1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 /// InnerLoopVectorizer vectorizes loops which contain only one basic
432 /// block to a specified vectorization factor (VF).
433 /// This class performs the widening of scalars into vectors, or multiple
434 /// scalars. This class also implements the following features:
435 /// * It inserts an epilogue loop for handling loops that don't have iteration
436 ///   counts that are known to be a multiple of the vectorization factor.
437 /// * It handles the code generation for reduction variables.
438 /// * Scalarization (implementation using scalars) of un-vectorizable
439 ///   instructions.
440 /// InnerLoopVectorizer does not perform any vectorization-legality
441 /// checks, and relies on the caller to check for the different legality
442 /// aspects. The InnerLoopVectorizer relies on the
443 /// LoopVectorizationLegality class to provide information about the induction
444 /// and reduction variables that were found to a given vectorization factor.
445 class InnerLoopVectorizer {
446 public:
447   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
448                       LoopInfo *LI, DominatorTree *DT,
449                       const TargetLibraryInfo *TLI,
450                       const TargetTransformInfo *TTI, AssumptionCache *AC,
451                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
452                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
453                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
454                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
455       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
456         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
457         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
458         PSI(PSI), RTChecks(RTChecks) {
459     // Query this against the original loop and save it here because the profile
460     // of the original loop header may change as the transformation happens.
461     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
462         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
463   }
464 
465   virtual ~InnerLoopVectorizer() = default;
466 
467   /// Create a new empty loop that will contain vectorized instructions later
468   /// on, while the old loop will be used as the scalar remainder. Control flow
469   /// is generated around the vectorized (and scalar epilogue) loops consisting
470   /// of various checks and bypasses. Return the pre-header block of the new
471   /// loop.
472   /// In the case of epilogue vectorization, this function is overriden to
473   /// handle the more complex control flow around the loops.
474   virtual BasicBlock *createVectorizedLoopSkeleton();
475 
476   /// Widen a single instruction within the innermost loop.
477   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
478                         VPTransformState &State);
479 
480   /// Widen a single call instruction within the innermost loop.
481   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
482                             VPTransformState &State);
483 
484   /// Widen a single select instruction within the innermost loop.
485   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
486                               bool InvariantCond, VPTransformState &State);
487 
488   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
489   void fixVectorizedLoop(VPTransformState &State);
490 
491   // Return true if any runtime check is added.
492   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
493 
494   /// A type for vectorized values in the new loop. Each value from the
495   /// original loop, when vectorized, is represented by UF vector values in the
496   /// new unrolled loop, where UF is the unroll factor.
497   using VectorParts = SmallVector<Value *, 2>;
498 
499   /// Vectorize a single GetElementPtrInst based on information gathered and
500   /// decisions taken during planning.
501   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
502                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
503                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
504 
505   /// Vectorize a single first-order recurrence or pointer induction PHINode in
506   /// a block. This method handles the induction variable canonicalization. It
507   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
508   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
509                            VPTransformState &State);
510 
511   /// A helper function to scalarize a single Instruction in the innermost loop.
512   /// Generates a sequence of scalar instances for each lane between \p MinLane
513   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
514   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
515   /// Instr's operands.
516   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
517                             const VPIteration &Instance, bool IfPredicateInstr,
518                             VPTransformState &State);
519 
520   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
521   /// is provided, the integer induction variable will first be truncated to
522   /// the corresponding type.
523   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
524                              VPValue *Def, VPValue *CastDef,
525                              VPTransformState &State);
526 
527   /// Construct the vector value of a scalarized value \p V one lane at a time.
528   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
529                                  VPTransformState &State);
530 
531   /// Try to vectorize interleaved access group \p Group with the base address
532   /// given in \p Addr, optionally masking the vector operations if \p
533   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
534   /// values in the vectorized loop.
535   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
536                                 ArrayRef<VPValue *> VPDefs,
537                                 VPTransformState &State, VPValue *Addr,
538                                 ArrayRef<VPValue *> StoredValues,
539                                 VPValue *BlockInMask = nullptr);
540 
541   /// Vectorize Load and Store instructions with the base address given in \p
542   /// Addr, optionally masking the vector operations if \p BlockInMask is
543   /// non-null. Use \p State to translate given VPValues to IR values in the
544   /// vectorized loop.
545   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
546                                   VPValue *Def, VPValue *Addr,
547                                   VPValue *StoredValue, VPValue *BlockInMask);
548 
549   /// Set the debug location in the builder \p Ptr using the debug location in
550   /// \p V. If \p Ptr is None then it uses the class member's Builder.
551   void setDebugLocFromInst(const Value *V,
552                            Optional<IRBuilder<> *> CustomBuilder = None);
553 
554   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
555   void fixNonInductionPHIs(VPTransformState &State);
556 
557   /// Returns true if the reordering of FP operations is not allowed, but we are
558   /// able to vectorize with strict in-order reductions for the given RdxDesc.
559   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
560 
561   /// Create a broadcast instruction. This method generates a broadcast
562   /// instruction (shuffle) for loop invariant values and for the induction
563   /// value. If this is the induction variable then we extend it to N, N+1, ...
564   /// this is needed because each iteration in the loop corresponds to a SIMD
565   /// element.
566   virtual Value *getBroadcastInstrs(Value *V);
567 
568 protected:
569   friend class LoopVectorizationPlanner;
570 
571   /// A small list of PHINodes.
572   using PhiVector = SmallVector<PHINode *, 4>;
573 
574   /// A type for scalarized values in the new loop. Each value from the
575   /// original loop, when scalarized, is represented by UF x VF scalar values
576   /// in the new unrolled loop, where UF is the unroll factor and VF is the
577   /// vectorization factor.
578   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
579 
580   /// Set up the values of the IVs correctly when exiting the vector loop.
581   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
582                     Value *CountRoundDown, Value *EndValue,
583                     BasicBlock *MiddleBlock);
584 
585   /// Create a new induction variable inside L.
586   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
587                                    Value *Step, Instruction *DL);
588 
589   /// Handle all cross-iteration phis in the header.
590   void fixCrossIterationPHIs(VPTransformState &State);
591 
592   /// Create the exit value of first order recurrences in the middle block and
593   /// update their users.
594   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
595 
596   /// Create code for the loop exit value of the reduction.
597   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
598 
599   /// Clear NSW/NUW flags from reduction instructions if necessary.
600   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
601                                VPTransformState &State);
602 
603   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
604   /// means we need to add the appropriate incoming value from the middle
605   /// block as exiting edges from the scalar epilogue loop (if present) are
606   /// already in place, and we exit the vector loop exclusively to the middle
607   /// block.
608   void fixLCSSAPHIs(VPTransformState &State);
609 
610   /// Iteratively sink the scalarized operands of a predicated instruction into
611   /// the block that was created for it.
612   void sinkScalarOperands(Instruction *PredInst);
613 
614   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
615   /// represented as.
616   void truncateToMinimalBitwidths(VPTransformState &State);
617 
618   /// This function adds
619   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
620   /// to each vector element of Val. The sequence starts at StartIndex.
621   /// \p Opcode is relevant for FP induction variable.
622   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
623                                Instruction::BinaryOps Opcode =
624                                Instruction::BinaryOpsEnd);
625 
626   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
627   /// variable on which to base the steps, \p Step is the size of the step, and
628   /// \p EntryVal is the value from the original loop that maps to the steps.
629   /// Note that \p EntryVal doesn't have to be an induction variable - it
630   /// can also be a truncate instruction.
631   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
632                         const InductionDescriptor &ID, VPValue *Def,
633                         VPValue *CastDef, VPTransformState &State);
634 
635   /// Create a vector induction phi node based on an existing scalar one. \p
636   /// EntryVal is the value from the original loop that maps to the vector phi
637   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
638   /// truncate instruction, instead of widening the original IV, we widen a
639   /// version of the IV truncated to \p EntryVal's type.
640   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
641                                        Value *Step, Value *Start,
642                                        Instruction *EntryVal, VPValue *Def,
643                                        VPValue *CastDef,
644                                        VPTransformState &State);
645 
646   /// Returns true if an instruction \p I should be scalarized instead of
647   /// vectorized for the chosen vectorization factor.
648   bool shouldScalarizeInstruction(Instruction *I) const;
649 
650   /// Returns true if we should generate a scalar version of \p IV.
651   bool needsScalarInduction(Instruction *IV) const;
652 
653   /// If there is a cast involved in the induction variable \p ID, which should
654   /// be ignored in the vectorized loop body, this function records the
655   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
656   /// cast. We had already proved that the casted Phi is equal to the uncasted
657   /// Phi in the vectorized loop (under a runtime guard), and therefore
658   /// there is no need to vectorize the cast - the same value can be used in the
659   /// vector loop for both the Phi and the cast.
660   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
661   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
662   ///
663   /// \p EntryVal is the value from the original loop that maps to the vector
664   /// phi node and is used to distinguish what is the IV currently being
665   /// processed - original one (if \p EntryVal is a phi corresponding to the
666   /// original IV) or the "newly-created" one based on the proof mentioned above
667   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
668   /// latter case \p EntryVal is a TruncInst and we must not record anything for
669   /// that IV, but it's error-prone to expect callers of this routine to care
670   /// about that, hence this explicit parameter.
671   void recordVectorLoopValueForInductionCast(
672       const InductionDescriptor &ID, const Instruction *EntryVal,
673       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
674       unsigned Part, unsigned Lane = UINT_MAX);
675 
676   /// Generate a shuffle sequence that will reverse the vector Vec.
677   virtual Value *reverseVector(Value *Vec);
678 
679   /// Returns (and creates if needed) the original loop trip count.
680   Value *getOrCreateTripCount(Loop *NewLoop);
681 
682   /// Returns (and creates if needed) the trip count of the widened loop.
683   Value *getOrCreateVectorTripCount(Loop *NewLoop);
684 
685   /// Returns a bitcasted value to the requested vector type.
686   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
687   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
688                                 const DataLayout &DL);
689 
690   /// Emit a bypass check to see if the vector trip count is zero, including if
691   /// it overflows.
692   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
693 
694   /// Emit a bypass check to see if all of the SCEV assumptions we've
695   /// had to make are correct. Returns the block containing the checks or
696   /// nullptr if no checks have been added.
697   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
698 
699   /// Emit bypass checks to check any memory assumptions we may have made.
700   /// Returns the block containing the checks or nullptr if no checks have been
701   /// added.
702   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
703 
704   /// Compute the transformed value of Index at offset StartValue using step
705   /// StepValue.
706   /// For integer induction, returns StartValue + Index * StepValue.
707   /// For pointer induction, returns StartValue[Index * StepValue].
708   /// FIXME: The newly created binary instructions should contain nsw/nuw
709   /// flags, which can be found from the original scalar operations.
710   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
711                               const DataLayout &DL,
712                               const InductionDescriptor &ID) const;
713 
714   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
715   /// vector loop preheader, middle block and scalar preheader. Also
716   /// allocate a loop object for the new vector loop and return it.
717   Loop *createVectorLoopSkeleton(StringRef Prefix);
718 
719   /// Create new phi nodes for the induction variables to resume iteration count
720   /// in the scalar epilogue, from where the vectorized loop left off (given by
721   /// \p VectorTripCount).
722   /// In cases where the loop skeleton is more complicated (eg. epilogue
723   /// vectorization) and the resume values can come from an additional bypass
724   /// block, the \p AdditionalBypass pair provides information about the bypass
725   /// block and the end value on the edge from bypass to this loop.
726   void createInductionResumeValues(
727       Loop *L, Value *VectorTripCount,
728       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
729 
730   /// Complete the loop skeleton by adding debug MDs, creating appropriate
731   /// conditional branches in the middle block, preparing the builder and
732   /// running the verifier. Take in the vector loop \p L as argument, and return
733   /// the preheader of the completed vector loop.
734   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
735 
736   /// Add additional metadata to \p To that was not present on \p Orig.
737   ///
738   /// Currently this is used to add the noalias annotations based on the
739   /// inserted memchecks.  Use this for instructions that are *cloned* into the
740   /// vector loop.
741   void addNewMetadata(Instruction *To, const Instruction *Orig);
742 
743   /// Add metadata from one instruction to another.
744   ///
745   /// This includes both the original MDs from \p From and additional ones (\see
746   /// addNewMetadata).  Use this for *newly created* instructions in the vector
747   /// loop.
748   void addMetadata(Instruction *To, Instruction *From);
749 
750   /// Similar to the previous function but it adds the metadata to a
751   /// vector of instructions.
752   void addMetadata(ArrayRef<Value *> To, Instruction *From);
753 
754   /// Allow subclasses to override and print debug traces before/after vplan
755   /// execution, when trace information is requested.
756   virtual void printDebugTracesAtStart(){};
757   virtual void printDebugTracesAtEnd(){};
758 
759   /// The original loop.
760   Loop *OrigLoop;
761 
762   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
763   /// dynamic knowledge to simplify SCEV expressions and converts them to a
764   /// more usable form.
765   PredicatedScalarEvolution &PSE;
766 
767   /// Loop Info.
768   LoopInfo *LI;
769 
770   /// Dominator Tree.
771   DominatorTree *DT;
772 
773   /// Alias Analysis.
774   AAResults *AA;
775 
776   /// Target Library Info.
777   const TargetLibraryInfo *TLI;
778 
779   /// Target Transform Info.
780   const TargetTransformInfo *TTI;
781 
782   /// Assumption Cache.
783   AssumptionCache *AC;
784 
785   /// Interface to emit optimization remarks.
786   OptimizationRemarkEmitter *ORE;
787 
788   /// LoopVersioning.  It's only set up (non-null) if memchecks were
789   /// used.
790   ///
791   /// This is currently only used to add no-alias metadata based on the
792   /// memchecks.  The actually versioning is performed manually.
793   std::unique_ptr<LoopVersioning> LVer;
794 
795   /// The vectorization SIMD factor to use. Each vector will have this many
796   /// vector elements.
797   ElementCount VF;
798 
799   /// The vectorization unroll factor to use. Each scalar is vectorized to this
800   /// many different vector instructions.
801   unsigned UF;
802 
803   /// The builder that we use
804   IRBuilder<> Builder;
805 
806   // --- Vectorization state ---
807 
808   /// The vector-loop preheader.
809   BasicBlock *LoopVectorPreHeader;
810 
811   /// The scalar-loop preheader.
812   BasicBlock *LoopScalarPreHeader;
813 
814   /// Middle Block between the vector and the scalar.
815   BasicBlock *LoopMiddleBlock;
816 
817   /// The unique ExitBlock of the scalar loop if one exists.  Note that
818   /// there can be multiple exiting edges reaching this block.
819   BasicBlock *LoopExitBlock;
820 
821   /// The vector loop body.
822   BasicBlock *LoopVectorBody;
823 
824   /// The scalar loop body.
825   BasicBlock *LoopScalarBody;
826 
827   /// A list of all bypass blocks. The first block is the entry of the loop.
828   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
829 
830   /// The new Induction variable which was added to the new block.
831   PHINode *Induction = nullptr;
832 
833   /// The induction variable of the old basic block.
834   PHINode *OldInduction = nullptr;
835 
836   /// Store instructions that were predicated.
837   SmallVector<Instruction *, 4> PredicatedInstructions;
838 
839   /// Trip count of the original loop.
840   Value *TripCount = nullptr;
841 
842   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
843   Value *VectorTripCount = nullptr;
844 
845   /// The legality analysis.
846   LoopVectorizationLegality *Legal;
847 
848   /// The profitablity analysis.
849   LoopVectorizationCostModel *Cost;
850 
851   // Record whether runtime checks are added.
852   bool AddedSafetyChecks = false;
853 
854   // Holds the end values for each induction variable. We save the end values
855   // so we can later fix-up the external users of the induction variables.
856   DenseMap<PHINode *, Value *> IVEndValues;
857 
858   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
859   // fixed up at the end of vector code generation.
860   SmallVector<PHINode *, 8> OrigPHIsToFix;
861 
862   /// BFI and PSI are used to check for profile guided size optimizations.
863   BlockFrequencyInfo *BFI;
864   ProfileSummaryInfo *PSI;
865 
866   // Whether this loop should be optimized for size based on profile guided size
867   // optimizatios.
868   bool OptForSizeBasedOnProfile;
869 
870   /// Structure to hold information about generated runtime checks, responsible
871   /// for cleaning the checks, if vectorization turns out unprofitable.
872   GeneratedRTChecks &RTChecks;
873 };
874 
875 class InnerLoopUnroller : public InnerLoopVectorizer {
876 public:
877   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
878                     LoopInfo *LI, DominatorTree *DT,
879                     const TargetLibraryInfo *TLI,
880                     const TargetTransformInfo *TTI, AssumptionCache *AC,
881                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
882                     LoopVectorizationLegality *LVL,
883                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
884                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
885       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
886                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
887                             BFI, PSI, Check) {}
888 
889 private:
890   Value *getBroadcastInstrs(Value *V) override;
891   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
892                        Instruction::BinaryOps Opcode =
893                        Instruction::BinaryOpsEnd) override;
894   Value *reverseVector(Value *Vec) override;
895 };
896 
897 /// Encapsulate information regarding vectorization of a loop and its epilogue.
898 /// This information is meant to be updated and used across two stages of
899 /// epilogue vectorization.
900 struct EpilogueLoopVectorizationInfo {
901   ElementCount MainLoopVF = ElementCount::getFixed(0);
902   unsigned MainLoopUF = 0;
903   ElementCount EpilogueVF = ElementCount::getFixed(0);
904   unsigned EpilogueUF = 0;
905   BasicBlock *MainLoopIterationCountCheck = nullptr;
906   BasicBlock *EpilogueIterationCountCheck = nullptr;
907   BasicBlock *SCEVSafetyCheck = nullptr;
908   BasicBlock *MemSafetyCheck = nullptr;
909   Value *TripCount = nullptr;
910   Value *VectorTripCount = nullptr;
911 
912   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
913                                 unsigned EUF)
914       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
915         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
916     assert(EUF == 1 &&
917            "A high UF for the epilogue loop is likely not beneficial.");
918   }
919 };
920 
921 /// An extension of the inner loop vectorizer that creates a skeleton for a
922 /// vectorized loop that has its epilogue (residual) also vectorized.
923 /// The idea is to run the vplan on a given loop twice, firstly to setup the
924 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
925 /// from the first step and vectorize the epilogue.  This is achieved by
926 /// deriving two concrete strategy classes from this base class and invoking
927 /// them in succession from the loop vectorizer planner.
928 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
929 public:
930   InnerLoopAndEpilogueVectorizer(
931       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
932       DominatorTree *DT, const TargetLibraryInfo *TLI,
933       const TargetTransformInfo *TTI, AssumptionCache *AC,
934       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
935       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
936       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
937       GeneratedRTChecks &Checks)
938       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
939                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
940                             Checks),
941         EPI(EPI) {}
942 
943   // Override this function to handle the more complex control flow around the
944   // three loops.
945   BasicBlock *createVectorizedLoopSkeleton() final override {
946     return createEpilogueVectorizedLoopSkeleton();
947   }
948 
949   /// The interface for creating a vectorized skeleton using one of two
950   /// different strategies, each corresponding to one execution of the vplan
951   /// as described above.
952   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
953 
954   /// Holds and updates state information required to vectorize the main loop
955   /// and its epilogue in two separate passes. This setup helps us avoid
956   /// regenerating and recomputing runtime safety checks. It also helps us to
957   /// shorten the iteration-count-check path length for the cases where the
958   /// iteration count of the loop is so small that the main vector loop is
959   /// completely skipped.
960   EpilogueLoopVectorizationInfo &EPI;
961 };
962 
963 /// A specialized derived class of inner loop vectorizer that performs
964 /// vectorization of *main* loops in the process of vectorizing loops and their
965 /// epilogues.
966 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
967 public:
968   EpilogueVectorizerMainLoop(
969       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
970       DominatorTree *DT, const TargetLibraryInfo *TLI,
971       const TargetTransformInfo *TTI, AssumptionCache *AC,
972       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
973       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
974       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
975       GeneratedRTChecks &Check)
976       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
977                                        EPI, LVL, CM, BFI, PSI, Check) {}
978   /// Implements the interface for creating a vectorized skeleton using the
979   /// *main loop* strategy (ie the first pass of vplan execution).
980   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
981 
982 protected:
983   /// Emits an iteration count bypass check once for the main loop (when \p
984   /// ForEpilogue is false) and once for the epilogue loop (when \p
985   /// ForEpilogue is true).
986   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
987                                              bool ForEpilogue);
988   void printDebugTracesAtStart() override;
989   void printDebugTracesAtEnd() override;
990 };
991 
992 // A specialized derived class of inner loop vectorizer that performs
993 // vectorization of *epilogue* loops in the process of vectorizing loops and
994 // their epilogues.
995 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
996 public:
997   EpilogueVectorizerEpilogueLoop(
998       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
999       DominatorTree *DT, const TargetLibraryInfo *TLI,
1000       const TargetTransformInfo *TTI, AssumptionCache *AC,
1001       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1002       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1003       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1004       GeneratedRTChecks &Checks)
1005       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1006                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1007   /// Implements the interface for creating a vectorized skeleton using the
1008   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1009   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1010 
1011 protected:
1012   /// Emits an iteration count bypass check after the main vector loop has
1013   /// finished to see if there are any iterations left to execute by either
1014   /// the vector epilogue or the scalar epilogue.
1015   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1016                                                       BasicBlock *Bypass,
1017                                                       BasicBlock *Insert);
1018   void printDebugTracesAtStart() override;
1019   void printDebugTracesAtEnd() override;
1020 };
1021 } // end namespace llvm
1022 
1023 /// Look for a meaningful debug location on the instruction or it's
1024 /// operands.
1025 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1026   if (!I)
1027     return I;
1028 
1029   DebugLoc Empty;
1030   if (I->getDebugLoc() != Empty)
1031     return I;
1032 
1033   for (Use &Op : I->operands()) {
1034     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1035       if (OpInst->getDebugLoc() != Empty)
1036         return OpInst;
1037   }
1038 
1039   return I;
1040 }
1041 
1042 void InnerLoopVectorizer::setDebugLocFromInst(
1043     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1044   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1045   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1046     const DILocation *DIL = Inst->getDebugLoc();
1047 
1048     // When a FSDiscriminator is enabled, we don't need to add the multiply
1049     // factors to the discriminators.
1050     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1051         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1052       // FIXME: For scalable vectors, assume vscale=1.
1053       auto NewDIL =
1054           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1055       if (NewDIL)
1056         B->SetCurrentDebugLocation(NewDIL.getValue());
1057       else
1058         LLVM_DEBUG(dbgs()
1059                    << "Failed to create new discriminator: "
1060                    << DIL->getFilename() << " Line: " << DIL->getLine());
1061     } else
1062       B->SetCurrentDebugLocation(DIL);
1063   } else
1064     B->SetCurrentDebugLocation(DebugLoc());
1065 }
1066 
1067 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1068 /// is passed, the message relates to that particular instruction.
1069 #ifndef NDEBUG
1070 static void debugVectorizationMessage(const StringRef Prefix,
1071                                       const StringRef DebugMsg,
1072                                       Instruction *I) {
1073   dbgs() << "LV: " << Prefix << DebugMsg;
1074   if (I != nullptr)
1075     dbgs() << " " << *I;
1076   else
1077     dbgs() << '.';
1078   dbgs() << '\n';
1079 }
1080 #endif
1081 
1082 /// Create an analysis remark that explains why vectorization failed
1083 ///
1084 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1085 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1086 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1087 /// the location of the remark.  \return the remark object that can be
1088 /// streamed to.
1089 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1090     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1091   Value *CodeRegion = TheLoop->getHeader();
1092   DebugLoc DL = TheLoop->getStartLoc();
1093 
1094   if (I) {
1095     CodeRegion = I->getParent();
1096     // If there is no debug location attached to the instruction, revert back to
1097     // using the loop's.
1098     if (I->getDebugLoc())
1099       DL = I->getDebugLoc();
1100   }
1101 
1102   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1103 }
1104 
1105 /// Return a value for Step multiplied by VF.
1106 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1107   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1108   Constant *StepVal = ConstantInt::get(
1109       Step->getType(),
1110       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1111   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1112 }
1113 
1114 namespace llvm {
1115 
1116 /// Return the runtime value for VF.
1117 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1118   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1119   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1120 }
1121 
1122 void reportVectorizationFailure(const StringRef DebugMsg,
1123                                 const StringRef OREMsg, const StringRef ORETag,
1124                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1125                                 Instruction *I) {
1126   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1127   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1128   ORE->emit(
1129       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1130       << "loop not vectorized: " << OREMsg);
1131 }
1132 
1133 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1134                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1135                              Instruction *I) {
1136   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1137   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1138   ORE->emit(
1139       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1140       << Msg);
1141 }
1142 
1143 } // end namespace llvm
1144 
1145 #ifndef NDEBUG
1146 /// \return string containing a file name and a line # for the given loop.
1147 static std::string getDebugLocString(const Loop *L) {
1148   std::string Result;
1149   if (L) {
1150     raw_string_ostream OS(Result);
1151     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1152       LoopDbgLoc.print(OS);
1153     else
1154       // Just print the module name.
1155       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1156     OS.flush();
1157   }
1158   return Result;
1159 }
1160 #endif
1161 
1162 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1163                                          const Instruction *Orig) {
1164   // If the loop was versioned with memchecks, add the corresponding no-alias
1165   // metadata.
1166   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1167     LVer->annotateInstWithNoAlias(To, Orig);
1168 }
1169 
1170 void InnerLoopVectorizer::addMetadata(Instruction *To,
1171                                       Instruction *From) {
1172   propagateMetadata(To, From);
1173   addNewMetadata(To, From);
1174 }
1175 
1176 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1177                                       Instruction *From) {
1178   for (Value *V : To) {
1179     if (Instruction *I = dyn_cast<Instruction>(V))
1180       addMetadata(I, From);
1181   }
1182 }
1183 
1184 namespace llvm {
1185 
1186 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1187 // lowered.
1188 enum ScalarEpilogueLowering {
1189 
1190   // The default: allowing scalar epilogues.
1191   CM_ScalarEpilogueAllowed,
1192 
1193   // Vectorization with OptForSize: don't allow epilogues.
1194   CM_ScalarEpilogueNotAllowedOptSize,
1195 
1196   // A special case of vectorisation with OptForSize: loops with a very small
1197   // trip count are considered for vectorization under OptForSize, thereby
1198   // making sure the cost of their loop body is dominant, free of runtime
1199   // guards and scalar iteration overheads.
1200   CM_ScalarEpilogueNotAllowedLowTripLoop,
1201 
1202   // Loop hint predicate indicating an epilogue is undesired.
1203   CM_ScalarEpilogueNotNeededUsePredicate,
1204 
1205   // Directive indicating we must either tail fold or not vectorize
1206   CM_ScalarEpilogueNotAllowedUsePredicate
1207 };
1208 
1209 /// ElementCountComparator creates a total ordering for ElementCount
1210 /// for the purposes of using it in a set structure.
1211 struct ElementCountComparator {
1212   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1213     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1214            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1215   }
1216 };
1217 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1218 
1219 /// LoopVectorizationCostModel - estimates the expected speedups due to
1220 /// vectorization.
1221 /// In many cases vectorization is not profitable. This can happen because of
1222 /// a number of reasons. In this class we mainly attempt to predict the
1223 /// expected speedup/slowdowns due to the supported instruction set. We use the
1224 /// TargetTransformInfo to query the different backends for the cost of
1225 /// different operations.
1226 class LoopVectorizationCostModel {
1227 public:
1228   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1229                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1230                              LoopVectorizationLegality *Legal,
1231                              const TargetTransformInfo &TTI,
1232                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1233                              AssumptionCache *AC,
1234                              OptimizationRemarkEmitter *ORE, const Function *F,
1235                              const LoopVectorizeHints *Hints,
1236                              InterleavedAccessInfo &IAI)
1237       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1238         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1239         Hints(Hints), InterleaveInfo(IAI) {}
1240 
1241   /// \return An upper bound for the vectorization factors (both fixed and
1242   /// scalable). If the factors are 0, vectorization and interleaving should be
1243   /// avoided up front.
1244   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1245 
1246   /// \return True if runtime checks are required for vectorization, and false
1247   /// otherwise.
1248   bool runtimeChecksRequired();
1249 
1250   /// \return The most profitable vectorization factor and the cost of that VF.
1251   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1252   /// then this vectorization factor will be selected if vectorization is
1253   /// possible.
1254   VectorizationFactor
1255   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1256 
1257   VectorizationFactor
1258   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1259                                     const LoopVectorizationPlanner &LVP);
1260 
1261   /// Setup cost-based decisions for user vectorization factor.
1262   /// \return true if the UserVF is a feasible VF to be chosen.
1263   bool selectUserVectorizationFactor(ElementCount UserVF) {
1264     collectUniformsAndScalars(UserVF);
1265     collectInstsToScalarize(UserVF);
1266     return expectedCost(UserVF).first.isValid();
1267   }
1268 
1269   /// \return The size (in bits) of the smallest and widest types in the code
1270   /// that needs to be vectorized. We ignore values that remain scalar such as
1271   /// 64 bit loop indices.
1272   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1273 
1274   /// \return The desired interleave count.
1275   /// If interleave count has been specified by metadata it will be returned.
1276   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1277   /// are the selected vectorization factor and the cost of the selected VF.
1278   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1279 
1280   /// Memory access instruction may be vectorized in more than one way.
1281   /// Form of instruction after vectorization depends on cost.
1282   /// This function takes cost-based decisions for Load/Store instructions
1283   /// and collects them in a map. This decisions map is used for building
1284   /// the lists of loop-uniform and loop-scalar instructions.
1285   /// The calculated cost is saved with widening decision in order to
1286   /// avoid redundant calculations.
1287   void setCostBasedWideningDecision(ElementCount VF);
1288 
1289   /// A struct that represents some properties of the register usage
1290   /// of a loop.
1291   struct RegisterUsage {
1292     /// Holds the number of loop invariant values that are used in the loop.
1293     /// The key is ClassID of target-provided register class.
1294     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1295     /// Holds the maximum number of concurrent live intervals in the loop.
1296     /// The key is ClassID of target-provided register class.
1297     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1298   };
1299 
1300   /// \return Returns information about the register usages of the loop for the
1301   /// given vectorization factors.
1302   SmallVector<RegisterUsage, 8>
1303   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1304 
1305   /// Collect values we want to ignore in the cost model.
1306   void collectValuesToIgnore();
1307 
1308   /// Collect all element types in the loop for which widening is needed.
1309   void collectElementTypesForWidening();
1310 
1311   /// Split reductions into those that happen in the loop, and those that happen
1312   /// outside. In loop reductions are collected into InLoopReductionChains.
1313   void collectInLoopReductions();
1314 
1315   /// Returns true if we should use strict in-order reductions for the given
1316   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1317   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1318   /// of FP operations.
1319   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1320     return !Hints->allowReordering() && RdxDesc.isOrdered();
1321   }
1322 
1323   /// \returns The smallest bitwidth each instruction can be represented with.
1324   /// The vector equivalents of these instructions should be truncated to this
1325   /// type.
1326   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1327     return MinBWs;
1328   }
1329 
1330   /// \returns True if it is more profitable to scalarize instruction \p I for
1331   /// vectorization factor \p VF.
1332   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1333     assert(VF.isVector() &&
1334            "Profitable to scalarize relevant only for VF > 1.");
1335 
1336     // Cost model is not run in the VPlan-native path - return conservative
1337     // result until this changes.
1338     if (EnableVPlanNativePath)
1339       return false;
1340 
1341     auto Scalars = InstsToScalarize.find(VF);
1342     assert(Scalars != InstsToScalarize.end() &&
1343            "VF not yet analyzed for scalarization profitability");
1344     return Scalars->second.find(I) != Scalars->second.end();
1345   }
1346 
1347   /// Returns true if \p I is known to be uniform after vectorization.
1348   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1349     if (VF.isScalar())
1350       return true;
1351 
1352     // Cost model is not run in the VPlan-native path - return conservative
1353     // result until this changes.
1354     if (EnableVPlanNativePath)
1355       return false;
1356 
1357     auto UniformsPerVF = Uniforms.find(VF);
1358     assert(UniformsPerVF != Uniforms.end() &&
1359            "VF not yet analyzed for uniformity");
1360     return UniformsPerVF->second.count(I);
1361   }
1362 
1363   /// Returns true if \p I is known to be scalar after vectorization.
1364   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1365     if (VF.isScalar())
1366       return true;
1367 
1368     // Cost model is not run in the VPlan-native path - return conservative
1369     // result until this changes.
1370     if (EnableVPlanNativePath)
1371       return false;
1372 
1373     auto ScalarsPerVF = Scalars.find(VF);
1374     assert(ScalarsPerVF != Scalars.end() &&
1375            "Scalar values are not calculated for VF");
1376     return ScalarsPerVF->second.count(I);
1377   }
1378 
1379   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1380   /// for vectorization factor \p VF.
1381   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1382     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1383            !isProfitableToScalarize(I, VF) &&
1384            !isScalarAfterVectorization(I, VF);
1385   }
1386 
1387   /// Decision that was taken during cost calculation for memory instruction.
1388   enum InstWidening {
1389     CM_Unknown,
1390     CM_Widen,         // For consecutive accesses with stride +1.
1391     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1392     CM_Interleave,
1393     CM_GatherScatter,
1394     CM_Scalarize
1395   };
1396 
1397   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1398   /// instruction \p I and vector width \p VF.
1399   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1400                            InstructionCost Cost) {
1401     assert(VF.isVector() && "Expected VF >=2");
1402     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1403   }
1404 
1405   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1406   /// interleaving group \p Grp and vector width \p VF.
1407   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1408                            ElementCount VF, InstWidening W,
1409                            InstructionCost Cost) {
1410     assert(VF.isVector() && "Expected VF >=2");
1411     /// Broadcast this decicion to all instructions inside the group.
1412     /// But the cost will be assigned to one instruction only.
1413     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1414       if (auto *I = Grp->getMember(i)) {
1415         if (Grp->getInsertPos() == I)
1416           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1417         else
1418           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1419       }
1420     }
1421   }
1422 
1423   /// Return the cost model decision for the given instruction \p I and vector
1424   /// width \p VF. Return CM_Unknown if this instruction did not pass
1425   /// through the cost modeling.
1426   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1427     assert(VF.isVector() && "Expected VF to be a vector VF");
1428     // Cost model is not run in the VPlan-native path - return conservative
1429     // result until this changes.
1430     if (EnableVPlanNativePath)
1431       return CM_GatherScatter;
1432 
1433     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1434     auto Itr = WideningDecisions.find(InstOnVF);
1435     if (Itr == WideningDecisions.end())
1436       return CM_Unknown;
1437     return Itr->second.first;
1438   }
1439 
1440   /// Return the vectorization cost for the given instruction \p I and vector
1441   /// width \p VF.
1442   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1443     assert(VF.isVector() && "Expected VF >=2");
1444     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1445     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1446            "The cost is not calculated");
1447     return WideningDecisions[InstOnVF].second;
1448   }
1449 
1450   /// Return True if instruction \p I is an optimizable truncate whose operand
1451   /// is an induction variable. Such a truncate will be removed by adding a new
1452   /// induction variable with the destination type.
1453   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1454     // If the instruction is not a truncate, return false.
1455     auto *Trunc = dyn_cast<TruncInst>(I);
1456     if (!Trunc)
1457       return false;
1458 
1459     // Get the source and destination types of the truncate.
1460     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1461     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1462 
1463     // If the truncate is free for the given types, return false. Replacing a
1464     // free truncate with an induction variable would add an induction variable
1465     // update instruction to each iteration of the loop. We exclude from this
1466     // check the primary induction variable since it will need an update
1467     // instruction regardless.
1468     Value *Op = Trunc->getOperand(0);
1469     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1470       return false;
1471 
1472     // If the truncated value is not an induction variable, return false.
1473     return Legal->isInductionPhi(Op);
1474   }
1475 
1476   /// Collects the instructions to scalarize for each predicated instruction in
1477   /// the loop.
1478   void collectInstsToScalarize(ElementCount VF);
1479 
1480   /// Collect Uniform and Scalar values for the given \p VF.
1481   /// The sets depend on CM decision for Load/Store instructions
1482   /// that may be vectorized as interleave, gather-scatter or scalarized.
1483   void collectUniformsAndScalars(ElementCount VF) {
1484     // Do the analysis once.
1485     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1486       return;
1487     setCostBasedWideningDecision(VF);
1488     collectLoopUniforms(VF);
1489     collectLoopScalars(VF);
1490   }
1491 
1492   /// Returns true if the target machine supports masked store operation
1493   /// for the given \p DataType and kind of access to \p Ptr.
1494   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1495     return Legal->isConsecutivePtr(Ptr) &&
1496            TTI.isLegalMaskedStore(DataType, Alignment);
1497   }
1498 
1499   /// Returns true if the target machine supports masked load operation
1500   /// for the given \p DataType and kind of access to \p Ptr.
1501   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1502     return Legal->isConsecutivePtr(Ptr) &&
1503            TTI.isLegalMaskedLoad(DataType, Alignment);
1504   }
1505 
1506   /// Returns true if the target machine can represent \p V as a masked gather
1507   /// or scatter operation.
1508   bool isLegalGatherOrScatter(Value *V) {
1509     bool LI = isa<LoadInst>(V);
1510     bool SI = isa<StoreInst>(V);
1511     if (!LI && !SI)
1512       return false;
1513     auto *Ty = getLoadStoreType(V);
1514     Align Align = getLoadStoreAlignment(V);
1515     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1516            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1517   }
1518 
1519   /// Returns true if the target machine supports all of the reduction
1520   /// variables found for the given VF.
1521   bool canVectorizeReductions(ElementCount VF) const {
1522     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1523       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1524       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1525     }));
1526   }
1527 
1528   /// Returns true if \p I is an instruction that will be scalarized with
1529   /// predication. Such instructions include conditional stores and
1530   /// instructions that may divide by zero.
1531   /// If a non-zero VF has been calculated, we check if I will be scalarized
1532   /// predication for that VF.
1533   bool isScalarWithPredication(Instruction *I) const;
1534 
1535   // Returns true if \p I is an instruction that will be predicated either
1536   // through scalar predication or masked load/store or masked gather/scatter.
1537   // Superset of instructions that return true for isScalarWithPredication.
1538   bool isPredicatedInst(Instruction *I) {
1539     if (!blockNeedsPredication(I->getParent()))
1540       return false;
1541     // Loads and stores that need some form of masked operation are predicated
1542     // instructions.
1543     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1544       return Legal->isMaskRequired(I);
1545     return isScalarWithPredication(I);
1546   }
1547 
1548   /// Returns true if \p I is a memory instruction with consecutive memory
1549   /// access that can be widened.
1550   bool
1551   memoryInstructionCanBeWidened(Instruction *I,
1552                                 ElementCount VF = ElementCount::getFixed(1));
1553 
1554   /// Returns true if \p I is a memory instruction in an interleaved-group
1555   /// of memory accesses that can be vectorized with wide vector loads/stores
1556   /// and shuffles.
1557   bool
1558   interleavedAccessCanBeWidened(Instruction *I,
1559                                 ElementCount VF = ElementCount::getFixed(1));
1560 
1561   /// Check if \p Instr belongs to any interleaved access group.
1562   bool isAccessInterleaved(Instruction *Instr) {
1563     return InterleaveInfo.isInterleaved(Instr);
1564   }
1565 
1566   /// Get the interleaved access group that \p Instr belongs to.
1567   const InterleaveGroup<Instruction> *
1568   getInterleavedAccessGroup(Instruction *Instr) {
1569     return InterleaveInfo.getInterleaveGroup(Instr);
1570   }
1571 
1572   /// Returns true if we're required to use a scalar epilogue for at least
1573   /// the final iteration of the original loop.
1574   bool requiresScalarEpilogue(ElementCount VF) const {
1575     if (!isScalarEpilogueAllowed())
1576       return false;
1577     // If we might exit from anywhere but the latch, must run the exiting
1578     // iteration in scalar form.
1579     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1580       return true;
1581     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1582   }
1583 
1584   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1585   /// loop hint annotation.
1586   bool isScalarEpilogueAllowed() const {
1587     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1588   }
1589 
1590   /// Returns true if all loop blocks should be masked to fold tail loop.
1591   bool foldTailByMasking() const { return FoldTailByMasking; }
1592 
1593   bool blockNeedsPredication(BasicBlock *BB) const {
1594     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1595   }
1596 
1597   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1598   /// nodes to the chain of instructions representing the reductions. Uses a
1599   /// MapVector to ensure deterministic iteration order.
1600   using ReductionChainMap =
1601       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1602 
1603   /// Return the chain of instructions representing an inloop reduction.
1604   const ReductionChainMap &getInLoopReductionChains() const {
1605     return InLoopReductionChains;
1606   }
1607 
1608   /// Returns true if the Phi is part of an inloop reduction.
1609   bool isInLoopReduction(PHINode *Phi) const {
1610     return InLoopReductionChains.count(Phi);
1611   }
1612 
1613   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1614   /// with factor VF.  Return the cost of the instruction, including
1615   /// scalarization overhead if it's needed.
1616   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1617 
1618   /// Estimate cost of a call instruction CI if it were vectorized with factor
1619   /// VF. Return the cost of the instruction, including scalarization overhead
1620   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1621   /// scalarized -
1622   /// i.e. either vector version isn't available, or is too expensive.
1623   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1624                                     bool &NeedToScalarize) const;
1625 
1626   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1627   /// that of B.
1628   bool isMoreProfitable(const VectorizationFactor &A,
1629                         const VectorizationFactor &B) const;
1630 
1631   /// Invalidates decisions already taken by the cost model.
1632   void invalidateCostModelingDecisions() {
1633     WideningDecisions.clear();
1634     Uniforms.clear();
1635     Scalars.clear();
1636   }
1637 
1638 private:
1639   unsigned NumPredStores = 0;
1640 
1641   /// \return An upper bound for the vectorization factors for both
1642   /// fixed and scalable vectorization, where the minimum-known number of
1643   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1644   /// disabled or unsupported, then the scalable part will be equal to
1645   /// ElementCount::getScalable(0).
1646   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1647                                            ElementCount UserVF);
1648 
1649   /// \return the maximized element count based on the targets vector
1650   /// registers and the loop trip-count, but limited to a maximum safe VF.
1651   /// This is a helper function of computeFeasibleMaxVF.
1652   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1653   /// issue that occurred on one of the buildbots which cannot be reproduced
1654   /// without having access to the properietary compiler (see comments on
1655   /// D98509). The issue is currently under investigation and this workaround
1656   /// will be removed as soon as possible.
1657   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1658                                        unsigned SmallestType,
1659                                        unsigned WidestType,
1660                                        const ElementCount &MaxSafeVF);
1661 
1662   /// \return the maximum legal scalable VF, based on the safe max number
1663   /// of elements.
1664   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1665 
1666   /// The vectorization cost is a combination of the cost itself and a boolean
1667   /// indicating whether any of the contributing operations will actually
1668   /// operate on vector values after type legalization in the backend. If this
1669   /// latter value is false, then all operations will be scalarized (i.e. no
1670   /// vectorization has actually taken place).
1671   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1672 
1673   /// Returns the expected execution cost. The unit of the cost does
1674   /// not matter because we use the 'cost' units to compare different
1675   /// vector widths. The cost that is returned is *not* normalized by
1676   /// the factor width. If \p Invalid is not nullptr, this function
1677   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1678   /// each instruction that has an Invalid cost for the given VF.
1679   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1680   VectorizationCostTy
1681   expectedCost(ElementCount VF,
1682                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1683 
1684   /// Returns the execution time cost of an instruction for a given vector
1685   /// width. Vector width of one means scalar.
1686   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1687 
1688   /// The cost-computation logic from getInstructionCost which provides
1689   /// the vector type as an output parameter.
1690   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1691                                      Type *&VectorTy);
1692 
1693   /// Return the cost of instructions in an inloop reduction pattern, if I is
1694   /// part of that pattern.
1695   Optional<InstructionCost>
1696   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1697                           TTI::TargetCostKind CostKind);
1698 
1699   /// Calculate vectorization cost of memory instruction \p I.
1700   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1701 
1702   /// The cost computation for scalarized memory instruction.
1703   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1704 
1705   /// The cost computation for interleaving group of memory instructions.
1706   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1707 
1708   /// The cost computation for Gather/Scatter instruction.
1709   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1710 
1711   /// The cost computation for widening instruction \p I with consecutive
1712   /// memory access.
1713   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1714 
1715   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1716   /// Load: scalar load + broadcast.
1717   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1718   /// element)
1719   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1720 
1721   /// Estimate the overhead of scalarizing an instruction. This is a
1722   /// convenience wrapper for the type-based getScalarizationOverhead API.
1723   InstructionCost getScalarizationOverhead(Instruction *I,
1724                                            ElementCount VF) const;
1725 
1726   /// Returns whether the instruction is a load or store and will be a emitted
1727   /// as a vector operation.
1728   bool isConsecutiveLoadOrStore(Instruction *I);
1729 
1730   /// Returns true if an artificially high cost for emulated masked memrefs
1731   /// should be used.
1732   bool useEmulatedMaskMemRefHack(Instruction *I);
1733 
1734   /// Map of scalar integer values to the smallest bitwidth they can be legally
1735   /// represented as. The vector equivalents of these values should be truncated
1736   /// to this type.
1737   MapVector<Instruction *, uint64_t> MinBWs;
1738 
1739   /// A type representing the costs for instructions if they were to be
1740   /// scalarized rather than vectorized. The entries are Instruction-Cost
1741   /// pairs.
1742   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1743 
1744   /// A set containing all BasicBlocks that are known to present after
1745   /// vectorization as a predicated block.
1746   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1747 
1748   /// Records whether it is allowed to have the original scalar loop execute at
1749   /// least once. This may be needed as a fallback loop in case runtime
1750   /// aliasing/dependence checks fail, or to handle the tail/remainder
1751   /// iterations when the trip count is unknown or doesn't divide by the VF,
1752   /// or as a peel-loop to handle gaps in interleave-groups.
1753   /// Under optsize and when the trip count is very small we don't allow any
1754   /// iterations to execute in the scalar loop.
1755   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1756 
1757   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1758   bool FoldTailByMasking = false;
1759 
1760   /// A map holding scalar costs for different vectorization factors. The
1761   /// presence of a cost for an instruction in the mapping indicates that the
1762   /// instruction will be scalarized when vectorizing with the associated
1763   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1764   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1765 
1766   /// Holds the instructions known to be uniform after vectorization.
1767   /// The data is collected per VF.
1768   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1769 
1770   /// Holds the instructions known to be scalar after vectorization.
1771   /// The data is collected per VF.
1772   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1773 
1774   /// Holds the instructions (address computations) that are forced to be
1775   /// scalarized.
1776   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1777 
1778   /// PHINodes of the reductions that should be expanded in-loop along with
1779   /// their associated chains of reduction operations, in program order from top
1780   /// (PHI) to bottom
1781   ReductionChainMap InLoopReductionChains;
1782 
1783   /// A Map of inloop reduction operations and their immediate chain operand.
1784   /// FIXME: This can be removed once reductions can be costed correctly in
1785   /// vplan. This was added to allow quick lookup to the inloop operations,
1786   /// without having to loop through InLoopReductionChains.
1787   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1788 
1789   /// Returns the expected difference in cost from scalarizing the expression
1790   /// feeding a predicated instruction \p PredInst. The instructions to
1791   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1792   /// non-negative return value implies the expression will be scalarized.
1793   /// Currently, only single-use chains are considered for scalarization.
1794   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1795                               ElementCount VF);
1796 
1797   /// Collect the instructions that are uniform after vectorization. An
1798   /// instruction is uniform if we represent it with a single scalar value in
1799   /// the vectorized loop corresponding to each vector iteration. Examples of
1800   /// uniform instructions include pointer operands of consecutive or
1801   /// interleaved memory accesses. Note that although uniformity implies an
1802   /// instruction will be scalar, the reverse is not true. In general, a
1803   /// scalarized instruction will be represented by VF scalar values in the
1804   /// vectorized loop, each corresponding to an iteration of the original
1805   /// scalar loop.
1806   void collectLoopUniforms(ElementCount VF);
1807 
1808   /// Collect the instructions that are scalar after vectorization. An
1809   /// instruction is scalar if it is known to be uniform or will be scalarized
1810   /// during vectorization. Non-uniform scalarized instructions will be
1811   /// represented by VF values in the vectorized loop, each corresponding to an
1812   /// iteration of the original scalar loop.
1813   void collectLoopScalars(ElementCount VF);
1814 
1815   /// Keeps cost model vectorization decision and cost for instructions.
1816   /// Right now it is used for memory instructions only.
1817   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1818                                 std::pair<InstWidening, InstructionCost>>;
1819 
1820   DecisionList WideningDecisions;
1821 
1822   /// Returns true if \p V is expected to be vectorized and it needs to be
1823   /// extracted.
1824   bool needsExtract(Value *V, ElementCount VF) const {
1825     Instruction *I = dyn_cast<Instruction>(V);
1826     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1827         TheLoop->isLoopInvariant(I))
1828       return false;
1829 
1830     // Assume we can vectorize V (and hence we need extraction) if the
1831     // scalars are not computed yet. This can happen, because it is called
1832     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1833     // the scalars are collected. That should be a safe assumption in most
1834     // cases, because we check if the operands have vectorizable types
1835     // beforehand in LoopVectorizationLegality.
1836     return Scalars.find(VF) == Scalars.end() ||
1837            !isScalarAfterVectorization(I, VF);
1838   };
1839 
1840   /// Returns a range containing only operands needing to be extracted.
1841   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1842                                                    ElementCount VF) const {
1843     return SmallVector<Value *, 4>(make_filter_range(
1844         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1845   }
1846 
1847   /// Determines if we have the infrastructure to vectorize loop \p L and its
1848   /// epilogue, assuming the main loop is vectorized by \p VF.
1849   bool isCandidateForEpilogueVectorization(const Loop &L,
1850                                            const ElementCount VF) const;
1851 
1852   /// Returns true if epilogue vectorization is considered profitable, and
1853   /// false otherwise.
1854   /// \p VF is the vectorization factor chosen for the original loop.
1855   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1856 
1857 public:
1858   /// The loop that we evaluate.
1859   Loop *TheLoop;
1860 
1861   /// Predicated scalar evolution analysis.
1862   PredicatedScalarEvolution &PSE;
1863 
1864   /// Loop Info analysis.
1865   LoopInfo *LI;
1866 
1867   /// Vectorization legality.
1868   LoopVectorizationLegality *Legal;
1869 
1870   /// Vector target information.
1871   const TargetTransformInfo &TTI;
1872 
1873   /// Target Library Info.
1874   const TargetLibraryInfo *TLI;
1875 
1876   /// Demanded bits analysis.
1877   DemandedBits *DB;
1878 
1879   /// Assumption cache.
1880   AssumptionCache *AC;
1881 
1882   /// Interface to emit optimization remarks.
1883   OptimizationRemarkEmitter *ORE;
1884 
1885   const Function *TheFunction;
1886 
1887   /// Loop Vectorize Hint.
1888   const LoopVectorizeHints *Hints;
1889 
1890   /// The interleave access information contains groups of interleaved accesses
1891   /// with the same stride and close to each other.
1892   InterleavedAccessInfo &InterleaveInfo;
1893 
1894   /// Values to ignore in the cost model.
1895   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1896 
1897   /// Values to ignore in the cost model when VF > 1.
1898   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1899 
1900   /// All element types found in the loop.
1901   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1902 
1903   /// Profitable vector factors.
1904   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1905 };
1906 } // end namespace llvm
1907 
1908 /// Helper struct to manage generating runtime checks for vectorization.
1909 ///
1910 /// The runtime checks are created up-front in temporary blocks to allow better
1911 /// estimating the cost and un-linked from the existing IR. After deciding to
1912 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1913 /// temporary blocks are completely removed.
1914 class GeneratedRTChecks {
1915   /// Basic block which contains the generated SCEV checks, if any.
1916   BasicBlock *SCEVCheckBlock = nullptr;
1917 
1918   /// The value representing the result of the generated SCEV checks. If it is
1919   /// nullptr, either no SCEV checks have been generated or they have been used.
1920   Value *SCEVCheckCond = nullptr;
1921 
1922   /// Basic block which contains the generated memory runtime checks, if any.
1923   BasicBlock *MemCheckBlock = nullptr;
1924 
1925   /// The value representing the result of the generated memory runtime checks.
1926   /// If it is nullptr, either no memory runtime checks have been generated or
1927   /// they have been used.
1928   Instruction *MemRuntimeCheckCond = nullptr;
1929 
1930   DominatorTree *DT;
1931   LoopInfo *LI;
1932 
1933   SCEVExpander SCEVExp;
1934   SCEVExpander MemCheckExp;
1935 
1936 public:
1937   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1938                     const DataLayout &DL)
1939       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1940         MemCheckExp(SE, DL, "scev.check") {}
1941 
1942   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1943   /// accurately estimate the cost of the runtime checks. The blocks are
1944   /// un-linked from the IR and is added back during vector code generation. If
1945   /// there is no vector code generation, the check blocks are removed
1946   /// completely.
1947   void Create(Loop *L, const LoopAccessInfo &LAI,
1948               const SCEVUnionPredicate &UnionPred) {
1949 
1950     BasicBlock *LoopHeader = L->getHeader();
1951     BasicBlock *Preheader = L->getLoopPreheader();
1952 
1953     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1954     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1955     // may be used by SCEVExpander. The blocks will be un-linked from their
1956     // predecessors and removed from LI & DT at the end of the function.
1957     if (!UnionPred.isAlwaysTrue()) {
1958       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1959                                   nullptr, "vector.scevcheck");
1960 
1961       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1962           &UnionPred, SCEVCheckBlock->getTerminator());
1963     }
1964 
1965     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1966     if (RtPtrChecking.Need) {
1967       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1968       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1969                                  "vector.memcheck");
1970 
1971       std::tie(std::ignore, MemRuntimeCheckCond) =
1972           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1973                            RtPtrChecking.getChecks(), MemCheckExp);
1974       assert(MemRuntimeCheckCond &&
1975              "no RT checks generated although RtPtrChecking "
1976              "claimed checks are required");
1977     }
1978 
1979     if (!MemCheckBlock && !SCEVCheckBlock)
1980       return;
1981 
1982     // Unhook the temporary block with the checks, update various places
1983     // accordingly.
1984     if (SCEVCheckBlock)
1985       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1986     if (MemCheckBlock)
1987       MemCheckBlock->replaceAllUsesWith(Preheader);
1988 
1989     if (SCEVCheckBlock) {
1990       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1991       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1992       Preheader->getTerminator()->eraseFromParent();
1993     }
1994     if (MemCheckBlock) {
1995       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1996       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1997       Preheader->getTerminator()->eraseFromParent();
1998     }
1999 
2000     DT->changeImmediateDominator(LoopHeader, Preheader);
2001     if (MemCheckBlock) {
2002       DT->eraseNode(MemCheckBlock);
2003       LI->removeBlock(MemCheckBlock);
2004     }
2005     if (SCEVCheckBlock) {
2006       DT->eraseNode(SCEVCheckBlock);
2007       LI->removeBlock(SCEVCheckBlock);
2008     }
2009   }
2010 
2011   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2012   /// unused.
2013   ~GeneratedRTChecks() {
2014     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2015     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2016     if (!SCEVCheckCond)
2017       SCEVCleaner.markResultUsed();
2018 
2019     if (!MemRuntimeCheckCond)
2020       MemCheckCleaner.markResultUsed();
2021 
2022     if (MemRuntimeCheckCond) {
2023       auto &SE = *MemCheckExp.getSE();
2024       // Memory runtime check generation creates compares that use expanded
2025       // values. Remove them before running the SCEVExpanderCleaners.
2026       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2027         if (MemCheckExp.isInsertedInstruction(&I))
2028           continue;
2029         SE.forgetValue(&I);
2030         SE.eraseValueFromMap(&I);
2031         I.eraseFromParent();
2032       }
2033     }
2034     MemCheckCleaner.cleanup();
2035     SCEVCleaner.cleanup();
2036 
2037     if (SCEVCheckCond)
2038       SCEVCheckBlock->eraseFromParent();
2039     if (MemRuntimeCheckCond)
2040       MemCheckBlock->eraseFromParent();
2041   }
2042 
2043   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2044   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2045   /// depending on the generated condition.
2046   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2047                              BasicBlock *LoopVectorPreHeader,
2048                              BasicBlock *LoopExitBlock) {
2049     if (!SCEVCheckCond)
2050       return nullptr;
2051     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2052       if (C->isZero())
2053         return nullptr;
2054 
2055     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2056 
2057     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2058     // Create new preheader for vector loop.
2059     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2060       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2061 
2062     SCEVCheckBlock->getTerminator()->eraseFromParent();
2063     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2064     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2065                                                 SCEVCheckBlock);
2066 
2067     DT->addNewBlock(SCEVCheckBlock, Pred);
2068     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2069 
2070     ReplaceInstWithInst(
2071         SCEVCheckBlock->getTerminator(),
2072         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2073     // Mark the check as used, to prevent it from being removed during cleanup.
2074     SCEVCheckCond = nullptr;
2075     return SCEVCheckBlock;
2076   }
2077 
2078   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2079   /// the branches to branch to the vector preheader or \p Bypass, depending on
2080   /// the generated condition.
2081   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2082                                    BasicBlock *LoopVectorPreHeader) {
2083     // Check if we generated code that checks in runtime if arrays overlap.
2084     if (!MemRuntimeCheckCond)
2085       return nullptr;
2086 
2087     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2088     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2089                                                 MemCheckBlock);
2090 
2091     DT->addNewBlock(MemCheckBlock, Pred);
2092     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2093     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2094 
2095     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2096       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2097 
2098     ReplaceInstWithInst(
2099         MemCheckBlock->getTerminator(),
2100         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2101     MemCheckBlock->getTerminator()->setDebugLoc(
2102         Pred->getTerminator()->getDebugLoc());
2103 
2104     // Mark the check as used, to prevent it from being removed during cleanup.
2105     MemRuntimeCheckCond = nullptr;
2106     return MemCheckBlock;
2107   }
2108 };
2109 
2110 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2111 // vectorization. The loop needs to be annotated with #pragma omp simd
2112 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2113 // vector length information is not provided, vectorization is not considered
2114 // explicit. Interleave hints are not allowed either. These limitations will be
2115 // relaxed in the future.
2116 // Please, note that we are currently forced to abuse the pragma 'clang
2117 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2118 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2119 // provides *explicit vectorization hints* (LV can bypass legal checks and
2120 // assume that vectorization is legal). However, both hints are implemented
2121 // using the same metadata (llvm.loop.vectorize, processed by
2122 // LoopVectorizeHints). This will be fixed in the future when the native IR
2123 // representation for pragma 'omp simd' is introduced.
2124 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2125                                    OptimizationRemarkEmitter *ORE) {
2126   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2127   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2128 
2129   // Only outer loops with an explicit vectorization hint are supported.
2130   // Unannotated outer loops are ignored.
2131   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2132     return false;
2133 
2134   Function *Fn = OuterLp->getHeader()->getParent();
2135   if (!Hints.allowVectorization(Fn, OuterLp,
2136                                 true /*VectorizeOnlyWhenForced*/)) {
2137     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2138     return false;
2139   }
2140 
2141   if (Hints.getInterleave() > 1) {
2142     // TODO: Interleave support is future work.
2143     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2144                          "outer loops.\n");
2145     Hints.emitRemarkWithHints();
2146     return false;
2147   }
2148 
2149   return true;
2150 }
2151 
2152 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2153                                   OptimizationRemarkEmitter *ORE,
2154                                   SmallVectorImpl<Loop *> &V) {
2155   // Collect inner loops and outer loops without irreducible control flow. For
2156   // now, only collect outer loops that have explicit vectorization hints. If we
2157   // are stress testing the VPlan H-CFG construction, we collect the outermost
2158   // loop of every loop nest.
2159   if (L.isInnermost() || VPlanBuildStressTest ||
2160       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2161     LoopBlocksRPO RPOT(&L);
2162     RPOT.perform(LI);
2163     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2164       V.push_back(&L);
2165       // TODO: Collect inner loops inside marked outer loops in case
2166       // vectorization fails for the outer loop. Do not invoke
2167       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2168       // already known to be reducible. We can use an inherited attribute for
2169       // that.
2170       return;
2171     }
2172   }
2173   for (Loop *InnerL : L)
2174     collectSupportedLoops(*InnerL, LI, ORE, V);
2175 }
2176 
2177 namespace {
2178 
2179 /// The LoopVectorize Pass.
2180 struct LoopVectorize : public FunctionPass {
2181   /// Pass identification, replacement for typeid
2182   static char ID;
2183 
2184   LoopVectorizePass Impl;
2185 
2186   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2187                          bool VectorizeOnlyWhenForced = false)
2188       : FunctionPass(ID),
2189         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2190     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2191   }
2192 
2193   bool runOnFunction(Function &F) override {
2194     if (skipFunction(F))
2195       return false;
2196 
2197     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2198     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2199     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2200     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2201     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2202     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2203     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2204     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2205     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2206     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2207     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2208     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2209     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2210 
2211     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2212         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2213 
2214     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2215                         GetLAA, *ORE, PSI).MadeAnyChange;
2216   }
2217 
2218   void getAnalysisUsage(AnalysisUsage &AU) const override {
2219     AU.addRequired<AssumptionCacheTracker>();
2220     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2221     AU.addRequired<DominatorTreeWrapperPass>();
2222     AU.addRequired<LoopInfoWrapperPass>();
2223     AU.addRequired<ScalarEvolutionWrapperPass>();
2224     AU.addRequired<TargetTransformInfoWrapperPass>();
2225     AU.addRequired<AAResultsWrapperPass>();
2226     AU.addRequired<LoopAccessLegacyAnalysis>();
2227     AU.addRequired<DemandedBitsWrapperPass>();
2228     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2229     AU.addRequired<InjectTLIMappingsLegacy>();
2230 
2231     // We currently do not preserve loopinfo/dominator analyses with outer loop
2232     // vectorization. Until this is addressed, mark these analyses as preserved
2233     // only for non-VPlan-native path.
2234     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2235     if (!EnableVPlanNativePath) {
2236       AU.addPreserved<LoopInfoWrapperPass>();
2237       AU.addPreserved<DominatorTreeWrapperPass>();
2238     }
2239 
2240     AU.addPreserved<BasicAAWrapperPass>();
2241     AU.addPreserved<GlobalsAAWrapperPass>();
2242     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2243   }
2244 };
2245 
2246 } // end anonymous namespace
2247 
2248 //===----------------------------------------------------------------------===//
2249 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2250 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2251 //===----------------------------------------------------------------------===//
2252 
2253 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2254   // We need to place the broadcast of invariant variables outside the loop,
2255   // but only if it's proven safe to do so. Else, broadcast will be inside
2256   // vector loop body.
2257   Instruction *Instr = dyn_cast<Instruction>(V);
2258   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2259                      (!Instr ||
2260                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2261   // Place the code for broadcasting invariant variables in the new preheader.
2262   IRBuilder<>::InsertPointGuard Guard(Builder);
2263   if (SafeToHoist)
2264     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2265 
2266   // Broadcast the scalar into all locations in the vector.
2267   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2268 
2269   return Shuf;
2270 }
2271 
2272 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2273     const InductionDescriptor &II, Value *Step, Value *Start,
2274     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2275     VPTransformState &State) {
2276   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2277          "Expected either an induction phi-node or a truncate of it!");
2278 
2279   // Construct the initial value of the vector IV in the vector loop preheader
2280   auto CurrIP = Builder.saveIP();
2281   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2282   if (isa<TruncInst>(EntryVal)) {
2283     assert(Start->getType()->isIntegerTy() &&
2284            "Truncation requires an integer type");
2285     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2286     Step = Builder.CreateTrunc(Step, TruncType);
2287     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2288   }
2289   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2290   Value *SteppedStart =
2291       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2292 
2293   // We create vector phi nodes for both integer and floating-point induction
2294   // variables. Here, we determine the kind of arithmetic we will perform.
2295   Instruction::BinaryOps AddOp;
2296   Instruction::BinaryOps MulOp;
2297   if (Step->getType()->isIntegerTy()) {
2298     AddOp = Instruction::Add;
2299     MulOp = Instruction::Mul;
2300   } else {
2301     AddOp = II.getInductionOpcode();
2302     MulOp = Instruction::FMul;
2303   }
2304 
2305   // Multiply the vectorization factor by the step using integer or
2306   // floating-point arithmetic as appropriate.
2307   Type *StepType = Step->getType();
2308   if (Step->getType()->isFloatingPointTy())
2309     StepType = IntegerType::get(StepType->getContext(),
2310                                 StepType->getScalarSizeInBits());
2311   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2312   if (Step->getType()->isFloatingPointTy())
2313     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2314   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2315 
2316   // Create a vector splat to use in the induction update.
2317   //
2318   // FIXME: If the step is non-constant, we create the vector splat with
2319   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2320   //        handle a constant vector splat.
2321   Value *SplatVF = isa<Constant>(Mul)
2322                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2323                        : Builder.CreateVectorSplat(VF, Mul);
2324   Builder.restoreIP(CurrIP);
2325 
2326   // We may need to add the step a number of times, depending on the unroll
2327   // factor. The last of those goes into the PHI.
2328   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2329                                     &*LoopVectorBody->getFirstInsertionPt());
2330   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2331   Instruction *LastInduction = VecInd;
2332   for (unsigned Part = 0; Part < UF; ++Part) {
2333     State.set(Def, LastInduction, Part);
2334 
2335     if (isa<TruncInst>(EntryVal))
2336       addMetadata(LastInduction, EntryVal);
2337     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2338                                           State, Part);
2339 
2340     LastInduction = cast<Instruction>(
2341         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2342     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2343   }
2344 
2345   // Move the last step to the end of the latch block. This ensures consistent
2346   // placement of all induction updates.
2347   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2348   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2349   auto *ICmp = cast<Instruction>(Br->getCondition());
2350   LastInduction->moveBefore(ICmp);
2351   LastInduction->setName("vec.ind.next");
2352 
2353   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2354   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2355 }
2356 
2357 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2358   return Cost->isScalarAfterVectorization(I, VF) ||
2359          Cost->isProfitableToScalarize(I, VF);
2360 }
2361 
2362 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2363   if (shouldScalarizeInstruction(IV))
2364     return true;
2365   auto isScalarInst = [&](User *U) -> bool {
2366     auto *I = cast<Instruction>(U);
2367     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2368   };
2369   return llvm::any_of(IV->users(), isScalarInst);
2370 }
2371 
2372 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2373     const InductionDescriptor &ID, const Instruction *EntryVal,
2374     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2375     unsigned Part, unsigned Lane) {
2376   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2377          "Expected either an induction phi-node or a truncate of it!");
2378 
2379   // This induction variable is not the phi from the original loop but the
2380   // newly-created IV based on the proof that casted Phi is equal to the
2381   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2382   // re-uses the same InductionDescriptor that original IV uses but we don't
2383   // have to do any recording in this case - that is done when original IV is
2384   // processed.
2385   if (isa<TruncInst>(EntryVal))
2386     return;
2387 
2388   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2389   if (Casts.empty())
2390     return;
2391   // Only the first Cast instruction in the Casts vector is of interest.
2392   // The rest of the Casts (if exist) have no uses outside the
2393   // induction update chain itself.
2394   if (Lane < UINT_MAX)
2395     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2396   else
2397     State.set(CastDef, VectorLoopVal, Part);
2398 }
2399 
2400 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2401                                                 TruncInst *Trunc, VPValue *Def,
2402                                                 VPValue *CastDef,
2403                                                 VPTransformState &State) {
2404   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2405          "Primary induction variable must have an integer type");
2406 
2407   auto II = Legal->getInductionVars().find(IV);
2408   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2409 
2410   auto ID = II->second;
2411   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2412 
2413   // The value from the original loop to which we are mapping the new induction
2414   // variable.
2415   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2416 
2417   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2418 
2419   // Generate code for the induction step. Note that induction steps are
2420   // required to be loop-invariant
2421   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2422     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2423            "Induction step should be loop invariant");
2424     if (PSE.getSE()->isSCEVable(IV->getType())) {
2425       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2426       return Exp.expandCodeFor(Step, Step->getType(),
2427                                LoopVectorPreHeader->getTerminator());
2428     }
2429     return cast<SCEVUnknown>(Step)->getValue();
2430   };
2431 
2432   // The scalar value to broadcast. This is derived from the canonical
2433   // induction variable. If a truncation type is given, truncate the canonical
2434   // induction variable and step. Otherwise, derive these values from the
2435   // induction descriptor.
2436   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2437     Value *ScalarIV = Induction;
2438     if (IV != OldInduction) {
2439       ScalarIV = IV->getType()->isIntegerTy()
2440                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2441                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2442                                           IV->getType());
2443       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2444       ScalarIV->setName("offset.idx");
2445     }
2446     if (Trunc) {
2447       auto *TruncType = cast<IntegerType>(Trunc->getType());
2448       assert(Step->getType()->isIntegerTy() &&
2449              "Truncation requires an integer step");
2450       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2451       Step = Builder.CreateTrunc(Step, TruncType);
2452     }
2453     return ScalarIV;
2454   };
2455 
2456   // Create the vector values from the scalar IV, in the absence of creating a
2457   // vector IV.
2458   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2459     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2460     for (unsigned Part = 0; Part < UF; ++Part) {
2461       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2462       Value *EntryPart =
2463           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2464                         ID.getInductionOpcode());
2465       State.set(Def, EntryPart, Part);
2466       if (Trunc)
2467         addMetadata(EntryPart, Trunc);
2468       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2469                                             State, Part);
2470     }
2471   };
2472 
2473   // Fast-math-flags propagate from the original induction instruction.
2474   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2475   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2476     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2477 
2478   // Now do the actual transformations, and start with creating the step value.
2479   Value *Step = CreateStepValue(ID.getStep());
2480   if (VF.isZero() || VF.isScalar()) {
2481     Value *ScalarIV = CreateScalarIV(Step);
2482     CreateSplatIV(ScalarIV, Step);
2483     return;
2484   }
2485 
2486   // Determine if we want a scalar version of the induction variable. This is
2487   // true if the induction variable itself is not widened, or if it has at
2488   // least one user in the loop that is not widened.
2489   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2490   if (!NeedsScalarIV) {
2491     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2492                                     State);
2493     return;
2494   }
2495 
2496   // Try to create a new independent vector induction variable. If we can't
2497   // create the phi node, we will splat the scalar induction variable in each
2498   // loop iteration.
2499   if (!shouldScalarizeInstruction(EntryVal)) {
2500     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2501                                     State);
2502     Value *ScalarIV = CreateScalarIV(Step);
2503     // Create scalar steps that can be used by instructions we will later
2504     // scalarize. Note that the addition of the scalar steps will not increase
2505     // the number of instructions in the loop in the common case prior to
2506     // InstCombine. We will be trading one vector extract for each scalar step.
2507     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2508     return;
2509   }
2510 
2511   // All IV users are scalar instructions, so only emit a scalar IV, not a
2512   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2513   // predicate used by the masked loads/stores.
2514   Value *ScalarIV = CreateScalarIV(Step);
2515   if (!Cost->isScalarEpilogueAllowed())
2516     CreateSplatIV(ScalarIV, Step);
2517   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2518 }
2519 
2520 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2521                                           Instruction::BinaryOps BinOp) {
2522   // Create and check the types.
2523   auto *ValVTy = cast<VectorType>(Val->getType());
2524   ElementCount VLen = ValVTy->getElementCount();
2525 
2526   Type *STy = Val->getType()->getScalarType();
2527   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2528          "Induction Step must be an integer or FP");
2529   assert(Step->getType() == STy && "Step has wrong type");
2530 
2531   SmallVector<Constant *, 8> Indices;
2532 
2533   // Create a vector of consecutive numbers from zero to VF.
2534   VectorType *InitVecValVTy = ValVTy;
2535   Type *InitVecValSTy = STy;
2536   if (STy->isFloatingPointTy()) {
2537     InitVecValSTy =
2538         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2539     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2540   }
2541   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2542 
2543   // Add on StartIdx
2544   Value *StartIdxSplat = Builder.CreateVectorSplat(
2545       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2546   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2547 
2548   if (STy->isIntegerTy()) {
2549     Step = Builder.CreateVectorSplat(VLen, Step);
2550     assert(Step->getType() == Val->getType() && "Invalid step vec");
2551     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2552     // which can be found from the original scalar operations.
2553     Step = Builder.CreateMul(InitVec, Step);
2554     return Builder.CreateAdd(Val, Step, "induction");
2555   }
2556 
2557   // Floating point induction.
2558   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2559          "Binary Opcode should be specified for FP induction");
2560   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2561   Step = Builder.CreateVectorSplat(VLen, Step);
2562   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2563   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2564 }
2565 
2566 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2567                                            Instruction *EntryVal,
2568                                            const InductionDescriptor &ID,
2569                                            VPValue *Def, VPValue *CastDef,
2570                                            VPTransformState &State) {
2571   // We shouldn't have to build scalar steps if we aren't vectorizing.
2572   assert(VF.isVector() && "VF should be greater than one");
2573   // Get the value type and ensure it and the step have the same integer type.
2574   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2575   assert(ScalarIVTy == Step->getType() &&
2576          "Val and Step should have the same type");
2577 
2578   // We build scalar steps for both integer and floating-point induction
2579   // variables. Here, we determine the kind of arithmetic we will perform.
2580   Instruction::BinaryOps AddOp;
2581   Instruction::BinaryOps MulOp;
2582   if (ScalarIVTy->isIntegerTy()) {
2583     AddOp = Instruction::Add;
2584     MulOp = Instruction::Mul;
2585   } else {
2586     AddOp = ID.getInductionOpcode();
2587     MulOp = Instruction::FMul;
2588   }
2589 
2590   // Determine the number of scalars we need to generate for each unroll
2591   // iteration. If EntryVal is uniform, we only need to generate the first
2592   // lane. Otherwise, we generate all VF values.
2593   bool IsUniform =
2594       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2595   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2596   // Compute the scalar steps and save the results in State.
2597   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2598                                      ScalarIVTy->getScalarSizeInBits());
2599   Type *VecIVTy = nullptr;
2600   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2601   if (!IsUniform && VF.isScalable()) {
2602     VecIVTy = VectorType::get(ScalarIVTy, VF);
2603     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2604     SplatStep = Builder.CreateVectorSplat(VF, Step);
2605     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2606   }
2607 
2608   for (unsigned Part = 0; Part < UF; ++Part) {
2609     Value *StartIdx0 =
2610         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2611 
2612     if (!IsUniform && VF.isScalable()) {
2613       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2614       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2615       if (ScalarIVTy->isFloatingPointTy())
2616         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2617       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2618       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2619       State.set(Def, Add, Part);
2620       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2621                                             Part);
2622       // It's useful to record the lane values too for the known minimum number
2623       // of elements so we do those below. This improves the code quality when
2624       // trying to extract the first element, for example.
2625     }
2626 
2627     if (ScalarIVTy->isFloatingPointTy())
2628       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2629 
2630     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2631       Value *StartIdx = Builder.CreateBinOp(
2632           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2633       // The step returned by `createStepForVF` is a runtime-evaluated value
2634       // when VF is scalable. Otherwise, it should be folded into a Constant.
2635       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2636              "Expected StartIdx to be folded to a constant when VF is not "
2637              "scalable");
2638       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2639       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2640       State.set(Def, Add, VPIteration(Part, Lane));
2641       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2642                                             Part, Lane);
2643     }
2644   }
2645 }
2646 
2647 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2648                                                     const VPIteration &Instance,
2649                                                     VPTransformState &State) {
2650   Value *ScalarInst = State.get(Def, Instance);
2651   Value *VectorValue = State.get(Def, Instance.Part);
2652   VectorValue = Builder.CreateInsertElement(
2653       VectorValue, ScalarInst,
2654       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2655   State.set(Def, VectorValue, Instance.Part);
2656 }
2657 
2658 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2659   assert(Vec->getType()->isVectorTy() && "Invalid type");
2660   return Builder.CreateVectorReverse(Vec, "reverse");
2661 }
2662 
2663 // Return whether we allow using masked interleave-groups (for dealing with
2664 // strided loads/stores that reside in predicated blocks, or for dealing
2665 // with gaps).
2666 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2667   // If an override option has been passed in for interleaved accesses, use it.
2668   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2669     return EnableMaskedInterleavedMemAccesses;
2670 
2671   return TTI.enableMaskedInterleavedAccessVectorization();
2672 }
2673 
2674 // Try to vectorize the interleave group that \p Instr belongs to.
2675 //
2676 // E.g. Translate following interleaved load group (factor = 3):
2677 //   for (i = 0; i < N; i+=3) {
2678 //     R = Pic[i];             // Member of index 0
2679 //     G = Pic[i+1];           // Member of index 1
2680 //     B = Pic[i+2];           // Member of index 2
2681 //     ... // do something to R, G, B
2682 //   }
2683 // To:
2684 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2685 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2686 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2687 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2688 //
2689 // Or translate following interleaved store group (factor = 3):
2690 //   for (i = 0; i < N; i+=3) {
2691 //     ... do something to R, G, B
2692 //     Pic[i]   = R;           // Member of index 0
2693 //     Pic[i+1] = G;           // Member of index 1
2694 //     Pic[i+2] = B;           // Member of index 2
2695 //   }
2696 // To:
2697 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2698 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2699 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2700 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2701 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2702 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2703     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2704     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2705     VPValue *BlockInMask) {
2706   Instruction *Instr = Group->getInsertPos();
2707   const DataLayout &DL = Instr->getModule()->getDataLayout();
2708 
2709   // Prepare for the vector type of the interleaved load/store.
2710   Type *ScalarTy = getLoadStoreType(Instr);
2711   unsigned InterleaveFactor = Group->getFactor();
2712   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2713   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2714 
2715   // Prepare for the new pointers.
2716   SmallVector<Value *, 2> AddrParts;
2717   unsigned Index = Group->getIndex(Instr);
2718 
2719   // TODO: extend the masked interleaved-group support to reversed access.
2720   assert((!BlockInMask || !Group->isReverse()) &&
2721          "Reversed masked interleave-group not supported.");
2722 
2723   // If the group is reverse, adjust the index to refer to the last vector lane
2724   // instead of the first. We adjust the index from the first vector lane,
2725   // rather than directly getting the pointer for lane VF - 1, because the
2726   // pointer operand of the interleaved access is supposed to be uniform. For
2727   // uniform instructions, we're only required to generate a value for the
2728   // first vector lane in each unroll iteration.
2729   if (Group->isReverse())
2730     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2731 
2732   for (unsigned Part = 0; Part < UF; Part++) {
2733     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2734     setDebugLocFromInst(AddrPart);
2735 
2736     // Notice current instruction could be any index. Need to adjust the address
2737     // to the member of index 0.
2738     //
2739     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2740     //       b = A[i];       // Member of index 0
2741     // Current pointer is pointed to A[i+1], adjust it to A[i].
2742     //
2743     // E.g.  A[i+1] = a;     // Member of index 1
2744     //       A[i]   = b;     // Member of index 0
2745     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2746     // Current pointer is pointed to A[i+2], adjust it to A[i].
2747 
2748     bool InBounds = false;
2749     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2750       InBounds = gep->isInBounds();
2751     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2752     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2753 
2754     // Cast to the vector pointer type.
2755     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2756     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2757     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2758   }
2759 
2760   setDebugLocFromInst(Instr);
2761   Value *PoisonVec = PoisonValue::get(VecTy);
2762 
2763   Value *MaskForGaps = nullptr;
2764   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2765     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2766     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2767   }
2768 
2769   // Vectorize the interleaved load group.
2770   if (isa<LoadInst>(Instr)) {
2771     // For each unroll part, create a wide load for the group.
2772     SmallVector<Value *, 2> NewLoads;
2773     for (unsigned Part = 0; Part < UF; Part++) {
2774       Instruction *NewLoad;
2775       if (BlockInMask || MaskForGaps) {
2776         assert(useMaskedInterleavedAccesses(*TTI) &&
2777                "masked interleaved groups are not allowed.");
2778         Value *GroupMask = MaskForGaps;
2779         if (BlockInMask) {
2780           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2781           Value *ShuffledMask = Builder.CreateShuffleVector(
2782               BlockInMaskPart,
2783               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2784               "interleaved.mask");
2785           GroupMask = MaskForGaps
2786                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2787                                                 MaskForGaps)
2788                           : ShuffledMask;
2789         }
2790         NewLoad =
2791             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2792                                      GroupMask, PoisonVec, "wide.masked.vec");
2793       }
2794       else
2795         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2796                                             Group->getAlign(), "wide.vec");
2797       Group->addMetadata(NewLoad);
2798       NewLoads.push_back(NewLoad);
2799     }
2800 
2801     // For each member in the group, shuffle out the appropriate data from the
2802     // wide loads.
2803     unsigned J = 0;
2804     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2805       Instruction *Member = Group->getMember(I);
2806 
2807       // Skip the gaps in the group.
2808       if (!Member)
2809         continue;
2810 
2811       auto StrideMask =
2812           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2813       for (unsigned Part = 0; Part < UF; Part++) {
2814         Value *StridedVec = Builder.CreateShuffleVector(
2815             NewLoads[Part], StrideMask, "strided.vec");
2816 
2817         // If this member has different type, cast the result type.
2818         if (Member->getType() != ScalarTy) {
2819           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2820           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2821           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2822         }
2823 
2824         if (Group->isReverse())
2825           StridedVec = reverseVector(StridedVec);
2826 
2827         State.set(VPDefs[J], StridedVec, Part);
2828       }
2829       ++J;
2830     }
2831     return;
2832   }
2833 
2834   // The sub vector type for current instruction.
2835   auto *SubVT = VectorType::get(ScalarTy, VF);
2836 
2837   // Vectorize the interleaved store group.
2838   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2839   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2840          "masked interleaved groups are not allowed.");
2841   assert((!MaskForGaps || !VF.isScalable()) &&
2842          "masking gaps for scalable vectors is not yet supported.");
2843   for (unsigned Part = 0; Part < UF; Part++) {
2844     // Collect the stored vector from each member.
2845     SmallVector<Value *, 4> StoredVecs;
2846     for (unsigned i = 0; i < InterleaveFactor; i++) {
2847       assert((Group->getMember(i) || MaskForGaps) &&
2848              "Fail to get a member from an interleaved store group");
2849       Instruction *Member = Group->getMember(i);
2850 
2851       // Skip the gaps in the group.
2852       if (!Member) {
2853         Value *Undef = PoisonValue::get(SubVT);
2854         StoredVecs.push_back(Undef);
2855         continue;
2856       }
2857 
2858       Value *StoredVec = State.get(StoredValues[i], Part);
2859 
2860       if (Group->isReverse())
2861         StoredVec = reverseVector(StoredVec);
2862 
2863       // If this member has different type, cast it to a unified type.
2864 
2865       if (StoredVec->getType() != SubVT)
2866         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2867 
2868       StoredVecs.push_back(StoredVec);
2869     }
2870 
2871     // Concatenate all vectors into a wide vector.
2872     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2873 
2874     // Interleave the elements in the wide vector.
2875     Value *IVec = Builder.CreateShuffleVector(
2876         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2877         "interleaved.vec");
2878 
2879     Instruction *NewStoreInstr;
2880     if (BlockInMask || MaskForGaps) {
2881       Value *GroupMask = MaskForGaps;
2882       if (BlockInMask) {
2883         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2884         Value *ShuffledMask = Builder.CreateShuffleVector(
2885             BlockInMaskPart,
2886             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2887             "interleaved.mask");
2888         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2889                                                       ShuffledMask, MaskForGaps)
2890                                 : ShuffledMask;
2891       }
2892       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2893                                                 Group->getAlign(), GroupMask);
2894     } else
2895       NewStoreInstr =
2896           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2897 
2898     Group->addMetadata(NewStoreInstr);
2899   }
2900 }
2901 
2902 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2903     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2904     VPValue *StoredValue, VPValue *BlockInMask) {
2905   // Attempt to issue a wide load.
2906   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2907   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2908 
2909   assert((LI || SI) && "Invalid Load/Store instruction");
2910   assert((!SI || StoredValue) && "No stored value provided for widened store");
2911   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2912 
2913   LoopVectorizationCostModel::InstWidening Decision =
2914       Cost->getWideningDecision(Instr, VF);
2915   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2916           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2917           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2918          "CM decision is not to widen the memory instruction");
2919 
2920   Type *ScalarDataTy = getLoadStoreType(Instr);
2921 
2922   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2923   const Align Alignment = getLoadStoreAlignment(Instr);
2924 
2925   // Determine if the pointer operand of the access is either consecutive or
2926   // reverse consecutive.
2927   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2928   bool ConsecutiveStride =
2929       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2930   bool CreateGatherScatter =
2931       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2932 
2933   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2934   // gather/scatter. Otherwise Decision should have been to Scalarize.
2935   assert((ConsecutiveStride || CreateGatherScatter) &&
2936          "The instruction should be scalarized");
2937   (void)ConsecutiveStride;
2938 
2939   VectorParts BlockInMaskParts(UF);
2940   bool isMaskRequired = BlockInMask;
2941   if (isMaskRequired)
2942     for (unsigned Part = 0; Part < UF; ++Part)
2943       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2944 
2945   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2946     // Calculate the pointer for the specific unroll-part.
2947     GetElementPtrInst *PartPtr = nullptr;
2948 
2949     bool InBounds = false;
2950     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2951       InBounds = gep->isInBounds();
2952     if (Reverse) {
2953       // If the address is consecutive but reversed, then the
2954       // wide store needs to start at the last vector element.
2955       // RunTimeVF =  VScale * VF.getKnownMinValue()
2956       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2957       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2958       // NumElt = -Part * RunTimeVF
2959       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2960       // LastLane = 1 - RunTimeVF
2961       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2962       PartPtr =
2963           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2964       PartPtr->setIsInBounds(InBounds);
2965       PartPtr = cast<GetElementPtrInst>(
2966           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2967       PartPtr->setIsInBounds(InBounds);
2968       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2969         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2970     } else {
2971       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2972       PartPtr = cast<GetElementPtrInst>(
2973           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2974       PartPtr->setIsInBounds(InBounds);
2975     }
2976 
2977     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2978     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2979   };
2980 
2981   // Handle Stores:
2982   if (SI) {
2983     setDebugLocFromInst(SI);
2984 
2985     for (unsigned Part = 0; Part < UF; ++Part) {
2986       Instruction *NewSI = nullptr;
2987       Value *StoredVal = State.get(StoredValue, Part);
2988       if (CreateGatherScatter) {
2989         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2990         Value *VectorGep = State.get(Addr, Part);
2991         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2992                                             MaskPart);
2993       } else {
2994         if (Reverse) {
2995           // If we store to reverse consecutive memory locations, then we need
2996           // to reverse the order of elements in the stored value.
2997           StoredVal = reverseVector(StoredVal);
2998           // We don't want to update the value in the map as it might be used in
2999           // another expression. So don't call resetVectorValue(StoredVal).
3000         }
3001         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3002         if (isMaskRequired)
3003           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3004                                             BlockInMaskParts[Part]);
3005         else
3006           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3007       }
3008       addMetadata(NewSI, SI);
3009     }
3010     return;
3011   }
3012 
3013   // Handle loads.
3014   assert(LI && "Must have a load instruction");
3015   setDebugLocFromInst(LI);
3016   for (unsigned Part = 0; Part < UF; ++Part) {
3017     Value *NewLI;
3018     if (CreateGatherScatter) {
3019       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3020       Value *VectorGep = State.get(Addr, Part);
3021       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3022                                          nullptr, "wide.masked.gather");
3023       addMetadata(NewLI, LI);
3024     } else {
3025       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3026       if (isMaskRequired)
3027         NewLI = Builder.CreateMaskedLoad(
3028             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3029             PoisonValue::get(DataTy), "wide.masked.load");
3030       else
3031         NewLI =
3032             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3033 
3034       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3035       addMetadata(NewLI, LI);
3036       if (Reverse)
3037         NewLI = reverseVector(NewLI);
3038     }
3039 
3040     State.set(Def, NewLI, Part);
3041   }
3042 }
3043 
3044 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3045                                                VPUser &User,
3046                                                const VPIteration &Instance,
3047                                                bool IfPredicateInstr,
3048                                                VPTransformState &State) {
3049   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3050 
3051   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3052   // the first lane and part.
3053   if (isa<NoAliasScopeDeclInst>(Instr))
3054     if (!Instance.isFirstIteration())
3055       return;
3056 
3057   setDebugLocFromInst(Instr);
3058 
3059   // Does this instruction return a value ?
3060   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3061 
3062   Instruction *Cloned = Instr->clone();
3063   if (!IsVoidRetTy)
3064     Cloned->setName(Instr->getName() + ".cloned");
3065 
3066   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3067                                Builder.GetInsertPoint());
3068   // Replace the operands of the cloned instructions with their scalar
3069   // equivalents in the new loop.
3070   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3071     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3072     auto InputInstance = Instance;
3073     if (!Operand || !OrigLoop->contains(Operand) ||
3074         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3075       InputInstance.Lane = VPLane::getFirstLane();
3076     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3077     Cloned->setOperand(op, NewOp);
3078   }
3079   addNewMetadata(Cloned, Instr);
3080 
3081   // Place the cloned scalar in the new loop.
3082   Builder.Insert(Cloned);
3083 
3084   State.set(Def, Cloned, Instance);
3085 
3086   // If we just cloned a new assumption, add it the assumption cache.
3087   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3088     AC->registerAssumption(II);
3089 
3090   // End if-block.
3091   if (IfPredicateInstr)
3092     PredicatedInstructions.push_back(Cloned);
3093 }
3094 
3095 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3096                                                       Value *End, Value *Step,
3097                                                       Instruction *DL) {
3098   BasicBlock *Header = L->getHeader();
3099   BasicBlock *Latch = L->getLoopLatch();
3100   // As we're just creating this loop, it's possible no latch exists
3101   // yet. If so, use the header as this will be a single block loop.
3102   if (!Latch)
3103     Latch = Header;
3104 
3105   IRBuilder<> B(&*Header->getFirstInsertionPt());
3106   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3107   setDebugLocFromInst(OldInst, &B);
3108   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3109 
3110   B.SetInsertPoint(Latch->getTerminator());
3111   setDebugLocFromInst(OldInst, &B);
3112 
3113   // Create i+1 and fill the PHINode.
3114   //
3115   // If the tail is not folded, we know that End - Start >= Step (either
3116   // statically or through the minimum iteration checks). We also know that both
3117   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3118   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3119   // overflows and we can mark the induction increment as NUW.
3120   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3121                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3122   Induction->addIncoming(Start, L->getLoopPreheader());
3123   Induction->addIncoming(Next, Latch);
3124   // Create the compare.
3125   Value *ICmp = B.CreateICmpEQ(Next, End);
3126   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3127 
3128   // Now we have two terminators. Remove the old one from the block.
3129   Latch->getTerminator()->eraseFromParent();
3130 
3131   return Induction;
3132 }
3133 
3134 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3135   if (TripCount)
3136     return TripCount;
3137 
3138   assert(L && "Create Trip Count for null loop.");
3139   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3140   // Find the loop boundaries.
3141   ScalarEvolution *SE = PSE.getSE();
3142   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3143   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3144          "Invalid loop count");
3145 
3146   Type *IdxTy = Legal->getWidestInductionType();
3147   assert(IdxTy && "No type for induction");
3148 
3149   // The exit count might have the type of i64 while the phi is i32. This can
3150   // happen if we have an induction variable that is sign extended before the
3151   // compare. The only way that we get a backedge taken count is that the
3152   // induction variable was signed and as such will not overflow. In such a case
3153   // truncation is legal.
3154   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3155       IdxTy->getPrimitiveSizeInBits())
3156     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3157   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3158 
3159   // Get the total trip count from the count by adding 1.
3160   const SCEV *ExitCount = SE->getAddExpr(
3161       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3162 
3163   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3164 
3165   // Expand the trip count and place the new instructions in the preheader.
3166   // Notice that the pre-header does not change, only the loop body.
3167   SCEVExpander Exp(*SE, DL, "induction");
3168 
3169   // Count holds the overall loop count (N).
3170   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3171                                 L->getLoopPreheader()->getTerminator());
3172 
3173   if (TripCount->getType()->isPointerTy())
3174     TripCount =
3175         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3176                                     L->getLoopPreheader()->getTerminator());
3177 
3178   return TripCount;
3179 }
3180 
3181 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3182   if (VectorTripCount)
3183     return VectorTripCount;
3184 
3185   Value *TC = getOrCreateTripCount(L);
3186   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3187 
3188   Type *Ty = TC->getType();
3189   // This is where we can make the step a runtime constant.
3190   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3191 
3192   // If the tail is to be folded by masking, round the number of iterations N
3193   // up to a multiple of Step instead of rounding down. This is done by first
3194   // adding Step-1 and then rounding down. Note that it's ok if this addition
3195   // overflows: the vector induction variable will eventually wrap to zero given
3196   // that it starts at zero and its Step is a power of two; the loop will then
3197   // exit, with the last early-exit vector comparison also producing all-true.
3198   if (Cost->foldTailByMasking()) {
3199     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3200            "VF*UF must be a power of 2 when folding tail by masking");
3201     assert(!VF.isScalable() &&
3202            "Tail folding not yet supported for scalable vectors");
3203     TC = Builder.CreateAdd(
3204         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3205   }
3206 
3207   // Now we need to generate the expression for the part of the loop that the
3208   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3209   // iterations are not required for correctness, or N - Step, otherwise. Step
3210   // is equal to the vectorization factor (number of SIMD elements) times the
3211   // unroll factor (number of SIMD instructions).
3212   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3213 
3214   // There are cases where we *must* run at least one iteration in the remainder
3215   // loop.  See the cost model for when this can happen.  If the step evenly
3216   // divides the trip count, we set the remainder to be equal to the step. If
3217   // the step does not evenly divide the trip count, no adjustment is necessary
3218   // since there will already be scalar iterations. Note that the minimum
3219   // iterations check ensures that N >= Step.
3220   if (Cost->requiresScalarEpilogue(VF)) {
3221     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3222     R = Builder.CreateSelect(IsZero, Step, R);
3223   }
3224 
3225   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3226 
3227   return VectorTripCount;
3228 }
3229 
3230 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3231                                                    const DataLayout &DL) {
3232   // Verify that V is a vector type with same number of elements as DstVTy.
3233   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3234   unsigned VF = DstFVTy->getNumElements();
3235   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3236   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3237   Type *SrcElemTy = SrcVecTy->getElementType();
3238   Type *DstElemTy = DstFVTy->getElementType();
3239   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3240          "Vector elements must have same size");
3241 
3242   // Do a direct cast if element types are castable.
3243   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3244     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3245   }
3246   // V cannot be directly casted to desired vector type.
3247   // May happen when V is a floating point vector but DstVTy is a vector of
3248   // pointers or vice-versa. Handle this using a two-step bitcast using an
3249   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3250   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3251          "Only one type should be a pointer type");
3252   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3253          "Only one type should be a floating point type");
3254   Type *IntTy =
3255       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3256   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3257   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3258   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3259 }
3260 
3261 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3262                                                          BasicBlock *Bypass) {
3263   Value *Count = getOrCreateTripCount(L);
3264   // Reuse existing vector loop preheader for TC checks.
3265   // Note that new preheader block is generated for vector loop.
3266   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3267   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3268 
3269   // Generate code to check if the loop's trip count is less than VF * UF, or
3270   // equal to it in case a scalar epilogue is required; this implies that the
3271   // vector trip count is zero. This check also covers the case where adding one
3272   // to the backedge-taken count overflowed leading to an incorrect trip count
3273   // of zero. In this case we will also jump to the scalar loop.
3274   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3275                                             : ICmpInst::ICMP_ULT;
3276 
3277   // If tail is to be folded, vector loop takes care of all iterations.
3278   Value *CheckMinIters = Builder.getFalse();
3279   if (!Cost->foldTailByMasking()) {
3280     Value *Step =
3281         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3282     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3283   }
3284   // Create new preheader for vector loop.
3285   LoopVectorPreHeader =
3286       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3287                  "vector.ph");
3288 
3289   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3290                                DT->getNode(Bypass)->getIDom()) &&
3291          "TC check is expected to dominate Bypass");
3292 
3293   // Update dominator for Bypass & LoopExit (if needed).
3294   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3295   if (!Cost->requiresScalarEpilogue(VF))
3296     // If there is an epilogue which must run, there's no edge from the
3297     // middle block to exit blocks  and thus no need to update the immediate
3298     // dominator of the exit blocks.
3299     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3300 
3301   ReplaceInstWithInst(
3302       TCCheckBlock->getTerminator(),
3303       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3304   LoopBypassBlocks.push_back(TCCheckBlock);
3305 }
3306 
3307 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3308 
3309   BasicBlock *const SCEVCheckBlock =
3310       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3311   if (!SCEVCheckBlock)
3312     return nullptr;
3313 
3314   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3315            (OptForSizeBasedOnProfile &&
3316             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3317          "Cannot SCEV check stride or overflow when optimizing for size");
3318 
3319 
3320   // Update dominator only if this is first RT check.
3321   if (LoopBypassBlocks.empty()) {
3322     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3323     if (!Cost->requiresScalarEpilogue(VF))
3324       // If there is an epilogue which must run, there's no edge from the
3325       // middle block to exit blocks  and thus no need to update the immediate
3326       // dominator of the exit blocks.
3327       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3328   }
3329 
3330   LoopBypassBlocks.push_back(SCEVCheckBlock);
3331   AddedSafetyChecks = true;
3332   return SCEVCheckBlock;
3333 }
3334 
3335 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3336                                                       BasicBlock *Bypass) {
3337   // VPlan-native path does not do any analysis for runtime checks currently.
3338   if (EnableVPlanNativePath)
3339     return nullptr;
3340 
3341   BasicBlock *const MemCheckBlock =
3342       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3343 
3344   // Check if we generated code that checks in runtime if arrays overlap. We put
3345   // the checks into a separate block to make the more common case of few
3346   // elements faster.
3347   if (!MemCheckBlock)
3348     return nullptr;
3349 
3350   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3351     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3352            "Cannot emit memory checks when optimizing for size, unless forced "
3353            "to vectorize.");
3354     ORE->emit([&]() {
3355       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3356                                         L->getStartLoc(), L->getHeader())
3357              << "Code-size may be reduced by not forcing "
3358                 "vectorization, or by source-code modifications "
3359                 "eliminating the need for runtime checks "
3360                 "(e.g., adding 'restrict').";
3361     });
3362   }
3363 
3364   LoopBypassBlocks.push_back(MemCheckBlock);
3365 
3366   AddedSafetyChecks = true;
3367 
3368   // We currently don't use LoopVersioning for the actual loop cloning but we
3369   // still use it to add the noalias metadata.
3370   LVer = std::make_unique<LoopVersioning>(
3371       *Legal->getLAI(),
3372       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3373       DT, PSE.getSE());
3374   LVer->prepareNoAliasMetadata();
3375   return MemCheckBlock;
3376 }
3377 
3378 Value *InnerLoopVectorizer::emitTransformedIndex(
3379     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3380     const InductionDescriptor &ID) const {
3381 
3382   SCEVExpander Exp(*SE, DL, "induction");
3383   auto Step = ID.getStep();
3384   auto StartValue = ID.getStartValue();
3385   assert(Index->getType()->getScalarType() == Step->getType() &&
3386          "Index scalar type does not match StepValue type");
3387 
3388   // Note: the IR at this point is broken. We cannot use SE to create any new
3389   // SCEV and then expand it, hoping that SCEV's simplification will give us
3390   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3391   // lead to various SCEV crashes. So all we can do is to use builder and rely
3392   // on InstCombine for future simplifications. Here we handle some trivial
3393   // cases only.
3394   auto CreateAdd = [&B](Value *X, Value *Y) {
3395     assert(X->getType() == Y->getType() && "Types don't match!");
3396     if (auto *CX = dyn_cast<ConstantInt>(X))
3397       if (CX->isZero())
3398         return Y;
3399     if (auto *CY = dyn_cast<ConstantInt>(Y))
3400       if (CY->isZero())
3401         return X;
3402     return B.CreateAdd(X, Y);
3403   };
3404 
3405   // We allow X to be a vector type, in which case Y will potentially be
3406   // splatted into a vector with the same element count.
3407   auto CreateMul = [&B](Value *X, Value *Y) {
3408     assert(X->getType()->getScalarType() == Y->getType() &&
3409            "Types don't match!");
3410     if (auto *CX = dyn_cast<ConstantInt>(X))
3411       if (CX->isOne())
3412         return Y;
3413     if (auto *CY = dyn_cast<ConstantInt>(Y))
3414       if (CY->isOne())
3415         return X;
3416     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3417     if (XVTy && !isa<VectorType>(Y->getType()))
3418       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3419     return B.CreateMul(X, Y);
3420   };
3421 
3422   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3423   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3424   // the DomTree is not kept up-to-date for additional blocks generated in the
3425   // vector loop. By using the header as insertion point, we guarantee that the
3426   // expanded instructions dominate all their uses.
3427   auto GetInsertPoint = [this, &B]() {
3428     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3429     if (InsertBB != LoopVectorBody &&
3430         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3431       return LoopVectorBody->getTerminator();
3432     return &*B.GetInsertPoint();
3433   };
3434 
3435   switch (ID.getKind()) {
3436   case InductionDescriptor::IK_IntInduction: {
3437     assert(!isa<VectorType>(Index->getType()) &&
3438            "Vector indices not supported for integer inductions yet");
3439     assert(Index->getType() == StartValue->getType() &&
3440            "Index type does not match StartValue type");
3441     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3442       return B.CreateSub(StartValue, Index);
3443     auto *Offset = CreateMul(
3444         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3445     return CreateAdd(StartValue, Offset);
3446   }
3447   case InductionDescriptor::IK_PtrInduction: {
3448     assert(isa<SCEVConstant>(Step) &&
3449            "Expected constant step for pointer induction");
3450     return B.CreateGEP(
3451         ID.getElementType(), StartValue,
3452         CreateMul(Index,
3453                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3454                                     GetInsertPoint())));
3455   }
3456   case InductionDescriptor::IK_FpInduction: {
3457     assert(!isa<VectorType>(Index->getType()) &&
3458            "Vector indices not supported for FP inductions yet");
3459     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3460     auto InductionBinOp = ID.getInductionBinOp();
3461     assert(InductionBinOp &&
3462            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3463             InductionBinOp->getOpcode() == Instruction::FSub) &&
3464            "Original bin op should be defined for FP induction");
3465 
3466     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3467     Value *MulExp = B.CreateFMul(StepValue, Index);
3468     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3469                          "induction");
3470   }
3471   case InductionDescriptor::IK_NoInduction:
3472     return nullptr;
3473   }
3474   llvm_unreachable("invalid enum");
3475 }
3476 
3477 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3478   LoopScalarBody = OrigLoop->getHeader();
3479   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3480   assert(LoopVectorPreHeader && "Invalid loop structure");
3481   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3482   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3483          "multiple exit loop without required epilogue?");
3484 
3485   LoopMiddleBlock =
3486       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3487                  LI, nullptr, Twine(Prefix) + "middle.block");
3488   LoopScalarPreHeader =
3489       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3490                  nullptr, Twine(Prefix) + "scalar.ph");
3491 
3492   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3493 
3494   // Set up the middle block terminator.  Two cases:
3495   // 1) If we know that we must execute the scalar epilogue, emit an
3496   //    unconditional branch.
3497   // 2) Otherwise, we must have a single unique exit block (due to how we
3498   //    implement the multiple exit case).  In this case, set up a conditonal
3499   //    branch from the middle block to the loop scalar preheader, and the
3500   //    exit block.  completeLoopSkeleton will update the condition to use an
3501   //    iteration check, if required to decide whether to execute the remainder.
3502   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3503     BranchInst::Create(LoopScalarPreHeader) :
3504     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3505                        Builder.getTrue());
3506   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3507   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3508 
3509   // We intentionally don't let SplitBlock to update LoopInfo since
3510   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3511   // LoopVectorBody is explicitly added to the correct place few lines later.
3512   LoopVectorBody =
3513       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3514                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3515 
3516   // Update dominator for loop exit.
3517   if (!Cost->requiresScalarEpilogue(VF))
3518     // If there is an epilogue which must run, there's no edge from the
3519     // middle block to exit blocks  and thus no need to update the immediate
3520     // dominator of the exit blocks.
3521     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3522 
3523   // Create and register the new vector loop.
3524   Loop *Lp = LI->AllocateLoop();
3525   Loop *ParentLoop = OrigLoop->getParentLoop();
3526 
3527   // Insert the new loop into the loop nest and register the new basic blocks
3528   // before calling any utilities such as SCEV that require valid LoopInfo.
3529   if (ParentLoop) {
3530     ParentLoop->addChildLoop(Lp);
3531   } else {
3532     LI->addTopLevelLoop(Lp);
3533   }
3534   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3535   return Lp;
3536 }
3537 
3538 void InnerLoopVectorizer::createInductionResumeValues(
3539     Loop *L, Value *VectorTripCount,
3540     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3541   assert(VectorTripCount && L && "Expected valid arguments");
3542   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3543           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3544          "Inconsistent information about additional bypass.");
3545   // We are going to resume the execution of the scalar loop.
3546   // Go over all of the induction variables that we found and fix the
3547   // PHIs that are left in the scalar version of the loop.
3548   // The starting values of PHI nodes depend on the counter of the last
3549   // iteration in the vectorized loop.
3550   // If we come from a bypass edge then we need to start from the original
3551   // start value.
3552   for (auto &InductionEntry : Legal->getInductionVars()) {
3553     PHINode *OrigPhi = InductionEntry.first;
3554     InductionDescriptor II = InductionEntry.second;
3555 
3556     // Create phi nodes to merge from the  backedge-taken check block.
3557     PHINode *BCResumeVal =
3558         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3559                         LoopScalarPreHeader->getTerminator());
3560     // Copy original phi DL over to the new one.
3561     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3562     Value *&EndValue = IVEndValues[OrigPhi];
3563     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3564     if (OrigPhi == OldInduction) {
3565       // We know what the end value is.
3566       EndValue = VectorTripCount;
3567     } else {
3568       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3569 
3570       // Fast-math-flags propagate from the original induction instruction.
3571       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3572         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3573 
3574       Type *StepType = II.getStep()->getType();
3575       Instruction::CastOps CastOp =
3576           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3577       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3578       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3579       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3580       EndValue->setName("ind.end");
3581 
3582       // Compute the end value for the additional bypass (if applicable).
3583       if (AdditionalBypass.first) {
3584         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3585         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3586                                          StepType, true);
3587         CRD =
3588             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3589         EndValueFromAdditionalBypass =
3590             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3591         EndValueFromAdditionalBypass->setName("ind.end");
3592       }
3593     }
3594     // The new PHI merges the original incoming value, in case of a bypass,
3595     // or the value at the end of the vectorized loop.
3596     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3597 
3598     // Fix the scalar body counter (PHI node).
3599     // The old induction's phi node in the scalar body needs the truncated
3600     // value.
3601     for (BasicBlock *BB : LoopBypassBlocks)
3602       BCResumeVal->addIncoming(II.getStartValue(), BB);
3603 
3604     if (AdditionalBypass.first)
3605       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3606                                             EndValueFromAdditionalBypass);
3607 
3608     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3609   }
3610 }
3611 
3612 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3613                                                       MDNode *OrigLoopID) {
3614   assert(L && "Expected valid loop.");
3615 
3616   // The trip counts should be cached by now.
3617   Value *Count = getOrCreateTripCount(L);
3618   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3619 
3620   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3621 
3622   // Add a check in the middle block to see if we have completed
3623   // all of the iterations in the first vector loop.  Three cases:
3624   // 1) If we require a scalar epilogue, there is no conditional branch as
3625   //    we unconditionally branch to the scalar preheader.  Do nothing.
3626   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3627   //    Thus if tail is to be folded, we know we don't need to run the
3628   //    remainder and we can use the previous value for the condition (true).
3629   // 3) Otherwise, construct a runtime check.
3630   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3631     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3632                                         Count, VectorTripCount, "cmp.n",
3633                                         LoopMiddleBlock->getTerminator());
3634 
3635     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3636     // of the corresponding compare because they may have ended up with
3637     // different line numbers and we want to avoid awkward line stepping while
3638     // debugging. Eg. if the compare has got a line number inside the loop.
3639     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3640     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3641   }
3642 
3643   // Get ready to start creating new instructions into the vectorized body.
3644   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3645          "Inconsistent vector loop preheader");
3646   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3647 
3648   Optional<MDNode *> VectorizedLoopID =
3649       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3650                                       LLVMLoopVectorizeFollowupVectorized});
3651   if (VectorizedLoopID.hasValue()) {
3652     L->setLoopID(VectorizedLoopID.getValue());
3653 
3654     // Do not setAlreadyVectorized if loop attributes have been defined
3655     // explicitly.
3656     return LoopVectorPreHeader;
3657   }
3658 
3659   // Keep all loop hints from the original loop on the vector loop (we'll
3660   // replace the vectorizer-specific hints below).
3661   if (MDNode *LID = OrigLoop->getLoopID())
3662     L->setLoopID(LID);
3663 
3664   LoopVectorizeHints Hints(L, true, *ORE);
3665   Hints.setAlreadyVectorized();
3666 
3667 #ifdef EXPENSIVE_CHECKS
3668   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3669   LI->verify(*DT);
3670 #endif
3671 
3672   return LoopVectorPreHeader;
3673 }
3674 
3675 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3676   /*
3677    In this function we generate a new loop. The new loop will contain
3678    the vectorized instructions while the old loop will continue to run the
3679    scalar remainder.
3680 
3681        [ ] <-- loop iteration number check.
3682     /   |
3683    /    v
3684   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3685   |  /  |
3686   | /   v
3687   ||   [ ]     <-- vector pre header.
3688   |/    |
3689   |     v
3690   |    [  ] \
3691   |    [  ]_|   <-- vector loop.
3692   |     |
3693   |     v
3694   \   -[ ]   <--- middle-block.
3695    \/   |
3696    /\   v
3697    | ->[ ]     <--- new preheader.
3698    |    |
3699  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3700    |   [ ] \
3701    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3702     \   |
3703      \  v
3704       >[ ]     <-- exit block(s).
3705    ...
3706    */
3707 
3708   // Get the metadata of the original loop before it gets modified.
3709   MDNode *OrigLoopID = OrigLoop->getLoopID();
3710 
3711   // Workaround!  Compute the trip count of the original loop and cache it
3712   // before we start modifying the CFG.  This code has a systemic problem
3713   // wherein it tries to run analysis over partially constructed IR; this is
3714   // wrong, and not simply for SCEV.  The trip count of the original loop
3715   // simply happens to be prone to hitting this in practice.  In theory, we
3716   // can hit the same issue for any SCEV, or ValueTracking query done during
3717   // mutation.  See PR49900.
3718   getOrCreateTripCount(OrigLoop);
3719 
3720   // Create an empty vector loop, and prepare basic blocks for the runtime
3721   // checks.
3722   Loop *Lp = createVectorLoopSkeleton("");
3723 
3724   // Now, compare the new count to zero. If it is zero skip the vector loop and
3725   // jump to the scalar loop. This check also covers the case where the
3726   // backedge-taken count is uint##_max: adding one to it will overflow leading
3727   // to an incorrect trip count of zero. In this (rare) case we will also jump
3728   // to the scalar loop.
3729   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3730 
3731   // Generate the code to check any assumptions that we've made for SCEV
3732   // expressions.
3733   emitSCEVChecks(Lp, LoopScalarPreHeader);
3734 
3735   // Generate the code that checks in runtime if arrays overlap. We put the
3736   // checks into a separate block to make the more common case of few elements
3737   // faster.
3738   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3739 
3740   // Some loops have a single integer induction variable, while other loops
3741   // don't. One example is c++ iterators that often have multiple pointer
3742   // induction variables. In the code below we also support a case where we
3743   // don't have a single induction variable.
3744   //
3745   // We try to obtain an induction variable from the original loop as hard
3746   // as possible. However if we don't find one that:
3747   //   - is an integer
3748   //   - counts from zero, stepping by one
3749   //   - is the size of the widest induction variable type
3750   // then we create a new one.
3751   OldInduction = Legal->getPrimaryInduction();
3752   Type *IdxTy = Legal->getWidestInductionType();
3753   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3754   // The loop step is equal to the vectorization factor (num of SIMD elements)
3755   // times the unroll factor (num of SIMD instructions).
3756   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3757   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3758   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3759   Induction =
3760       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3761                               getDebugLocFromInstOrOperands(OldInduction));
3762 
3763   // Emit phis for the new starting index of the scalar loop.
3764   createInductionResumeValues(Lp, CountRoundDown);
3765 
3766   return completeLoopSkeleton(Lp, OrigLoopID);
3767 }
3768 
3769 // Fix up external users of the induction variable. At this point, we are
3770 // in LCSSA form, with all external PHIs that use the IV having one input value,
3771 // coming from the remainder loop. We need those PHIs to also have a correct
3772 // value for the IV when arriving directly from the middle block.
3773 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3774                                        const InductionDescriptor &II,
3775                                        Value *CountRoundDown, Value *EndValue,
3776                                        BasicBlock *MiddleBlock) {
3777   // There are two kinds of external IV usages - those that use the value
3778   // computed in the last iteration (the PHI) and those that use the penultimate
3779   // value (the value that feeds into the phi from the loop latch).
3780   // We allow both, but they, obviously, have different values.
3781 
3782   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3783 
3784   DenseMap<Value *, Value *> MissingVals;
3785 
3786   // An external user of the last iteration's value should see the value that
3787   // the remainder loop uses to initialize its own IV.
3788   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3789   for (User *U : PostInc->users()) {
3790     Instruction *UI = cast<Instruction>(U);
3791     if (!OrigLoop->contains(UI)) {
3792       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3793       MissingVals[UI] = EndValue;
3794     }
3795   }
3796 
3797   // An external user of the penultimate value need to see EndValue - Step.
3798   // The simplest way to get this is to recompute it from the constituent SCEVs,
3799   // that is Start + (Step * (CRD - 1)).
3800   for (User *U : OrigPhi->users()) {
3801     auto *UI = cast<Instruction>(U);
3802     if (!OrigLoop->contains(UI)) {
3803       const DataLayout &DL =
3804           OrigLoop->getHeader()->getModule()->getDataLayout();
3805       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3806 
3807       IRBuilder<> B(MiddleBlock->getTerminator());
3808 
3809       // Fast-math-flags propagate from the original induction instruction.
3810       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3811         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3812 
3813       Value *CountMinusOne = B.CreateSub(
3814           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3815       Value *CMO =
3816           !II.getStep()->getType()->isIntegerTy()
3817               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3818                              II.getStep()->getType())
3819               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3820       CMO->setName("cast.cmo");
3821       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3822       Escape->setName("ind.escape");
3823       MissingVals[UI] = Escape;
3824     }
3825   }
3826 
3827   for (auto &I : MissingVals) {
3828     PHINode *PHI = cast<PHINode>(I.first);
3829     // One corner case we have to handle is two IVs "chasing" each-other,
3830     // that is %IV2 = phi [...], [ %IV1, %latch ]
3831     // In this case, if IV1 has an external use, we need to avoid adding both
3832     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3833     // don't already have an incoming value for the middle block.
3834     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3835       PHI->addIncoming(I.second, MiddleBlock);
3836   }
3837 }
3838 
3839 namespace {
3840 
3841 struct CSEDenseMapInfo {
3842   static bool canHandle(const Instruction *I) {
3843     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3844            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3845   }
3846 
3847   static inline Instruction *getEmptyKey() {
3848     return DenseMapInfo<Instruction *>::getEmptyKey();
3849   }
3850 
3851   static inline Instruction *getTombstoneKey() {
3852     return DenseMapInfo<Instruction *>::getTombstoneKey();
3853   }
3854 
3855   static unsigned getHashValue(const Instruction *I) {
3856     assert(canHandle(I) && "Unknown instruction!");
3857     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3858                                                            I->value_op_end()));
3859   }
3860 
3861   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3862     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3863         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3864       return LHS == RHS;
3865     return LHS->isIdenticalTo(RHS);
3866   }
3867 };
3868 
3869 } // end anonymous namespace
3870 
3871 ///Perform cse of induction variable instructions.
3872 static void cse(BasicBlock *BB) {
3873   // Perform simple cse.
3874   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3875   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3876     Instruction *In = &*I++;
3877 
3878     if (!CSEDenseMapInfo::canHandle(In))
3879       continue;
3880 
3881     // Check if we can replace this instruction with any of the
3882     // visited instructions.
3883     if (Instruction *V = CSEMap.lookup(In)) {
3884       In->replaceAllUsesWith(V);
3885       In->eraseFromParent();
3886       continue;
3887     }
3888 
3889     CSEMap[In] = In;
3890   }
3891 }
3892 
3893 InstructionCost
3894 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3895                                               bool &NeedToScalarize) const {
3896   Function *F = CI->getCalledFunction();
3897   Type *ScalarRetTy = CI->getType();
3898   SmallVector<Type *, 4> Tys, ScalarTys;
3899   for (auto &ArgOp : CI->arg_operands())
3900     ScalarTys.push_back(ArgOp->getType());
3901 
3902   // Estimate cost of scalarized vector call. The source operands are assumed
3903   // to be vectors, so we need to extract individual elements from there,
3904   // execute VF scalar calls, and then gather the result into the vector return
3905   // value.
3906   InstructionCost ScalarCallCost =
3907       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3908   if (VF.isScalar())
3909     return ScalarCallCost;
3910 
3911   // Compute corresponding vector type for return value and arguments.
3912   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3913   for (Type *ScalarTy : ScalarTys)
3914     Tys.push_back(ToVectorTy(ScalarTy, VF));
3915 
3916   // Compute costs of unpacking argument values for the scalar calls and
3917   // packing the return values to a vector.
3918   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3919 
3920   InstructionCost Cost =
3921       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3922 
3923   // If we can't emit a vector call for this function, then the currently found
3924   // cost is the cost we need to return.
3925   NeedToScalarize = true;
3926   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3927   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3928 
3929   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3930     return Cost;
3931 
3932   // If the corresponding vector cost is cheaper, return its cost.
3933   InstructionCost VectorCallCost =
3934       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3935   if (VectorCallCost < Cost) {
3936     NeedToScalarize = false;
3937     Cost = VectorCallCost;
3938   }
3939   return Cost;
3940 }
3941 
3942 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3943   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3944     return Elt;
3945   return VectorType::get(Elt, VF);
3946 }
3947 
3948 InstructionCost
3949 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3950                                                    ElementCount VF) const {
3951   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3952   assert(ID && "Expected intrinsic call!");
3953   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3954   FastMathFlags FMF;
3955   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3956     FMF = FPMO->getFastMathFlags();
3957 
3958   SmallVector<const Value *> Arguments(CI->args());
3959   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3960   SmallVector<Type *> ParamTys;
3961   std::transform(FTy->param_begin(), FTy->param_end(),
3962                  std::back_inserter(ParamTys),
3963                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3964 
3965   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3966                                     dyn_cast<IntrinsicInst>(CI));
3967   return TTI.getIntrinsicInstrCost(CostAttrs,
3968                                    TargetTransformInfo::TCK_RecipThroughput);
3969 }
3970 
3971 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3972   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3973   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3974   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3975 }
3976 
3977 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3978   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3979   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3980   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3981 }
3982 
3983 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3984   // For every instruction `I` in MinBWs, truncate the operands, create a
3985   // truncated version of `I` and reextend its result. InstCombine runs
3986   // later and will remove any ext/trunc pairs.
3987   SmallPtrSet<Value *, 4> Erased;
3988   for (const auto &KV : Cost->getMinimalBitwidths()) {
3989     // If the value wasn't vectorized, we must maintain the original scalar
3990     // type. The absence of the value from State indicates that it
3991     // wasn't vectorized.
3992     // FIXME: Should not rely on getVPValue at this point.
3993     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3994     if (!State.hasAnyVectorValue(Def))
3995       continue;
3996     for (unsigned Part = 0; Part < UF; ++Part) {
3997       Value *I = State.get(Def, Part);
3998       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3999         continue;
4000       Type *OriginalTy = I->getType();
4001       Type *ScalarTruncatedTy =
4002           IntegerType::get(OriginalTy->getContext(), KV.second);
4003       auto *TruncatedTy = VectorType::get(
4004           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
4005       if (TruncatedTy == OriginalTy)
4006         continue;
4007 
4008       IRBuilder<> B(cast<Instruction>(I));
4009       auto ShrinkOperand = [&](Value *V) -> Value * {
4010         if (auto *ZI = dyn_cast<ZExtInst>(V))
4011           if (ZI->getSrcTy() == TruncatedTy)
4012             return ZI->getOperand(0);
4013         return B.CreateZExtOrTrunc(V, TruncatedTy);
4014       };
4015 
4016       // The actual instruction modification depends on the instruction type,
4017       // unfortunately.
4018       Value *NewI = nullptr;
4019       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4020         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4021                              ShrinkOperand(BO->getOperand(1)));
4022 
4023         // Any wrapping introduced by shrinking this operation shouldn't be
4024         // considered undefined behavior. So, we can't unconditionally copy
4025         // arithmetic wrapping flags to NewI.
4026         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4027       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4028         NewI =
4029             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4030                          ShrinkOperand(CI->getOperand(1)));
4031       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4032         NewI = B.CreateSelect(SI->getCondition(),
4033                               ShrinkOperand(SI->getTrueValue()),
4034                               ShrinkOperand(SI->getFalseValue()));
4035       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4036         switch (CI->getOpcode()) {
4037         default:
4038           llvm_unreachable("Unhandled cast!");
4039         case Instruction::Trunc:
4040           NewI = ShrinkOperand(CI->getOperand(0));
4041           break;
4042         case Instruction::SExt:
4043           NewI = B.CreateSExtOrTrunc(
4044               CI->getOperand(0),
4045               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4046           break;
4047         case Instruction::ZExt:
4048           NewI = B.CreateZExtOrTrunc(
4049               CI->getOperand(0),
4050               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4051           break;
4052         }
4053       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4054         auto Elements0 =
4055             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4056         auto *O0 = B.CreateZExtOrTrunc(
4057             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4058         auto Elements1 =
4059             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4060         auto *O1 = B.CreateZExtOrTrunc(
4061             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4062 
4063         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4064       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4065         // Don't do anything with the operands, just extend the result.
4066         continue;
4067       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4068         auto Elements =
4069             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4070         auto *O0 = B.CreateZExtOrTrunc(
4071             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4072         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4073         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4074       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4075         auto Elements =
4076             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4077         auto *O0 = B.CreateZExtOrTrunc(
4078             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4079         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4080       } else {
4081         // If we don't know what to do, be conservative and don't do anything.
4082         continue;
4083       }
4084 
4085       // Lastly, extend the result.
4086       NewI->takeName(cast<Instruction>(I));
4087       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4088       I->replaceAllUsesWith(Res);
4089       cast<Instruction>(I)->eraseFromParent();
4090       Erased.insert(I);
4091       State.reset(Def, Res, Part);
4092     }
4093   }
4094 
4095   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4096   for (const auto &KV : Cost->getMinimalBitwidths()) {
4097     // If the value wasn't vectorized, we must maintain the original scalar
4098     // type. The absence of the value from State indicates that it
4099     // wasn't vectorized.
4100     // FIXME: Should not rely on getVPValue at this point.
4101     VPValue *Def = State.Plan->getVPValue(KV.first, true);
4102     if (!State.hasAnyVectorValue(Def))
4103       continue;
4104     for (unsigned Part = 0; Part < UF; ++Part) {
4105       Value *I = State.get(Def, Part);
4106       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4107       if (Inst && Inst->use_empty()) {
4108         Value *NewI = Inst->getOperand(0);
4109         Inst->eraseFromParent();
4110         State.reset(Def, NewI, Part);
4111       }
4112     }
4113   }
4114 }
4115 
4116 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4117   // Insert truncates and extends for any truncated instructions as hints to
4118   // InstCombine.
4119   if (VF.isVector())
4120     truncateToMinimalBitwidths(State);
4121 
4122   // Fix widened non-induction PHIs by setting up the PHI operands.
4123   if (OrigPHIsToFix.size()) {
4124     assert(EnableVPlanNativePath &&
4125            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4126     fixNonInductionPHIs(State);
4127   }
4128 
4129   // At this point every instruction in the original loop is widened to a
4130   // vector form. Now we need to fix the recurrences in the loop. These PHI
4131   // nodes are currently empty because we did not want to introduce cycles.
4132   // This is the second stage of vectorizing recurrences.
4133   fixCrossIterationPHIs(State);
4134 
4135   // Forget the original basic block.
4136   PSE.getSE()->forgetLoop(OrigLoop);
4137 
4138   // If we inserted an edge from the middle block to the unique exit block,
4139   // update uses outside the loop (phis) to account for the newly inserted
4140   // edge.
4141   if (!Cost->requiresScalarEpilogue(VF)) {
4142     // Fix-up external users of the induction variables.
4143     for (auto &Entry : Legal->getInductionVars())
4144       fixupIVUsers(Entry.first, Entry.second,
4145                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4146                    IVEndValues[Entry.first], LoopMiddleBlock);
4147 
4148     fixLCSSAPHIs(State);
4149   }
4150 
4151   for (Instruction *PI : PredicatedInstructions)
4152     sinkScalarOperands(&*PI);
4153 
4154   // Remove redundant induction instructions.
4155   cse(LoopVectorBody);
4156 
4157   // Set/update profile weights for the vector and remainder loops as original
4158   // loop iterations are now distributed among them. Note that original loop
4159   // represented by LoopScalarBody becomes remainder loop after vectorization.
4160   //
4161   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4162   // end up getting slightly roughened result but that should be OK since
4163   // profile is not inherently precise anyway. Note also possible bypass of
4164   // vector code caused by legality checks is ignored, assigning all the weight
4165   // to the vector loop, optimistically.
4166   //
4167   // For scalable vectorization we can't know at compile time how many iterations
4168   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4169   // vscale of '1'.
4170   setProfileInfoAfterUnrolling(
4171       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4172       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4173 }
4174 
4175 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4176   // In order to support recurrences we need to be able to vectorize Phi nodes.
4177   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4178   // stage #2: We now need to fix the recurrences by adding incoming edges to
4179   // the currently empty PHI nodes. At this point every instruction in the
4180   // original loop is widened to a vector form so we can use them to construct
4181   // the incoming edges.
4182   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4183   for (VPRecipeBase &R : Header->phis()) {
4184     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4185       fixReduction(ReductionPhi, State);
4186     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4187       fixFirstOrderRecurrence(FOR, State);
4188   }
4189 }
4190 
4191 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4192                                                   VPTransformState &State) {
4193   // This is the second phase of vectorizing first-order recurrences. An
4194   // overview of the transformation is described below. Suppose we have the
4195   // following loop.
4196   //
4197   //   for (int i = 0; i < n; ++i)
4198   //     b[i] = a[i] - a[i - 1];
4199   //
4200   // There is a first-order recurrence on "a". For this loop, the shorthand
4201   // scalar IR looks like:
4202   //
4203   //   scalar.ph:
4204   //     s_init = a[-1]
4205   //     br scalar.body
4206   //
4207   //   scalar.body:
4208   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4209   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4210   //     s2 = a[i]
4211   //     b[i] = s2 - s1
4212   //     br cond, scalar.body, ...
4213   //
4214   // In this example, s1 is a recurrence because it's value depends on the
4215   // previous iteration. In the first phase of vectorization, we created a
4216   // vector phi v1 for s1. We now complete the vectorization and produce the
4217   // shorthand vector IR shown below (for VF = 4, UF = 1).
4218   //
4219   //   vector.ph:
4220   //     v_init = vector(..., ..., ..., a[-1])
4221   //     br vector.body
4222   //
4223   //   vector.body
4224   //     i = phi [0, vector.ph], [i+4, vector.body]
4225   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4226   //     v2 = a[i, i+1, i+2, i+3];
4227   //     v3 = vector(v1(3), v2(0, 1, 2))
4228   //     b[i, i+1, i+2, i+3] = v2 - v3
4229   //     br cond, vector.body, middle.block
4230   //
4231   //   middle.block:
4232   //     x = v2(3)
4233   //     br scalar.ph
4234   //
4235   //   scalar.ph:
4236   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4237   //     br scalar.body
4238   //
4239   // After execution completes the vector loop, we extract the next value of
4240   // the recurrence (x) to use as the initial value in the scalar loop.
4241 
4242   // Extract the last vector element in the middle block. This will be the
4243   // initial value for the recurrence when jumping to the scalar loop.
4244   VPValue *PreviousDef = PhiR->getBackedgeValue();
4245   Value *Incoming = State.get(PreviousDef, UF - 1);
4246   auto *ExtractForScalar = Incoming;
4247   auto *IdxTy = Builder.getInt32Ty();
4248   if (VF.isVector()) {
4249     auto *One = ConstantInt::get(IdxTy, 1);
4250     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4251     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4252     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4253     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4254                                                     "vector.recur.extract");
4255   }
4256   // Extract the second last element in the middle block if the
4257   // Phi is used outside the loop. We need to extract the phi itself
4258   // and not the last element (the phi update in the current iteration). This
4259   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4260   // when the scalar loop is not run at all.
4261   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4262   if (VF.isVector()) {
4263     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4264     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4265     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4266         Incoming, Idx, "vector.recur.extract.for.phi");
4267   } else if (UF > 1)
4268     // When loop is unrolled without vectorizing, initialize
4269     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4270     // of `Incoming`. This is analogous to the vectorized case above: extracting
4271     // the second last element when VF > 1.
4272     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4273 
4274   // Fix the initial value of the original recurrence in the scalar loop.
4275   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4276   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4277   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4278   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4279   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4280     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4281     Start->addIncoming(Incoming, BB);
4282   }
4283 
4284   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4285   Phi->setName("scalar.recur");
4286 
4287   // Finally, fix users of the recurrence outside the loop. The users will need
4288   // either the last value of the scalar recurrence or the last value of the
4289   // vector recurrence we extracted in the middle block. Since the loop is in
4290   // LCSSA form, we just need to find all the phi nodes for the original scalar
4291   // recurrence in the exit block, and then add an edge for the middle block.
4292   // Note that LCSSA does not imply single entry when the original scalar loop
4293   // had multiple exiting edges (as we always run the last iteration in the
4294   // scalar epilogue); in that case, there is no edge from middle to exit and
4295   // and thus no phis which needed updated.
4296   if (!Cost->requiresScalarEpilogue(VF))
4297     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4298       if (any_of(LCSSAPhi.incoming_values(),
4299                  [Phi](Value *V) { return V == Phi; }))
4300         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4301 }
4302 
4303 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4304                                        VPTransformState &State) {
4305   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4306   // Get it's reduction variable descriptor.
4307   assert(Legal->isReductionVariable(OrigPhi) &&
4308          "Unable to find the reduction variable");
4309   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4310 
4311   RecurKind RK = RdxDesc.getRecurrenceKind();
4312   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4313   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4314   setDebugLocFromInst(ReductionStartValue);
4315 
4316   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4317   // This is the vector-clone of the value that leaves the loop.
4318   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4319 
4320   // Wrap flags are in general invalid after vectorization, clear them.
4321   clearReductionWrapFlags(RdxDesc, State);
4322 
4323   // Before each round, move the insertion point right between
4324   // the PHIs and the values we are going to write.
4325   // This allows us to write both PHINodes and the extractelement
4326   // instructions.
4327   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4328 
4329   setDebugLocFromInst(LoopExitInst);
4330 
4331   Type *PhiTy = OrigPhi->getType();
4332   // If tail is folded by masking, the vector value to leave the loop should be
4333   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4334   // instead of the former. For an inloop reduction the reduction will already
4335   // be predicated, and does not need to be handled here.
4336   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4337     for (unsigned Part = 0; Part < UF; ++Part) {
4338       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4339       Value *Sel = nullptr;
4340       for (User *U : VecLoopExitInst->users()) {
4341         if (isa<SelectInst>(U)) {
4342           assert(!Sel && "Reduction exit feeding two selects");
4343           Sel = U;
4344         } else
4345           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4346       }
4347       assert(Sel && "Reduction exit feeds no select");
4348       State.reset(LoopExitInstDef, Sel, Part);
4349 
4350       // If the target can create a predicated operator for the reduction at no
4351       // extra cost in the loop (for example a predicated vadd), it can be
4352       // cheaper for the select to remain in the loop than be sunk out of it,
4353       // and so use the select value for the phi instead of the old
4354       // LoopExitValue.
4355       if (PreferPredicatedReductionSelect ||
4356           TTI->preferPredicatedReductionSelect(
4357               RdxDesc.getOpcode(), PhiTy,
4358               TargetTransformInfo::ReductionFlags())) {
4359         auto *VecRdxPhi =
4360             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4361         VecRdxPhi->setIncomingValueForBlock(
4362             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4363       }
4364     }
4365   }
4366 
4367   // If the vector reduction can be performed in a smaller type, we truncate
4368   // then extend the loop exit value to enable InstCombine to evaluate the
4369   // entire expression in the smaller type.
4370   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4371     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4372     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4373     Builder.SetInsertPoint(
4374         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4375     VectorParts RdxParts(UF);
4376     for (unsigned Part = 0; Part < UF; ++Part) {
4377       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4378       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4379       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4380                                         : Builder.CreateZExt(Trunc, VecTy);
4381       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4382            UI != RdxParts[Part]->user_end();)
4383         if (*UI != Trunc) {
4384           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4385           RdxParts[Part] = Extnd;
4386         } else {
4387           ++UI;
4388         }
4389     }
4390     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4391     for (unsigned Part = 0; Part < UF; ++Part) {
4392       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4393       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4394     }
4395   }
4396 
4397   // Reduce all of the unrolled parts into a single vector.
4398   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4399   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4400 
4401   // The middle block terminator has already been assigned a DebugLoc here (the
4402   // OrigLoop's single latch terminator). We want the whole middle block to
4403   // appear to execute on this line because: (a) it is all compiler generated,
4404   // (b) these instructions are always executed after evaluating the latch
4405   // conditional branch, and (c) other passes may add new predecessors which
4406   // terminate on this line. This is the easiest way to ensure we don't
4407   // accidentally cause an extra step back into the loop while debugging.
4408   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4409   if (PhiR->isOrdered())
4410     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4411   else {
4412     // Floating-point operations should have some FMF to enable the reduction.
4413     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4414     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4415     for (unsigned Part = 1; Part < UF; ++Part) {
4416       Value *RdxPart = State.get(LoopExitInstDef, Part);
4417       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4418         ReducedPartRdx = Builder.CreateBinOp(
4419             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4420       } else {
4421         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4422       }
4423     }
4424   }
4425 
4426   // Create the reduction after the loop. Note that inloop reductions create the
4427   // target reduction in the loop using a Reduction recipe.
4428   if (VF.isVector() && !PhiR->isInLoop()) {
4429     ReducedPartRdx =
4430         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4431     // If the reduction can be performed in a smaller type, we need to extend
4432     // the reduction to the wider type before we branch to the original loop.
4433     if (PhiTy != RdxDesc.getRecurrenceType())
4434       ReducedPartRdx = RdxDesc.isSigned()
4435                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4436                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4437   }
4438 
4439   // Create a phi node that merges control-flow from the backedge-taken check
4440   // block and the middle block.
4441   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4442                                         LoopScalarPreHeader->getTerminator());
4443   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4444     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4445   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4446 
4447   // Now, we need to fix the users of the reduction variable
4448   // inside and outside of the scalar remainder loop.
4449 
4450   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4451   // in the exit blocks.  See comment on analogous loop in
4452   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4453   if (!Cost->requiresScalarEpilogue(VF))
4454     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4455       if (any_of(LCSSAPhi.incoming_values(),
4456                  [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4457         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4458 
4459   // Fix the scalar loop reduction variable with the incoming reduction sum
4460   // from the vector body and from the backedge value.
4461   int IncomingEdgeBlockIdx =
4462       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4463   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4464   // Pick the other block.
4465   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4466   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4467   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4468 }
4469 
4470 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4471                                                   VPTransformState &State) {
4472   RecurKind RK = RdxDesc.getRecurrenceKind();
4473   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4474     return;
4475 
4476   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4477   assert(LoopExitInstr && "null loop exit instruction");
4478   SmallVector<Instruction *, 8> Worklist;
4479   SmallPtrSet<Instruction *, 8> Visited;
4480   Worklist.push_back(LoopExitInstr);
4481   Visited.insert(LoopExitInstr);
4482 
4483   while (!Worklist.empty()) {
4484     Instruction *Cur = Worklist.pop_back_val();
4485     if (isa<OverflowingBinaryOperator>(Cur))
4486       for (unsigned Part = 0; Part < UF; ++Part) {
4487         // FIXME: Should not rely on getVPValue at this point.
4488         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4489         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4490       }
4491 
4492     for (User *U : Cur->users()) {
4493       Instruction *UI = cast<Instruction>(U);
4494       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4495           Visited.insert(UI).second)
4496         Worklist.push_back(UI);
4497     }
4498   }
4499 }
4500 
4501 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4502   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4503     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4504       // Some phis were already hand updated by the reduction and recurrence
4505       // code above, leave them alone.
4506       continue;
4507 
4508     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4509     // Non-instruction incoming values will have only one value.
4510 
4511     VPLane Lane = VPLane::getFirstLane();
4512     if (isa<Instruction>(IncomingValue) &&
4513         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4514                                            VF))
4515       Lane = VPLane::getLastLaneForVF(VF);
4516 
4517     // Can be a loop invariant incoming value or the last scalar value to be
4518     // extracted from the vectorized loop.
4519     // FIXME: Should not rely on getVPValue at this point.
4520     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4521     Value *lastIncomingValue =
4522         OrigLoop->isLoopInvariant(IncomingValue)
4523             ? IncomingValue
4524             : State.get(State.Plan->getVPValue(IncomingValue, true),
4525                         VPIteration(UF - 1, Lane));
4526     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4527   }
4528 }
4529 
4530 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4531   // The basic block and loop containing the predicated instruction.
4532   auto *PredBB = PredInst->getParent();
4533   auto *VectorLoop = LI->getLoopFor(PredBB);
4534 
4535   // Initialize a worklist with the operands of the predicated instruction.
4536   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4537 
4538   // Holds instructions that we need to analyze again. An instruction may be
4539   // reanalyzed if we don't yet know if we can sink it or not.
4540   SmallVector<Instruction *, 8> InstsToReanalyze;
4541 
4542   // Returns true if a given use occurs in the predicated block. Phi nodes use
4543   // their operands in their corresponding predecessor blocks.
4544   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4545     auto *I = cast<Instruction>(U.getUser());
4546     BasicBlock *BB = I->getParent();
4547     if (auto *Phi = dyn_cast<PHINode>(I))
4548       BB = Phi->getIncomingBlock(
4549           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4550     return BB == PredBB;
4551   };
4552 
4553   // Iteratively sink the scalarized operands of the predicated instruction
4554   // into the block we created for it. When an instruction is sunk, it's
4555   // operands are then added to the worklist. The algorithm ends after one pass
4556   // through the worklist doesn't sink a single instruction.
4557   bool Changed;
4558   do {
4559     // Add the instructions that need to be reanalyzed to the worklist, and
4560     // reset the changed indicator.
4561     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4562     InstsToReanalyze.clear();
4563     Changed = false;
4564 
4565     while (!Worklist.empty()) {
4566       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4567 
4568       // We can't sink an instruction if it is a phi node, is not in the loop,
4569       // or may have side effects.
4570       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4571           I->mayHaveSideEffects())
4572         continue;
4573 
4574       // If the instruction is already in PredBB, check if we can sink its
4575       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4576       // sinking the scalar instruction I, hence it appears in PredBB; but it
4577       // may have failed to sink I's operands (recursively), which we try
4578       // (again) here.
4579       if (I->getParent() == PredBB) {
4580         Worklist.insert(I->op_begin(), I->op_end());
4581         continue;
4582       }
4583 
4584       // It's legal to sink the instruction if all its uses occur in the
4585       // predicated block. Otherwise, there's nothing to do yet, and we may
4586       // need to reanalyze the instruction.
4587       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4588         InstsToReanalyze.push_back(I);
4589         continue;
4590       }
4591 
4592       // Move the instruction to the beginning of the predicated block, and add
4593       // it's operands to the worklist.
4594       I->moveBefore(&*PredBB->getFirstInsertionPt());
4595       Worklist.insert(I->op_begin(), I->op_end());
4596 
4597       // The sinking may have enabled other instructions to be sunk, so we will
4598       // need to iterate.
4599       Changed = true;
4600     }
4601   } while (Changed);
4602 }
4603 
4604 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4605   for (PHINode *OrigPhi : OrigPHIsToFix) {
4606     VPWidenPHIRecipe *VPPhi =
4607         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4608     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4609     // Make sure the builder has a valid insert point.
4610     Builder.SetInsertPoint(NewPhi);
4611     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4612       VPValue *Inc = VPPhi->getIncomingValue(i);
4613       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4614       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4615     }
4616   }
4617 }
4618 
4619 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4620   return Cost->useOrderedReductions(RdxDesc);
4621 }
4622 
4623 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4624                                    VPUser &Operands, unsigned UF,
4625                                    ElementCount VF, bool IsPtrLoopInvariant,
4626                                    SmallBitVector &IsIndexLoopInvariant,
4627                                    VPTransformState &State) {
4628   // Construct a vector GEP by widening the operands of the scalar GEP as
4629   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4630   // results in a vector of pointers when at least one operand of the GEP
4631   // is vector-typed. Thus, to keep the representation compact, we only use
4632   // vector-typed operands for loop-varying values.
4633 
4634   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4635     // If we are vectorizing, but the GEP has only loop-invariant operands,
4636     // the GEP we build (by only using vector-typed operands for
4637     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4638     // produce a vector of pointers, we need to either arbitrarily pick an
4639     // operand to broadcast, or broadcast a clone of the original GEP.
4640     // Here, we broadcast a clone of the original.
4641     //
4642     // TODO: If at some point we decide to scalarize instructions having
4643     //       loop-invariant operands, this special case will no longer be
4644     //       required. We would add the scalarization decision to
4645     //       collectLoopScalars() and teach getVectorValue() to broadcast
4646     //       the lane-zero scalar value.
4647     auto *Clone = Builder.Insert(GEP->clone());
4648     for (unsigned Part = 0; Part < UF; ++Part) {
4649       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4650       State.set(VPDef, EntryPart, Part);
4651       addMetadata(EntryPart, GEP);
4652     }
4653   } else {
4654     // If the GEP has at least one loop-varying operand, we are sure to
4655     // produce a vector of pointers. But if we are only unrolling, we want
4656     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4657     // produce with the code below will be scalar (if VF == 1) or vector
4658     // (otherwise). Note that for the unroll-only case, we still maintain
4659     // values in the vector mapping with initVector, as we do for other
4660     // instructions.
4661     for (unsigned Part = 0; Part < UF; ++Part) {
4662       // The pointer operand of the new GEP. If it's loop-invariant, we
4663       // won't broadcast it.
4664       auto *Ptr = IsPtrLoopInvariant
4665                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4666                       : State.get(Operands.getOperand(0), Part);
4667 
4668       // Collect all the indices for the new GEP. If any index is
4669       // loop-invariant, we won't broadcast it.
4670       SmallVector<Value *, 4> Indices;
4671       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4672         VPValue *Operand = Operands.getOperand(I);
4673         if (IsIndexLoopInvariant[I - 1])
4674           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4675         else
4676           Indices.push_back(State.get(Operand, Part));
4677       }
4678 
4679       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4680       // but it should be a vector, otherwise.
4681       auto *NewGEP =
4682           GEP->isInBounds()
4683               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4684                                           Indices)
4685               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4686       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4687              "NewGEP is not a pointer vector");
4688       State.set(VPDef, NewGEP, Part);
4689       addMetadata(NewGEP, GEP);
4690     }
4691   }
4692 }
4693 
4694 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4695                                               VPWidenPHIRecipe *PhiR,
4696                                               VPTransformState &State) {
4697   PHINode *P = cast<PHINode>(PN);
4698   if (EnableVPlanNativePath) {
4699     // Currently we enter here in the VPlan-native path for non-induction
4700     // PHIs where all control flow is uniform. We simply widen these PHIs.
4701     // Create a vector phi with no operands - the vector phi operands will be
4702     // set at the end of vector code generation.
4703     Type *VecTy = (State.VF.isScalar())
4704                       ? PN->getType()
4705                       : VectorType::get(PN->getType(), State.VF);
4706     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4707     State.set(PhiR, VecPhi, 0);
4708     OrigPHIsToFix.push_back(P);
4709 
4710     return;
4711   }
4712 
4713   assert(PN->getParent() == OrigLoop->getHeader() &&
4714          "Non-header phis should have been handled elsewhere");
4715 
4716   // In order to support recurrences we need to be able to vectorize Phi nodes.
4717   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4718   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4719   // this value when we vectorize all of the instructions that use the PHI.
4720 
4721   assert(!Legal->isReductionVariable(P) &&
4722          "reductions should be handled elsewhere");
4723 
4724   setDebugLocFromInst(P);
4725 
4726   // This PHINode must be an induction variable.
4727   // Make sure that we know about it.
4728   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4729 
4730   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4731   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4732 
4733   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4734   // which can be found from the original scalar operations.
4735   switch (II.getKind()) {
4736   case InductionDescriptor::IK_NoInduction:
4737     llvm_unreachable("Unknown induction");
4738   case InductionDescriptor::IK_IntInduction:
4739   case InductionDescriptor::IK_FpInduction:
4740     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4741   case InductionDescriptor::IK_PtrInduction: {
4742     // Handle the pointer induction variable case.
4743     assert(P->getType()->isPointerTy() && "Unexpected type.");
4744 
4745     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4746       // This is the normalized GEP that starts counting at zero.
4747       Value *PtrInd =
4748           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4749       // Determine the number of scalars we need to generate for each unroll
4750       // iteration. If the instruction is uniform, we only need to generate the
4751       // first lane. Otherwise, we generate all VF values.
4752       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4753       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4754 
4755       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4756       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4757       if (NeedsVectorIndex) {
4758         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4759         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4760         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4761       }
4762 
4763       for (unsigned Part = 0; Part < UF; ++Part) {
4764         Value *PartStart = createStepForVF(
4765             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4766 
4767         if (NeedsVectorIndex) {
4768           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4769           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4770           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4771           Value *SclrGep =
4772               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4773           SclrGep->setName("next.gep");
4774           State.set(PhiR, SclrGep, Part);
4775           // We've cached the whole vector, which means we can support the
4776           // extraction of any lane.
4777           continue;
4778         }
4779 
4780         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4781           Value *Idx = Builder.CreateAdd(
4782               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4783           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4784           Value *SclrGep =
4785               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4786           SclrGep->setName("next.gep");
4787           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4788         }
4789       }
4790       return;
4791     }
4792     assert(isa<SCEVConstant>(II.getStep()) &&
4793            "Induction step not a SCEV constant!");
4794     Type *PhiType = II.getStep()->getType();
4795 
4796     // Build a pointer phi
4797     Value *ScalarStartValue = II.getStartValue();
4798     Type *ScStValueType = ScalarStartValue->getType();
4799     PHINode *NewPointerPhi =
4800         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4801     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4802 
4803     // A pointer induction, performed by using a gep
4804     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4805     Instruction *InductionLoc = LoopLatch->getTerminator();
4806     const SCEV *ScalarStep = II.getStep();
4807     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4808     Value *ScalarStepValue =
4809         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4810     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4811     Value *NumUnrolledElems =
4812         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4813     Value *InductionGEP = GetElementPtrInst::Create(
4814         II.getElementType(), NewPointerPhi,
4815         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4816         InductionLoc);
4817     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4818 
4819     // Create UF many actual address geps that use the pointer
4820     // phi as base and a vectorized version of the step value
4821     // (<step*0, ..., step*N>) as offset.
4822     for (unsigned Part = 0; Part < State.UF; ++Part) {
4823       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4824       Value *StartOffsetScalar =
4825           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4826       Value *StartOffset =
4827           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4828       // Create a vector of consecutive numbers from zero to VF.
4829       StartOffset =
4830           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4831 
4832       Value *GEP = Builder.CreateGEP(
4833           II.getElementType(), NewPointerPhi,
4834           Builder.CreateMul(
4835               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4836               "vector.gep"));
4837       State.set(PhiR, GEP, Part);
4838     }
4839   }
4840   }
4841 }
4842 
4843 /// A helper function for checking whether an integer division-related
4844 /// instruction may divide by zero (in which case it must be predicated if
4845 /// executed conditionally in the scalar code).
4846 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4847 /// Non-zero divisors that are non compile-time constants will not be
4848 /// converted into multiplication, so we will still end up scalarizing
4849 /// the division, but can do so w/o predication.
4850 static bool mayDivideByZero(Instruction &I) {
4851   assert((I.getOpcode() == Instruction::UDiv ||
4852           I.getOpcode() == Instruction::SDiv ||
4853           I.getOpcode() == Instruction::URem ||
4854           I.getOpcode() == Instruction::SRem) &&
4855          "Unexpected instruction");
4856   Value *Divisor = I.getOperand(1);
4857   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4858   return !CInt || CInt->isZero();
4859 }
4860 
4861 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4862                                            VPUser &User,
4863                                            VPTransformState &State) {
4864   switch (I.getOpcode()) {
4865   case Instruction::Call:
4866   case Instruction::Br:
4867   case Instruction::PHI:
4868   case Instruction::GetElementPtr:
4869   case Instruction::Select:
4870     llvm_unreachable("This instruction is handled by a different recipe.");
4871   case Instruction::UDiv:
4872   case Instruction::SDiv:
4873   case Instruction::SRem:
4874   case Instruction::URem:
4875   case Instruction::Add:
4876   case Instruction::FAdd:
4877   case Instruction::Sub:
4878   case Instruction::FSub:
4879   case Instruction::FNeg:
4880   case Instruction::Mul:
4881   case Instruction::FMul:
4882   case Instruction::FDiv:
4883   case Instruction::FRem:
4884   case Instruction::Shl:
4885   case Instruction::LShr:
4886   case Instruction::AShr:
4887   case Instruction::And:
4888   case Instruction::Or:
4889   case Instruction::Xor: {
4890     // Just widen unops and binops.
4891     setDebugLocFromInst(&I);
4892 
4893     for (unsigned Part = 0; Part < UF; ++Part) {
4894       SmallVector<Value *, 2> Ops;
4895       for (VPValue *VPOp : User.operands())
4896         Ops.push_back(State.get(VPOp, Part));
4897 
4898       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4899 
4900       if (auto *VecOp = dyn_cast<Instruction>(V))
4901         VecOp->copyIRFlags(&I);
4902 
4903       // Use this vector value for all users of the original instruction.
4904       State.set(Def, V, Part);
4905       addMetadata(V, &I);
4906     }
4907 
4908     break;
4909   }
4910   case Instruction::ICmp:
4911   case Instruction::FCmp: {
4912     // Widen compares. Generate vector compares.
4913     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4914     auto *Cmp = cast<CmpInst>(&I);
4915     setDebugLocFromInst(Cmp);
4916     for (unsigned Part = 0; Part < UF; ++Part) {
4917       Value *A = State.get(User.getOperand(0), Part);
4918       Value *B = State.get(User.getOperand(1), Part);
4919       Value *C = nullptr;
4920       if (FCmp) {
4921         // Propagate fast math flags.
4922         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4923         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4924         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4925       } else {
4926         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4927       }
4928       State.set(Def, C, Part);
4929       addMetadata(C, &I);
4930     }
4931 
4932     break;
4933   }
4934 
4935   case Instruction::ZExt:
4936   case Instruction::SExt:
4937   case Instruction::FPToUI:
4938   case Instruction::FPToSI:
4939   case Instruction::FPExt:
4940   case Instruction::PtrToInt:
4941   case Instruction::IntToPtr:
4942   case Instruction::SIToFP:
4943   case Instruction::UIToFP:
4944   case Instruction::Trunc:
4945   case Instruction::FPTrunc:
4946   case Instruction::BitCast: {
4947     auto *CI = cast<CastInst>(&I);
4948     setDebugLocFromInst(CI);
4949 
4950     /// Vectorize casts.
4951     Type *DestTy =
4952         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4953 
4954     for (unsigned Part = 0; Part < UF; ++Part) {
4955       Value *A = State.get(User.getOperand(0), Part);
4956       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4957       State.set(Def, Cast, Part);
4958       addMetadata(Cast, &I);
4959     }
4960     break;
4961   }
4962   default:
4963     // This instruction is not vectorized by simple widening.
4964     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4965     llvm_unreachable("Unhandled instruction!");
4966   } // end of switch.
4967 }
4968 
4969 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4970                                                VPUser &ArgOperands,
4971                                                VPTransformState &State) {
4972   assert(!isa<DbgInfoIntrinsic>(I) &&
4973          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4974   setDebugLocFromInst(&I);
4975 
4976   Module *M = I.getParent()->getParent()->getParent();
4977   auto *CI = cast<CallInst>(&I);
4978 
4979   SmallVector<Type *, 4> Tys;
4980   for (Value *ArgOperand : CI->arg_operands())
4981     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4982 
4983   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4984 
4985   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4986   // version of the instruction.
4987   // Is it beneficial to perform intrinsic call compared to lib call?
4988   bool NeedToScalarize = false;
4989   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4990   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4991   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4992   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4993          "Instruction should be scalarized elsewhere.");
4994   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4995          "Either the intrinsic cost or vector call cost must be valid");
4996 
4997   for (unsigned Part = 0; Part < UF; ++Part) {
4998     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4999     SmallVector<Value *, 4> Args;
5000     for (auto &I : enumerate(ArgOperands.operands())) {
5001       // Some intrinsics have a scalar argument - don't replace it with a
5002       // vector.
5003       Value *Arg;
5004       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5005         Arg = State.get(I.value(), Part);
5006       else {
5007         Arg = State.get(I.value(), VPIteration(0, 0));
5008         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5009           TysForDecl.push_back(Arg->getType());
5010       }
5011       Args.push_back(Arg);
5012     }
5013 
5014     Function *VectorF;
5015     if (UseVectorIntrinsic) {
5016       // Use vector version of the intrinsic.
5017       if (VF.isVector())
5018         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5019       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5020       assert(VectorF && "Can't retrieve vector intrinsic.");
5021     } else {
5022       // Use vector version of the function call.
5023       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5024 #ifndef NDEBUG
5025       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5026              "Can't create vector function.");
5027 #endif
5028         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5029     }
5030       SmallVector<OperandBundleDef, 1> OpBundles;
5031       CI->getOperandBundlesAsDefs(OpBundles);
5032       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5033 
5034       if (isa<FPMathOperator>(V))
5035         V->copyFastMathFlags(CI);
5036 
5037       State.set(Def, V, Part);
5038       addMetadata(V, &I);
5039   }
5040 }
5041 
5042 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5043                                                  VPUser &Operands,
5044                                                  bool InvariantCond,
5045                                                  VPTransformState &State) {
5046   setDebugLocFromInst(&I);
5047 
5048   // The condition can be loop invariant  but still defined inside the
5049   // loop. This means that we can't just use the original 'cond' value.
5050   // We have to take the 'vectorized' value and pick the first lane.
5051   // Instcombine will make this a no-op.
5052   auto *InvarCond = InvariantCond
5053                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5054                         : nullptr;
5055 
5056   for (unsigned Part = 0; Part < UF; ++Part) {
5057     Value *Cond =
5058         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5059     Value *Op0 = State.get(Operands.getOperand(1), Part);
5060     Value *Op1 = State.get(Operands.getOperand(2), Part);
5061     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5062     State.set(VPDef, Sel, Part);
5063     addMetadata(Sel, &I);
5064   }
5065 }
5066 
5067 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5068   // We should not collect Scalars more than once per VF. Right now, this
5069   // function is called from collectUniformsAndScalars(), which already does
5070   // this check. Collecting Scalars for VF=1 does not make any sense.
5071   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5072          "This function should not be visited twice for the same VF");
5073 
5074   SmallSetVector<Instruction *, 8> Worklist;
5075 
5076   // These sets are used to seed the analysis with pointers used by memory
5077   // accesses that will remain scalar.
5078   SmallSetVector<Instruction *, 8> ScalarPtrs;
5079   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5080   auto *Latch = TheLoop->getLoopLatch();
5081 
5082   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5083   // The pointer operands of loads and stores will be scalar as long as the
5084   // memory access is not a gather or scatter operation. The value operand of a
5085   // store will remain scalar if the store is scalarized.
5086   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5087     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5088     assert(WideningDecision != CM_Unknown &&
5089            "Widening decision should be ready at this moment");
5090     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5091       if (Ptr == Store->getValueOperand())
5092         return WideningDecision == CM_Scalarize;
5093     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5094            "Ptr is neither a value or pointer operand");
5095     return WideningDecision != CM_GatherScatter;
5096   };
5097 
5098   // A helper that returns true if the given value is a bitcast or
5099   // getelementptr instruction contained in the loop.
5100   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5101     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5102             isa<GetElementPtrInst>(V)) &&
5103            !TheLoop->isLoopInvariant(V);
5104   };
5105 
5106   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5107     if (!isa<PHINode>(Ptr) ||
5108         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5109       return false;
5110     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5111     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5112       return false;
5113     return isScalarUse(MemAccess, Ptr);
5114   };
5115 
5116   // A helper that evaluates a memory access's use of a pointer. If the
5117   // pointer is actually the pointer induction of a loop, it is being
5118   // inserted into Worklist. If the use will be a scalar use, and the
5119   // pointer is only used by memory accesses, we place the pointer in
5120   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5121   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5122     if (isScalarPtrInduction(MemAccess, Ptr)) {
5123       Worklist.insert(cast<Instruction>(Ptr));
5124       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5125                         << "\n");
5126 
5127       Instruction *Update = cast<Instruction>(
5128           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5129       ScalarPtrs.insert(Update);
5130       return;
5131     }
5132     // We only care about bitcast and getelementptr instructions contained in
5133     // the loop.
5134     if (!isLoopVaryingBitCastOrGEP(Ptr))
5135       return;
5136 
5137     // If the pointer has already been identified as scalar (e.g., if it was
5138     // also identified as uniform), there's nothing to do.
5139     auto *I = cast<Instruction>(Ptr);
5140     if (Worklist.count(I))
5141       return;
5142 
5143     // If the use of the pointer will be a scalar use, and all users of the
5144     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5145     // place the pointer in PossibleNonScalarPtrs.
5146     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5147           return isa<LoadInst>(U) || isa<StoreInst>(U);
5148         }))
5149       ScalarPtrs.insert(I);
5150     else
5151       PossibleNonScalarPtrs.insert(I);
5152   };
5153 
5154   // We seed the scalars analysis with three classes of instructions: (1)
5155   // instructions marked uniform-after-vectorization and (2) bitcast,
5156   // getelementptr and (pointer) phi instructions used by memory accesses
5157   // requiring a scalar use.
5158   //
5159   // (1) Add to the worklist all instructions that have been identified as
5160   // uniform-after-vectorization.
5161   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5162 
5163   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5164   // memory accesses requiring a scalar use. The pointer operands of loads and
5165   // stores will be scalar as long as the memory accesses is not a gather or
5166   // scatter operation. The value operand of a store will remain scalar if the
5167   // store is scalarized.
5168   for (auto *BB : TheLoop->blocks())
5169     for (auto &I : *BB) {
5170       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5171         evaluatePtrUse(Load, Load->getPointerOperand());
5172       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5173         evaluatePtrUse(Store, Store->getPointerOperand());
5174         evaluatePtrUse(Store, Store->getValueOperand());
5175       }
5176     }
5177   for (auto *I : ScalarPtrs)
5178     if (!PossibleNonScalarPtrs.count(I)) {
5179       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5180       Worklist.insert(I);
5181     }
5182 
5183   // Insert the forced scalars.
5184   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5185   // induction variable when the PHI user is scalarized.
5186   auto ForcedScalar = ForcedScalars.find(VF);
5187   if (ForcedScalar != ForcedScalars.end())
5188     for (auto *I : ForcedScalar->second)
5189       Worklist.insert(I);
5190 
5191   // Expand the worklist by looking through any bitcasts and getelementptr
5192   // instructions we've already identified as scalar. This is similar to the
5193   // expansion step in collectLoopUniforms(); however, here we're only
5194   // expanding to include additional bitcasts and getelementptr instructions.
5195   unsigned Idx = 0;
5196   while (Idx != Worklist.size()) {
5197     Instruction *Dst = Worklist[Idx++];
5198     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5199       continue;
5200     auto *Src = cast<Instruction>(Dst->getOperand(0));
5201     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5202           auto *J = cast<Instruction>(U);
5203           return !TheLoop->contains(J) || Worklist.count(J) ||
5204                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5205                   isScalarUse(J, Src));
5206         })) {
5207       Worklist.insert(Src);
5208       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5209     }
5210   }
5211 
5212   // An induction variable will remain scalar if all users of the induction
5213   // variable and induction variable update remain scalar.
5214   for (auto &Induction : Legal->getInductionVars()) {
5215     auto *Ind = Induction.first;
5216     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5217 
5218     // If tail-folding is applied, the primary induction variable will be used
5219     // to feed a vector compare.
5220     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5221       continue;
5222 
5223     // Determine if all users of the induction variable are scalar after
5224     // vectorization.
5225     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5226       auto *I = cast<Instruction>(U);
5227       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5228     });
5229     if (!ScalarInd)
5230       continue;
5231 
5232     // Determine if all users of the induction variable update instruction are
5233     // scalar after vectorization.
5234     auto ScalarIndUpdate =
5235         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5236           auto *I = cast<Instruction>(U);
5237           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5238         });
5239     if (!ScalarIndUpdate)
5240       continue;
5241 
5242     // The induction variable and its update instruction will remain scalar.
5243     Worklist.insert(Ind);
5244     Worklist.insert(IndUpdate);
5245     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5246     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5247                       << "\n");
5248   }
5249 
5250   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5251 }
5252 
5253 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5254   if (!blockNeedsPredication(I->getParent()))
5255     return false;
5256   switch(I->getOpcode()) {
5257   default:
5258     break;
5259   case Instruction::Load:
5260   case Instruction::Store: {
5261     if (!Legal->isMaskRequired(I))
5262       return false;
5263     auto *Ptr = getLoadStorePointerOperand(I);
5264     auto *Ty = getLoadStoreType(I);
5265     const Align Alignment = getLoadStoreAlignment(I);
5266     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5267                                 TTI.isLegalMaskedGather(Ty, Alignment))
5268                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5269                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5270   }
5271   case Instruction::UDiv:
5272   case Instruction::SDiv:
5273   case Instruction::SRem:
5274   case Instruction::URem:
5275     return mayDivideByZero(*I);
5276   }
5277   return false;
5278 }
5279 
5280 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5281     Instruction *I, ElementCount VF) {
5282   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5283   assert(getWideningDecision(I, VF) == CM_Unknown &&
5284          "Decision should not be set yet.");
5285   auto *Group = getInterleavedAccessGroup(I);
5286   assert(Group && "Must have a group.");
5287 
5288   // If the instruction's allocated size doesn't equal it's type size, it
5289   // requires padding and will be scalarized.
5290   auto &DL = I->getModule()->getDataLayout();
5291   auto *ScalarTy = getLoadStoreType(I);
5292   if (hasIrregularType(ScalarTy, DL))
5293     return false;
5294 
5295   // Check if masking is required.
5296   // A Group may need masking for one of two reasons: it resides in a block that
5297   // needs predication, or it was decided to use masking to deal with gaps
5298   // (either a gap at the end of a load-access that may result in a speculative
5299   // load, or any gaps in a store-access).
5300   bool PredicatedAccessRequiresMasking =
5301       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5302   bool LoadAccessWithGapsRequiresEpilogMasking =
5303       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
5304       !isScalarEpilogueAllowed();
5305   bool StoreAccessWithGapsRequiresMasking =
5306       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
5307   if (!PredicatedAccessRequiresMasking &&
5308       !LoadAccessWithGapsRequiresEpilogMasking &&
5309       !StoreAccessWithGapsRequiresMasking)
5310     return true;
5311 
5312   // If masked interleaving is required, we expect that the user/target had
5313   // enabled it, because otherwise it either wouldn't have been created or
5314   // it should have been invalidated by the CostModel.
5315   assert(useMaskedInterleavedAccesses(TTI) &&
5316          "Masked interleave-groups for predicated accesses are not enabled.");
5317 
5318   auto *Ty = getLoadStoreType(I);
5319   const Align Alignment = getLoadStoreAlignment(I);
5320   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5321                           : TTI.isLegalMaskedStore(Ty, Alignment);
5322 }
5323 
5324 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5325     Instruction *I, ElementCount VF) {
5326   // Get and ensure we have a valid memory instruction.
5327   LoadInst *LI = dyn_cast<LoadInst>(I);
5328   StoreInst *SI = dyn_cast<StoreInst>(I);
5329   assert((LI || SI) && "Invalid memory instruction");
5330 
5331   auto *Ptr = getLoadStorePointerOperand(I);
5332 
5333   // In order to be widened, the pointer should be consecutive, first of all.
5334   if (!Legal->isConsecutivePtr(Ptr))
5335     return false;
5336 
5337   // If the instruction is a store located in a predicated block, it will be
5338   // scalarized.
5339   if (isScalarWithPredication(I))
5340     return false;
5341 
5342   // If the instruction's allocated size doesn't equal it's type size, it
5343   // requires padding and will be scalarized.
5344   auto &DL = I->getModule()->getDataLayout();
5345   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5346   if (hasIrregularType(ScalarTy, DL))
5347     return false;
5348 
5349   return true;
5350 }
5351 
5352 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5353   // We should not collect Uniforms more than once per VF. Right now,
5354   // this function is called from collectUniformsAndScalars(), which
5355   // already does this check. Collecting Uniforms for VF=1 does not make any
5356   // sense.
5357 
5358   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5359          "This function should not be visited twice for the same VF");
5360 
5361   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5362   // not analyze again.  Uniforms.count(VF) will return 1.
5363   Uniforms[VF].clear();
5364 
5365   // We now know that the loop is vectorizable!
5366   // Collect instructions inside the loop that will remain uniform after
5367   // vectorization.
5368 
5369   // Global values, params and instructions outside of current loop are out of
5370   // scope.
5371   auto isOutOfScope = [&](Value *V) -> bool {
5372     Instruction *I = dyn_cast<Instruction>(V);
5373     return (!I || !TheLoop->contains(I));
5374   };
5375 
5376   SetVector<Instruction *> Worklist;
5377   BasicBlock *Latch = TheLoop->getLoopLatch();
5378 
5379   // Instructions that are scalar with predication must not be considered
5380   // uniform after vectorization, because that would create an erroneous
5381   // replicating region where only a single instance out of VF should be formed.
5382   // TODO: optimize such seldom cases if found important, see PR40816.
5383   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5384     if (isOutOfScope(I)) {
5385       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5386                         << *I << "\n");
5387       return;
5388     }
5389     if (isScalarWithPredication(I)) {
5390       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5391                         << *I << "\n");
5392       return;
5393     }
5394     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5395     Worklist.insert(I);
5396   };
5397 
5398   // Start with the conditional branch. If the branch condition is an
5399   // instruction contained in the loop that is only used by the branch, it is
5400   // uniform.
5401   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5402   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5403     addToWorklistIfAllowed(Cmp);
5404 
5405   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5406     InstWidening WideningDecision = getWideningDecision(I, VF);
5407     assert(WideningDecision != CM_Unknown &&
5408            "Widening decision should be ready at this moment");
5409 
5410     // A uniform memory op is itself uniform.  We exclude uniform stores
5411     // here as they demand the last lane, not the first one.
5412     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5413       assert(WideningDecision == CM_Scalarize);
5414       return true;
5415     }
5416 
5417     return (WideningDecision == CM_Widen ||
5418             WideningDecision == CM_Widen_Reverse ||
5419             WideningDecision == CM_Interleave);
5420   };
5421 
5422 
5423   // Returns true if Ptr is the pointer operand of a memory access instruction
5424   // I, and I is known to not require scalarization.
5425   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5426     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5427   };
5428 
5429   // Holds a list of values which are known to have at least one uniform use.
5430   // Note that there may be other uses which aren't uniform.  A "uniform use"
5431   // here is something which only demands lane 0 of the unrolled iterations;
5432   // it does not imply that all lanes produce the same value (e.g. this is not
5433   // the usual meaning of uniform)
5434   SetVector<Value *> HasUniformUse;
5435 
5436   // Scan the loop for instructions which are either a) known to have only
5437   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5438   for (auto *BB : TheLoop->blocks())
5439     for (auto &I : *BB) {
5440       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5441         switch (II->getIntrinsicID()) {
5442         case Intrinsic::sideeffect:
5443         case Intrinsic::experimental_noalias_scope_decl:
5444         case Intrinsic::assume:
5445         case Intrinsic::lifetime_start:
5446         case Intrinsic::lifetime_end:
5447           if (TheLoop->hasLoopInvariantOperands(&I))
5448             addToWorklistIfAllowed(&I);
5449           break;
5450         default:
5451           break;
5452         }
5453       }
5454 
5455       // ExtractValue instructions must be uniform, because the operands are
5456       // known to be loop-invariant.
5457       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5458         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5459                "Expected aggregate value to be loop invariant");
5460         addToWorklistIfAllowed(EVI);
5461         continue;
5462       }
5463 
5464       // If there's no pointer operand, there's nothing to do.
5465       auto *Ptr = getLoadStorePointerOperand(&I);
5466       if (!Ptr)
5467         continue;
5468 
5469       // A uniform memory op is itself uniform.  We exclude uniform stores
5470       // here as they demand the last lane, not the first one.
5471       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5472         addToWorklistIfAllowed(&I);
5473 
5474       if (isUniformDecision(&I, VF)) {
5475         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5476         HasUniformUse.insert(Ptr);
5477       }
5478     }
5479 
5480   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5481   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5482   // disallows uses outside the loop as well.
5483   for (auto *V : HasUniformUse) {
5484     if (isOutOfScope(V))
5485       continue;
5486     auto *I = cast<Instruction>(V);
5487     auto UsersAreMemAccesses =
5488       llvm::all_of(I->users(), [&](User *U) -> bool {
5489         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5490       });
5491     if (UsersAreMemAccesses)
5492       addToWorklistIfAllowed(I);
5493   }
5494 
5495   // Expand Worklist in topological order: whenever a new instruction
5496   // is added , its users should be already inside Worklist.  It ensures
5497   // a uniform instruction will only be used by uniform instructions.
5498   unsigned idx = 0;
5499   while (idx != Worklist.size()) {
5500     Instruction *I = Worklist[idx++];
5501 
5502     for (auto OV : I->operand_values()) {
5503       // isOutOfScope operands cannot be uniform instructions.
5504       if (isOutOfScope(OV))
5505         continue;
5506       // First order recurrence Phi's should typically be considered
5507       // non-uniform.
5508       auto *OP = dyn_cast<PHINode>(OV);
5509       if (OP && Legal->isFirstOrderRecurrence(OP))
5510         continue;
5511       // If all the users of the operand are uniform, then add the
5512       // operand into the uniform worklist.
5513       auto *OI = cast<Instruction>(OV);
5514       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5515             auto *J = cast<Instruction>(U);
5516             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5517           }))
5518         addToWorklistIfAllowed(OI);
5519     }
5520   }
5521 
5522   // For an instruction to be added into Worklist above, all its users inside
5523   // the loop should also be in Worklist. However, this condition cannot be
5524   // true for phi nodes that form a cyclic dependence. We must process phi
5525   // nodes separately. An induction variable will remain uniform if all users
5526   // of the induction variable and induction variable update remain uniform.
5527   // The code below handles both pointer and non-pointer induction variables.
5528   for (auto &Induction : Legal->getInductionVars()) {
5529     auto *Ind = Induction.first;
5530     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5531 
5532     // Determine if all users of the induction variable are uniform after
5533     // vectorization.
5534     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5535       auto *I = cast<Instruction>(U);
5536       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5537              isVectorizedMemAccessUse(I, Ind);
5538     });
5539     if (!UniformInd)
5540       continue;
5541 
5542     // Determine if all users of the induction variable update instruction are
5543     // uniform after vectorization.
5544     auto UniformIndUpdate =
5545         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5546           auto *I = cast<Instruction>(U);
5547           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5548                  isVectorizedMemAccessUse(I, IndUpdate);
5549         });
5550     if (!UniformIndUpdate)
5551       continue;
5552 
5553     // The induction variable and its update instruction will remain uniform.
5554     addToWorklistIfAllowed(Ind);
5555     addToWorklistIfAllowed(IndUpdate);
5556   }
5557 
5558   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5559 }
5560 
5561 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5562   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5563 
5564   if (Legal->getRuntimePointerChecking()->Need) {
5565     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5566         "runtime pointer checks needed. Enable vectorization of this "
5567         "loop with '#pragma clang loop vectorize(enable)' when "
5568         "compiling with -Os/-Oz",
5569         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5570     return true;
5571   }
5572 
5573   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5574     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5575         "runtime SCEV checks needed. Enable vectorization of this "
5576         "loop with '#pragma clang loop vectorize(enable)' when "
5577         "compiling with -Os/-Oz",
5578         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5579     return true;
5580   }
5581 
5582   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5583   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5584     reportVectorizationFailure("Runtime stride check for small trip count",
5585         "runtime stride == 1 checks needed. Enable vectorization of "
5586         "this loop without such check by compiling with -Os/-Oz",
5587         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5588     return true;
5589   }
5590 
5591   return false;
5592 }
5593 
5594 ElementCount
5595 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5596   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5597     return ElementCount::getScalable(0);
5598 
5599   if (Hints->isScalableVectorizationDisabled()) {
5600     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5601                             "ScalableVectorizationDisabled", ORE, TheLoop);
5602     return ElementCount::getScalable(0);
5603   }
5604 
5605   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5606 
5607   auto MaxScalableVF = ElementCount::getScalable(
5608       std::numeric_limits<ElementCount::ScalarTy>::max());
5609 
5610   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5611   // FIXME: While for scalable vectors this is currently sufficient, this should
5612   // be replaced by a more detailed mechanism that filters out specific VFs,
5613   // instead of invalidating vectorization for a whole set of VFs based on the
5614   // MaxVF.
5615 
5616   // Disable scalable vectorization if the loop contains unsupported reductions.
5617   if (!canVectorizeReductions(MaxScalableVF)) {
5618     reportVectorizationInfo(
5619         "Scalable vectorization not supported for the reduction "
5620         "operations found in this loop.",
5621         "ScalableVFUnfeasible", ORE, TheLoop);
5622     return ElementCount::getScalable(0);
5623   }
5624 
5625   // Disable scalable vectorization if the loop contains any instructions
5626   // with element types not supported for scalable vectors.
5627   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5628         return !Ty->isVoidTy() &&
5629                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5630       })) {
5631     reportVectorizationInfo("Scalable vectorization is not supported "
5632                             "for all element types found in this loop.",
5633                             "ScalableVFUnfeasible", ORE, TheLoop);
5634     return ElementCount::getScalable(0);
5635   }
5636 
5637   if (Legal->isSafeForAnyVectorWidth())
5638     return MaxScalableVF;
5639 
5640   // Limit MaxScalableVF by the maximum safe dependence distance.
5641   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5642   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5643     unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange)
5644                              .getVScaleRangeArgs()
5645                              .second;
5646     if (VScaleMax > 0)
5647       MaxVScale = VScaleMax;
5648   }
5649   MaxScalableVF = ElementCount::getScalable(
5650       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5651   if (!MaxScalableVF)
5652     reportVectorizationInfo(
5653         "Max legal vector width too small, scalable vectorization "
5654         "unfeasible.",
5655         "ScalableVFUnfeasible", ORE, TheLoop);
5656 
5657   return MaxScalableVF;
5658 }
5659 
5660 FixedScalableVFPair
5661 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5662                                                  ElementCount UserVF) {
5663   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5664   unsigned SmallestType, WidestType;
5665   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5666 
5667   // Get the maximum safe dependence distance in bits computed by LAA.
5668   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5669   // the memory accesses that is most restrictive (involved in the smallest
5670   // dependence distance).
5671   unsigned MaxSafeElements =
5672       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5673 
5674   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5675   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5676 
5677   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5678                     << ".\n");
5679   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5680                     << ".\n");
5681 
5682   // First analyze the UserVF, fall back if the UserVF should be ignored.
5683   if (UserVF) {
5684     auto MaxSafeUserVF =
5685         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5686 
5687     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5688       // If `VF=vscale x N` is safe, then so is `VF=N`
5689       if (UserVF.isScalable())
5690         return FixedScalableVFPair(
5691             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5692       else
5693         return UserVF;
5694     }
5695 
5696     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5697 
5698     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5699     // is better to ignore the hint and let the compiler choose a suitable VF.
5700     if (!UserVF.isScalable()) {
5701       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5702                         << " is unsafe, clamping to max safe VF="
5703                         << MaxSafeFixedVF << ".\n");
5704       ORE->emit([&]() {
5705         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5706                                           TheLoop->getStartLoc(),
5707                                           TheLoop->getHeader())
5708                << "User-specified vectorization factor "
5709                << ore::NV("UserVectorizationFactor", UserVF)
5710                << " is unsafe, clamping to maximum safe vectorization factor "
5711                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5712       });
5713       return MaxSafeFixedVF;
5714     }
5715 
5716     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5717       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5718                         << " is ignored because scalable vectors are not "
5719                            "available.\n");
5720       ORE->emit([&]() {
5721         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5722                                           TheLoop->getStartLoc(),
5723                                           TheLoop->getHeader())
5724                << "User-specified vectorization factor "
5725                << ore::NV("UserVectorizationFactor", UserVF)
5726                << " is ignored because the target does not support scalable "
5727                   "vectors. The compiler will pick a more suitable value.";
5728       });
5729     } else {
5730       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5731                         << " is unsafe. Ignoring scalable UserVF.\n");
5732       ORE->emit([&]() {
5733         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5734                                           TheLoop->getStartLoc(),
5735                                           TheLoop->getHeader())
5736                << "User-specified vectorization factor "
5737                << ore::NV("UserVectorizationFactor", UserVF)
5738                << " is unsafe. Ignoring the hint to let the compiler pick a "
5739                   "more suitable value.";
5740       });
5741     }
5742   }
5743 
5744   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5745                     << " / " << WidestType << " bits.\n");
5746 
5747   FixedScalableVFPair Result(ElementCount::getFixed(1),
5748                              ElementCount::getScalable(0));
5749   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5750                                            WidestType, MaxSafeFixedVF))
5751     Result.FixedVF = MaxVF;
5752 
5753   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5754                                            WidestType, MaxSafeScalableVF))
5755     if (MaxVF.isScalable()) {
5756       Result.ScalableVF = MaxVF;
5757       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5758                         << "\n");
5759     }
5760 
5761   return Result;
5762 }
5763 
5764 FixedScalableVFPair
5765 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5766   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5767     // TODO: It may by useful to do since it's still likely to be dynamically
5768     // uniform if the target can skip.
5769     reportVectorizationFailure(
5770         "Not inserting runtime ptr check for divergent target",
5771         "runtime pointer checks needed. Not enabled for divergent target",
5772         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5773     return FixedScalableVFPair::getNone();
5774   }
5775 
5776   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5777   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5778   if (TC == 1) {
5779     reportVectorizationFailure("Single iteration (non) loop",
5780         "loop trip count is one, irrelevant for vectorization",
5781         "SingleIterationLoop", ORE, TheLoop);
5782     return FixedScalableVFPair::getNone();
5783   }
5784 
5785   switch (ScalarEpilogueStatus) {
5786   case CM_ScalarEpilogueAllowed:
5787     return computeFeasibleMaxVF(TC, UserVF);
5788   case CM_ScalarEpilogueNotAllowedUsePredicate:
5789     LLVM_FALLTHROUGH;
5790   case CM_ScalarEpilogueNotNeededUsePredicate:
5791     LLVM_DEBUG(
5792         dbgs() << "LV: vector predicate hint/switch found.\n"
5793                << "LV: Not allowing scalar epilogue, creating predicated "
5794                << "vector loop.\n");
5795     break;
5796   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5797     // fallthrough as a special case of OptForSize
5798   case CM_ScalarEpilogueNotAllowedOptSize:
5799     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5800       LLVM_DEBUG(
5801           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5802     else
5803       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5804                         << "count.\n");
5805 
5806     // Bail if runtime checks are required, which are not good when optimising
5807     // for size.
5808     if (runtimeChecksRequired())
5809       return FixedScalableVFPair::getNone();
5810 
5811     break;
5812   }
5813 
5814   // The only loops we can vectorize without a scalar epilogue, are loops with
5815   // a bottom-test and a single exiting block. We'd have to handle the fact
5816   // that not every instruction executes on the last iteration.  This will
5817   // require a lane mask which varies through the vector loop body.  (TODO)
5818   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5819     // If there was a tail-folding hint/switch, but we can't fold the tail by
5820     // masking, fallback to a vectorization with a scalar epilogue.
5821     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5822       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5823                            "scalar epilogue instead.\n");
5824       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5825       return computeFeasibleMaxVF(TC, UserVF);
5826     }
5827     return FixedScalableVFPair::getNone();
5828   }
5829 
5830   // Now try the tail folding
5831 
5832   // Invalidate interleave groups that require an epilogue if we can't mask
5833   // the interleave-group.
5834   if (!useMaskedInterleavedAccesses(TTI)) {
5835     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5836            "No decisions should have been taken at this point");
5837     // Note: There is no need to invalidate any cost modeling decisions here, as
5838     // non where taken so far.
5839     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5840   }
5841 
5842   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5843   // Avoid tail folding if the trip count is known to be a multiple of any VF
5844   // we chose.
5845   // FIXME: The condition below pessimises the case for fixed-width vectors,
5846   // when scalable VFs are also candidates for vectorization.
5847   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5848     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5849     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5850            "MaxFixedVF must be a power of 2");
5851     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5852                                    : MaxFixedVF.getFixedValue();
5853     ScalarEvolution *SE = PSE.getSE();
5854     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5855     const SCEV *ExitCount = SE->getAddExpr(
5856         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5857     const SCEV *Rem = SE->getURemExpr(
5858         SE->applyLoopGuards(ExitCount, TheLoop),
5859         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5860     if (Rem->isZero()) {
5861       // Accept MaxFixedVF if we do not have a tail.
5862       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5863       return MaxFactors;
5864     }
5865   }
5866 
5867   // For scalable vectors, don't use tail folding as this is currently not yet
5868   // supported. The code is likely to have ended up here if the tripcount is
5869   // low, in which case it makes sense not to use scalable vectors.
5870   if (MaxFactors.ScalableVF.isVector())
5871     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5872 
5873   // If we don't know the precise trip count, or if the trip count that we
5874   // found modulo the vectorization factor is not zero, try to fold the tail
5875   // by masking.
5876   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5877   if (Legal->prepareToFoldTailByMasking()) {
5878     FoldTailByMasking = true;
5879     return MaxFactors;
5880   }
5881 
5882   // If there was a tail-folding hint/switch, but we can't fold the tail by
5883   // masking, fallback to a vectorization with a scalar epilogue.
5884   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5885     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5886                          "scalar epilogue instead.\n");
5887     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5888     return MaxFactors;
5889   }
5890 
5891   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5892     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5893     return FixedScalableVFPair::getNone();
5894   }
5895 
5896   if (TC == 0) {
5897     reportVectorizationFailure(
5898         "Unable to calculate the loop count due to complex control flow",
5899         "unable to calculate the loop count due to complex control flow",
5900         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5901     return FixedScalableVFPair::getNone();
5902   }
5903 
5904   reportVectorizationFailure(
5905       "Cannot optimize for size and vectorize at the same time.",
5906       "cannot optimize for size and vectorize at the same time. "
5907       "Enable vectorization of this loop with '#pragma clang loop "
5908       "vectorize(enable)' when compiling with -Os/-Oz",
5909       "NoTailLoopWithOptForSize", ORE, TheLoop);
5910   return FixedScalableVFPair::getNone();
5911 }
5912 
5913 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5914     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5915     const ElementCount &MaxSafeVF) {
5916   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5917   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5918       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5919                            : TargetTransformInfo::RGK_FixedWidthVector);
5920 
5921   // Convenience function to return the minimum of two ElementCounts.
5922   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5923     assert((LHS.isScalable() == RHS.isScalable()) &&
5924            "Scalable flags must match");
5925     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5926   };
5927 
5928   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5929   // Note that both WidestRegister and WidestType may not be a powers of 2.
5930   auto MaxVectorElementCount = ElementCount::get(
5931       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5932       ComputeScalableMaxVF);
5933   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5934   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5935                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5936 
5937   if (!MaxVectorElementCount) {
5938     LLVM_DEBUG(dbgs() << "LV: The target has no "
5939                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5940                       << " vector registers.\n");
5941     return ElementCount::getFixed(1);
5942   }
5943 
5944   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5945   if (ConstTripCount &&
5946       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5947       isPowerOf2_32(ConstTripCount)) {
5948     // We need to clamp the VF to be the ConstTripCount. There is no point in
5949     // choosing a higher viable VF as done in the loop below. If
5950     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5951     // the TC is less than or equal to the known number of lanes.
5952     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5953                       << ConstTripCount << "\n");
5954     return TripCountEC;
5955   }
5956 
5957   ElementCount MaxVF = MaxVectorElementCount;
5958   if (TTI.shouldMaximizeVectorBandwidth() ||
5959       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5960     auto MaxVectorElementCountMaxBW = ElementCount::get(
5961         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5962         ComputeScalableMaxVF);
5963     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5964 
5965     // Collect all viable vectorization factors larger than the default MaxVF
5966     // (i.e. MaxVectorElementCount).
5967     SmallVector<ElementCount, 8> VFs;
5968     for (ElementCount VS = MaxVectorElementCount * 2;
5969          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5970       VFs.push_back(VS);
5971 
5972     // For each VF calculate its register usage.
5973     auto RUs = calculateRegisterUsage(VFs);
5974 
5975     // Select the largest VF which doesn't require more registers than existing
5976     // ones.
5977     for (int i = RUs.size() - 1; i >= 0; --i) {
5978       bool Selected = true;
5979       for (auto &pair : RUs[i].MaxLocalUsers) {
5980         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5981         if (pair.second > TargetNumRegisters)
5982           Selected = false;
5983       }
5984       if (Selected) {
5985         MaxVF = VFs[i];
5986         break;
5987       }
5988     }
5989     if (ElementCount MinVF =
5990             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5991       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5992         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5993                           << ") with target's minimum: " << MinVF << '\n');
5994         MaxVF = MinVF;
5995       }
5996     }
5997   }
5998   return MaxVF;
5999 }
6000 
6001 bool LoopVectorizationCostModel::isMoreProfitable(
6002     const VectorizationFactor &A, const VectorizationFactor &B) const {
6003   InstructionCost CostA = A.Cost;
6004   InstructionCost CostB = B.Cost;
6005 
6006   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
6007 
6008   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
6009       MaxTripCount) {
6010     // If we are folding the tail and the trip count is a known (possibly small)
6011     // constant, the trip count will be rounded up to an integer number of
6012     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6013     // which we compare directly. When not folding the tail, the total cost will
6014     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6015     // approximated with the per-lane cost below instead of using the tripcount
6016     // as here.
6017     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6018     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6019     return RTCostA < RTCostB;
6020   }
6021 
6022   // When set to preferred, for now assume vscale may be larger than 1, so
6023   // that scalable vectorization is slightly favorable over fixed-width
6024   // vectorization.
6025   if (Hints->isScalableVectorizationPreferred())
6026     if (A.Width.isScalable() && !B.Width.isScalable())
6027       return (CostA * B.Width.getKnownMinValue()) <=
6028              (CostB * A.Width.getKnownMinValue());
6029 
6030   // To avoid the need for FP division:
6031   //      (CostA / A.Width) < (CostB / B.Width)
6032   // <=>  (CostA * B.Width) < (CostB * A.Width)
6033   return (CostA * B.Width.getKnownMinValue()) <
6034          (CostB * A.Width.getKnownMinValue());
6035 }
6036 
6037 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6038     const ElementCountSet &VFCandidates) {
6039   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6040   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6041   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6042   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6043          "Expected Scalar VF to be a candidate");
6044 
6045   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6046   VectorizationFactor ChosenFactor = ScalarCost;
6047 
6048   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6049   if (ForceVectorization && VFCandidates.size() > 1) {
6050     // Ignore scalar width, because the user explicitly wants vectorization.
6051     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6052     // evaluation.
6053     ChosenFactor.Cost = InstructionCost::getMax();
6054   }
6055 
6056   SmallVector<InstructionVFPair> InvalidCosts;
6057   for (const auto &i : VFCandidates) {
6058     // The cost for scalar VF=1 is already calculated, so ignore it.
6059     if (i.isScalar())
6060       continue;
6061 
6062     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6063     VectorizationFactor Candidate(i, C.first);
6064     LLVM_DEBUG(
6065         dbgs() << "LV: Vector loop of width " << i << " costs: "
6066                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6067                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6068                << ".\n");
6069 
6070     if (!C.second && !ForceVectorization) {
6071       LLVM_DEBUG(
6072           dbgs() << "LV: Not considering vector loop of width " << i
6073                  << " because it will not generate any vector instructions.\n");
6074       continue;
6075     }
6076 
6077     // If profitable add it to ProfitableVF list.
6078     if (isMoreProfitable(Candidate, ScalarCost))
6079       ProfitableVFs.push_back(Candidate);
6080 
6081     if (isMoreProfitable(Candidate, ChosenFactor))
6082       ChosenFactor = Candidate;
6083   }
6084 
6085   // Emit a report of VFs with invalid costs in the loop.
6086   if (!InvalidCosts.empty()) {
6087     // Group the remarks per instruction, keeping the instruction order from
6088     // InvalidCosts.
6089     std::map<Instruction *, unsigned> Numbering;
6090     unsigned I = 0;
6091     for (auto &Pair : InvalidCosts)
6092       if (!Numbering.count(Pair.first))
6093         Numbering[Pair.first] = I++;
6094 
6095     // Sort the list, first on instruction(number) then on VF.
6096     llvm::sort(InvalidCosts,
6097                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6098                  if (Numbering[A.first] != Numbering[B.first])
6099                    return Numbering[A.first] < Numbering[B.first];
6100                  ElementCountComparator ECC;
6101                  return ECC(A.second, B.second);
6102                });
6103 
6104     // For a list of ordered instruction-vf pairs:
6105     //   [(load, vf1), (load, vf2), (store, vf1)]
6106     // Group the instructions together to emit separate remarks for:
6107     //   load  (vf1, vf2)
6108     //   store (vf1)
6109     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6110     auto Subset = ArrayRef<InstructionVFPair>();
6111     do {
6112       if (Subset.empty())
6113         Subset = Tail.take_front(1);
6114 
6115       Instruction *I = Subset.front().first;
6116 
6117       // If the next instruction is different, or if there are no other pairs,
6118       // emit a remark for the collated subset. e.g.
6119       //   [(load, vf1), (load, vf2))]
6120       // to emit:
6121       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6122       if (Subset == Tail || Tail[Subset.size()].first != I) {
6123         std::string OutString;
6124         raw_string_ostream OS(OutString);
6125         assert(!Subset.empty() && "Unexpected empty range");
6126         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6127         for (auto &Pair : Subset)
6128           OS << (Pair.second == Subset.front().second ? "" : ", ")
6129              << Pair.second;
6130         OS << "):";
6131         if (auto *CI = dyn_cast<CallInst>(I))
6132           OS << " call to " << CI->getCalledFunction()->getName();
6133         else
6134           OS << " " << I->getOpcodeName();
6135         OS.flush();
6136         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6137         Tail = Tail.drop_front(Subset.size());
6138         Subset = {};
6139       } else
6140         // Grow the subset by one element
6141         Subset = Tail.take_front(Subset.size() + 1);
6142     } while (!Tail.empty());
6143   }
6144 
6145   if (!EnableCondStoresVectorization && NumPredStores) {
6146     reportVectorizationFailure("There are conditional stores.",
6147         "store that is conditionally executed prevents vectorization",
6148         "ConditionalStore", ORE, TheLoop);
6149     ChosenFactor = ScalarCost;
6150   }
6151 
6152   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6153                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6154              << "LV: Vectorization seems to be not beneficial, "
6155              << "but was forced by a user.\n");
6156   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6157   return ChosenFactor;
6158 }
6159 
6160 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6161     const Loop &L, ElementCount VF) const {
6162   // Cross iteration phis such as reductions need special handling and are
6163   // currently unsupported.
6164   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6165         return Legal->isFirstOrderRecurrence(&Phi) ||
6166                Legal->isReductionVariable(&Phi);
6167       }))
6168     return false;
6169 
6170   // Phis with uses outside of the loop require special handling and are
6171   // currently unsupported.
6172   for (auto &Entry : Legal->getInductionVars()) {
6173     // Look for uses of the value of the induction at the last iteration.
6174     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6175     for (User *U : PostInc->users())
6176       if (!L.contains(cast<Instruction>(U)))
6177         return false;
6178     // Look for uses of penultimate value of the induction.
6179     for (User *U : Entry.first->users())
6180       if (!L.contains(cast<Instruction>(U)))
6181         return false;
6182   }
6183 
6184   // Induction variables that are widened require special handling that is
6185   // currently not supported.
6186   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6187         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6188                  this->isProfitableToScalarize(Entry.first, VF));
6189       }))
6190     return false;
6191 
6192   // Epilogue vectorization code has not been auditted to ensure it handles
6193   // non-latch exits properly.  It may be fine, but it needs auditted and
6194   // tested.
6195   if (L.getExitingBlock() != L.getLoopLatch())
6196     return false;
6197 
6198   return true;
6199 }
6200 
6201 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6202     const ElementCount VF) const {
6203   // FIXME: We need a much better cost-model to take different parameters such
6204   // as register pressure, code size increase and cost of extra branches into
6205   // account. For now we apply a very crude heuristic and only consider loops
6206   // with vectorization factors larger than a certain value.
6207   // We also consider epilogue vectorization unprofitable for targets that don't
6208   // consider interleaving beneficial (eg. MVE).
6209   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6210     return false;
6211   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6212     return true;
6213   return false;
6214 }
6215 
6216 VectorizationFactor
6217 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6218     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6219   VectorizationFactor Result = VectorizationFactor::Disabled();
6220   if (!EnableEpilogueVectorization) {
6221     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6222     return Result;
6223   }
6224 
6225   if (!isScalarEpilogueAllowed()) {
6226     LLVM_DEBUG(
6227         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6228                   "allowed.\n";);
6229     return Result;
6230   }
6231 
6232   // FIXME: This can be fixed for scalable vectors later, because at this stage
6233   // the LoopVectorizer will only consider vectorizing a loop with scalable
6234   // vectors when the loop has a hint to enable vectorization for a given VF.
6235   if (MainLoopVF.isScalable()) {
6236     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6237                          "yet supported.\n");
6238     return Result;
6239   }
6240 
6241   // Not really a cost consideration, but check for unsupported cases here to
6242   // simplify the logic.
6243   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6244     LLVM_DEBUG(
6245         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6246                   "not a supported candidate.\n";);
6247     return Result;
6248   }
6249 
6250   if (EpilogueVectorizationForceVF > 1) {
6251     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6252     if (LVP.hasPlanWithVFs(
6253             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6254       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6255     else {
6256       LLVM_DEBUG(
6257           dbgs()
6258               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6259       return Result;
6260     }
6261   }
6262 
6263   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6264       TheLoop->getHeader()->getParent()->hasMinSize()) {
6265     LLVM_DEBUG(
6266         dbgs()
6267             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6268     return Result;
6269   }
6270 
6271   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6272     return Result;
6273 
6274   for (auto &NextVF : ProfitableVFs)
6275     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6276         (Result.Width.getFixedValue() == 1 ||
6277          isMoreProfitable(NextVF, Result)) &&
6278         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6279       Result = NextVF;
6280 
6281   if (Result != VectorizationFactor::Disabled())
6282     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6283                       << Result.Width.getFixedValue() << "\n";);
6284   return Result;
6285 }
6286 
6287 std::pair<unsigned, unsigned>
6288 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6289   unsigned MinWidth = -1U;
6290   unsigned MaxWidth = 8;
6291   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6292   for (Type *T : ElementTypesInLoop) {
6293     MinWidth = std::min<unsigned>(
6294         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6295     MaxWidth = std::max<unsigned>(
6296         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6297   }
6298   return {MinWidth, MaxWidth};
6299 }
6300 
6301 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6302   ElementTypesInLoop.clear();
6303   // For each block.
6304   for (BasicBlock *BB : TheLoop->blocks()) {
6305     // For each instruction in the loop.
6306     for (Instruction &I : BB->instructionsWithoutDebug()) {
6307       Type *T = I.getType();
6308 
6309       // Skip ignored values.
6310       if (ValuesToIgnore.count(&I))
6311         continue;
6312 
6313       // Only examine Loads, Stores and PHINodes.
6314       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6315         continue;
6316 
6317       // Examine PHI nodes that are reduction variables. Update the type to
6318       // account for the recurrence type.
6319       if (auto *PN = dyn_cast<PHINode>(&I)) {
6320         if (!Legal->isReductionVariable(PN))
6321           continue;
6322         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6323         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6324             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6325                                       RdxDesc.getRecurrenceType(),
6326                                       TargetTransformInfo::ReductionFlags()))
6327           continue;
6328         T = RdxDesc.getRecurrenceType();
6329       }
6330 
6331       // Examine the stored values.
6332       if (auto *ST = dyn_cast<StoreInst>(&I))
6333         T = ST->getValueOperand()->getType();
6334 
6335       // Ignore loaded pointer types and stored pointer types that are not
6336       // vectorizable.
6337       //
6338       // FIXME: The check here attempts to predict whether a load or store will
6339       //        be vectorized. We only know this for certain after a VF has
6340       //        been selected. Here, we assume that if an access can be
6341       //        vectorized, it will be. We should also look at extending this
6342       //        optimization to non-pointer types.
6343       //
6344       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6345           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6346         continue;
6347 
6348       ElementTypesInLoop.insert(T);
6349     }
6350   }
6351 }
6352 
6353 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6354                                                            unsigned LoopCost) {
6355   // -- The interleave heuristics --
6356   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6357   // There are many micro-architectural considerations that we can't predict
6358   // at this level. For example, frontend pressure (on decode or fetch) due to
6359   // code size, or the number and capabilities of the execution ports.
6360   //
6361   // We use the following heuristics to select the interleave count:
6362   // 1. If the code has reductions, then we interleave to break the cross
6363   // iteration dependency.
6364   // 2. If the loop is really small, then we interleave to reduce the loop
6365   // overhead.
6366   // 3. We don't interleave if we think that we will spill registers to memory
6367   // due to the increased register pressure.
6368 
6369   if (!isScalarEpilogueAllowed())
6370     return 1;
6371 
6372   // We used the distance for the interleave count.
6373   if (Legal->getMaxSafeDepDistBytes() != -1U)
6374     return 1;
6375 
6376   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6377   const bool HasReductions = !Legal->getReductionVars().empty();
6378   // Do not interleave loops with a relatively small known or estimated trip
6379   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6380   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6381   // because with the above conditions interleaving can expose ILP and break
6382   // cross iteration dependences for reductions.
6383   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6384       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6385     return 1;
6386 
6387   RegisterUsage R = calculateRegisterUsage({VF})[0];
6388   // We divide by these constants so assume that we have at least one
6389   // instruction that uses at least one register.
6390   for (auto& pair : R.MaxLocalUsers) {
6391     pair.second = std::max(pair.second, 1U);
6392   }
6393 
6394   // We calculate the interleave count using the following formula.
6395   // Subtract the number of loop invariants from the number of available
6396   // registers. These registers are used by all of the interleaved instances.
6397   // Next, divide the remaining registers by the number of registers that is
6398   // required by the loop, in order to estimate how many parallel instances
6399   // fit without causing spills. All of this is rounded down if necessary to be
6400   // a power of two. We want power of two interleave count to simplify any
6401   // addressing operations or alignment considerations.
6402   // We also want power of two interleave counts to ensure that the induction
6403   // variable of the vector loop wraps to zero, when tail is folded by masking;
6404   // this currently happens when OptForSize, in which case IC is set to 1 above.
6405   unsigned IC = UINT_MAX;
6406 
6407   for (auto& pair : R.MaxLocalUsers) {
6408     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6409     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6410                       << " registers of "
6411                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6412     if (VF.isScalar()) {
6413       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6414         TargetNumRegisters = ForceTargetNumScalarRegs;
6415     } else {
6416       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6417         TargetNumRegisters = ForceTargetNumVectorRegs;
6418     }
6419     unsigned MaxLocalUsers = pair.second;
6420     unsigned LoopInvariantRegs = 0;
6421     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6422       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6423 
6424     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6425     // Don't count the induction variable as interleaved.
6426     if (EnableIndVarRegisterHeur) {
6427       TmpIC =
6428           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6429                         std::max(1U, (MaxLocalUsers - 1)));
6430     }
6431 
6432     IC = std::min(IC, TmpIC);
6433   }
6434 
6435   // Clamp the interleave ranges to reasonable counts.
6436   unsigned MaxInterleaveCount =
6437       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6438 
6439   // Check if the user has overridden the max.
6440   if (VF.isScalar()) {
6441     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6442       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6443   } else {
6444     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6445       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6446   }
6447 
6448   // If trip count is known or estimated compile time constant, limit the
6449   // interleave count to be less than the trip count divided by VF, provided it
6450   // is at least 1.
6451   //
6452   // For scalable vectors we can't know if interleaving is beneficial. It may
6453   // not be beneficial for small loops if none of the lanes in the second vector
6454   // iterations is enabled. However, for larger loops, there is likely to be a
6455   // similar benefit as for fixed-width vectors. For now, we choose to leave
6456   // the InterleaveCount as if vscale is '1', although if some information about
6457   // the vector is known (e.g. min vector size), we can make a better decision.
6458   if (BestKnownTC) {
6459     MaxInterleaveCount =
6460         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6461     // Make sure MaxInterleaveCount is greater than 0.
6462     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6463   }
6464 
6465   assert(MaxInterleaveCount > 0 &&
6466          "Maximum interleave count must be greater than 0");
6467 
6468   // Clamp the calculated IC to be between the 1 and the max interleave count
6469   // that the target and trip count allows.
6470   if (IC > MaxInterleaveCount)
6471     IC = MaxInterleaveCount;
6472   else
6473     // Make sure IC is greater than 0.
6474     IC = std::max(1u, IC);
6475 
6476   assert(IC > 0 && "Interleave count must be greater than 0.");
6477 
6478   // If we did not calculate the cost for VF (because the user selected the VF)
6479   // then we calculate the cost of VF here.
6480   if (LoopCost == 0) {
6481     InstructionCost C = expectedCost(VF).first;
6482     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6483     LoopCost = *C.getValue();
6484   }
6485 
6486   assert(LoopCost && "Non-zero loop cost expected");
6487 
6488   // Interleave if we vectorized this loop and there is a reduction that could
6489   // benefit from interleaving.
6490   if (VF.isVector() && HasReductions) {
6491     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6492     return IC;
6493   }
6494 
6495   // Note that if we've already vectorized the loop we will have done the
6496   // runtime check and so interleaving won't require further checks.
6497   bool InterleavingRequiresRuntimePointerCheck =
6498       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6499 
6500   // We want to interleave small loops in order to reduce the loop overhead and
6501   // potentially expose ILP opportunities.
6502   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6503                     << "LV: IC is " << IC << '\n'
6504                     << "LV: VF is " << VF << '\n');
6505   const bool AggressivelyInterleaveReductions =
6506       TTI.enableAggressiveInterleaving(HasReductions);
6507   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6508     // We assume that the cost overhead is 1 and we use the cost model
6509     // to estimate the cost of the loop and interleave until the cost of the
6510     // loop overhead is about 5% of the cost of the loop.
6511     unsigned SmallIC =
6512         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6513 
6514     // Interleave until store/load ports (estimated by max interleave count) are
6515     // saturated.
6516     unsigned NumStores = Legal->getNumStores();
6517     unsigned NumLoads = Legal->getNumLoads();
6518     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6519     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6520 
6521     // If we have a scalar reduction (vector reductions are already dealt with
6522     // by this point), we can increase the critical path length if the loop
6523     // we're interleaving is inside another loop. For tree-wise reductions
6524     // set the limit to 2, and for ordered reductions it's best to disable
6525     // interleaving entirely.
6526     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6527       bool HasOrderedReductions =
6528           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6529             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6530             return RdxDesc.isOrdered();
6531           });
6532       if (HasOrderedReductions) {
6533         LLVM_DEBUG(
6534             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6535         return 1;
6536       }
6537 
6538       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6539       SmallIC = std::min(SmallIC, F);
6540       StoresIC = std::min(StoresIC, F);
6541       LoadsIC = std::min(LoadsIC, F);
6542     }
6543 
6544     if (EnableLoadStoreRuntimeInterleave &&
6545         std::max(StoresIC, LoadsIC) > SmallIC) {
6546       LLVM_DEBUG(
6547           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6548       return std::max(StoresIC, LoadsIC);
6549     }
6550 
6551     // If there are scalar reductions and TTI has enabled aggressive
6552     // interleaving for reductions, we will interleave to expose ILP.
6553     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6554         AggressivelyInterleaveReductions) {
6555       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6556       // Interleave no less than SmallIC but not as aggressive as the normal IC
6557       // to satisfy the rare situation when resources are too limited.
6558       return std::max(IC / 2, SmallIC);
6559     } else {
6560       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6561       return SmallIC;
6562     }
6563   }
6564 
6565   // Interleave if this is a large loop (small loops are already dealt with by
6566   // this point) that could benefit from interleaving.
6567   if (AggressivelyInterleaveReductions) {
6568     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6569     return IC;
6570   }
6571 
6572   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6573   return 1;
6574 }
6575 
6576 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6577 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6578   // This function calculates the register usage by measuring the highest number
6579   // of values that are alive at a single location. Obviously, this is a very
6580   // rough estimation. We scan the loop in a topological order in order and
6581   // assign a number to each instruction. We use RPO to ensure that defs are
6582   // met before their users. We assume that each instruction that has in-loop
6583   // users starts an interval. We record every time that an in-loop value is
6584   // used, so we have a list of the first and last occurrences of each
6585   // instruction. Next, we transpose this data structure into a multi map that
6586   // holds the list of intervals that *end* at a specific location. This multi
6587   // map allows us to perform a linear search. We scan the instructions linearly
6588   // and record each time that a new interval starts, by placing it in a set.
6589   // If we find this value in the multi-map then we remove it from the set.
6590   // The max register usage is the maximum size of the set.
6591   // We also search for instructions that are defined outside the loop, but are
6592   // used inside the loop. We need this number separately from the max-interval
6593   // usage number because when we unroll, loop-invariant values do not take
6594   // more register.
6595   LoopBlocksDFS DFS(TheLoop);
6596   DFS.perform(LI);
6597 
6598   RegisterUsage RU;
6599 
6600   // Each 'key' in the map opens a new interval. The values
6601   // of the map are the index of the 'last seen' usage of the
6602   // instruction that is the key.
6603   using IntervalMap = DenseMap<Instruction *, unsigned>;
6604 
6605   // Maps instruction to its index.
6606   SmallVector<Instruction *, 64> IdxToInstr;
6607   // Marks the end of each interval.
6608   IntervalMap EndPoint;
6609   // Saves the list of instruction indices that are used in the loop.
6610   SmallPtrSet<Instruction *, 8> Ends;
6611   // Saves the list of values that are used in the loop but are
6612   // defined outside the loop, such as arguments and constants.
6613   SmallPtrSet<Value *, 8> LoopInvariants;
6614 
6615   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6616     for (Instruction &I : BB->instructionsWithoutDebug()) {
6617       IdxToInstr.push_back(&I);
6618 
6619       // Save the end location of each USE.
6620       for (Value *U : I.operands()) {
6621         auto *Instr = dyn_cast<Instruction>(U);
6622 
6623         // Ignore non-instruction values such as arguments, constants, etc.
6624         if (!Instr)
6625           continue;
6626 
6627         // If this instruction is outside the loop then record it and continue.
6628         if (!TheLoop->contains(Instr)) {
6629           LoopInvariants.insert(Instr);
6630           continue;
6631         }
6632 
6633         // Overwrite previous end points.
6634         EndPoint[Instr] = IdxToInstr.size();
6635         Ends.insert(Instr);
6636       }
6637     }
6638   }
6639 
6640   // Saves the list of intervals that end with the index in 'key'.
6641   using InstrList = SmallVector<Instruction *, 2>;
6642   DenseMap<unsigned, InstrList> TransposeEnds;
6643 
6644   // Transpose the EndPoints to a list of values that end at each index.
6645   for (auto &Interval : EndPoint)
6646     TransposeEnds[Interval.second].push_back(Interval.first);
6647 
6648   SmallPtrSet<Instruction *, 8> OpenIntervals;
6649   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6650   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6651 
6652   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6653 
6654   // A lambda that gets the register usage for the given type and VF.
6655   const auto &TTICapture = TTI;
6656   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6657     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6658       return 0;
6659     InstructionCost::CostType RegUsage =
6660         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6661     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6662            "Nonsensical values for register usage.");
6663     return RegUsage;
6664   };
6665 
6666   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6667     Instruction *I = IdxToInstr[i];
6668 
6669     // Remove all of the instructions that end at this location.
6670     InstrList &List = TransposeEnds[i];
6671     for (Instruction *ToRemove : List)
6672       OpenIntervals.erase(ToRemove);
6673 
6674     // Ignore instructions that are never used within the loop.
6675     if (!Ends.count(I))
6676       continue;
6677 
6678     // Skip ignored values.
6679     if (ValuesToIgnore.count(I))
6680       continue;
6681 
6682     // For each VF find the maximum usage of registers.
6683     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6684       // Count the number of live intervals.
6685       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6686 
6687       if (VFs[j].isScalar()) {
6688         for (auto Inst : OpenIntervals) {
6689           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6690           if (RegUsage.find(ClassID) == RegUsage.end())
6691             RegUsage[ClassID] = 1;
6692           else
6693             RegUsage[ClassID] += 1;
6694         }
6695       } else {
6696         collectUniformsAndScalars(VFs[j]);
6697         for (auto Inst : OpenIntervals) {
6698           // Skip ignored values for VF > 1.
6699           if (VecValuesToIgnore.count(Inst))
6700             continue;
6701           if (isScalarAfterVectorization(Inst, VFs[j])) {
6702             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6703             if (RegUsage.find(ClassID) == RegUsage.end())
6704               RegUsage[ClassID] = 1;
6705             else
6706               RegUsage[ClassID] += 1;
6707           } else {
6708             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6709             if (RegUsage.find(ClassID) == RegUsage.end())
6710               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6711             else
6712               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6713           }
6714         }
6715       }
6716 
6717       for (auto& pair : RegUsage) {
6718         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6719           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6720         else
6721           MaxUsages[j][pair.first] = pair.second;
6722       }
6723     }
6724 
6725     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6726                       << OpenIntervals.size() << '\n');
6727 
6728     // Add the current instruction to the list of open intervals.
6729     OpenIntervals.insert(I);
6730   }
6731 
6732   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6733     SmallMapVector<unsigned, unsigned, 4> Invariant;
6734 
6735     for (auto Inst : LoopInvariants) {
6736       unsigned Usage =
6737           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6738       unsigned ClassID =
6739           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6740       if (Invariant.find(ClassID) == Invariant.end())
6741         Invariant[ClassID] = Usage;
6742       else
6743         Invariant[ClassID] += Usage;
6744     }
6745 
6746     LLVM_DEBUG({
6747       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6748       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6749              << " item\n";
6750       for (const auto &pair : MaxUsages[i]) {
6751         dbgs() << "LV(REG): RegisterClass: "
6752                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6753                << " registers\n";
6754       }
6755       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6756              << " item\n";
6757       for (const auto &pair : Invariant) {
6758         dbgs() << "LV(REG): RegisterClass: "
6759                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6760                << " registers\n";
6761       }
6762     });
6763 
6764     RU.LoopInvariantRegs = Invariant;
6765     RU.MaxLocalUsers = MaxUsages[i];
6766     RUs[i] = RU;
6767   }
6768 
6769   return RUs;
6770 }
6771 
6772 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6773   // TODO: Cost model for emulated masked load/store is completely
6774   // broken. This hack guides the cost model to use an artificially
6775   // high enough value to practically disable vectorization with such
6776   // operations, except where previously deployed legality hack allowed
6777   // using very low cost values. This is to avoid regressions coming simply
6778   // from moving "masked load/store" check from legality to cost model.
6779   // Masked Load/Gather emulation was previously never allowed.
6780   // Limited number of Masked Store/Scatter emulation was allowed.
6781   assert(isPredicatedInst(I) &&
6782          "Expecting a scalar emulated instruction");
6783   return isa<LoadInst>(I) ||
6784          (isa<StoreInst>(I) &&
6785           NumPredStores > NumberOfStoresToPredicate);
6786 }
6787 
6788 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6789   // If we aren't vectorizing the loop, or if we've already collected the
6790   // instructions to scalarize, there's nothing to do. Collection may already
6791   // have occurred if we have a user-selected VF and are now computing the
6792   // expected cost for interleaving.
6793   if (VF.isScalar() || VF.isZero() ||
6794       InstsToScalarize.find(VF) != InstsToScalarize.end())
6795     return;
6796 
6797   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6798   // not profitable to scalarize any instructions, the presence of VF in the
6799   // map will indicate that we've analyzed it already.
6800   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6801 
6802   // Find all the instructions that are scalar with predication in the loop and
6803   // determine if it would be better to not if-convert the blocks they are in.
6804   // If so, we also record the instructions to scalarize.
6805   for (BasicBlock *BB : TheLoop->blocks()) {
6806     if (!blockNeedsPredication(BB))
6807       continue;
6808     for (Instruction &I : *BB)
6809       if (isScalarWithPredication(&I)) {
6810         ScalarCostsTy ScalarCosts;
6811         // Do not apply discount if scalable, because that would lead to
6812         // invalid scalarization costs.
6813         // Do not apply discount logic if hacked cost is needed
6814         // for emulated masked memrefs.
6815         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6816             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6817           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6818         // Remember that BB will remain after vectorization.
6819         PredicatedBBsAfterVectorization.insert(BB);
6820       }
6821   }
6822 }
6823 
6824 int LoopVectorizationCostModel::computePredInstDiscount(
6825     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6826   assert(!isUniformAfterVectorization(PredInst, VF) &&
6827          "Instruction marked uniform-after-vectorization will be predicated");
6828 
6829   // Initialize the discount to zero, meaning that the scalar version and the
6830   // vector version cost the same.
6831   InstructionCost Discount = 0;
6832 
6833   // Holds instructions to analyze. The instructions we visit are mapped in
6834   // ScalarCosts. Those instructions are the ones that would be scalarized if
6835   // we find that the scalar version costs less.
6836   SmallVector<Instruction *, 8> Worklist;
6837 
6838   // Returns true if the given instruction can be scalarized.
6839   auto canBeScalarized = [&](Instruction *I) -> bool {
6840     // We only attempt to scalarize instructions forming a single-use chain
6841     // from the original predicated block that would otherwise be vectorized.
6842     // Although not strictly necessary, we give up on instructions we know will
6843     // already be scalar to avoid traversing chains that are unlikely to be
6844     // beneficial.
6845     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6846         isScalarAfterVectorization(I, VF))
6847       return false;
6848 
6849     // If the instruction is scalar with predication, it will be analyzed
6850     // separately. We ignore it within the context of PredInst.
6851     if (isScalarWithPredication(I))
6852       return false;
6853 
6854     // If any of the instruction's operands are uniform after vectorization,
6855     // the instruction cannot be scalarized. This prevents, for example, a
6856     // masked load from being scalarized.
6857     //
6858     // We assume we will only emit a value for lane zero of an instruction
6859     // marked uniform after vectorization, rather than VF identical values.
6860     // Thus, if we scalarize an instruction that uses a uniform, we would
6861     // create uses of values corresponding to the lanes we aren't emitting code
6862     // for. This behavior can be changed by allowing getScalarValue to clone
6863     // the lane zero values for uniforms rather than asserting.
6864     for (Use &U : I->operands())
6865       if (auto *J = dyn_cast<Instruction>(U.get()))
6866         if (isUniformAfterVectorization(J, VF))
6867           return false;
6868 
6869     // Otherwise, we can scalarize the instruction.
6870     return true;
6871   };
6872 
6873   // Compute the expected cost discount from scalarizing the entire expression
6874   // feeding the predicated instruction. We currently only consider expressions
6875   // that are single-use instruction chains.
6876   Worklist.push_back(PredInst);
6877   while (!Worklist.empty()) {
6878     Instruction *I = Worklist.pop_back_val();
6879 
6880     // If we've already analyzed the instruction, there's nothing to do.
6881     if (ScalarCosts.find(I) != ScalarCosts.end())
6882       continue;
6883 
6884     // Compute the cost of the vector instruction. Note that this cost already
6885     // includes the scalarization overhead of the predicated instruction.
6886     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6887 
6888     // Compute the cost of the scalarized instruction. This cost is the cost of
6889     // the instruction as if it wasn't if-converted and instead remained in the
6890     // predicated block. We will scale this cost by block probability after
6891     // computing the scalarization overhead.
6892     InstructionCost ScalarCost =
6893         VF.getFixedValue() *
6894         getInstructionCost(I, ElementCount::getFixed(1)).first;
6895 
6896     // Compute the scalarization overhead of needed insertelement instructions
6897     // and phi nodes.
6898     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6899       ScalarCost += TTI.getScalarizationOverhead(
6900           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6901           APInt::getAllOnesValue(VF.getFixedValue()), true, false);
6902       ScalarCost +=
6903           VF.getFixedValue() *
6904           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6905     }
6906 
6907     // Compute the scalarization overhead of needed extractelement
6908     // instructions. For each of the instruction's operands, if the operand can
6909     // be scalarized, add it to the worklist; otherwise, account for the
6910     // overhead.
6911     for (Use &U : I->operands())
6912       if (auto *J = dyn_cast<Instruction>(U.get())) {
6913         assert(VectorType::isValidElementType(J->getType()) &&
6914                "Instruction has non-scalar type");
6915         if (canBeScalarized(J))
6916           Worklist.push_back(J);
6917         else if (needsExtract(J, VF)) {
6918           ScalarCost += TTI.getScalarizationOverhead(
6919               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6920               APInt::getAllOnesValue(VF.getFixedValue()), false, true);
6921         }
6922       }
6923 
6924     // Scale the total scalar cost by block probability.
6925     ScalarCost /= getReciprocalPredBlockProb();
6926 
6927     // Compute the discount. A non-negative discount means the vector version
6928     // of the instruction costs more, and scalarizing would be beneficial.
6929     Discount += VectorCost - ScalarCost;
6930     ScalarCosts[I] = ScalarCost;
6931   }
6932 
6933   return *Discount.getValue();
6934 }
6935 
6936 LoopVectorizationCostModel::VectorizationCostTy
6937 LoopVectorizationCostModel::expectedCost(
6938     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6939   VectorizationCostTy Cost;
6940 
6941   // For each block.
6942   for (BasicBlock *BB : TheLoop->blocks()) {
6943     VectorizationCostTy BlockCost;
6944 
6945     // For each instruction in the old loop.
6946     for (Instruction &I : BB->instructionsWithoutDebug()) {
6947       // Skip ignored values.
6948       if (ValuesToIgnore.count(&I) ||
6949           (VF.isVector() && VecValuesToIgnore.count(&I)))
6950         continue;
6951 
6952       VectorizationCostTy C = getInstructionCost(&I, VF);
6953 
6954       // Check if we should override the cost.
6955       if (C.first.isValid() &&
6956           ForceTargetInstructionCost.getNumOccurrences() > 0)
6957         C.first = InstructionCost(ForceTargetInstructionCost);
6958 
6959       // Keep a list of instructions with invalid costs.
6960       if (Invalid && !C.first.isValid())
6961         Invalid->emplace_back(&I, VF);
6962 
6963       BlockCost.first += C.first;
6964       BlockCost.second |= C.second;
6965       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6966                         << " for VF " << VF << " For instruction: " << I
6967                         << '\n');
6968     }
6969 
6970     // If we are vectorizing a predicated block, it will have been
6971     // if-converted. This means that the block's instructions (aside from
6972     // stores and instructions that may divide by zero) will now be
6973     // unconditionally executed. For the scalar case, we may not always execute
6974     // the predicated block, if it is an if-else block. Thus, scale the block's
6975     // cost by the probability of executing it. blockNeedsPredication from
6976     // Legal is used so as to not include all blocks in tail folded loops.
6977     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6978       BlockCost.first /= getReciprocalPredBlockProb();
6979 
6980     Cost.first += BlockCost.first;
6981     Cost.second |= BlockCost.second;
6982   }
6983 
6984   return Cost;
6985 }
6986 
6987 /// Gets Address Access SCEV after verifying that the access pattern
6988 /// is loop invariant except the induction variable dependence.
6989 ///
6990 /// This SCEV can be sent to the Target in order to estimate the address
6991 /// calculation cost.
6992 static const SCEV *getAddressAccessSCEV(
6993               Value *Ptr,
6994               LoopVectorizationLegality *Legal,
6995               PredicatedScalarEvolution &PSE,
6996               const Loop *TheLoop) {
6997 
6998   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6999   if (!Gep)
7000     return nullptr;
7001 
7002   // We are looking for a gep with all loop invariant indices except for one
7003   // which should be an induction variable.
7004   auto SE = PSE.getSE();
7005   unsigned NumOperands = Gep->getNumOperands();
7006   for (unsigned i = 1; i < NumOperands; ++i) {
7007     Value *Opd = Gep->getOperand(i);
7008     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
7009         !Legal->isInductionVariable(Opd))
7010       return nullptr;
7011   }
7012 
7013   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
7014   return PSE.getSCEV(Ptr);
7015 }
7016 
7017 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
7018   return Legal->hasStride(I->getOperand(0)) ||
7019          Legal->hasStride(I->getOperand(1));
7020 }
7021 
7022 InstructionCost
7023 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
7024                                                         ElementCount VF) {
7025   assert(VF.isVector() &&
7026          "Scalarization cost of instruction implies vectorization.");
7027   if (VF.isScalable())
7028     return InstructionCost::getInvalid();
7029 
7030   Type *ValTy = getLoadStoreType(I);
7031   auto SE = PSE.getSE();
7032 
7033   unsigned AS = getLoadStoreAddressSpace(I);
7034   Value *Ptr = getLoadStorePointerOperand(I);
7035   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7036 
7037   // Figure out whether the access is strided and get the stride value
7038   // if it's known in compile time
7039   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
7040 
7041   // Get the cost of the scalar memory instruction and address computation.
7042   InstructionCost Cost =
7043       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7044 
7045   // Don't pass *I here, since it is scalar but will actually be part of a
7046   // vectorized loop where the user of it is a vectorized instruction.
7047   const Align Alignment = getLoadStoreAlignment(I);
7048   Cost += VF.getKnownMinValue() *
7049           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7050                               AS, TTI::TCK_RecipThroughput);
7051 
7052   // Get the overhead of the extractelement and insertelement instructions
7053   // we might create due to scalarization.
7054   Cost += getScalarizationOverhead(I, VF);
7055 
7056   // If we have a predicated load/store, it will need extra i1 extracts and
7057   // conditional branches, but may not be executed for each vector lane. Scale
7058   // the cost by the probability of executing the predicated block.
7059   if (isPredicatedInst(I)) {
7060     Cost /= getReciprocalPredBlockProb();
7061 
7062     // Add the cost of an i1 extract and a branch
7063     auto *Vec_i1Ty =
7064         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7065     Cost += TTI.getScalarizationOverhead(
7066         Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()),
7067         /*Insert=*/false, /*Extract=*/true);
7068     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7069 
7070     if (useEmulatedMaskMemRefHack(I))
7071       // Artificially setting to a high enough value to practically disable
7072       // vectorization with such operations.
7073       Cost = 3000000;
7074   }
7075 
7076   return Cost;
7077 }
7078 
7079 InstructionCost
7080 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7081                                                     ElementCount VF) {
7082   Type *ValTy = getLoadStoreType(I);
7083   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7084   Value *Ptr = getLoadStorePointerOperand(I);
7085   unsigned AS = getLoadStoreAddressSpace(I);
7086   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
7087   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7088 
7089   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7090          "Stride should be 1 or -1 for consecutive memory access");
7091   const Align Alignment = getLoadStoreAlignment(I);
7092   InstructionCost Cost = 0;
7093   if (Legal->isMaskRequired(I))
7094     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7095                                       CostKind);
7096   else
7097     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7098                                 CostKind, I);
7099 
7100   bool Reverse = ConsecutiveStride < 0;
7101   if (Reverse)
7102     Cost +=
7103         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7104   return Cost;
7105 }
7106 
7107 InstructionCost
7108 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7109                                                 ElementCount VF) {
7110   assert(Legal->isUniformMemOp(*I));
7111 
7112   Type *ValTy = getLoadStoreType(I);
7113   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7114   const Align Alignment = getLoadStoreAlignment(I);
7115   unsigned AS = getLoadStoreAddressSpace(I);
7116   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7117   if (isa<LoadInst>(I)) {
7118     return TTI.getAddressComputationCost(ValTy) +
7119            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7120                                CostKind) +
7121            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7122   }
7123   StoreInst *SI = cast<StoreInst>(I);
7124 
7125   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7126   return TTI.getAddressComputationCost(ValTy) +
7127          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7128                              CostKind) +
7129          (isLoopInvariantStoreValue
7130               ? 0
7131               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7132                                        VF.getKnownMinValue() - 1));
7133 }
7134 
7135 InstructionCost
7136 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7137                                                  ElementCount VF) {
7138   Type *ValTy = getLoadStoreType(I);
7139   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7140   const Align Alignment = getLoadStoreAlignment(I);
7141   const Value *Ptr = getLoadStorePointerOperand(I);
7142 
7143   return TTI.getAddressComputationCost(VectorTy) +
7144          TTI.getGatherScatterOpCost(
7145              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7146              TargetTransformInfo::TCK_RecipThroughput, I);
7147 }
7148 
7149 InstructionCost
7150 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7151                                                    ElementCount VF) {
7152   // TODO: Once we have support for interleaving with scalable vectors
7153   // we can calculate the cost properly here.
7154   if (VF.isScalable())
7155     return InstructionCost::getInvalid();
7156 
7157   Type *ValTy = getLoadStoreType(I);
7158   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7159   unsigned AS = getLoadStoreAddressSpace(I);
7160 
7161   auto Group = getInterleavedAccessGroup(I);
7162   assert(Group && "Fail to get an interleaved access group.");
7163 
7164   unsigned InterleaveFactor = Group->getFactor();
7165   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7166 
7167   // Holds the indices of existing members in the interleaved group.
7168   SmallVector<unsigned, 4> Indices;
7169   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
7170     if (Group->getMember(IF))
7171       Indices.push_back(IF);
7172 
7173   // Calculate the cost of the whole interleaved group.
7174   bool UseMaskForGaps =
7175       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
7176       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
7177   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7178       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7179       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7180 
7181   if (Group->isReverse()) {
7182     // TODO: Add support for reversed masked interleaved access.
7183     assert(!Legal->isMaskRequired(I) &&
7184            "Reverse masked interleaved access not supported.");
7185     Cost +=
7186         Group->getNumMembers() *
7187         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7188   }
7189   return Cost;
7190 }
7191 
7192 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7193     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7194   using namespace llvm::PatternMatch;
7195   // Early exit for no inloop reductions
7196   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7197     return None;
7198   auto *VectorTy = cast<VectorType>(Ty);
7199 
7200   // We are looking for a pattern of, and finding the minimal acceptable cost:
7201   //  reduce(mul(ext(A), ext(B))) or
7202   //  reduce(mul(A, B)) or
7203   //  reduce(ext(A)) or
7204   //  reduce(A).
7205   // The basic idea is that we walk down the tree to do that, finding the root
7206   // reduction instruction in InLoopReductionImmediateChains. From there we find
7207   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7208   // of the components. If the reduction cost is lower then we return it for the
7209   // reduction instruction and 0 for the other instructions in the pattern. If
7210   // it is not we return an invalid cost specifying the orignal cost method
7211   // should be used.
7212   Instruction *RetI = I;
7213   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7214     if (!RetI->hasOneUser())
7215       return None;
7216     RetI = RetI->user_back();
7217   }
7218   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7219       RetI->user_back()->getOpcode() == Instruction::Add) {
7220     if (!RetI->hasOneUser())
7221       return None;
7222     RetI = RetI->user_back();
7223   }
7224 
7225   // Test if the found instruction is a reduction, and if not return an invalid
7226   // cost specifying the parent to use the original cost modelling.
7227   if (!InLoopReductionImmediateChains.count(RetI))
7228     return None;
7229 
7230   // Find the reduction this chain is a part of and calculate the basic cost of
7231   // the reduction on its own.
7232   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7233   Instruction *ReductionPhi = LastChain;
7234   while (!isa<PHINode>(ReductionPhi))
7235     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7236 
7237   const RecurrenceDescriptor &RdxDesc =
7238       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7239 
7240   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7241       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7242 
7243   // If we're using ordered reductions then we can just return the base cost
7244   // here, since getArithmeticReductionCost calculates the full ordered
7245   // reduction cost when FP reassociation is not allowed.
7246   if (useOrderedReductions(RdxDesc))
7247     return BaseCost;
7248 
7249   // Get the operand that was not the reduction chain and match it to one of the
7250   // patterns, returning the better cost if it is found.
7251   Instruction *RedOp = RetI->getOperand(1) == LastChain
7252                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7253                            : dyn_cast<Instruction>(RetI->getOperand(1));
7254 
7255   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7256 
7257   Instruction *Op0, *Op1;
7258   if (RedOp &&
7259       match(RedOp,
7260             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7261       match(Op0, m_ZExtOrSExt(m_Value())) &&
7262       Op0->getOpcode() == Op1->getOpcode() &&
7263       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7264       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7265       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7266 
7267     // Matched reduce(ext(mul(ext(A), ext(B)))
7268     // Note that the extend opcodes need to all match, or if A==B they will have
7269     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7270     // which is equally fine.
7271     bool IsUnsigned = isa<ZExtInst>(Op0);
7272     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7273     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7274 
7275     InstructionCost ExtCost =
7276         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7277                              TTI::CastContextHint::None, CostKind, Op0);
7278     InstructionCost MulCost =
7279         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7280     InstructionCost Ext2Cost =
7281         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7282                              TTI::CastContextHint::None, CostKind, RedOp);
7283 
7284     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7285         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7286         CostKind);
7287 
7288     if (RedCost.isValid() &&
7289         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7290       return I == RetI ? RedCost : 0;
7291   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7292              !TheLoop->isLoopInvariant(RedOp)) {
7293     // Matched reduce(ext(A))
7294     bool IsUnsigned = isa<ZExtInst>(RedOp);
7295     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7296     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7297         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7298         CostKind);
7299 
7300     InstructionCost ExtCost =
7301         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7302                              TTI::CastContextHint::None, CostKind, RedOp);
7303     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7304       return I == RetI ? RedCost : 0;
7305   } else if (RedOp &&
7306              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7307     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7308         Op0->getOpcode() == Op1->getOpcode() &&
7309         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7310         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7311       bool IsUnsigned = isa<ZExtInst>(Op0);
7312       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7313       // Matched reduce(mul(ext, ext))
7314       InstructionCost ExtCost =
7315           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7316                                TTI::CastContextHint::None, CostKind, Op0);
7317       InstructionCost MulCost =
7318           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7319 
7320       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7321           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7322           CostKind);
7323 
7324       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7325         return I == RetI ? RedCost : 0;
7326     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7327       // Matched reduce(mul())
7328       InstructionCost MulCost =
7329           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7330 
7331       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7332           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7333           CostKind);
7334 
7335       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7336         return I == RetI ? RedCost : 0;
7337     }
7338   }
7339 
7340   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7341 }
7342 
7343 InstructionCost
7344 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7345                                                      ElementCount VF) {
7346   // Calculate scalar cost only. Vectorization cost should be ready at this
7347   // moment.
7348   if (VF.isScalar()) {
7349     Type *ValTy = getLoadStoreType(I);
7350     const Align Alignment = getLoadStoreAlignment(I);
7351     unsigned AS = getLoadStoreAddressSpace(I);
7352 
7353     return TTI.getAddressComputationCost(ValTy) +
7354            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7355                                TTI::TCK_RecipThroughput, I);
7356   }
7357   return getWideningCost(I, VF);
7358 }
7359 
7360 LoopVectorizationCostModel::VectorizationCostTy
7361 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7362                                                ElementCount VF) {
7363   // If we know that this instruction will remain uniform, check the cost of
7364   // the scalar version.
7365   if (isUniformAfterVectorization(I, VF))
7366     VF = ElementCount::getFixed(1);
7367 
7368   if (VF.isVector() && isProfitableToScalarize(I, VF))
7369     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7370 
7371   // Forced scalars do not have any scalarization overhead.
7372   auto ForcedScalar = ForcedScalars.find(VF);
7373   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7374     auto InstSet = ForcedScalar->second;
7375     if (InstSet.count(I))
7376       return VectorizationCostTy(
7377           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7378            VF.getKnownMinValue()),
7379           false);
7380   }
7381 
7382   Type *VectorTy;
7383   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7384 
7385   bool TypeNotScalarized =
7386       VF.isVector() && VectorTy->isVectorTy() &&
7387       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7388   return VectorizationCostTy(C, TypeNotScalarized);
7389 }
7390 
7391 InstructionCost
7392 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7393                                                      ElementCount VF) const {
7394 
7395   // There is no mechanism yet to create a scalable scalarization loop,
7396   // so this is currently Invalid.
7397   if (VF.isScalable())
7398     return InstructionCost::getInvalid();
7399 
7400   if (VF.isScalar())
7401     return 0;
7402 
7403   InstructionCost Cost = 0;
7404   Type *RetTy = ToVectorTy(I->getType(), VF);
7405   if (!RetTy->isVoidTy() &&
7406       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7407     Cost += TTI.getScalarizationOverhead(
7408         cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()),
7409         true, false);
7410 
7411   // Some targets keep addresses scalar.
7412   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7413     return Cost;
7414 
7415   // Some targets support efficient element stores.
7416   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7417     return Cost;
7418 
7419   // Collect operands to consider.
7420   CallInst *CI = dyn_cast<CallInst>(I);
7421   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7422 
7423   // Skip operands that do not require extraction/scalarization and do not incur
7424   // any overhead.
7425   SmallVector<Type *> Tys;
7426   for (auto *V : filterExtractingOperands(Ops, VF))
7427     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7428   return Cost + TTI.getOperandsScalarizationOverhead(
7429                     filterExtractingOperands(Ops, VF), Tys);
7430 }
7431 
7432 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7433   if (VF.isScalar())
7434     return;
7435   NumPredStores = 0;
7436   for (BasicBlock *BB : TheLoop->blocks()) {
7437     // For each instruction in the old loop.
7438     for (Instruction &I : *BB) {
7439       Value *Ptr =  getLoadStorePointerOperand(&I);
7440       if (!Ptr)
7441         continue;
7442 
7443       // TODO: We should generate better code and update the cost model for
7444       // predicated uniform stores. Today they are treated as any other
7445       // predicated store (see added test cases in
7446       // invariant-store-vectorization.ll).
7447       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7448         NumPredStores++;
7449 
7450       if (Legal->isUniformMemOp(I)) {
7451         // TODO: Avoid replicating loads and stores instead of
7452         // relying on instcombine to remove them.
7453         // Load: Scalar load + broadcast
7454         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7455         InstructionCost Cost;
7456         if (isa<StoreInst>(&I) && VF.isScalable() &&
7457             isLegalGatherOrScatter(&I)) {
7458           Cost = getGatherScatterCost(&I, VF);
7459           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7460         } else {
7461           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7462                  "Cannot yet scalarize uniform stores");
7463           Cost = getUniformMemOpCost(&I, VF);
7464           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7465         }
7466         continue;
7467       }
7468 
7469       // We assume that widening is the best solution when possible.
7470       if (memoryInstructionCanBeWidened(&I, VF)) {
7471         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7472         int ConsecutiveStride =
7473                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7474         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7475                "Expected consecutive stride.");
7476         InstWidening Decision =
7477             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7478         setWideningDecision(&I, VF, Decision, Cost);
7479         continue;
7480       }
7481 
7482       // Choose between Interleaving, Gather/Scatter or Scalarization.
7483       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7484       unsigned NumAccesses = 1;
7485       if (isAccessInterleaved(&I)) {
7486         auto Group = getInterleavedAccessGroup(&I);
7487         assert(Group && "Fail to get an interleaved access group.");
7488 
7489         // Make one decision for the whole group.
7490         if (getWideningDecision(&I, VF) != CM_Unknown)
7491           continue;
7492 
7493         NumAccesses = Group->getNumMembers();
7494         if (interleavedAccessCanBeWidened(&I, VF))
7495           InterleaveCost = getInterleaveGroupCost(&I, VF);
7496       }
7497 
7498       InstructionCost GatherScatterCost =
7499           isLegalGatherOrScatter(&I)
7500               ? getGatherScatterCost(&I, VF) * NumAccesses
7501               : InstructionCost::getInvalid();
7502 
7503       InstructionCost ScalarizationCost =
7504           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7505 
7506       // Choose better solution for the current VF,
7507       // write down this decision and use it during vectorization.
7508       InstructionCost Cost;
7509       InstWidening Decision;
7510       if (InterleaveCost <= GatherScatterCost &&
7511           InterleaveCost < ScalarizationCost) {
7512         Decision = CM_Interleave;
7513         Cost = InterleaveCost;
7514       } else if (GatherScatterCost < ScalarizationCost) {
7515         Decision = CM_GatherScatter;
7516         Cost = GatherScatterCost;
7517       } else {
7518         Decision = CM_Scalarize;
7519         Cost = ScalarizationCost;
7520       }
7521       // If the instructions belongs to an interleave group, the whole group
7522       // receives the same decision. The whole group receives the cost, but
7523       // the cost will actually be assigned to one instruction.
7524       if (auto Group = getInterleavedAccessGroup(&I))
7525         setWideningDecision(Group, VF, Decision, Cost);
7526       else
7527         setWideningDecision(&I, VF, Decision, Cost);
7528     }
7529   }
7530 
7531   // Make sure that any load of address and any other address computation
7532   // remains scalar unless there is gather/scatter support. This avoids
7533   // inevitable extracts into address registers, and also has the benefit of
7534   // activating LSR more, since that pass can't optimize vectorized
7535   // addresses.
7536   if (TTI.prefersVectorizedAddressing())
7537     return;
7538 
7539   // Start with all scalar pointer uses.
7540   SmallPtrSet<Instruction *, 8> AddrDefs;
7541   for (BasicBlock *BB : TheLoop->blocks())
7542     for (Instruction &I : *BB) {
7543       Instruction *PtrDef =
7544         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7545       if (PtrDef && TheLoop->contains(PtrDef) &&
7546           getWideningDecision(&I, VF) != CM_GatherScatter)
7547         AddrDefs.insert(PtrDef);
7548     }
7549 
7550   // Add all instructions used to generate the addresses.
7551   SmallVector<Instruction *, 4> Worklist;
7552   append_range(Worklist, AddrDefs);
7553   while (!Worklist.empty()) {
7554     Instruction *I = Worklist.pop_back_val();
7555     for (auto &Op : I->operands())
7556       if (auto *InstOp = dyn_cast<Instruction>(Op))
7557         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7558             AddrDefs.insert(InstOp).second)
7559           Worklist.push_back(InstOp);
7560   }
7561 
7562   for (auto *I : AddrDefs) {
7563     if (isa<LoadInst>(I)) {
7564       // Setting the desired widening decision should ideally be handled in
7565       // by cost functions, but since this involves the task of finding out
7566       // if the loaded register is involved in an address computation, it is
7567       // instead changed here when we know this is the case.
7568       InstWidening Decision = getWideningDecision(I, VF);
7569       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7570         // Scalarize a widened load of address.
7571         setWideningDecision(
7572             I, VF, CM_Scalarize,
7573             (VF.getKnownMinValue() *
7574              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7575       else if (auto Group = getInterleavedAccessGroup(I)) {
7576         // Scalarize an interleave group of address loads.
7577         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7578           if (Instruction *Member = Group->getMember(I))
7579             setWideningDecision(
7580                 Member, VF, CM_Scalarize,
7581                 (VF.getKnownMinValue() *
7582                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7583         }
7584       }
7585     } else
7586       // Make sure I gets scalarized and a cost estimate without
7587       // scalarization overhead.
7588       ForcedScalars[VF].insert(I);
7589   }
7590 }
7591 
7592 InstructionCost
7593 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7594                                                Type *&VectorTy) {
7595   Type *RetTy = I->getType();
7596   if (canTruncateToMinimalBitwidth(I, VF))
7597     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7598   auto SE = PSE.getSE();
7599   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7600 
7601   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7602                                                 ElementCount VF) -> bool {
7603     if (VF.isScalar())
7604       return true;
7605 
7606     auto Scalarized = InstsToScalarize.find(VF);
7607     assert(Scalarized != InstsToScalarize.end() &&
7608            "VF not yet analyzed for scalarization profitability");
7609     return !Scalarized->second.count(I) &&
7610            llvm::all_of(I->users(), [&](User *U) {
7611              auto *UI = cast<Instruction>(U);
7612              return !Scalarized->second.count(UI);
7613            });
7614   };
7615   (void) hasSingleCopyAfterVectorization;
7616 
7617   if (isScalarAfterVectorization(I, VF)) {
7618     // With the exception of GEPs and PHIs, after scalarization there should
7619     // only be one copy of the instruction generated in the loop. This is
7620     // because the VF is either 1, or any instructions that need scalarizing
7621     // have already been dealt with by the the time we get here. As a result,
7622     // it means we don't have to multiply the instruction cost by VF.
7623     assert(I->getOpcode() == Instruction::GetElementPtr ||
7624            I->getOpcode() == Instruction::PHI ||
7625            (I->getOpcode() == Instruction::BitCast &&
7626             I->getType()->isPointerTy()) ||
7627            hasSingleCopyAfterVectorization(I, VF));
7628     VectorTy = RetTy;
7629   } else
7630     VectorTy = ToVectorTy(RetTy, VF);
7631 
7632   // TODO: We need to estimate the cost of intrinsic calls.
7633   switch (I->getOpcode()) {
7634   case Instruction::GetElementPtr:
7635     // We mark this instruction as zero-cost because the cost of GEPs in
7636     // vectorized code depends on whether the corresponding memory instruction
7637     // is scalarized or not. Therefore, we handle GEPs with the memory
7638     // instruction cost.
7639     return 0;
7640   case Instruction::Br: {
7641     // In cases of scalarized and predicated instructions, there will be VF
7642     // predicated blocks in the vectorized loop. Each branch around these
7643     // blocks requires also an extract of its vector compare i1 element.
7644     bool ScalarPredicatedBB = false;
7645     BranchInst *BI = cast<BranchInst>(I);
7646     if (VF.isVector() && BI->isConditional() &&
7647         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7648          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7649       ScalarPredicatedBB = true;
7650 
7651     if (ScalarPredicatedBB) {
7652       // Not possible to scalarize scalable vector with predicated instructions.
7653       if (VF.isScalable())
7654         return InstructionCost::getInvalid();
7655       // Return cost for branches around scalarized and predicated blocks.
7656       auto *Vec_i1Ty =
7657           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7658       return (
7659           TTI.getScalarizationOverhead(
7660               Vec_i1Ty, APInt::getAllOnesValue(VF.getFixedValue()), false,
7661               true) +
7662           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7663     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7664       // The back-edge branch will remain, as will all scalar branches.
7665       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7666     else
7667       // This branch will be eliminated by if-conversion.
7668       return 0;
7669     // Note: We currently assume zero cost for an unconditional branch inside
7670     // a predicated block since it will become a fall-through, although we
7671     // may decide in the future to call TTI for all branches.
7672   }
7673   case Instruction::PHI: {
7674     auto *Phi = cast<PHINode>(I);
7675 
7676     // First-order recurrences are replaced by vector shuffles inside the loop.
7677     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7678     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7679       return TTI.getShuffleCost(
7680           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7681           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7682 
7683     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7684     // converted into select instructions. We require N - 1 selects per phi
7685     // node, where N is the number of incoming values.
7686     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7687       return (Phi->getNumIncomingValues() - 1) *
7688              TTI.getCmpSelInstrCost(
7689                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7690                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7691                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7692 
7693     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7694   }
7695   case Instruction::UDiv:
7696   case Instruction::SDiv:
7697   case Instruction::URem:
7698   case Instruction::SRem:
7699     // If we have a predicated instruction, it may not be executed for each
7700     // vector lane. Get the scalarization cost and scale this amount by the
7701     // probability of executing the predicated block. If the instruction is not
7702     // predicated, we fall through to the next case.
7703     if (VF.isVector() && isScalarWithPredication(I)) {
7704       InstructionCost Cost = 0;
7705 
7706       // These instructions have a non-void type, so account for the phi nodes
7707       // that we will create. This cost is likely to be zero. The phi node
7708       // cost, if any, should be scaled by the block probability because it
7709       // models a copy at the end of each predicated block.
7710       Cost += VF.getKnownMinValue() *
7711               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7712 
7713       // The cost of the non-predicated instruction.
7714       Cost += VF.getKnownMinValue() *
7715               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7716 
7717       // The cost of insertelement and extractelement instructions needed for
7718       // scalarization.
7719       Cost += getScalarizationOverhead(I, VF);
7720 
7721       // Scale the cost by the probability of executing the predicated blocks.
7722       // This assumes the predicated block for each vector lane is equally
7723       // likely.
7724       return Cost / getReciprocalPredBlockProb();
7725     }
7726     LLVM_FALLTHROUGH;
7727   case Instruction::Add:
7728   case Instruction::FAdd:
7729   case Instruction::Sub:
7730   case Instruction::FSub:
7731   case Instruction::Mul:
7732   case Instruction::FMul:
7733   case Instruction::FDiv:
7734   case Instruction::FRem:
7735   case Instruction::Shl:
7736   case Instruction::LShr:
7737   case Instruction::AShr:
7738   case Instruction::And:
7739   case Instruction::Or:
7740   case Instruction::Xor: {
7741     // Since we will replace the stride by 1 the multiplication should go away.
7742     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7743       return 0;
7744 
7745     // Detect reduction patterns
7746     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7747       return *RedCost;
7748 
7749     // Certain instructions can be cheaper to vectorize if they have a constant
7750     // second vector operand. One example of this are shifts on x86.
7751     Value *Op2 = I->getOperand(1);
7752     TargetTransformInfo::OperandValueProperties Op2VP;
7753     TargetTransformInfo::OperandValueKind Op2VK =
7754         TTI.getOperandInfo(Op2, Op2VP);
7755     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7756       Op2VK = TargetTransformInfo::OK_UniformValue;
7757 
7758     SmallVector<const Value *, 4> Operands(I->operand_values());
7759     return TTI.getArithmeticInstrCost(
7760         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7761         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7762   }
7763   case Instruction::FNeg: {
7764     return TTI.getArithmeticInstrCost(
7765         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7766         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7767         TargetTransformInfo::OP_None, I->getOperand(0), I);
7768   }
7769   case Instruction::Select: {
7770     SelectInst *SI = cast<SelectInst>(I);
7771     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7772     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7773 
7774     const Value *Op0, *Op1;
7775     using namespace llvm::PatternMatch;
7776     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7777                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7778       // select x, y, false --> x & y
7779       // select x, true, y --> x | y
7780       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7781       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7782       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7783       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7784       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7785               Op1->getType()->getScalarSizeInBits() == 1);
7786 
7787       SmallVector<const Value *, 2> Operands{Op0, Op1};
7788       return TTI.getArithmeticInstrCost(
7789           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7790           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7791     }
7792 
7793     Type *CondTy = SI->getCondition()->getType();
7794     if (!ScalarCond)
7795       CondTy = VectorType::get(CondTy, VF);
7796     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7797                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7798   }
7799   case Instruction::ICmp:
7800   case Instruction::FCmp: {
7801     Type *ValTy = I->getOperand(0)->getType();
7802     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7803     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7804       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7805     VectorTy = ToVectorTy(ValTy, VF);
7806     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7807                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7808   }
7809   case Instruction::Store:
7810   case Instruction::Load: {
7811     ElementCount Width = VF;
7812     if (Width.isVector()) {
7813       InstWidening Decision = getWideningDecision(I, Width);
7814       assert(Decision != CM_Unknown &&
7815              "CM decision should be taken at this point");
7816       if (Decision == CM_Scalarize)
7817         Width = ElementCount::getFixed(1);
7818     }
7819     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7820     return getMemoryInstructionCost(I, VF);
7821   }
7822   case Instruction::BitCast:
7823     if (I->getType()->isPointerTy())
7824       return 0;
7825     LLVM_FALLTHROUGH;
7826   case Instruction::ZExt:
7827   case Instruction::SExt:
7828   case Instruction::FPToUI:
7829   case Instruction::FPToSI:
7830   case Instruction::FPExt:
7831   case Instruction::PtrToInt:
7832   case Instruction::IntToPtr:
7833   case Instruction::SIToFP:
7834   case Instruction::UIToFP:
7835   case Instruction::Trunc:
7836   case Instruction::FPTrunc: {
7837     // Computes the CastContextHint from a Load/Store instruction.
7838     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7839       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7840              "Expected a load or a store!");
7841 
7842       if (VF.isScalar() || !TheLoop->contains(I))
7843         return TTI::CastContextHint::Normal;
7844 
7845       switch (getWideningDecision(I, VF)) {
7846       case LoopVectorizationCostModel::CM_GatherScatter:
7847         return TTI::CastContextHint::GatherScatter;
7848       case LoopVectorizationCostModel::CM_Interleave:
7849         return TTI::CastContextHint::Interleave;
7850       case LoopVectorizationCostModel::CM_Scalarize:
7851       case LoopVectorizationCostModel::CM_Widen:
7852         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7853                                         : TTI::CastContextHint::Normal;
7854       case LoopVectorizationCostModel::CM_Widen_Reverse:
7855         return TTI::CastContextHint::Reversed;
7856       case LoopVectorizationCostModel::CM_Unknown:
7857         llvm_unreachable("Instr did not go through cost modelling?");
7858       }
7859 
7860       llvm_unreachable("Unhandled case!");
7861     };
7862 
7863     unsigned Opcode = I->getOpcode();
7864     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7865     // For Trunc, the context is the only user, which must be a StoreInst.
7866     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7867       if (I->hasOneUse())
7868         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7869           CCH = ComputeCCH(Store);
7870     }
7871     // For Z/Sext, the context is the operand, which must be a LoadInst.
7872     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7873              Opcode == Instruction::FPExt) {
7874       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7875         CCH = ComputeCCH(Load);
7876     }
7877 
7878     // We optimize the truncation of induction variables having constant
7879     // integer steps. The cost of these truncations is the same as the scalar
7880     // operation.
7881     if (isOptimizableIVTruncate(I, VF)) {
7882       auto *Trunc = cast<TruncInst>(I);
7883       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7884                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7885     }
7886 
7887     // Detect reduction patterns
7888     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7889       return *RedCost;
7890 
7891     Type *SrcScalarTy = I->getOperand(0)->getType();
7892     Type *SrcVecTy =
7893         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7894     if (canTruncateToMinimalBitwidth(I, VF)) {
7895       // This cast is going to be shrunk. This may remove the cast or it might
7896       // turn it into slightly different cast. For example, if MinBW == 16,
7897       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7898       //
7899       // Calculate the modified src and dest types.
7900       Type *MinVecTy = VectorTy;
7901       if (Opcode == Instruction::Trunc) {
7902         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7903         VectorTy =
7904             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7905       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7906         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7907         VectorTy =
7908             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7909       }
7910     }
7911 
7912     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7913   }
7914   case Instruction::Call: {
7915     bool NeedToScalarize;
7916     CallInst *CI = cast<CallInst>(I);
7917     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7918     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7919       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7920       return std::min(CallCost, IntrinsicCost);
7921     }
7922     return CallCost;
7923   }
7924   case Instruction::ExtractValue:
7925     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7926   case Instruction::Alloca:
7927     // We cannot easily widen alloca to a scalable alloca, as
7928     // the result would need to be a vector of pointers.
7929     if (VF.isScalable())
7930       return InstructionCost::getInvalid();
7931     LLVM_FALLTHROUGH;
7932   default:
7933     // This opcode is unknown. Assume that it is the same as 'mul'.
7934     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7935   } // end of switch.
7936 }
7937 
7938 char LoopVectorize::ID = 0;
7939 
7940 static const char lv_name[] = "Loop Vectorization";
7941 
7942 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7943 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7944 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7945 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7946 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7947 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7948 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7949 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7950 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7951 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7952 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7953 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7954 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7955 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7956 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7957 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7958 
7959 namespace llvm {
7960 
7961 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7962 
7963 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7964                               bool VectorizeOnlyWhenForced) {
7965   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7966 }
7967 
7968 } // end namespace llvm
7969 
7970 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7971   // Check if the pointer operand of a load or store instruction is
7972   // consecutive.
7973   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7974     return Legal->isConsecutivePtr(Ptr);
7975   return false;
7976 }
7977 
7978 void LoopVectorizationCostModel::collectValuesToIgnore() {
7979   // Ignore ephemeral values.
7980   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7981 
7982   // Ignore type-promoting instructions we identified during reduction
7983   // detection.
7984   for (auto &Reduction : Legal->getReductionVars()) {
7985     RecurrenceDescriptor &RedDes = Reduction.second;
7986     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7987     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7988   }
7989   // Ignore type-casting instructions we identified during induction
7990   // detection.
7991   for (auto &Induction : Legal->getInductionVars()) {
7992     InductionDescriptor &IndDes = Induction.second;
7993     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7994     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7995   }
7996 }
7997 
7998 void LoopVectorizationCostModel::collectInLoopReductions() {
7999   for (auto &Reduction : Legal->getReductionVars()) {
8000     PHINode *Phi = Reduction.first;
8001     RecurrenceDescriptor &RdxDesc = Reduction.second;
8002 
8003     // We don't collect reductions that are type promoted (yet).
8004     if (RdxDesc.getRecurrenceType() != Phi->getType())
8005       continue;
8006 
8007     // If the target would prefer this reduction to happen "in-loop", then we
8008     // want to record it as such.
8009     unsigned Opcode = RdxDesc.getOpcode();
8010     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
8011         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
8012                                    TargetTransformInfo::ReductionFlags()))
8013       continue;
8014 
8015     // Check that we can correctly put the reductions into the loop, by
8016     // finding the chain of operations that leads from the phi to the loop
8017     // exit value.
8018     SmallVector<Instruction *, 4> ReductionOperations =
8019         RdxDesc.getReductionOpChain(Phi, TheLoop);
8020     bool InLoop = !ReductionOperations.empty();
8021     if (InLoop) {
8022       InLoopReductionChains[Phi] = ReductionOperations;
8023       // Add the elements to InLoopReductionImmediateChains for cost modelling.
8024       Instruction *LastChain = Phi;
8025       for (auto *I : ReductionOperations) {
8026         InLoopReductionImmediateChains[I] = LastChain;
8027         LastChain = I;
8028       }
8029     }
8030     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
8031                       << " reduction for phi: " << *Phi << "\n");
8032   }
8033 }
8034 
8035 // TODO: we could return a pair of values that specify the max VF and
8036 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
8037 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
8038 // doesn't have a cost model that can choose which plan to execute if
8039 // more than one is generated.
8040 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
8041                                  LoopVectorizationCostModel &CM) {
8042   unsigned WidestType;
8043   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
8044   return WidestVectorRegBits / WidestType;
8045 }
8046 
8047 VectorizationFactor
8048 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
8049   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8050   ElementCount VF = UserVF;
8051   // Outer loop handling: They may require CFG and instruction level
8052   // transformations before even evaluating whether vectorization is profitable.
8053   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8054   // the vectorization pipeline.
8055   if (!OrigLoop->isInnermost()) {
8056     // If the user doesn't provide a vectorization factor, determine a
8057     // reasonable one.
8058     if (UserVF.isZero()) {
8059       VF = ElementCount::getFixed(determineVPlanVF(
8060           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8061               .getFixedSize(),
8062           CM));
8063       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8064 
8065       // Make sure we have a VF > 1 for stress testing.
8066       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8067         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8068                           << "overriding computed VF.\n");
8069         VF = ElementCount::getFixed(4);
8070       }
8071     }
8072     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8073     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8074            "VF needs to be a power of two");
8075     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8076                       << "VF " << VF << " to build VPlans.\n");
8077     buildVPlans(VF, VF);
8078 
8079     // For VPlan build stress testing, we bail out after VPlan construction.
8080     if (VPlanBuildStressTest)
8081       return VectorizationFactor::Disabled();
8082 
8083     return {VF, 0 /*Cost*/};
8084   }
8085 
8086   LLVM_DEBUG(
8087       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8088                 "VPlan-native path.\n");
8089   return VectorizationFactor::Disabled();
8090 }
8091 
8092 Optional<VectorizationFactor>
8093 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8094   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8095   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8096   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8097     return None;
8098 
8099   // Invalidate interleave groups if all blocks of loop will be predicated.
8100   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8101       !useMaskedInterleavedAccesses(*TTI)) {
8102     LLVM_DEBUG(
8103         dbgs()
8104         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8105            "which requires masked-interleaved support.\n");
8106     if (CM.InterleaveInfo.invalidateGroups())
8107       // Invalidating interleave groups also requires invalidating all decisions
8108       // based on them, which includes widening decisions and uniform and scalar
8109       // values.
8110       CM.invalidateCostModelingDecisions();
8111   }
8112 
8113   ElementCount MaxUserVF =
8114       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8115   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8116   if (!UserVF.isZero() && UserVFIsLegal) {
8117     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8118            "VF needs to be a power of two");
8119     // Collect the instructions (and their associated costs) that will be more
8120     // profitable to scalarize.
8121     if (CM.selectUserVectorizationFactor(UserVF)) {
8122       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8123       CM.collectInLoopReductions();
8124       buildVPlansWithVPRecipes(UserVF, UserVF);
8125       LLVM_DEBUG(printPlans(dbgs()));
8126       return {{UserVF, 0}};
8127     } else
8128       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8129                               "InvalidCost", ORE, OrigLoop);
8130   }
8131 
8132   // Populate the set of Vectorization Factor Candidates.
8133   ElementCountSet VFCandidates;
8134   for (auto VF = ElementCount::getFixed(1);
8135        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8136     VFCandidates.insert(VF);
8137   for (auto VF = ElementCount::getScalable(1);
8138        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8139     VFCandidates.insert(VF);
8140 
8141   for (const auto &VF : VFCandidates) {
8142     // Collect Uniform and Scalar instructions after vectorization with VF.
8143     CM.collectUniformsAndScalars(VF);
8144 
8145     // Collect the instructions (and their associated costs) that will be more
8146     // profitable to scalarize.
8147     if (VF.isVector())
8148       CM.collectInstsToScalarize(VF);
8149   }
8150 
8151   CM.collectInLoopReductions();
8152   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8153   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8154 
8155   LLVM_DEBUG(printPlans(dbgs()));
8156   if (!MaxFactors.hasVector())
8157     return VectorizationFactor::Disabled();
8158 
8159   // Select the optimal vectorization factor.
8160   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8161 
8162   // Check if it is profitable to vectorize with runtime checks.
8163   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8164   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8165     bool PragmaThresholdReached =
8166         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8167     bool ThresholdReached =
8168         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8169     if ((ThresholdReached && !Hints.allowReordering()) ||
8170         PragmaThresholdReached) {
8171       ORE->emit([&]() {
8172         return OptimizationRemarkAnalysisAliasing(
8173                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8174                    OrigLoop->getHeader())
8175                << "loop not vectorized: cannot prove it is safe to reorder "
8176                   "memory operations";
8177       });
8178       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8179       Hints.emitRemarkWithHints();
8180       return VectorizationFactor::Disabled();
8181     }
8182   }
8183   return SelectedVF;
8184 }
8185 
8186 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
8187   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
8188                     << '\n');
8189   BestVF = VF;
8190   BestUF = UF;
8191 
8192   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
8193     return !Plan->hasVF(VF);
8194   });
8195   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
8196 }
8197 
8198 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
8199                                            DominatorTree *DT) {
8200   // Perform the actual loop transformation.
8201 
8202   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8203   assert(BestVF.hasValue() && "Vectorization Factor is missing");
8204   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
8205 
8206   VPTransformState State{
8207       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8208   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8209   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8210   State.CanonicalIV = ILV.Induction;
8211 
8212   ILV.printDebugTracesAtStart();
8213 
8214   //===------------------------------------------------===//
8215   //
8216   // Notice: any optimization or new instruction that go
8217   // into the code below should also be implemented in
8218   // the cost-model.
8219   //
8220   //===------------------------------------------------===//
8221 
8222   // 2. Copy and widen instructions from the old loop into the new loop.
8223   VPlans.front()->execute(&State);
8224 
8225   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8226   //    predication, updating analyses.
8227   ILV.fixVectorizedLoop(State);
8228 
8229   ILV.printDebugTracesAtEnd();
8230 }
8231 
8232 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8233 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8234   for (const auto &Plan : VPlans)
8235     if (PrintVPlansInDotFormat)
8236       Plan->printDOT(O);
8237     else
8238       Plan->print(O);
8239 }
8240 #endif
8241 
8242 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8243     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8244 
8245   // We create new control-flow for the vectorized loop, so the original exit
8246   // conditions will be dead after vectorization if it's only used by the
8247   // terminator
8248   SmallVector<BasicBlock*> ExitingBlocks;
8249   OrigLoop->getExitingBlocks(ExitingBlocks);
8250   for (auto *BB : ExitingBlocks) {
8251     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8252     if (!Cmp || !Cmp->hasOneUse())
8253       continue;
8254 
8255     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8256     if (!DeadInstructions.insert(Cmp).second)
8257       continue;
8258 
8259     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8260     // TODO: can recurse through operands in general
8261     for (Value *Op : Cmp->operands()) {
8262       if (isa<TruncInst>(Op) && Op->hasOneUse())
8263           DeadInstructions.insert(cast<Instruction>(Op));
8264     }
8265   }
8266 
8267   // We create new "steps" for induction variable updates to which the original
8268   // induction variables map. An original update instruction will be dead if
8269   // all its users except the induction variable are dead.
8270   auto *Latch = OrigLoop->getLoopLatch();
8271   for (auto &Induction : Legal->getInductionVars()) {
8272     PHINode *Ind = Induction.first;
8273     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8274 
8275     // If the tail is to be folded by masking, the primary induction variable,
8276     // if exists, isn't dead: it will be used for masking. Don't kill it.
8277     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8278       continue;
8279 
8280     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8281           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8282         }))
8283       DeadInstructions.insert(IndUpdate);
8284 
8285     // We record as "Dead" also the type-casting instructions we had identified
8286     // during induction analysis. We don't need any handling for them in the
8287     // vectorized loop because we have proven that, under a proper runtime
8288     // test guarding the vectorized loop, the value of the phi, and the casted
8289     // value of the phi, are the same. The last instruction in this casting chain
8290     // will get its scalar/vector/widened def from the scalar/vector/widened def
8291     // of the respective phi node. Any other casts in the induction def-use chain
8292     // have no other uses outside the phi update chain, and will be ignored.
8293     InductionDescriptor &IndDes = Induction.second;
8294     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8295     DeadInstructions.insert(Casts.begin(), Casts.end());
8296   }
8297 }
8298 
8299 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8300 
8301 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8302 
8303 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8304                                         Instruction::BinaryOps BinOp) {
8305   // When unrolling and the VF is 1, we only need to add a simple scalar.
8306   Type *Ty = Val->getType();
8307   assert(!Ty->isVectorTy() && "Val must be a scalar");
8308 
8309   if (Ty->isFloatingPointTy()) {
8310     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8311 
8312     // Floating-point operations inherit FMF via the builder's flags.
8313     Value *MulOp = Builder.CreateFMul(C, Step);
8314     return Builder.CreateBinOp(BinOp, Val, MulOp);
8315   }
8316   Constant *C = ConstantInt::get(Ty, StartIdx);
8317   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8318 }
8319 
8320 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8321   SmallVector<Metadata *, 4> MDs;
8322   // Reserve first location for self reference to the LoopID metadata node.
8323   MDs.push_back(nullptr);
8324   bool IsUnrollMetadata = false;
8325   MDNode *LoopID = L->getLoopID();
8326   if (LoopID) {
8327     // First find existing loop unrolling disable metadata.
8328     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8329       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8330       if (MD) {
8331         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8332         IsUnrollMetadata =
8333             S && S->getString().startswith("llvm.loop.unroll.disable");
8334       }
8335       MDs.push_back(LoopID->getOperand(i));
8336     }
8337   }
8338 
8339   if (!IsUnrollMetadata) {
8340     // Add runtime unroll disable metadata.
8341     LLVMContext &Context = L->getHeader()->getContext();
8342     SmallVector<Metadata *, 1> DisableOperands;
8343     DisableOperands.push_back(
8344         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8345     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8346     MDs.push_back(DisableNode);
8347     MDNode *NewLoopID = MDNode::get(Context, MDs);
8348     // Set operand 0 to refer to the loop id itself.
8349     NewLoopID->replaceOperandWith(0, NewLoopID);
8350     L->setLoopID(NewLoopID);
8351   }
8352 }
8353 
8354 //===--------------------------------------------------------------------===//
8355 // EpilogueVectorizerMainLoop
8356 //===--------------------------------------------------------------------===//
8357 
8358 /// This function is partially responsible for generating the control flow
8359 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8360 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8361   MDNode *OrigLoopID = OrigLoop->getLoopID();
8362   Loop *Lp = createVectorLoopSkeleton("");
8363 
8364   // Generate the code to check the minimum iteration count of the vector
8365   // epilogue (see below).
8366   EPI.EpilogueIterationCountCheck =
8367       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8368   EPI.EpilogueIterationCountCheck->setName("iter.check");
8369 
8370   // Generate the code to check any assumptions that we've made for SCEV
8371   // expressions.
8372   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8373 
8374   // Generate the code that checks at runtime if arrays overlap. We put the
8375   // checks into a separate block to make the more common case of few elements
8376   // faster.
8377   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8378 
8379   // Generate the iteration count check for the main loop, *after* the check
8380   // for the epilogue loop, so that the path-length is shorter for the case
8381   // that goes directly through the vector epilogue. The longer-path length for
8382   // the main loop is compensated for, by the gain from vectorizing the larger
8383   // trip count. Note: the branch will get updated later on when we vectorize
8384   // the epilogue.
8385   EPI.MainLoopIterationCountCheck =
8386       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8387 
8388   // Generate the induction variable.
8389   OldInduction = Legal->getPrimaryInduction();
8390   Type *IdxTy = Legal->getWidestInductionType();
8391   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8392   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8393   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8394   EPI.VectorTripCount = CountRoundDown;
8395   Induction =
8396       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8397                               getDebugLocFromInstOrOperands(OldInduction));
8398 
8399   // Skip induction resume value creation here because they will be created in
8400   // the second pass. If we created them here, they wouldn't be used anyway,
8401   // because the vplan in the second pass still contains the inductions from the
8402   // original loop.
8403 
8404   return completeLoopSkeleton(Lp, OrigLoopID);
8405 }
8406 
8407 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8408   LLVM_DEBUG({
8409     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8410            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8411            << ", Main Loop UF:" << EPI.MainLoopUF
8412            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8413            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8414   });
8415 }
8416 
8417 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8418   DEBUG_WITH_TYPE(VerboseDebug, {
8419     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8420   });
8421 }
8422 
8423 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8424     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8425   assert(L && "Expected valid Loop.");
8426   assert(Bypass && "Expected valid bypass basic block.");
8427   unsigned VFactor =
8428       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8429   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8430   Value *Count = getOrCreateTripCount(L);
8431   // Reuse existing vector loop preheader for TC checks.
8432   // Note that new preheader block is generated for vector loop.
8433   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8434   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8435 
8436   // Generate code to check if the loop's trip count is less than VF * UF of the
8437   // main vector loop.
8438   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8439       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8440 
8441   Value *CheckMinIters = Builder.CreateICmp(
8442       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8443       "min.iters.check");
8444 
8445   if (!ForEpilogue)
8446     TCCheckBlock->setName("vector.main.loop.iter.check");
8447 
8448   // Create new preheader for vector loop.
8449   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8450                                    DT, LI, nullptr, "vector.ph");
8451 
8452   if (ForEpilogue) {
8453     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8454                                  DT->getNode(Bypass)->getIDom()) &&
8455            "TC check is expected to dominate Bypass");
8456 
8457     // Update dominator for Bypass & LoopExit.
8458     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8459     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8460       // For loops with multiple exits, there's no edge from the middle block
8461       // to exit blocks (as the epilogue must run) and thus no need to update
8462       // the immediate dominator of the exit blocks.
8463       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8464 
8465     LoopBypassBlocks.push_back(TCCheckBlock);
8466 
8467     // Save the trip count so we don't have to regenerate it in the
8468     // vec.epilog.iter.check. This is safe to do because the trip count
8469     // generated here dominates the vector epilog iter check.
8470     EPI.TripCount = Count;
8471   }
8472 
8473   ReplaceInstWithInst(
8474       TCCheckBlock->getTerminator(),
8475       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8476 
8477   return TCCheckBlock;
8478 }
8479 
8480 //===--------------------------------------------------------------------===//
8481 // EpilogueVectorizerEpilogueLoop
8482 //===--------------------------------------------------------------------===//
8483 
8484 /// This function is partially responsible for generating the control flow
8485 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8486 BasicBlock *
8487 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8488   MDNode *OrigLoopID = OrigLoop->getLoopID();
8489   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8490 
8491   // Now, compare the remaining count and if there aren't enough iterations to
8492   // execute the vectorized epilogue skip to the scalar part.
8493   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8494   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8495   LoopVectorPreHeader =
8496       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8497                  LI, nullptr, "vec.epilog.ph");
8498   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8499                                           VecEpilogueIterationCountCheck);
8500 
8501   // Adjust the control flow taking the state info from the main loop
8502   // vectorization into account.
8503   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8504          "expected this to be saved from the previous pass.");
8505   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8506       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8507 
8508   DT->changeImmediateDominator(LoopVectorPreHeader,
8509                                EPI.MainLoopIterationCountCheck);
8510 
8511   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8512       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8513 
8514   if (EPI.SCEVSafetyCheck)
8515     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8516         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8517   if (EPI.MemSafetyCheck)
8518     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8519         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8520 
8521   DT->changeImmediateDominator(
8522       VecEpilogueIterationCountCheck,
8523       VecEpilogueIterationCountCheck->getSinglePredecessor());
8524 
8525   DT->changeImmediateDominator(LoopScalarPreHeader,
8526                                EPI.EpilogueIterationCountCheck);
8527   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8528     // If there is an epilogue which must run, there's no edge from the
8529     // middle block to exit blocks  and thus no need to update the immediate
8530     // dominator of the exit blocks.
8531     DT->changeImmediateDominator(LoopExitBlock,
8532                                  EPI.EpilogueIterationCountCheck);
8533 
8534   // Keep track of bypass blocks, as they feed start values to the induction
8535   // phis in the scalar loop preheader.
8536   if (EPI.SCEVSafetyCheck)
8537     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8538   if (EPI.MemSafetyCheck)
8539     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8540   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8541 
8542   // Generate a resume induction for the vector epilogue and put it in the
8543   // vector epilogue preheader
8544   Type *IdxTy = Legal->getWidestInductionType();
8545   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8546                                          LoopVectorPreHeader->getFirstNonPHI());
8547   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8548   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8549                            EPI.MainLoopIterationCountCheck);
8550 
8551   // Generate the induction variable.
8552   OldInduction = Legal->getPrimaryInduction();
8553   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8554   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8555   Value *StartIdx = EPResumeVal;
8556   Induction =
8557       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8558                               getDebugLocFromInstOrOperands(OldInduction));
8559 
8560   // Generate induction resume values. These variables save the new starting
8561   // indexes for the scalar loop. They are used to test if there are any tail
8562   // iterations left once the vector loop has completed.
8563   // Note that when the vectorized epilogue is skipped due to iteration count
8564   // check, then the resume value for the induction variable comes from
8565   // the trip count of the main vector loop, hence passing the AdditionalBypass
8566   // argument.
8567   createInductionResumeValues(Lp, CountRoundDown,
8568                               {VecEpilogueIterationCountCheck,
8569                                EPI.VectorTripCount} /* AdditionalBypass */);
8570 
8571   AddRuntimeUnrollDisableMetaData(Lp);
8572   return completeLoopSkeleton(Lp, OrigLoopID);
8573 }
8574 
8575 BasicBlock *
8576 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8577     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8578 
8579   assert(EPI.TripCount &&
8580          "Expected trip count to have been safed in the first pass.");
8581   assert(
8582       (!isa<Instruction>(EPI.TripCount) ||
8583        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8584       "saved trip count does not dominate insertion point.");
8585   Value *TC = EPI.TripCount;
8586   IRBuilder<> Builder(Insert->getTerminator());
8587   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8588 
8589   // Generate code to check if the loop's trip count is less than VF * UF of the
8590   // vector epilogue loop.
8591   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8592       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8593 
8594   Value *CheckMinIters = Builder.CreateICmp(
8595       P, Count,
8596       ConstantInt::get(Count->getType(),
8597                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8598       "min.epilog.iters.check");
8599 
8600   ReplaceInstWithInst(
8601       Insert->getTerminator(),
8602       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8603 
8604   LoopBypassBlocks.push_back(Insert);
8605   return Insert;
8606 }
8607 
8608 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8609   LLVM_DEBUG({
8610     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8611            << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8612            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8613   });
8614 }
8615 
8616 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8617   DEBUG_WITH_TYPE(VerboseDebug, {
8618     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8619   });
8620 }
8621 
8622 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8623     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8624   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8625   bool PredicateAtRangeStart = Predicate(Range.Start);
8626 
8627   for (ElementCount TmpVF = Range.Start * 2;
8628        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8629     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8630       Range.End = TmpVF;
8631       break;
8632     }
8633 
8634   return PredicateAtRangeStart;
8635 }
8636 
8637 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8638 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8639 /// of VF's starting at a given VF and extending it as much as possible. Each
8640 /// vectorization decision can potentially shorten this sub-range during
8641 /// buildVPlan().
8642 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8643                                            ElementCount MaxVF) {
8644   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8645   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8646     VFRange SubRange = {VF, MaxVFPlusOne};
8647     VPlans.push_back(buildVPlan(SubRange));
8648     VF = SubRange.End;
8649   }
8650 }
8651 
8652 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8653                                          VPlanPtr &Plan) {
8654   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8655 
8656   // Look for cached value.
8657   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8658   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8659   if (ECEntryIt != EdgeMaskCache.end())
8660     return ECEntryIt->second;
8661 
8662   VPValue *SrcMask = createBlockInMask(Src, Plan);
8663 
8664   // The terminator has to be a branch inst!
8665   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8666   assert(BI && "Unexpected terminator found");
8667 
8668   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8669     return EdgeMaskCache[Edge] = SrcMask;
8670 
8671   // If source is an exiting block, we know the exit edge is dynamically dead
8672   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8673   // adding uses of an otherwise potentially dead instruction.
8674   if (OrigLoop->isLoopExiting(Src))
8675     return EdgeMaskCache[Edge] = SrcMask;
8676 
8677   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8678   assert(EdgeMask && "No Edge Mask found for condition");
8679 
8680   if (BI->getSuccessor(0) != Dst)
8681     EdgeMask = Builder.createNot(EdgeMask);
8682 
8683   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8684     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8685     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8686     // The select version does not introduce new UB if SrcMask is false and
8687     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8688     VPValue *False = Plan->getOrAddVPValue(
8689         ConstantInt::getFalse(BI->getCondition()->getType()));
8690     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8691   }
8692 
8693   return EdgeMaskCache[Edge] = EdgeMask;
8694 }
8695 
8696 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8697   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8698 
8699   // Look for cached value.
8700   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8701   if (BCEntryIt != BlockMaskCache.end())
8702     return BCEntryIt->second;
8703 
8704   // All-one mask is modelled as no-mask following the convention for masked
8705   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8706   VPValue *BlockMask = nullptr;
8707 
8708   if (OrigLoop->getHeader() == BB) {
8709     if (!CM.blockNeedsPredication(BB))
8710       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8711 
8712     // Create the block in mask as the first non-phi instruction in the block.
8713     VPBuilder::InsertPointGuard Guard(Builder);
8714     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8715     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8716 
8717     // Introduce the early-exit compare IV <= BTC to form header block mask.
8718     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8719     // Start by constructing the desired canonical IV.
8720     VPValue *IV = nullptr;
8721     if (Legal->getPrimaryInduction())
8722       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8723     else {
8724       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8725       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8726       IV = IVRecipe->getVPSingleValue();
8727     }
8728     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8729     bool TailFolded = !CM.isScalarEpilogueAllowed();
8730 
8731     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8732       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8733       // as a second argument, we only pass the IV here and extract the
8734       // tripcount from the transform state where codegen of the VP instructions
8735       // happen.
8736       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8737     } else {
8738       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8739     }
8740     return BlockMaskCache[BB] = BlockMask;
8741   }
8742 
8743   // This is the block mask. We OR all incoming edges.
8744   for (auto *Predecessor : predecessors(BB)) {
8745     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8746     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8747       return BlockMaskCache[BB] = EdgeMask;
8748 
8749     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8750       BlockMask = EdgeMask;
8751       continue;
8752     }
8753 
8754     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8755   }
8756 
8757   return BlockMaskCache[BB] = BlockMask;
8758 }
8759 
8760 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8761                                                 ArrayRef<VPValue *> Operands,
8762                                                 VFRange &Range,
8763                                                 VPlanPtr &Plan) {
8764   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8765          "Must be called with either a load or store");
8766 
8767   auto willWiden = [&](ElementCount VF) -> bool {
8768     if (VF.isScalar())
8769       return false;
8770     LoopVectorizationCostModel::InstWidening Decision =
8771         CM.getWideningDecision(I, VF);
8772     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8773            "CM decision should be taken at this point.");
8774     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8775       return true;
8776     if (CM.isScalarAfterVectorization(I, VF) ||
8777         CM.isProfitableToScalarize(I, VF))
8778       return false;
8779     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8780   };
8781 
8782   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8783     return nullptr;
8784 
8785   VPValue *Mask = nullptr;
8786   if (Legal->isMaskRequired(I))
8787     Mask = createBlockInMask(I->getParent(), Plan);
8788 
8789   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8790     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8791 
8792   StoreInst *Store = cast<StoreInst>(I);
8793   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8794                                             Mask);
8795 }
8796 
8797 VPWidenIntOrFpInductionRecipe *
8798 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8799                                            ArrayRef<VPValue *> Operands) const {
8800   // Check if this is an integer or fp induction. If so, build the recipe that
8801   // produces its scalar and vector values.
8802   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8803   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8804       II.getKind() == InductionDescriptor::IK_FpInduction) {
8805     assert(II.getStartValue() ==
8806            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8807     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8808     return new VPWidenIntOrFpInductionRecipe(
8809         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8810   }
8811 
8812   return nullptr;
8813 }
8814 
8815 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8816     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8817     VPlan &Plan) const {
8818   // Optimize the special case where the source is a constant integer
8819   // induction variable. Notice that we can only optimize the 'trunc' case
8820   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8821   // (c) other casts depend on pointer size.
8822 
8823   // Determine whether \p K is a truncation based on an induction variable that
8824   // can be optimized.
8825   auto isOptimizableIVTruncate =
8826       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8827     return [=](ElementCount VF) -> bool {
8828       return CM.isOptimizableIVTruncate(K, VF);
8829     };
8830   };
8831 
8832   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8833           isOptimizableIVTruncate(I), Range)) {
8834 
8835     InductionDescriptor II =
8836         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8837     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8838     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8839                                              Start, nullptr, I);
8840   }
8841   return nullptr;
8842 }
8843 
8844 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8845                                                 ArrayRef<VPValue *> Operands,
8846                                                 VPlanPtr &Plan) {
8847   // If all incoming values are equal, the incoming VPValue can be used directly
8848   // instead of creating a new VPBlendRecipe.
8849   VPValue *FirstIncoming = Operands[0];
8850   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8851         return FirstIncoming == Inc;
8852       })) {
8853     return Operands[0];
8854   }
8855 
8856   // We know that all PHIs in non-header blocks are converted into selects, so
8857   // we don't have to worry about the insertion order and we can just use the
8858   // builder. At this point we generate the predication tree. There may be
8859   // duplications since this is a simple recursive scan, but future
8860   // optimizations will clean it up.
8861   SmallVector<VPValue *, 2> OperandsWithMask;
8862   unsigned NumIncoming = Phi->getNumIncomingValues();
8863 
8864   for (unsigned In = 0; In < NumIncoming; In++) {
8865     VPValue *EdgeMask =
8866       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8867     assert((EdgeMask || NumIncoming == 1) &&
8868            "Multiple predecessors with one having a full mask");
8869     OperandsWithMask.push_back(Operands[In]);
8870     if (EdgeMask)
8871       OperandsWithMask.push_back(EdgeMask);
8872   }
8873   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8874 }
8875 
8876 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8877                                                    ArrayRef<VPValue *> Operands,
8878                                                    VFRange &Range) const {
8879 
8880   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8881       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8882       Range);
8883 
8884   if (IsPredicated)
8885     return nullptr;
8886 
8887   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8888   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8889              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8890              ID == Intrinsic::pseudoprobe ||
8891              ID == Intrinsic::experimental_noalias_scope_decl))
8892     return nullptr;
8893 
8894   auto willWiden = [&](ElementCount VF) -> bool {
8895     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8896     // The following case may be scalarized depending on the VF.
8897     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8898     // version of the instruction.
8899     // Is it beneficial to perform intrinsic call compared to lib call?
8900     bool NeedToScalarize = false;
8901     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8902     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8903     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8904     return UseVectorIntrinsic || !NeedToScalarize;
8905   };
8906 
8907   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8908     return nullptr;
8909 
8910   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8911   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8912 }
8913 
8914 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8915   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8916          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8917   // Instruction should be widened, unless it is scalar after vectorization,
8918   // scalarization is profitable or it is predicated.
8919   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8920     return CM.isScalarAfterVectorization(I, VF) ||
8921            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8922   };
8923   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8924                                                              Range);
8925 }
8926 
8927 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8928                                            ArrayRef<VPValue *> Operands) const {
8929   auto IsVectorizableOpcode = [](unsigned Opcode) {
8930     switch (Opcode) {
8931     case Instruction::Add:
8932     case Instruction::And:
8933     case Instruction::AShr:
8934     case Instruction::BitCast:
8935     case Instruction::FAdd:
8936     case Instruction::FCmp:
8937     case Instruction::FDiv:
8938     case Instruction::FMul:
8939     case Instruction::FNeg:
8940     case Instruction::FPExt:
8941     case Instruction::FPToSI:
8942     case Instruction::FPToUI:
8943     case Instruction::FPTrunc:
8944     case Instruction::FRem:
8945     case Instruction::FSub:
8946     case Instruction::ICmp:
8947     case Instruction::IntToPtr:
8948     case Instruction::LShr:
8949     case Instruction::Mul:
8950     case Instruction::Or:
8951     case Instruction::PtrToInt:
8952     case Instruction::SDiv:
8953     case Instruction::Select:
8954     case Instruction::SExt:
8955     case Instruction::Shl:
8956     case Instruction::SIToFP:
8957     case Instruction::SRem:
8958     case Instruction::Sub:
8959     case Instruction::Trunc:
8960     case Instruction::UDiv:
8961     case Instruction::UIToFP:
8962     case Instruction::URem:
8963     case Instruction::Xor:
8964     case Instruction::ZExt:
8965       return true;
8966     }
8967     return false;
8968   };
8969 
8970   if (!IsVectorizableOpcode(I->getOpcode()))
8971     return nullptr;
8972 
8973   // Success: widen this instruction.
8974   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8975 }
8976 
8977 void VPRecipeBuilder::fixHeaderPhis() {
8978   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8979   for (VPWidenPHIRecipe *R : PhisToFix) {
8980     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8981     VPRecipeBase *IncR =
8982         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8983     R->addOperand(IncR->getVPSingleValue());
8984   }
8985 }
8986 
8987 VPBasicBlock *VPRecipeBuilder::handleReplication(
8988     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8989     VPlanPtr &Plan) {
8990   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8991       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8992       Range);
8993 
8994   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8995       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
8996 
8997   // Even if the instruction is not marked as uniform, there are certain
8998   // intrinsic calls that can be effectively treated as such, so we check for
8999   // them here. Conservatively, we only do this for scalable vectors, since
9000   // for fixed-width VFs we can always fall back on full scalarization.
9001   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
9002     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
9003     case Intrinsic::assume:
9004     case Intrinsic::lifetime_start:
9005     case Intrinsic::lifetime_end:
9006       // For scalable vectors if one of the operands is variant then we still
9007       // want to mark as uniform, which will generate one instruction for just
9008       // the first lane of the vector. We can't scalarize the call in the same
9009       // way as for fixed-width vectors because we don't know how many lanes
9010       // there are.
9011       //
9012       // The reasons for doing it this way for scalable vectors are:
9013       //   1. For the assume intrinsic generating the instruction for the first
9014       //      lane is still be better than not generating any at all. For
9015       //      example, the input may be a splat across all lanes.
9016       //   2. For the lifetime start/end intrinsics the pointer operand only
9017       //      does anything useful when the input comes from a stack object,
9018       //      which suggests it should always be uniform. For non-stack objects
9019       //      the effect is to poison the object, which still allows us to
9020       //      remove the call.
9021       IsUniform = true;
9022       break;
9023     default:
9024       break;
9025     }
9026   }
9027 
9028   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
9029                                        IsUniform, IsPredicated);
9030   setRecipe(I, Recipe);
9031   Plan->addVPValue(I, Recipe);
9032 
9033   // Find if I uses a predicated instruction. If so, it will use its scalar
9034   // value. Avoid hoisting the insert-element which packs the scalar value into
9035   // a vector value, as that happens iff all users use the vector value.
9036   for (VPValue *Op : Recipe->operands()) {
9037     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
9038     if (!PredR)
9039       continue;
9040     auto *RepR =
9041         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
9042     assert(RepR->isPredicated() &&
9043            "expected Replicate recipe to be predicated");
9044     RepR->setAlsoPack(false);
9045   }
9046 
9047   // Finalize the recipe for Instr, first if it is not predicated.
9048   if (!IsPredicated) {
9049     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
9050     VPBB->appendRecipe(Recipe);
9051     return VPBB;
9052   }
9053   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
9054   assert(VPBB->getSuccessors().empty() &&
9055          "VPBB has successors when handling predicated replication.");
9056   // Record predicated instructions for above packing optimizations.
9057   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
9058   VPBlockUtils::insertBlockAfter(Region, VPBB);
9059   auto *RegSucc = new VPBasicBlock();
9060   VPBlockUtils::insertBlockAfter(RegSucc, Region);
9061   return RegSucc;
9062 }
9063 
9064 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
9065                                                       VPRecipeBase *PredRecipe,
9066                                                       VPlanPtr &Plan) {
9067   // Instructions marked for predication are replicated and placed under an
9068   // if-then construct to prevent side-effects.
9069 
9070   // Generate recipes to compute the block mask for this region.
9071   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
9072 
9073   // Build the triangular if-then region.
9074   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
9075   assert(Instr->getParent() && "Predicated instruction not in any basic block");
9076   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
9077   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
9078   auto *PHIRecipe = Instr->getType()->isVoidTy()
9079                         ? nullptr
9080                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9081   if (PHIRecipe) {
9082     Plan->removeVPValueFor(Instr);
9083     Plan->addVPValue(Instr, PHIRecipe);
9084   }
9085   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9086   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9087   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9088 
9089   // Note: first set Entry as region entry and then connect successors starting
9090   // from it in order, to propagate the "parent" of each VPBasicBlock.
9091   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9092   VPBlockUtils::connectBlocks(Pred, Exit);
9093 
9094   return Region;
9095 }
9096 
9097 VPRecipeOrVPValueTy
9098 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9099                                         ArrayRef<VPValue *> Operands,
9100                                         VFRange &Range, VPlanPtr &Plan) {
9101   // First, check for specific widening recipes that deal with calls, memory
9102   // operations, inductions and Phi nodes.
9103   if (auto *CI = dyn_cast<CallInst>(Instr))
9104     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9105 
9106   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9107     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9108 
9109   VPRecipeBase *Recipe;
9110   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9111     if (Phi->getParent() != OrigLoop->getHeader())
9112       return tryToBlend(Phi, Operands, Plan);
9113     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9114       return toVPRecipeResult(Recipe);
9115 
9116     VPWidenPHIRecipe *PhiRecipe = nullptr;
9117     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9118       VPValue *StartV = Operands[0];
9119       if (Legal->isReductionVariable(Phi)) {
9120         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9121         assert(RdxDesc.getRecurrenceStartValue() ==
9122                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9123         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9124                                              CM.isInLoopReduction(Phi),
9125                                              CM.useOrderedReductions(RdxDesc));
9126       } else {
9127         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9128       }
9129 
9130       // Record the incoming value from the backedge, so we can add the incoming
9131       // value from the backedge after all recipes have been created.
9132       recordRecipeOf(cast<Instruction>(
9133           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9134       PhisToFix.push_back(PhiRecipe);
9135     } else {
9136       // TODO: record start and backedge value for remaining pointer induction
9137       // phis.
9138       assert(Phi->getType()->isPointerTy() &&
9139              "only pointer phis should be handled here");
9140       PhiRecipe = new VPWidenPHIRecipe(Phi);
9141     }
9142 
9143     return toVPRecipeResult(PhiRecipe);
9144   }
9145 
9146   if (isa<TruncInst>(Instr) &&
9147       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9148                                                Range, *Plan)))
9149     return toVPRecipeResult(Recipe);
9150 
9151   if (!shouldWiden(Instr, Range))
9152     return nullptr;
9153 
9154   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9155     return toVPRecipeResult(new VPWidenGEPRecipe(
9156         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9157 
9158   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9159     bool InvariantCond =
9160         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9161     return toVPRecipeResult(new VPWidenSelectRecipe(
9162         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9163   }
9164 
9165   return toVPRecipeResult(tryToWiden(Instr, Operands));
9166 }
9167 
9168 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9169                                                         ElementCount MaxVF) {
9170   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9171 
9172   // Collect instructions from the original loop that will become trivially dead
9173   // in the vectorized loop. We don't need to vectorize these instructions. For
9174   // example, original induction update instructions can become dead because we
9175   // separately emit induction "steps" when generating code for the new loop.
9176   // Similarly, we create a new latch condition when setting up the structure
9177   // of the new loop, so the old one can become dead.
9178   SmallPtrSet<Instruction *, 4> DeadInstructions;
9179   collectTriviallyDeadInstructions(DeadInstructions);
9180 
9181   // Add assume instructions we need to drop to DeadInstructions, to prevent
9182   // them from being added to the VPlan.
9183   // TODO: We only need to drop assumes in blocks that get flattend. If the
9184   // control flow is preserved, we should keep them.
9185   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9186   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9187 
9188   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9189   // Dead instructions do not need sinking. Remove them from SinkAfter.
9190   for (Instruction *I : DeadInstructions)
9191     SinkAfter.erase(I);
9192 
9193   // Cannot sink instructions after dead instructions (there won't be any
9194   // recipes for them). Instead, find the first non-dead previous instruction.
9195   for (auto &P : Legal->getSinkAfter()) {
9196     Instruction *SinkTarget = P.second;
9197     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9198     (void)FirstInst;
9199     while (DeadInstructions.contains(SinkTarget)) {
9200       assert(
9201           SinkTarget != FirstInst &&
9202           "Must find a live instruction (at least the one feeding the "
9203           "first-order recurrence PHI) before reaching beginning of the block");
9204       SinkTarget = SinkTarget->getPrevNode();
9205       assert(SinkTarget != P.first &&
9206              "sink source equals target, no sinking required");
9207     }
9208     P.second = SinkTarget;
9209   }
9210 
9211   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9212   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9213     VFRange SubRange = {VF, MaxVFPlusOne};
9214     VPlans.push_back(
9215         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9216     VF = SubRange.End;
9217   }
9218 }
9219 
9220 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9221     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9222     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9223 
9224   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9225 
9226   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9227 
9228   // ---------------------------------------------------------------------------
9229   // Pre-construction: record ingredients whose recipes we'll need to further
9230   // process after constructing the initial VPlan.
9231   // ---------------------------------------------------------------------------
9232 
9233   // Mark instructions we'll need to sink later and their targets as
9234   // ingredients whose recipe we'll need to record.
9235   for (auto &Entry : SinkAfter) {
9236     RecipeBuilder.recordRecipeOf(Entry.first);
9237     RecipeBuilder.recordRecipeOf(Entry.second);
9238   }
9239   for (auto &Reduction : CM.getInLoopReductionChains()) {
9240     PHINode *Phi = Reduction.first;
9241     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9242     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9243 
9244     RecipeBuilder.recordRecipeOf(Phi);
9245     for (auto &R : ReductionOperations) {
9246       RecipeBuilder.recordRecipeOf(R);
9247       // For min/max reducitons, where we have a pair of icmp/select, we also
9248       // need to record the ICmp recipe, so it can be removed later.
9249       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9250         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9251     }
9252   }
9253 
9254   // For each interleave group which is relevant for this (possibly trimmed)
9255   // Range, add it to the set of groups to be later applied to the VPlan and add
9256   // placeholders for its members' Recipes which we'll be replacing with a
9257   // single VPInterleaveRecipe.
9258   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9259     auto applyIG = [IG, this](ElementCount VF) -> bool {
9260       return (VF.isVector() && // Query is illegal for VF == 1
9261               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9262                   LoopVectorizationCostModel::CM_Interleave);
9263     };
9264     if (!getDecisionAndClampRange(applyIG, Range))
9265       continue;
9266     InterleaveGroups.insert(IG);
9267     for (unsigned i = 0; i < IG->getFactor(); i++)
9268       if (Instruction *Member = IG->getMember(i))
9269         RecipeBuilder.recordRecipeOf(Member);
9270   };
9271 
9272   // ---------------------------------------------------------------------------
9273   // Build initial VPlan: Scan the body of the loop in a topological order to
9274   // visit each basic block after having visited its predecessor basic blocks.
9275   // ---------------------------------------------------------------------------
9276 
9277   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9278   auto Plan = std::make_unique<VPlan>();
9279   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9280   Plan->setEntry(VPBB);
9281 
9282   // Scan the body of the loop in a topological order to visit each basic block
9283   // after having visited its predecessor basic blocks.
9284   LoopBlocksDFS DFS(OrigLoop);
9285   DFS.perform(LI);
9286 
9287   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9288     // Relevant instructions from basic block BB will be grouped into VPRecipe
9289     // ingredients and fill a new VPBasicBlock.
9290     unsigned VPBBsForBB = 0;
9291     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9292     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9293     VPBB = FirstVPBBForBB;
9294     Builder.setInsertPoint(VPBB);
9295 
9296     // Introduce each ingredient into VPlan.
9297     // TODO: Model and preserve debug instrinsics in VPlan.
9298     for (Instruction &I : BB->instructionsWithoutDebug()) {
9299       Instruction *Instr = &I;
9300 
9301       // First filter out irrelevant instructions, to ensure no recipes are
9302       // built for them.
9303       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9304         continue;
9305 
9306       SmallVector<VPValue *, 4> Operands;
9307       auto *Phi = dyn_cast<PHINode>(Instr);
9308       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9309         Operands.push_back(Plan->getOrAddVPValue(
9310             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9311       } else {
9312         auto OpRange = Plan->mapToVPValues(Instr->operands());
9313         Operands = {OpRange.begin(), OpRange.end()};
9314       }
9315       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9316               Instr, Operands, Range, Plan)) {
9317         // If Instr can be simplified to an existing VPValue, use it.
9318         if (RecipeOrValue.is<VPValue *>()) {
9319           auto *VPV = RecipeOrValue.get<VPValue *>();
9320           Plan->addVPValue(Instr, VPV);
9321           // If the re-used value is a recipe, register the recipe for the
9322           // instruction, in case the recipe for Instr needs to be recorded.
9323           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9324             RecipeBuilder.setRecipe(Instr, R);
9325           continue;
9326         }
9327         // Otherwise, add the new recipe.
9328         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9329         for (auto *Def : Recipe->definedValues()) {
9330           auto *UV = Def->getUnderlyingValue();
9331           Plan->addVPValue(UV, Def);
9332         }
9333 
9334         RecipeBuilder.setRecipe(Instr, Recipe);
9335         VPBB->appendRecipe(Recipe);
9336         continue;
9337       }
9338 
9339       // Otherwise, if all widening options failed, Instruction is to be
9340       // replicated. This may create a successor for VPBB.
9341       VPBasicBlock *NextVPBB =
9342           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9343       if (NextVPBB != VPBB) {
9344         VPBB = NextVPBB;
9345         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9346                                     : "");
9347       }
9348     }
9349   }
9350 
9351   RecipeBuilder.fixHeaderPhis();
9352 
9353   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9354   // may also be empty, such as the last one VPBB, reflecting original
9355   // basic-blocks with no recipes.
9356   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9357   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9358   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9359   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9360   delete PreEntry;
9361 
9362   // ---------------------------------------------------------------------------
9363   // Transform initial VPlan: Apply previously taken decisions, in order, to
9364   // bring the VPlan to its final state.
9365   // ---------------------------------------------------------------------------
9366 
9367   // Apply Sink-After legal constraints.
9368   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9369     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9370     if (Region && Region->isReplicator()) {
9371       assert(Region->getNumSuccessors() == 1 &&
9372              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9373       assert(R->getParent()->size() == 1 &&
9374              "A recipe in an original replicator region must be the only "
9375              "recipe in its block");
9376       return Region;
9377     }
9378     return nullptr;
9379   };
9380   for (auto &Entry : SinkAfter) {
9381     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9382     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9383 
9384     auto *TargetRegion = GetReplicateRegion(Target);
9385     auto *SinkRegion = GetReplicateRegion(Sink);
9386     if (!SinkRegion) {
9387       // If the sink source is not a replicate region, sink the recipe directly.
9388       if (TargetRegion) {
9389         // The target is in a replication region, make sure to move Sink to
9390         // the block after it, not into the replication region itself.
9391         VPBasicBlock *NextBlock =
9392             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9393         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9394       } else
9395         Sink->moveAfter(Target);
9396       continue;
9397     }
9398 
9399     // The sink source is in a replicate region. Unhook the region from the CFG.
9400     auto *SinkPred = SinkRegion->getSinglePredecessor();
9401     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9402     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9403     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9404     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9405 
9406     if (TargetRegion) {
9407       // The target recipe is also in a replicate region, move the sink region
9408       // after the target region.
9409       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9410       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9411       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9412       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9413     } else {
9414       // The sink source is in a replicate region, we need to move the whole
9415       // replicate region, which should only contain a single recipe in the
9416       // main block.
9417       auto *SplitBlock =
9418           Target->getParent()->splitAt(std::next(Target->getIterator()));
9419 
9420       auto *SplitPred = SplitBlock->getSinglePredecessor();
9421 
9422       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9423       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9424       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9425       if (VPBB == SplitPred)
9426         VPBB = SplitBlock;
9427     }
9428   }
9429 
9430   // Adjust the recipes for any inloop reductions.
9431   adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start);
9432 
9433   // Introduce a recipe to combine the incoming and previous values of a
9434   // first-order recurrence.
9435   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9436     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9437     if (!RecurPhi)
9438       continue;
9439 
9440     auto *RecurSplice = cast<VPInstruction>(
9441         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9442                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9443 
9444     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9445     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9446       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9447       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9448     } else
9449       RecurSplice->moveAfter(PrevRecipe);
9450     RecurPhi->replaceAllUsesWith(RecurSplice);
9451     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9452     // all users.
9453     RecurSplice->setOperand(0, RecurPhi);
9454   }
9455 
9456   // Interleave memory: for each Interleave Group we marked earlier as relevant
9457   // for this VPlan, replace the Recipes widening its memory instructions with a
9458   // single VPInterleaveRecipe at its insertion point.
9459   for (auto IG : InterleaveGroups) {
9460     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9461         RecipeBuilder.getRecipe(IG->getInsertPos()));
9462     SmallVector<VPValue *, 4> StoredValues;
9463     for (unsigned i = 0; i < IG->getFactor(); ++i)
9464       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9465         auto *StoreR =
9466             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9467         StoredValues.push_back(StoreR->getStoredValue());
9468       }
9469 
9470     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9471                                         Recipe->getMask());
9472     VPIG->insertBefore(Recipe);
9473     unsigned J = 0;
9474     for (unsigned i = 0; i < IG->getFactor(); ++i)
9475       if (Instruction *Member = IG->getMember(i)) {
9476         if (!Member->getType()->isVoidTy()) {
9477           VPValue *OriginalV = Plan->getVPValue(Member);
9478           Plan->removeVPValueFor(Member);
9479           Plan->addVPValue(Member, VPIG->getVPValue(J));
9480           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9481           J++;
9482         }
9483         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9484       }
9485   }
9486 
9487   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9488   // in ways that accessing values using original IR values is incorrect.
9489   Plan->disableValue2VPValue();
9490 
9491   VPlanTransforms::sinkScalarOperands(*Plan);
9492   VPlanTransforms::mergeReplicateRegions(*Plan);
9493 
9494   std::string PlanName;
9495   raw_string_ostream RSO(PlanName);
9496   ElementCount VF = Range.Start;
9497   Plan->addVF(VF);
9498   RSO << "Initial VPlan for VF={" << VF;
9499   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9500     Plan->addVF(VF);
9501     RSO << "," << VF;
9502   }
9503   RSO << "},UF>=1";
9504   RSO.flush();
9505   Plan->setName(PlanName);
9506 
9507   return Plan;
9508 }
9509 
9510 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9511   // Outer loop handling: They may require CFG and instruction level
9512   // transformations before even evaluating whether vectorization is profitable.
9513   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9514   // the vectorization pipeline.
9515   assert(!OrigLoop->isInnermost());
9516   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9517 
9518   // Create new empty VPlan
9519   auto Plan = std::make_unique<VPlan>();
9520 
9521   // Build hierarchical CFG
9522   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9523   HCFGBuilder.buildHierarchicalCFG();
9524 
9525   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9526        VF *= 2)
9527     Plan->addVF(VF);
9528 
9529   if (EnableVPlanPredication) {
9530     VPlanPredicator VPP(*Plan);
9531     VPP.predicate();
9532 
9533     // Avoid running transformation to recipes until masked code generation in
9534     // VPlan-native path is in place.
9535     return Plan;
9536   }
9537 
9538   SmallPtrSet<Instruction *, 1> DeadInstructions;
9539   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9540                                              Legal->getInductionVars(),
9541                                              DeadInstructions, *PSE.getSE());
9542   return Plan;
9543 }
9544 
9545 // Adjust the recipes for reductions. For in-loop reductions the chain of
9546 // instructions leading from the loop exit instr to the phi need to be converted
9547 // to reductions, with one operand being vector and the other being the scalar
9548 // reduction chain. For other reductions, a select is introduced between the phi
9549 // and live-out recipes when folding the tail.
9550 void LoopVectorizationPlanner::adjustRecipesForReductions(
9551     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9552     ElementCount MinVF) {
9553   for (auto &Reduction : CM.getInLoopReductionChains()) {
9554     PHINode *Phi = Reduction.first;
9555     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9556     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9557 
9558     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9559       continue;
9560 
9561     // ReductionOperations are orders top-down from the phi's use to the
9562     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9563     // which of the two operands will remain scalar and which will be reduced.
9564     // For minmax the chain will be the select instructions.
9565     Instruction *Chain = Phi;
9566     for (Instruction *R : ReductionOperations) {
9567       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9568       RecurKind Kind = RdxDesc.getRecurrenceKind();
9569 
9570       VPValue *ChainOp = Plan->getVPValue(Chain);
9571       unsigned FirstOpId;
9572       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9573         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9574                "Expected to replace a VPWidenSelectSC");
9575         FirstOpId = 1;
9576       } else {
9577         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9578                "Expected to replace a VPWidenSC");
9579         FirstOpId = 0;
9580       }
9581       unsigned VecOpId =
9582           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9583       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9584 
9585       auto *CondOp = CM.foldTailByMasking()
9586                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9587                          : nullptr;
9588       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9589           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9590       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9591       Plan->removeVPValueFor(R);
9592       Plan->addVPValue(R, RedRecipe);
9593       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9594       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9595       WidenRecipe->eraseFromParent();
9596 
9597       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9598         VPRecipeBase *CompareRecipe =
9599             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9600         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9601                "Expected to replace a VPWidenSC");
9602         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9603                "Expected no remaining users");
9604         CompareRecipe->eraseFromParent();
9605       }
9606       Chain = R;
9607     }
9608   }
9609 
9610   // If tail is folded by masking, introduce selects between the phi
9611   // and the live-out instruction of each reduction, at the end of the latch.
9612   if (CM.foldTailByMasking()) {
9613     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9614       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9615       if (!PhiR || PhiR->isInLoop())
9616         continue;
9617       Builder.setInsertPoint(LatchVPBB);
9618       VPValue *Cond =
9619           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9620       VPValue *Red = PhiR->getBackedgeValue();
9621       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9622     }
9623   }
9624 }
9625 
9626 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9627 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9628                                VPSlotTracker &SlotTracker) const {
9629   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9630   IG->getInsertPos()->printAsOperand(O, false);
9631   O << ", ";
9632   getAddr()->printAsOperand(O, SlotTracker);
9633   VPValue *Mask = getMask();
9634   if (Mask) {
9635     O << ", ";
9636     Mask->printAsOperand(O, SlotTracker);
9637   }
9638 
9639   unsigned OpIdx = 0;
9640   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9641     if (!IG->getMember(i))
9642       continue;
9643     if (getNumStoreOperands() > 0) {
9644       O << "\n" << Indent << "  store ";
9645       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9646       O << " to index " << i;
9647     } else {
9648       O << "\n" << Indent << "  ";
9649       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9650       O << " = load from index " << i;
9651     }
9652     ++OpIdx;
9653   }
9654 }
9655 #endif
9656 
9657 void VPWidenCallRecipe::execute(VPTransformState &State) {
9658   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9659                                   *this, State);
9660 }
9661 
9662 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9663   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9664                                     this, *this, InvariantCond, State);
9665 }
9666 
9667 void VPWidenRecipe::execute(VPTransformState &State) {
9668   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9669 }
9670 
9671 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9672   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9673                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9674                       IsIndexLoopInvariant, State);
9675 }
9676 
9677 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9678   assert(!State.Instance && "Int or FP induction being replicated.");
9679   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9680                                    getTruncInst(), getVPValue(0),
9681                                    getCastValue(), State);
9682 }
9683 
9684 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9685   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9686                                  State);
9687 }
9688 
9689 void VPBlendRecipe::execute(VPTransformState &State) {
9690   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9691   // We know that all PHIs in non-header blocks are converted into
9692   // selects, so we don't have to worry about the insertion order and we
9693   // can just use the builder.
9694   // At this point we generate the predication tree. There may be
9695   // duplications since this is a simple recursive scan, but future
9696   // optimizations will clean it up.
9697 
9698   unsigned NumIncoming = getNumIncomingValues();
9699 
9700   // Generate a sequence of selects of the form:
9701   // SELECT(Mask3, In3,
9702   //        SELECT(Mask2, In2,
9703   //               SELECT(Mask1, In1,
9704   //                      In0)))
9705   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9706   // are essentially undef are taken from In0.
9707   InnerLoopVectorizer::VectorParts Entry(State.UF);
9708   for (unsigned In = 0; In < NumIncoming; ++In) {
9709     for (unsigned Part = 0; Part < State.UF; ++Part) {
9710       // We might have single edge PHIs (blocks) - use an identity
9711       // 'select' for the first PHI operand.
9712       Value *In0 = State.get(getIncomingValue(In), Part);
9713       if (In == 0)
9714         Entry[Part] = In0; // Initialize with the first incoming value.
9715       else {
9716         // Select between the current value and the previous incoming edge
9717         // based on the incoming mask.
9718         Value *Cond = State.get(getMask(In), Part);
9719         Entry[Part] =
9720             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9721       }
9722     }
9723   }
9724   for (unsigned Part = 0; Part < State.UF; ++Part)
9725     State.set(this, Entry[Part], Part);
9726 }
9727 
9728 void VPInterleaveRecipe::execute(VPTransformState &State) {
9729   assert(!State.Instance && "Interleave group being replicated.");
9730   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9731                                       getStoredValues(), getMask());
9732 }
9733 
9734 void VPReductionRecipe::execute(VPTransformState &State) {
9735   assert(!State.Instance && "Reduction being replicated.");
9736   Value *PrevInChain = State.get(getChainOp(), 0);
9737   for (unsigned Part = 0; Part < State.UF; ++Part) {
9738     RecurKind Kind = RdxDesc->getRecurrenceKind();
9739     bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9740     Value *NewVecOp = State.get(getVecOp(), Part);
9741     if (VPValue *Cond = getCondOp()) {
9742       Value *NewCond = State.get(Cond, Part);
9743       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9744       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9745           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9746       Constant *IdenVec =
9747           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9748       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9749       NewVecOp = Select;
9750     }
9751     Value *NewRed;
9752     Value *NextInChain;
9753     if (IsOrdered) {
9754       if (State.VF.isVector())
9755         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9756                                         PrevInChain);
9757       else
9758         NewRed = State.Builder.CreateBinOp(
9759             (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(),
9760             PrevInChain, NewVecOp);
9761       PrevInChain = NewRed;
9762     } else {
9763       PrevInChain = State.get(getChainOp(), Part);
9764       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9765     }
9766     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9767       NextInChain =
9768           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9769                          NewRed, PrevInChain);
9770     } else if (IsOrdered)
9771       NextInChain = NewRed;
9772     else {
9773       NextInChain = State.Builder.CreateBinOp(
9774           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9775           PrevInChain);
9776     }
9777     State.set(this, NextInChain, Part);
9778   }
9779 }
9780 
9781 void VPReplicateRecipe::execute(VPTransformState &State) {
9782   if (State.Instance) { // Generate a single instance.
9783     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9784     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9785                                     *State.Instance, IsPredicated, State);
9786     // Insert scalar instance packing it into a vector.
9787     if (AlsoPack && State.VF.isVector()) {
9788       // If we're constructing lane 0, initialize to start from poison.
9789       if (State.Instance->Lane.isFirstLane()) {
9790         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9791         Value *Poison = PoisonValue::get(
9792             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9793         State.set(this, Poison, State.Instance->Part);
9794       }
9795       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9796     }
9797     return;
9798   }
9799 
9800   // Generate scalar instances for all VF lanes of all UF parts, unless the
9801   // instruction is uniform inwhich case generate only the first lane for each
9802   // of the UF parts.
9803   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9804   assert((!State.VF.isScalable() || IsUniform) &&
9805          "Can't scalarize a scalable vector");
9806   for (unsigned Part = 0; Part < State.UF; ++Part)
9807     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9808       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9809                                       VPIteration(Part, Lane), IsPredicated,
9810                                       State);
9811 }
9812 
9813 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9814   assert(State.Instance && "Branch on Mask works only on single instance.");
9815 
9816   unsigned Part = State.Instance->Part;
9817   unsigned Lane = State.Instance->Lane.getKnownLane();
9818 
9819   Value *ConditionBit = nullptr;
9820   VPValue *BlockInMask = getMask();
9821   if (BlockInMask) {
9822     ConditionBit = State.get(BlockInMask, Part);
9823     if (ConditionBit->getType()->isVectorTy())
9824       ConditionBit = State.Builder.CreateExtractElement(
9825           ConditionBit, State.Builder.getInt32(Lane));
9826   } else // Block in mask is all-one.
9827     ConditionBit = State.Builder.getTrue();
9828 
9829   // Replace the temporary unreachable terminator with a new conditional branch,
9830   // whose two destinations will be set later when they are created.
9831   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9832   assert(isa<UnreachableInst>(CurrentTerminator) &&
9833          "Expected to replace unreachable terminator with conditional branch.");
9834   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9835   CondBr->setSuccessor(0, nullptr);
9836   ReplaceInstWithInst(CurrentTerminator, CondBr);
9837 }
9838 
9839 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9840   assert(State.Instance && "Predicated instruction PHI works per instance.");
9841   Instruction *ScalarPredInst =
9842       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9843   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9844   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9845   assert(PredicatingBB && "Predicated block has no single predecessor.");
9846   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9847          "operand must be VPReplicateRecipe");
9848 
9849   // By current pack/unpack logic we need to generate only a single phi node: if
9850   // a vector value for the predicated instruction exists at this point it means
9851   // the instruction has vector users only, and a phi for the vector value is
9852   // needed. In this case the recipe of the predicated instruction is marked to
9853   // also do that packing, thereby "hoisting" the insert-element sequence.
9854   // Otherwise, a phi node for the scalar value is needed.
9855   unsigned Part = State.Instance->Part;
9856   if (State.hasVectorValue(getOperand(0), Part)) {
9857     Value *VectorValue = State.get(getOperand(0), Part);
9858     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9859     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9860     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9861     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9862     if (State.hasVectorValue(this, Part))
9863       State.reset(this, VPhi, Part);
9864     else
9865       State.set(this, VPhi, Part);
9866     // NOTE: Currently we need to update the value of the operand, so the next
9867     // predicated iteration inserts its generated value in the correct vector.
9868     State.reset(getOperand(0), VPhi, Part);
9869   } else {
9870     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9871     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9872     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9873                      PredicatingBB);
9874     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9875     if (State.hasScalarValue(this, *State.Instance))
9876       State.reset(this, Phi, *State.Instance);
9877     else
9878       State.set(this, Phi, *State.Instance);
9879     // NOTE: Currently we need to update the value of the operand, so the next
9880     // predicated iteration inserts its generated value in the correct vector.
9881     State.reset(getOperand(0), Phi, *State.Instance);
9882   }
9883 }
9884 
9885 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9886   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9887   State.ILV->vectorizeMemoryInstruction(
9888       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9889       StoredValue, getMask());
9890 }
9891 
9892 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9893 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9894 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9895 // for predication.
9896 static ScalarEpilogueLowering getScalarEpilogueLowering(
9897     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9898     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9899     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9900     LoopVectorizationLegality &LVL) {
9901   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9902   // don't look at hints or options, and don't request a scalar epilogue.
9903   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9904   // LoopAccessInfo (due to code dependency and not being able to reliably get
9905   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9906   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9907   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9908   // back to the old way and vectorize with versioning when forced. See D81345.)
9909   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9910                                                       PGSOQueryType::IRPass) &&
9911                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9912     return CM_ScalarEpilogueNotAllowedOptSize;
9913 
9914   // 2) If set, obey the directives
9915   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9916     switch (PreferPredicateOverEpilogue) {
9917     case PreferPredicateTy::ScalarEpilogue:
9918       return CM_ScalarEpilogueAllowed;
9919     case PreferPredicateTy::PredicateElseScalarEpilogue:
9920       return CM_ScalarEpilogueNotNeededUsePredicate;
9921     case PreferPredicateTy::PredicateOrDontVectorize:
9922       return CM_ScalarEpilogueNotAllowedUsePredicate;
9923     };
9924   }
9925 
9926   // 3) If set, obey the hints
9927   switch (Hints.getPredicate()) {
9928   case LoopVectorizeHints::FK_Enabled:
9929     return CM_ScalarEpilogueNotNeededUsePredicate;
9930   case LoopVectorizeHints::FK_Disabled:
9931     return CM_ScalarEpilogueAllowed;
9932   };
9933 
9934   // 4) if the TTI hook indicates this is profitable, request predication.
9935   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9936                                        LVL.getLAI()))
9937     return CM_ScalarEpilogueNotNeededUsePredicate;
9938 
9939   return CM_ScalarEpilogueAllowed;
9940 }
9941 
9942 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9943   // If Values have been set for this Def return the one relevant for \p Part.
9944   if (hasVectorValue(Def, Part))
9945     return Data.PerPartOutput[Def][Part];
9946 
9947   if (!hasScalarValue(Def, {Part, 0})) {
9948     Value *IRV = Def->getLiveInIRValue();
9949     Value *B = ILV->getBroadcastInstrs(IRV);
9950     set(Def, B, Part);
9951     return B;
9952   }
9953 
9954   Value *ScalarValue = get(Def, {Part, 0});
9955   // If we aren't vectorizing, we can just copy the scalar map values over
9956   // to the vector map.
9957   if (VF.isScalar()) {
9958     set(Def, ScalarValue, Part);
9959     return ScalarValue;
9960   }
9961 
9962   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9963   bool IsUniform = RepR && RepR->isUniform();
9964 
9965   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9966   // Check if there is a scalar value for the selected lane.
9967   if (!hasScalarValue(Def, {Part, LastLane})) {
9968     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9969     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9970            "unexpected recipe found to be invariant");
9971     IsUniform = true;
9972     LastLane = 0;
9973   }
9974 
9975   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9976   // Set the insert point after the last scalarized instruction or after the
9977   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
9978   // will directly follow the scalar definitions.
9979   auto OldIP = Builder.saveIP();
9980   auto NewIP =
9981       isa<PHINode>(LastInst)
9982           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
9983           : std::next(BasicBlock::iterator(LastInst));
9984   Builder.SetInsertPoint(&*NewIP);
9985 
9986   // However, if we are vectorizing, we need to construct the vector values.
9987   // If the value is known to be uniform after vectorization, we can just
9988   // broadcast the scalar value corresponding to lane zero for each unroll
9989   // iteration. Otherwise, we construct the vector values using
9990   // insertelement instructions. Since the resulting vectors are stored in
9991   // State, we will only generate the insertelements once.
9992   Value *VectorValue = nullptr;
9993   if (IsUniform) {
9994     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9995     set(Def, VectorValue, Part);
9996   } else {
9997     // Initialize packing with insertelements to start from undef.
9998     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9999     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10000     set(Def, Undef, Part);
10001     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10002       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10003     VectorValue = get(Def, Part);
10004   }
10005   Builder.restoreIP(OldIP);
10006   return VectorValue;
10007 }
10008 
10009 // Process the loop in the VPlan-native vectorization path. This path builds
10010 // VPlan upfront in the vectorization pipeline, which allows to apply
10011 // VPlan-to-VPlan transformations from the very beginning without modifying the
10012 // input LLVM IR.
10013 static bool processLoopInVPlanNativePath(
10014     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10015     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10016     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10017     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10018     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10019     LoopVectorizationRequirements &Requirements) {
10020 
10021   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10022     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10023     return false;
10024   }
10025   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10026   Function *F = L->getHeader()->getParent();
10027   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10028 
10029   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10030       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10031 
10032   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10033                                 &Hints, IAI);
10034   // Use the planner for outer loop vectorization.
10035   // TODO: CM is not used at this point inside the planner. Turn CM into an
10036   // optional argument if we don't need it in the future.
10037   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10038                                Requirements, ORE);
10039 
10040   // Get user vectorization factor.
10041   ElementCount UserVF = Hints.getWidth();
10042 
10043   CM.collectElementTypesForWidening();
10044 
10045   // Plan how to best vectorize, return the best VF and its cost.
10046   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10047 
10048   // If we are stress testing VPlan builds, do not attempt to generate vector
10049   // code. Masked vector code generation support will follow soon.
10050   // Also, do not attempt to vectorize if no vector code will be produced.
10051   if (VPlanBuildStressTest || EnableVPlanPredication ||
10052       VectorizationFactor::Disabled() == VF)
10053     return false;
10054 
10055   LVP.setBestPlan(VF.Width, 1);
10056 
10057   {
10058     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10059                              F->getParent()->getDataLayout());
10060     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10061                            &CM, BFI, PSI, Checks);
10062     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10063                       << L->getHeader()->getParent()->getName() << "\"\n");
10064     LVP.executePlan(LB, DT);
10065   }
10066 
10067   // Mark the loop as already vectorized to avoid vectorizing again.
10068   Hints.setAlreadyVectorized();
10069   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10070   return true;
10071 }
10072 
10073 // Emit a remark if there are stores to floats that required a floating point
10074 // extension. If the vectorized loop was generated with floating point there
10075 // will be a performance penalty from the conversion overhead and the change in
10076 // the vector width.
10077 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10078   SmallVector<Instruction *, 4> Worklist;
10079   for (BasicBlock *BB : L->getBlocks()) {
10080     for (Instruction &Inst : *BB) {
10081       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10082         if (S->getValueOperand()->getType()->isFloatTy())
10083           Worklist.push_back(S);
10084       }
10085     }
10086   }
10087 
10088   // Traverse the floating point stores upwards searching, for floating point
10089   // conversions.
10090   SmallPtrSet<const Instruction *, 4> Visited;
10091   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10092   while (!Worklist.empty()) {
10093     auto *I = Worklist.pop_back_val();
10094     if (!L->contains(I))
10095       continue;
10096     if (!Visited.insert(I).second)
10097       continue;
10098 
10099     // Emit a remark if the floating point store required a floating
10100     // point conversion.
10101     // TODO: More work could be done to identify the root cause such as a
10102     // constant or a function return type and point the user to it.
10103     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10104       ORE->emit([&]() {
10105         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10106                                           I->getDebugLoc(), L->getHeader())
10107                << "floating point conversion changes vector width. "
10108                << "Mixed floating point precision requires an up/down "
10109                << "cast that will negatively impact performance.";
10110       });
10111 
10112     for (Use &Op : I->operands())
10113       if (auto *OpI = dyn_cast<Instruction>(Op))
10114         Worklist.push_back(OpI);
10115   }
10116 }
10117 
10118 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10119     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10120                                !EnableLoopInterleaving),
10121       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10122                               !EnableLoopVectorization) {}
10123 
10124 bool LoopVectorizePass::processLoop(Loop *L) {
10125   assert((EnableVPlanNativePath || L->isInnermost()) &&
10126          "VPlan-native path is not enabled. Only process inner loops.");
10127 
10128 #ifndef NDEBUG
10129   const std::string DebugLocStr = getDebugLocString(L);
10130 #endif /* NDEBUG */
10131 
10132   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10133                     << L->getHeader()->getParent()->getName() << "\" from "
10134                     << DebugLocStr << "\n");
10135 
10136   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10137 
10138   LLVM_DEBUG(
10139       dbgs() << "LV: Loop hints:"
10140              << " force="
10141              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10142                      ? "disabled"
10143                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10144                             ? "enabled"
10145                             : "?"))
10146              << " width=" << Hints.getWidth()
10147              << " interleave=" << Hints.getInterleave() << "\n");
10148 
10149   // Function containing loop
10150   Function *F = L->getHeader()->getParent();
10151 
10152   // Looking at the diagnostic output is the only way to determine if a loop
10153   // was vectorized (other than looking at the IR or machine code), so it
10154   // is important to generate an optimization remark for each loop. Most of
10155   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10156   // generated as OptimizationRemark and OptimizationRemarkMissed are
10157   // less verbose reporting vectorized loops and unvectorized loops that may
10158   // benefit from vectorization, respectively.
10159 
10160   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10161     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10162     return false;
10163   }
10164 
10165   PredicatedScalarEvolution PSE(*SE, *L);
10166 
10167   // Check if it is legal to vectorize the loop.
10168   LoopVectorizationRequirements Requirements;
10169   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10170                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10171   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10172     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10173     Hints.emitRemarkWithHints();
10174     return false;
10175   }
10176 
10177   // Check the function attributes and profiles to find out if this function
10178   // should be optimized for size.
10179   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10180       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10181 
10182   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10183   // here. They may require CFG and instruction level transformations before
10184   // even evaluating whether vectorization is profitable. Since we cannot modify
10185   // the incoming IR, we need to build VPlan upfront in the vectorization
10186   // pipeline.
10187   if (!L->isInnermost())
10188     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10189                                         ORE, BFI, PSI, Hints, Requirements);
10190 
10191   assert(L->isInnermost() && "Inner loop expected.");
10192 
10193   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10194   // count by optimizing for size, to minimize overheads.
10195   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10196   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10197     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10198                       << "This loop is worth vectorizing only if no scalar "
10199                       << "iteration overheads are incurred.");
10200     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10201       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10202     else {
10203       LLVM_DEBUG(dbgs() << "\n");
10204       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10205     }
10206   }
10207 
10208   // Check the function attributes to see if implicit floats are allowed.
10209   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10210   // an integer loop and the vector instructions selected are purely integer
10211   // vector instructions?
10212   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10213     reportVectorizationFailure(
10214         "Can't vectorize when the NoImplicitFloat attribute is used",
10215         "loop not vectorized due to NoImplicitFloat attribute",
10216         "NoImplicitFloat", ORE, L);
10217     Hints.emitRemarkWithHints();
10218     return false;
10219   }
10220 
10221   // Check if the target supports potentially unsafe FP vectorization.
10222   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10223   // for the target we're vectorizing for, to make sure none of the
10224   // additional fp-math flags can help.
10225   if (Hints.isPotentiallyUnsafe() &&
10226       TTI->isFPVectorizationPotentiallyUnsafe()) {
10227     reportVectorizationFailure(
10228         "Potentially unsafe FP op prevents vectorization",
10229         "loop not vectorized due to unsafe FP support.",
10230         "UnsafeFP", ORE, L);
10231     Hints.emitRemarkWithHints();
10232     return false;
10233   }
10234 
10235   bool AllowOrderedReductions;
10236   // If the flag is set, use that instead and override the TTI behaviour.
10237   if (ForceOrderedReductions.getNumOccurrences() > 0)
10238     AllowOrderedReductions = ForceOrderedReductions;
10239   else
10240     AllowOrderedReductions = TTI->enableOrderedReductions();
10241   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10242     ORE->emit([&]() {
10243       auto *ExactFPMathInst = Requirements.getExactFPInst();
10244       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10245                                                  ExactFPMathInst->getDebugLoc(),
10246                                                  ExactFPMathInst->getParent())
10247              << "loop not vectorized: cannot prove it is safe to reorder "
10248                 "floating-point operations";
10249     });
10250     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10251                          "reorder floating-point operations\n");
10252     Hints.emitRemarkWithHints();
10253     return false;
10254   }
10255 
10256   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10257   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10258 
10259   // If an override option has been passed in for interleaved accesses, use it.
10260   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10261     UseInterleaved = EnableInterleavedMemAccesses;
10262 
10263   // Analyze interleaved memory accesses.
10264   if (UseInterleaved) {
10265     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10266   }
10267 
10268   // Use the cost model.
10269   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10270                                 F, &Hints, IAI);
10271   CM.collectValuesToIgnore();
10272   CM.collectElementTypesForWidening();
10273 
10274   // Use the planner for vectorization.
10275   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10276                                Requirements, ORE);
10277 
10278   // Get user vectorization factor and interleave count.
10279   ElementCount UserVF = Hints.getWidth();
10280   unsigned UserIC = Hints.getInterleave();
10281 
10282   // Plan how to best vectorize, return the best VF and its cost.
10283   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10284 
10285   VectorizationFactor VF = VectorizationFactor::Disabled();
10286   unsigned IC = 1;
10287 
10288   if (MaybeVF) {
10289     VF = *MaybeVF;
10290     // Select the interleave count.
10291     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10292   }
10293 
10294   // Identify the diagnostic messages that should be produced.
10295   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10296   bool VectorizeLoop = true, InterleaveLoop = true;
10297   if (VF.Width.isScalar()) {
10298     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10299     VecDiagMsg = std::make_pair(
10300         "VectorizationNotBeneficial",
10301         "the cost-model indicates that vectorization is not beneficial");
10302     VectorizeLoop = false;
10303   }
10304 
10305   if (!MaybeVF && UserIC > 1) {
10306     // Tell the user interleaving was avoided up-front, despite being explicitly
10307     // requested.
10308     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10309                          "interleaving should be avoided up front\n");
10310     IntDiagMsg = std::make_pair(
10311         "InterleavingAvoided",
10312         "Ignoring UserIC, because interleaving was avoided up front");
10313     InterleaveLoop = false;
10314   } else if (IC == 1 && UserIC <= 1) {
10315     // Tell the user interleaving is not beneficial.
10316     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10317     IntDiagMsg = std::make_pair(
10318         "InterleavingNotBeneficial",
10319         "the cost-model indicates that interleaving is not beneficial");
10320     InterleaveLoop = false;
10321     if (UserIC == 1) {
10322       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10323       IntDiagMsg.second +=
10324           " and is explicitly disabled or interleave count is set to 1";
10325     }
10326   } else if (IC > 1 && UserIC == 1) {
10327     // Tell the user interleaving is beneficial, but it explicitly disabled.
10328     LLVM_DEBUG(
10329         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10330     IntDiagMsg = std::make_pair(
10331         "InterleavingBeneficialButDisabled",
10332         "the cost-model indicates that interleaving is beneficial "
10333         "but is explicitly disabled or interleave count is set to 1");
10334     InterleaveLoop = false;
10335   }
10336 
10337   // Override IC if user provided an interleave count.
10338   IC = UserIC > 0 ? UserIC : IC;
10339 
10340   // Emit diagnostic messages, if any.
10341   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10342   if (!VectorizeLoop && !InterleaveLoop) {
10343     // Do not vectorize or interleaving the loop.
10344     ORE->emit([&]() {
10345       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10346                                       L->getStartLoc(), L->getHeader())
10347              << VecDiagMsg.second;
10348     });
10349     ORE->emit([&]() {
10350       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10351                                       L->getStartLoc(), L->getHeader())
10352              << IntDiagMsg.second;
10353     });
10354     return false;
10355   } else if (!VectorizeLoop && InterleaveLoop) {
10356     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10357     ORE->emit([&]() {
10358       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10359                                         L->getStartLoc(), L->getHeader())
10360              << VecDiagMsg.second;
10361     });
10362   } else if (VectorizeLoop && !InterleaveLoop) {
10363     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10364                       << ") in " << DebugLocStr << '\n');
10365     ORE->emit([&]() {
10366       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10367                                         L->getStartLoc(), L->getHeader())
10368              << IntDiagMsg.second;
10369     });
10370   } else if (VectorizeLoop && InterleaveLoop) {
10371     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10372                       << ") in " << DebugLocStr << '\n');
10373     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10374   }
10375 
10376   bool DisableRuntimeUnroll = false;
10377   MDNode *OrigLoopID = L->getLoopID();
10378   {
10379     // Optimistically generate runtime checks. Drop them if they turn out to not
10380     // be profitable. Limit the scope of Checks, so the cleanup happens
10381     // immediately after vector codegeneration is done.
10382     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10383                              F->getParent()->getDataLayout());
10384     if (!VF.Width.isScalar() || IC > 1)
10385       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10386     LVP.setBestPlan(VF.Width, IC);
10387 
10388     using namespace ore;
10389     if (!VectorizeLoop) {
10390       assert(IC > 1 && "interleave count should not be 1 or 0");
10391       // If we decided that it is not legal to vectorize the loop, then
10392       // interleave it.
10393       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10394                                  &CM, BFI, PSI, Checks);
10395       LVP.executePlan(Unroller, DT);
10396 
10397       ORE->emit([&]() {
10398         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10399                                   L->getHeader())
10400                << "interleaved loop (interleaved count: "
10401                << NV("InterleaveCount", IC) << ")";
10402       });
10403     } else {
10404       // If we decided that it is *legal* to vectorize the loop, then do it.
10405 
10406       // Consider vectorizing the epilogue too if it's profitable.
10407       VectorizationFactor EpilogueVF =
10408           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10409       if (EpilogueVF.Width.isVector()) {
10410 
10411         // The first pass vectorizes the main loop and creates a scalar epilogue
10412         // to be vectorized by executing the plan (potentially with a different
10413         // factor) again shortly afterwards.
10414         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
10415                                           EpilogueVF.Width.getKnownMinValue(),
10416                                           1);
10417         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10418                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10419 
10420         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10421         LVP.executePlan(MainILV, DT);
10422         ++LoopsVectorized;
10423 
10424         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10425         formLCSSARecursively(*L, *DT, LI, SE);
10426 
10427         // Second pass vectorizes the epilogue and adjusts the control flow
10428         // edges from the first pass.
10429         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10430         EPI.MainLoopVF = EPI.EpilogueVF;
10431         EPI.MainLoopUF = EPI.EpilogueUF;
10432         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10433                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10434                                                  Checks);
10435         LVP.executePlan(EpilogILV, DT);
10436         ++LoopsEpilogueVectorized;
10437 
10438         if (!MainILV.areSafetyChecksAdded())
10439           DisableRuntimeUnroll = true;
10440       } else {
10441         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10442                                &LVL, &CM, BFI, PSI, Checks);
10443         LVP.executePlan(LB, DT);
10444         ++LoopsVectorized;
10445 
10446         // Add metadata to disable runtime unrolling a scalar loop when there
10447         // are no runtime checks about strides and memory. A scalar loop that is
10448         // rarely used is not worth unrolling.
10449         if (!LB.areSafetyChecksAdded())
10450           DisableRuntimeUnroll = true;
10451       }
10452       // Report the vectorization decision.
10453       ORE->emit([&]() {
10454         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10455                                   L->getHeader())
10456                << "vectorized loop (vectorization width: "
10457                << NV("VectorizationFactor", VF.Width)
10458                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10459       });
10460     }
10461 
10462     if (ORE->allowExtraAnalysis(LV_NAME))
10463       checkMixedPrecision(L, ORE);
10464   }
10465 
10466   Optional<MDNode *> RemainderLoopID =
10467       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10468                                       LLVMLoopVectorizeFollowupEpilogue});
10469   if (RemainderLoopID.hasValue()) {
10470     L->setLoopID(RemainderLoopID.getValue());
10471   } else {
10472     if (DisableRuntimeUnroll)
10473       AddRuntimeUnrollDisableMetaData(L);
10474 
10475     // Mark the loop as already vectorized to avoid vectorizing again.
10476     Hints.setAlreadyVectorized();
10477   }
10478 
10479   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10480   return true;
10481 }
10482 
10483 LoopVectorizeResult LoopVectorizePass::runImpl(
10484     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10485     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10486     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10487     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10488     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10489   SE = &SE_;
10490   LI = &LI_;
10491   TTI = &TTI_;
10492   DT = &DT_;
10493   BFI = &BFI_;
10494   TLI = TLI_;
10495   AA = &AA_;
10496   AC = &AC_;
10497   GetLAA = &GetLAA_;
10498   DB = &DB_;
10499   ORE = &ORE_;
10500   PSI = PSI_;
10501 
10502   // Don't attempt if
10503   // 1. the target claims to have no vector registers, and
10504   // 2. interleaving won't help ILP.
10505   //
10506   // The second condition is necessary because, even if the target has no
10507   // vector registers, loop vectorization may still enable scalar
10508   // interleaving.
10509   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10510       TTI->getMaxInterleaveFactor(1) < 2)
10511     return LoopVectorizeResult(false, false);
10512 
10513   bool Changed = false, CFGChanged = false;
10514 
10515   // The vectorizer requires loops to be in simplified form.
10516   // Since simplification may add new inner loops, it has to run before the
10517   // legality and profitability checks. This means running the loop vectorizer
10518   // will simplify all loops, regardless of whether anything end up being
10519   // vectorized.
10520   for (auto &L : *LI)
10521     Changed |= CFGChanged |=
10522         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10523 
10524   // Build up a worklist of inner-loops to vectorize. This is necessary as
10525   // the act of vectorizing or partially unrolling a loop creates new loops
10526   // and can invalidate iterators across the loops.
10527   SmallVector<Loop *, 8> Worklist;
10528 
10529   for (Loop *L : *LI)
10530     collectSupportedLoops(*L, LI, ORE, Worklist);
10531 
10532   LoopsAnalyzed += Worklist.size();
10533 
10534   // Now walk the identified inner loops.
10535   while (!Worklist.empty()) {
10536     Loop *L = Worklist.pop_back_val();
10537 
10538     // For the inner loops we actually process, form LCSSA to simplify the
10539     // transform.
10540     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10541 
10542     Changed |= CFGChanged |= processLoop(L);
10543   }
10544 
10545   // Process each loop nest in the function.
10546   return LoopVectorizeResult(Changed, CFGChanged);
10547 }
10548 
10549 PreservedAnalyses LoopVectorizePass::run(Function &F,
10550                                          FunctionAnalysisManager &AM) {
10551     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10552     auto &LI = AM.getResult<LoopAnalysis>(F);
10553     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10554     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10555     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10556     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10557     auto &AA = AM.getResult<AAManager>(F);
10558     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10559     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10560     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10561 
10562     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10563     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10564         [&](Loop &L) -> const LoopAccessInfo & {
10565       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10566                                         TLI, TTI, nullptr, nullptr};
10567       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10568     };
10569     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10570     ProfileSummaryInfo *PSI =
10571         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10572     LoopVectorizeResult Result =
10573         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10574     if (!Result.MadeAnyChange)
10575       return PreservedAnalyses::all();
10576     PreservedAnalyses PA;
10577 
10578     // We currently do not preserve loopinfo/dominator analyses with outer loop
10579     // vectorization. Until this is addressed, mark these analyses as preserved
10580     // only for non-VPlan-native path.
10581     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10582     if (!EnableVPlanNativePath) {
10583       PA.preserve<LoopAnalysis>();
10584       PA.preserve<DominatorTreeAnalysis>();
10585     }
10586     if (!Result.MadeCFGChange)
10587       PA.preserveSet<CFGAnalyses>();
10588     return PA;
10589 }
10590