1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 11 // and generates target-independent LLVM-IR. 12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 13 // of instructions in order to estimate the profitability of vectorization. 14 // 15 // The loop vectorizer combines consecutive loop iterations into a single 16 // 'wide' iteration. After this transformation the index is incremented 17 // by the SIMD vector width, and not by one. 18 // 19 // This pass has three parts: 20 // 1. The main loop pass that drives the different parts. 21 // 2. LoopVectorizationLegality - A unit that checks for the legality 22 // of the vectorization. 23 // 3. InnerLoopVectorizer - A unit that performs the actual 24 // widening of instructions. 25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 26 // of vectorization. It decides on the optimal vector width, which 27 // can be one, if vectorization is not profitable. 28 // 29 //===----------------------------------------------------------------------===// 30 // 31 // The reduction-variable vectorization is based on the paper: 32 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 33 // 34 // Variable uniformity checks are inspired by: 35 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 36 // 37 // The interleaved access vectorization is based on the paper: 38 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 39 // Data for SIMD 40 // 41 // Other ideas/concepts are from: 42 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 43 // 44 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 45 // Vectorizing Compilers. 46 // 47 //===----------------------------------------------------------------------===// 48 49 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 50 #include "VPlan.h" 51 #include "llvm/ADT/DenseMap.h" 52 #include "llvm/ADT/Hashing.h" 53 #include "llvm/ADT/MapVector.h" 54 #include "llvm/ADT/Optional.h" 55 #include "llvm/ADT/SCCIterator.h" 56 #include "llvm/ADT/SetVector.h" 57 #include "llvm/ADT/SmallPtrSet.h" 58 #include "llvm/ADT/SmallSet.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/Statistic.h" 61 #include "llvm/ADT/StringExtras.h" 62 #include "llvm/Analysis/CodeMetrics.h" 63 #include "llvm/Analysis/GlobalsModRef.h" 64 #include "llvm/Analysis/LoopInfo.h" 65 #include "llvm/Analysis/LoopIterator.h" 66 #include "llvm/Analysis/LoopPass.h" 67 #include "llvm/Analysis/ScalarEvolutionExpander.h" 68 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 69 #include "llvm/Analysis/ValueTracking.h" 70 #include "llvm/Analysis/VectorUtils.h" 71 #include "llvm/IR/Constants.h" 72 #include "llvm/IR/DataLayout.h" 73 #include "llvm/IR/DebugInfo.h" 74 #include "llvm/IR/DerivedTypes.h" 75 #include "llvm/IR/DiagnosticInfo.h" 76 #include "llvm/IR/Dominators.h" 77 #include "llvm/IR/Function.h" 78 #include "llvm/IR/IRBuilder.h" 79 #include "llvm/IR/Instructions.h" 80 #include "llvm/IR/IntrinsicInst.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/IR/ValueHandle.h" 88 #include "llvm/IR/Verifier.h" 89 #include "llvm/Pass.h" 90 #include "llvm/Support/BranchProbability.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/raw_ostream.h" 94 #include "llvm/Transforms/Scalar.h" 95 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 96 #include "llvm/Transforms/Utils/Local.h" 97 #include "llvm/Transforms/Utils/LoopSimplify.h" 98 #include "llvm/Transforms/Utils/LoopUtils.h" 99 #include "llvm/Transforms/Utils/LoopVersioning.h" 100 #include "llvm/Transforms/Vectorize.h" 101 #include <algorithm> 102 #include <functional> 103 #include <map> 104 #include <tuple> 105 106 using namespace llvm; 107 using namespace llvm::PatternMatch; 108 109 #define LV_NAME "loop-vectorize" 110 #define DEBUG_TYPE LV_NAME 111 112 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 113 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 114 115 static cl::opt<bool> 116 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 117 cl::desc("Enable if-conversion during vectorization.")); 118 119 /// Loops with a known constant trip count below this number are vectorized only 120 /// if no scalar iteration overheads are incurred. 121 static cl::opt<unsigned> TinyTripCountVectorThreshold( 122 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 123 cl::desc("Loops with a constant trip count that is smaller than this " 124 "value are vectorized only if no scalar iteration overheads " 125 "are incurred.")); 126 127 static cl::opt<bool> MaximizeBandwidth( 128 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 129 cl::desc("Maximize bandwidth when selecting vectorization factor which " 130 "will be determined by the smallest type in loop.")); 131 132 static cl::opt<bool> EnableInterleavedMemAccesses( 133 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 134 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 135 136 /// Maximum factor for an interleaved memory access. 137 static cl::opt<unsigned> MaxInterleaveGroupFactor( 138 "max-interleave-group-factor", cl::Hidden, 139 cl::desc("Maximum factor for an interleaved access group (default = 8)"), 140 cl::init(8)); 141 142 /// We don't interleave loops with a known constant trip count below this 143 /// number. 144 static const unsigned TinyTripCountInterleaveThreshold = 128; 145 146 static cl::opt<unsigned> ForceTargetNumScalarRegs( 147 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 148 cl::desc("A flag that overrides the target's number of scalar registers.")); 149 150 static cl::opt<unsigned> ForceTargetNumVectorRegs( 151 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 152 cl::desc("A flag that overrides the target's number of vector registers.")); 153 154 /// Maximum vectorization interleave count. 155 static const unsigned MaxInterleaveFactor = 16; 156 157 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 158 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 159 cl::desc("A flag that overrides the target's max interleave factor for " 160 "scalar loops.")); 161 162 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 163 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 164 cl::desc("A flag that overrides the target's max interleave factor for " 165 "vectorized loops.")); 166 167 static cl::opt<unsigned> ForceTargetInstructionCost( 168 "force-target-instruction-cost", cl::init(0), cl::Hidden, 169 cl::desc("A flag that overrides the target's expected cost for " 170 "an instruction to a single constant value. Mostly " 171 "useful for getting consistent testing.")); 172 173 static cl::opt<unsigned> SmallLoopCost( 174 "small-loop-cost", cl::init(20), cl::Hidden, 175 cl::desc( 176 "The cost of a loop that is considered 'small' by the interleaver.")); 177 178 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 179 "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden, 180 cl::desc("Enable the use of the block frequency analysis to access PGO " 181 "heuristics minimizing code growth in cold regions and being more " 182 "aggressive in hot regions.")); 183 184 // Runtime interleave loops for load/store throughput. 185 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 186 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 187 cl::desc( 188 "Enable runtime interleaving until load/store ports are saturated")); 189 190 /// The number of stores in a loop that are allowed to need predication. 191 static cl::opt<unsigned> NumberOfStoresToPredicate( 192 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 193 cl::desc("Max number of stores to be predicated behind an if.")); 194 195 static cl::opt<bool> EnableIndVarRegisterHeur( 196 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 197 cl::desc("Count the induction variable only once when interleaving")); 198 199 static cl::opt<bool> EnableCondStoresVectorization( 200 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 201 cl::desc("Enable if predication of stores during vectorization.")); 202 203 static cl::opt<unsigned> MaxNestedScalarReductionIC( 204 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 205 cl::desc("The maximum interleave count to use when interleaving a scalar " 206 "reduction in a nested loop.")); 207 208 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 209 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 210 cl::desc("The maximum allowed number of runtime memory checks with a " 211 "vectorize(enable) pragma.")); 212 213 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 214 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 215 cl::desc("The maximum number of SCEV checks allowed.")); 216 217 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 218 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 219 cl::desc("The maximum number of SCEV checks allowed with a " 220 "vectorize(enable) pragma")); 221 222 /// Create an analysis remark that explains why vectorization failed 223 /// 224 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 225 /// RemarkName is the identifier for the remark. If \p I is passed it is an 226 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 227 /// the location of the remark. \return the remark object that can be 228 /// streamed to. 229 static OptimizationRemarkAnalysis 230 createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop, 231 Instruction *I = nullptr) { 232 Value *CodeRegion = TheLoop->getHeader(); 233 DebugLoc DL = TheLoop->getStartLoc(); 234 235 if (I) { 236 CodeRegion = I->getParent(); 237 // If there is no debug location attached to the instruction, revert back to 238 // using the loop's. 239 if (I->getDebugLoc()) 240 DL = I->getDebugLoc(); 241 } 242 243 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 244 R << "loop not vectorized: "; 245 return R; 246 } 247 248 namespace { 249 250 // Forward declarations. 251 class LoopVectorizeHints; 252 class LoopVectorizationLegality; 253 class LoopVectorizationCostModel; 254 class LoopVectorizationRequirements; 255 class VPInterleaveRecipe; 256 class VPReplicateRecipe; 257 class VPWidenIntOrFpInductionRecipe; 258 class VPWidenRecipe; 259 260 /// Returns true if the given loop body has a cycle, excluding the loop 261 /// itself. 262 static bool hasCyclesInLoopBody(const Loop &L) { 263 if (!L.empty()) 264 return true; 265 266 for (const auto &SCC : 267 make_range(scc_iterator<Loop, LoopBodyTraits>::begin(L), 268 scc_iterator<Loop, LoopBodyTraits>::end(L))) { 269 if (SCC.size() > 1) { 270 DEBUG(dbgs() << "LVL: Detected a cycle in the loop body:\n"); 271 DEBUG(L.dump()); 272 return true; 273 } 274 } 275 return false; 276 } 277 278 /// A helper function for converting Scalar types to vector types. 279 /// If the incoming type is void, we return void. If the VF is 1, we return 280 /// the scalar type. 281 static Type *ToVectorTy(Type *Scalar, unsigned VF) { 282 if (Scalar->isVoidTy() || VF == 1) 283 return Scalar; 284 return VectorType::get(Scalar, VF); 285 } 286 287 // FIXME: The following helper functions have multiple implementations 288 // in the project. They can be effectively organized in a common Load/Store 289 // utilities unit. 290 291 /// A helper function that returns the pointer operand of a load or store 292 /// instruction. 293 static Value *getPointerOperand(Value *I) { 294 if (auto *LI = dyn_cast<LoadInst>(I)) 295 return LI->getPointerOperand(); 296 if (auto *SI = dyn_cast<StoreInst>(I)) 297 return SI->getPointerOperand(); 298 return nullptr; 299 } 300 301 /// A helper function that returns the type of loaded or stored value. 302 static Type *getMemInstValueType(Value *I) { 303 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 304 "Expected Load or Store instruction"); 305 if (auto *LI = dyn_cast<LoadInst>(I)) 306 return LI->getType(); 307 return cast<StoreInst>(I)->getValueOperand()->getType(); 308 } 309 310 /// A helper function that returns the alignment of load or store instruction. 311 static unsigned getMemInstAlignment(Value *I) { 312 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 313 "Expected Load or Store instruction"); 314 if (auto *LI = dyn_cast<LoadInst>(I)) 315 return LI->getAlignment(); 316 return cast<StoreInst>(I)->getAlignment(); 317 } 318 319 /// A helper function that returns the address space of the pointer operand of 320 /// load or store instruction. 321 static unsigned getMemInstAddressSpace(Value *I) { 322 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 323 "Expected Load or Store instruction"); 324 if (auto *LI = dyn_cast<LoadInst>(I)) 325 return LI->getPointerAddressSpace(); 326 return cast<StoreInst>(I)->getPointerAddressSpace(); 327 } 328 329 /// A helper function that returns true if the given type is irregular. The 330 /// type is irregular if its allocated size doesn't equal the store size of an 331 /// element of the corresponding vector type at the given vectorization factor. 332 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) { 333 334 // Determine if an array of VF elements of type Ty is "bitcast compatible" 335 // with a <VF x Ty> vector. 336 if (VF > 1) { 337 auto *VectorTy = VectorType::get(Ty, VF); 338 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy); 339 } 340 341 // If the vectorization factor is one, we just check if an array of type Ty 342 // requires padding between elements. 343 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 344 } 345 346 /// A helper function that returns the reciprocal of the block probability of 347 /// predicated blocks. If we return X, we are assuming the predicated block 348 /// will execute once for for every X iterations of the loop header. 349 /// 350 /// TODO: We should use actual block probability here, if available. Currently, 351 /// we always assume predicated blocks have a 50% chance of executing. 352 static unsigned getReciprocalPredBlockProb() { return 2; } 353 354 /// A helper function that adds a 'fast' flag to floating-point operations. 355 static Value *addFastMathFlag(Value *V) { 356 if (isa<FPMathOperator>(V)) { 357 FastMathFlags Flags; 358 Flags.setUnsafeAlgebra(); 359 cast<Instruction>(V)->setFastMathFlags(Flags); 360 } 361 return V; 362 } 363 364 /// A helper function that returns an integer or floating-point constant with 365 /// value C. 366 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 367 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 368 : ConstantFP::get(Ty, C); 369 } 370 371 } // end anonymous namespace 372 373 namespace llvm { 374 /// InnerLoopVectorizer vectorizes loops which contain only one basic 375 /// block to a specified vectorization factor (VF). 376 /// This class performs the widening of scalars into vectors, or multiple 377 /// scalars. This class also implements the following features: 378 /// * It inserts an epilogue loop for handling loops that don't have iteration 379 /// counts that are known to be a multiple of the vectorization factor. 380 /// * It handles the code generation for reduction variables. 381 /// * Scalarization (implementation using scalars) of un-vectorizable 382 /// instructions. 383 /// InnerLoopVectorizer does not perform any vectorization-legality 384 /// checks, and relies on the caller to check for the different legality 385 /// aspects. The InnerLoopVectorizer relies on the 386 /// LoopVectorizationLegality class to provide information about the induction 387 /// and reduction variables that were found to a given vectorization factor. 388 class InnerLoopVectorizer { 389 public: 390 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 391 LoopInfo *LI, DominatorTree *DT, 392 const TargetLibraryInfo *TLI, 393 const TargetTransformInfo *TTI, AssumptionCache *AC, 394 OptimizationRemarkEmitter *ORE, unsigned VecWidth, 395 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 396 LoopVectorizationCostModel *CM) 397 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 398 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 399 Builder(PSE.getSE()->getContext()), Induction(nullptr), 400 OldInduction(nullptr), VectorLoopValueMap(UnrollFactor, VecWidth), 401 TripCount(nullptr), VectorTripCount(nullptr), Legal(LVL), Cost(CM), 402 AddedSafetyChecks(false) {} 403 404 /// Create a new empty loop. Unlink the old loop and connect the new one. 405 /// Return the pre-header block of the new loop. 406 BasicBlock *createVectorizedLoopSkeleton(); 407 408 /// Widen a single instruction within the innermost loop. 409 void widenInstruction(Instruction &I); 410 411 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 412 void fixVectorizedLoop(); 413 414 // Return true if any runtime check is added. 415 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 416 417 virtual ~InnerLoopVectorizer() {} 418 419 /// A type for vectorized values in the new loop. Each value from the 420 /// original loop, when vectorized, is represented by UF vector values in the 421 /// new unrolled loop, where UF is the unroll factor. 422 typedef SmallVector<Value *, 2> VectorParts; 423 424 /// A helper function that computes the predicate of the block BB, assuming 425 /// that the header block of the loop is set to True. It returns the *entry* 426 /// mask for the block BB. 427 VectorParts createBlockInMask(BasicBlock *BB); 428 429 /// Vectorize a single PHINode in a block. This method handles the induction 430 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 431 /// arbitrary length vectors. 432 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF); 433 434 /// A helper function to scalarize a single Instruction in the innermost loop. 435 /// Generates a sequence of scalar instances for each lane between \p MinLane 436 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 437 /// inclusive.. 438 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance, 439 bool IfPredicateInstr); 440 441 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 442 /// is provided, the integer induction variable will first be truncated to 443 /// the corresponding type. 444 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr); 445 446 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 447 /// vector or scalar value on-demand if one is not yet available. When 448 /// vectorizing a loop, we visit the definition of an instruction before its 449 /// uses. When visiting the definition, we either vectorize or scalarize the 450 /// instruction, creating an entry for it in the corresponding map. (In some 451 /// cases, such as induction variables, we will create both vector and scalar 452 /// entries.) Then, as we encounter uses of the definition, we derive values 453 /// for each scalar or vector use unless such a value is already available. 454 /// For example, if we scalarize a definition and one of its uses is vector, 455 /// we build the required vector on-demand with an insertelement sequence 456 /// when visiting the use. Otherwise, if the use is scalar, we can use the 457 /// existing scalar definition. 458 /// 459 /// Return a value in the new loop corresponding to \p V from the original 460 /// loop at unroll index \p Part. If the value has already been vectorized, 461 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 462 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 463 /// a new vector value on-demand by inserting the scalar values into a vector 464 /// with an insertelement sequence. If the value has been neither vectorized 465 /// nor scalarized, it must be loop invariant, so we simply broadcast the 466 /// value into a vector. 467 Value *getOrCreateVectorValue(Value *V, unsigned Part); 468 469 /// Return a value in the new loop corresponding to \p V from the original 470 /// loop at unroll and vector indices \p Instance. If the value has been 471 /// vectorized but not scalarized, the necessary extractelement instruction 472 /// will be generated. 473 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 474 475 /// Construct the vector value of a scalarized value \p V one lane at a time. 476 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 477 478 /// Try to vectorize the interleaved access group that \p Instr belongs to. 479 void vectorizeInterleaveGroup(Instruction *Instr); 480 481 protected: 482 /// A small list of PHINodes. 483 typedef SmallVector<PHINode *, 4> PhiVector; 484 485 /// A type for scalarized values in the new loop. Each value from the 486 /// original loop, when scalarized, is represented by UF x VF scalar values 487 /// in the new unrolled loop, where UF is the unroll factor and VF is the 488 /// vectorization factor. 489 typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts; 490 491 // When we if-convert we need to create edge masks. We have to cache values 492 // so that we don't end up with exponential recursion/IR. 493 typedef DenseMap<std::pair<BasicBlock *, BasicBlock *>, VectorParts> 494 EdgeMaskCacheTy; 495 typedef DenseMap<BasicBlock *, VectorParts> BlockMaskCacheTy; 496 497 /// Set up the values of the IVs correctly when exiting the vector loop. 498 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 499 Value *CountRoundDown, Value *EndValue, 500 BasicBlock *MiddleBlock); 501 502 /// Create a new induction variable inside L. 503 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 504 Value *Step, Instruction *DL); 505 506 /// Handle all cross-iteration phis in the header. 507 void fixCrossIterationPHIs(); 508 509 /// Fix a first-order recurrence. This is the second phase of vectorizing 510 /// this phi node. 511 void fixFirstOrderRecurrence(PHINode *Phi); 512 513 /// Fix a reduction cross-iteration phi. This is the second phase of 514 /// vectorizing this phi node. 515 void fixReduction(PHINode *Phi); 516 517 /// \brief The Loop exit block may have single value PHI nodes with some 518 /// incoming value. While vectorizing we only handled real values 519 /// that were defined inside the loop and we should have one value for 520 /// each predecessor of its parent basic block. See PR14725. 521 void fixLCSSAPHIs(); 522 523 /// Iteratively sink the scalarized operands of a predicated instruction into 524 /// the block that was created for it. 525 void sinkScalarOperands(Instruction *PredInst); 526 527 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 528 /// represented as. 529 void truncateToMinimalBitwidths(); 530 531 /// A helper function that computes the predicate of the edge between SRC 532 /// and DST. 533 VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst); 534 535 /// Insert the new loop to the loop hierarchy and pass manager 536 /// and update the analysis passes. 537 void updateAnalysis(); 538 539 /// Vectorize Load and Store instructions, 540 virtual void vectorizeMemoryInstruction(Instruction *Instr); 541 542 /// Create a broadcast instruction. This method generates a broadcast 543 /// instruction (shuffle) for loop invariant values and for the induction 544 /// value. If this is the induction variable then we extend it to N, N+1, ... 545 /// this is needed because each iteration in the loop corresponds to a SIMD 546 /// element. 547 virtual Value *getBroadcastInstrs(Value *V); 548 549 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 550 /// to each vector element of Val. The sequence starts at StartIndex. 551 /// \p Opcode is relevant for FP induction variable. 552 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 553 Instruction::BinaryOps Opcode = 554 Instruction::BinaryOpsEnd); 555 556 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 557 /// variable on which to base the steps, \p Step is the size of the step, and 558 /// \p EntryVal is the value from the original loop that maps to the steps. 559 /// Note that \p EntryVal doesn't have to be an induction variable (e.g., it 560 /// can be a truncate instruction). 561 void buildScalarSteps(Value *ScalarIV, Value *Step, Value *EntryVal, 562 const InductionDescriptor &ID); 563 564 /// Create a vector induction phi node based on an existing scalar one. \p 565 /// EntryVal is the value from the original loop that maps to the vector phi 566 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 567 /// truncate instruction, instead of widening the original IV, we widen a 568 /// version of the IV truncated to \p EntryVal's type. 569 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 570 Value *Step, Instruction *EntryVal); 571 572 /// Returns true if an instruction \p I should be scalarized instead of 573 /// vectorized for the chosen vectorization factor. 574 bool shouldScalarizeInstruction(Instruction *I) const; 575 576 /// Returns true if we should generate a scalar version of \p IV. 577 bool needsScalarInduction(Instruction *IV) const; 578 579 /// Generate a shuffle sequence that will reverse the vector Vec. 580 virtual Value *reverseVector(Value *Vec); 581 582 /// Returns (and creates if needed) the original loop trip count. 583 Value *getOrCreateTripCount(Loop *NewLoop); 584 585 /// Returns (and creates if needed) the trip count of the widened loop. 586 Value *getOrCreateVectorTripCount(Loop *NewLoop); 587 588 /// Returns a bitcasted value to the requested vector type. 589 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 590 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 591 const DataLayout &DL); 592 593 /// Emit a bypass check to see if the vector trip count is zero, including if 594 /// it overflows. 595 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 596 /// Emit a bypass check to see if all of the SCEV assumptions we've 597 /// had to make are correct. 598 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 599 /// Emit bypass checks to check any memory assumptions we may have made. 600 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 601 602 /// Add additional metadata to \p To that was not present on \p Orig. 603 /// 604 /// Currently this is used to add the noalias annotations based on the 605 /// inserted memchecks. Use this for instructions that are *cloned* into the 606 /// vector loop. 607 void addNewMetadata(Instruction *To, const Instruction *Orig); 608 609 /// Add metadata from one instruction to another. 610 /// 611 /// This includes both the original MDs from \p From and additional ones (\see 612 /// addNewMetadata). Use this for *newly created* instructions in the vector 613 /// loop. 614 void addMetadata(Instruction *To, Instruction *From); 615 616 /// \brief Similar to the previous function but it adds the metadata to a 617 /// vector of instructions. 618 void addMetadata(ArrayRef<Value *> To, Instruction *From); 619 620 /// \brief Set the debug location in the builder using the debug location in 621 /// the instruction. 622 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 623 624 /// The original loop. 625 Loop *OrigLoop; 626 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 627 /// dynamic knowledge to simplify SCEV expressions and converts them to a 628 /// more usable form. 629 PredicatedScalarEvolution &PSE; 630 /// Loop Info. 631 LoopInfo *LI; 632 /// Dominator Tree. 633 DominatorTree *DT; 634 /// Alias Analysis. 635 AliasAnalysis *AA; 636 /// Target Library Info. 637 const TargetLibraryInfo *TLI; 638 /// Target Transform Info. 639 const TargetTransformInfo *TTI; 640 /// Assumption Cache. 641 AssumptionCache *AC; 642 /// Interface to emit optimization remarks. 643 OptimizationRemarkEmitter *ORE; 644 645 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were 646 /// used. 647 /// 648 /// This is currently only used to add no-alias metadata based on the 649 /// memchecks. The actually versioning is performed manually. 650 std::unique_ptr<LoopVersioning> LVer; 651 652 /// The vectorization SIMD factor to use. Each vector will have this many 653 /// vector elements. 654 unsigned VF; 655 656 /// The vectorization unroll factor to use. Each scalar is vectorized to this 657 /// many different vector instructions. 658 unsigned UF; 659 660 /// The builder that we use 661 IRBuilder<> Builder; 662 663 // --- Vectorization state --- 664 665 /// The vector-loop preheader. 666 BasicBlock *LoopVectorPreHeader; 667 /// The scalar-loop preheader. 668 BasicBlock *LoopScalarPreHeader; 669 /// Middle Block between the vector and the scalar. 670 BasicBlock *LoopMiddleBlock; 671 /// The ExitBlock of the scalar loop. 672 BasicBlock *LoopExitBlock; 673 /// The vector loop body. 674 BasicBlock *LoopVectorBody; 675 /// The scalar loop body. 676 BasicBlock *LoopScalarBody; 677 /// A list of all bypass blocks. The first block is the entry of the loop. 678 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 679 680 /// The new Induction variable which was added to the new block. 681 PHINode *Induction; 682 /// The induction variable of the old basic block. 683 PHINode *OldInduction; 684 685 /// Maps values from the original loop to their corresponding values in the 686 /// vectorized loop. A key value can map to either vector values, scalar 687 /// values or both kinds of values, depending on whether the key was 688 /// vectorized and scalarized. 689 VectorizerValueMap VectorLoopValueMap; 690 691 /// Store instructions that were predicated. 692 SmallVector<Instruction *, 4> PredicatedInstructions; 693 EdgeMaskCacheTy EdgeMaskCache; 694 BlockMaskCacheTy BlockMaskCache; 695 /// Trip count of the original loop. 696 Value *TripCount; 697 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 698 Value *VectorTripCount; 699 700 /// The legality analysis. 701 LoopVectorizationLegality *Legal; 702 703 /// The profitablity analysis. 704 LoopVectorizationCostModel *Cost; 705 706 // Record whether runtime checks are added. 707 bool AddedSafetyChecks; 708 709 // Holds the end values for each induction variable. We save the end values 710 // so we can later fix-up the external users of the induction variables. 711 DenseMap<PHINode *, Value *> IVEndValues; 712 713 friend class LoopVectorizationPlanner; 714 }; 715 716 class InnerLoopUnroller : public InnerLoopVectorizer { 717 public: 718 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 719 LoopInfo *LI, DominatorTree *DT, 720 const TargetLibraryInfo *TLI, 721 const TargetTransformInfo *TTI, AssumptionCache *AC, 722 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 723 LoopVectorizationLegality *LVL, 724 LoopVectorizationCostModel *CM) 725 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1, 726 UnrollFactor, LVL, CM) {} 727 728 private: 729 Value *getBroadcastInstrs(Value *V) override; 730 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 731 Instruction::BinaryOps Opcode = 732 Instruction::BinaryOpsEnd) override; 733 Value *reverseVector(Value *Vec) override; 734 }; 735 736 /// \brief Look for a meaningful debug location on the instruction or it's 737 /// operands. 738 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 739 if (!I) 740 return I; 741 742 DebugLoc Empty; 743 if (I->getDebugLoc() != Empty) 744 return I; 745 746 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) { 747 if (Instruction *OpInst = dyn_cast<Instruction>(*OI)) 748 if (OpInst->getDebugLoc() != Empty) 749 return OpInst; 750 } 751 752 return I; 753 } 754 755 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 756 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 757 const DILocation *DIL = Inst->getDebugLoc(); 758 if (DIL && Inst->getFunction()->isDebugInfoForProfiling()) 759 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF)); 760 else 761 B.SetCurrentDebugLocation(DIL); 762 } else 763 B.SetCurrentDebugLocation(DebugLoc()); 764 } 765 766 #ifndef NDEBUG 767 /// \return string containing a file name and a line # for the given loop. 768 static std::string getDebugLocString(const Loop *L) { 769 std::string Result; 770 if (L) { 771 raw_string_ostream OS(Result); 772 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 773 LoopDbgLoc.print(OS); 774 else 775 // Just print the module name. 776 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 777 OS.flush(); 778 } 779 return Result; 780 } 781 #endif 782 783 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 784 const Instruction *Orig) { 785 // If the loop was versioned with memchecks, add the corresponding no-alias 786 // metadata. 787 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 788 LVer->annotateInstWithNoAlias(To, Orig); 789 } 790 791 void InnerLoopVectorizer::addMetadata(Instruction *To, 792 Instruction *From) { 793 propagateMetadata(To, From); 794 addNewMetadata(To, From); 795 } 796 797 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 798 Instruction *From) { 799 for (Value *V : To) { 800 if (Instruction *I = dyn_cast<Instruction>(V)) 801 addMetadata(I, From); 802 } 803 } 804 805 } // namespace llvm 806 807 namespace { 808 809 /// \brief The group of interleaved loads/stores sharing the same stride and 810 /// close to each other. 811 /// 812 /// Each member in this group has an index starting from 0, and the largest 813 /// index should be less than interleaved factor, which is equal to the absolute 814 /// value of the access's stride. 815 /// 816 /// E.g. An interleaved load group of factor 4: 817 /// for (unsigned i = 0; i < 1024; i+=4) { 818 /// a = A[i]; // Member of index 0 819 /// b = A[i+1]; // Member of index 1 820 /// d = A[i+3]; // Member of index 3 821 /// ... 822 /// } 823 /// 824 /// An interleaved store group of factor 4: 825 /// for (unsigned i = 0; i < 1024; i+=4) { 826 /// ... 827 /// A[i] = a; // Member of index 0 828 /// A[i+1] = b; // Member of index 1 829 /// A[i+2] = c; // Member of index 2 830 /// A[i+3] = d; // Member of index 3 831 /// } 832 /// 833 /// Note: the interleaved load group could have gaps (missing members), but 834 /// the interleaved store group doesn't allow gaps. 835 class InterleaveGroup { 836 public: 837 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align) 838 : Align(Align), SmallestKey(0), LargestKey(0), InsertPos(Instr) { 839 assert(Align && "The alignment should be non-zero"); 840 841 Factor = std::abs(Stride); 842 assert(Factor > 1 && "Invalid interleave factor"); 843 844 Reverse = Stride < 0; 845 Members[0] = Instr; 846 } 847 848 bool isReverse() const { return Reverse; } 849 unsigned getFactor() const { return Factor; } 850 unsigned getAlignment() const { return Align; } 851 unsigned getNumMembers() const { return Members.size(); } 852 853 /// \brief Try to insert a new member \p Instr with index \p Index and 854 /// alignment \p NewAlign. The index is related to the leader and it could be 855 /// negative if it is the new leader. 856 /// 857 /// \returns false if the instruction doesn't belong to the group. 858 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) { 859 assert(NewAlign && "The new member's alignment should be non-zero"); 860 861 int Key = Index + SmallestKey; 862 863 // Skip if there is already a member with the same index. 864 if (Members.count(Key)) 865 return false; 866 867 if (Key > LargestKey) { 868 // The largest index is always less than the interleave factor. 869 if (Index >= static_cast<int>(Factor)) 870 return false; 871 872 LargestKey = Key; 873 } else if (Key < SmallestKey) { 874 // The largest index is always less than the interleave factor. 875 if (LargestKey - Key >= static_cast<int>(Factor)) 876 return false; 877 878 SmallestKey = Key; 879 } 880 881 // It's always safe to select the minimum alignment. 882 Align = std::min(Align, NewAlign); 883 Members[Key] = Instr; 884 return true; 885 } 886 887 /// \brief Get the member with the given index \p Index 888 /// 889 /// \returns nullptr if contains no such member. 890 Instruction *getMember(unsigned Index) const { 891 int Key = SmallestKey + Index; 892 if (!Members.count(Key)) 893 return nullptr; 894 895 return Members.find(Key)->second; 896 } 897 898 /// \brief Get the index for the given member. Unlike the key in the member 899 /// map, the index starts from 0. 900 unsigned getIndex(Instruction *Instr) const { 901 for (auto I : Members) 902 if (I.second == Instr) 903 return I.first - SmallestKey; 904 905 llvm_unreachable("InterleaveGroup contains no such member"); 906 } 907 908 Instruction *getInsertPos() const { return InsertPos; } 909 void setInsertPos(Instruction *Inst) { InsertPos = Inst; } 910 911 private: 912 unsigned Factor; // Interleave Factor. 913 bool Reverse; 914 unsigned Align; 915 DenseMap<int, Instruction *> Members; 916 int SmallestKey; 917 int LargestKey; 918 919 // To avoid breaking dependences, vectorized instructions of an interleave 920 // group should be inserted at either the first load or the last store in 921 // program order. 922 // 923 // E.g. %even = load i32 // Insert Position 924 // %add = add i32 %even // Use of %even 925 // %odd = load i32 926 // 927 // store i32 %even 928 // %odd = add i32 // Def of %odd 929 // store i32 %odd // Insert Position 930 Instruction *InsertPos; 931 }; 932 933 /// \brief Drive the analysis of interleaved memory accesses in the loop. 934 /// 935 /// Use this class to analyze interleaved accesses only when we can vectorize 936 /// a loop. Otherwise it's meaningless to do analysis as the vectorization 937 /// on interleaved accesses is unsafe. 938 /// 939 /// The analysis collects interleave groups and records the relationships 940 /// between the member and the group in a map. 941 class InterleavedAccessInfo { 942 public: 943 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L, 944 DominatorTree *DT, LoopInfo *LI) 945 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(nullptr), 946 RequiresScalarEpilogue(false) {} 947 948 ~InterleavedAccessInfo() { 949 SmallSet<InterleaveGroup *, 4> DelSet; 950 // Avoid releasing a pointer twice. 951 for (auto &I : InterleaveGroupMap) 952 DelSet.insert(I.second); 953 for (auto *Ptr : DelSet) 954 delete Ptr; 955 } 956 957 /// \brief Analyze the interleaved accesses and collect them in interleave 958 /// groups. Substitute symbolic strides using \p Strides. 959 void analyzeInterleaving(const ValueToValueMap &Strides); 960 961 /// \brief Check if \p Instr belongs to any interleave group. 962 bool isInterleaved(Instruction *Instr) const { 963 return InterleaveGroupMap.count(Instr); 964 } 965 966 /// \brief Get the interleave group that \p Instr belongs to. 967 /// 968 /// \returns nullptr if doesn't have such group. 969 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const { 970 if (InterleaveGroupMap.count(Instr)) 971 return InterleaveGroupMap.find(Instr)->second; 972 return nullptr; 973 } 974 975 /// \brief Returns true if an interleaved group that may access memory 976 /// out-of-bounds requires a scalar epilogue iteration for correctness. 977 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; } 978 979 /// \brief Initialize the LoopAccessInfo used for dependence checking. 980 void setLAI(const LoopAccessInfo *Info) { LAI = Info; } 981 982 private: 983 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks. 984 /// Simplifies SCEV expressions in the context of existing SCEV assumptions. 985 /// The interleaved access analysis can also add new predicates (for example 986 /// by versioning strides of pointers). 987 PredicatedScalarEvolution &PSE; 988 Loop *TheLoop; 989 DominatorTree *DT; 990 LoopInfo *LI; 991 const LoopAccessInfo *LAI; 992 993 /// True if the loop may contain non-reversed interleaved groups with 994 /// out-of-bounds accesses. We ensure we don't speculatively access memory 995 /// out-of-bounds by executing at least one scalar epilogue iteration. 996 bool RequiresScalarEpilogue; 997 998 /// Holds the relationships between the members and the interleave group. 999 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap; 1000 1001 /// Holds dependences among the memory accesses in the loop. It maps a source 1002 /// access to a set of dependent sink accesses. 1003 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences; 1004 1005 /// \brief The descriptor for a strided memory access. 1006 struct StrideDescriptor { 1007 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size, 1008 unsigned Align) 1009 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {} 1010 1011 StrideDescriptor() = default; 1012 1013 // The access's stride. It is negative for a reverse access. 1014 int64_t Stride = 0; 1015 const SCEV *Scev = nullptr; // The scalar expression of this access 1016 uint64_t Size = 0; // The size of the memory object. 1017 unsigned Align = 0; // The alignment of this access. 1018 }; 1019 1020 /// \brief A type for holding instructions and their stride descriptors. 1021 typedef std::pair<Instruction *, StrideDescriptor> StrideEntry; 1022 1023 /// \brief Create a new interleave group with the given instruction \p Instr, 1024 /// stride \p Stride and alignment \p Align. 1025 /// 1026 /// \returns the newly created interleave group. 1027 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride, 1028 unsigned Align) { 1029 assert(!InterleaveGroupMap.count(Instr) && 1030 "Already in an interleaved access group"); 1031 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align); 1032 return InterleaveGroupMap[Instr]; 1033 } 1034 1035 /// \brief Release the group and remove all the relationships. 1036 void releaseGroup(InterleaveGroup *Group) { 1037 for (unsigned i = 0; i < Group->getFactor(); i++) 1038 if (Instruction *Member = Group->getMember(i)) 1039 InterleaveGroupMap.erase(Member); 1040 1041 delete Group; 1042 } 1043 1044 /// \brief Collect all the accesses with a constant stride in program order. 1045 void collectConstStrideAccesses( 1046 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 1047 const ValueToValueMap &Strides); 1048 1049 /// \brief Returns true if \p Stride is allowed in an interleaved group. 1050 static bool isStrided(int Stride) { 1051 unsigned Factor = std::abs(Stride); 1052 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; 1053 } 1054 1055 /// \brief Returns true if \p BB is a predicated block. 1056 bool isPredicated(BasicBlock *BB) const { 1057 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1058 } 1059 1060 /// \brief Returns true if LoopAccessInfo can be used for dependence queries. 1061 bool areDependencesValid() const { 1062 return LAI && LAI->getDepChecker().getDependences(); 1063 } 1064 1065 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if 1066 /// necessary, when constructing interleaved groups. 1067 /// 1068 /// \p A must precede \p B in program order. We return false if reordering is 1069 /// not necessary or is prevented because \p A and \p B may be dependent. 1070 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A, 1071 StrideEntry *B) const { 1072 1073 // Code motion for interleaved accesses can potentially hoist strided loads 1074 // and sink strided stores. The code below checks the legality of the 1075 // following two conditions: 1076 // 1077 // 1. Potentially moving a strided load (B) before any store (A) that 1078 // precedes B, or 1079 // 1080 // 2. Potentially moving a strided store (A) after any load or store (B) 1081 // that A precedes. 1082 // 1083 // It's legal to reorder A and B if we know there isn't a dependence from A 1084 // to B. Note that this determination is conservative since some 1085 // dependences could potentially be reordered safely. 1086 1087 // A is potentially the source of a dependence. 1088 auto *Src = A->first; 1089 auto SrcDes = A->second; 1090 1091 // B is potentially the sink of a dependence. 1092 auto *Sink = B->first; 1093 auto SinkDes = B->second; 1094 1095 // Code motion for interleaved accesses can't violate WAR dependences. 1096 // Thus, reordering is legal if the source isn't a write. 1097 if (!Src->mayWriteToMemory()) 1098 return true; 1099 1100 // At least one of the accesses must be strided. 1101 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride)) 1102 return true; 1103 1104 // If dependence information is not available from LoopAccessInfo, 1105 // conservatively assume the instructions can't be reordered. 1106 if (!areDependencesValid()) 1107 return false; 1108 1109 // If we know there is a dependence from source to sink, assume the 1110 // instructions can't be reordered. Otherwise, reordering is legal. 1111 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink); 1112 } 1113 1114 /// \brief Collect the dependences from LoopAccessInfo. 1115 /// 1116 /// We process the dependences once during the interleaved access analysis to 1117 /// enable constant-time dependence queries. 1118 void collectDependences() { 1119 if (!areDependencesValid()) 1120 return; 1121 auto *Deps = LAI->getDepChecker().getDependences(); 1122 for (auto Dep : *Deps) 1123 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI)); 1124 } 1125 }; 1126 1127 /// Utility class for getting and setting loop vectorizer hints in the form 1128 /// of loop metadata. 1129 /// This class keeps a number of loop annotations locally (as member variables) 1130 /// and can, upon request, write them back as metadata on the loop. It will 1131 /// initially scan the loop for existing metadata, and will update the local 1132 /// values based on information in the loop. 1133 /// We cannot write all values to metadata, as the mere presence of some info, 1134 /// for example 'force', means a decision has been made. So, we need to be 1135 /// careful NOT to add them if the user hasn't specifically asked so. 1136 class LoopVectorizeHints { 1137 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED }; 1138 1139 /// Hint - associates name and validation with the hint value. 1140 struct Hint { 1141 const char *Name; 1142 unsigned Value; // This may have to change for non-numeric values. 1143 HintKind Kind; 1144 1145 Hint(const char *Name, unsigned Value, HintKind Kind) 1146 : Name(Name), Value(Value), Kind(Kind) {} 1147 1148 bool validate(unsigned Val) { 1149 switch (Kind) { 1150 case HK_WIDTH: 1151 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 1152 case HK_UNROLL: 1153 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 1154 case HK_FORCE: 1155 return (Val <= 1); 1156 case HK_ISVECTORIZED: 1157 return (Val==0 || Val==1); 1158 } 1159 return false; 1160 } 1161 }; 1162 1163 /// Vectorization width. 1164 Hint Width; 1165 /// Vectorization interleave factor. 1166 Hint Interleave; 1167 /// Vectorization forced 1168 Hint Force; 1169 1170 /// Already Vectorized 1171 Hint IsVectorized; 1172 /// Return the loop metadata prefix. 1173 static StringRef Prefix() { return "llvm.loop."; } 1174 1175 /// True if there is any unsafe math in the loop. 1176 bool PotentiallyUnsafe; 1177 1178 public: 1179 enum ForceKind { 1180 FK_Undefined = -1, ///< Not selected. 1181 FK_Disabled = 0, ///< Forcing disabled. 1182 FK_Enabled = 1, ///< Forcing enabled. 1183 }; 1184 1185 LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 1186 OptimizationRemarkEmitter &ORE) 1187 : Width("vectorize.width", VectorizerParams::VectorizationFactor, 1188 HK_WIDTH), 1189 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 1190 Force("vectorize.enable", FK_Undefined, HK_FORCE), 1191 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 1192 PotentiallyUnsafe(false), TheLoop(L), ORE(ORE) { 1193 // Populate values with existing loop metadata. 1194 getHintsFromMetadata(); 1195 1196 // force-vector-interleave overrides DisableInterleaving. 1197 if (VectorizerParams::isInterleaveForced()) 1198 Interleave.Value = VectorizerParams::VectorizationInterleave; 1199 1200 if (IsVectorized.Value != 1) 1201 // If the vectorization width and interleaving count are both 1 then 1202 // consider the loop to have been already vectorized because there's 1203 // nothing more that we can do. 1204 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 1205 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 1206 << "LV: Interleaving disabled by the pass manager\n"); 1207 } 1208 1209 /// Mark the loop L as already vectorized by setting the width to 1. 1210 void setAlreadyVectorized() { 1211 IsVectorized.Value = 1; 1212 Hint Hints[] = {IsVectorized}; 1213 writeHintsToMetadata(Hints); 1214 } 1215 1216 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const { 1217 if (getForce() == LoopVectorizeHints::FK_Disabled) { 1218 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 1219 emitRemarkWithHints(); 1220 return false; 1221 } 1222 1223 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 1224 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 1225 emitRemarkWithHints(); 1226 return false; 1227 } 1228 1229 if (getIsVectorized() == 1) { 1230 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 1231 // FIXME: Add interleave.disable metadata. This will allow 1232 // vectorize.disable to be used without disabling the pass and errors 1233 // to differentiate between disabled vectorization and a width of 1. 1234 ORE.emit([&]() { 1235 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 1236 "AllDisabled", L->getStartLoc(), 1237 L->getHeader()) 1238 << "loop not vectorized: vectorization and interleaving are " 1239 "explicitly disabled, or the loop has already been " 1240 "vectorized"; 1241 }); 1242 return false; 1243 } 1244 1245 return true; 1246 } 1247 1248 /// Dumps all the hint information. 1249 void emitRemarkWithHints() const { 1250 using namespace ore; 1251 if (Force.Value == LoopVectorizeHints::FK_Disabled) 1252 ORE.emit(OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 1253 TheLoop->getStartLoc(), 1254 TheLoop->getHeader()) 1255 << "loop not vectorized: vectorization is explicitly disabled"); 1256 else { 1257 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 1258 TheLoop->getStartLoc(), TheLoop->getHeader()); 1259 R << "loop not vectorized"; 1260 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 1261 R << " (Force=" << NV("Force", true); 1262 if (Width.Value != 0) 1263 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 1264 if (Interleave.Value != 0) 1265 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 1266 R << ")"; 1267 } 1268 ORE.emit(R); 1269 } 1270 } 1271 1272 unsigned getWidth() const { return Width.Value; } 1273 unsigned getInterleave() const { return Interleave.Value; } 1274 unsigned getIsVectorized() const { return IsVectorized.Value; } 1275 enum ForceKind getForce() const { return (ForceKind)Force.Value; } 1276 1277 /// \brief If hints are provided that force vectorization, use the AlwaysPrint 1278 /// pass name to force the frontend to print the diagnostic. 1279 const char *vectorizeAnalysisPassName() const { 1280 if (getWidth() == 1) 1281 return LV_NAME; 1282 if (getForce() == LoopVectorizeHints::FK_Disabled) 1283 return LV_NAME; 1284 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 1285 return LV_NAME; 1286 return OptimizationRemarkAnalysis::AlwaysPrint; 1287 } 1288 1289 bool allowReordering() const { 1290 // When enabling loop hints are provided we allow the vectorizer to change 1291 // the order of operations that is given by the scalar loop. This is not 1292 // enabled by default because can be unsafe or inefficient. For example, 1293 // reordering floating-point operations will change the way round-off 1294 // error accumulates in the loop. 1295 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1; 1296 } 1297 1298 bool isPotentiallyUnsafe() const { 1299 // Avoid FP vectorization if the target is unsure about proper support. 1300 // This may be related to the SIMD unit in the target not handling 1301 // IEEE 754 FP ops properly, or bad single-to-double promotions. 1302 // Otherwise, a sequence of vectorized loops, even without reduction, 1303 // could lead to different end results on the destination vectors. 1304 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe; 1305 } 1306 1307 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; } 1308 1309 private: 1310 /// Find hints specified in the loop metadata and update local values. 1311 void getHintsFromMetadata() { 1312 MDNode *LoopID = TheLoop->getLoopID(); 1313 if (!LoopID) 1314 return; 1315 1316 // First operand should refer to the loop id itself. 1317 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1318 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1319 1320 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1321 const MDString *S = nullptr; 1322 SmallVector<Metadata *, 4> Args; 1323 1324 // The expected hint is either a MDString or a MDNode with the first 1325 // operand a MDString. 1326 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 1327 if (!MD || MD->getNumOperands() == 0) 1328 continue; 1329 S = dyn_cast<MDString>(MD->getOperand(0)); 1330 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 1331 Args.push_back(MD->getOperand(i)); 1332 } else { 1333 S = dyn_cast<MDString>(LoopID->getOperand(i)); 1334 assert(Args.size() == 0 && "too many arguments for MDString"); 1335 } 1336 1337 if (!S) 1338 continue; 1339 1340 // Check if the hint starts with the loop metadata prefix. 1341 StringRef Name = S->getString(); 1342 if (Args.size() == 1) 1343 setHint(Name, Args[0]); 1344 } 1345 } 1346 1347 /// Checks string hint with one operand and set value if valid. 1348 void setHint(StringRef Name, Metadata *Arg) { 1349 if (!Name.startswith(Prefix())) 1350 return; 1351 Name = Name.substr(Prefix().size(), StringRef::npos); 1352 1353 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 1354 if (!C) 1355 return; 1356 unsigned Val = C->getZExtValue(); 1357 1358 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 1359 for (auto H : Hints) { 1360 if (Name == H->Name) { 1361 if (H->validate(Val)) 1362 H->Value = Val; 1363 else 1364 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 1365 break; 1366 } 1367 } 1368 } 1369 1370 /// Create a new hint from name / value pair. 1371 MDNode *createHintMetadata(StringRef Name, unsigned V) const { 1372 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1373 Metadata *MDs[] = {MDString::get(Context, Name), 1374 ConstantAsMetadata::get( 1375 ConstantInt::get(Type::getInt32Ty(Context), V))}; 1376 return MDNode::get(Context, MDs); 1377 } 1378 1379 /// Matches metadata with hint name. 1380 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) { 1381 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 1382 if (!Name) 1383 return false; 1384 1385 for (auto H : HintTypes) 1386 if (Name->getString().endswith(H.Name)) 1387 return true; 1388 return false; 1389 } 1390 1391 /// Sets current hints into loop metadata, keeping other values intact. 1392 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 1393 if (HintTypes.size() == 0) 1394 return; 1395 1396 // Reserve the first element to LoopID (see below). 1397 SmallVector<Metadata *, 4> MDs(1); 1398 // If the loop already has metadata, then ignore the existing operands. 1399 MDNode *LoopID = TheLoop->getLoopID(); 1400 if (LoopID) { 1401 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 1402 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 1403 // If node in update list, ignore old value. 1404 if (!matchesHintMetadataName(Node, HintTypes)) 1405 MDs.push_back(Node); 1406 } 1407 } 1408 1409 // Now, add the missing hints. 1410 for (auto H : HintTypes) 1411 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 1412 1413 // Replace current metadata node with new one. 1414 LLVMContext &Context = TheLoop->getHeader()->getContext(); 1415 MDNode *NewLoopID = MDNode::get(Context, MDs); 1416 // Set operand 0 to refer to the loop id itself. 1417 NewLoopID->replaceOperandWith(0, NewLoopID); 1418 1419 TheLoop->setLoopID(NewLoopID); 1420 } 1421 1422 /// The loop these hints belong to. 1423 const Loop *TheLoop; 1424 1425 /// Interface to emit optimization remarks. 1426 OptimizationRemarkEmitter &ORE; 1427 }; 1428 1429 static void emitMissedWarning(Function *F, Loop *L, 1430 const LoopVectorizeHints &LH, 1431 OptimizationRemarkEmitter *ORE) { 1432 LH.emitRemarkWithHints(); 1433 1434 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) { 1435 if (LH.getWidth() != 1) 1436 ORE->emit(DiagnosticInfoOptimizationFailure( 1437 DEBUG_TYPE, "FailedRequestedVectorization", 1438 L->getStartLoc(), L->getHeader()) 1439 << "loop not vectorized: " 1440 << "failed explicitly specified loop vectorization"); 1441 else if (LH.getInterleave() != 1) 1442 ORE->emit(DiagnosticInfoOptimizationFailure( 1443 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(), 1444 L->getHeader()) 1445 << "loop not interleaved: " 1446 << "failed explicitly specified loop interleaving"); 1447 } 1448 } 1449 1450 /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and 1451 /// to what vectorization factor. 1452 /// This class does not look at the profitability of vectorization, only the 1453 /// legality. This class has two main kinds of checks: 1454 /// * Memory checks - The code in canVectorizeMemory checks if vectorization 1455 /// will change the order of memory accesses in a way that will change the 1456 /// correctness of the program. 1457 /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory 1458 /// checks for a number of different conditions, such as the availability of a 1459 /// single induction variable, that all types are supported and vectorize-able, 1460 /// etc. This code reflects the capabilities of InnerLoopVectorizer. 1461 /// This class is also used by InnerLoopVectorizer for identifying 1462 /// induction variable and the different reduction variables. 1463 class LoopVectorizationLegality { 1464 public: 1465 LoopVectorizationLegality( 1466 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT, 1467 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F, 1468 const TargetTransformInfo *TTI, 1469 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI, 1470 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R, 1471 LoopVectorizeHints *H) 1472 : NumPredStores(0), TheLoop(L), PSE(PSE), TLI(TLI), TTI(TTI), DT(DT), 1473 GetLAA(GetLAA), LAI(nullptr), ORE(ORE), InterleaveInfo(PSE, L, DT, LI), 1474 PrimaryInduction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false), 1475 Requirements(R), Hints(H) {} 1476 1477 /// ReductionList contains the reduction descriptors for all 1478 /// of the reductions that were found in the loop. 1479 typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList; 1480 1481 /// InductionList saves induction variables and maps them to the 1482 /// induction descriptor. 1483 typedef MapVector<PHINode *, InductionDescriptor> InductionList; 1484 1485 /// RecurrenceSet contains the phi nodes that are recurrences other than 1486 /// inductions and reductions. 1487 typedef SmallPtrSet<const PHINode *, 8> RecurrenceSet; 1488 1489 /// Returns true if it is legal to vectorize this loop. 1490 /// This does not mean that it is profitable to vectorize this 1491 /// loop, only that it is legal to do so. 1492 bool canVectorize(); 1493 1494 /// Returns the primary induction variable. 1495 PHINode *getPrimaryInduction() { return PrimaryInduction; } 1496 1497 /// Returns the reduction variables found in the loop. 1498 ReductionList *getReductionVars() { return &Reductions; } 1499 1500 /// Returns the induction variables found in the loop. 1501 InductionList *getInductionVars() { return &Inductions; } 1502 1503 /// Return the first-order recurrences found in the loop. 1504 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; } 1505 1506 /// Return the set of instructions to sink to handle first-order recurrences. 1507 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; } 1508 1509 /// Returns the widest induction type. 1510 Type *getWidestInductionType() { return WidestIndTy; } 1511 1512 /// Returns True if V is an induction variable in this loop. 1513 bool isInductionVariable(const Value *V); 1514 1515 /// Returns True if PN is a reduction variable in this loop. 1516 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); } 1517 1518 /// Returns True if Phi is a first-order recurrence in this loop. 1519 bool isFirstOrderRecurrence(const PHINode *Phi); 1520 1521 /// Return true if the block BB needs to be predicated in order for the loop 1522 /// to be vectorized. 1523 bool blockNeedsPredication(BasicBlock *BB); 1524 1525 /// Check if this pointer is consecutive when vectorizing. This happens 1526 /// when the last index of the GEP is the induction variable, or that the 1527 /// pointer itself is an induction variable. 1528 /// This check allows us to vectorize A[idx] into a wide load/store. 1529 /// Returns: 1530 /// 0 - Stride is unknown or non-consecutive. 1531 /// 1 - Address is consecutive. 1532 /// -1 - Address is consecutive, and decreasing. 1533 int isConsecutivePtr(Value *Ptr); 1534 1535 /// Returns true if the value V is uniform within the loop. 1536 bool isUniform(Value *V); 1537 1538 /// Returns the information that we collected about runtime memory check. 1539 const RuntimePointerChecking *getRuntimePointerChecking() const { 1540 return LAI->getRuntimePointerChecking(); 1541 } 1542 1543 const LoopAccessInfo *getLAI() const { return LAI; } 1544 1545 /// \brief Check if \p Instr belongs to any interleaved access group. 1546 bool isAccessInterleaved(Instruction *Instr) { 1547 return InterleaveInfo.isInterleaved(Instr); 1548 } 1549 1550 /// \brief Get the interleaved access group that \p Instr belongs to. 1551 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) { 1552 return InterleaveInfo.getInterleaveGroup(Instr); 1553 } 1554 1555 /// \brief Returns true if an interleaved group requires a scalar iteration 1556 /// to handle accesses with gaps. 1557 bool requiresScalarEpilogue() const { 1558 return InterleaveInfo.requiresScalarEpilogue(); 1559 } 1560 1561 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); } 1562 1563 uint64_t getMaxSafeRegisterWidth() const { 1564 return LAI->getDepChecker().getMaxSafeRegisterWidth(); 1565 } 1566 1567 bool hasStride(Value *V) { return LAI->hasStride(V); } 1568 1569 /// Returns true if the target machine supports masked store operation 1570 /// for the given \p DataType and kind of access to \p Ptr. 1571 bool isLegalMaskedStore(Type *DataType, Value *Ptr) { 1572 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedStore(DataType); 1573 } 1574 /// Returns true if the target machine supports masked load operation 1575 /// for the given \p DataType and kind of access to \p Ptr. 1576 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) { 1577 return isConsecutivePtr(Ptr) && TTI->isLegalMaskedLoad(DataType); 1578 } 1579 /// Returns true if the target machine supports masked scatter operation 1580 /// for the given \p DataType. 1581 bool isLegalMaskedScatter(Type *DataType) { 1582 return TTI->isLegalMaskedScatter(DataType); 1583 } 1584 /// Returns true if the target machine supports masked gather operation 1585 /// for the given \p DataType. 1586 bool isLegalMaskedGather(Type *DataType) { 1587 return TTI->isLegalMaskedGather(DataType); 1588 } 1589 /// Returns true if the target machine can represent \p V as a masked gather 1590 /// or scatter operation. 1591 bool isLegalGatherOrScatter(Value *V) { 1592 auto *LI = dyn_cast<LoadInst>(V); 1593 auto *SI = dyn_cast<StoreInst>(V); 1594 if (!LI && !SI) 1595 return false; 1596 auto *Ptr = getPointerOperand(V); 1597 auto *Ty = cast<PointerType>(Ptr->getType())->getElementType(); 1598 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty)); 1599 } 1600 1601 /// Returns true if vector representation of the instruction \p I 1602 /// requires mask. 1603 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); } 1604 unsigned getNumStores() const { return LAI->getNumStores(); } 1605 unsigned getNumLoads() const { return LAI->getNumLoads(); } 1606 unsigned getNumPredStores() const { return NumPredStores; } 1607 1608 /// Returns true if \p I is an instruction that will be scalarized with 1609 /// predication. Such instructions include conditional stores and 1610 /// instructions that may divide by zero. 1611 bool isScalarWithPredication(Instruction *I); 1612 1613 /// Returns true if \p I is a memory instruction with consecutive memory 1614 /// access that can be widened. 1615 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1); 1616 1617 // Returns true if the NoNaN attribute is set on the function. 1618 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; } 1619 1620 private: 1621 /// Check if a single basic block loop is vectorizable. 1622 /// At this point we know that this is a loop with a constant trip count 1623 /// and we only need to check individual instructions. 1624 bool canVectorizeInstrs(); 1625 1626 /// When we vectorize loops we may change the order in which 1627 /// we read and write from memory. This method checks if it is 1628 /// legal to vectorize the code, considering only memory constrains. 1629 /// Returns true if the loop is vectorizable 1630 bool canVectorizeMemory(); 1631 1632 /// Return true if we can vectorize this loop using the IF-conversion 1633 /// transformation. 1634 bool canVectorizeWithIfConvert(); 1635 1636 /// Return true if all of the instructions in the block can be speculatively 1637 /// executed. \p SafePtrs is a list of addresses that are known to be legal 1638 /// and we know that we can read from them without segfault. 1639 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs); 1640 1641 /// Updates the vectorization state by adding \p Phi to the inductions list. 1642 /// This can set \p Phi as the main induction of the loop if \p Phi is a 1643 /// better choice for the main induction than the existing one. 1644 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID, 1645 SmallPtrSetImpl<Value *> &AllowedExit); 1646 1647 /// Create an analysis remark that explains why vectorization failed 1648 /// 1649 /// \p RemarkName is the identifier for the remark. If \p I is passed it is 1650 /// an instruction that prevents vectorization. Otherwise the loop is used 1651 /// for the location of the remark. \return the remark object that can be 1652 /// streamed to. 1653 OptimizationRemarkAnalysis 1654 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const { 1655 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 1656 RemarkName, TheLoop, I); 1657 } 1658 1659 /// \brief If an access has a symbolic strides, this maps the pointer value to 1660 /// the stride symbol. 1661 const ValueToValueMap *getSymbolicStrides() { 1662 // FIXME: Currently, the set of symbolic strides is sometimes queried before 1663 // it's collected. This happens from canVectorizeWithIfConvert, when the 1664 // pointer is checked to reference consecutive elements suitable for a 1665 // masked access. 1666 return LAI ? &LAI->getSymbolicStrides() : nullptr; 1667 } 1668 1669 unsigned NumPredStores; 1670 1671 /// The loop that we evaluate. 1672 Loop *TheLoop; 1673 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. 1674 /// Applies dynamic knowledge to simplify SCEV expressions in the context 1675 /// of existing SCEV assumptions. The analysis will also add a minimal set 1676 /// of new predicates if this is required to enable vectorization and 1677 /// unrolling. 1678 PredicatedScalarEvolution &PSE; 1679 /// Target Library Info. 1680 TargetLibraryInfo *TLI; 1681 /// Target Transform Info 1682 const TargetTransformInfo *TTI; 1683 /// Dominator Tree. 1684 DominatorTree *DT; 1685 // LoopAccess analysis. 1686 std::function<const LoopAccessInfo &(Loop &)> *GetLAA; 1687 // And the loop-accesses info corresponding to this loop. This pointer is 1688 // null until canVectorizeMemory sets it up. 1689 const LoopAccessInfo *LAI; 1690 /// Interface to emit optimization remarks. 1691 OptimizationRemarkEmitter *ORE; 1692 1693 /// The interleave access information contains groups of interleaved accesses 1694 /// with the same stride and close to each other. 1695 InterleavedAccessInfo InterleaveInfo; 1696 1697 // --- vectorization state --- // 1698 1699 /// Holds the primary induction variable. This is the counter of the 1700 /// loop. 1701 PHINode *PrimaryInduction; 1702 /// Holds the reduction variables. 1703 ReductionList Reductions; 1704 /// Holds all of the induction variables that we found in the loop. 1705 /// Notice that inductions don't need to start at zero and that induction 1706 /// variables can be pointers. 1707 InductionList Inductions; 1708 /// Holds the phi nodes that are first-order recurrences. 1709 RecurrenceSet FirstOrderRecurrences; 1710 /// Holds instructions that need to sink past other instructions to handle 1711 /// first-order recurrences. 1712 DenseMap<Instruction *, Instruction *> SinkAfter; 1713 /// Holds the widest induction type encountered. 1714 Type *WidestIndTy; 1715 1716 /// Allowed outside users. This holds the induction and reduction 1717 /// vars which can be accessed from outside the loop. 1718 SmallPtrSet<Value *, 4> AllowedExit; 1719 1720 /// Can we assume the absence of NaNs. 1721 bool HasFunNoNaNAttr; 1722 1723 /// Vectorization requirements that will go through late-evaluation. 1724 LoopVectorizationRequirements *Requirements; 1725 1726 /// Used to emit an analysis of any legality issues. 1727 LoopVectorizeHints *Hints; 1728 1729 /// While vectorizing these instructions we have to generate a 1730 /// call to the appropriate masked intrinsic 1731 SmallPtrSet<const Instruction *, 8> MaskedOp; 1732 }; 1733 1734 /// LoopVectorizationCostModel - estimates the expected speedups due to 1735 /// vectorization. 1736 /// In many cases vectorization is not profitable. This can happen because of 1737 /// a number of reasons. In this class we mainly attempt to predict the 1738 /// expected speedup/slowdowns due to the supported instruction set. We use the 1739 /// TargetTransformInfo to query the different backends for the cost of 1740 /// different operations. 1741 class LoopVectorizationCostModel { 1742 public: 1743 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE, 1744 LoopInfo *LI, LoopVectorizationLegality *Legal, 1745 const TargetTransformInfo &TTI, 1746 const TargetLibraryInfo *TLI, DemandedBits *DB, 1747 AssumptionCache *AC, 1748 OptimizationRemarkEmitter *ORE, const Function *F, 1749 const LoopVectorizeHints *Hints) 1750 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB), 1751 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints) {} 1752 1753 /// \return An upper bound for the vectorization factor, or None if 1754 /// vectorization should be avoided up front. 1755 Optional<unsigned> computeMaxVF(bool OptForSize); 1756 1757 /// Information about vectorization costs 1758 struct VectorizationFactor { 1759 unsigned Width; // Vector width with best cost 1760 unsigned Cost; // Cost of the loop with that width 1761 }; 1762 /// \return The most profitable vectorization factor and the cost of that VF. 1763 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1764 /// then this vectorization factor will be selected if vectorization is 1765 /// possible. 1766 VectorizationFactor selectVectorizationFactor(unsigned MaxVF); 1767 1768 /// Setup cost-based decisions for user vectorization factor. 1769 void selectUserVectorizationFactor(unsigned UserVF) { 1770 collectUniformsAndScalars(UserVF); 1771 collectInstsToScalarize(UserVF); 1772 } 1773 1774 /// \return The size (in bits) of the smallest and widest types in the code 1775 /// that needs to be vectorized. We ignore values that remain scalar such as 1776 /// 64 bit loop indices. 1777 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1778 1779 /// \return The desired interleave count. 1780 /// If interleave count has been specified by metadata it will be returned. 1781 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1782 /// are the selected vectorization factor and the cost of the selected VF. 1783 unsigned selectInterleaveCount(bool OptForSize, unsigned VF, 1784 unsigned LoopCost); 1785 1786 /// Memory access instruction may be vectorized in more than one way. 1787 /// Form of instruction after vectorization depends on cost. 1788 /// This function takes cost-based decisions for Load/Store instructions 1789 /// and collects them in a map. This decisions map is used for building 1790 /// the lists of loop-uniform and loop-scalar instructions. 1791 /// The calculated cost is saved with widening decision in order to 1792 /// avoid redundant calculations. 1793 void setCostBasedWideningDecision(unsigned VF); 1794 1795 /// \brief A struct that represents some properties of the register usage 1796 /// of a loop. 1797 struct RegisterUsage { 1798 /// Holds the number of loop invariant values that are used in the loop. 1799 unsigned LoopInvariantRegs; 1800 /// Holds the maximum number of concurrent live intervals in the loop. 1801 unsigned MaxLocalUsers; 1802 /// Holds the number of instructions in the loop. 1803 unsigned NumInstructions; 1804 }; 1805 1806 /// \return Returns information about the register usages of the loop for the 1807 /// given vectorization factors. 1808 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs); 1809 1810 /// Collect values we want to ignore in the cost model. 1811 void collectValuesToIgnore(); 1812 1813 /// \returns The smallest bitwidth each instruction can be represented with. 1814 /// The vector equivalents of these instructions should be truncated to this 1815 /// type. 1816 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1817 return MinBWs; 1818 } 1819 1820 /// \returns True if it is more profitable to scalarize instruction \p I for 1821 /// vectorization factor \p VF. 1822 bool isProfitableToScalarize(Instruction *I, unsigned VF) const { 1823 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1."); 1824 auto Scalars = InstsToScalarize.find(VF); 1825 assert(Scalars != InstsToScalarize.end() && 1826 "VF not yet analyzed for scalarization profitability"); 1827 return Scalars->second.count(I); 1828 } 1829 1830 /// Returns true if \p I is known to be uniform after vectorization. 1831 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const { 1832 if (VF == 1) 1833 return true; 1834 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity"); 1835 auto UniformsPerVF = Uniforms.find(VF); 1836 return UniformsPerVF->second.count(I); 1837 } 1838 1839 /// Returns true if \p I is known to be scalar after vectorization. 1840 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const { 1841 if (VF == 1) 1842 return true; 1843 assert(Scalars.count(VF) && "Scalar values are not calculated for VF"); 1844 auto ScalarsPerVF = Scalars.find(VF); 1845 return ScalarsPerVF->second.count(I); 1846 } 1847 1848 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1849 /// for vectorization factor \p VF. 1850 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const { 1851 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) && 1852 !isScalarAfterVectorization(I, VF); 1853 } 1854 1855 /// Decision that was taken during cost calculation for memory instruction. 1856 enum InstWidening { 1857 CM_Unknown, 1858 CM_Widen, 1859 CM_Interleave, 1860 CM_GatherScatter, 1861 CM_Scalarize 1862 }; 1863 1864 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1865 /// instruction \p I and vector width \p VF. 1866 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W, 1867 unsigned Cost) { 1868 assert(VF >= 2 && "Expected VF >=2"); 1869 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1870 } 1871 1872 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1873 /// interleaving group \p Grp and vector width \p VF. 1874 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF, 1875 InstWidening W, unsigned Cost) { 1876 assert(VF >= 2 && "Expected VF >=2"); 1877 /// Broadcast this decicion to all instructions inside the group. 1878 /// But the cost will be assigned to one instruction only. 1879 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1880 if (auto *I = Grp->getMember(i)) { 1881 if (Grp->getInsertPos() == I) 1882 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1883 else 1884 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1885 } 1886 } 1887 } 1888 1889 /// Return the cost model decision for the given instruction \p I and vector 1890 /// width \p VF. Return CM_Unknown if this instruction did not pass 1891 /// through the cost modeling. 1892 InstWidening getWideningDecision(Instruction *I, unsigned VF) { 1893 assert(VF >= 2 && "Expected VF >=2"); 1894 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1895 auto Itr = WideningDecisions.find(InstOnVF); 1896 if (Itr == WideningDecisions.end()) 1897 return CM_Unknown; 1898 return Itr->second.first; 1899 } 1900 1901 /// Return the vectorization cost for the given instruction \p I and vector 1902 /// width \p VF. 1903 unsigned getWideningCost(Instruction *I, unsigned VF) { 1904 assert(VF >= 2 && "Expected VF >=2"); 1905 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF); 1906 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated"); 1907 return WideningDecisions[InstOnVF].second; 1908 } 1909 1910 /// Return True if instruction \p I is an optimizable truncate whose operand 1911 /// is an induction variable. Such a truncate will be removed by adding a new 1912 /// induction variable with the destination type. 1913 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) { 1914 1915 // If the instruction is not a truncate, return false. 1916 auto *Trunc = dyn_cast<TruncInst>(I); 1917 if (!Trunc) 1918 return false; 1919 1920 // Get the source and destination types of the truncate. 1921 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1922 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1923 1924 // If the truncate is free for the given types, return false. Replacing a 1925 // free truncate with an induction variable would add an induction variable 1926 // update instruction to each iteration of the loop. We exclude from this 1927 // check the primary induction variable since it will need an update 1928 // instruction regardless. 1929 Value *Op = Trunc->getOperand(0); 1930 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1931 return false; 1932 1933 // If the truncated value is not an induction variable, return false. 1934 return Legal->isInductionVariable(Op); 1935 } 1936 1937 /// Collects the instructions to scalarize for each predicated instruction in 1938 /// the loop. 1939 void collectInstsToScalarize(unsigned VF); 1940 1941 /// Collect Uniform and Scalar values for the given \p VF. 1942 /// The sets depend on CM decision for Load/Store instructions 1943 /// that may be vectorized as interleave, gather-scatter or scalarized. 1944 void collectUniformsAndScalars(unsigned VF) { 1945 // Do the analysis once. 1946 if (VF == 1 || Uniforms.count(VF)) 1947 return; 1948 setCostBasedWideningDecision(VF); 1949 collectLoopUniforms(VF); 1950 collectLoopScalars(VF); 1951 } 1952 1953 private: 1954 /// \return An upper bound for the vectorization factor, larger than zero. 1955 /// One is returned if vectorization should best be avoided due to cost. 1956 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount); 1957 1958 /// The vectorization cost is a combination of the cost itself and a boolean 1959 /// indicating whether any of the contributing operations will actually 1960 /// operate on 1961 /// vector values after type legalization in the backend. If this latter value 1962 /// is 1963 /// false, then all operations will be scalarized (i.e. no vectorization has 1964 /// actually taken place). 1965 typedef std::pair<unsigned, bool> VectorizationCostTy; 1966 1967 /// Returns the expected execution cost. The unit of the cost does 1968 /// not matter because we use the 'cost' units to compare different 1969 /// vector widths. The cost that is returned is *not* normalized by 1970 /// the factor width. 1971 VectorizationCostTy expectedCost(unsigned VF); 1972 1973 /// Returns the execution time cost of an instruction for a given vector 1974 /// width. Vector width of one means scalar. 1975 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF); 1976 1977 /// The cost-computation logic from getInstructionCost which provides 1978 /// the vector type as an output parameter. 1979 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy); 1980 1981 /// Calculate vectorization cost of memory instruction \p I. 1982 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF); 1983 1984 /// The cost computation for scalarized memory instruction. 1985 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF); 1986 1987 /// The cost computation for interleaving group of memory instructions. 1988 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF); 1989 1990 /// The cost computation for Gather/Scatter instruction. 1991 unsigned getGatherScatterCost(Instruction *I, unsigned VF); 1992 1993 /// The cost computation for widening instruction \p I with consecutive 1994 /// memory access. 1995 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF); 1996 1997 /// The cost calculation for Load instruction \p I with uniform pointer - 1998 /// scalar load + broadcast. 1999 unsigned getUniformMemOpCost(Instruction *I, unsigned VF); 2000 2001 /// Returns whether the instruction is a load or store and will be a emitted 2002 /// as a vector operation. 2003 bool isConsecutiveLoadOrStore(Instruction *I); 2004 2005 /// Create an analysis remark that explains why vectorization failed 2006 /// 2007 /// \p RemarkName is the identifier for the remark. \return the remark object 2008 /// that can be streamed to. 2009 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) { 2010 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(), 2011 RemarkName, TheLoop); 2012 } 2013 2014 /// Map of scalar integer values to the smallest bitwidth they can be legally 2015 /// represented as. The vector equivalents of these values should be truncated 2016 /// to this type. 2017 MapVector<Instruction *, uint64_t> MinBWs; 2018 2019 /// A type representing the costs for instructions if they were to be 2020 /// scalarized rather than vectorized. The entries are Instruction-Cost 2021 /// pairs. 2022 typedef DenseMap<Instruction *, unsigned> ScalarCostsTy; 2023 2024 /// A set containing all BasicBlocks that are known to present after 2025 /// vectorization as a predicated block. 2026 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 2027 2028 /// A map holding scalar costs for different vectorization factors. The 2029 /// presence of a cost for an instruction in the mapping indicates that the 2030 /// instruction will be scalarized when vectorizing with the associated 2031 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 2032 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize; 2033 2034 /// Holds the instructions known to be uniform after vectorization. 2035 /// The data is collected per VF. 2036 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms; 2037 2038 /// Holds the instructions known to be scalar after vectorization. 2039 /// The data is collected per VF. 2040 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars; 2041 2042 /// Holds the instructions (address computations) that are forced to be 2043 /// scalarized. 2044 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars; 2045 2046 /// Returns the expected difference in cost from scalarizing the expression 2047 /// feeding a predicated instruction \p PredInst. The instructions to 2048 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 2049 /// non-negative return value implies the expression will be scalarized. 2050 /// Currently, only single-use chains are considered for scalarization. 2051 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 2052 unsigned VF); 2053 2054 /// Collect the instructions that are uniform after vectorization. An 2055 /// instruction is uniform if we represent it with a single scalar value in 2056 /// the vectorized loop corresponding to each vector iteration. Examples of 2057 /// uniform instructions include pointer operands of consecutive or 2058 /// interleaved memory accesses. Note that although uniformity implies an 2059 /// instruction will be scalar, the reverse is not true. In general, a 2060 /// scalarized instruction will be represented by VF scalar values in the 2061 /// vectorized loop, each corresponding to an iteration of the original 2062 /// scalar loop. 2063 void collectLoopUniforms(unsigned VF); 2064 2065 /// Collect the instructions that are scalar after vectorization. An 2066 /// instruction is scalar if it is known to be uniform or will be scalarized 2067 /// during vectorization. Non-uniform scalarized instructions will be 2068 /// represented by VF values in the vectorized loop, each corresponding to an 2069 /// iteration of the original scalar loop. 2070 void collectLoopScalars(unsigned VF); 2071 2072 /// Keeps cost model vectorization decision and cost for instructions. 2073 /// Right now it is used for memory instructions only. 2074 typedef DenseMap<std::pair<Instruction *, unsigned>, 2075 std::pair<InstWidening, unsigned>> 2076 DecisionList; 2077 2078 DecisionList WideningDecisions; 2079 2080 public: 2081 /// The loop that we evaluate. 2082 Loop *TheLoop; 2083 /// Predicated scalar evolution analysis. 2084 PredicatedScalarEvolution &PSE; 2085 /// Loop Info analysis. 2086 LoopInfo *LI; 2087 /// Vectorization legality. 2088 LoopVectorizationLegality *Legal; 2089 /// Vector target information. 2090 const TargetTransformInfo &TTI; 2091 /// Target Library Info. 2092 const TargetLibraryInfo *TLI; 2093 /// Demanded bits analysis. 2094 DemandedBits *DB; 2095 /// Assumption cache. 2096 AssumptionCache *AC; 2097 /// Interface to emit optimization remarks. 2098 OptimizationRemarkEmitter *ORE; 2099 2100 const Function *TheFunction; 2101 /// Loop Vectorize Hint. 2102 const LoopVectorizeHints *Hints; 2103 /// Values to ignore in the cost model. 2104 SmallPtrSet<const Value *, 16> ValuesToIgnore; 2105 /// Values to ignore in the cost model when VF > 1. 2106 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 2107 }; 2108 2109 } // end anonymous namespace 2110 2111 namespace llvm { 2112 /// InnerLoopVectorizer vectorizes loops which contain only one basic 2113 /// LoopVectorizationPlanner - drives the vectorization process after having 2114 /// passed Legality checks. 2115 /// The planner builds and optimizes the Vectorization Plans which record the 2116 /// decisions how to vectorize the given loop. In particular, represent the 2117 /// control-flow of the vectorized version, the replication of instructions that 2118 /// are to be scalarized, and interleave access groups. 2119 class LoopVectorizationPlanner { 2120 /// The loop that we evaluate. 2121 Loop *OrigLoop; 2122 2123 /// Loop Info analysis. 2124 LoopInfo *LI; 2125 2126 /// Target Library Info. 2127 const TargetLibraryInfo *TLI; 2128 2129 /// Target Transform Info. 2130 const TargetTransformInfo *TTI; 2131 2132 /// The legality analysis. 2133 LoopVectorizationLegality *Legal; 2134 2135 /// The profitablity analysis. 2136 LoopVectorizationCostModel &CM; 2137 2138 SmallVector<VPlan *, 4> VPlans; 2139 2140 unsigned BestVF; 2141 unsigned BestUF; 2142 2143 public: 2144 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, 2145 const TargetTransformInfo *TTI, 2146 LoopVectorizationLegality *Legal, 2147 LoopVectorizationCostModel &CM) 2148 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), 2149 BestVF(0), BestUF(0) {} 2150 2151 ~LoopVectorizationPlanner() { 2152 while (!VPlans.empty()) { 2153 VPlan *Plan = VPlans.back(); 2154 VPlans.pop_back(); 2155 delete Plan; 2156 } 2157 } 2158 2159 /// Plan how to best vectorize, return the best VF and its cost. 2160 LoopVectorizationCostModel::VectorizationFactor plan(bool OptForSize, 2161 unsigned UserVF); 2162 2163 /// Finalize the best decision and dispose of all other VPlans. 2164 void setBestPlan(unsigned VF, unsigned UF); 2165 2166 /// Generate the IR code for the body of the vectorized loop according to the 2167 /// best selected VPlan. 2168 void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT); 2169 2170 void printPlans(raw_ostream &O) { 2171 for (VPlan *Plan : VPlans) 2172 O << *Plan; 2173 } 2174 2175 protected: 2176 /// Collect the instructions from the original loop that would be trivially 2177 /// dead in the vectorized loop if generated. 2178 void collectTriviallyDeadInstructions( 2179 SmallPtrSetImpl<Instruction *> &DeadInstructions); 2180 2181 /// A range of powers-of-2 vectorization factors with fixed start and 2182 /// adjustable end. The range includes start and excludes end, e.g.,: 2183 /// [1, 9) = {1, 2, 4, 8} 2184 struct VFRange { 2185 const unsigned Start; // A power of 2. 2186 unsigned End; // Need not be a power of 2. If End <= Start range is empty. 2187 }; 2188 2189 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 2190 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 2191 /// returned value holds for the entire \p Range. 2192 bool getDecisionAndClampRange(const std::function<bool(unsigned)> &Predicate, 2193 VFRange &Range); 2194 2195 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 2196 /// according to the information gathered by Legal when it checked if it is 2197 /// legal to vectorize the loop. 2198 void buildVPlans(unsigned MinVF, unsigned MaxVF); 2199 2200 private: 2201 /// Check if \I belongs to an Interleave Group within the given VF \p Range, 2202 /// \return true in the first returned value if so and false otherwise. 2203 /// Build a new VPInterleaveGroup Recipe if \I is the primary member of an IG 2204 /// for \p Range.Start, and provide it as the second returned value. 2205 /// Note that if \I is an adjunct member of an IG for \p Range.Start, the 2206 /// \return value is <true, nullptr>, as it is handled by another recipe. 2207 /// \p Range.End may be decreased to ensure same decision from \p Range.Start 2208 /// to \p Range.End. 2209 VPInterleaveRecipe *tryToInterleaveMemory(Instruction *I, VFRange &Range); 2210 2211 /// Check if an induction recipe should be constructed for \I within the given 2212 /// VF \p Range. If so build and return it. If not, return null. \p Range.End 2213 /// may be decreased to ensure same decision from \p Range.Start to 2214 /// \p Range.End. 2215 VPWidenIntOrFpInductionRecipe *tryToOptimizeInduction(Instruction *I, 2216 VFRange &Range); 2217 2218 /// Check if \I can be widened within the given VF \p Range. If \I can be 2219 /// widened for Range.Start, extend \p LastWidenRecipe to include \p I if 2220 /// possible or else build a new VPWidenRecipe for it, and return the 2221 /// VPWidenRecipe that includes \p I. If \p I cannot be widened for 2222 /// Range.Start \return null. Range.End may be decreased to ensure same 2223 /// decision from \p Range.Start to \p Range.End. 2224 VPWidenRecipe *tryToWiden(Instruction *I, VPWidenRecipe *LastWidenRecipe, 2225 VFRange &Range); 2226 2227 /// Build a VPReplicationRecipe for \p I and enclose it within a Region if it 2228 /// is predicated. \return \p VPBB augmented with this new recipe if \p I is 2229 /// not predicated, otherwise \return a new VPBasicBlock that succeeds the new 2230 /// Region. Update the packing decision of predicated instructions if they 2231 /// feed \p I. Range.End may be decreased to ensure same recipe behavior from 2232 /// \p Range.Start to \p Range.End. 2233 VPBasicBlock *handleReplication( 2234 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 2235 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe); 2236 2237 /// Create a replicating region for instruction \p I that requires 2238 /// predication. \p PredRecipe is a VPReplicateRecipe holding \p I. 2239 VPRegionBlock *createReplicateRegion(Instruction *I, 2240 VPRecipeBase *PredRecipe); 2241 2242 /// Build a VPlan according to the information gathered by Legal. \return a 2243 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 2244 /// exclusive, possibly decreasing \p Range.End. 2245 VPlan *buildVPlan(VFRange &Range); 2246 }; 2247 2248 } // namespace llvm 2249 2250 namespace { 2251 2252 /// \brief This holds vectorization requirements that must be verified late in 2253 /// the process. The requirements are set by legalize and costmodel. Once 2254 /// vectorization has been determined to be possible and profitable the 2255 /// requirements can be verified by looking for metadata or compiler options. 2256 /// For example, some loops require FP commutativity which is only allowed if 2257 /// vectorization is explicitly specified or if the fast-math compiler option 2258 /// has been provided. 2259 /// Late evaluation of these requirements allows helpful diagnostics to be 2260 /// composed that tells the user what need to be done to vectorize the loop. For 2261 /// example, by specifying #pragma clang loop vectorize or -ffast-math. Late 2262 /// evaluation should be used only when diagnostics can generated that can be 2263 /// followed by a non-expert user. 2264 class LoopVectorizationRequirements { 2265 public: 2266 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) 2267 : NumRuntimePointerChecks(0), UnsafeAlgebraInst(nullptr), ORE(ORE) {} 2268 2269 void addUnsafeAlgebraInst(Instruction *I) { 2270 // First unsafe algebra instruction. 2271 if (!UnsafeAlgebraInst) 2272 UnsafeAlgebraInst = I; 2273 } 2274 2275 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; } 2276 2277 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) { 2278 const char *PassName = Hints.vectorizeAnalysisPassName(); 2279 bool Failed = false; 2280 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 2281 ORE.emit( 2282 OptimizationRemarkAnalysisFPCommute(PassName, "CantReorderFPOps", 2283 UnsafeAlgebraInst->getDebugLoc(), 2284 UnsafeAlgebraInst->getParent()) 2285 << "loop not vectorized: cannot prove it is safe to reorder " 2286 "floating-point operations"); 2287 Failed = true; 2288 } 2289 2290 // Test if runtime memcheck thresholds are exceeded. 2291 bool PragmaThresholdReached = 2292 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 2293 bool ThresholdReached = 2294 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 2295 if ((ThresholdReached && !Hints.allowReordering()) || 2296 PragmaThresholdReached) { 2297 ORE.emit(OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 2298 L->getStartLoc(), 2299 L->getHeader()) 2300 << "loop not vectorized: cannot prove it is safe to reorder " 2301 "memory operations"); 2302 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 2303 Failed = true; 2304 } 2305 2306 return Failed; 2307 } 2308 2309 private: 2310 unsigned NumRuntimePointerChecks; 2311 Instruction *UnsafeAlgebraInst; 2312 2313 /// Interface to emit optimization remarks. 2314 OptimizationRemarkEmitter &ORE; 2315 }; 2316 2317 static void addAcyclicInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) { 2318 if (L.empty()) { 2319 if (!hasCyclesInLoopBody(L)) 2320 V.push_back(&L); 2321 return; 2322 } 2323 for (Loop *InnerL : L) 2324 addAcyclicInnerLoop(*InnerL, V); 2325 } 2326 2327 /// The LoopVectorize Pass. 2328 struct LoopVectorize : public FunctionPass { 2329 /// Pass identification, replacement for typeid 2330 static char ID; 2331 2332 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true) 2333 : FunctionPass(ID) { 2334 Impl.DisableUnrolling = NoUnrolling; 2335 Impl.AlwaysVectorize = AlwaysVectorize; 2336 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2337 } 2338 2339 LoopVectorizePass Impl; 2340 2341 bool runOnFunction(Function &F) override { 2342 if (skipFunction(F)) 2343 return false; 2344 2345 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2346 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2347 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2348 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2349 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2350 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2351 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2352 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2353 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2354 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2355 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2356 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2357 2358 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2359 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2360 2361 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2362 GetLAA, *ORE); 2363 } 2364 2365 void getAnalysisUsage(AnalysisUsage &AU) const override { 2366 AU.addRequired<AssumptionCacheTracker>(); 2367 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2368 AU.addRequired<DominatorTreeWrapperPass>(); 2369 AU.addRequired<LoopInfoWrapperPass>(); 2370 AU.addRequired<ScalarEvolutionWrapperPass>(); 2371 AU.addRequired<TargetTransformInfoWrapperPass>(); 2372 AU.addRequired<AAResultsWrapperPass>(); 2373 AU.addRequired<LoopAccessLegacyAnalysis>(); 2374 AU.addRequired<DemandedBitsWrapperPass>(); 2375 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2376 AU.addPreserved<LoopInfoWrapperPass>(); 2377 AU.addPreserved<DominatorTreeWrapperPass>(); 2378 AU.addPreserved<BasicAAWrapperPass>(); 2379 AU.addPreserved<GlobalsAAWrapperPass>(); 2380 } 2381 }; 2382 2383 } // end anonymous namespace 2384 2385 //===----------------------------------------------------------------------===// 2386 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2387 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2388 //===----------------------------------------------------------------------===// 2389 2390 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2391 // We need to place the broadcast of invariant variables outside the loop. 2392 Instruction *Instr = dyn_cast<Instruction>(V); 2393 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody); 2394 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr; 2395 2396 // Place the code for broadcasting invariant variables in the new preheader. 2397 IRBuilder<>::InsertPointGuard Guard(Builder); 2398 if (Invariant) 2399 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2400 2401 // Broadcast the scalar into all locations in the vector. 2402 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2403 2404 return Shuf; 2405 } 2406 2407 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2408 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) { 2409 Value *Start = II.getStartValue(); 2410 2411 // Construct the initial value of the vector IV in the vector loop preheader 2412 auto CurrIP = Builder.saveIP(); 2413 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2414 if (isa<TruncInst>(EntryVal)) { 2415 assert(Start->getType()->isIntegerTy() && 2416 "Truncation requires an integer type"); 2417 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2418 Step = Builder.CreateTrunc(Step, TruncType); 2419 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2420 } 2421 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2422 Value *SteppedStart = 2423 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2424 2425 // We create vector phi nodes for both integer and floating-point induction 2426 // variables. Here, we determine the kind of arithmetic we will perform. 2427 Instruction::BinaryOps AddOp; 2428 Instruction::BinaryOps MulOp; 2429 if (Step->getType()->isIntegerTy()) { 2430 AddOp = Instruction::Add; 2431 MulOp = Instruction::Mul; 2432 } else { 2433 AddOp = II.getInductionOpcode(); 2434 MulOp = Instruction::FMul; 2435 } 2436 2437 // Multiply the vectorization factor by the step using integer or 2438 // floating-point arithmetic as appropriate. 2439 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF); 2440 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2441 2442 // Create a vector splat to use in the induction update. 2443 // 2444 // FIXME: If the step is non-constant, we create the vector splat with 2445 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2446 // handle a constant vector splat. 2447 Value *SplatVF = isa<Constant>(Mul) 2448 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2449 : Builder.CreateVectorSplat(VF, Mul); 2450 Builder.restoreIP(CurrIP); 2451 2452 // We may need to add the step a number of times, depending on the unroll 2453 // factor. The last of those goes into the PHI. 2454 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2455 &*LoopVectorBody->getFirstInsertionPt()); 2456 Instruction *LastInduction = VecInd; 2457 for (unsigned Part = 0; Part < UF; ++Part) { 2458 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction); 2459 if (isa<TruncInst>(EntryVal)) 2460 addMetadata(LastInduction, EntryVal); 2461 LastInduction = cast<Instruction>(addFastMathFlag( 2462 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2463 } 2464 2465 // Move the last step to the end of the latch block. This ensures consistent 2466 // placement of all induction updates. 2467 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2468 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2469 auto *ICmp = cast<Instruction>(Br->getCondition()); 2470 LastInduction->moveBefore(ICmp); 2471 LastInduction->setName("vec.ind.next"); 2472 2473 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2474 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2475 } 2476 2477 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2478 return Cost->isScalarAfterVectorization(I, VF) || 2479 Cost->isProfitableToScalarize(I, VF); 2480 } 2481 2482 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2483 if (shouldScalarizeInstruction(IV)) 2484 return true; 2485 auto isScalarInst = [&](User *U) -> bool { 2486 auto *I = cast<Instruction>(U); 2487 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2488 }; 2489 return any_of(IV->users(), isScalarInst); 2490 } 2491 2492 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) { 2493 2494 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2495 "Primary induction variable must have an integer type"); 2496 2497 auto II = Legal->getInductionVars()->find(IV); 2498 assert(II != Legal->getInductionVars()->end() && "IV is not an induction"); 2499 2500 auto ID = II->second; 2501 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2502 2503 // The scalar value to broadcast. This will be derived from the canonical 2504 // induction variable. 2505 Value *ScalarIV = nullptr; 2506 2507 // The value from the original loop to which we are mapping the new induction 2508 // variable. 2509 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2510 2511 // True if we have vectorized the induction variable. 2512 auto VectorizedIV = false; 2513 2514 // Determine if we want a scalar version of the induction variable. This is 2515 // true if the induction variable itself is not widened, or if it has at 2516 // least one user in the loop that is not widened. 2517 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal); 2518 2519 // Generate code for the induction step. Note that induction steps are 2520 // required to be loop-invariant 2521 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && 2522 "Induction step should be loop invariant"); 2523 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2524 Value *Step = nullptr; 2525 if (PSE.getSE()->isSCEVable(IV->getType())) { 2526 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2527 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(), 2528 LoopVectorPreHeader->getTerminator()); 2529 } else { 2530 Step = cast<SCEVUnknown>(ID.getStep())->getValue(); 2531 } 2532 2533 // Try to create a new independent vector induction variable. If we can't 2534 // create the phi node, we will splat the scalar induction variable in each 2535 // loop iteration. 2536 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) { 2537 createVectorIntOrFpInductionPHI(ID, Step, EntryVal); 2538 VectorizedIV = true; 2539 } 2540 2541 // If we haven't yet vectorized the induction variable, or if we will create 2542 // a scalar one, we need to define the scalar induction variable and step 2543 // values. If we were given a truncation type, truncate the canonical 2544 // induction variable and step. Otherwise, derive these values from the 2545 // induction descriptor. 2546 if (!VectorizedIV || NeedsScalarIV) { 2547 ScalarIV = Induction; 2548 if (IV != OldInduction) { 2549 ScalarIV = IV->getType()->isIntegerTy() 2550 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2551 : Builder.CreateCast(Instruction::SIToFP, Induction, 2552 IV->getType()); 2553 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL); 2554 ScalarIV->setName("offset.idx"); 2555 } 2556 if (Trunc) { 2557 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2558 assert(Step->getType()->isIntegerTy() && 2559 "Truncation requires an integer step"); 2560 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2561 Step = Builder.CreateTrunc(Step, TruncType); 2562 } 2563 } 2564 2565 // If we haven't yet vectorized the induction variable, splat the scalar 2566 // induction variable, and build the necessary step vectors. 2567 if (!VectorizedIV) { 2568 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2569 for (unsigned Part = 0; Part < UF; ++Part) { 2570 Value *EntryPart = 2571 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode()); 2572 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart); 2573 if (Trunc) 2574 addMetadata(EntryPart, Trunc); 2575 } 2576 } 2577 2578 // If an induction variable is only used for counting loop iterations or 2579 // calculating addresses, it doesn't need to be widened. Create scalar steps 2580 // that can be used by instructions we will later scalarize. Note that the 2581 // addition of the scalar steps will not increase the number of instructions 2582 // in the loop in the common case prior to InstCombine. We will be trading 2583 // one vector extract for each scalar step. 2584 if (NeedsScalarIV) 2585 buildScalarSteps(ScalarIV, Step, EntryVal, ID); 2586 } 2587 2588 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2589 Instruction::BinaryOps BinOp) { 2590 // Create and check the types. 2591 assert(Val->getType()->isVectorTy() && "Must be a vector"); 2592 int VLen = Val->getType()->getVectorNumElements(); 2593 2594 Type *STy = Val->getType()->getScalarType(); 2595 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2596 "Induction Step must be an integer or FP"); 2597 assert(Step->getType() == STy && "Step has wrong type"); 2598 2599 SmallVector<Constant *, 8> Indices; 2600 2601 if (STy->isIntegerTy()) { 2602 // Create a vector of consecutive numbers from zero to VF. 2603 for (int i = 0; i < VLen; ++i) 2604 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2605 2606 // Add the consecutive indices to the vector value. 2607 Constant *Cv = ConstantVector::get(Indices); 2608 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2609 Step = Builder.CreateVectorSplat(VLen, Step); 2610 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2611 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2612 // which can be found from the original scalar operations. 2613 Step = Builder.CreateMul(Cv, Step); 2614 return Builder.CreateAdd(Val, Step, "induction"); 2615 } 2616 2617 // Floating point induction. 2618 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2619 "Binary Opcode should be specified for FP induction"); 2620 // Create a vector of consecutive numbers from zero to VF. 2621 for (int i = 0; i < VLen; ++i) 2622 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2623 2624 // Add the consecutive indices to the vector value. 2625 Constant *Cv = ConstantVector::get(Indices); 2626 2627 Step = Builder.CreateVectorSplat(VLen, Step); 2628 2629 // Floating point operations had to be 'fast' to enable the induction. 2630 FastMathFlags Flags; 2631 Flags.setUnsafeAlgebra(); 2632 2633 Value *MulOp = Builder.CreateFMul(Cv, Step); 2634 if (isa<Instruction>(MulOp)) 2635 // Have to check, MulOp may be a constant 2636 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2637 2638 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2639 if (isa<Instruction>(BOp)) 2640 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2641 return BOp; 2642 } 2643 2644 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2645 Value *EntryVal, 2646 const InductionDescriptor &ID) { 2647 2648 // We shouldn't have to build scalar steps if we aren't vectorizing. 2649 assert(VF > 1 && "VF should be greater than one"); 2650 2651 // Get the value type and ensure it and the step have the same integer type. 2652 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2653 assert(ScalarIVTy == Step->getType() && 2654 "Val and Step should have the same type"); 2655 2656 // We build scalar steps for both integer and floating-point induction 2657 // variables. Here, we determine the kind of arithmetic we will perform. 2658 Instruction::BinaryOps AddOp; 2659 Instruction::BinaryOps MulOp; 2660 if (ScalarIVTy->isIntegerTy()) { 2661 AddOp = Instruction::Add; 2662 MulOp = Instruction::Mul; 2663 } else { 2664 AddOp = ID.getInductionOpcode(); 2665 MulOp = Instruction::FMul; 2666 } 2667 2668 // Determine the number of scalars we need to generate for each unroll 2669 // iteration. If EntryVal is uniform, we only need to generate the first 2670 // lane. Otherwise, we generate all VF values. 2671 unsigned Lanes = 2672 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1 2673 : VF; 2674 // Compute the scalar steps and save the results in VectorLoopValueMap. 2675 for (unsigned Part = 0; Part < UF; ++Part) { 2676 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2677 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane); 2678 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2679 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2680 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add); 2681 } 2682 } 2683 } 2684 2685 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 2686 2687 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() : 2688 ValueToValueMap(); 2689 2690 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 2691 if (Stride == 1 || Stride == -1) 2692 return Stride; 2693 return 0; 2694 } 2695 2696 bool LoopVectorizationLegality::isUniform(Value *V) { 2697 return LAI->isUniform(V); 2698 } 2699 2700 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2701 assert(V != Induction && "The new induction variable should not be used."); 2702 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2703 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2704 2705 // If we have a stride that is replaced by one, do it here. 2706 if (Legal->hasStride(V)) 2707 V = ConstantInt::get(V->getType(), 1); 2708 2709 // If we have a vector mapped to this value, return it. 2710 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2711 return VectorLoopValueMap.getVectorValue(V, Part); 2712 2713 // If the value has not been vectorized, check if it has been scalarized 2714 // instead. If it has been scalarized, and we actually need the value in 2715 // vector form, we will construct the vector values on demand. 2716 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2717 2718 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0}); 2719 2720 // If we've scalarized a value, that value should be an instruction. 2721 auto *I = cast<Instruction>(V); 2722 2723 // If we aren't vectorizing, we can just copy the scalar map values over to 2724 // the vector map. 2725 if (VF == 1) { 2726 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2727 return ScalarValue; 2728 } 2729 2730 // Get the last scalar instruction we generated for V and Part. If the value 2731 // is known to be uniform after vectorization, this corresponds to lane zero 2732 // of the Part unroll iteration. Otherwise, the last instruction is the one 2733 // we created for the last vector lane of the Part unroll iteration. 2734 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1; 2735 auto *LastInst = cast<Instruction>( 2736 VectorLoopValueMap.getScalarValue(V, {Part, LastLane})); 2737 2738 // Set the insert point after the last scalarized instruction. This ensures 2739 // the insertelement sequence will directly follow the scalar definitions. 2740 auto OldIP = Builder.saveIP(); 2741 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2742 Builder.SetInsertPoint(&*NewIP); 2743 2744 // However, if we are vectorizing, we need to construct the vector values. 2745 // If the value is known to be uniform after vectorization, we can just 2746 // broadcast the scalar value corresponding to lane zero for each unroll 2747 // iteration. Otherwise, we construct the vector values using insertelement 2748 // instructions. Since the resulting vectors are stored in 2749 // VectorLoopValueMap, we will only generate the insertelements once. 2750 Value *VectorValue = nullptr; 2751 if (Cost->isUniformAfterVectorization(I, VF)) { 2752 VectorValue = getBroadcastInstrs(ScalarValue); 2753 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2754 } else { 2755 // Initialize packing with insertelements to start from undef. 2756 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF)); 2757 VectorLoopValueMap.setVectorValue(V, Part, Undef); 2758 for (unsigned Lane = 0; Lane < VF; ++Lane) 2759 packScalarIntoVectorValue(V, {Part, Lane}); 2760 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2761 } 2762 Builder.restoreIP(OldIP); 2763 return VectorValue; 2764 } 2765 2766 // If this scalar is unknown, assume that it is a constant or that it is 2767 // loop invariant. Broadcast V and save the value for future uses. 2768 Value *B = getBroadcastInstrs(V); 2769 VectorLoopValueMap.setVectorValue(V, Part, B); 2770 return B; 2771 } 2772 2773 Value * 2774 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2775 const VPIteration &Instance) { 2776 // If the value is not an instruction contained in the loop, it should 2777 // already be scalar. 2778 if (OrigLoop->isLoopInvariant(V)) 2779 return V; 2780 2781 assert(Instance.Lane > 0 2782 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2783 : true && "Uniform values only have lane zero"); 2784 2785 // If the value from the original loop has not been vectorized, it is 2786 // represented by UF x VF scalar values in the new loop. Return the requested 2787 // scalar value. 2788 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2789 return VectorLoopValueMap.getScalarValue(V, Instance); 2790 2791 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2792 // for the given unroll part. If this entry is not a vector type (i.e., the 2793 // vectorization factor is one), there is no need to generate an 2794 // extractelement instruction. 2795 auto *U = getOrCreateVectorValue(V, Instance.Part); 2796 if (!U->getType()->isVectorTy()) { 2797 assert(VF == 1 && "Value not scalarized has non-vector type"); 2798 return U; 2799 } 2800 2801 // Otherwise, the value from the original loop has been vectorized and is 2802 // represented by UF vector values. Extract and return the requested scalar 2803 // value from the appropriate vector lane. 2804 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2805 } 2806 2807 void InnerLoopVectorizer::packScalarIntoVectorValue( 2808 Value *V, const VPIteration &Instance) { 2809 assert(V != Induction && "The new induction variable should not be used."); 2810 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2811 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2812 2813 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2814 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2815 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2816 Builder.getInt32(Instance.Lane)); 2817 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2818 } 2819 2820 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2821 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2822 SmallVector<Constant *, 8> ShuffleMask; 2823 for (unsigned i = 0; i < VF; ++i) 2824 ShuffleMask.push_back(Builder.getInt32(VF - i - 1)); 2825 2826 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()), 2827 ConstantVector::get(ShuffleMask), 2828 "reverse"); 2829 } 2830 2831 // Try to vectorize the interleave group that \p Instr belongs to. 2832 // 2833 // E.g. Translate following interleaved load group (factor = 3): 2834 // for (i = 0; i < N; i+=3) { 2835 // R = Pic[i]; // Member of index 0 2836 // G = Pic[i+1]; // Member of index 1 2837 // B = Pic[i+2]; // Member of index 2 2838 // ... // do something to R, G, B 2839 // } 2840 // To: 2841 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2842 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements 2843 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements 2844 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements 2845 // 2846 // Or translate following interleaved store group (factor = 3): 2847 // for (i = 0; i < N; i+=3) { 2848 // ... do something to R, G, B 2849 // Pic[i] = R; // Member of index 0 2850 // Pic[i+1] = G; // Member of index 1 2851 // Pic[i+2] = B; // Member of index 2 2852 // } 2853 // To: 2854 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2855 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u> 2856 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2857 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2858 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2859 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) { 2860 const InterleaveGroup *Group = Legal->getInterleavedAccessGroup(Instr); 2861 assert(Group && "Fail to get an interleaved access group."); 2862 2863 // Skip if current instruction is not the insert position. 2864 if (Instr != Group->getInsertPos()) 2865 return; 2866 2867 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2868 Value *Ptr = getPointerOperand(Instr); 2869 2870 // Prepare for the vector type of the interleaved load/store. 2871 Type *ScalarTy = getMemInstValueType(Instr); 2872 unsigned InterleaveFactor = Group->getFactor(); 2873 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF); 2874 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr)); 2875 2876 // Prepare for the new pointers. 2877 setDebugLocFromInst(Builder, Ptr); 2878 SmallVector<Value *, 2> NewPtrs; 2879 unsigned Index = Group->getIndex(Instr); 2880 2881 // If the group is reverse, adjust the index to refer to the last vector lane 2882 // instead of the first. We adjust the index from the first vector lane, 2883 // rather than directly getting the pointer for lane VF - 1, because the 2884 // pointer operand of the interleaved access is supposed to be uniform. For 2885 // uniform instructions, we're only required to generate a value for the 2886 // first vector lane in each unroll iteration. 2887 if (Group->isReverse()) 2888 Index += (VF - 1) * Group->getFactor(); 2889 2890 for (unsigned Part = 0; Part < UF; Part++) { 2891 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0}); 2892 2893 // Notice current instruction could be any index. Need to adjust the address 2894 // to the member of index 0. 2895 // 2896 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2897 // b = A[i]; // Member of index 0 2898 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2899 // 2900 // E.g. A[i+1] = a; // Member of index 1 2901 // A[i] = b; // Member of index 0 2902 // A[i+2] = c; // Member of index 2 (Current instruction) 2903 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2904 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index)); 2905 2906 // Cast to the vector pointer type. 2907 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy)); 2908 } 2909 2910 setDebugLocFromInst(Builder, Instr); 2911 Value *UndefVec = UndefValue::get(VecTy); 2912 2913 // Vectorize the interleaved load group. 2914 if (isa<LoadInst>(Instr)) { 2915 2916 // For each unroll part, create a wide load for the group. 2917 SmallVector<Value *, 2> NewLoads; 2918 for (unsigned Part = 0; Part < UF; Part++) { 2919 auto *NewLoad = Builder.CreateAlignedLoad( 2920 NewPtrs[Part], Group->getAlignment(), "wide.vec"); 2921 addMetadata(NewLoad, Instr); 2922 NewLoads.push_back(NewLoad); 2923 } 2924 2925 // For each member in the group, shuffle out the appropriate data from the 2926 // wide loads. 2927 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2928 Instruction *Member = Group->getMember(I); 2929 2930 // Skip the gaps in the group. 2931 if (!Member) 2932 continue; 2933 2934 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF); 2935 for (unsigned Part = 0; Part < UF; Part++) { 2936 Value *StridedVec = Builder.CreateShuffleVector( 2937 NewLoads[Part], UndefVec, StrideMask, "strided.vec"); 2938 2939 // If this member has different type, cast the result type. 2940 if (Member->getType() != ScalarTy) { 2941 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2942 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2943 } 2944 2945 if (Group->isReverse()) 2946 StridedVec = reverseVector(StridedVec); 2947 2948 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec); 2949 } 2950 } 2951 return; 2952 } 2953 2954 // The sub vector type for current instruction. 2955 VectorType *SubVT = VectorType::get(ScalarTy, VF); 2956 2957 // Vectorize the interleaved store group. 2958 for (unsigned Part = 0; Part < UF; Part++) { 2959 // Collect the stored vector from each member. 2960 SmallVector<Value *, 4> StoredVecs; 2961 for (unsigned i = 0; i < InterleaveFactor; i++) { 2962 // Interleaved store group doesn't allow a gap, so each index has a member 2963 Instruction *Member = Group->getMember(i); 2964 assert(Member && "Fail to get a member from an interleaved store group"); 2965 2966 Value *StoredVec = getOrCreateVectorValue( 2967 cast<StoreInst>(Member)->getValueOperand(), Part); 2968 if (Group->isReverse()) 2969 StoredVec = reverseVector(StoredVec); 2970 2971 // If this member has different type, cast it to a unified type. 2972 2973 if (StoredVec->getType() != SubVT) 2974 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2975 2976 StoredVecs.push_back(StoredVec); 2977 } 2978 2979 // Concatenate all vectors into a wide vector. 2980 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2981 2982 // Interleave the elements in the wide vector. 2983 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor); 2984 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask, 2985 "interleaved.vec"); 2986 2987 Instruction *NewStoreInstr = 2988 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment()); 2989 addMetadata(NewStoreInstr, Instr); 2990 } 2991 } 2992 2993 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) { 2994 // Attempt to issue a wide load. 2995 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2996 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2997 2998 assert((LI || SI) && "Invalid Load/Store instruction"); 2999 3000 LoopVectorizationCostModel::InstWidening Decision = 3001 Cost->getWideningDecision(Instr, VF); 3002 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 3003 "CM decision should be taken at this point"); 3004 if (Decision == LoopVectorizationCostModel::CM_Interleave) 3005 return vectorizeInterleaveGroup(Instr); 3006 3007 Type *ScalarDataTy = getMemInstValueType(Instr); 3008 Type *DataTy = VectorType::get(ScalarDataTy, VF); 3009 Value *Ptr = getPointerOperand(Instr); 3010 unsigned Alignment = getMemInstAlignment(Instr); 3011 // An alignment of 0 means target abi alignment. We need to use the scalar's 3012 // target abi alignment in such a case. 3013 const DataLayout &DL = Instr->getModule()->getDataLayout(); 3014 if (!Alignment) 3015 Alignment = DL.getABITypeAlignment(ScalarDataTy); 3016 unsigned AddressSpace = getMemInstAddressSpace(Instr); 3017 3018 // Determine if the pointer operand of the access is either consecutive or 3019 // reverse consecutive. 3020 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 3021 bool Reverse = ConsecutiveStride < 0; 3022 bool CreateGatherScatter = 3023 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 3024 3025 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 3026 // gather/scatter. Otherwise Decision should have been to Scalarize. 3027 assert((ConsecutiveStride || CreateGatherScatter) && 3028 "The instruction should be scalarized"); 3029 3030 // Handle consecutive loads/stores. 3031 if (ConsecutiveStride) 3032 Ptr = getOrCreateScalarValue(Ptr, {0, 0}); 3033 3034 VectorParts Mask = createBlockInMask(Instr->getParent()); 3035 // Handle Stores: 3036 if (SI) { 3037 assert(!Legal->isUniform(SI->getPointerOperand()) && 3038 "We do not allow storing to uniform addresses"); 3039 setDebugLocFromInst(Builder, SI); 3040 3041 for (unsigned Part = 0; Part < UF; ++Part) { 3042 Instruction *NewSI = nullptr; 3043 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part); 3044 if (CreateGatherScatter) { 3045 Value *MaskPart = Legal->isMaskRequired(SI) ? Mask[Part] : nullptr; 3046 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3047 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 3048 MaskPart); 3049 } else { 3050 // Calculate the pointer for the specific unroll-part. 3051 Value *PartPtr = 3052 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3053 3054 if (Reverse) { 3055 // If we store to reverse consecutive memory locations, then we need 3056 // to reverse the order of elements in the stored value. 3057 StoredVal = reverseVector(StoredVal); 3058 // We don't want to update the value in the map as it might be used in 3059 // another expression. So don't call resetVectorValue(StoredVal). 3060 3061 // If the address is consecutive but reversed, then the 3062 // wide store needs to start at the last vector element. 3063 PartPtr = 3064 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3065 PartPtr = 3066 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3067 if (Mask[Part]) // The reverse of a null all-one mask is a null mask. 3068 Mask[Part] = reverseVector(Mask[Part]); 3069 } 3070 3071 Value *VecPtr = 3072 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3073 3074 if (Legal->isMaskRequired(SI) && Mask[Part]) 3075 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3076 Mask[Part]); 3077 else 3078 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3079 } 3080 addMetadata(NewSI, SI); 3081 } 3082 return; 3083 } 3084 3085 // Handle loads. 3086 assert(LI && "Must have a load instruction"); 3087 setDebugLocFromInst(Builder, LI); 3088 for (unsigned Part = 0; Part < UF; ++Part) { 3089 Value *NewLI; 3090 if (CreateGatherScatter) { 3091 Value *MaskPart = Legal->isMaskRequired(LI) ? Mask[Part] : nullptr; 3092 Value *VectorGep = getOrCreateVectorValue(Ptr, Part); 3093 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 3094 nullptr, "wide.masked.gather"); 3095 addMetadata(NewLI, LI); 3096 } else { 3097 // Calculate the pointer for the specific unroll-part. 3098 Value *PartPtr = 3099 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF)); 3100 3101 if (Reverse) { 3102 // If the address is consecutive but reversed, then the 3103 // wide load needs to start at the last vector element. 3104 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF)); 3105 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF)); 3106 if (Mask[Part]) // The reverse of a null all-one mask is a null mask. 3107 Mask[Part] = reverseVector(Mask[Part]); 3108 } 3109 3110 Value *VecPtr = 3111 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 3112 if (Legal->isMaskRequired(LI) && Mask[Part]) 3113 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part], 3114 UndefValue::get(DataTy), 3115 "wide.masked.load"); 3116 else 3117 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load"); 3118 3119 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3120 addMetadata(NewLI, LI); 3121 if (Reverse) 3122 NewLI = reverseVector(NewLI); 3123 } 3124 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI); 3125 } 3126 } 3127 3128 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, 3129 const VPIteration &Instance, 3130 bool IfPredicateInstr) { 3131 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3132 3133 setDebugLocFromInst(Builder, Instr); 3134 3135 // Does this instruction return a value ? 3136 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3137 3138 Instruction *Cloned = Instr->clone(); 3139 if (!IsVoidRetTy) 3140 Cloned->setName(Instr->getName() + ".cloned"); 3141 3142 // Replace the operands of the cloned instructions with their scalar 3143 // equivalents in the new loop. 3144 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) { 3145 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance); 3146 Cloned->setOperand(op, NewOp); 3147 } 3148 addNewMetadata(Cloned, Instr); 3149 3150 // Place the cloned scalar in the new loop. 3151 Builder.Insert(Cloned); 3152 3153 // Add the cloned scalar to the scalar map entry. 3154 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned); 3155 3156 // If we just cloned a new assumption, add it the assumption cache. 3157 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 3158 if (II->getIntrinsicID() == Intrinsic::assume) 3159 AC->registerAssumption(II); 3160 3161 // End if-block. 3162 if (IfPredicateInstr) 3163 PredicatedInstructions.push_back(Cloned); 3164 } 3165 3166 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3167 Value *End, Value *Step, 3168 Instruction *DL) { 3169 BasicBlock *Header = L->getHeader(); 3170 BasicBlock *Latch = L->getLoopLatch(); 3171 // As we're just creating this loop, it's possible no latch exists 3172 // yet. If so, use the header as this will be a single block loop. 3173 if (!Latch) 3174 Latch = Header; 3175 3176 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3177 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3178 setDebugLocFromInst(Builder, OldInst); 3179 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3180 3181 Builder.SetInsertPoint(Latch->getTerminator()); 3182 setDebugLocFromInst(Builder, OldInst); 3183 3184 // Create i+1 and fill the PHINode. 3185 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3186 Induction->addIncoming(Start, L->getLoopPreheader()); 3187 Induction->addIncoming(Next, Latch); 3188 // Create the compare. 3189 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3190 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header); 3191 3192 // Now we have two terminators. Remove the old one from the block. 3193 Latch->getTerminator()->eraseFromParent(); 3194 3195 return Induction; 3196 } 3197 3198 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3199 if (TripCount) 3200 return TripCount; 3201 3202 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3203 // Find the loop boundaries. 3204 ScalarEvolution *SE = PSE.getSE(); 3205 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3206 assert(BackedgeTakenCount != SE->getCouldNotCompute() && 3207 "Invalid loop count"); 3208 3209 Type *IdxTy = Legal->getWidestInductionType(); 3210 3211 // The exit count might have the type of i64 while the phi is i32. This can 3212 // happen if we have an induction variable that is sign extended before the 3213 // compare. The only way that we get a backedge taken count is that the 3214 // induction variable was signed and as such will not overflow. In such a case 3215 // truncation is legal. 3216 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() > 3217 IdxTy->getPrimitiveSizeInBits()) 3218 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3219 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3220 3221 // Get the total trip count from the count by adding 1. 3222 const SCEV *ExitCount = SE->getAddExpr( 3223 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3224 3225 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3226 3227 // Expand the trip count and place the new instructions in the preheader. 3228 // Notice that the pre-header does not change, only the loop body. 3229 SCEVExpander Exp(*SE, DL, "induction"); 3230 3231 // Count holds the overall loop count (N). 3232 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3233 L->getLoopPreheader()->getTerminator()); 3234 3235 if (TripCount->getType()->isPointerTy()) 3236 TripCount = 3237 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3238 L->getLoopPreheader()->getTerminator()); 3239 3240 return TripCount; 3241 } 3242 3243 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3244 if (VectorTripCount) 3245 return VectorTripCount; 3246 3247 Value *TC = getOrCreateTripCount(L); 3248 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3249 3250 // Now we need to generate the expression for the part of the loop that the 3251 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3252 // iterations are not required for correctness, or N - Step, otherwise. Step 3253 // is equal to the vectorization factor (number of SIMD elements) times the 3254 // unroll factor (number of SIMD instructions). 3255 Constant *Step = ConstantInt::get(TC->getType(), VF * UF); 3256 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3257 3258 // If there is a non-reversed interleaved group that may speculatively access 3259 // memory out-of-bounds, we need to ensure that there will be at least one 3260 // iteration of the scalar epilogue loop. Thus, if the step evenly divides 3261 // the trip count, we set the remainder to be equal to the step. If the step 3262 // does not evenly divide the trip count, no adjustment is necessary since 3263 // there will already be scalar iterations. Note that the minimum iterations 3264 // check ensures that N >= Step. 3265 if (VF > 1 && Legal->requiresScalarEpilogue()) { 3266 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3267 R = Builder.CreateSelect(IsZero, Step, R); 3268 } 3269 3270 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3271 3272 return VectorTripCount; 3273 } 3274 3275 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3276 const DataLayout &DL) { 3277 // Verify that V is a vector type with same number of elements as DstVTy. 3278 unsigned VF = DstVTy->getNumElements(); 3279 VectorType *SrcVecTy = cast<VectorType>(V->getType()); 3280 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3281 Type *SrcElemTy = SrcVecTy->getElementType(); 3282 Type *DstElemTy = DstVTy->getElementType(); 3283 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3284 "Vector elements must have same size"); 3285 3286 // Do a direct cast if element types are castable. 3287 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3288 return Builder.CreateBitOrPointerCast(V, DstVTy); 3289 } 3290 // V cannot be directly casted to desired vector type. 3291 // May happen when V is a floating point vector but DstVTy is a vector of 3292 // pointers or vice-versa. Handle this using a two-step bitcast using an 3293 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3294 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3295 "Only one type should be a pointer type"); 3296 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3297 "Only one type should be a floating point type"); 3298 Type *IntTy = 3299 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3300 VectorType *VecIntTy = VectorType::get(IntTy, VF); 3301 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3302 return Builder.CreateBitOrPointerCast(CastVal, DstVTy); 3303 } 3304 3305 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3306 BasicBlock *Bypass) { 3307 Value *Count = getOrCreateTripCount(L); 3308 BasicBlock *BB = L->getLoopPreheader(); 3309 IRBuilder<> Builder(BB->getTerminator()); 3310 3311 // Generate code to check if the loop's trip count is less than VF * UF, or 3312 // equal to it in case a scalar epilogue is required; this implies that the 3313 // vector trip count is zero. This check also covers the case where adding one 3314 // to the backedge-taken count overflowed leading to an incorrect trip count 3315 // of zero. In this case we will also jump to the scalar loop. 3316 auto P = Legal->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3317 : ICmpInst::ICMP_ULT; 3318 Value *CheckMinIters = Builder.CreateICmp( 3319 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check"); 3320 3321 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3322 // Update dominator tree immediately if the generated block is a 3323 // LoopBypassBlock because SCEV expansions to generate loop bypass 3324 // checks may query it before the current function is finished. 3325 DT->addNewBlock(NewBB, BB); 3326 if (L->getParentLoop()) 3327 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3328 ReplaceInstWithInst(BB->getTerminator(), 3329 BranchInst::Create(Bypass, NewBB, CheckMinIters)); 3330 LoopBypassBlocks.push_back(BB); 3331 } 3332 3333 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3334 BasicBlock *BB = L->getLoopPreheader(); 3335 3336 // Generate the code to check that the SCEV assumptions that we made. 3337 // We want the new basic block to start at the first instruction in a 3338 // sequence of instructions that form a check. 3339 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3340 "scev.check"); 3341 Value *SCEVCheck = 3342 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator()); 3343 3344 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3345 if (C->isZero()) 3346 return; 3347 3348 // Create a new block containing the stride check. 3349 BB->setName("vector.scevcheck"); 3350 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3351 // Update dominator tree immediately if the generated block is a 3352 // LoopBypassBlock because SCEV expansions to generate loop bypass 3353 // checks may query it before the current function is finished. 3354 DT->addNewBlock(NewBB, BB); 3355 if (L->getParentLoop()) 3356 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3357 ReplaceInstWithInst(BB->getTerminator(), 3358 BranchInst::Create(Bypass, NewBB, SCEVCheck)); 3359 LoopBypassBlocks.push_back(BB); 3360 AddedSafetyChecks = true; 3361 } 3362 3363 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3364 BasicBlock *BB = L->getLoopPreheader(); 3365 3366 // Generate the code that checks in runtime if arrays overlap. We put the 3367 // checks into a separate block to make the more common case of few elements 3368 // faster. 3369 Instruction *FirstCheckInst; 3370 Instruction *MemRuntimeCheck; 3371 std::tie(FirstCheckInst, MemRuntimeCheck) = 3372 Legal->getLAI()->addRuntimeChecks(BB->getTerminator()); 3373 if (!MemRuntimeCheck) 3374 return; 3375 3376 // Create a new block containing the memory check. 3377 BB->setName("vector.memcheck"); 3378 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph"); 3379 // Update dominator tree immediately if the generated block is a 3380 // LoopBypassBlock because SCEV expansions to generate loop bypass 3381 // checks may query it before the current function is finished. 3382 DT->addNewBlock(NewBB, BB); 3383 if (L->getParentLoop()) 3384 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI); 3385 ReplaceInstWithInst(BB->getTerminator(), 3386 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck)); 3387 LoopBypassBlocks.push_back(BB); 3388 AddedSafetyChecks = true; 3389 3390 // We currently don't use LoopVersioning for the actual loop cloning but we 3391 // still use it to add the noalias metadata. 3392 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT, 3393 PSE.getSE()); 3394 LVer->prepareNoAliasMetadata(); 3395 } 3396 3397 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3398 /* 3399 In this function we generate a new loop. The new loop will contain 3400 the vectorized instructions while the old loop will continue to run the 3401 scalar remainder. 3402 3403 [ ] <-- loop iteration number check. 3404 / | 3405 / v 3406 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3407 | / | 3408 | / v 3409 || [ ] <-- vector pre header. 3410 |/ | 3411 | v 3412 | [ ] \ 3413 | [ ]_| <-- vector loop. 3414 | | 3415 | v 3416 | -[ ] <--- middle-block. 3417 | / | 3418 | / v 3419 -|- >[ ] <--- new preheader. 3420 | | 3421 | v 3422 | [ ] \ 3423 | [ ]_| <-- old scalar loop to handle remainder. 3424 \ | 3425 \ v 3426 >[ ] <-- exit block. 3427 ... 3428 */ 3429 3430 BasicBlock *OldBasicBlock = OrigLoop->getHeader(); 3431 BasicBlock *VectorPH = OrigLoop->getLoopPreheader(); 3432 BasicBlock *ExitBlock = OrigLoop->getExitBlock(); 3433 assert(VectorPH && "Invalid loop structure"); 3434 assert(ExitBlock && "Must have an exit block"); 3435 3436 // Some loops have a single integer induction variable, while other loops 3437 // don't. One example is c++ iterators that often have multiple pointer 3438 // induction variables. In the code below we also support a case where we 3439 // don't have a single induction variable. 3440 // 3441 // We try to obtain an induction variable from the original loop as hard 3442 // as possible. However if we don't find one that: 3443 // - is an integer 3444 // - counts from zero, stepping by one 3445 // - is the size of the widest induction variable type 3446 // then we create a new one. 3447 OldInduction = Legal->getPrimaryInduction(); 3448 Type *IdxTy = Legal->getWidestInductionType(); 3449 3450 // Split the single block loop into the two loop structure described above. 3451 BasicBlock *VecBody = 3452 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body"); 3453 BasicBlock *MiddleBlock = 3454 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block"); 3455 BasicBlock *ScalarPH = 3456 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph"); 3457 3458 // Create and register the new vector loop. 3459 Loop *Lp = LI->AllocateLoop(); 3460 Loop *ParentLoop = OrigLoop->getParentLoop(); 3461 3462 // Insert the new loop into the loop nest and register the new basic blocks 3463 // before calling any utilities such as SCEV that require valid LoopInfo. 3464 if (ParentLoop) { 3465 ParentLoop->addChildLoop(Lp); 3466 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI); 3467 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI); 3468 } else { 3469 LI->addTopLevelLoop(Lp); 3470 } 3471 Lp->addBasicBlockToLoop(VecBody, *LI); 3472 3473 // Find the loop boundaries. 3474 Value *Count = getOrCreateTripCount(Lp); 3475 3476 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3477 3478 // Now, compare the new count to zero. If it is zero skip the vector loop and 3479 // jump to the scalar loop. This check also covers the case where the 3480 // backedge-taken count is uint##_max: adding one to it will overflow leading 3481 // to an incorrect trip count of zero. In this (rare) case we will also jump 3482 // to the scalar loop. 3483 emitMinimumIterationCountCheck(Lp, ScalarPH); 3484 3485 // Generate the code to check any assumptions that we've made for SCEV 3486 // expressions. 3487 emitSCEVChecks(Lp, ScalarPH); 3488 3489 // Generate the code that checks in runtime if arrays overlap. We put the 3490 // checks into a separate block to make the more common case of few elements 3491 // faster. 3492 emitMemRuntimeChecks(Lp, ScalarPH); 3493 3494 // Generate the induction variable. 3495 // The loop step is equal to the vectorization factor (num of SIMD elements) 3496 // times the unroll factor (num of SIMD instructions). 3497 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3498 Constant *Step = ConstantInt::get(IdxTy, VF * UF); 3499 Induction = 3500 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3501 getDebugLocFromInstOrOperands(OldInduction)); 3502 3503 // We are going to resume the execution of the scalar loop. 3504 // Go over all of the induction variables that we found and fix the 3505 // PHIs that are left in the scalar version of the loop. 3506 // The starting values of PHI nodes depend on the counter of the last 3507 // iteration in the vectorized loop. 3508 // If we come from a bypass edge then we need to start from the original 3509 // start value. 3510 3511 // This variable saves the new starting index for the scalar loop. It is used 3512 // to test if there are any tail iterations left once the vector loop has 3513 // completed. 3514 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars(); 3515 for (auto &InductionEntry : *List) { 3516 PHINode *OrigPhi = InductionEntry.first; 3517 InductionDescriptor II = InductionEntry.second; 3518 3519 // Create phi nodes to merge from the backedge-taken check block. 3520 PHINode *BCResumeVal = PHINode::Create( 3521 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator()); 3522 Value *&EndValue = IVEndValues[OrigPhi]; 3523 if (OrigPhi == OldInduction) { 3524 // We know what the end value is. 3525 EndValue = CountRoundDown; 3526 } else { 3527 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator()); 3528 Type *StepType = II.getStep()->getType(); 3529 Instruction::CastOps CastOp = 3530 CastInst::getCastOpcode(CountRoundDown, true, StepType, true); 3531 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd"); 3532 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 3533 EndValue = II.transform(B, CRD, PSE.getSE(), DL); 3534 EndValue->setName("ind.end"); 3535 } 3536 3537 // The new PHI merges the original incoming value, in case of a bypass, 3538 // or the value at the end of the vectorized loop. 3539 BCResumeVal->addIncoming(EndValue, MiddleBlock); 3540 3541 // Fix the scalar body counter (PHI node). 3542 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH); 3543 3544 // The old induction's phi node in the scalar body needs the truncated 3545 // value. 3546 for (BasicBlock *BB : LoopBypassBlocks) 3547 BCResumeVal->addIncoming(II.getStartValue(), BB); 3548 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal); 3549 } 3550 3551 // Add a check in the middle block to see if we have completed 3552 // all of the iterations in the first vector loop. 3553 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3554 Value *CmpN = 3555 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count, 3556 CountRoundDown, "cmp.n", MiddleBlock->getTerminator()); 3557 ReplaceInstWithInst(MiddleBlock->getTerminator(), 3558 BranchInst::Create(ExitBlock, ScalarPH, CmpN)); 3559 3560 // Get ready to start creating new instructions into the vectorized body. 3561 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt()); 3562 3563 // Save the state. 3564 LoopVectorPreHeader = Lp->getLoopPreheader(); 3565 LoopScalarPreHeader = ScalarPH; 3566 LoopMiddleBlock = MiddleBlock; 3567 LoopExitBlock = ExitBlock; 3568 LoopVectorBody = VecBody; 3569 LoopScalarBody = OldBasicBlock; 3570 3571 // Keep all loop hints from the original loop on the vector loop (we'll 3572 // replace the vectorizer-specific hints below). 3573 if (MDNode *LID = OrigLoop->getLoopID()) 3574 Lp->setLoopID(LID); 3575 3576 LoopVectorizeHints Hints(Lp, true, *ORE); 3577 Hints.setAlreadyVectorized(); 3578 3579 return LoopVectorPreHeader; 3580 } 3581 3582 // Fix up external users of the induction variable. At this point, we are 3583 // in LCSSA form, with all external PHIs that use the IV having one input value, 3584 // coming from the remainder loop. We need those PHIs to also have a correct 3585 // value for the IV when arriving directly from the middle block. 3586 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3587 const InductionDescriptor &II, 3588 Value *CountRoundDown, Value *EndValue, 3589 BasicBlock *MiddleBlock) { 3590 // There are two kinds of external IV usages - those that use the value 3591 // computed in the last iteration (the PHI) and those that use the penultimate 3592 // value (the value that feeds into the phi from the loop latch). 3593 // We allow both, but they, obviously, have different values. 3594 3595 assert(OrigLoop->getExitBlock() && "Expected a single exit block"); 3596 3597 DenseMap<Value *, Value *> MissingVals; 3598 3599 // An external user of the last iteration's value should see the value that 3600 // the remainder loop uses to initialize its own IV. 3601 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3602 for (User *U : PostInc->users()) { 3603 Instruction *UI = cast<Instruction>(U); 3604 if (!OrigLoop->contains(UI)) { 3605 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3606 MissingVals[UI] = EndValue; 3607 } 3608 } 3609 3610 // An external user of the penultimate value need to see EndValue - Step. 3611 // The simplest way to get this is to recompute it from the constituent SCEVs, 3612 // that is Start + (Step * (CRD - 1)). 3613 for (User *U : OrigPhi->users()) { 3614 auto *UI = cast<Instruction>(U); 3615 if (!OrigLoop->contains(UI)) { 3616 const DataLayout &DL = 3617 OrigLoop->getHeader()->getModule()->getDataLayout(); 3618 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3619 3620 IRBuilder<> B(MiddleBlock->getTerminator()); 3621 Value *CountMinusOne = B.CreateSub( 3622 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3623 Value *CMO = 3624 !II.getStep()->getType()->isIntegerTy() 3625 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3626 II.getStep()->getType()) 3627 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3628 CMO->setName("cast.cmo"); 3629 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL); 3630 Escape->setName("ind.escape"); 3631 MissingVals[UI] = Escape; 3632 } 3633 } 3634 3635 for (auto &I : MissingVals) { 3636 PHINode *PHI = cast<PHINode>(I.first); 3637 // One corner case we have to handle is two IVs "chasing" each-other, 3638 // that is %IV2 = phi [...], [ %IV1, %latch ] 3639 // In this case, if IV1 has an external use, we need to avoid adding both 3640 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3641 // don't already have an incoming value for the middle block. 3642 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3643 PHI->addIncoming(I.second, MiddleBlock); 3644 } 3645 } 3646 3647 namespace { 3648 struct CSEDenseMapInfo { 3649 static bool canHandle(const Instruction *I) { 3650 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3651 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3652 } 3653 static inline Instruction *getEmptyKey() { 3654 return DenseMapInfo<Instruction *>::getEmptyKey(); 3655 } 3656 static inline Instruction *getTombstoneKey() { 3657 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3658 } 3659 static unsigned getHashValue(const Instruction *I) { 3660 assert(canHandle(I) && "Unknown instruction!"); 3661 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3662 I->value_op_end())); 3663 } 3664 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3665 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3666 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3667 return LHS == RHS; 3668 return LHS->isIdenticalTo(RHS); 3669 } 3670 }; 3671 } 3672 3673 ///\brief Perform cse of induction variable instructions. 3674 static void cse(BasicBlock *BB) { 3675 // Perform simple cse. 3676 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3677 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3678 Instruction *In = &*I++; 3679 3680 if (!CSEDenseMapInfo::canHandle(In)) 3681 continue; 3682 3683 // Check if we can replace this instruction with any of the 3684 // visited instructions. 3685 if (Instruction *V = CSEMap.lookup(In)) { 3686 In->replaceAllUsesWith(V); 3687 In->eraseFromParent(); 3688 continue; 3689 } 3690 3691 CSEMap[In] = In; 3692 } 3693 } 3694 3695 /// \brief Estimate the overhead of scalarizing an instruction. This is a 3696 /// convenience wrapper for the type-based getScalarizationOverhead API. 3697 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF, 3698 const TargetTransformInfo &TTI) { 3699 if (VF == 1) 3700 return 0; 3701 3702 unsigned Cost = 0; 3703 Type *RetTy = ToVectorTy(I->getType(), VF); 3704 if (!RetTy->isVoidTy() && 3705 (!isa<LoadInst>(I) || 3706 !TTI.supportsEfficientVectorElementLoadStore())) 3707 Cost += TTI.getScalarizationOverhead(RetTy, true, false); 3708 3709 if (CallInst *CI = dyn_cast<CallInst>(I)) { 3710 SmallVector<const Value *, 4> Operands(CI->arg_operands()); 3711 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3712 } 3713 else if (!isa<StoreInst>(I) || 3714 !TTI.supportsEfficientVectorElementLoadStore()) { 3715 SmallVector<const Value *, 4> Operands(I->operand_values()); 3716 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF); 3717 } 3718 3719 return Cost; 3720 } 3721 3722 // Estimate cost of a call instruction CI if it were vectorized with factor VF. 3723 // Return the cost of the instruction, including scalarization overhead if it's 3724 // needed. The flag NeedToScalarize shows if the call needs to be scalarized - 3725 // i.e. either vector version isn't available, or is too expensive. 3726 static unsigned getVectorCallCost(CallInst *CI, unsigned VF, 3727 const TargetTransformInfo &TTI, 3728 const TargetLibraryInfo *TLI, 3729 bool &NeedToScalarize) { 3730 Function *F = CI->getCalledFunction(); 3731 StringRef FnName = CI->getCalledFunction()->getName(); 3732 Type *ScalarRetTy = CI->getType(); 3733 SmallVector<Type *, 4> Tys, ScalarTys; 3734 for (auto &ArgOp : CI->arg_operands()) 3735 ScalarTys.push_back(ArgOp->getType()); 3736 3737 // Estimate cost of scalarized vector call. The source operands are assumed 3738 // to be vectors, so we need to extract individual elements from there, 3739 // execute VF scalar calls, and then gather the result into the vector return 3740 // value. 3741 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys); 3742 if (VF == 1) 3743 return ScalarCallCost; 3744 3745 // Compute corresponding vector type for return value and arguments. 3746 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3747 for (Type *ScalarTy : ScalarTys) 3748 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3749 3750 // Compute costs of unpacking argument values for the scalar calls and 3751 // packing the return values to a vector. 3752 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI); 3753 3754 unsigned Cost = ScalarCallCost * VF + ScalarizationCost; 3755 3756 // If we can't emit a vector call for this function, then the currently found 3757 // cost is the cost we need to return. 3758 NeedToScalarize = true; 3759 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin()) 3760 return Cost; 3761 3762 // If the corresponding vector cost is cheaper, return its cost. 3763 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys); 3764 if (VectorCallCost < Cost) { 3765 NeedToScalarize = false; 3766 return VectorCallCost; 3767 } 3768 return Cost; 3769 } 3770 3771 // Estimate cost of an intrinsic call instruction CI if it were vectorized with 3772 // factor VF. Return the cost of the instruction, including scalarization 3773 // overhead if it's needed. 3774 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF, 3775 const TargetTransformInfo &TTI, 3776 const TargetLibraryInfo *TLI) { 3777 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3778 assert(ID && "Expected intrinsic call!"); 3779 3780 FastMathFlags FMF; 3781 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3782 FMF = FPMO->getFastMathFlags(); 3783 3784 SmallVector<Value *, 4> Operands(CI->arg_operands()); 3785 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF); 3786 } 3787 3788 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3789 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3790 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3791 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3792 } 3793 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3794 auto *I1 = cast<IntegerType>(T1->getVectorElementType()); 3795 auto *I2 = cast<IntegerType>(T2->getVectorElementType()); 3796 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3797 } 3798 3799 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3800 // For every instruction `I` in MinBWs, truncate the operands, create a 3801 // truncated version of `I` and reextend its result. InstCombine runs 3802 // later and will remove any ext/trunc pairs. 3803 // 3804 SmallPtrSet<Value *, 4> Erased; 3805 for (const auto &KV : Cost->getMinimalBitwidths()) { 3806 // If the value wasn't vectorized, we must maintain the original scalar 3807 // type. The absence of the value from VectorLoopValueMap indicates that it 3808 // wasn't vectorized. 3809 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3810 continue; 3811 for (unsigned Part = 0; Part < UF; ++Part) { 3812 Value *I = getOrCreateVectorValue(KV.first, Part); 3813 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3814 continue; 3815 Type *OriginalTy = I->getType(); 3816 Type *ScalarTruncatedTy = 3817 IntegerType::get(OriginalTy->getContext(), KV.second); 3818 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy, 3819 OriginalTy->getVectorNumElements()); 3820 if (TruncatedTy == OriginalTy) 3821 continue; 3822 3823 IRBuilder<> B(cast<Instruction>(I)); 3824 auto ShrinkOperand = [&](Value *V) -> Value * { 3825 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3826 if (ZI->getSrcTy() == TruncatedTy) 3827 return ZI->getOperand(0); 3828 return B.CreateZExtOrTrunc(V, TruncatedTy); 3829 }; 3830 3831 // The actual instruction modification depends on the instruction type, 3832 // unfortunately. 3833 Value *NewI = nullptr; 3834 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3835 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3836 ShrinkOperand(BO->getOperand(1))); 3837 3838 // Any wrapping introduced by shrinking this operation shouldn't be 3839 // considered undefined behavior. So, we can't unconditionally copy 3840 // arithmetic wrapping flags to NewI. 3841 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3842 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3843 NewI = 3844 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3845 ShrinkOperand(CI->getOperand(1))); 3846 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3847 NewI = B.CreateSelect(SI->getCondition(), 3848 ShrinkOperand(SI->getTrueValue()), 3849 ShrinkOperand(SI->getFalseValue())); 3850 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3851 switch (CI->getOpcode()) { 3852 default: 3853 llvm_unreachable("Unhandled cast!"); 3854 case Instruction::Trunc: 3855 NewI = ShrinkOperand(CI->getOperand(0)); 3856 break; 3857 case Instruction::SExt: 3858 NewI = B.CreateSExtOrTrunc( 3859 CI->getOperand(0), 3860 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3861 break; 3862 case Instruction::ZExt: 3863 NewI = B.CreateZExtOrTrunc( 3864 CI->getOperand(0), 3865 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3866 break; 3867 } 3868 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3869 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements(); 3870 auto *O0 = B.CreateZExtOrTrunc( 3871 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 3872 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements(); 3873 auto *O1 = B.CreateZExtOrTrunc( 3874 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 3875 3876 NewI = B.CreateShuffleVector(O0, O1, SI->getMask()); 3877 } else if (isa<LoadInst>(I)) { 3878 // Don't do anything with the operands, just extend the result. 3879 continue; 3880 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3881 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements(); 3882 auto *O0 = B.CreateZExtOrTrunc( 3883 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3884 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3885 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3886 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3887 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements(); 3888 auto *O0 = B.CreateZExtOrTrunc( 3889 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 3890 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3891 } else { 3892 llvm_unreachable("Unhandled instruction type!"); 3893 } 3894 3895 // Lastly, extend the result. 3896 NewI->takeName(cast<Instruction>(I)); 3897 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3898 I->replaceAllUsesWith(Res); 3899 cast<Instruction>(I)->eraseFromParent(); 3900 Erased.insert(I); 3901 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3902 } 3903 } 3904 3905 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3906 for (const auto &KV : Cost->getMinimalBitwidths()) { 3907 // If the value wasn't vectorized, we must maintain the original scalar 3908 // type. The absence of the value from VectorLoopValueMap indicates that it 3909 // wasn't vectorized. 3910 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3911 continue; 3912 for (unsigned Part = 0; Part < UF; ++Part) { 3913 Value *I = getOrCreateVectorValue(KV.first, Part); 3914 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3915 if (Inst && Inst->use_empty()) { 3916 Value *NewI = Inst->getOperand(0); 3917 Inst->eraseFromParent(); 3918 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3919 } 3920 } 3921 } 3922 } 3923 3924 void InnerLoopVectorizer::fixVectorizedLoop() { 3925 // Insert truncates and extends for any truncated instructions as hints to 3926 // InstCombine. 3927 if (VF > 1) 3928 truncateToMinimalBitwidths(); 3929 3930 // At this point every instruction in the original loop is widened to a 3931 // vector form. Now we need to fix the recurrences in the loop. These PHI 3932 // nodes are currently empty because we did not want to introduce cycles. 3933 // This is the second stage of vectorizing recurrences. 3934 fixCrossIterationPHIs(); 3935 3936 // Update the dominator tree. 3937 // 3938 // FIXME: After creating the structure of the new loop, the dominator tree is 3939 // no longer up-to-date, and it remains that way until we update it 3940 // here. An out-of-date dominator tree is problematic for SCEV, 3941 // because SCEVExpander uses it to guide code generation. The 3942 // vectorizer use SCEVExpanders in several places. Instead, we should 3943 // keep the dominator tree up-to-date as we go. 3944 updateAnalysis(); 3945 3946 // Fix-up external users of the induction variables. 3947 for (auto &Entry : *Legal->getInductionVars()) 3948 fixupIVUsers(Entry.first, Entry.second, 3949 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3950 IVEndValues[Entry.first], LoopMiddleBlock); 3951 3952 fixLCSSAPHIs(); 3953 for (Instruction *PI : PredicatedInstructions) 3954 sinkScalarOperands(&*PI); 3955 3956 // Remove redundant induction instructions. 3957 cse(LoopVectorBody); 3958 } 3959 3960 void InnerLoopVectorizer::fixCrossIterationPHIs() { 3961 // In order to support recurrences we need to be able to vectorize Phi nodes. 3962 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 3963 // stage #2: We now need to fix the recurrences by adding incoming edges to 3964 // the currently empty PHI nodes. At this point every instruction in the 3965 // original loop is widened to a vector form so we can use them to construct 3966 // the incoming edges. 3967 for (Instruction &I : *OrigLoop->getHeader()) { 3968 PHINode *Phi = dyn_cast<PHINode>(&I); 3969 if (!Phi) 3970 break; 3971 // Handle first-order recurrences and reductions that need to be fixed. 3972 if (Legal->isFirstOrderRecurrence(Phi)) 3973 fixFirstOrderRecurrence(Phi); 3974 else if (Legal->isReductionVariable(Phi)) 3975 fixReduction(Phi); 3976 } 3977 } 3978 3979 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) { 3980 3981 // This is the second phase of vectorizing first-order recurrences. An 3982 // overview of the transformation is described below. Suppose we have the 3983 // following loop. 3984 // 3985 // for (int i = 0; i < n; ++i) 3986 // b[i] = a[i] - a[i - 1]; 3987 // 3988 // There is a first-order recurrence on "a". For this loop, the shorthand 3989 // scalar IR looks like: 3990 // 3991 // scalar.ph: 3992 // s_init = a[-1] 3993 // br scalar.body 3994 // 3995 // scalar.body: 3996 // i = phi [0, scalar.ph], [i+1, scalar.body] 3997 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 3998 // s2 = a[i] 3999 // b[i] = s2 - s1 4000 // br cond, scalar.body, ... 4001 // 4002 // In this example, s1 is a recurrence because it's value depends on the 4003 // previous iteration. In the first phase of vectorization, we created a 4004 // temporary value for s1. We now complete the vectorization and produce the 4005 // shorthand vector IR shown below (for VF = 4, UF = 1). 4006 // 4007 // vector.ph: 4008 // v_init = vector(..., ..., ..., a[-1]) 4009 // br vector.body 4010 // 4011 // vector.body 4012 // i = phi [0, vector.ph], [i+4, vector.body] 4013 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4014 // v2 = a[i, i+1, i+2, i+3]; 4015 // v3 = vector(v1(3), v2(0, 1, 2)) 4016 // b[i, i+1, i+2, i+3] = v2 - v3 4017 // br cond, vector.body, middle.block 4018 // 4019 // middle.block: 4020 // x = v2(3) 4021 // br scalar.ph 4022 // 4023 // scalar.ph: 4024 // s_init = phi [x, middle.block], [a[-1], otherwise] 4025 // br scalar.body 4026 // 4027 // After execution completes the vector loop, we extract the next value of 4028 // the recurrence (x) to use as the initial value in the scalar loop. 4029 4030 // Get the original loop preheader and single loop latch. 4031 auto *Preheader = OrigLoop->getLoopPreheader(); 4032 auto *Latch = OrigLoop->getLoopLatch(); 4033 4034 // Get the initial and previous values of the scalar recurrence. 4035 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4036 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4037 4038 // Create a vector from the initial value. 4039 auto *VectorInit = ScalarInit; 4040 if (VF > 1) { 4041 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4042 VectorInit = Builder.CreateInsertElement( 4043 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4044 Builder.getInt32(VF - 1), "vector.recur.init"); 4045 } 4046 4047 // We constructed a temporary phi node in the first phase of vectorization. 4048 // This phi node will eventually be deleted. 4049 Builder.SetInsertPoint( 4050 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0))); 4051 4052 // Create a phi node for the new recurrence. The current value will either be 4053 // the initial value inserted into a vector or loop-varying vector value. 4054 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4055 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4056 4057 // Get the vectorized previous value of the last part UF - 1. It appears last 4058 // among all unrolled iterations, due to the order of their construction. 4059 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1); 4060 4061 // Set the insertion point after the previous value if it is an instruction. 4062 // Note that the previous value may have been constant-folded so it is not 4063 // guaranteed to be an instruction in the vector loop. Also, if the previous 4064 // value is a phi node, we should insert after all the phi nodes to avoid 4065 // breaking basic block verification. 4066 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) || 4067 isa<PHINode>(PreviousLastPart)) 4068 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 4069 else 4070 Builder.SetInsertPoint( 4071 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart))); 4072 4073 // We will construct a vector for the recurrence by combining the values for 4074 // the current and previous iterations. This is the required shuffle mask. 4075 SmallVector<Constant *, 8> ShuffleMask(VF); 4076 ShuffleMask[0] = Builder.getInt32(VF - 1); 4077 for (unsigned I = 1; I < VF; ++I) 4078 ShuffleMask[I] = Builder.getInt32(I + VF - 1); 4079 4080 // The vector from which to take the initial value for the current iteration 4081 // (actual or unrolled). Initially, this is the vector phi node. 4082 Value *Incoming = VecPhi; 4083 4084 // Shuffle the current and previous vector and update the vector parts. 4085 for (unsigned Part = 0; Part < UF; ++Part) { 4086 Value *PreviousPart = getOrCreateVectorValue(Previous, Part); 4087 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part); 4088 auto *Shuffle = 4089 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart, 4090 ConstantVector::get(ShuffleMask)) 4091 : Incoming; 4092 PhiPart->replaceAllUsesWith(Shuffle); 4093 cast<Instruction>(PhiPart)->eraseFromParent(); 4094 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle); 4095 Incoming = PreviousPart; 4096 } 4097 4098 // Fix the latch value of the new recurrence in the vector loop. 4099 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4100 4101 // Extract the last vector element in the middle block. This will be the 4102 // initial value for the recurrence when jumping to the scalar loop. 4103 auto *ExtractForScalar = Incoming; 4104 if (VF > 1) { 4105 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4106 ExtractForScalar = Builder.CreateExtractElement( 4107 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract"); 4108 } 4109 // Extract the second last element in the middle block if the 4110 // Phi is used outside the loop. We need to extract the phi itself 4111 // and not the last element (the phi update in the current iteration). This 4112 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4113 // when the scalar loop is not run at all. 4114 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4115 if (VF > 1) 4116 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4117 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi"); 4118 // When loop is unrolled without vectorizing, initialize 4119 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4120 // `Incoming`. This is analogous to the vectorized case above: extracting the 4121 // second last element when VF > 1. 4122 else if (UF > 1) 4123 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2); 4124 4125 // Fix the initial value of the original recurrence in the scalar loop. 4126 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4127 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4128 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4129 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4130 Start->addIncoming(Incoming, BB); 4131 } 4132 4133 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start); 4134 Phi->setName("scalar.recur"); 4135 4136 // Finally, fix users of the recurrence outside the loop. The users will need 4137 // either the last value of the scalar recurrence or the last value of the 4138 // vector recurrence we extracted in the middle block. Since the loop is in 4139 // LCSSA form, we just need to find the phi node for the original scalar 4140 // recurrence in the exit block, and then add an edge for the middle block. 4141 for (auto &I : *LoopExitBlock) { 4142 auto *LCSSAPhi = dyn_cast<PHINode>(&I); 4143 if (!LCSSAPhi) 4144 break; 4145 if (LCSSAPhi->getIncomingValue(0) == Phi) { 4146 LCSSAPhi->addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4147 break; 4148 } 4149 } 4150 } 4151 4152 void InnerLoopVectorizer::fixReduction(PHINode *Phi) { 4153 Constant *Zero = Builder.getInt32(0); 4154 4155 // Get it's reduction variable descriptor. 4156 assert(Legal->isReductionVariable(Phi) && 4157 "Unable to find the reduction variable"); 4158 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi]; 4159 4160 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind(); 4161 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4162 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4163 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind = 4164 RdxDesc.getMinMaxRecurrenceKind(); 4165 setDebugLocFromInst(Builder, ReductionStartValue); 4166 4167 // We need to generate a reduction vector from the incoming scalar. 4168 // To do so, we need to generate the 'identity' vector and override 4169 // one of the elements with the incoming scalar reduction. We need 4170 // to do it in the vector-loop preheader. 4171 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4172 4173 // This is the vector-clone of the value that leaves the loop. 4174 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType(); 4175 4176 // Find the reduction identity variable. Zero for addition, or, xor, 4177 // one for multiplication, -1 for And. 4178 Value *Identity; 4179 Value *VectorStart; 4180 if (RK == RecurrenceDescriptor::RK_IntegerMinMax || 4181 RK == RecurrenceDescriptor::RK_FloatMinMax) { 4182 // MinMax reduction have the start value as their identify. 4183 if (VF == 1) { 4184 VectorStart = Identity = ReductionStartValue; 4185 } else { 4186 VectorStart = Identity = 4187 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident"); 4188 } 4189 } else { 4190 // Handle other reduction kinds: 4191 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 4192 RK, VecTy->getScalarType()); 4193 if (VF == 1) { 4194 Identity = Iden; 4195 // This vector is the Identity vector where the first element is the 4196 // incoming scalar reduction. 4197 VectorStart = ReductionStartValue; 4198 } else { 4199 Identity = ConstantVector::getSplat(VF, Iden); 4200 4201 // This vector is the Identity vector where the first element is the 4202 // incoming scalar reduction. 4203 VectorStart = 4204 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero); 4205 } 4206 } 4207 4208 // Fix the vector-loop phi. 4209 4210 // Reductions do not have to start at zero. They can start with 4211 // any loop invariant values. 4212 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4213 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4214 for (unsigned Part = 0; Part < UF; ++Part) { 4215 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part); 4216 Value *Val = getOrCreateVectorValue(LoopVal, Part); 4217 // Make sure to add the reduction stat value only to the 4218 // first unroll part. 4219 Value *StartVal = (Part == 0) ? VectorStart : Identity; 4220 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader); 4221 cast<PHINode>(VecRdxPhi) 4222 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4223 } 4224 4225 // Before each round, move the insertion point right between 4226 // the PHIs and the values we are going to write. 4227 // This allows us to write both PHINodes and the extractelement 4228 // instructions. 4229 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4230 4231 setDebugLocFromInst(Builder, LoopExitInst); 4232 4233 // If the vector reduction can be performed in a smaller type, we truncate 4234 // then extend the loop exit value to enable InstCombine to evaluate the 4235 // entire expression in the smaller type. 4236 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) { 4237 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4238 Builder.SetInsertPoint( 4239 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4240 VectorParts RdxParts(UF); 4241 for (unsigned Part = 0; Part < UF; ++Part) { 4242 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4243 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4244 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4245 : Builder.CreateZExt(Trunc, VecTy); 4246 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4247 UI != RdxParts[Part]->user_end();) 4248 if (*UI != Trunc) { 4249 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4250 RdxParts[Part] = Extnd; 4251 } else { 4252 ++UI; 4253 } 4254 } 4255 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4256 for (unsigned Part = 0; Part < UF; ++Part) { 4257 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4258 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]); 4259 } 4260 } 4261 4262 // Reduce all of the unrolled parts into a single vector. 4263 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0); 4264 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK); 4265 setDebugLocFromInst(Builder, ReducedPartRdx); 4266 for (unsigned Part = 1; Part < UF; ++Part) { 4267 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part); 4268 if (Op != Instruction::ICmp && Op != Instruction::FCmp) 4269 // Floating point operations had to be 'fast' to enable the reduction. 4270 ReducedPartRdx = addFastMathFlag( 4271 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart, 4272 ReducedPartRdx, "bin.rdx")); 4273 else 4274 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp( 4275 Builder, MinMaxKind, ReducedPartRdx, RdxPart); 4276 } 4277 4278 if (VF > 1) { 4279 bool NoNaN = Legal->hasFunNoNaNAttr(); 4280 ReducedPartRdx = 4281 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN); 4282 // If the reduction can be performed in a smaller type, we need to extend 4283 // the reduction to the wider type before we branch to the original loop. 4284 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4285 ReducedPartRdx = 4286 RdxDesc.isSigned() 4287 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4288 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4289 } 4290 4291 // Create a phi node that merges control-flow from the backedge-taken check 4292 // block and the middle block. 4293 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4294 LoopScalarPreHeader->getTerminator()); 4295 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4296 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4297 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4298 4299 // Now, we need to fix the users of the reduction variable 4300 // inside and outside of the scalar remainder loop. 4301 // We know that the loop is in LCSSA form. We need to update the 4302 // PHI nodes in the exit blocks. 4303 for (BasicBlock::iterator LEI = LoopExitBlock->begin(), 4304 LEE = LoopExitBlock->end(); 4305 LEI != LEE; ++LEI) { 4306 PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI); 4307 if (!LCSSAPhi) 4308 break; 4309 4310 // All PHINodes need to have a single entry edge, or two if 4311 // we already fixed them. 4312 assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI"); 4313 4314 // We found a reduction value exit-PHI. Update it with the 4315 // incoming bypass edge. 4316 if (LCSSAPhi->getIncomingValue(0) == LoopExitInst) 4317 LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4318 } // end of the LCSSA phi scan. 4319 4320 // Fix the scalar loop reduction variable with the incoming reduction sum 4321 // from the vector body and from the backedge value. 4322 int IncomingEdgeBlockIdx = 4323 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4324 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4325 // Pick the other block. 4326 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4327 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4328 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4329 } 4330 4331 void InnerLoopVectorizer::fixLCSSAPHIs() { 4332 for (Instruction &LEI : *LoopExitBlock) { 4333 auto *LCSSAPhi = dyn_cast<PHINode>(&LEI); 4334 if (!LCSSAPhi) 4335 break; 4336 if (LCSSAPhi->getNumIncomingValues() == 1) { 4337 assert(OrigLoop->isLoopInvariant(LCSSAPhi->getIncomingValue(0)) && 4338 "Incoming value isn't loop invariant"); 4339 LCSSAPhi->addIncoming(LCSSAPhi->getIncomingValue(0), LoopMiddleBlock); 4340 } 4341 } 4342 } 4343 4344 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4345 4346 // The basic block and loop containing the predicated instruction. 4347 auto *PredBB = PredInst->getParent(); 4348 auto *VectorLoop = LI->getLoopFor(PredBB); 4349 4350 // Initialize a worklist with the operands of the predicated instruction. 4351 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4352 4353 // Holds instructions that we need to analyze again. An instruction may be 4354 // reanalyzed if we don't yet know if we can sink it or not. 4355 SmallVector<Instruction *, 8> InstsToReanalyze; 4356 4357 // Returns true if a given use occurs in the predicated block. Phi nodes use 4358 // their operands in their corresponding predecessor blocks. 4359 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4360 auto *I = cast<Instruction>(U.getUser()); 4361 BasicBlock *BB = I->getParent(); 4362 if (auto *Phi = dyn_cast<PHINode>(I)) 4363 BB = Phi->getIncomingBlock( 4364 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4365 return BB == PredBB; 4366 }; 4367 4368 // Iteratively sink the scalarized operands of the predicated instruction 4369 // into the block we created for it. When an instruction is sunk, it's 4370 // operands are then added to the worklist. The algorithm ends after one pass 4371 // through the worklist doesn't sink a single instruction. 4372 bool Changed; 4373 do { 4374 4375 // Add the instructions that need to be reanalyzed to the worklist, and 4376 // reset the changed indicator. 4377 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4378 InstsToReanalyze.clear(); 4379 Changed = false; 4380 4381 while (!Worklist.empty()) { 4382 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4383 4384 // We can't sink an instruction if it is a phi node, is already in the 4385 // predicated block, is not in the loop, or may have side effects. 4386 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4387 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4388 continue; 4389 4390 // It's legal to sink the instruction if all its uses occur in the 4391 // predicated block. Otherwise, there's nothing to do yet, and we may 4392 // need to reanalyze the instruction. 4393 if (!all_of(I->uses(), isBlockOfUsePredicated)) { 4394 InstsToReanalyze.push_back(I); 4395 continue; 4396 } 4397 4398 // Move the instruction to the beginning of the predicated block, and add 4399 // it's operands to the worklist. 4400 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4401 Worklist.insert(I->op_begin(), I->op_end()); 4402 4403 // The sinking may have enabled other instructions to be sunk, so we will 4404 // need to iterate. 4405 Changed = true; 4406 } 4407 } while (Changed); 4408 } 4409 4410 InnerLoopVectorizer::VectorParts 4411 InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) { 4412 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 4413 4414 // Look for cached value. 4415 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 4416 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 4417 if (ECEntryIt != EdgeMaskCache.end()) 4418 return ECEntryIt->second; 4419 4420 VectorParts SrcMask = createBlockInMask(Src); 4421 4422 // The terminator has to be a branch inst! 4423 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 4424 assert(BI && "Unexpected terminator found"); 4425 4426 if (!BI->isConditional()) 4427 return EdgeMaskCache[Edge] = SrcMask; 4428 4429 VectorParts EdgeMask(UF); 4430 for (unsigned Part = 0; Part < UF; ++Part) { 4431 auto *EdgeMaskPart = getOrCreateVectorValue(BI->getCondition(), Part); 4432 if (BI->getSuccessor(0) != Dst) 4433 EdgeMaskPart = Builder.CreateNot(EdgeMaskPart); 4434 4435 if (SrcMask[Part]) // Otherwise block in-mask is all-one, no need to AND. 4436 EdgeMaskPart = Builder.CreateAnd(EdgeMaskPart, SrcMask[Part]); 4437 4438 EdgeMask[Part] = EdgeMaskPart; 4439 } 4440 4441 return EdgeMaskCache[Edge] = EdgeMask; 4442 } 4443 4444 InnerLoopVectorizer::VectorParts 4445 InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) { 4446 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 4447 4448 // Look for cached value. 4449 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 4450 if (BCEntryIt != BlockMaskCache.end()) 4451 return BCEntryIt->second; 4452 4453 // All-one mask is modelled as no-mask following the convention for masked 4454 // load/store/gather/scatter. Initialize BlockMask to no-mask. 4455 VectorParts BlockMask(UF); 4456 for (unsigned Part = 0; Part < UF; ++Part) 4457 BlockMask[Part] = nullptr; 4458 4459 // Loop incoming mask is all-one. 4460 if (OrigLoop->getHeader() == BB) 4461 return BlockMaskCache[BB] = BlockMask; 4462 4463 // This is the block mask. We OR all incoming edges. 4464 for (auto *Predecessor : predecessors(BB)) { 4465 VectorParts EdgeMask = createEdgeMask(Predecessor, BB); 4466 if (!EdgeMask[0]) // Mask of predecessor is all-one so mask of block is too. 4467 return BlockMaskCache[BB] = EdgeMask; 4468 4469 if (!BlockMask[0]) { // BlockMask has its initialized nullptr value. 4470 BlockMask = EdgeMask; 4471 continue; 4472 } 4473 4474 for (unsigned Part = 0; Part < UF; ++Part) 4475 BlockMask[Part] = Builder.CreateOr(BlockMask[Part], EdgeMask[Part]); 4476 } 4477 4478 return BlockMaskCache[BB] = BlockMask; 4479 } 4480 4481 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF, 4482 unsigned VF) { 4483 PHINode *P = cast<PHINode>(PN); 4484 // In order to support recurrences we need to be able to vectorize Phi nodes. 4485 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4486 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4487 // this value when we vectorize all of the instructions that use the PHI. 4488 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) { 4489 for (unsigned Part = 0; Part < UF; ++Part) { 4490 // This is phase one of vectorizing PHIs. 4491 Type *VecTy = 4492 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF); 4493 Value *EntryPart = PHINode::Create( 4494 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4495 VectorLoopValueMap.setVectorValue(P, Part, EntryPart); 4496 } 4497 return; 4498 } 4499 4500 setDebugLocFromInst(Builder, P); 4501 // Check for PHI nodes that are lowered to vector selects. 4502 if (P->getParent() != OrigLoop->getHeader()) { 4503 // We know that all PHIs in non-header blocks are converted into 4504 // selects, so we don't have to worry about the insertion order and we 4505 // can just use the builder. 4506 // At this point we generate the predication tree. There may be 4507 // duplications since this is a simple recursive scan, but future 4508 // optimizations will clean it up. 4509 4510 unsigned NumIncoming = P->getNumIncomingValues(); 4511 4512 // Generate a sequence of selects of the form: 4513 // SELECT(Mask3, In3, 4514 // SELECT(Mask2, In2, 4515 // ( ...))) 4516 VectorParts Entry(UF); 4517 for (unsigned In = 0; In < NumIncoming; In++) { 4518 VectorParts Cond = 4519 createEdgeMask(P->getIncomingBlock(In), P->getParent()); 4520 4521 for (unsigned Part = 0; Part < UF; ++Part) { 4522 Value *In0 = getOrCreateVectorValue(P->getIncomingValue(In), Part); 4523 assert((Cond[Part] || NumIncoming == 1) && 4524 "Multiple predecessors with one predecessor having a full mask"); 4525 if (In == 0) 4526 Entry[Part] = In0; // Initialize with the first incoming value. 4527 else 4528 // Select between the current value and the previous incoming edge 4529 // based on the incoming mask. 4530 Entry[Part] = Builder.CreateSelect(Cond[Part], In0, Entry[Part], 4531 "predphi"); 4532 } 4533 } 4534 for (unsigned Part = 0; Part < UF; ++Part) 4535 VectorLoopValueMap.setVectorValue(P, Part, Entry[Part]); 4536 return; 4537 } 4538 4539 // This PHINode must be an induction variable. 4540 // Make sure that we know about it. 4541 assert(Legal->getInductionVars()->count(P) && "Not an induction variable"); 4542 4543 InductionDescriptor II = Legal->getInductionVars()->lookup(P); 4544 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4545 4546 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4547 // which can be found from the original scalar operations. 4548 switch (II.getKind()) { 4549 case InductionDescriptor::IK_NoInduction: 4550 llvm_unreachable("Unknown induction"); 4551 case InductionDescriptor::IK_IntInduction: 4552 case InductionDescriptor::IK_FpInduction: 4553 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4554 case InductionDescriptor::IK_PtrInduction: { 4555 // Handle the pointer induction variable case. 4556 assert(P->getType()->isPointerTy() && "Unexpected type."); 4557 // This is the normalized GEP that starts counting at zero. 4558 Value *PtrInd = Induction; 4559 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType()); 4560 // Determine the number of scalars we need to generate for each unroll 4561 // iteration. If the instruction is uniform, we only need to generate the 4562 // first lane. Otherwise, we generate all VF values. 4563 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF; 4564 // These are the scalar results. Notice that we don't generate vector GEPs 4565 // because scalar GEPs result in better code. 4566 for (unsigned Part = 0; Part < UF; ++Part) { 4567 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4568 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF); 4569 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4570 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL); 4571 SclrGep->setName("next.gep"); 4572 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep); 4573 } 4574 } 4575 return; 4576 } 4577 } 4578 } 4579 4580 /// A helper function for checking whether an integer division-related 4581 /// instruction may divide by zero (in which case it must be predicated if 4582 /// executed conditionally in the scalar code). 4583 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4584 /// Non-zero divisors that are non compile-time constants will not be 4585 /// converted into multiplication, so we will still end up scalarizing 4586 /// the division, but can do so w/o predication. 4587 static bool mayDivideByZero(Instruction &I) { 4588 assert((I.getOpcode() == Instruction::UDiv || 4589 I.getOpcode() == Instruction::SDiv || 4590 I.getOpcode() == Instruction::URem || 4591 I.getOpcode() == Instruction::SRem) && 4592 "Unexpected instruction"); 4593 Value *Divisor = I.getOperand(1); 4594 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4595 return !CInt || CInt->isZero(); 4596 } 4597 4598 void InnerLoopVectorizer::widenInstruction(Instruction &I) { 4599 switch (I.getOpcode()) { 4600 case Instruction::Br: 4601 case Instruction::PHI: 4602 llvm_unreachable("This instruction is handled by a different recipe."); 4603 case Instruction::GetElementPtr: { 4604 // Construct a vector GEP by widening the operands of the scalar GEP as 4605 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4606 // results in a vector of pointers when at least one operand of the GEP 4607 // is vector-typed. Thus, to keep the representation compact, we only use 4608 // vector-typed operands for loop-varying values. 4609 auto *GEP = cast<GetElementPtrInst>(&I); 4610 4611 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) { 4612 // If we are vectorizing, but the GEP has only loop-invariant operands, 4613 // the GEP we build (by only using vector-typed operands for 4614 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4615 // produce a vector of pointers, we need to either arbitrarily pick an 4616 // operand to broadcast, or broadcast a clone of the original GEP. 4617 // Here, we broadcast a clone of the original. 4618 // 4619 // TODO: If at some point we decide to scalarize instructions having 4620 // loop-invariant operands, this special case will no longer be 4621 // required. We would add the scalarization decision to 4622 // collectLoopScalars() and teach getVectorValue() to broadcast 4623 // the lane-zero scalar value. 4624 auto *Clone = Builder.Insert(GEP->clone()); 4625 for (unsigned Part = 0; Part < UF; ++Part) { 4626 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4627 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart); 4628 addMetadata(EntryPart, GEP); 4629 } 4630 } else { 4631 // If the GEP has at least one loop-varying operand, we are sure to 4632 // produce a vector of pointers. But if we are only unrolling, we want 4633 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4634 // produce with the code below will be scalar (if VF == 1) or vector 4635 // (otherwise). Note that for the unroll-only case, we still maintain 4636 // values in the vector mapping with initVector, as we do for other 4637 // instructions. 4638 for (unsigned Part = 0; Part < UF; ++Part) { 4639 4640 // The pointer operand of the new GEP. If it's loop-invariant, we 4641 // won't broadcast it. 4642 auto *Ptr = 4643 OrigLoop->isLoopInvariant(GEP->getPointerOperand()) 4644 ? GEP->getPointerOperand() 4645 : getOrCreateVectorValue(GEP->getPointerOperand(), Part); 4646 4647 // Collect all the indices for the new GEP. If any index is 4648 // loop-invariant, we won't broadcast it. 4649 SmallVector<Value *, 4> Indices; 4650 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) { 4651 if (OrigLoop->isLoopInvariant(U.get())) 4652 Indices.push_back(U.get()); 4653 else 4654 Indices.push_back(getOrCreateVectorValue(U.get(), Part)); 4655 } 4656 4657 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4658 // but it should be a vector, otherwise. 4659 auto *NewGEP = GEP->isInBounds() 4660 ? Builder.CreateInBoundsGEP(Ptr, Indices) 4661 : Builder.CreateGEP(Ptr, Indices); 4662 assert((VF == 1 || NewGEP->getType()->isVectorTy()) && 4663 "NewGEP is not a pointer vector"); 4664 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP); 4665 addMetadata(NewGEP, GEP); 4666 } 4667 } 4668 4669 break; 4670 } 4671 case Instruction::UDiv: 4672 case Instruction::SDiv: 4673 case Instruction::SRem: 4674 case Instruction::URem: 4675 case Instruction::Add: 4676 case Instruction::FAdd: 4677 case Instruction::Sub: 4678 case Instruction::FSub: 4679 case Instruction::Mul: 4680 case Instruction::FMul: 4681 case Instruction::FDiv: 4682 case Instruction::FRem: 4683 case Instruction::Shl: 4684 case Instruction::LShr: 4685 case Instruction::AShr: 4686 case Instruction::And: 4687 case Instruction::Or: 4688 case Instruction::Xor: { 4689 // Just widen binops. 4690 auto *BinOp = cast<BinaryOperator>(&I); 4691 setDebugLocFromInst(Builder, BinOp); 4692 4693 for (unsigned Part = 0; Part < UF; ++Part) { 4694 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part); 4695 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part); 4696 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B); 4697 4698 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V)) 4699 VecOp->copyIRFlags(BinOp); 4700 4701 // Use this vector value for all users of the original instruction. 4702 VectorLoopValueMap.setVectorValue(&I, Part, V); 4703 addMetadata(V, BinOp); 4704 } 4705 4706 break; 4707 } 4708 case Instruction::Select: { 4709 // Widen selects. 4710 // If the selector is loop invariant we can create a select 4711 // instruction with a scalar condition. Otherwise, use vector-select. 4712 auto *SE = PSE.getSE(); 4713 bool InvariantCond = 4714 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop); 4715 setDebugLocFromInst(Builder, &I); 4716 4717 // The condition can be loop invariant but still defined inside the 4718 // loop. This means that we can't just use the original 'cond' value. 4719 // We have to take the 'vectorized' value and pick the first lane. 4720 // Instcombine will make this a no-op. 4721 4722 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0}); 4723 4724 for (unsigned Part = 0; Part < UF; ++Part) { 4725 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part); 4726 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part); 4727 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part); 4728 Value *Sel = 4729 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1); 4730 VectorLoopValueMap.setVectorValue(&I, Part, Sel); 4731 addMetadata(Sel, &I); 4732 } 4733 4734 break; 4735 } 4736 4737 case Instruction::ICmp: 4738 case Instruction::FCmp: { 4739 // Widen compares. Generate vector compares. 4740 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4741 auto *Cmp = dyn_cast<CmpInst>(&I); 4742 setDebugLocFromInst(Builder, Cmp); 4743 for (unsigned Part = 0; Part < UF; ++Part) { 4744 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part); 4745 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part); 4746 Value *C = nullptr; 4747 if (FCmp) { 4748 // Propagate fast math flags. 4749 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4750 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4751 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4752 } else { 4753 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4754 } 4755 VectorLoopValueMap.setVectorValue(&I, Part, C); 4756 addMetadata(C, &I); 4757 } 4758 4759 break; 4760 } 4761 4762 case Instruction::Store: 4763 case Instruction::Load: 4764 vectorizeMemoryInstruction(&I); 4765 break; 4766 case Instruction::ZExt: 4767 case Instruction::SExt: 4768 case Instruction::FPToUI: 4769 case Instruction::FPToSI: 4770 case Instruction::FPExt: 4771 case Instruction::PtrToInt: 4772 case Instruction::IntToPtr: 4773 case Instruction::SIToFP: 4774 case Instruction::UIToFP: 4775 case Instruction::Trunc: 4776 case Instruction::FPTrunc: 4777 case Instruction::BitCast: { 4778 auto *CI = dyn_cast<CastInst>(&I); 4779 setDebugLocFromInst(Builder, CI); 4780 4781 /// Vectorize casts. 4782 Type *DestTy = 4783 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF); 4784 4785 for (unsigned Part = 0; Part < UF; ++Part) { 4786 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part); 4787 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4788 VectorLoopValueMap.setVectorValue(&I, Part, Cast); 4789 addMetadata(Cast, &I); 4790 } 4791 break; 4792 } 4793 4794 case Instruction::Call: { 4795 // Ignore dbg intrinsics. 4796 if (isa<DbgInfoIntrinsic>(I)) 4797 break; 4798 setDebugLocFromInst(Builder, &I); 4799 4800 Module *M = I.getParent()->getParent()->getParent(); 4801 auto *CI = cast<CallInst>(&I); 4802 4803 StringRef FnName = CI->getCalledFunction()->getName(); 4804 Function *F = CI->getCalledFunction(); 4805 Type *RetTy = ToVectorTy(CI->getType(), VF); 4806 SmallVector<Type *, 4> Tys; 4807 for (Value *ArgOperand : CI->arg_operands()) 4808 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF)); 4809 4810 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4811 4812 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4813 // version of the instruction. 4814 // Is it beneficial to perform intrinsic call compared to lib call? 4815 bool NeedToScalarize; 4816 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 4817 bool UseVectorIntrinsic = 4818 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 4819 assert((UseVectorIntrinsic || !NeedToScalarize) && 4820 "Instruction should be scalarized elsewhere."); 4821 4822 for (unsigned Part = 0; Part < UF; ++Part) { 4823 SmallVector<Value *, 4> Args; 4824 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) { 4825 Value *Arg = CI->getArgOperand(i); 4826 // Some intrinsics have a scalar argument - don't replace it with a 4827 // vector. 4828 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i)) 4829 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part); 4830 Args.push_back(Arg); 4831 } 4832 4833 Function *VectorF; 4834 if (UseVectorIntrinsic) { 4835 // Use vector version of the intrinsic. 4836 Type *TysForDecl[] = {CI->getType()}; 4837 if (VF > 1) 4838 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4839 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4840 } else { 4841 // Use vector version of the library call. 4842 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF); 4843 assert(!VFnName.empty() && "Vector function name is empty."); 4844 VectorF = M->getFunction(VFnName); 4845 if (!VectorF) { 4846 // Generate a declaration 4847 FunctionType *FTy = FunctionType::get(RetTy, Tys, false); 4848 VectorF = 4849 Function::Create(FTy, Function::ExternalLinkage, VFnName, M); 4850 VectorF->copyAttributesFrom(F); 4851 } 4852 } 4853 assert(VectorF && "Can't create vector function."); 4854 4855 SmallVector<OperandBundleDef, 1> OpBundles; 4856 CI->getOperandBundlesAsDefs(OpBundles); 4857 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4858 4859 if (isa<FPMathOperator>(V)) 4860 V->copyFastMathFlags(CI); 4861 4862 VectorLoopValueMap.setVectorValue(&I, Part, V); 4863 addMetadata(V, &I); 4864 } 4865 4866 break; 4867 } 4868 4869 default: 4870 // All other instructions are scalarized. 4871 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4872 llvm_unreachable("Unhandled instruction!"); 4873 } // end of switch. 4874 } 4875 4876 void InnerLoopVectorizer::updateAnalysis() { 4877 // Forget the original basic block. 4878 PSE.getSE()->forgetLoop(OrigLoop); 4879 4880 // Update the dominator tree information. 4881 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && 4882 "Entry does not dominate exit."); 4883 4884 DT->addNewBlock(LoopMiddleBlock, 4885 LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4886 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]); 4887 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader); 4888 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]); 4889 DEBUG(DT->verifyDomTree()); 4890 } 4891 4892 /// \brief Check whether it is safe to if-convert this phi node. 4893 /// 4894 /// Phi nodes with constant expressions that can trap are not safe to if 4895 /// convert. 4896 static bool canIfConvertPHINodes(BasicBlock *BB) { 4897 for (Instruction &I : *BB) { 4898 auto *Phi = dyn_cast<PHINode>(&I); 4899 if (!Phi) 4900 return true; 4901 for (Value *V : Phi->incoming_values()) 4902 if (auto *C = dyn_cast<Constant>(V)) 4903 if (C->canTrap()) 4904 return false; 4905 } 4906 return true; 4907 } 4908 4909 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 4910 if (!EnableIfConversion) { 4911 ORE->emit(createMissedAnalysis("IfConversionDisabled") 4912 << "if-conversion is disabled"); 4913 return false; 4914 } 4915 4916 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 4917 4918 // A list of pointers that we can safely read and write to. 4919 SmallPtrSet<Value *, 8> SafePointes; 4920 4921 // Collect safe addresses. 4922 for (BasicBlock *BB : TheLoop->blocks()) { 4923 if (blockNeedsPredication(BB)) 4924 continue; 4925 4926 for (Instruction &I : *BB) 4927 if (auto *Ptr = getPointerOperand(&I)) 4928 SafePointes.insert(Ptr); 4929 } 4930 4931 // Collect the blocks that need predication. 4932 BasicBlock *Header = TheLoop->getHeader(); 4933 for (BasicBlock *BB : TheLoop->blocks()) { 4934 // We don't support switch statements inside loops. 4935 if (!isa<BranchInst>(BB->getTerminator())) { 4936 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 4937 << "loop contains a switch statement"); 4938 return false; 4939 } 4940 4941 // We must be able to predicate all blocks that need to be predicated. 4942 if (blockNeedsPredication(BB)) { 4943 if (!blockCanBePredicated(BB, SafePointes)) { 4944 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4945 << "control flow cannot be substituted for a select"); 4946 return false; 4947 } 4948 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 4949 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 4950 << "control flow cannot be substituted for a select"); 4951 return false; 4952 } 4953 } 4954 4955 // We can if-convert this loop. 4956 return true; 4957 } 4958 4959 bool LoopVectorizationLegality::canVectorize() { 4960 // Store the result and return it at the end instead of exiting early, in case 4961 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 4962 bool Result = true; 4963 4964 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 4965 if (DoExtraAnalysis) 4966 // We must have a loop in canonical form. Loops with indirectbr in them cannot 4967 // be canonicalized. 4968 if (!TheLoop->getLoopPreheader()) { 4969 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4970 << "loop control flow is not understood by vectorizer"); 4971 if (DoExtraAnalysis) 4972 Result = false; 4973 else 4974 return false; 4975 } 4976 4977 // FIXME: The code is currently dead, since the loop gets sent to 4978 // LoopVectorizationLegality is already an innermost loop. 4979 // 4980 // We can only vectorize innermost loops. 4981 if (!TheLoop->empty()) { 4982 ORE->emit(createMissedAnalysis("NotInnermostLoop") 4983 << "loop is not the innermost loop"); 4984 if (DoExtraAnalysis) 4985 Result = false; 4986 else 4987 return false; 4988 } 4989 4990 // We must have a single backedge. 4991 if (TheLoop->getNumBackEdges() != 1) { 4992 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 4993 << "loop control flow is not understood by vectorizer"); 4994 if (DoExtraAnalysis) 4995 Result = false; 4996 else 4997 return false; 4998 } 4999 5000 // We must have a single exiting block. 5001 if (!TheLoop->getExitingBlock()) { 5002 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5003 << "loop control flow is not understood by vectorizer"); 5004 if (DoExtraAnalysis) 5005 Result = false; 5006 else 5007 return false; 5008 } 5009 5010 // We only handle bottom-tested loops, i.e. loop in which the condition is 5011 // checked at the end of each iteration. With that we can assume that all 5012 // instructions in the loop are executed the same number of times. 5013 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5014 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 5015 << "loop control flow is not understood by vectorizer"); 5016 if (DoExtraAnalysis) 5017 Result = false; 5018 else 5019 return false; 5020 } 5021 5022 // We need to have a loop header. 5023 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 5024 << '\n'); 5025 5026 // Check if we can if-convert non-single-bb loops. 5027 unsigned NumBlocks = TheLoop->getNumBlocks(); 5028 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 5029 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 5030 if (DoExtraAnalysis) 5031 Result = false; 5032 else 5033 return false; 5034 } 5035 5036 // Check if we can vectorize the instructions and CFG in this loop. 5037 if (!canVectorizeInstrs()) { 5038 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 5039 if (DoExtraAnalysis) 5040 Result = false; 5041 else 5042 return false; 5043 } 5044 5045 // Go over each instruction and look at memory deps. 5046 if (!canVectorizeMemory()) { 5047 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 5048 if (DoExtraAnalysis) 5049 Result = false; 5050 else 5051 return false; 5052 } 5053 5054 DEBUG(dbgs() << "LV: We can vectorize this loop" 5055 << (LAI->getRuntimePointerChecking()->Need 5056 ? " (with a runtime bound check)" 5057 : "") 5058 << "!\n"); 5059 5060 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 5061 5062 // If an override option has been passed in for interleaved accesses, use it. 5063 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 5064 UseInterleaved = EnableInterleavedMemAccesses; 5065 5066 // Analyze interleaved memory accesses. 5067 if (UseInterleaved) 5068 InterleaveInfo.analyzeInterleaving(*getSymbolicStrides()); 5069 5070 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 5071 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 5072 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 5073 5074 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 5075 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 5076 << "Too many SCEV assumptions need to be made and checked " 5077 << "at runtime"); 5078 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 5079 if (DoExtraAnalysis) 5080 Result = false; 5081 else 5082 return false; 5083 } 5084 5085 // Okay! We've done all the tests. If any have failed, return false. Otherwise 5086 // we can vectorize, and at this point we don't have any other mem analysis 5087 // which may limit our maximum vectorization factor, so just return true with 5088 // no restrictions. 5089 return Result; 5090 } 5091 5092 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 5093 if (Ty->isPointerTy()) 5094 return DL.getIntPtrType(Ty); 5095 5096 // It is possible that char's or short's overflow when we ask for the loop's 5097 // trip count, work around this by changing the type size. 5098 if (Ty->getScalarSizeInBits() < 32) 5099 return Type::getInt32Ty(Ty->getContext()); 5100 5101 return Ty; 5102 } 5103 5104 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 5105 Ty0 = convertPointerToIntegerType(DL, Ty0); 5106 Ty1 = convertPointerToIntegerType(DL, Ty1); 5107 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 5108 return Ty0; 5109 return Ty1; 5110 } 5111 5112 /// \brief Check that the instruction has outside loop users and is not an 5113 /// identified reduction variable. 5114 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 5115 SmallPtrSetImpl<Value *> &AllowedExit) { 5116 // Reduction and Induction instructions are allowed to have exit users. All 5117 // other instructions must not have external users. 5118 if (!AllowedExit.count(Inst)) 5119 // Check that all of the users of the loop are inside the BB. 5120 for (User *U : Inst->users()) { 5121 Instruction *UI = cast<Instruction>(U); 5122 // This user may be a reduction exit value. 5123 if (!TheLoop->contains(UI)) { 5124 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 5125 return true; 5126 } 5127 } 5128 return false; 5129 } 5130 5131 void LoopVectorizationLegality::addInductionPhi( 5132 PHINode *Phi, const InductionDescriptor &ID, 5133 SmallPtrSetImpl<Value *> &AllowedExit) { 5134 Inductions[Phi] = ID; 5135 Type *PhiTy = Phi->getType(); 5136 const DataLayout &DL = Phi->getModule()->getDataLayout(); 5137 5138 // Get the widest type. 5139 if (!PhiTy->isFloatingPointTy()) { 5140 if (!WidestIndTy) 5141 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 5142 else 5143 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 5144 } 5145 5146 // Int inductions are special because we only allow one IV. 5147 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 5148 ID.getConstIntStepValue() && 5149 ID.getConstIntStepValue()->isOne() && 5150 isa<Constant>(ID.getStartValue()) && 5151 cast<Constant>(ID.getStartValue())->isNullValue()) { 5152 5153 // Use the phi node with the widest type as induction. Use the last 5154 // one if there are multiple (no good reason for doing this other 5155 // than it is expedient). We've checked that it begins at zero and 5156 // steps by one, so this is a canonical induction variable. 5157 if (!PrimaryInduction || PhiTy == WidestIndTy) 5158 PrimaryInduction = Phi; 5159 } 5160 5161 // Both the PHI node itself, and the "post-increment" value feeding 5162 // back into the PHI node may have external users. 5163 // We can allow those uses, except if the SCEVs we have for them rely 5164 // on predicates that only hold within the loop, since allowing the exit 5165 // currently means re-using this SCEV outside the loop. 5166 if (PSE.getUnionPredicate().isAlwaysTrue()) { 5167 AllowedExit.insert(Phi); 5168 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 5169 } 5170 5171 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 5172 return; 5173 } 5174 5175 bool LoopVectorizationLegality::canVectorizeInstrs() { 5176 BasicBlock *Header = TheLoop->getHeader(); 5177 5178 // Look for the attribute signaling the absence of NaNs. 5179 Function &F = *Header->getParent(); 5180 HasFunNoNaNAttr = 5181 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 5182 5183 // For each block in the loop. 5184 for (BasicBlock *BB : TheLoop->blocks()) { 5185 // Scan the instructions in the block and look for hazards. 5186 for (Instruction &I : *BB) { 5187 if (auto *Phi = dyn_cast<PHINode>(&I)) { 5188 Type *PhiTy = Phi->getType(); 5189 // Check that this PHI type is allowed. 5190 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 5191 !PhiTy->isPointerTy()) { 5192 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5193 << "loop control flow is not understood by vectorizer"); 5194 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 5195 return false; 5196 } 5197 5198 // If this PHINode is not in the header block, then we know that we 5199 // can convert it to select during if-conversion. No need to check if 5200 // the PHIs in this block are induction or reduction variables. 5201 if (BB != Header) { 5202 // Check that this instruction has no outside users or is an 5203 // identified reduction value with an outside user. 5204 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 5205 continue; 5206 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 5207 << "value could not be identified as " 5208 "an induction or reduction variable"); 5209 return false; 5210 } 5211 5212 // We only allow if-converted PHIs with exactly two incoming values. 5213 if (Phi->getNumIncomingValues() != 2) { 5214 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 5215 << "control flow not understood by vectorizer"); 5216 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 5217 return false; 5218 } 5219 5220 RecurrenceDescriptor RedDes; 5221 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes)) { 5222 if (RedDes.hasUnsafeAlgebra()) 5223 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 5224 AllowedExit.insert(RedDes.getLoopExitInstr()); 5225 Reductions[Phi] = RedDes; 5226 continue; 5227 } 5228 5229 InductionDescriptor ID; 5230 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 5231 addInductionPhi(Phi, ID, AllowedExit); 5232 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 5233 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 5234 continue; 5235 } 5236 5237 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 5238 SinkAfter, DT)) { 5239 FirstOrderRecurrences.insert(Phi); 5240 continue; 5241 } 5242 5243 // As a last resort, coerce the PHI to a AddRec expression 5244 // and re-try classifying it a an induction PHI. 5245 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 5246 addInductionPhi(Phi, ID, AllowedExit); 5247 continue; 5248 } 5249 5250 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 5251 << "value that could not be identified as " 5252 "reduction is used outside the loop"); 5253 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 5254 return false; 5255 } // end of PHI handling 5256 5257 // We handle calls that: 5258 // * Are debug info intrinsics. 5259 // * Have a mapping to an IR intrinsic. 5260 // * Have a vector version available. 5261 auto *CI = dyn_cast<CallInst>(&I); 5262 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 5263 !isa<DbgInfoIntrinsic>(CI) && 5264 !(CI->getCalledFunction() && TLI && 5265 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 5266 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 5267 << "call instruction cannot be vectorized"); 5268 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 5269 return false; 5270 } 5271 5272 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 5273 // second argument is the same (i.e. loop invariant) 5274 if (CI && hasVectorInstrinsicScalarOpd( 5275 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 5276 auto *SE = PSE.getSE(); 5277 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 5278 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 5279 << "intrinsic instruction cannot be vectorized"); 5280 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 5281 return false; 5282 } 5283 } 5284 5285 // Check that the instruction return type is vectorizable. 5286 // Also, we can't vectorize extractelement instructions. 5287 if ((!VectorType::isValidElementType(I.getType()) && 5288 !I.getType()->isVoidTy()) || 5289 isa<ExtractElementInst>(I)) { 5290 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 5291 << "instruction return type cannot be vectorized"); 5292 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 5293 return false; 5294 } 5295 5296 // Check that the stored type is vectorizable. 5297 if (auto *ST = dyn_cast<StoreInst>(&I)) { 5298 Type *T = ST->getValueOperand()->getType(); 5299 if (!VectorType::isValidElementType(T)) { 5300 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 5301 << "store instruction cannot be vectorized"); 5302 return false; 5303 } 5304 5305 // FP instructions can allow unsafe algebra, thus vectorizable by 5306 // non-IEEE-754 compliant SIMD units. 5307 // This applies to floating-point math operations and calls, not memory 5308 // operations, shuffles, or casts, as they don't change precision or 5309 // semantics. 5310 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 5311 !I.hasUnsafeAlgebra()) { 5312 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 5313 Hints->setPotentiallyUnsafe(); 5314 } 5315 5316 // Reduction instructions are allowed to have exit users. 5317 // All other instructions must not have external users. 5318 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 5319 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 5320 << "value cannot be used outside the loop"); 5321 return false; 5322 } 5323 5324 } // next instr. 5325 } 5326 5327 if (!PrimaryInduction) { 5328 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 5329 if (Inductions.empty()) { 5330 ORE->emit(createMissedAnalysis("NoInductionVariable") 5331 << "loop induction variable could not be identified"); 5332 return false; 5333 } 5334 } 5335 5336 // Now we know the widest induction type, check if our found induction 5337 // is the same size. If it's not, unset it here and InnerLoopVectorizer 5338 // will create another. 5339 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 5340 PrimaryInduction = nullptr; 5341 5342 return true; 5343 } 5344 5345 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) { 5346 5347 // We should not collect Scalars more than once per VF. Right now, this 5348 // function is called from collectUniformsAndScalars(), which already does 5349 // this check. Collecting Scalars for VF=1 does not make any sense. 5350 assert(VF >= 2 && !Scalars.count(VF) && 5351 "This function should not be visited twice for the same VF"); 5352 5353 SmallSetVector<Instruction *, 8> Worklist; 5354 5355 // These sets are used to seed the analysis with pointers used by memory 5356 // accesses that will remain scalar. 5357 SmallSetVector<Instruction *, 8> ScalarPtrs; 5358 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5359 5360 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5361 // The pointer operands of loads and stores will be scalar as long as the 5362 // memory access is not a gather or scatter operation. The value operand of a 5363 // store will remain scalar if the store is scalarized. 5364 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5365 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5366 assert(WideningDecision != CM_Unknown && 5367 "Widening decision should be ready at this moment"); 5368 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5369 if (Ptr == Store->getValueOperand()) 5370 return WideningDecision == CM_Scalarize; 5371 assert(Ptr == getPointerOperand(MemAccess) && 5372 "Ptr is neither a value or pointer operand"); 5373 return WideningDecision != CM_GatherScatter; 5374 }; 5375 5376 // A helper that returns true if the given value is a bitcast or 5377 // getelementptr instruction contained in the loop. 5378 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5379 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5380 isa<GetElementPtrInst>(V)) && 5381 !TheLoop->isLoopInvariant(V); 5382 }; 5383 5384 // A helper that evaluates a memory access's use of a pointer. If the use 5385 // will be a scalar use, and the pointer is only used by memory accesses, we 5386 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in 5387 // PossibleNonScalarPtrs. 5388 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5389 5390 // We only care about bitcast and getelementptr instructions contained in 5391 // the loop. 5392 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5393 return; 5394 5395 // If the pointer has already been identified as scalar (e.g., if it was 5396 // also identified as uniform), there's nothing to do. 5397 auto *I = cast<Instruction>(Ptr); 5398 if (Worklist.count(I)) 5399 return; 5400 5401 // If the use of the pointer will be a scalar use, and all users of the 5402 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5403 // place the pointer in PossibleNonScalarPtrs. 5404 if (isScalarUse(MemAccess, Ptr) && all_of(I->users(), [&](User *U) { 5405 return isa<LoadInst>(U) || isa<StoreInst>(U); 5406 })) 5407 ScalarPtrs.insert(I); 5408 else 5409 PossibleNonScalarPtrs.insert(I); 5410 }; 5411 5412 // We seed the scalars analysis with three classes of instructions: (1) 5413 // instructions marked uniform-after-vectorization, (2) bitcast and 5414 // getelementptr instructions used by memory accesses requiring a scalar use, 5415 // and (3) pointer induction variables and their update instructions (we 5416 // currently only scalarize these). 5417 // 5418 // (1) Add to the worklist all instructions that have been identified as 5419 // uniform-after-vectorization. 5420 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5421 5422 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5423 // memory accesses requiring a scalar use. The pointer operands of loads and 5424 // stores will be scalar as long as the memory accesses is not a gather or 5425 // scatter operation. The value operand of a store will remain scalar if the 5426 // store is scalarized. 5427 for (auto *BB : TheLoop->blocks()) 5428 for (auto &I : *BB) { 5429 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5430 evaluatePtrUse(Load, Load->getPointerOperand()); 5431 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5432 evaluatePtrUse(Store, Store->getPointerOperand()); 5433 evaluatePtrUse(Store, Store->getValueOperand()); 5434 } 5435 } 5436 for (auto *I : ScalarPtrs) 5437 if (!PossibleNonScalarPtrs.count(I)) { 5438 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5439 Worklist.insert(I); 5440 } 5441 5442 // (3) Add to the worklist all pointer induction variables and their update 5443 // instructions. 5444 // 5445 // TODO: Once we are able to vectorize pointer induction variables we should 5446 // no longer insert them into the worklist here. 5447 auto *Latch = TheLoop->getLoopLatch(); 5448 for (auto &Induction : *Legal->getInductionVars()) { 5449 auto *Ind = Induction.first; 5450 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5451 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction) 5452 continue; 5453 Worklist.insert(Ind); 5454 Worklist.insert(IndUpdate); 5455 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5456 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5457 } 5458 5459 // Insert the forced scalars. 5460 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5461 // induction variable when the PHI user is scalarized. 5462 if (ForcedScalars.count(VF)) 5463 for (auto *I : ForcedScalars.find(VF)->second) 5464 Worklist.insert(I); 5465 5466 // Expand the worklist by looking through any bitcasts and getelementptr 5467 // instructions we've already identified as scalar. This is similar to the 5468 // expansion step in collectLoopUniforms(); however, here we're only 5469 // expanding to include additional bitcasts and getelementptr instructions. 5470 unsigned Idx = 0; 5471 while (Idx != Worklist.size()) { 5472 Instruction *Dst = Worklist[Idx++]; 5473 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5474 continue; 5475 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5476 if (all_of(Src->users(), [&](User *U) -> bool { 5477 auto *J = cast<Instruction>(U); 5478 return !TheLoop->contains(J) || Worklist.count(J) || 5479 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5480 isScalarUse(J, Src)); 5481 })) { 5482 Worklist.insert(Src); 5483 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5484 } 5485 } 5486 5487 // An induction variable will remain scalar if all users of the induction 5488 // variable and induction variable update remain scalar. 5489 for (auto &Induction : *Legal->getInductionVars()) { 5490 auto *Ind = Induction.first; 5491 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5492 5493 // We already considered pointer induction variables, so there's no reason 5494 // to look at their users again. 5495 // 5496 // TODO: Once we are able to vectorize pointer induction variables we 5497 // should no longer skip over them here. 5498 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction) 5499 continue; 5500 5501 // Determine if all users of the induction variable are scalar after 5502 // vectorization. 5503 auto ScalarInd = all_of(Ind->users(), [&](User *U) -> bool { 5504 auto *I = cast<Instruction>(U); 5505 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5506 }); 5507 if (!ScalarInd) 5508 continue; 5509 5510 // Determine if all users of the induction variable update instruction are 5511 // scalar after vectorization. 5512 auto ScalarIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5513 auto *I = cast<Instruction>(U); 5514 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5515 }); 5516 if (!ScalarIndUpdate) 5517 continue; 5518 5519 // The induction variable and its update instruction will remain scalar. 5520 Worklist.insert(Ind); 5521 Worklist.insert(IndUpdate); 5522 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5523 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"); 5524 } 5525 5526 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5527 } 5528 5529 bool LoopVectorizationLegality::isScalarWithPredication(Instruction *I) { 5530 if (!blockNeedsPredication(I->getParent())) 5531 return false; 5532 switch(I->getOpcode()) { 5533 default: 5534 break; 5535 case Instruction::Store: 5536 return !isMaskRequired(I); 5537 case Instruction::UDiv: 5538 case Instruction::SDiv: 5539 case Instruction::SRem: 5540 case Instruction::URem: 5541 return mayDivideByZero(*I); 5542 } 5543 return false; 5544 } 5545 5546 bool LoopVectorizationLegality::memoryInstructionCanBeWidened(Instruction *I, 5547 unsigned VF) { 5548 // Get and ensure we have a valid memory instruction. 5549 LoadInst *LI = dyn_cast<LoadInst>(I); 5550 StoreInst *SI = dyn_cast<StoreInst>(I); 5551 assert((LI || SI) && "Invalid memory instruction"); 5552 5553 auto *Ptr = getPointerOperand(I); 5554 5555 // In order to be widened, the pointer should be consecutive, first of all. 5556 if (!isConsecutivePtr(Ptr)) 5557 return false; 5558 5559 // If the instruction is a store located in a predicated block, it will be 5560 // scalarized. 5561 if (isScalarWithPredication(I)) 5562 return false; 5563 5564 // If the instruction's allocated size doesn't equal it's type size, it 5565 // requires padding and will be scalarized. 5566 auto &DL = I->getModule()->getDataLayout(); 5567 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5568 if (hasIrregularType(ScalarTy, DL, VF)) 5569 return false; 5570 5571 return true; 5572 } 5573 5574 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) { 5575 5576 // We should not collect Uniforms more than once per VF. Right now, 5577 // this function is called from collectUniformsAndScalars(), which 5578 // already does this check. Collecting Uniforms for VF=1 does not make any 5579 // sense. 5580 5581 assert(VF >= 2 && !Uniforms.count(VF) && 5582 "This function should not be visited twice for the same VF"); 5583 5584 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5585 // not analyze again. Uniforms.count(VF) will return 1. 5586 Uniforms[VF].clear(); 5587 5588 // We now know that the loop is vectorizable! 5589 // Collect instructions inside the loop that will remain uniform after 5590 // vectorization. 5591 5592 // Global values, params and instructions outside of current loop are out of 5593 // scope. 5594 auto isOutOfScope = [&](Value *V) -> bool { 5595 Instruction *I = dyn_cast<Instruction>(V); 5596 return (!I || !TheLoop->contains(I)); 5597 }; 5598 5599 SetVector<Instruction *> Worklist; 5600 BasicBlock *Latch = TheLoop->getLoopLatch(); 5601 5602 // Start with the conditional branch. If the branch condition is an 5603 // instruction contained in the loop that is only used by the branch, it is 5604 // uniform. 5605 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5606 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) { 5607 Worklist.insert(Cmp); 5608 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n"); 5609 } 5610 5611 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers 5612 // are pointers that are treated like consecutive pointers during 5613 // vectorization. The pointer operands of interleaved accesses are an 5614 // example. 5615 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs; 5616 5617 // Holds pointer operands of instructions that are possibly non-uniform. 5618 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs; 5619 5620 auto isUniformDecision = [&](Instruction *I, unsigned VF) { 5621 InstWidening WideningDecision = getWideningDecision(I, VF); 5622 assert(WideningDecision != CM_Unknown && 5623 "Widening decision should be ready at this moment"); 5624 5625 return (WideningDecision == CM_Widen || 5626 WideningDecision == CM_Interleave); 5627 }; 5628 // Iterate over the instructions in the loop, and collect all 5629 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible 5630 // that a consecutive-like pointer operand will be scalarized, we collect it 5631 // in PossibleNonUniformPtrs instead. We use two sets here because a single 5632 // getelementptr instruction can be used by both vectorized and scalarized 5633 // memory instructions. For example, if a loop loads and stores from the same 5634 // location, but the store is conditional, the store will be scalarized, and 5635 // the getelementptr won't remain uniform. 5636 for (auto *BB : TheLoop->blocks()) 5637 for (auto &I : *BB) { 5638 5639 // If there's no pointer operand, there's nothing to do. 5640 auto *Ptr = dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 5641 if (!Ptr) 5642 continue; 5643 5644 // True if all users of Ptr are memory accesses that have Ptr as their 5645 // pointer operand. 5646 auto UsersAreMemAccesses = all_of(Ptr->users(), [&](User *U) -> bool { 5647 return getPointerOperand(U) == Ptr; 5648 }); 5649 5650 // Ensure the memory instruction will not be scalarized or used by 5651 // gather/scatter, making its pointer operand non-uniform. If the pointer 5652 // operand is used by any instruction other than a memory access, we 5653 // conservatively assume the pointer operand may be non-uniform. 5654 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF)) 5655 PossibleNonUniformPtrs.insert(Ptr); 5656 5657 // If the memory instruction will be vectorized and its pointer operand 5658 // is consecutive-like, or interleaving - the pointer operand should 5659 // remain uniform. 5660 else 5661 ConsecutiveLikePtrs.insert(Ptr); 5662 } 5663 5664 // Add to the Worklist all consecutive and consecutive-like pointers that 5665 // aren't also identified as possibly non-uniform. 5666 for (auto *V : ConsecutiveLikePtrs) 5667 if (!PossibleNonUniformPtrs.count(V)) { 5668 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n"); 5669 Worklist.insert(V); 5670 } 5671 5672 // Expand Worklist in topological order: whenever a new instruction 5673 // is added , its users should be either already inside Worklist, or 5674 // out of scope. It ensures a uniform instruction will only be used 5675 // by uniform instructions or out of scope instructions. 5676 unsigned idx = 0; 5677 while (idx != Worklist.size()) { 5678 Instruction *I = Worklist[idx++]; 5679 5680 for (auto OV : I->operand_values()) { 5681 if (isOutOfScope(OV)) 5682 continue; 5683 auto *OI = cast<Instruction>(OV); 5684 if (all_of(OI->users(), [&](User *U) -> bool { 5685 auto *J = cast<Instruction>(U); 5686 return !TheLoop->contains(J) || Worklist.count(J) || 5687 (OI == getPointerOperand(J) && isUniformDecision(J, VF)); 5688 })) { 5689 Worklist.insert(OI); 5690 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n"); 5691 } 5692 } 5693 } 5694 5695 // Returns true if Ptr is the pointer operand of a memory access instruction 5696 // I, and I is known to not require scalarization. 5697 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5698 return getPointerOperand(I) == Ptr && isUniformDecision(I, VF); 5699 }; 5700 5701 // For an instruction to be added into Worklist above, all its users inside 5702 // the loop should also be in Worklist. However, this condition cannot be 5703 // true for phi nodes that form a cyclic dependence. We must process phi 5704 // nodes separately. An induction variable will remain uniform if all users 5705 // of the induction variable and induction variable update remain uniform. 5706 // The code below handles both pointer and non-pointer induction variables. 5707 for (auto &Induction : *Legal->getInductionVars()) { 5708 auto *Ind = Induction.first; 5709 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5710 5711 // Determine if all users of the induction variable are uniform after 5712 // vectorization. 5713 auto UniformInd = all_of(Ind->users(), [&](User *U) -> bool { 5714 auto *I = cast<Instruction>(U); 5715 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5716 isVectorizedMemAccessUse(I, Ind); 5717 }); 5718 if (!UniformInd) 5719 continue; 5720 5721 // Determine if all users of the induction variable update instruction are 5722 // uniform after vectorization. 5723 auto UniformIndUpdate = all_of(IndUpdate->users(), [&](User *U) -> bool { 5724 auto *I = cast<Instruction>(U); 5725 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5726 isVectorizedMemAccessUse(I, IndUpdate); 5727 }); 5728 if (!UniformIndUpdate) 5729 continue; 5730 5731 // The induction variable and its update instruction will remain uniform. 5732 Worklist.insert(Ind); 5733 Worklist.insert(IndUpdate); 5734 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n"); 5735 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n"); 5736 } 5737 5738 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5739 } 5740 5741 bool LoopVectorizationLegality::canVectorizeMemory() { 5742 LAI = &(*GetLAA)(*TheLoop); 5743 InterleaveInfo.setLAI(LAI); 5744 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 5745 if (LAR) { 5746 OptimizationRemarkAnalysis VR(Hints->vectorizeAnalysisPassName(), 5747 "loop not vectorized: ", *LAR); 5748 ORE->emit(VR); 5749 } 5750 if (!LAI->canVectorizeMemory()) 5751 return false; 5752 5753 if (LAI->hasStoreToLoopInvariantAddress()) { 5754 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 5755 << "write to a loop invariant address could not be vectorized"); 5756 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 5757 return false; 5758 } 5759 5760 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 5761 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 5762 5763 return true; 5764 } 5765 5766 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 5767 Value *In0 = const_cast<Value *>(V); 5768 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 5769 if (!PN) 5770 return false; 5771 5772 return Inductions.count(PN); 5773 } 5774 5775 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 5776 return FirstOrderRecurrences.count(Phi); 5777 } 5778 5779 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 5780 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 5781 } 5782 5783 bool LoopVectorizationLegality::blockCanBePredicated( 5784 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 5785 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 5786 5787 for (Instruction &I : *BB) { 5788 // Check that we don't have a constant expression that can trap as operand. 5789 for (Value *Operand : I.operands()) { 5790 if (auto *C = dyn_cast<Constant>(Operand)) 5791 if (C->canTrap()) 5792 return false; 5793 } 5794 // We might be able to hoist the load. 5795 if (I.mayReadFromMemory()) { 5796 auto *LI = dyn_cast<LoadInst>(&I); 5797 if (!LI) 5798 return false; 5799 if (!SafePtrs.count(LI->getPointerOperand())) { 5800 if (isLegalMaskedLoad(LI->getType(), LI->getPointerOperand()) || 5801 isLegalMaskedGather(LI->getType())) { 5802 MaskedOp.insert(LI); 5803 continue; 5804 } 5805 // !llvm.mem.parallel_loop_access implies if-conversion safety. 5806 if (IsAnnotatedParallel) 5807 continue; 5808 return false; 5809 } 5810 } 5811 5812 if (I.mayWriteToMemory()) { 5813 auto *SI = dyn_cast<StoreInst>(&I); 5814 // We only support predication of stores in basic blocks with one 5815 // predecessor. 5816 if (!SI) 5817 return false; 5818 5819 // Build a masked store if it is legal for the target. 5820 if (isLegalMaskedStore(SI->getValueOperand()->getType(), 5821 SI->getPointerOperand()) || 5822 isLegalMaskedScatter(SI->getValueOperand()->getType())) { 5823 MaskedOp.insert(SI); 5824 continue; 5825 } 5826 5827 bool isSafePtr = (SafePtrs.count(SI->getPointerOperand()) != 0); 5828 bool isSinglePredecessor = SI->getParent()->getSinglePredecessor(); 5829 5830 if (++NumPredStores > NumberOfStoresToPredicate || !isSafePtr || 5831 !isSinglePredecessor) 5832 return false; 5833 } 5834 if (I.mayThrow()) 5835 return false; 5836 } 5837 5838 return true; 5839 } 5840 5841 void InterleavedAccessInfo::collectConstStrideAccesses( 5842 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, 5843 const ValueToValueMap &Strides) { 5844 5845 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); 5846 5847 // Since it's desired that the load/store instructions be maintained in 5848 // "program order" for the interleaved access analysis, we have to visit the 5849 // blocks in the loop in reverse postorder (i.e., in a topological order). 5850 // Such an ordering will ensure that any load/store that may be executed 5851 // before a second load/store will precede the second load/store in 5852 // AccessStrideInfo. 5853 LoopBlocksDFS DFS(TheLoop); 5854 DFS.perform(LI); 5855 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) 5856 for (auto &I : *BB) { 5857 auto *LI = dyn_cast<LoadInst>(&I); 5858 auto *SI = dyn_cast<StoreInst>(&I); 5859 if (!LI && !SI) 5860 continue; 5861 5862 Value *Ptr = getPointerOperand(&I); 5863 // We don't check wrapping here because we don't know yet if Ptr will be 5864 // part of a full group or a group with gaps. Checking wrapping for all 5865 // pointers (even those that end up in groups with no gaps) will be overly 5866 // conservative. For full groups, wrapping should be ok since if we would 5867 // wrap around the address space we would do a memory access at nullptr 5868 // even without the transformation. The wrapping checks are therefore 5869 // deferred until after we've formed the interleaved groups. 5870 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, 5871 /*Assume=*/true, /*ShouldCheckWrap=*/false); 5872 5873 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); 5874 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 5875 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); 5876 5877 // An alignment of 0 means target ABI alignment. 5878 unsigned Align = getMemInstAlignment(&I); 5879 if (!Align) 5880 Align = DL.getABITypeAlignment(PtrTy->getElementType()); 5881 5882 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); 5883 } 5884 } 5885 5886 // Analyze interleaved accesses and collect them into interleaved load and 5887 // store groups. 5888 // 5889 // When generating code for an interleaved load group, we effectively hoist all 5890 // loads in the group to the location of the first load in program order. When 5891 // generating code for an interleaved store group, we sink all stores to the 5892 // location of the last store. This code motion can change the order of load 5893 // and store instructions and may break dependences. 5894 // 5895 // The code generation strategy mentioned above ensures that we won't violate 5896 // any write-after-read (WAR) dependences. 5897 // 5898 // E.g., for the WAR dependence: a = A[i]; // (1) 5899 // A[i] = b; // (2) 5900 // 5901 // The store group of (2) is always inserted at or below (2), and the load 5902 // group of (1) is always inserted at or above (1). Thus, the instructions will 5903 // never be reordered. All other dependences are checked to ensure the 5904 // correctness of the instruction reordering. 5905 // 5906 // The algorithm visits all memory accesses in the loop in bottom-up program 5907 // order. Program order is established by traversing the blocks in the loop in 5908 // reverse postorder when collecting the accesses. 5909 // 5910 // We visit the memory accesses in bottom-up order because it can simplify the 5911 // construction of store groups in the presence of write-after-write (WAW) 5912 // dependences. 5913 // 5914 // E.g., for the WAW dependence: A[i] = a; // (1) 5915 // A[i] = b; // (2) 5916 // A[i + 1] = c; // (3) 5917 // 5918 // We will first create a store group with (3) and (2). (1) can't be added to 5919 // this group because it and (2) are dependent. However, (1) can be grouped 5920 // with other accesses that may precede it in program order. Note that a 5921 // bottom-up order does not imply that WAW dependences should not be checked. 5922 void InterleavedAccessInfo::analyzeInterleaving( 5923 const ValueToValueMap &Strides) { 5924 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); 5925 5926 // Holds all accesses with a constant stride. 5927 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; 5928 collectConstStrideAccesses(AccessStrideInfo, Strides); 5929 5930 if (AccessStrideInfo.empty()) 5931 return; 5932 5933 // Collect the dependences in the loop. 5934 collectDependences(); 5935 5936 // Holds all interleaved store groups temporarily. 5937 SmallSetVector<InterleaveGroup *, 4> StoreGroups; 5938 // Holds all interleaved load groups temporarily. 5939 SmallSetVector<InterleaveGroup *, 4> LoadGroups; 5940 5941 // Search in bottom-up program order for pairs of accesses (A and B) that can 5942 // form interleaved load or store groups. In the algorithm below, access A 5943 // precedes access B in program order. We initialize a group for B in the 5944 // outer loop of the algorithm, and then in the inner loop, we attempt to 5945 // insert each A into B's group if: 5946 // 5947 // 1. A and B have the same stride, 5948 // 2. A and B have the same memory object size, and 5949 // 3. A belongs in B's group according to its distance from B. 5950 // 5951 // Special care is taken to ensure group formation will not break any 5952 // dependences. 5953 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); 5954 BI != E; ++BI) { 5955 Instruction *B = BI->first; 5956 StrideDescriptor DesB = BI->second; 5957 5958 // Initialize a group for B if it has an allowable stride. Even if we don't 5959 // create a group for B, we continue with the bottom-up algorithm to ensure 5960 // we don't break any of B's dependences. 5961 InterleaveGroup *Group = nullptr; 5962 if (isStrided(DesB.Stride)) { 5963 Group = getInterleaveGroup(B); 5964 if (!Group) { 5965 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); 5966 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); 5967 } 5968 if (B->mayWriteToMemory()) 5969 StoreGroups.insert(Group); 5970 else 5971 LoadGroups.insert(Group); 5972 } 5973 5974 for (auto AI = std::next(BI); AI != E; ++AI) { 5975 Instruction *A = AI->first; 5976 StrideDescriptor DesA = AI->second; 5977 5978 // Our code motion strategy implies that we can't have dependences 5979 // between accesses in an interleaved group and other accesses located 5980 // between the first and last member of the group. Note that this also 5981 // means that a group can't have more than one member at a given offset. 5982 // The accesses in a group can have dependences with other accesses, but 5983 // we must ensure we don't extend the boundaries of the group such that 5984 // we encompass those dependent accesses. 5985 // 5986 // For example, assume we have the sequence of accesses shown below in a 5987 // stride-2 loop: 5988 // 5989 // (1, 2) is a group | A[i] = a; // (1) 5990 // | A[i-1] = b; // (2) | 5991 // A[i-3] = c; // (3) 5992 // A[i] = d; // (4) | (2, 4) is not a group 5993 // 5994 // Because accesses (2) and (3) are dependent, we can group (2) with (1) 5995 // but not with (4). If we did, the dependent access (3) would be within 5996 // the boundaries of the (2, 4) group. 5997 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { 5998 5999 // If a dependence exists and A is already in a group, we know that A 6000 // must be a store since A precedes B and WAR dependences are allowed. 6001 // Thus, A would be sunk below B. We release A's group to prevent this 6002 // illegal code motion. A will then be free to form another group with 6003 // instructions that precede it. 6004 if (isInterleaved(A)) { 6005 InterleaveGroup *StoreGroup = getInterleaveGroup(A); 6006 StoreGroups.remove(StoreGroup); 6007 releaseGroup(StoreGroup); 6008 } 6009 6010 // If a dependence exists and A is not already in a group (or it was 6011 // and we just released it), B might be hoisted above A (if B is a 6012 // load) or another store might be sunk below A (if B is a store). In 6013 // either case, we can't add additional instructions to B's group. B 6014 // will only form a group with instructions that it precedes. 6015 break; 6016 } 6017 6018 // At this point, we've checked for illegal code motion. If either A or B 6019 // isn't strided, there's nothing left to do. 6020 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) 6021 continue; 6022 6023 // Ignore A if it's already in a group or isn't the same kind of memory 6024 // operation as B. 6025 if (isInterleaved(A) || A->mayReadFromMemory() != B->mayReadFromMemory()) 6026 continue; 6027 6028 // Check rules 1 and 2. Ignore A if its stride or size is different from 6029 // that of B. 6030 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) 6031 continue; 6032 6033 // Ignore A if the memory object of A and B don't belong to the same 6034 // address space 6035 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B)) 6036 continue; 6037 6038 // Calculate the distance from A to B. 6039 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( 6040 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); 6041 if (!DistToB) 6042 continue; 6043 int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); 6044 6045 // Check rule 3. Ignore A if its distance to B is not a multiple of the 6046 // size. 6047 if (DistanceToB % static_cast<int64_t>(DesB.Size)) 6048 continue; 6049 6050 // Ignore A if either A or B is in a predicated block. Although we 6051 // currently prevent group formation for predicated accesses, we may be 6052 // able to relax this limitation in the future once we handle more 6053 // complicated blocks. 6054 if (isPredicated(A->getParent()) || isPredicated(B->getParent())) 6055 continue; 6056 6057 // The index of A is the index of B plus A's distance to B in multiples 6058 // of the size. 6059 int IndexA = 6060 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); 6061 6062 // Try to insert A into B's group. 6063 if (Group->insertMember(A, IndexA, DesA.Align)) { 6064 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' 6065 << " into the interleave group with" << *B << '\n'); 6066 InterleaveGroupMap[A] = Group; 6067 6068 // Set the first load in program order as the insert position. 6069 if (A->mayReadFromMemory()) 6070 Group->setInsertPos(A); 6071 } 6072 } // Iteration over A accesses. 6073 } // Iteration over B accesses. 6074 6075 // Remove interleaved store groups with gaps. 6076 for (InterleaveGroup *Group : StoreGroups) 6077 if (Group->getNumMembers() != Group->getFactor()) { 6078 DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due " 6079 "to gaps.\n"); 6080 releaseGroup(Group); 6081 } 6082 // Remove interleaved groups with gaps (currently only loads) whose memory 6083 // accesses may wrap around. We have to revisit the getPtrStride analysis, 6084 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does 6085 // not check wrapping (see documentation there). 6086 // FORNOW we use Assume=false; 6087 // TODO: Change to Assume=true but making sure we don't exceed the threshold 6088 // of runtime SCEV assumptions checks (thereby potentially failing to 6089 // vectorize altogether). 6090 // Additional optional optimizations: 6091 // TODO: If we are peeling the loop and we know that the first pointer doesn't 6092 // wrap then we can deduce that all pointers in the group don't wrap. 6093 // This means that we can forcefully peel the loop in order to only have to 6094 // check the first pointer for no-wrap. When we'll change to use Assume=true 6095 // we'll only need at most one runtime check per interleaved group. 6096 // 6097 for (InterleaveGroup *Group : LoadGroups) { 6098 6099 // Case 1: A full group. Can Skip the checks; For full groups, if the wide 6100 // load would wrap around the address space we would do a memory access at 6101 // nullptr even without the transformation. 6102 if (Group->getNumMembers() == Group->getFactor()) 6103 continue; 6104 6105 // Case 2: If first and last members of the group don't wrap this implies 6106 // that all the pointers in the group don't wrap. 6107 // So we check only group member 0 (which is always guaranteed to exist), 6108 // and group member Factor - 1; If the latter doesn't exist we rely on 6109 // peeling (if it is a non-reveresed accsess -- see Case 3). 6110 Value *FirstMemberPtr = getPointerOperand(Group->getMember(0)); 6111 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, 6112 /*ShouldCheckWrap=*/true)) { 6113 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6114 "first group member potentially pointer-wrapping.\n"); 6115 releaseGroup(Group); 6116 continue; 6117 } 6118 Instruction *LastMember = Group->getMember(Group->getFactor() - 1); 6119 if (LastMember) { 6120 Value *LastMemberPtr = getPointerOperand(LastMember); 6121 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, 6122 /*ShouldCheckWrap=*/true)) { 6123 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6124 "last group member potentially pointer-wrapping.\n"); 6125 releaseGroup(Group); 6126 } 6127 } else { 6128 // Case 3: A non-reversed interleaved load group with gaps: We need 6129 // to execute at least one scalar epilogue iteration. This will ensure 6130 // we don't speculatively access memory out-of-bounds. We only need 6131 // to look for a member at index factor - 1, since every group must have 6132 // a member at index zero. 6133 if (Group->isReverse()) { 6134 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " 6135 "a reverse access with gaps.\n"); 6136 releaseGroup(Group); 6137 continue; 6138 } 6139 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); 6140 RequiresScalarEpilogue = true; 6141 } 6142 } 6143 } 6144 6145 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) { 6146 if (!EnableCondStoresVectorization && Legal->getNumPredStores()) { 6147 ORE->emit(createMissedAnalysis("ConditionalStore") 6148 << "store that is conditionally executed prevents vectorization"); 6149 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n"); 6150 return None; 6151 } 6152 6153 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 6154 // TODO: It may by useful to do since it's still likely to be dynamically 6155 // uniform if the target can skip. 6156 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target"); 6157 6158 ORE->emit( 6159 createMissedAnalysis("CantVersionLoopWithDivergentTarget") 6160 << "runtime pointer checks needed. Not enabled for divergent target"); 6161 6162 return None; 6163 } 6164 6165 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6166 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize. 6167 return computeFeasibleMaxVF(OptForSize, TC); 6168 6169 if (Legal->getRuntimePointerChecking()->Need) { 6170 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize") 6171 << "runtime pointer checks needed. Enable vectorization of this " 6172 "loop with '#pragma clang loop vectorize(enable)' when " 6173 "compiling with -Os/-Oz"); 6174 DEBUG(dbgs() 6175 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"); 6176 return None; 6177 } 6178 6179 // If we optimize the program for size, avoid creating the tail loop. 6180 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 6181 6182 // If we don't know the precise trip count, don't try to vectorize. 6183 if (TC < 2) { 6184 ORE->emit( 6185 createMissedAnalysis("UnknownLoopCountComplexCFG") 6186 << "unable to calculate the loop count due to complex control flow"); 6187 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6188 return None; 6189 } 6190 6191 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC); 6192 6193 if (TC % MaxVF != 0) { 6194 // If the trip count that we found modulo the vectorization factor is not 6195 // zero then we require a tail. 6196 // FIXME: look for a smaller MaxVF that does divide TC rather than give up. 6197 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a 6198 // smaller MaxVF that does not require a scalar epilog. 6199 6200 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize") 6201 << "cannot optimize for size and vectorize at the " 6202 "same time. Enable vectorization of this loop " 6203 "with '#pragma clang loop vectorize(enable)' " 6204 "when compiling with -Os/-Oz"); 6205 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"); 6206 return None; 6207 } 6208 6209 return MaxVF; 6210 } 6211 6212 unsigned 6213 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize, 6214 unsigned ConstTripCount) { 6215 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 6216 unsigned SmallestType, WidestType; 6217 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 6218 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 6219 6220 // Get the maximum safe dependence distance in bits computed by LAA. 6221 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 6222 // the memory accesses that is most restrictive (involved in the smallest 6223 // dependence distance). 6224 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth(); 6225 6226 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth); 6227 6228 unsigned MaxVectorSize = WidestRegister / WidestType; 6229 6230 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " 6231 << WidestType << " bits.\n"); 6232 DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegister 6233 << " bits.\n"); 6234 6235 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements" 6236 " into one vector!"); 6237 if (MaxVectorSize == 0) { 6238 DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 6239 MaxVectorSize = 1; 6240 return MaxVectorSize; 6241 } else if (ConstTripCount && ConstTripCount < MaxVectorSize && 6242 isPowerOf2_32(ConstTripCount)) { 6243 // We need to clamp the VF to be the ConstTripCount. There is no point in 6244 // choosing a higher viable VF as done in the loop below. 6245 DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 6246 << ConstTripCount << "\n"); 6247 MaxVectorSize = ConstTripCount; 6248 return MaxVectorSize; 6249 } 6250 6251 unsigned MaxVF = MaxVectorSize; 6252 if (MaximizeBandwidth && !OptForSize) { 6253 // Collect all viable vectorization factors larger than the default MaxVF 6254 // (i.e. MaxVectorSize). 6255 SmallVector<unsigned, 8> VFs; 6256 unsigned NewMaxVectorSize = WidestRegister / SmallestType; 6257 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2) 6258 VFs.push_back(VS); 6259 6260 // For each VF calculate its register usage. 6261 auto RUs = calculateRegisterUsage(VFs); 6262 6263 // Select the largest VF which doesn't require more registers than existing 6264 // ones. 6265 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true); 6266 for (int i = RUs.size() - 1; i >= 0; --i) { 6267 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) { 6268 MaxVF = VFs[i]; 6269 break; 6270 } 6271 } 6272 } 6273 return MaxVF; 6274 } 6275 6276 LoopVectorizationCostModel::VectorizationFactor 6277 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) { 6278 float Cost = expectedCost(1).first; 6279 #ifndef NDEBUG 6280 const float ScalarCost = Cost; 6281 #endif /* NDEBUG */ 6282 unsigned Width = 1; 6283 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n"); 6284 6285 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6286 // Ignore scalar width, because the user explicitly wants vectorization. 6287 if (ForceVectorization && MaxVF > 1) { 6288 Width = 2; 6289 Cost = expectedCost(Width).first / (float)Width; 6290 } 6291 6292 for (unsigned i = 2; i <= MaxVF; i *= 2) { 6293 // Notice that the vector loop needs to be executed less times, so 6294 // we need to divide the cost of the vector loops by the width of 6295 // the vector elements. 6296 VectorizationCostTy C = expectedCost(i); 6297 float VectorCost = C.first / (float)i; 6298 DEBUG(dbgs() << "LV: Vector loop of width " << i 6299 << " costs: " << (int)VectorCost << ".\n"); 6300 if (!C.second && !ForceVectorization) { 6301 DEBUG( 6302 dbgs() << "LV: Not considering vector loop of width " << i 6303 << " because it will not generate any vector instructions.\n"); 6304 continue; 6305 } 6306 if (VectorCost < Cost) { 6307 Cost = VectorCost; 6308 Width = i; 6309 } 6310 } 6311 6312 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs() 6313 << "LV: Vectorization seems to be not beneficial, " 6314 << "but was forced by a user.\n"); 6315 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 6316 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)}; 6317 return Factor; 6318 } 6319 6320 std::pair<unsigned, unsigned> 6321 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6322 unsigned MinWidth = -1U; 6323 unsigned MaxWidth = 8; 6324 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6325 6326 // For each block. 6327 for (BasicBlock *BB : TheLoop->blocks()) { 6328 // For each instruction in the loop. 6329 for (Instruction &I : *BB) { 6330 Type *T = I.getType(); 6331 6332 // Skip ignored values. 6333 if (ValuesToIgnore.count(&I)) 6334 continue; 6335 6336 // Only examine Loads, Stores and PHINodes. 6337 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6338 continue; 6339 6340 // Examine PHI nodes that are reduction variables. Update the type to 6341 // account for the recurrence type. 6342 if (auto *PN = dyn_cast<PHINode>(&I)) { 6343 if (!Legal->isReductionVariable(PN)) 6344 continue; 6345 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN]; 6346 T = RdxDesc.getRecurrenceType(); 6347 } 6348 6349 // Examine the stored values. 6350 if (auto *ST = dyn_cast<StoreInst>(&I)) 6351 T = ST->getValueOperand()->getType(); 6352 6353 // Ignore loaded pointer types and stored pointer types that are not 6354 // vectorizable. 6355 // 6356 // FIXME: The check here attempts to predict whether a load or store will 6357 // be vectorized. We only know this for certain after a VF has 6358 // been selected. Here, we assume that if an access can be 6359 // vectorized, it will be. We should also look at extending this 6360 // optimization to non-pointer types. 6361 // 6362 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6363 !Legal->isAccessInterleaved(&I) && !Legal->isLegalGatherOrScatter(&I)) 6364 continue; 6365 6366 MinWidth = std::min(MinWidth, 6367 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6368 MaxWidth = std::max(MaxWidth, 6369 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6370 } 6371 } 6372 6373 return {MinWidth, MaxWidth}; 6374 } 6375 6376 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize, 6377 unsigned VF, 6378 unsigned LoopCost) { 6379 6380 // -- The interleave heuristics -- 6381 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6382 // There are many micro-architectural considerations that we can't predict 6383 // at this level. For example, frontend pressure (on decode or fetch) due to 6384 // code size, or the number and capabilities of the execution ports. 6385 // 6386 // We use the following heuristics to select the interleave count: 6387 // 1. If the code has reductions, then we interleave to break the cross 6388 // iteration dependency. 6389 // 2. If the loop is really small, then we interleave to reduce the loop 6390 // overhead. 6391 // 3. We don't interleave if we think that we will spill registers to memory 6392 // due to the increased register pressure. 6393 6394 // When we optimize for size, we don't interleave. 6395 if (OptForSize) 6396 return 1; 6397 6398 // We used the distance for the interleave count. 6399 if (Legal->getMaxSafeDepDistBytes() != -1U) 6400 return 1; 6401 6402 // Do not interleave loops with a relatively small trip count. 6403 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 6404 if (TC > 1 && TC < TinyTripCountInterleaveThreshold) 6405 return 1; 6406 6407 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1); 6408 DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6409 << " registers\n"); 6410 6411 if (VF == 1) { 6412 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6413 TargetNumRegisters = ForceTargetNumScalarRegs; 6414 } else { 6415 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6416 TargetNumRegisters = ForceTargetNumVectorRegs; 6417 } 6418 6419 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6420 // We divide by these constants so assume that we have at least one 6421 // instruction that uses at least one register. 6422 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U); 6423 R.NumInstructions = std::max(R.NumInstructions, 1U); 6424 6425 // We calculate the interleave count using the following formula. 6426 // Subtract the number of loop invariants from the number of available 6427 // registers. These registers are used by all of the interleaved instances. 6428 // Next, divide the remaining registers by the number of registers that is 6429 // required by the loop, in order to estimate how many parallel instances 6430 // fit without causing spills. All of this is rounded down if necessary to be 6431 // a power of two. We want power of two interleave count to simplify any 6432 // addressing operations or alignment considerations. 6433 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) / 6434 R.MaxLocalUsers); 6435 6436 // Don't count the induction variable as interleaved. 6437 if (EnableIndVarRegisterHeur) 6438 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) / 6439 std::max(1U, (R.MaxLocalUsers - 1))); 6440 6441 // Clamp the interleave ranges to reasonable counts. 6442 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF); 6443 6444 // Check if the user has overridden the max. 6445 if (VF == 1) { 6446 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6447 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6448 } else { 6449 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6450 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6451 } 6452 6453 // If we did not calculate the cost for VF (because the user selected the VF) 6454 // then we calculate the cost of VF here. 6455 if (LoopCost == 0) 6456 LoopCost = expectedCost(VF).first; 6457 6458 // Clamp the calculated IC to be between the 1 and the max interleave count 6459 // that the target allows. 6460 if (IC > MaxInterleaveCount) 6461 IC = MaxInterleaveCount; 6462 else if (IC < 1) 6463 IC = 1; 6464 6465 // Interleave if we vectorized this loop and there is a reduction that could 6466 // benefit from interleaving. 6467 if (VF > 1 && Legal->getReductionVars()->size()) { 6468 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6469 return IC; 6470 } 6471 6472 // Note that if we've already vectorized the loop we will have done the 6473 // runtime check and so interleaving won't require further checks. 6474 bool InterleavingRequiresRuntimePointerCheck = 6475 (VF == 1 && Legal->getRuntimePointerChecking()->Need); 6476 6477 // We want to interleave small loops in order to reduce the loop overhead and 6478 // potentially expose ILP opportunities. 6479 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'); 6480 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6481 // We assume that the cost overhead is 1 and we use the cost model 6482 // to estimate the cost of the loop and interleave until the cost of the 6483 // loop overhead is about 5% of the cost of the loop. 6484 unsigned SmallIC = 6485 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6486 6487 // Interleave until store/load ports (estimated by max interleave count) are 6488 // saturated. 6489 unsigned NumStores = Legal->getNumStores(); 6490 unsigned NumLoads = Legal->getNumLoads(); 6491 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6492 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6493 6494 // If we have a scalar reduction (vector reductions are already dealt with 6495 // by this point), we can increase the critical path length if the loop 6496 // we're interleaving is inside another loop. Limit, by default to 2, so the 6497 // critical path only gets increased by one reduction operation. 6498 if (Legal->getReductionVars()->size() && TheLoop->getLoopDepth() > 1) { 6499 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6500 SmallIC = std::min(SmallIC, F); 6501 StoresIC = std::min(StoresIC, F); 6502 LoadsIC = std::min(LoadsIC, F); 6503 } 6504 6505 if (EnableLoadStoreRuntimeInterleave && 6506 std::max(StoresIC, LoadsIC) > SmallIC) { 6507 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6508 return std::max(StoresIC, LoadsIC); 6509 } 6510 6511 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6512 return SmallIC; 6513 } 6514 6515 // Interleave if this is a large loop (small loops are already dealt with by 6516 // this point) that could benefit from interleaving. 6517 bool HasReductions = (Legal->getReductionVars()->size() > 0); 6518 if (TTI.enableAggressiveInterleaving(HasReductions)) { 6519 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6520 return IC; 6521 } 6522 6523 DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6524 return 1; 6525 } 6526 6527 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6528 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) { 6529 // This function calculates the register usage by measuring the highest number 6530 // of values that are alive at a single location. Obviously, this is a very 6531 // rough estimation. We scan the loop in a topological order in order and 6532 // assign a number to each instruction. We use RPO to ensure that defs are 6533 // met before their users. We assume that each instruction that has in-loop 6534 // users starts an interval. We record every time that an in-loop value is 6535 // used, so we have a list of the first and last occurrences of each 6536 // instruction. Next, we transpose this data structure into a multi map that 6537 // holds the list of intervals that *end* at a specific location. This multi 6538 // map allows us to perform a linear search. We scan the instructions linearly 6539 // and record each time that a new interval starts, by placing it in a set. 6540 // If we find this value in the multi-map then we remove it from the set. 6541 // The max register usage is the maximum size of the set. 6542 // We also search for instructions that are defined outside the loop, but are 6543 // used inside the loop. We need this number separately from the max-interval 6544 // usage number because when we unroll, loop-invariant values do not take 6545 // more register. 6546 LoopBlocksDFS DFS(TheLoop); 6547 DFS.perform(LI); 6548 6549 RegisterUsage RU; 6550 RU.NumInstructions = 0; 6551 6552 // Each 'key' in the map opens a new interval. The values 6553 // of the map are the index of the 'last seen' usage of the 6554 // instruction that is the key. 6555 typedef DenseMap<Instruction *, unsigned> IntervalMap; 6556 // Maps instruction to its index. 6557 DenseMap<unsigned, Instruction *> IdxToInstr; 6558 // Marks the end of each interval. 6559 IntervalMap EndPoint; 6560 // Saves the list of instruction indices that are used in the loop. 6561 SmallSet<Instruction *, 8> Ends; 6562 // Saves the list of values that are used in the loop but are 6563 // defined outside the loop, such as arguments and constants. 6564 SmallPtrSet<Value *, 8> LoopInvariants; 6565 6566 unsigned Index = 0; 6567 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6568 RU.NumInstructions += BB->size(); 6569 for (Instruction &I : *BB) { 6570 IdxToInstr[Index++] = &I; 6571 6572 // Save the end location of each USE. 6573 for (Value *U : I.operands()) { 6574 auto *Instr = dyn_cast<Instruction>(U); 6575 6576 // Ignore non-instruction values such as arguments, constants, etc. 6577 if (!Instr) 6578 continue; 6579 6580 // If this instruction is outside the loop then record it and continue. 6581 if (!TheLoop->contains(Instr)) { 6582 LoopInvariants.insert(Instr); 6583 continue; 6584 } 6585 6586 // Overwrite previous end points. 6587 EndPoint[Instr] = Index; 6588 Ends.insert(Instr); 6589 } 6590 } 6591 } 6592 6593 // Saves the list of intervals that end with the index in 'key'. 6594 typedef SmallVector<Instruction *, 2> InstrList; 6595 DenseMap<unsigned, InstrList> TransposeEnds; 6596 6597 // Transpose the EndPoints to a list of values that end at each index. 6598 for (auto &Interval : EndPoint) 6599 TransposeEnds[Interval.second].push_back(Interval.first); 6600 6601 SmallSet<Instruction *, 8> OpenIntervals; 6602 6603 // Get the size of the widest register. 6604 unsigned MaxSafeDepDist = -1U; 6605 if (Legal->getMaxSafeDepDistBytes() != -1U) 6606 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8; 6607 unsigned WidestRegister = 6608 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist); 6609 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6610 6611 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6612 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0); 6613 6614 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6615 6616 // A lambda that gets the register usage for the given type and VF. 6617 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) { 6618 if (Ty->isTokenTy()) 6619 return 0U; 6620 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType()); 6621 return std::max<unsigned>(1, VF * TypeSize / WidestRegister); 6622 }; 6623 6624 for (unsigned int i = 0; i < Index; ++i) { 6625 Instruction *I = IdxToInstr[i]; 6626 6627 // Remove all of the instructions that end at this location. 6628 InstrList &List = TransposeEnds[i]; 6629 for (Instruction *ToRemove : List) 6630 OpenIntervals.erase(ToRemove); 6631 6632 // Ignore instructions that are never used within the loop. 6633 if (!Ends.count(I)) 6634 continue; 6635 6636 // Skip ignored values. 6637 if (ValuesToIgnore.count(I)) 6638 continue; 6639 6640 // For each VF find the maximum usage of registers. 6641 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6642 if (VFs[j] == 1) { 6643 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size()); 6644 continue; 6645 } 6646 collectUniformsAndScalars(VFs[j]); 6647 // Count the number of live intervals. 6648 unsigned RegUsage = 0; 6649 for (auto Inst : OpenIntervals) { 6650 // Skip ignored values for VF > 1. 6651 if (VecValuesToIgnore.count(Inst) || 6652 isScalarAfterVectorization(Inst, VFs[j])) 6653 continue; 6654 RegUsage += GetRegUsage(Inst->getType(), VFs[j]); 6655 } 6656 MaxUsages[j] = std::max(MaxUsages[j], RegUsage); 6657 } 6658 6659 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6660 << OpenIntervals.size() << '\n'); 6661 6662 // Add the current instruction to the list of open intervals. 6663 OpenIntervals.insert(I); 6664 } 6665 6666 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6667 unsigned Invariant = 0; 6668 if (VFs[i] == 1) 6669 Invariant = LoopInvariants.size(); 6670 else { 6671 for (auto Inst : LoopInvariants) 6672 Invariant += GetRegUsage(Inst->getType(), VFs[i]); 6673 } 6674 6675 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n'); 6676 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n'); 6677 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n'); 6678 DEBUG(dbgs() << "LV(REG): LoopSize: " << RU.NumInstructions << '\n'); 6679 6680 RU.LoopInvariantRegs = Invariant; 6681 RU.MaxLocalUsers = MaxUsages[i]; 6682 RUs[i] = RU; 6683 } 6684 6685 return RUs; 6686 } 6687 6688 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) { 6689 6690 // If we aren't vectorizing the loop, or if we've already collected the 6691 // instructions to scalarize, there's nothing to do. Collection may already 6692 // have occurred if we have a user-selected VF and are now computing the 6693 // expected cost for interleaving. 6694 if (VF < 2 || InstsToScalarize.count(VF)) 6695 return; 6696 6697 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6698 // not profitable to scalarize any instructions, the presence of VF in the 6699 // map will indicate that we've analyzed it already. 6700 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6701 6702 // Find all the instructions that are scalar with predication in the loop and 6703 // determine if it would be better to not if-convert the blocks they are in. 6704 // If so, we also record the instructions to scalarize. 6705 for (BasicBlock *BB : TheLoop->blocks()) { 6706 if (!Legal->blockNeedsPredication(BB)) 6707 continue; 6708 for (Instruction &I : *BB) 6709 if (Legal->isScalarWithPredication(&I)) { 6710 ScalarCostsTy ScalarCosts; 6711 if (computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6712 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6713 6714 // Remember that BB will remain after vectorization. 6715 PredicatedBBsAfterVectorization.insert(BB); 6716 } 6717 } 6718 } 6719 6720 int LoopVectorizationCostModel::computePredInstDiscount( 6721 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts, 6722 unsigned VF) { 6723 6724 assert(!isUniformAfterVectorization(PredInst, VF) && 6725 "Instruction marked uniform-after-vectorization will be predicated"); 6726 6727 // Initialize the discount to zero, meaning that the scalar version and the 6728 // vector version cost the same. 6729 int Discount = 0; 6730 6731 // Holds instructions to analyze. The instructions we visit are mapped in 6732 // ScalarCosts. Those instructions are the ones that would be scalarized if 6733 // we find that the scalar version costs less. 6734 SmallVector<Instruction *, 8> Worklist; 6735 6736 // Returns true if the given instruction can be scalarized. 6737 auto canBeScalarized = [&](Instruction *I) -> bool { 6738 6739 // We only attempt to scalarize instructions forming a single-use chain 6740 // from the original predicated block that would otherwise be vectorized. 6741 // Although not strictly necessary, we give up on instructions we know will 6742 // already be scalar to avoid traversing chains that are unlikely to be 6743 // beneficial. 6744 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6745 isScalarAfterVectorization(I, VF)) 6746 return false; 6747 6748 // If the instruction is scalar with predication, it will be analyzed 6749 // separately. We ignore it within the context of PredInst. 6750 if (Legal->isScalarWithPredication(I)) 6751 return false; 6752 6753 // If any of the instruction's operands are uniform after vectorization, 6754 // the instruction cannot be scalarized. This prevents, for example, a 6755 // masked load from being scalarized. 6756 // 6757 // We assume we will only emit a value for lane zero of an instruction 6758 // marked uniform after vectorization, rather than VF identical values. 6759 // Thus, if we scalarize an instruction that uses a uniform, we would 6760 // create uses of values corresponding to the lanes we aren't emitting code 6761 // for. This behavior can be changed by allowing getScalarValue to clone 6762 // the lane zero values for uniforms rather than asserting. 6763 for (Use &U : I->operands()) 6764 if (auto *J = dyn_cast<Instruction>(U.get())) 6765 if (isUniformAfterVectorization(J, VF)) 6766 return false; 6767 6768 // Otherwise, we can scalarize the instruction. 6769 return true; 6770 }; 6771 6772 // Returns true if an operand that cannot be scalarized must be extracted 6773 // from a vector. We will account for this scalarization overhead below. Note 6774 // that the non-void predicated instructions are placed in their own blocks, 6775 // and their return values are inserted into vectors. Thus, an extract would 6776 // still be required. 6777 auto needsExtract = [&](Instruction *I) -> bool { 6778 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF); 6779 }; 6780 6781 // Compute the expected cost discount from scalarizing the entire expression 6782 // feeding the predicated instruction. We currently only consider expressions 6783 // that are single-use instruction chains. 6784 Worklist.push_back(PredInst); 6785 while (!Worklist.empty()) { 6786 Instruction *I = Worklist.pop_back_val(); 6787 6788 // If we've already analyzed the instruction, there's nothing to do. 6789 if (ScalarCosts.count(I)) 6790 continue; 6791 6792 // Compute the cost of the vector instruction. Note that this cost already 6793 // includes the scalarization overhead of the predicated instruction. 6794 unsigned VectorCost = getInstructionCost(I, VF).first; 6795 6796 // Compute the cost of the scalarized instruction. This cost is the cost of 6797 // the instruction as if it wasn't if-converted and instead remained in the 6798 // predicated block. We will scale this cost by block probability after 6799 // computing the scalarization overhead. 6800 unsigned ScalarCost = VF * getInstructionCost(I, 1).first; 6801 6802 // Compute the scalarization overhead of needed insertelement instructions 6803 // and phi nodes. 6804 if (Legal->isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6805 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF), 6806 true, false); 6807 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI); 6808 } 6809 6810 // Compute the scalarization overhead of needed extractelement 6811 // instructions. For each of the instruction's operands, if the operand can 6812 // be scalarized, add it to the worklist; otherwise, account for the 6813 // overhead. 6814 for (Use &U : I->operands()) 6815 if (auto *J = dyn_cast<Instruction>(U.get())) { 6816 assert(VectorType::isValidElementType(J->getType()) && 6817 "Instruction has non-scalar type"); 6818 if (canBeScalarized(J)) 6819 Worklist.push_back(J); 6820 else if (needsExtract(J)) 6821 ScalarCost += TTI.getScalarizationOverhead( 6822 ToVectorTy(J->getType(),VF), false, true); 6823 } 6824 6825 // Scale the total scalar cost by block probability. 6826 ScalarCost /= getReciprocalPredBlockProb(); 6827 6828 // Compute the discount. A non-negative discount means the vector version 6829 // of the instruction costs more, and scalarizing would be beneficial. 6830 Discount += VectorCost - ScalarCost; 6831 ScalarCosts[I] = ScalarCost; 6832 } 6833 6834 return Discount; 6835 } 6836 6837 LoopVectorizationCostModel::VectorizationCostTy 6838 LoopVectorizationCostModel::expectedCost(unsigned VF) { 6839 VectorizationCostTy Cost; 6840 6841 // For each block. 6842 for (BasicBlock *BB : TheLoop->blocks()) { 6843 VectorizationCostTy BlockCost; 6844 6845 // For each instruction in the old loop. 6846 for (Instruction &I : *BB) { 6847 // Skip dbg intrinsics. 6848 if (isa<DbgInfoIntrinsic>(I)) 6849 continue; 6850 6851 // Skip ignored values. 6852 if (ValuesToIgnore.count(&I)) 6853 continue; 6854 6855 VectorizationCostTy C = getInstructionCost(&I, VF); 6856 6857 // Check if we should override the cost. 6858 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6859 C.first = ForceTargetInstructionCost; 6860 6861 BlockCost.first += C.first; 6862 BlockCost.second |= C.second; 6863 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " 6864 << VF << " For instruction: " << I << '\n'); 6865 } 6866 6867 // If we are vectorizing a predicated block, it will have been 6868 // if-converted. This means that the block's instructions (aside from 6869 // stores and instructions that may divide by zero) will now be 6870 // unconditionally executed. For the scalar case, we may not always execute 6871 // the predicated block. Thus, scale the block's cost by the probability of 6872 // executing it. 6873 if (VF == 1 && Legal->blockNeedsPredication(BB)) 6874 BlockCost.first /= getReciprocalPredBlockProb(); 6875 6876 Cost.first += BlockCost.first; 6877 Cost.second |= BlockCost.second; 6878 } 6879 6880 return Cost; 6881 } 6882 6883 /// \brief Gets Address Access SCEV after verifying that the access pattern 6884 /// is loop invariant except the induction variable dependence. 6885 /// 6886 /// This SCEV can be sent to the Target in order to estimate the address 6887 /// calculation cost. 6888 static const SCEV *getAddressAccessSCEV( 6889 Value *Ptr, 6890 LoopVectorizationLegality *Legal, 6891 ScalarEvolution *SE, 6892 const Loop *TheLoop) { 6893 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6894 if (!Gep) 6895 return nullptr; 6896 6897 // We are looking for a gep with all loop invariant indices except for one 6898 // which should be an induction variable. 6899 unsigned NumOperands = Gep->getNumOperands(); 6900 for (unsigned i = 1; i < NumOperands; ++i) { 6901 Value *Opd = Gep->getOperand(i); 6902 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6903 !Legal->isInductionVariable(Opd)) 6904 return nullptr; 6905 } 6906 6907 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6908 return SE->getSCEV(Ptr); 6909 } 6910 6911 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6912 return Legal->hasStride(I->getOperand(0)) || 6913 Legal->hasStride(I->getOperand(1)); 6914 } 6915 6916 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6917 unsigned VF) { 6918 Type *ValTy = getMemInstValueType(I); 6919 auto SE = PSE.getSE(); 6920 6921 unsigned Alignment = getMemInstAlignment(I); 6922 unsigned AS = getMemInstAddressSpace(I); 6923 Value *Ptr = getPointerOperand(I); 6924 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6925 6926 // Figure out whether the access is strided and get the stride value 6927 // if it's known in compile time 6928 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, SE, TheLoop); 6929 6930 // Get the cost of the scalar memory instruction and address computation. 6931 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6932 6933 Cost += VF * 6934 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6935 AS, I); 6936 6937 // Get the overhead of the extractelement and insertelement instructions 6938 // we might create due to scalarization. 6939 Cost += getScalarizationOverhead(I, VF, TTI); 6940 6941 // If we have a predicated store, it may not be executed for each vector 6942 // lane. Scale the cost by the probability of executing the predicated 6943 // block. 6944 if (Legal->isScalarWithPredication(I)) 6945 Cost /= getReciprocalPredBlockProb(); 6946 6947 return Cost; 6948 } 6949 6950 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6951 unsigned VF) { 6952 Type *ValTy = getMemInstValueType(I); 6953 Type *VectorTy = ToVectorTy(ValTy, VF); 6954 unsigned Alignment = getMemInstAlignment(I); 6955 Value *Ptr = getPointerOperand(I); 6956 unsigned AS = getMemInstAddressSpace(I); 6957 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6958 6959 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6960 "Stride should be 1 or -1 for consecutive memory access"); 6961 unsigned Cost = 0; 6962 if (Legal->isMaskRequired(I)) 6963 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS); 6964 else 6965 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I); 6966 6967 bool Reverse = ConsecutiveStride < 0; 6968 if (Reverse) 6969 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6970 return Cost; 6971 } 6972 6973 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6974 unsigned VF) { 6975 LoadInst *LI = cast<LoadInst>(I); 6976 Type *ValTy = LI->getType(); 6977 Type *VectorTy = ToVectorTy(ValTy, VF); 6978 unsigned Alignment = LI->getAlignment(); 6979 unsigned AS = LI->getPointerAddressSpace(); 6980 6981 return TTI.getAddressComputationCost(ValTy) + 6982 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) + 6983 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6984 } 6985 6986 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6987 unsigned VF) { 6988 Type *ValTy = getMemInstValueType(I); 6989 Type *VectorTy = ToVectorTy(ValTy, VF); 6990 unsigned Alignment = getMemInstAlignment(I); 6991 Value *Ptr = getPointerOperand(I); 6992 6993 return TTI.getAddressComputationCost(VectorTy) + 6994 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr, 6995 Legal->isMaskRequired(I), Alignment); 6996 } 6997 6998 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6999 unsigned VF) { 7000 Type *ValTy = getMemInstValueType(I); 7001 Type *VectorTy = ToVectorTy(ValTy, VF); 7002 unsigned AS = getMemInstAddressSpace(I); 7003 7004 auto Group = Legal->getInterleavedAccessGroup(I); 7005 assert(Group && "Fail to get an interleaved access group."); 7006 7007 unsigned InterleaveFactor = Group->getFactor(); 7008 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7009 7010 // Holds the indices of existing members in an interleaved load group. 7011 // An interleaved store group doesn't need this as it doesn't allow gaps. 7012 SmallVector<unsigned, 4> Indices; 7013 if (isa<LoadInst>(I)) { 7014 for (unsigned i = 0; i < InterleaveFactor; i++) 7015 if (Group->getMember(i)) 7016 Indices.push_back(i); 7017 } 7018 7019 // Calculate the cost of the whole interleaved group. 7020 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy, 7021 Group->getFactor(), Indices, 7022 Group->getAlignment(), AS); 7023 7024 if (Group->isReverse()) 7025 Cost += Group->getNumMembers() * 7026 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 7027 return Cost; 7028 } 7029 7030 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7031 unsigned VF) { 7032 7033 // Calculate scalar cost only. Vectorization cost should be ready at this 7034 // moment. 7035 if (VF == 1) { 7036 Type *ValTy = getMemInstValueType(I); 7037 unsigned Alignment = getMemInstAlignment(I); 7038 unsigned AS = getMemInstAddressSpace(I); 7039 7040 return TTI.getAddressComputationCost(ValTy) + 7041 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I); 7042 } 7043 return getWideningCost(I, VF); 7044 } 7045 7046 LoopVectorizationCostModel::VectorizationCostTy 7047 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) { 7048 // If we know that this instruction will remain uniform, check the cost of 7049 // the scalar version. 7050 if (isUniformAfterVectorization(I, VF)) 7051 VF = 1; 7052 7053 if (VF > 1 && isProfitableToScalarize(I, VF)) 7054 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7055 7056 // Forced scalars do not have any scalarization overhead. 7057 if (VF > 1 && ForcedScalars.count(VF) && 7058 ForcedScalars.find(VF)->second.count(I)) 7059 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false); 7060 7061 Type *VectorTy; 7062 unsigned C = getInstructionCost(I, VF, VectorTy); 7063 7064 bool TypeNotScalarized = 7065 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF; 7066 return VectorizationCostTy(C, TypeNotScalarized); 7067 } 7068 7069 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) { 7070 if (VF == 1) 7071 return; 7072 for (BasicBlock *BB : TheLoop->blocks()) { 7073 // For each instruction in the old loop. 7074 for (Instruction &I : *BB) { 7075 Value *Ptr = getPointerOperand(&I); 7076 if (!Ptr) 7077 continue; 7078 7079 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) { 7080 // Scalar load + broadcast 7081 unsigned Cost = getUniformMemOpCost(&I, VF); 7082 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7083 continue; 7084 } 7085 7086 // We assume that widening is the best solution when possible. 7087 if (Legal->memoryInstructionCanBeWidened(&I, VF)) { 7088 unsigned Cost = getConsecutiveMemOpCost(&I, VF); 7089 setWideningDecision(&I, VF, CM_Widen, Cost); 7090 continue; 7091 } 7092 7093 // Choose between Interleaving, Gather/Scatter or Scalarization. 7094 unsigned InterleaveCost = UINT_MAX; 7095 unsigned NumAccesses = 1; 7096 if (Legal->isAccessInterleaved(&I)) { 7097 auto Group = Legal->getInterleavedAccessGroup(&I); 7098 assert(Group && "Fail to get an interleaved access group."); 7099 7100 // Make one decision for the whole group. 7101 if (getWideningDecision(&I, VF) != CM_Unknown) 7102 continue; 7103 7104 NumAccesses = Group->getNumMembers(); 7105 InterleaveCost = getInterleaveGroupCost(&I, VF); 7106 } 7107 7108 unsigned GatherScatterCost = 7109 Legal->isLegalGatherOrScatter(&I) 7110 ? getGatherScatterCost(&I, VF) * NumAccesses 7111 : UINT_MAX; 7112 7113 unsigned ScalarizationCost = 7114 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7115 7116 // Choose better solution for the current VF, 7117 // write down this decision and use it during vectorization. 7118 unsigned Cost; 7119 InstWidening Decision; 7120 if (InterleaveCost <= GatherScatterCost && 7121 InterleaveCost < ScalarizationCost) { 7122 Decision = CM_Interleave; 7123 Cost = InterleaveCost; 7124 } else if (GatherScatterCost < ScalarizationCost) { 7125 Decision = CM_GatherScatter; 7126 Cost = GatherScatterCost; 7127 } else { 7128 Decision = CM_Scalarize; 7129 Cost = ScalarizationCost; 7130 } 7131 // If the instructions belongs to an interleave group, the whole group 7132 // receives the same decision. The whole group receives the cost, but 7133 // the cost will actually be assigned to one instruction. 7134 if (auto Group = Legal->getInterleavedAccessGroup(&I)) 7135 setWideningDecision(Group, VF, Decision, Cost); 7136 else 7137 setWideningDecision(&I, VF, Decision, Cost); 7138 } 7139 } 7140 7141 // Make sure that any load of address and any other address computation 7142 // remains scalar unless there is gather/scatter support. This avoids 7143 // inevitable extracts into address registers, and also has the benefit of 7144 // activating LSR more, since that pass can't optimize vectorized 7145 // addresses. 7146 if (TTI.prefersVectorizedAddressing()) 7147 return; 7148 7149 // Start with all scalar pointer uses. 7150 SmallPtrSet<Instruction *, 8> AddrDefs; 7151 for (BasicBlock *BB : TheLoop->blocks()) 7152 for (Instruction &I : *BB) { 7153 Instruction *PtrDef = 7154 dyn_cast_or_null<Instruction>(getPointerOperand(&I)); 7155 if (PtrDef && TheLoop->contains(PtrDef) && 7156 getWideningDecision(&I, VF) != CM_GatherScatter) 7157 AddrDefs.insert(PtrDef); 7158 } 7159 7160 // Add all instructions used to generate the addresses. 7161 SmallVector<Instruction *, 4> Worklist; 7162 for (auto *I : AddrDefs) 7163 Worklist.push_back(I); 7164 while (!Worklist.empty()) { 7165 Instruction *I = Worklist.pop_back_val(); 7166 for (auto &Op : I->operands()) 7167 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7168 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7169 AddrDefs.insert(InstOp).second == true) 7170 Worklist.push_back(InstOp); 7171 } 7172 7173 for (auto *I : AddrDefs) { 7174 if (isa<LoadInst>(I)) { 7175 // Setting the desired widening decision should ideally be handled in 7176 // by cost functions, but since this involves the task of finding out 7177 // if the loaded register is involved in an address computation, it is 7178 // instead changed here when we know this is the case. 7179 if (getWideningDecision(I, VF) == CM_Widen) 7180 // Scalarize a widened load of address. 7181 setWideningDecision(I, VF, CM_Scalarize, 7182 (VF * getMemoryInstructionCost(I, 1))); 7183 else if (auto Group = Legal->getInterleavedAccessGroup(I)) { 7184 // Scalarize an interleave group of address loads. 7185 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7186 if (Instruction *Member = Group->getMember(I)) 7187 setWideningDecision(Member, VF, CM_Scalarize, 7188 (VF * getMemoryInstructionCost(Member, 1))); 7189 } 7190 } 7191 } else 7192 // Make sure I gets scalarized and a cost estimate without 7193 // scalarization overhead. 7194 ForcedScalars[VF].insert(I); 7195 } 7196 } 7197 7198 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7199 unsigned VF, 7200 Type *&VectorTy) { 7201 Type *RetTy = I->getType(); 7202 if (canTruncateToMinimalBitwidth(I, VF)) 7203 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7204 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7205 auto SE = PSE.getSE(); 7206 7207 // TODO: We need to estimate the cost of intrinsic calls. 7208 switch (I->getOpcode()) { 7209 case Instruction::GetElementPtr: 7210 // We mark this instruction as zero-cost because the cost of GEPs in 7211 // vectorized code depends on whether the corresponding memory instruction 7212 // is scalarized or not. Therefore, we handle GEPs with the memory 7213 // instruction cost. 7214 return 0; 7215 case Instruction::Br: { 7216 // In cases of scalarized and predicated instructions, there will be VF 7217 // predicated blocks in the vectorized loop. Each branch around these 7218 // blocks requires also an extract of its vector compare i1 element. 7219 bool ScalarPredicatedBB = false; 7220 BranchInst *BI = cast<BranchInst>(I); 7221 if (VF > 1 && BI->isConditional() && 7222 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7223 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7224 ScalarPredicatedBB = true; 7225 7226 if (ScalarPredicatedBB) { 7227 // Return cost for branches around scalarized and predicated blocks. 7228 Type *Vec_i1Ty = 7229 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7230 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) + 7231 (TTI.getCFInstrCost(Instruction::Br) * VF)); 7232 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1) 7233 // The back-edge branch will remain, as will all scalar branches. 7234 return TTI.getCFInstrCost(Instruction::Br); 7235 else 7236 // This branch will be eliminated by if-conversion. 7237 return 0; 7238 // Note: We currently assume zero cost for an unconditional branch inside 7239 // a predicated block since it will become a fall-through, although we 7240 // may decide in the future to call TTI for all branches. 7241 } 7242 case Instruction::PHI: { 7243 auto *Phi = cast<PHINode>(I); 7244 7245 // First-order recurrences are replaced by vector shuffles inside the loop. 7246 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi)) 7247 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, 7248 VectorTy, VF - 1, VectorTy); 7249 7250 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7251 // converted into select instructions. We require N - 1 selects per phi 7252 // node, where N is the number of incoming values. 7253 if (VF > 1 && Phi->getParent() != TheLoop->getHeader()) 7254 return (Phi->getNumIncomingValues() - 1) * 7255 TTI.getCmpSelInstrCost( 7256 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7257 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF)); 7258 7259 return TTI.getCFInstrCost(Instruction::PHI); 7260 } 7261 case Instruction::UDiv: 7262 case Instruction::SDiv: 7263 case Instruction::URem: 7264 case Instruction::SRem: 7265 // If we have a predicated instruction, it may not be executed for each 7266 // vector lane. Get the scalarization cost and scale this amount by the 7267 // probability of executing the predicated block. If the instruction is not 7268 // predicated, we fall through to the next case. 7269 if (VF > 1 && Legal->isScalarWithPredication(I)) { 7270 unsigned Cost = 0; 7271 7272 // These instructions have a non-void type, so account for the phi nodes 7273 // that we will create. This cost is likely to be zero. The phi node 7274 // cost, if any, should be scaled by the block probability because it 7275 // models a copy at the end of each predicated block. 7276 Cost += VF * TTI.getCFInstrCost(Instruction::PHI); 7277 7278 // The cost of the non-predicated instruction. 7279 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy); 7280 7281 // The cost of insertelement and extractelement instructions needed for 7282 // scalarization. 7283 Cost += getScalarizationOverhead(I, VF, TTI); 7284 7285 // Scale the cost by the probability of executing the predicated blocks. 7286 // This assumes the predicated block for each vector lane is equally 7287 // likely. 7288 return Cost / getReciprocalPredBlockProb(); 7289 } 7290 LLVM_FALLTHROUGH; 7291 case Instruction::Add: 7292 case Instruction::FAdd: 7293 case Instruction::Sub: 7294 case Instruction::FSub: 7295 case Instruction::Mul: 7296 case Instruction::FMul: 7297 case Instruction::FDiv: 7298 case Instruction::FRem: 7299 case Instruction::Shl: 7300 case Instruction::LShr: 7301 case Instruction::AShr: 7302 case Instruction::And: 7303 case Instruction::Or: 7304 case Instruction::Xor: { 7305 // Since we will replace the stride by 1 the multiplication should go away. 7306 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7307 return 0; 7308 // Certain instructions can be cheaper to vectorize if they have a constant 7309 // second vector operand. One example of this are shifts on x86. 7310 TargetTransformInfo::OperandValueKind Op1VK = 7311 TargetTransformInfo::OK_AnyValue; 7312 TargetTransformInfo::OperandValueKind Op2VK = 7313 TargetTransformInfo::OK_AnyValue; 7314 TargetTransformInfo::OperandValueProperties Op1VP = 7315 TargetTransformInfo::OP_None; 7316 TargetTransformInfo::OperandValueProperties Op2VP = 7317 TargetTransformInfo::OP_None; 7318 Value *Op2 = I->getOperand(1); 7319 7320 // Check for a splat or for a non uniform vector of constants. 7321 if (isa<ConstantInt>(Op2)) { 7322 ConstantInt *CInt = cast<ConstantInt>(Op2); 7323 if (CInt && CInt->getValue().isPowerOf2()) 7324 Op2VP = TargetTransformInfo::OP_PowerOf2; 7325 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7326 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) { 7327 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; 7328 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue(); 7329 if (SplatValue) { 7330 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue); 7331 if (CInt && CInt->getValue().isPowerOf2()) 7332 Op2VP = TargetTransformInfo::OP_PowerOf2; 7333 Op2VK = TargetTransformInfo::OK_UniformConstantValue; 7334 } 7335 } else if (Legal->isUniform(Op2)) { 7336 Op2VK = TargetTransformInfo::OK_UniformValue; 7337 } 7338 SmallVector<const Value *, 4> Operands(I->operand_values()); 7339 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7340 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, 7341 Op2VK, Op1VP, Op2VP, Operands); 7342 } 7343 case Instruction::Select: { 7344 SelectInst *SI = cast<SelectInst>(I); 7345 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7346 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7347 Type *CondTy = SI->getCondition()->getType(); 7348 if (!ScalarCond) 7349 CondTy = VectorType::get(CondTy, VF); 7350 7351 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I); 7352 } 7353 case Instruction::ICmp: 7354 case Instruction::FCmp: { 7355 Type *ValTy = I->getOperand(0)->getType(); 7356 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7357 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7358 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7359 VectorTy = ToVectorTy(ValTy, VF); 7360 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I); 7361 } 7362 case Instruction::Store: 7363 case Instruction::Load: { 7364 unsigned Width = VF; 7365 if (Width > 1) { 7366 InstWidening Decision = getWideningDecision(I, Width); 7367 assert(Decision != CM_Unknown && 7368 "CM decision should be taken at this point"); 7369 if (Decision == CM_Scalarize) 7370 Width = 1; 7371 } 7372 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7373 return getMemoryInstructionCost(I, VF); 7374 } 7375 case Instruction::ZExt: 7376 case Instruction::SExt: 7377 case Instruction::FPToUI: 7378 case Instruction::FPToSI: 7379 case Instruction::FPExt: 7380 case Instruction::PtrToInt: 7381 case Instruction::IntToPtr: 7382 case Instruction::SIToFP: 7383 case Instruction::UIToFP: 7384 case Instruction::Trunc: 7385 case Instruction::FPTrunc: 7386 case Instruction::BitCast: { 7387 // We optimize the truncation of induction variables having constant 7388 // integer steps. The cost of these truncations is the same as the scalar 7389 // operation. 7390 if (isOptimizableIVTruncate(I, VF)) { 7391 auto *Trunc = cast<TruncInst>(I); 7392 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7393 Trunc->getSrcTy(), Trunc); 7394 } 7395 7396 Type *SrcScalarTy = I->getOperand(0)->getType(); 7397 Type *SrcVecTy = 7398 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7399 if (canTruncateToMinimalBitwidth(I, VF)) { 7400 // This cast is going to be shrunk. This may remove the cast or it might 7401 // turn it into slightly different cast. For example, if MinBW == 16, 7402 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7403 // 7404 // Calculate the modified src and dest types. 7405 Type *MinVecTy = VectorTy; 7406 if (I->getOpcode() == Instruction::Trunc) { 7407 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7408 VectorTy = 7409 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7410 } else if (I->getOpcode() == Instruction::ZExt || 7411 I->getOpcode() == Instruction::SExt) { 7412 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7413 VectorTy = 7414 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7415 } 7416 } 7417 7418 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1; 7419 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I); 7420 } 7421 case Instruction::Call: { 7422 bool NeedToScalarize; 7423 CallInst *CI = cast<CallInst>(I); 7424 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize); 7425 if (getVectorIntrinsicIDForCall(CI, TLI)) 7426 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI)); 7427 return CallCost; 7428 } 7429 default: 7430 // The cost of executing VF copies of the scalar instruction. This opcode 7431 // is unknown. Assume that it is the same as 'mul'. 7432 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) + 7433 getScalarizationOverhead(I, VF, TTI); 7434 } // end of switch. 7435 } 7436 7437 char LoopVectorize::ID = 0; 7438 static const char lv_name[] = "Loop Vectorization"; 7439 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7440 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7441 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7442 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7443 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7444 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7445 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7446 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7447 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7448 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7449 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7450 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7451 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7452 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7453 7454 namespace llvm { 7455 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) { 7456 return new LoopVectorize(NoUnrolling, AlwaysVectorize); 7457 } 7458 } 7459 7460 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7461 7462 // Check if the pointer operand of a load or store instruction is 7463 // consecutive. 7464 if (auto *Ptr = getPointerOperand(Inst)) 7465 return Legal->isConsecutivePtr(Ptr); 7466 return false; 7467 } 7468 7469 void LoopVectorizationCostModel::collectValuesToIgnore() { 7470 // Ignore ephemeral values. 7471 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7472 7473 // Ignore type-promoting instructions we identified during reduction 7474 // detection. 7475 for (auto &Reduction : *Legal->getReductionVars()) { 7476 RecurrenceDescriptor &RedDes = Reduction.second; 7477 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7478 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7479 } 7480 } 7481 7482 LoopVectorizationCostModel::VectorizationFactor 7483 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) { 7484 7485 // Width 1 means no vectorize, cost 0 means uncomputed cost. 7486 const LoopVectorizationCostModel::VectorizationFactor NoVectorization = {1U, 7487 0U}; 7488 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize); 7489 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize. 7490 return NoVectorization; 7491 7492 if (UserVF) { 7493 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 7494 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two"); 7495 // Collect the instructions (and their associated costs) that will be more 7496 // profitable to scalarize. 7497 CM.selectUserVectorizationFactor(UserVF); 7498 buildVPlans(UserVF, UserVF); 7499 DEBUG(printPlans(dbgs())); 7500 return {UserVF, 0}; 7501 } 7502 7503 unsigned MaxVF = MaybeMaxVF.getValue(); 7504 assert(MaxVF != 0 && "MaxVF is zero."); 7505 7506 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) { 7507 // Collect Uniform and Scalar instructions after vectorization with VF. 7508 CM.collectUniformsAndScalars(VF); 7509 7510 // Collect the instructions (and their associated costs) that will be more 7511 // profitable to scalarize. 7512 if (VF > 1) 7513 CM.collectInstsToScalarize(VF); 7514 } 7515 7516 buildVPlans(1, MaxVF); 7517 DEBUG(printPlans(dbgs())); 7518 if (MaxVF == 1) 7519 return NoVectorization; 7520 7521 // Select the optimal vectorization factor. 7522 return CM.selectVectorizationFactor(MaxVF); 7523 } 7524 7525 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) { 7526 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n'); 7527 BestVF = VF; 7528 BestUF = UF; 7529 7530 for (auto *VPlanIter = VPlans.begin(); VPlanIter != VPlans.end();) { 7531 VPlan *Plan = *VPlanIter; 7532 if (Plan->hasVF(VF)) 7533 ++VPlanIter; 7534 else { 7535 VPlanIter = VPlans.erase(VPlanIter); 7536 delete Plan; 7537 } 7538 } 7539 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7540 } 7541 7542 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7543 DominatorTree *DT) { 7544 // Perform the actual loop transformation. 7545 7546 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7547 VPTransformState State{ 7548 BestVF, BestUF, LI, DT, ILV.Builder, ILV.VectorLoopValueMap, &ILV}; 7549 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7550 7551 //===------------------------------------------------===// 7552 // 7553 // Notice: any optimization or new instruction that go 7554 // into the code below should also be implemented in 7555 // the cost-model. 7556 // 7557 //===------------------------------------------------===// 7558 7559 // 2. Copy and widen instructions from the old loop into the new loop. 7560 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7561 VPlan *Plan = *VPlans.begin(); 7562 Plan->execute(&State); 7563 7564 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7565 // predication, updating analyses. 7566 ILV.fixVectorizedLoop(); 7567 } 7568 7569 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7570 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7571 BasicBlock *Latch = OrigLoop->getLoopLatch(); 7572 7573 // We create new control-flow for the vectorized loop, so the original 7574 // condition will be dead after vectorization if it's only used by the 7575 // branch. 7576 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 7577 if (Cmp && Cmp->hasOneUse()) 7578 DeadInstructions.insert(Cmp); 7579 7580 // We create new "steps" for induction variable updates to which the original 7581 // induction variables map. An original update instruction will be dead if 7582 // all its users except the induction variable are dead. 7583 for (auto &Induction : *Legal->getInductionVars()) { 7584 PHINode *Ind = Induction.first; 7585 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7586 if (all_of(IndUpdate->users(), [&](User *U) -> bool { 7587 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7588 })) 7589 DeadInstructions.insert(IndUpdate); 7590 } 7591 } 7592 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7593 7594 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7595 7596 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7597 Instruction::BinaryOps BinOp) { 7598 // When unrolling and the VF is 1, we only need to add a simple scalar. 7599 Type *Ty = Val->getType(); 7600 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7601 7602 if (Ty->isFloatingPointTy()) { 7603 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7604 7605 // Floating point operations had to be 'fast' to enable the unrolling. 7606 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7607 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7608 } 7609 Constant *C = ConstantInt::get(Ty, StartIdx); 7610 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7611 } 7612 7613 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7614 SmallVector<Metadata *, 4> MDs; 7615 // Reserve first location for self reference to the LoopID metadata node. 7616 MDs.push_back(nullptr); 7617 bool IsUnrollMetadata = false; 7618 MDNode *LoopID = L->getLoopID(); 7619 if (LoopID) { 7620 // First find existing loop unrolling disable metadata. 7621 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7622 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7623 if (MD) { 7624 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7625 IsUnrollMetadata = 7626 S && S->getString().startswith("llvm.loop.unroll.disable"); 7627 } 7628 MDs.push_back(LoopID->getOperand(i)); 7629 } 7630 } 7631 7632 if (!IsUnrollMetadata) { 7633 // Add runtime unroll disable metadata. 7634 LLVMContext &Context = L->getHeader()->getContext(); 7635 SmallVector<Metadata *, 1> DisableOperands; 7636 DisableOperands.push_back( 7637 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7638 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7639 MDs.push_back(DisableNode); 7640 MDNode *NewLoopID = MDNode::get(Context, MDs); 7641 // Set operand 0 to refer to the loop id itself. 7642 NewLoopID->replaceOperandWith(0, NewLoopID); 7643 L->setLoopID(NewLoopID); 7644 } 7645 } 7646 7647 namespace { 7648 /// VPWidenRecipe is a recipe for producing a copy of vector type for each 7649 /// Instruction in its ingredients independently, in order. This recipe covers 7650 /// most of the traditional vectorization cases where each ingredient transforms 7651 /// into a vectorized version of itself. 7652 class VPWidenRecipe : public VPRecipeBase { 7653 private: 7654 /// Hold the ingredients by pointing to their original BasicBlock location. 7655 BasicBlock::iterator Begin; 7656 BasicBlock::iterator End; 7657 7658 public: 7659 VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) { 7660 End = I->getIterator(); 7661 Begin = End++; 7662 } 7663 7664 ~VPWidenRecipe() {} 7665 7666 /// Method to support type inquiry through isa, cast, and dyn_cast. 7667 static inline bool classof(const VPRecipeBase *V) { 7668 return V->getVPRecipeID() == VPRecipeBase::VPWidenSC; 7669 } 7670 7671 /// Produce widened copies of all Ingredients. 7672 void execute(VPTransformState &State) override { 7673 for (auto &Instr : make_range(Begin, End)) 7674 State.ILV->widenInstruction(Instr); 7675 } 7676 7677 /// Augment the recipe to include Instr, if it lies at its End. 7678 bool appendInstruction(Instruction *Instr) { 7679 if (End != Instr->getIterator()) 7680 return false; 7681 End++; 7682 return true; 7683 } 7684 7685 /// Print the recipe. 7686 void print(raw_ostream &O, const Twine &Indent) const override { 7687 O << " +\n" << Indent << "\"WIDEN\\l\""; 7688 for (auto &Instr : make_range(Begin, End)) 7689 O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\""; 7690 } 7691 }; 7692 7693 /// A recipe for handling phi nodes of integer and floating-point inductions, 7694 /// producing their vector and scalar values. 7695 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase { 7696 private: 7697 PHINode *IV; 7698 TruncInst *Trunc; 7699 7700 public: 7701 VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr) 7702 : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {} 7703 7704 ~VPWidenIntOrFpInductionRecipe() {} 7705 7706 /// Method to support type inquiry through isa, cast, and dyn_cast. 7707 static inline bool classof(const VPRecipeBase *V) { 7708 return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC; 7709 } 7710 7711 /// Generate the vectorized and scalarized versions of the phi node as 7712 /// needed by their users. 7713 void execute(VPTransformState &State) override { 7714 assert(!State.Instance && "Int or FP induction being replicated."); 7715 State.ILV->widenIntOrFpInduction(IV, Trunc); 7716 } 7717 7718 /// Print the recipe. 7719 void print(raw_ostream &O, const Twine &Indent) const override { 7720 O << " +\n" << Indent << "\"WIDEN-INDUCTION"; 7721 if (Trunc) { 7722 O << "\\l\""; 7723 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 7724 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\""; 7725 } else 7726 O << " " << VPlanIngredient(IV) << "\\l\""; 7727 } 7728 }; 7729 7730 /// A recipe for handling all phi nodes except for integer and FP inductions. 7731 class VPWidenPHIRecipe : public VPRecipeBase { 7732 private: 7733 PHINode *Phi; 7734 7735 public: 7736 VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {} 7737 7738 ~VPWidenPHIRecipe() {} 7739 7740 /// Method to support type inquiry through isa, cast, and dyn_cast. 7741 static inline bool classof(const VPRecipeBase *V) { 7742 return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC; 7743 } 7744 7745 /// Generate the phi/select nodes. 7746 void execute(VPTransformState &State) override { 7747 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF); 7748 } 7749 7750 /// Print the recipe. 7751 void print(raw_ostream &O, const Twine &Indent) const override { 7752 O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; 7753 } 7754 }; 7755 7756 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load 7757 /// or stores into one wide load/store and shuffles. 7758 class VPInterleaveRecipe : public VPRecipeBase { 7759 private: 7760 const InterleaveGroup *IG; 7761 7762 public: 7763 VPInterleaveRecipe(const InterleaveGroup *IG) 7764 : VPRecipeBase(VPInterleaveSC), IG(IG) {} 7765 7766 ~VPInterleaveRecipe() {} 7767 7768 /// Method to support type inquiry through isa, cast, and dyn_cast. 7769 static inline bool classof(const VPRecipeBase *V) { 7770 return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC; 7771 } 7772 7773 /// Generate the wide load or store, and shuffles. 7774 void execute(VPTransformState &State) override { 7775 assert(!State.Instance && "Interleave group being replicated."); 7776 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos()); 7777 } 7778 7779 /// Print the recipe. 7780 void print(raw_ostream &O, const Twine &Indent) const override; 7781 7782 const InterleaveGroup *getInterleaveGroup() { return IG; } 7783 }; 7784 7785 /// VPReplicateRecipe replicates a given instruction producing multiple scalar 7786 /// copies of the original scalar type, one per lane, instead of producing a 7787 /// single copy of widened type for all lanes. If the instruction is known to be 7788 /// uniform only one copy, per lane zero, will be generated. 7789 class VPReplicateRecipe : public VPRecipeBase { 7790 private: 7791 /// The instruction being replicated. 7792 Instruction *Ingredient; 7793 7794 /// Indicator if only a single replica per lane is needed. 7795 bool IsUniform; 7796 7797 /// Indicator if the replicas are also predicated. 7798 bool IsPredicated; 7799 7800 /// Indicator if the scalar values should also be packed into a vector. 7801 bool AlsoPack; 7802 7803 public: 7804 VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false) 7805 : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform), 7806 IsPredicated(IsPredicated) { 7807 // Retain the previous behavior of predicateInstructions(), where an 7808 // insert-element of a predicated instruction got hoisted into the 7809 // predicated basic block iff it was its only user. This is achieved by 7810 // having predicated instructions also pack their values into a vector by 7811 // default unless they have a replicated user which uses their scalar value. 7812 AlsoPack = IsPredicated && !I->use_empty(); 7813 } 7814 7815 ~VPReplicateRecipe() {} 7816 7817 /// Method to support type inquiry through isa, cast, and dyn_cast. 7818 static inline bool classof(const VPRecipeBase *V) { 7819 return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC; 7820 } 7821 7822 /// Generate replicas of the desired Ingredient. Replicas will be generated 7823 /// for all parts and lanes unless a specific part and lane are specified in 7824 /// the \p State. 7825 void execute(VPTransformState &State) override; 7826 7827 void setAlsoPack(bool Pack) { AlsoPack = Pack; } 7828 7829 /// Print the recipe. 7830 void print(raw_ostream &O, const Twine &Indent) const override { 7831 O << " +\n" 7832 << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 7833 << VPlanIngredient(Ingredient); 7834 if (AlsoPack) 7835 O << " (S->V)"; 7836 O << "\\l\""; 7837 } 7838 }; 7839 7840 /// A recipe for generating conditional branches on the bits of a mask. 7841 class VPBranchOnMaskRecipe : public VPRecipeBase { 7842 private: 7843 /// The input IR basic block used to obtain the mask providing the condition 7844 /// bits for the branch. 7845 BasicBlock *MaskedBasicBlock; 7846 7847 public: 7848 VPBranchOnMaskRecipe(BasicBlock *BB) 7849 : VPRecipeBase(VPBranchOnMaskSC), MaskedBasicBlock(BB) {} 7850 7851 /// Method to support type inquiry through isa, cast, and dyn_cast. 7852 static inline bool classof(const VPRecipeBase *V) { 7853 return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC; 7854 } 7855 7856 /// Generate the extraction of the appropriate bit from the block mask and the 7857 /// conditional branch. 7858 void execute(VPTransformState &State) override; 7859 7860 /// Print the recipe. 7861 void print(raw_ostream &O, const Twine &Indent) const override { 7862 O << " +\n" 7863 << Indent << "\"BRANCH-ON-MASK-OF " << MaskedBasicBlock->getName() 7864 << "\\l\""; 7865 } 7866 }; 7867 7868 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when 7869 /// control converges back from a Branch-on-Mask. The phi nodes are needed in 7870 /// order to merge values that are set under such a branch and feed their uses. 7871 /// The phi nodes can be scalar or vector depending on the users of the value. 7872 /// This recipe works in concert with VPBranchOnMaskRecipe. 7873 class VPPredInstPHIRecipe : public VPRecipeBase { 7874 private: 7875 Instruction *PredInst; 7876 7877 public: 7878 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi 7879 /// nodes after merging back from a Branch-on-Mask. 7880 VPPredInstPHIRecipe(Instruction *PredInst) 7881 : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {} 7882 7883 ~VPPredInstPHIRecipe() {} 7884 7885 /// Method to support type inquiry through isa, cast, and dyn_cast. 7886 static inline bool classof(const VPRecipeBase *V) { 7887 return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC; 7888 } 7889 7890 /// Generates phi nodes for live-outs as needed to retain SSA form. 7891 void execute(VPTransformState &State) override; 7892 7893 /// Print the recipe. 7894 void print(raw_ostream &O, const Twine &Indent) const override { 7895 O << " +\n" 7896 << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) 7897 << "\\l\""; 7898 } 7899 }; 7900 } // end anonymous namespace 7901 7902 bool LoopVectorizationPlanner::getDecisionAndClampRange( 7903 const std::function<bool(unsigned)> &Predicate, VFRange &Range) { 7904 assert(Range.End > Range.Start && "Trying to test an empty VF range."); 7905 bool PredicateAtRangeStart = Predicate(Range.Start); 7906 7907 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2) 7908 if (Predicate(TmpVF) != PredicateAtRangeStart) { 7909 Range.End = TmpVF; 7910 break; 7911 } 7912 7913 return PredicateAtRangeStart; 7914 } 7915 7916 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 7917 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 7918 /// of VF's starting at a given VF and extending it as much as possible. Each 7919 /// vectorization decision can potentially shorten this sub-range during 7920 /// buildVPlan(). 7921 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) { 7922 for (unsigned VF = MinVF; VF < MaxVF + 1;) { 7923 VFRange SubRange = {VF, MaxVF + 1}; 7924 VPlan *Plan = buildVPlan(SubRange); 7925 VPlans.push_back(Plan); 7926 VF = SubRange.End; 7927 } 7928 } 7929 7930 VPInterleaveRecipe * 7931 LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I, 7932 VFRange &Range) { 7933 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(I); 7934 if (!IG) 7935 return nullptr; 7936 7937 // Now check if IG is relevant for VF's in the given range. 7938 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> { 7939 return [=](unsigned VF) -> bool { 7940 return (VF >= 2 && // Query is illegal for VF == 1 7941 CM.getWideningDecision(I, VF) == 7942 LoopVectorizationCostModel::CM_Interleave); 7943 }; 7944 }; 7945 if (!getDecisionAndClampRange(isIGMember(I), Range)) 7946 return nullptr; 7947 7948 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed) 7949 // range. If it's the primary member of the IG construct a VPInterleaveRecipe. 7950 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe. 7951 assert(I == IG->getInsertPos() && 7952 "Generating a recipe for an adjunct member of an interleave group"); 7953 7954 return new VPInterleaveRecipe(IG); 7955 } 7956 7957 VPWidenIntOrFpInductionRecipe * 7958 LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I, 7959 VFRange &Range) { 7960 if (PHINode *Phi = dyn_cast<PHINode>(I)) { 7961 // Check if this is an integer or fp induction. If so, build the recipe that 7962 // produces its scalar and vector values. 7963 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi); 7964 if (II.getKind() == InductionDescriptor::IK_IntInduction || 7965 II.getKind() == InductionDescriptor::IK_FpInduction) 7966 return new VPWidenIntOrFpInductionRecipe(Phi); 7967 7968 return nullptr; 7969 } 7970 7971 // Optimize the special case where the source is a constant integer 7972 // induction variable. Notice that we can only optimize the 'trunc' case 7973 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 7974 // (c) other casts depend on pointer size. 7975 7976 // Determine whether \p K is a truncation based on an induction variable that 7977 // can be optimized. 7978 auto isOptimizableIVTruncate = 7979 [&](Instruction *K) -> std::function<bool(unsigned)> { 7980 return 7981 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); }; 7982 }; 7983 7984 if (isa<TruncInst>(I) && 7985 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range)) 7986 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 7987 cast<TruncInst>(I)); 7988 return nullptr; 7989 } 7990 7991 VPWidenRecipe *LoopVectorizationPlanner::tryToWiden( 7992 Instruction *I, VPWidenRecipe *LastWidenRecipe, VFRange &Range) { 7993 7994 if (Legal->isScalarWithPredication(I)) 7995 return nullptr; 7996 7997 auto IsVectorizableOpcode = [](unsigned Opcode) { 7998 switch (Opcode) { 7999 case Instruction::Add: 8000 case Instruction::And: 8001 case Instruction::AShr: 8002 case Instruction::BitCast: 8003 case Instruction::Br: 8004 case Instruction::Call: 8005 case Instruction::FAdd: 8006 case Instruction::FCmp: 8007 case Instruction::FDiv: 8008 case Instruction::FMul: 8009 case Instruction::FPExt: 8010 case Instruction::FPToSI: 8011 case Instruction::FPToUI: 8012 case Instruction::FPTrunc: 8013 case Instruction::FRem: 8014 case Instruction::FSub: 8015 case Instruction::GetElementPtr: 8016 case Instruction::ICmp: 8017 case Instruction::IntToPtr: 8018 case Instruction::Load: 8019 case Instruction::LShr: 8020 case Instruction::Mul: 8021 case Instruction::Or: 8022 case Instruction::PHI: 8023 case Instruction::PtrToInt: 8024 case Instruction::SDiv: 8025 case Instruction::Select: 8026 case Instruction::SExt: 8027 case Instruction::Shl: 8028 case Instruction::SIToFP: 8029 case Instruction::SRem: 8030 case Instruction::Store: 8031 case Instruction::Sub: 8032 case Instruction::Trunc: 8033 case Instruction::UDiv: 8034 case Instruction::UIToFP: 8035 case Instruction::URem: 8036 case Instruction::Xor: 8037 case Instruction::ZExt: 8038 return true; 8039 } 8040 return false; 8041 }; 8042 8043 if (!IsVectorizableOpcode(I->getOpcode())) 8044 return nullptr; 8045 8046 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8047 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8048 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8049 ID == Intrinsic::lifetime_start)) 8050 return nullptr; 8051 } 8052 8053 auto willWiden = [&](unsigned VF) -> bool { 8054 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) || 8055 CM.isProfitableToScalarize(I, VF))) 8056 return false; 8057 if (CallInst *CI = dyn_cast<CallInst>(I)) { 8058 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8059 // The following case may be scalarized depending on the VF. 8060 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8061 // version of the instruction. 8062 // Is it beneficial to perform intrinsic call compared to lib call? 8063 bool NeedToScalarize; 8064 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize); 8065 bool UseVectorIntrinsic = 8066 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost; 8067 return UseVectorIntrinsic || !NeedToScalarize; 8068 } 8069 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 8070 LoopVectorizationCostModel::InstWidening Decision = 8071 CM.getWideningDecision(I, VF); 8072 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8073 "CM decision should be taken at this point."); 8074 assert(Decision != LoopVectorizationCostModel::CM_Interleave && 8075 "Interleave memory opportunity should be caught earlier."); 8076 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8077 } 8078 return true; 8079 }; 8080 8081 if (!getDecisionAndClampRange(willWiden, Range)) 8082 return nullptr; 8083 8084 // Success: widen this instruction. We optimize the common case where 8085 // consecutive instructions can be represented by a single recipe. 8086 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I)) 8087 return LastWidenRecipe; 8088 return new VPWidenRecipe(I); 8089 } 8090 8091 VPBasicBlock *LoopVectorizationPlanner::handleReplication( 8092 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8093 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe) { 8094 8095 bool IsUniform = getDecisionAndClampRange( 8096 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); }, 8097 Range); 8098 8099 bool IsPredicated = Legal->isScalarWithPredication(I); 8100 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated); 8101 8102 // Find if I uses a predicated instruction. If so, it will use its scalar 8103 // value. Avoid hoisting the insert-element which packs the scalar value into 8104 // a vector value, as that happens iff all users use the vector value. 8105 for (auto &Op : I->operands()) 8106 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8107 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8108 PredInst2Recipe[PredInst]->setAlsoPack(false); 8109 8110 // Finalize the recipe for Instr, first if it is not predicated. 8111 if (!IsPredicated) { 8112 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8113 VPBB->appendRecipe(Recipe); 8114 return VPBB; 8115 } 8116 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8117 assert(VPBB->getSuccessors().empty() && 8118 "VPBB has successors when handling predicated replication."); 8119 // Record predicated instructions for above packing optimizations. 8120 PredInst2Recipe[I] = Recipe; 8121 VPBlockBase *Region = VPBB->setOneSuccessor(createReplicateRegion(I, Recipe)); 8122 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock())); 8123 } 8124 8125 VPRegionBlock * 8126 LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr, 8127 VPRecipeBase *PredRecipe) { 8128 // Instructions marked for predication are replicated and placed under an 8129 // if-then construct to prevent side-effects. 8130 8131 // Build the triangular if-then region. 8132 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8133 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8134 auto *BOMRecipe = new VPBranchOnMaskRecipe(Instr->getParent()); 8135 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8136 auto *PHIRecipe = 8137 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr); 8138 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8139 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8140 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8141 8142 // Note: first set Entry as region entry and then connect successors starting 8143 // from it in order, to propagate the "parent" of each VPBasicBlock. 8144 Entry->setTwoSuccessors(Pred, Exit); 8145 Pred->setOneSuccessor(Exit); 8146 8147 return Region; 8148 } 8149 8150 VPlan *LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 8151 8152 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8153 DenseMap<Instruction *, Instruction *> SinkAfterInverse; 8154 8155 // Collect instructions from the original loop that will become trivially dead 8156 // in the vectorized loop. We don't need to vectorize these instructions. For 8157 // example, original induction update instructions can become dead because we 8158 // separately emit induction "steps" when generating code for the new loop. 8159 // Similarly, we create a new latch condition when setting up the structure 8160 // of the new loop, so the old one can become dead. 8161 SmallPtrSet<Instruction *, 4> DeadInstructions; 8162 collectTriviallyDeadInstructions(DeadInstructions); 8163 8164 // Hold a mapping from predicated instructions to their recipes, in order to 8165 // fix their AlsoPack behavior if a user is determined to replicate and use a 8166 // scalar instead of vector value. 8167 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8168 8169 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8170 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8171 VPlan *Plan = new VPlan(VPBB); 8172 8173 // Scan the body of the loop in a topological order to visit each basic block 8174 // after having visited its predecessor basic blocks. 8175 LoopBlocksDFS DFS(OrigLoop); 8176 DFS.perform(LI); 8177 8178 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8179 // Relevant instructions from basic block BB will be grouped into VPRecipe 8180 // ingredients and fill a new VPBasicBlock. 8181 unsigned VPBBsForBB = 0; 8182 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8183 VPBB->setOneSuccessor(FirstVPBBForBB); 8184 VPBB = FirstVPBBForBB; 8185 VPWidenRecipe *LastWidenRecipe = nullptr; 8186 8187 std::vector<Instruction *> Ingredients; 8188 8189 // Organize the ingredients to vectorize from current basic block in the 8190 // right order. 8191 for (Instruction &I : *BB) { 8192 Instruction *Instr = &I; 8193 8194 // First filter out irrelevant instructions, to ensure no recipes are 8195 // built for them. 8196 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) || 8197 DeadInstructions.count(Instr)) 8198 continue; 8199 8200 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct 8201 // member of the IG, do not construct any Recipe for it. 8202 const InterleaveGroup *IG = Legal->getInterleavedAccessGroup(Instr); 8203 if (IG && Instr != IG->getInsertPos() && 8204 Range.Start >= 2 && // Query is illegal for VF == 1 8205 CM.getWideningDecision(Instr, Range.Start) == 8206 LoopVectorizationCostModel::CM_Interleave) 8207 continue; 8208 8209 // Move instructions to handle first-order recurrences, step 1: avoid 8210 // handling this instruction until after we've handled the instruction it 8211 // should follow. 8212 auto SAIt = SinkAfter.find(Instr); 8213 if (SAIt != SinkAfter.end()) { 8214 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->second 8215 << " to vectorize a 1st order recurrence.\n"); 8216 SinkAfterInverse[SAIt->second] = Instr; 8217 continue; 8218 } 8219 8220 Ingredients.push_back(Instr); 8221 8222 // Move instructions to handle first-order recurrences, step 2: push the 8223 // instruction to be sunk at its insertion point. 8224 auto SAInvIt = SinkAfterInverse.find(Instr); 8225 if (SAInvIt != SinkAfterInverse.end()) 8226 Ingredients.push_back(SAInvIt->second); 8227 } 8228 8229 // Introduce each ingredient into VPlan. 8230 for (Instruction *Instr : Ingredients) { 8231 VPRecipeBase *Recipe = nullptr; 8232 8233 // Check if Instr should belong to an interleave memory recipe, or already 8234 // does. In the latter case Instr is irrelevant. 8235 if ((Recipe = tryToInterleaveMemory(Instr, Range))) { 8236 VPBB->appendRecipe(Recipe); 8237 continue; 8238 } 8239 8240 // Check if Instr should form some PHI recipe. 8241 if ((Recipe = tryToOptimizeInduction(Instr, Range))) { 8242 VPBB->appendRecipe(Recipe); 8243 continue; 8244 } 8245 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) { 8246 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi)); 8247 continue; 8248 } 8249 8250 // Check if Instr is to be widened by a general VPWidenRecipe, after 8251 // having first checked for specific widening recipes that deal with 8252 // Interleave Groups, Inductions and Phi nodes. 8253 if ((Recipe = tryToWiden(Instr, LastWidenRecipe, Range))) { 8254 if (Recipe != LastWidenRecipe) 8255 VPBB->appendRecipe(Recipe); 8256 LastWidenRecipe = cast<VPWidenRecipe>(Recipe); 8257 continue; 8258 } 8259 8260 // Otherwise, if all widening options failed, Instruction is to be 8261 // replicated. This may create a successor for VPBB. 8262 VPBasicBlock *NextVPBB = 8263 handleReplication(Instr, Range, VPBB, PredInst2Recipe); 8264 if (NextVPBB != VPBB) { 8265 VPBB = NextVPBB; 8266 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8267 : ""); 8268 } 8269 } 8270 } 8271 8272 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8273 // may also be empty, such as the last one VPBB, reflecting original 8274 // basic-blocks with no recipes. 8275 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8276 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8277 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8278 PreEntry->disconnectSuccessor(Entry); 8279 delete PreEntry; 8280 8281 std::string PlanName; 8282 raw_string_ostream RSO(PlanName); 8283 unsigned VF = Range.Start; 8284 Plan->addVF(VF); 8285 RSO << "Initial VPlan for VF={" << VF; 8286 for (VF *= 2; VF < Range.End; VF *= 2) { 8287 Plan->addVF(VF); 8288 RSO << "," << VF; 8289 } 8290 RSO << "},UF>=1"; 8291 RSO.flush(); 8292 Plan->setName(PlanName); 8293 8294 return Plan; 8295 } 8296 8297 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const { 8298 O << " +\n" 8299 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 8300 IG->getInsertPos()->printAsOperand(O, false); 8301 O << "\\l\""; 8302 for (unsigned i = 0; i < IG->getFactor(); ++i) 8303 if (Instruction *I = IG->getMember(i)) 8304 O << " +\n" 8305 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\""; 8306 } 8307 8308 void VPReplicateRecipe::execute(VPTransformState &State) { 8309 8310 if (State.Instance) { // Generate a single instance. 8311 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated); 8312 // Insert scalar instance packing it into a vector. 8313 if (AlsoPack && State.VF > 1) { 8314 // If we're constructing lane 0, initialize to start from undef. 8315 if (State.Instance->Lane == 0) { 8316 Value *Undef = 8317 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF)); 8318 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef); 8319 } 8320 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance); 8321 } 8322 return; 8323 } 8324 8325 // Generate scalar instances for all VF lanes of all UF parts, unless the 8326 // instruction is uniform inwhich case generate only the first lane for each 8327 // of the UF parts. 8328 unsigned EndLane = IsUniform ? 1 : State.VF; 8329 for (unsigned Part = 0; Part < State.UF; ++Part) 8330 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 8331 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated); 8332 } 8333 8334 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 8335 assert(State.Instance && "Branch on Mask works only on single instance."); 8336 8337 unsigned Part = State.Instance->Part; 8338 unsigned Lane = State.Instance->Lane; 8339 8340 auto Cond = State.ILV->createBlockInMask(MaskedBasicBlock); 8341 8342 Value *ConditionBit = Cond[Part]; 8343 if (!ConditionBit) // Block in mask is all-one. 8344 ConditionBit = State.Builder.getTrue(); 8345 else if (ConditionBit->getType()->isVectorTy()) 8346 ConditionBit = State.Builder.CreateExtractElement( 8347 ConditionBit, State.Builder.getInt32(Lane)); 8348 8349 // Replace the temporary unreachable terminator with a new conditional branch, 8350 // whose two destinations will be set later when they are created. 8351 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 8352 assert(isa<UnreachableInst>(CurrentTerminator) && 8353 "Expected to replace unreachable terminator with conditional branch."); 8354 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 8355 CondBr->setSuccessor(0, nullptr); 8356 ReplaceInstWithInst(CurrentTerminator, CondBr); 8357 8358 DEBUG(dbgs() << "\nLV: vectorizing BranchOnMask recipe " 8359 << MaskedBasicBlock->getName()); 8360 } 8361 8362 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 8363 assert(State.Instance && "Predicated instruction PHI works per instance."); 8364 Instruction *ScalarPredInst = cast<Instruction>( 8365 State.ValueMap.getScalarValue(PredInst, *State.Instance)); 8366 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 8367 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 8368 assert(PredicatingBB && "Predicated block has no single predecessor."); 8369 8370 // By current pack/unpack logic we need to generate only a single phi node: if 8371 // a vector value for the predicated instruction exists at this point it means 8372 // the instruction has vector users only, and a phi for the vector value is 8373 // needed. In this case the recipe of the predicated instruction is marked to 8374 // also do that packing, thereby "hoisting" the insert-element sequence. 8375 // Otherwise, a phi node for the scalar value is needed. 8376 unsigned Part = State.Instance->Part; 8377 if (State.ValueMap.hasVectorValue(PredInst, Part)) { 8378 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part); 8379 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 8380 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 8381 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 8382 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 8383 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache. 8384 } else { 8385 Type *PredInstType = PredInst->getType(); 8386 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 8387 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB); 8388 Phi->addIncoming(ScalarPredInst, PredicatedBB); 8389 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi); 8390 } 8391 } 8392 8393 bool LoopVectorizePass::processLoop(Loop *L) { 8394 assert(L->empty() && "Only process inner loops."); 8395 8396 #ifndef NDEBUG 8397 const std::string DebugLocStr = getDebugLocString(L); 8398 #endif /* NDEBUG */ 8399 8400 DEBUG(dbgs() << "\nLV: Checking a loop in \"" 8401 << L->getHeader()->getParent()->getName() << "\" from " 8402 << DebugLocStr << "\n"); 8403 8404 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE); 8405 8406 DEBUG(dbgs() << "LV: Loop hints:" 8407 << " force=" 8408 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 8409 ? "disabled" 8410 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 8411 ? "enabled" 8412 : "?")) 8413 << " width=" << Hints.getWidth() 8414 << " unroll=" << Hints.getInterleave() << "\n"); 8415 8416 // Function containing loop 8417 Function *F = L->getHeader()->getParent(); 8418 8419 // Looking at the diagnostic output is the only way to determine if a loop 8420 // was vectorized (other than looking at the IR or machine code), so it 8421 // is important to generate an optimization remark for each loop. Most of 8422 // these messages are generated as OptimizationRemarkAnalysis. Remarks 8423 // generated as OptimizationRemark and OptimizationRemarkMissed are 8424 // less verbose reporting vectorized loops and unvectorized loops that may 8425 // benefit from vectorization, respectively. 8426 8427 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) { 8428 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 8429 return false; 8430 } 8431 8432 PredicatedScalarEvolution PSE(*SE, *L); 8433 8434 // Check if it is legal to vectorize the loop. 8435 LoopVectorizationRequirements Requirements(*ORE); 8436 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, TTI, GetLAA, LI, ORE, 8437 &Requirements, &Hints); 8438 if (!LVL.canVectorize()) { 8439 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 8440 emitMissedWarning(F, L, Hints, ORE); 8441 return false; 8442 } 8443 8444 // Check the function attributes to find out if this function should be 8445 // optimized for size. 8446 bool OptForSize = 8447 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize(); 8448 8449 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 8450 // count by optimizing for size, to minimize overheads. 8451 unsigned ExpectedTC = SE->getSmallConstantMaxTripCount(L); 8452 bool HasExpectedTC = (ExpectedTC > 0); 8453 8454 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) { 8455 auto EstimatedTC = getLoopEstimatedTripCount(L); 8456 if (EstimatedTC) { 8457 ExpectedTC = *EstimatedTC; 8458 HasExpectedTC = true; 8459 } 8460 } 8461 8462 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) { 8463 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 8464 << "This loop is worth vectorizing only if no scalar " 8465 << "iteration overheads are incurred."); 8466 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 8467 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 8468 else { 8469 DEBUG(dbgs() << "\n"); 8470 // Loops with a very small trip count are considered for vectorization 8471 // under OptForSize, thereby making sure the cost of their loop body is 8472 // dominant, free of runtime guards and scalar iteration overheads. 8473 OptForSize = true; 8474 } 8475 } 8476 8477 // Check the function attributes to see if implicit floats are allowed. 8478 // FIXME: This check doesn't seem possibly correct -- what if the loop is 8479 // an integer loop and the vector instructions selected are purely integer 8480 // vector instructions? 8481 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 8482 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat" 8483 "attribute is used.\n"); 8484 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(), 8485 "NoImplicitFloat", L) 8486 << "loop not vectorized due to NoImplicitFloat attribute"); 8487 emitMissedWarning(F, L, Hints, ORE); 8488 return false; 8489 } 8490 8491 // Check if the target supports potentially unsafe FP vectorization. 8492 // FIXME: Add a check for the type of safety issue (denormal, signaling) 8493 // for the target we're vectorizing for, to make sure none of the 8494 // additional fp-math flags can help. 8495 if (Hints.isPotentiallyUnsafe() && 8496 TTI->isFPVectorizationPotentiallyUnsafe()) { 8497 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"); 8498 ORE->emit( 8499 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L) 8500 << "loop not vectorized due to unsafe FP support."); 8501 emitMissedWarning(F, L, Hints, ORE); 8502 return false; 8503 } 8504 8505 // Use the cost model. 8506 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F, 8507 &Hints); 8508 CM.collectValuesToIgnore(); 8509 8510 // Use the planner for vectorization. 8511 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM); 8512 8513 // Get user vectorization factor. 8514 unsigned UserVF = Hints.getWidth(); 8515 8516 // Plan how to best vectorize, return the best VF and its cost. 8517 LoopVectorizationCostModel::VectorizationFactor VF = 8518 LVP.plan(OptForSize, UserVF); 8519 8520 // Select the interleave count. 8521 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost); 8522 8523 // Get user interleave count. 8524 unsigned UserIC = Hints.getInterleave(); 8525 8526 // Identify the diagnostic messages that should be produced. 8527 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 8528 bool VectorizeLoop = true, InterleaveLoop = true; 8529 if (Requirements.doesNotMeet(F, L, Hints)) { 8530 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 8531 "requirements.\n"); 8532 emitMissedWarning(F, L, Hints, ORE); 8533 return false; 8534 } 8535 8536 if (VF.Width == 1) { 8537 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 8538 VecDiagMsg = std::make_pair( 8539 "VectorizationNotBeneficial", 8540 "the cost-model indicates that vectorization is not beneficial"); 8541 VectorizeLoop = false; 8542 } 8543 8544 if (IC == 1 && UserIC <= 1) { 8545 // Tell the user interleaving is not beneficial. 8546 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 8547 IntDiagMsg = std::make_pair( 8548 "InterleavingNotBeneficial", 8549 "the cost-model indicates that interleaving is not beneficial"); 8550 InterleaveLoop = false; 8551 if (UserIC == 1) { 8552 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 8553 IntDiagMsg.second += 8554 " and is explicitly disabled or interleave count is set to 1"; 8555 } 8556 } else if (IC > 1 && UserIC == 1) { 8557 // Tell the user interleaving is beneficial, but it explicitly disabled. 8558 DEBUG(dbgs() 8559 << "LV: Interleaving is beneficial but is explicitly disabled."); 8560 IntDiagMsg = std::make_pair( 8561 "InterleavingBeneficialButDisabled", 8562 "the cost-model indicates that interleaving is beneficial " 8563 "but is explicitly disabled or interleave count is set to 1"); 8564 InterleaveLoop = false; 8565 } 8566 8567 // Override IC if user provided an interleave count. 8568 IC = UserIC > 0 ? UserIC : IC; 8569 8570 // Emit diagnostic messages, if any. 8571 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 8572 if (!VectorizeLoop && !InterleaveLoop) { 8573 // Do not vectorize or interleaving the loop. 8574 ORE->emit(OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 8575 L->getStartLoc(), L->getHeader()) 8576 << VecDiagMsg.second); 8577 ORE->emit(OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 8578 L->getStartLoc(), L->getHeader()) 8579 << IntDiagMsg.second); 8580 return false; 8581 } else if (!VectorizeLoop && InterleaveLoop) { 8582 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8583 ORE->emit(OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 8584 L->getStartLoc(), L->getHeader()) 8585 << VecDiagMsg.second); 8586 } else if (VectorizeLoop && !InterleaveLoop) { 8587 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8588 << DebugLocStr << '\n'); 8589 ORE->emit(OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 8590 L->getStartLoc(), L->getHeader()) 8591 << IntDiagMsg.second); 8592 } else if (VectorizeLoop && InterleaveLoop) { 8593 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " 8594 << DebugLocStr << '\n'); 8595 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 8596 } 8597 8598 LVP.setBestPlan(VF.Width, IC); 8599 8600 using namespace ore; 8601 if (!VectorizeLoop) { 8602 assert(IC > 1 && "interleave count should not be 1 or 0"); 8603 // If we decided that it is not legal to vectorize the loop, then 8604 // interleave it. 8605 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 8606 &CM); 8607 LVP.executePlan(Unroller, DT); 8608 8609 ORE->emit(OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 8610 L->getHeader()) 8611 << "interleaved loop (interleaved count: " 8612 << NV("InterleaveCount", IC) << ")"); 8613 } else { 8614 // If we decided that it is *legal* to vectorize the loop, then do it. 8615 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 8616 &LVL, &CM); 8617 LVP.executePlan(LB, DT); 8618 ++LoopsVectorized; 8619 8620 // Add metadata to disable runtime unrolling a scalar loop when there are 8621 // no runtime checks about strides and memory. A scalar loop that is 8622 // rarely used is not worth unrolling. 8623 if (!LB.areSafetyChecksAdded()) 8624 AddRuntimeUnrollDisableMetaData(L); 8625 8626 // Report the vectorization decision. 8627 ORE->emit(OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 8628 L->getHeader()) 8629 << "vectorized loop (vectorization width: " 8630 << NV("VectorizationFactor", VF.Width) 8631 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"); 8632 } 8633 8634 // Mark the loop as already vectorized to avoid vectorizing again. 8635 Hints.setAlreadyVectorized(); 8636 8637 DEBUG(verifyFunction(*L->getHeader()->getParent())); 8638 return true; 8639 } 8640 8641 bool LoopVectorizePass::runImpl( 8642 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 8643 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 8644 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_, 8645 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 8646 OptimizationRemarkEmitter &ORE_) { 8647 8648 SE = &SE_; 8649 LI = &LI_; 8650 TTI = &TTI_; 8651 DT = &DT_; 8652 BFI = &BFI_; 8653 TLI = TLI_; 8654 AA = &AA_; 8655 AC = &AC_; 8656 GetLAA = &GetLAA_; 8657 DB = &DB_; 8658 ORE = &ORE_; 8659 8660 // Don't attempt if 8661 // 1. the target claims to have no vector registers, and 8662 // 2. interleaving won't help ILP. 8663 // 8664 // The second condition is necessary because, even if the target has no 8665 // vector registers, loop vectorization may still enable scalar 8666 // interleaving. 8667 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2) 8668 return false; 8669 8670 bool Changed = false; 8671 8672 // The vectorizer requires loops to be in simplified form. 8673 // Since simplification may add new inner loops, it has to run before the 8674 // legality and profitability checks. This means running the loop vectorizer 8675 // will simplify all loops, regardless of whether anything end up being 8676 // vectorized. 8677 for (auto &L : *LI) 8678 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */); 8679 8680 // Build up a worklist of inner-loops to vectorize. This is necessary as 8681 // the act of vectorizing or partially unrolling a loop creates new loops 8682 // and can invalidate iterators across the loops. 8683 SmallVector<Loop *, 8> Worklist; 8684 8685 for (Loop *L : *LI) 8686 addAcyclicInnerLoop(*L, Worklist); 8687 8688 LoopsAnalyzed += Worklist.size(); 8689 8690 // Now walk the identified inner loops. 8691 while (!Worklist.empty()) { 8692 Loop *L = Worklist.pop_back_val(); 8693 8694 // For the inner loops we actually process, form LCSSA to simplify the 8695 // transform. 8696 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 8697 8698 Changed |= processLoop(L); 8699 } 8700 8701 // Process each loop nest in the function. 8702 return Changed; 8703 8704 } 8705 8706 8707 PreservedAnalyses LoopVectorizePass::run(Function &F, 8708 FunctionAnalysisManager &AM) { 8709 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 8710 auto &LI = AM.getResult<LoopAnalysis>(F); 8711 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 8712 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 8713 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 8714 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 8715 auto &AA = AM.getResult<AAManager>(F); 8716 auto &AC = AM.getResult<AssumptionAnalysis>(F); 8717 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 8718 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 8719 8720 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 8721 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 8722 [&](Loop &L) -> const LoopAccessInfo & { 8723 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI}; 8724 return LAM.getResult<LoopAccessAnalysis>(L, AR); 8725 }; 8726 bool Changed = 8727 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE); 8728 if (!Changed) 8729 return PreservedAnalyses::all(); 8730 PreservedAnalyses PA; 8731 PA.preserve<LoopAnalysis>(); 8732 PA.preserve<DominatorTreeAnalysis>(); 8733 PA.preserve<BasicAA>(); 8734 PA.preserve<GlobalsAA>(); 8735 return PA; 8736 } 8737