiType = IndDesc.getStep()->getType(); 9594 9595 // Build a pointer phi 9596 Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); 9597 Type *ScStValueType = ScalarStartValue->getType(); 9598 PHINode *NewPointerPhi = 9599 PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); 9600 9601 BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); 9602 NewPointerPhi->addIncoming(ScalarStartValue, VectorPH); 9603 9604 // A pointer induction, performed by using a gep 9605 const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout(); 9606 Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); 9607 9608 const SCEV *ScalarStep = IndDesc.getStep(); 9609 SCEVExpander Exp(SE, DL, "induction"); 9610 Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 9611 Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); 9612 Value *NumUnrolledElems = 9613 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 9614 Value *InductionGEP = GetElementPtrInst::Create( 9615 IndDesc.getElementType(), NewPointerPhi, 9616 State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 9617 InductionLoc); 9618 // Add induction update using an incorrect block temporarily. The phi node 9619 // will be fixed after VPlan execution. Note that at this point the latch 9620 // block cannot be used, as it does not exist yet. 9621 // TODO: Model increment value in VPlan, by turning the recipe into a 9622 // multi-def and a subclass of VPHeaderPHIRecipe. 9623 NewPointerPhi->addIncoming(InductionGEP, VectorPH); 9624 9625 // Create UF many actual address geps that use the pointer 9626 // phi as base and a vectorized version of the step value 9627 // (<step*0, ..., step*N>) as offset. 9628 for (unsigned Part = 0; Part < State.UF; ++Part) { 9629 Type *VecPhiType = VectorType::get(PhiType, State.VF); 9630 Value *StartOffsetScalar = 9631 State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 9632 Value *StartOffset = 9633 State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 9634 // Create a vector of consecutive numbers from zero to VF. 9635 StartOffset = State.Builder.CreateAdd( 9636 StartOffset, State.Builder.CreateStepVector(VecPhiType)); 9637 9638 Value *GEP = State.Builder.CreateGEP( 9639 IndDesc.getElementType(), NewPointerPhi, 9640 State.Builder.CreateMul( 9641 StartOffset, 9642 State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), 9643 "vector.gep")); 9644 State.set(this, GEP, Part); 9645 } 9646 } 9647 9648 void VPScalarIVStepsRecipe::execute(VPTransformState &State) { 9649 assert(!State.Instance && "VPScalarIVStepsRecipe being replicated."); 9650 9651 // Fast-math-flags propagate from the original induction instruction. 9652 IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); 9653 if (IndDesc.getInductionBinOp() && 9654 isa<FPMathOperator>(IndDesc.getInductionBinOp())) 9655 State.Builder.setFastMathFlags( 9656 IndDesc.getInductionBinOp()->getFastMathFlags()); 9657 9658 Value *Step = State.get(getStepValue(), VPIteration(0, 0)); 9659 auto CreateScalarIV = [&](Value *&Step) -> Value * { 9660 Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0)); 9661 auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0); 9662 if (!isCanonical() || CanonicalIV->getType() != Ty) { 9663 ScalarIV = 9664 Ty->isIntegerTy() 9665 ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty) 9666 : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty); 9667 ScalarIV = emitTransformedIndex(State.Builder, ScalarIV, 9668 getStartValue()->getLiveInIRValue(), Step, 9669 IndDesc); 9670 ScalarIV->setName("offset.idx"); 9671 } 9672 if (TruncToTy) { 9673 assert(Step->getType()->isIntegerTy() && 9674 "Truncation requires an integer step"); 9675 ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy); 9676 Step = State.Builder.CreateTrunc(Step, TruncToTy); 9677 } 9678 return ScalarIV; 9679 }; 9680 9681 Value *ScalarIV = CreateScalarIV(Step); 9682 if (State.VF.isVector()) { 9683 buildScalarSteps(ScalarIV, Step, IndDesc, this, State); 9684 return; 9685 } 9686 9687 for (unsigned Part = 0; Part < State.UF; ++Part) { 9688 assert(!State.VF.isScalable() && "scalable vectors not yet supported."); 9689 Value *EntryPart; 9690 if (Step->getType()->isFloatingPointTy()) { 9691 Value *StartIdx = 9692 getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part); 9693 // Floating-point operations inherit FMF via the builder's flags. 9694 Value *MulOp = State.Builder.CreateFMul(StartIdx, Step); 9695 EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(), 9696 ScalarIV, MulOp); 9697 } else { 9698 Value *StartIdx = 9699 getRuntimeVF(State.Builder, Step->getType(), State.VF * Part); 9700 EntryPart = State.Builder.CreateAdd( 9701 ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction"); 9702 } 9703 State.set(this, EntryPart, Part); 9704 } 9705 } 9706 9707 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9708 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9709 State); 9710 } 9711 9712 void VPBlendRecipe::execute(VPTransformState &State) { 9713 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9714 // We know that all PHIs in non-header blocks are converted into 9715 // selects, so we don't have to worry about the insertion order and we 9716 // can just use the builder. 9717 // At this point we generate the predication tree. There may be 9718 // duplications since this is a simple recursive scan, but future 9719 // optimizations will clean it up. 9720 9721 unsigned NumIncoming = getNumIncomingValues(); 9722 9723 // Generate a sequence of selects of the form: 9724 // SELECT(Mask3, In3, 9725 // SELECT(Mask2, In2, 9726 // SELECT(Mask1, In1, 9727 // In0))) 9728 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9729 // are essentially undef are taken from In0. 9730 InnerLoopVectorizer::VectorParts Entry(State.UF); 9731 for (unsigned In = 0; In < NumIncoming; ++In) { 9732 for (unsigned Part = 0; Part < State.UF; ++Part) { 9733 // We might have single edge PHIs (blocks) - use an identity 9734 // 'select' for the first PHI operand. 9735 Value *In0 = State.get(getIncomingValue(In), Part); 9736 if (In == 0) 9737 Entry[Part] = In0; // Initialize with the first incoming value. 9738 else { 9739 // Select between the current value and the previous incoming edge 9740 // based on the incoming mask. 9741 Value *Cond = State.get(getMask(In), Part); 9742 Entry[Part] = 9743 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9744 } 9745 } 9746 } 9747 for (unsigned Part = 0; Part < State.UF; ++Part) 9748 State.set(this, Entry[Part], Part); 9749 } 9750 9751 void VPInterleaveRecipe::execute(VPTransformState &State) { 9752 assert(!State.Instance && "Interleave group being replicated."); 9753 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9754 getStoredValues(), getMask()); 9755 } 9756 9757 void VPReductionRecipe::execute(VPTransformState &State) { 9758 assert(!State.Instance && "Reduction being replicated."); 9759 Value *PrevInChain = State.get(getChainOp(), 0); 9760 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9761 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9762 // Propagate the fast-math flags carried by the underlying instruction. 9763 IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); 9764 State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); 9765 for (unsigned Part = 0; Part < State.UF; ++Part) { 9766 Value *NewVecOp = State.get(getVecOp(), Part); 9767 if (VPValue *Cond = getCondOp()) { 9768 Value *NewCond = State.get(Cond, Part); 9769 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9770 Value *Iden = RdxDesc->getRecurrenceIdentity( 9771 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9772 Value *IdenVec = 9773 State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); 9774 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9775 NewVecOp = Select; 9776 } 9777 Value *NewRed; 9778 Value *NextInChain; 9779 if (IsOrdered) { 9780 if (State.VF.isVector()) 9781 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9782 PrevInChain); 9783 else 9784 NewRed = State.Builder.CreateBinOp( 9785 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, 9786 NewVecOp); 9787 PrevInChain = NewRed; 9788 } else { 9789 PrevInChain = State.get(getChainOp(), Part); 9790 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9791 } 9792 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9793 NextInChain = 9794 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9795 NewRed, PrevInChain); 9796 } else if (IsOrdered) 9797 NextInChain = NewRed; 9798 else 9799 NextInChain = State.Builder.CreateBinOp( 9800 (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, 9801 PrevInChain); 9802 State.set(this, NextInChain, Part); 9803 } 9804 } 9805 9806 void VPReplicateRecipe::execute(VPTransformState &State) { 9807 if (State.Instance) { // Generate a single instance. 9808 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9809 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance, 9810 IsPredicated, State); 9811 // Insert scalar instance packing it into a vector. 9812 if (AlsoPack && State.VF.isVector()) { 9813 // If we're constructing lane 0, initialize to start from poison. 9814 if (State.Instance->Lane.isFirstLane()) { 9815 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9816 Value *Poison = PoisonValue::get( 9817 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9818 State.set(this, Poison, State.Instance->Part); 9819 } 9820 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9821 } 9822 return; 9823 } 9824 9825 // Generate scalar instances for all VF lanes of all UF parts, unless the 9826 // instruction is uniform inwhich case generate only the first lane for each 9827 // of the UF parts. 9828 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9829 assert((!State.VF.isScalable() || IsUniform) && 9830 "Can't scalarize a scalable vector"); 9831 for (unsigned Part = 0; Part < State.UF; ++Part) 9832 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9833 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, 9834 VPIteration(Part, Lane), IsPredicated, 9835 State); 9836 } 9837 9838 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9839 assert(State.Instance && "Branch on Mask works only on single instance."); 9840 9841 unsigned Part = State.Instance->Part; 9842 unsigned Lane = State.Instance->Lane.getKnownLane(); 9843 9844 Value *ConditionBit = nullptr; 9845 VPValue *BlockInMask = getMask(); 9846 if (BlockInMask) { 9847 ConditionBit = State.get(BlockInMask, Part); 9848 if (ConditionBit->getType()->isVectorTy()) 9849 ConditionBit = State.Builder.CreateExtractElement( 9850 ConditionBit, State.Builder.getInt32(Lane)); 9851 } else // Block in mask is all-one. 9852 ConditionBit = State.Builder.getTrue(); 9853 9854 // Replace the temporary unreachable terminator with a new conditional branch, 9855 // whose two destinations will be set later when they are created. 9856 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9857 assert(isa<UnreachableInst>(CurrentTerminator) && 9858 "Expected to replace unreachable terminator with conditional branch."); 9859 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9860 CondBr->setSuccessor(0, nullptr); 9861 ReplaceInstWithInst(CurrentTerminator, CondBr); 9862 } 9863 9864 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9865 assert(State.Instance && "Predicated instruction PHI works per instance."); 9866 Instruction *ScalarPredInst = 9867 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9868 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9869 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9870 assert(PredicatingBB && "Predicated block has no single predecessor."); 9871 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9872 "operand must be VPReplicateRecipe"); 9873 9874 // By current pack/unpack logic we need to generate only a single phi node: if 9875 // a vector value for the predicated instruction exists at this point it means 9876 // the instruction has vector users only, and a phi for the vector value is 9877 // needed. In this case the recipe of the predicated instruction is marked to 9878 // also do that packing, thereby "hoisting" the insert-element sequence. 9879 // Otherwise, a phi node for the scalar value is needed. 9880 unsigned Part = State.Instance->Part; 9881 if (State.hasVectorValue(getOperand(0), Part)) { 9882 Value *VectorValue = State.get(getOperand(0), Part); 9883 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9884 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9885 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9886 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9887 if (State.hasVectorValue(this, Part)) 9888 State.reset(this, VPhi, Part); 9889 else 9890 State.set(this, VPhi, Part); 9891 // NOTE: Currently we need to update the value of the operand, so the next 9892 // predicated iteration inserts its generated value in the correct vector. 9893 State.reset(getOperand(0), VPhi, Part); 9894 } else { 9895 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9896 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9897 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9898 PredicatingBB); 9899 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9900 if (State.hasScalarValue(this, *State.Instance)) 9901 State.reset(this, Phi, *State.Instance); 9902 else 9903 State.set(this, Phi, *State.Instance); 9904 // NOTE: Currently we need to update the value of the operand, so the next 9905 // predicated iteration inserts its generated value in the correct vector. 9906 State.reset(getOperand(0), Phi, *State.Instance); 9907 } 9908 } 9909 9910 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9911 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9912 9913 // Attempt to issue a wide load. 9914 LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); 9915 StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); 9916 9917 assert((LI || SI) && "Invalid Load/Store instruction"); 9918 assert((!SI || StoredValue) && "No stored value provided for widened store"); 9919 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 9920 9921 Type *ScalarDataTy = getLoadStoreType(&Ingredient); 9922 9923 auto *DataTy = VectorType::get(ScalarDataTy, State.VF); 9924 const Align Alignment = getLoadStoreAlignment(&Ingredient); 9925 bool CreateGatherScatter = !Consecutive; 9926 9927 auto &Builder = State.Builder; 9928 InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); 9929 bool isMaskRequired = getMask(); 9930 if (isMaskRequired) 9931 for (unsigned Part = 0; Part < State.UF; ++Part) 9932 BlockInMaskParts[Part] = State.get(getMask(), Part); 9933 9934 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 9935 // Calculate the pointer for the specific unroll-part. 9936 GetElementPtrInst *PartPtr = nullptr; 9937 9938 bool InBounds = false; 9939 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 9940 InBounds = gep->isInBounds(); 9941 if (Reverse) { 9942 // If the address is consecutive but reversed, then the 9943 // wide store needs to start at the last vector element. 9944 // RunTimeVF = VScale * VF.getKnownMinValue() 9945 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 9946 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); 9947 // NumElt = -Part * RunTimeVF 9948 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 9949 // LastLane = 1 - RunTimeVF 9950 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 9951 PartPtr = 9952 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 9953 PartPtr->setIsInBounds(InBounds); 9954 PartPtr = cast<GetElementPtrInst>( 9955 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 9956 PartPtr->setIsInBounds(InBounds); 9957 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 9958 BlockInMaskParts[Part] = 9959 Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); 9960 } else { 9961 Value *Increment = 9962 createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); 9963 PartPtr = cast<GetElementPtrInst>( 9964 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 9965 PartPtr->setIsInBounds(InBounds); 9966 } 9967 9968 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 9969 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 9970 }; 9971 9972 // Handle Stores: 9973 if (SI) { 9974 State.ILV->setDebugLocFromInst(SI); 9975 9976 for (unsigned Part = 0; Part < State.UF; ++Part) { 9977 Instruction *NewSI = nullptr; 9978 Value *StoredVal = State.get(StoredValue, Part); 9979 if (CreateGatherScatter) { 9980 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 9981 Value *VectorGep = State.get(getAddr(), Part); 9982 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 9983 MaskPart); 9984 } else { 9985 if (Reverse) { 9986 // If we store to reverse consecutive memory locations, then we need 9987 // to reverse the order of elements in the stored value. 9988 StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); 9989 // We don't want to update the value in the map as it might be used in 9990 // another expression. So don't call resetVectorValue(StoredVal). 9991 } 9992 auto *VecPtr = 9993 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 9994 if (isMaskRequired) 9995 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 9996 BlockInMaskParts[Part]); 9997 else 9998 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 9999 } 10000 State.ILV->addMetadata(NewSI, SI); 10001 } 10002 return; 10003 } 10004 10005 // Handle loads. 10006 assert(LI && "Must have a load instruction"); 10007 State.ILV->setDebugLocFromInst(LI); 10008 for (unsigned Part = 0; Part < State.UF; ++Part) { 10009 Value *NewLI; 10010 if (CreateGatherScatter) { 10011 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 10012 Value *VectorGep = State.get(getAddr(), Part); 10013 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 10014 nullptr, "wide.masked.gather"); 10015 State.ILV->addMetadata(NewLI, LI); 10016 } else { 10017 auto *VecPtr = 10018 CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); 10019 if (isMaskRequired) 10020 NewLI = Builder.CreateMaskedLoad( 10021 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 10022 PoisonValue::get(DataTy), "wide.masked.load"); 10023 else 10024 NewLI = 10025 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 10026 10027 // Add metadata to the load, but setVectorValue to the reverse shuffle. 10028 State.ILV->addMetadata(NewLI, LI); 10029 if (Reverse) 10030 NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); 10031 } 10032 10033 State.set(getVPSingleValue(), NewLI, Part); 10034 } 10035 } 10036 10037 // Determine how to lower the scalar epilogue, which depends on 1) optimising 10038 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 10039 // predication, and 4) a TTI hook that analyses whether the loop is suitable 10040 // for predication. 10041 static ScalarEpilogueLowering getScalarEpilogueLowering( 10042 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 10043 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 10044 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 10045 LoopVectorizationLegality &LVL) { 10046 // 1) OptSize takes precedence over all other options, i.e. if this is set, 10047 // don't look at hints or options, and don't request a scalar epilogue. 10048 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 10049 // LoopAccessInfo (due to code dependency and not being able to reliably get 10050 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 10051 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 10052 // versioning when the vectorization is forced, unlike hasOptSize. So revert 10053 // back to the old way and vectorize with versioning when forced. See D81345.) 10054 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 10055 PGSOQueryType::IRPass) && 10056 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 10057 return CM_ScalarEpilogueNotAllowedOptSize; 10058 10059 // 2) If set, obey the directives 10060 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 10061 switch (PreferPredicateOverEpilogue) { 10062 case PreferPredicateTy::ScalarEpilogue: 10063 return CM_ScalarEpilogueAllowed; 10064 case PreferPredicateTy::PredicateElseScalarEpilogue: 10065 return CM_ScalarEpilogueNotNeededUsePredicate; 10066 case PreferPredicateTy::PredicateOrDontVectorize: 10067 return CM_ScalarEpilogueNotAllowedUsePredicate; 10068 }; 10069 } 10070 10071 // 3) If set, obey the hints 10072 switch (Hints.getPredicate()) { 10073 case LoopVectorizeHints::FK_Enabled: 10074 return CM_ScalarEpilogueNotNeededUsePredicate; 10075 case LoopVectorizeHints::FK_Disabled: 10076 return CM_ScalarEpilogueAllowed; 10077 }; 10078 10079 // 4) if the TTI hook indicates this is profitable, request predication. 10080 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 10081 LVL.getLAI())) 10082 return CM_ScalarEpilogueNotNeededUsePredicate; 10083 10084 return CM_ScalarEpilogueAllowed; 10085 } 10086 10087 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 10088 // If Values have been set for this Def return the one relevant for \p Part. 10089 if (hasVectorValue(Def, Part)) 10090 return Data.PerPartOutput[Def][Part]; 10091 10092 if (!hasScalarValue(Def, {Part, 0})) { 10093 Value *IRV = Def->getLiveInIRValue(); 10094 Value *B = ILV->getBroadcastInstrs(IRV); 10095 set(Def, B, Part); 10096 return B; 10097 } 10098 10099 Value *ScalarValue = get(Def, {Part, 0}); 10100 // If we aren't vectorizing, we can just copy the scalar map values over 10101 // to the vector map. 10102 if (VF.isScalar()) { 10103 set(Def, ScalarValue, Part); 10104 return ScalarValue; 10105 } 10106 10107 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 10108 bool IsUniform = RepR && RepR->isUniform(); 10109 10110 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 10111 // Check if there is a scalar value for the selected lane. 10112 if (!hasScalarValue(Def, {Part, LastLane})) { 10113 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 10114 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) || 10115 isa<VPScalarIVStepsRecipe>(Def->getDef())) && 10116 "unexpected recipe found to be invariant"); 10117 IsUniform = true; 10118 LastLane = 0; 10119 } 10120 10121 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 10122 // Set the insert point after the last scalarized instruction or after the 10123 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 10124 // will directly follow the scalar definitions. 10125 auto OldIP = Builder.saveIP(); 10126 auto NewIP = 10127 isa<PHINode>(LastInst) 10128 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 10129 : std::next(BasicBlock::iterator(LastInst)); 10130 Builder.SetInsertPoint(&*NewIP); 10131 10132 // However, if we are vectorizing, we need to construct the vector values. 10133 // If the value is known to be uniform after vectorization, we can just 10134 // broadcast the scalar value corresponding to lane zero for each unroll 10135 // iteration. Otherwise, we construct the vector values using 10136 // insertelement instructions. Since the resulting vectors are stored in 10137 // State, we will only generate the insertelements once. 10138 Value *VectorValue = nullptr; 10139 if (IsUniform) { 10140 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 10141 set(Def, VectorValue, Part); 10142 } else { 10143 // Initialize packing with insertelements to start from undef. 10144 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10145 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10146 set(Def, Undef, Part); 10147 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10148 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10149 VectorValue = get(Def, Part); 10150 } 10151 Builder.restoreIP(OldIP); 10152 return VectorValue; 10153 } 10154 10155 // Process the loop in the VPlan-native vectorization path. This path builds 10156 // VPlan upfront in the vectorization pipeline, which allows to apply 10157 // VPlan-to-VPlan transformations from the very beginning without modifying the 10158 // input LLVM IR. 10159 static bool processLoopInVPlanNativePath( 10160 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10161 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10162 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10163 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10164 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10165 LoopVectorizationRequirements &Requirements) { 10166 10167 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10168 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10169 return false; 10170 } 10171 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10172 Function *F = L->getHeader()->getParent(); 10173 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10174 10175 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10176 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10177 10178 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10179 &Hints, IAI); 10180 // Use the planner for outer loop vectorization. 10181 // TODO: CM is not used at this point inside the planner. Turn CM into an 10182 // optional argument if we don't need it in the future. 10183 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10184 Requirements, ORE); 10185 10186 // Get user vectorization factor. 10187 ElementCount UserVF = Hints.getWidth(); 10188 10189 CM.collectElementTypesForWidening(); 10190 10191 // Plan how to best vectorize, return the best VF and its cost. 10192 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10193 10194 // If we are stress testing VPlan builds, do not attempt to generate vector 10195 // code. Masked vector code generation support will follow soon. 10196 // Also, do not attempt to vectorize if no vector code will be produced. 10197 if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF) 10198 return false; 10199 10200 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10201 10202 { 10203 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10204 F->getParent()->getDataLayout()); 10205 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10206 &CM, BFI, PSI, Checks); 10207 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10208 << L->getHeader()->getParent()->getName() << "\"\n"); 10209 LVP.executePlan(VF.Width, 1, BestPlan, LB, DT); 10210 } 10211 10212 // Mark the loop as already vectorized to avoid vectorizing again. 10213 Hints.setAlreadyVectorized(); 10214 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10215 return true; 10216 } 10217 10218 // Emit a remark if there are stores to floats that required a floating point 10219 // extension. If the vectorized loop was generated with floating point there 10220 // will be a performance penalty from the conversion overhead and the change in 10221 // the vector width. 10222 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10223 SmallVector<Instruction *, 4> Worklist; 10224 for (BasicBlock *BB : L->getBlocks()) { 10225 for (Instruction &Inst : *BB) { 10226 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10227 if (S->getValueOperand()->getType()->isFloatTy()) 10228 Worklist.push_back(S); 10229 } 10230 } 10231 } 10232 10233 // Traverse the floating point stores upwards searching, for floating point 10234 // conversions. 10235 SmallPtrSet<const Instruction *, 4> Visited; 10236 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10237 while (!Worklist.empty()) { 10238 auto *I = Worklist.pop_back_val(); 10239 if (!L->contains(I)) 10240 continue; 10241 if (!Visited.insert(I).second) 10242 continue; 10243 10244 // Emit a remark if the floating point store required a floating 10245 // point conversion. 10246 // TODO: More work could be done to identify the root cause such as a 10247 // constant or a function return type and point the user to it. 10248 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10249 ORE->emit([&]() { 10250 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10251 I->getDebugLoc(), L->getHeader()) 10252 << "floating point conversion changes vector width. " 10253 << "Mixed floating point precision requires an up/down " 10254 << "cast that will negatively impact performance."; 10255 }); 10256 10257 for (Use &Op : I->operands()) 10258 if (auto *OpI = dyn_cast<Instruction>(Op)) 10259 Worklist.push_back(OpI); 10260 } 10261 } 10262 10263 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10264 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10265 !EnableLoopInterleaving), 10266 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10267 !EnableLoopVectorization) {} 10268 10269 bool LoopVectorizePass::processLoop(Loop *L) { 10270 assert((EnableVPlanNativePath || L->isInnermost()) && 10271 "VPlan-native path is not enabled. Only process inner loops."); 10272 10273 #ifndef NDEBUG 10274 const std::string DebugLocStr = getDebugLocString(L); 10275 #endif /* NDEBUG */ 10276 10277 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '" 10278 << L->getHeader()->getParent()->getName() << "' from " 10279 << DebugLocStr << "\n"); 10280 10281 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); 10282 10283 LLVM_DEBUG( 10284 dbgs() << "LV: Loop hints:" 10285 << " force=" 10286 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10287 ? "disabled" 10288 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10289 ? "enabled" 10290 : "?")) 10291 << " width=" << Hints.getWidth() 10292 << " interleave=" << Hints.getInterleave() << "\n"); 10293 10294 // Function containing loop 10295 Function *F = L->getHeader()->getParent(); 10296 10297 // Looking at the diagnostic output is the only way to determine if a loop 10298 // was vectorized (other than looking at the IR or machine code), so it 10299 // is important to generate an optimization remark for each loop. Most of 10300 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10301 // generated as OptimizationRemark and OptimizationRemarkMissed are 10302 // less verbose reporting vectorized loops and unvectorized loops that may 10303 // benefit from vectorization, respectively. 10304 10305 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10306 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10307 return false; 10308 } 10309 10310 PredicatedScalarEvolution PSE(*SE, *L); 10311 10312 // Check if it is legal to vectorize the loop. 10313 LoopVectorizationRequirements Requirements; 10314 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10315 &Requirements, &Hints, DB, AC, BFI, PSI); 10316 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10317 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10318 Hints.emitRemarkWithHints(); 10319 return false; 10320 } 10321 10322 // Check the function attributes and profiles to find out if this function 10323 // should be optimized for size. 10324 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10325 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10326 10327 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10328 // here. They may require CFG and instruction level transformations before 10329 // even evaluating whether vectorization is profitable. Since we cannot modify 10330 // the incoming IR, we need to build VPlan upfront in the vectorization 10331 // pipeline. 10332 if (!L->isInnermost()) 10333 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10334 ORE, BFI, PSI, Hints, Requirements); 10335 10336 assert(L->isInnermost() && "Inner loop expected."); 10337 10338 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10339 // count by optimizing for size, to minimize overheads. 10340 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10341 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10342 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10343 << "This loop is worth vectorizing only if no scalar " 10344 << "iteration overheads are incurred."); 10345 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10346 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10347 else { 10348 LLVM_DEBUG(dbgs() << "\n"); 10349 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10350 } 10351 } 10352 10353 // Check the function attributes to see if implicit floats are allowed. 10354 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10355 // an integer loop and the vector instructions selected are purely integer 10356 // vector instructions? 10357 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10358 reportVectorizationFailure( 10359 "Can't vectorize when the NoImplicitFloat attribute is used", 10360 "loop not vectorized due to NoImplicitFloat attribute", 10361 "NoImplicitFloat", ORE, L); 10362 Hints.emitRemarkWithHints(); 10363 return false; 10364 } 10365 10366 // Check if the target supports potentially unsafe FP vectorization. 10367 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10368 // for the target we're vectorizing for, to make sure none of the 10369 // additional fp-math flags can help. 10370 if (Hints.isPotentiallyUnsafe() && 10371 TTI->isFPVectorizationPotentiallyUnsafe()) { 10372 reportVectorizationFailure( 10373 "Potentially unsafe FP op prevents vectorization", 10374 "loop not vectorized due to unsafe FP support.", 10375 "UnsafeFP", ORE, L); 10376 Hints.emitRemarkWithHints(); 10377 return false; 10378 } 10379 10380 bool AllowOrderedReductions; 10381 // If the flag is set, use that instead and override the TTI behaviour. 10382 if (ForceOrderedReductions.getNumOccurrences() > 0) 10383 AllowOrderedReductions = ForceOrderedReductions; 10384 else 10385 AllowOrderedReductions = TTI->enableOrderedReductions(); 10386 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10387 ORE->emit([&]() { 10388 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10389 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10390 ExactFPMathInst->getDebugLoc(), 10391 ExactFPMathInst->getParent()) 10392 << "loop not vectorized: cannot prove it is safe to reorder " 10393 "floating-point operations"; 10394 }); 10395 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10396 "reorder floating-point operations\n"); 10397 Hints.emitRemarkWithHints(); 10398 return false; 10399 } 10400 10401 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10402 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10403 10404 // If an override option has been passed in for interleaved accesses, use it. 10405 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10406 UseInterleaved = EnableInterleavedMemAccesses; 10407 10408 // Analyze interleaved memory accesses. 10409 if (UseInterleaved) { 10410 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10411 } 10412 10413 // Use the cost model. 10414 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10415 F, &Hints, IAI); 10416 CM.collectValuesToIgnore(); 10417 CM.collectElementTypesForWidening(); 10418 10419 // Use the planner for vectorization. 10420 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10421 Requirements, ORE); 10422 10423 // Get user vectorization factor and interleave count. 10424 ElementCount UserVF = Hints.getWidth(); 10425 unsigned UserIC = Hints.getInterleave(); 10426 10427 // Plan how to best vectorize, return the best VF and its cost. 10428 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10429 10430 VectorizationFactor VF = VectorizationFactor::Disabled(); 10431 unsigned IC = 1; 10432 10433 if (MaybeVF) { 10434 if (LVP.requiresTooManyRuntimeChecks()) { 10435 ORE->emit([&]() { 10436 return OptimizationRemarkAnalysisAliasing( 10437 DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(), 10438 L->getHeader()) 10439 << "loop not vectorized: cannot prove it is safe to reorder " 10440 "memory operations"; 10441 }); 10442 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 10443 Hints.emitRemarkWithHints(); 10444 return false; 10445 } 10446 VF = *MaybeVF; 10447 // Select the interleave count. 10448 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10449 } 10450 10451 // Identify the diagnostic messages that should be produced. 10452 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10453 bool VectorizeLoop = true, InterleaveLoop = true; 10454 if (VF.Width.isScalar()) { 10455 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10456 VecDiagMsg = std::make_pair( 10457 "VectorizationNotBeneficial", 10458 "the cost-model indicates that vectorization is not beneficial"); 10459 VectorizeLoop = false; 10460 } 10461 10462 if (!MaybeVF && UserIC > 1) { 10463 // Tell the user interleaving was avoided up-front, despite being explicitly 10464 // requested. 10465 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10466 "interleaving should be avoided up front\n"); 10467 IntDiagMsg = std::make_pair( 10468 "InterleavingAvoided", 10469 "Ignoring UserIC, because interleaving was avoided up front"); 10470 InterleaveLoop = false; 10471 } else if (IC == 1 && UserIC <= 1) { 10472 // Tell the user interleaving is not beneficial. 10473 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10474 IntDiagMsg = std::make_pair( 10475 "InterleavingNotBeneficial", 10476 "the cost-model indicates that interleaving is not beneficial"); 10477 InterleaveLoop = false; 10478 if (UserIC == 1) { 10479 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10480 IntDiagMsg.second += 10481 " and is explicitly disabled or interleave count is set to 1"; 10482 } 10483 } else if (IC > 1 && UserIC == 1) { 10484 // Tell the user interleaving is beneficial, but it explicitly disabled. 10485 LLVM_DEBUG( 10486 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10487 IntDiagMsg = std::make_pair( 10488 "InterleavingBeneficialButDisabled", 10489 "the cost-model indicates that interleaving is beneficial " 10490 "but is explicitly disabled or interleave count is set to 1"); 10491 InterleaveLoop = false; 10492 } 10493 10494 // Override IC if user provided an interleave count. 10495 IC = UserIC > 0 ? UserIC : IC; 10496 10497 // Emit diagnostic messages, if any. 10498 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10499 if (!VectorizeLoop && !InterleaveLoop) { 10500 // Do not vectorize or interleaving the loop. 10501 ORE->emit([&]() { 10502 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10503 L->getStartLoc(), L->getHeader()) 10504 << VecDiagMsg.second; 10505 }); 10506 ORE->emit([&]() { 10507 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10508 L->getStartLoc(), L->getHeader()) 10509 << IntDiagMsg.second; 10510 }); 10511 return false; 10512 } else if (!VectorizeLoop && InterleaveLoop) { 10513 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10514 ORE->emit([&]() { 10515 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10516 L->getStartLoc(), L->getHeader()) 10517 << VecDiagMsg.second; 10518 }); 10519 } else if (VectorizeLoop && !InterleaveLoop) { 10520 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10521 << ") in " << DebugLocStr << '\n'); 10522 ORE->emit([&]() { 10523 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10524 L->getStartLoc(), L->getHeader()) 10525 << IntDiagMsg.second; 10526 }); 10527 } else if (VectorizeLoop && InterleaveLoop) { 10528 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10529 << ") in " << DebugLocStr << '\n'); 10530 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10531 } 10532 10533 bool DisableRuntimeUnroll = false; 10534 MDNode *OrigLoopID = L->getLoopID(); 10535 { 10536 // Optimistically generate runtime checks. Drop them if they turn out to not 10537 // be profitable. Limit the scope of Checks, so the cleanup happens 10538 // immediately after vector codegeneration is done. 10539 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10540 F->getParent()->getDataLayout()); 10541 if (!VF.Width.isScalar() || IC > 1) 10542 Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, IC); 10543 10544 using namespace ore; 10545 if (!VectorizeLoop) { 10546 assert(IC > 1 && "interleave count should not be 1 or 0"); 10547 // If we decided that it is not legal to vectorize the loop, then 10548 // interleave it. 10549 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10550 &CM, BFI, PSI, Checks); 10551 10552 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10553 LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT); 10554 10555 ORE->emit([&]() { 10556 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10557 L->getHeader()) 10558 << "interleaved loop (interleaved count: " 10559 << NV("InterleaveCount", IC) << ")"; 10560 }); 10561 } else { 10562 // If we decided that it is *legal* to vectorize the loop, then do it. 10563 10564 // Consider vectorizing the epilogue too if it's profitable. 10565 VectorizationFactor EpilogueVF = 10566 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10567 if (EpilogueVF.Width.isVector()) { 10568 10569 // The first pass vectorizes the main loop and creates a scalar epilogue 10570 // to be vectorized by executing the plan (potentially with a different 10571 // factor) again shortly afterwards. 10572 EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); 10573 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10574 EPI, &LVL, &CM, BFI, PSI, Checks); 10575 10576 VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); 10577 LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, 10578 DT); 10579 ++LoopsVectorized; 10580 10581 // Second pass vectorizes the epilogue and adjusts the control flow 10582 // edges from the first pass. 10583 EPI.MainLoopVF = EPI.EpilogueVF; 10584 EPI.MainLoopUF = EPI.EpilogueUF; 10585 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10586 ORE, EPI, &LVL, &CM, BFI, PSI, 10587 Checks); 10588 10589 VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); 10590 VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion(); 10591 VPBasicBlock *Header = VectorLoop->getEntryBasicBlock(); 10592 Header->setName("vec.epilog.vector.body"); 10593 10594 // Ensure that the start values for any VPReductionPHIRecipes are 10595 // updated before vectorising the epilogue loop. 10596 for (VPRecipeBase &R : Header->phis()) { 10597 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { 10598 if (auto *Resume = MainILV.getReductionResumeValue( 10599 ReductionPhi->getRecurrenceDescriptor())) { 10600 VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume); 10601 ReductionPhi->setOperand(0, StartVal); 10602 } 10603 } 10604 } 10605 10606 LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, 10607 DT); 10608 ++LoopsEpilogueVectorized; 10609 10610 if (!MainILV.areSafetyChecksAdded()) 10611 DisableRuntimeUnroll = true; 10612 } else { 10613 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10614 &LVL, &CM, BFI, PSI, Checks); 10615 10616 VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); 10617 LVP.executePlan(VF.Width, IC, BestPlan, LB, DT); 10618 ++LoopsVectorized; 10619 10620 // Add metadata to disable runtime unrolling a scalar loop when there 10621 // are no runtime checks about strides and memory. A scalar loop that is 10622 // rarely used is not worth unrolling. 10623 if (!LB.areSafetyChecksAdded()) 10624 DisableRuntimeUnroll = true; 10625 } 10626 // Report the vectorization decision. 10627 ORE->emit([&]() { 10628 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10629 L->getHeader()) 10630 << "vectorized loop (vectorization width: " 10631 << NV("VectorizationFactor", VF.Width) 10632 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10633 }); 10634 } 10635 10636 if (ORE->allowExtraAnalysis(LV_NAME)) 10637 checkMixedPrecision(L, ORE); 10638 } 10639 10640 Optional<MDNode *> RemainderLoopID = 10641 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10642 LLVMLoopVectorizeFollowupEpilogue}); 10643 if (RemainderLoopID.hasValue()) { 10644 L->setLoopID(RemainderLoopID.getValue()); 10645 } else { 10646 if (DisableRuntimeUnroll) 10647 AddRuntimeUnrollDisableMetaData(L); 10648 10649 // Mark the loop as already vectorized to avoid vectorizing again. 10650 Hints.setAlreadyVectorized(); 10651 } 10652 10653 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10654 return true; 10655 } 10656 10657 LoopVectorizeResult LoopVectorizePass::runImpl( 10658 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10659 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10660 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10661 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10662 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10663 SE = &SE_; 10664 LI = &LI_; 10665 TTI = &TTI_; 10666 DT = &DT_; 10667 BFI = &BFI_; 10668 TLI = TLI_; 10669 AA = &AA_; 10670 AC = &AC_; 10671 GetLAA = &GetLAA_; 10672 DB = &DB_; 10673 ORE = &ORE_; 10674 PSI = PSI_; 10675 10676 // Don't attempt if 10677 // 1. the target claims to have no vector registers, and 10678 // 2. interleaving won't help ILP. 10679 // 10680 // The second condition is necessary because, even if the target has no 10681 // vector registers, loop vectorization may still enable scalar 10682 // interleaving. 10683 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10684 TTI->getMaxInterleaveFactor(1) < 2) 10685 return LoopVectorizeResult(false, false); 10686 10687 bool Changed = false, CFGChanged = false; 10688 10689 // The vectorizer requires loops to be in simplified form. 10690 // Since simplification may add new inner loops, it has to run before the 10691 // legality and profitability checks. This means running the loop vectorizer 10692 // will simplify all loops, regardless of whether anything end up being 10693 // vectorized. 10694 for (auto &L : *LI) 10695 Changed |= CFGChanged |= 10696 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10697 10698 // Build up a worklist of inner-loops to vectorize. This is necessary as 10699 // the act of vectorizing or partially unrolling a loop creates new loops 10700 // and can invalidate iterators across the loops. 10701 SmallVector<Loop *, 8> Worklist; 10702 10703 for (Loop *L : *LI) 10704 collectSupportedLoops(*L, LI, ORE, Worklist); 10705 10706 LoopsAnalyzed += Worklist.size(); 10707 10708 // Now walk the identified inner loops. 10709 while (!Worklist.empty()) { 10710 Loop *L = Worklist.pop_back_val(); 10711 10712 // For the inner loops we actually process, form LCSSA to simplify the 10713 // transform. 10714 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10715 10716 Changed |= CFGChanged |= processLoop(L); 10717 } 10718 10719 // Process each loop nest in the function. 10720 return LoopVectorizeResult(Changed, CFGChanged); 10721 } 10722 10723 PreservedAnalyses LoopVectorizePass::run(Function &F, 10724 FunctionAnalysisManager &AM) { 10725 auto &LI = AM.getResult<LoopAnalysis>(F); 10726 // There are no loops in the function. Return before computing other expensive 10727 // analyses. 10728 if (LI.empty()) 10729 return PreservedAnalyses::all(); 10730 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10731 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10732 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10733 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10734 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10735 auto &AA = AM.getResult<AAManager>(F); 10736 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10737 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10738 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10739 10740 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10741 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10742 [&](Loop &L) -> const LoopAccessInfo & { 10743 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10744 TLI, TTI, nullptr, nullptr, nullptr}; 10745 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10746 }; 10747 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10748 ProfileSummaryInfo *PSI = 10749 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10750 LoopVectorizeResult Result = 10751 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10752 if (!Result.MadeAnyChange) 10753 return PreservedAnalyses::all(); 10754 PreservedAnalyses PA; 10755 10756 // We currently do not preserve loopinfo/dominator analyses with outer loop 10757 // vectorization. Until this is addressed, mark these analyses as preserved 10758 // only for non-VPlan-native path. 10759 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10760 if (!EnableVPlanNativePath) { 10761 PA.preserve<LoopAnalysis>(); 10762 PA.preserve<DominatorTreeAnalysis>(); 10763 } 10764 10765 if (Result.MadeCFGChange) { 10766 // Making CFG changes likely means a loop got vectorized. Indicate that 10767 // extra simplification passes should be run. 10768 // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only 10769 // be run if runtime checks have been added. 10770 AM.getResult<ShouldRunExtraVectorPasses>(F); 10771 PA.preserve<ShouldRunExtraVectorPasses>(); 10772 } else { 10773 PA.preserveSet<CFGAnalyses>(); 10774 } 10775 return PA; 10776 } 10777 10778 void LoopVectorizePass::printPipeline( 10779 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 10780 static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( 10781 OS, MapClassName2PassName); 10782 10783 OS << "<"; 10784 OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; 10785 OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; 10786 OS << ">"; 10787 } 10788