1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanTransforms.h"
62 #include "llvm/ADT/APInt.h"
63 #include "llvm/ADT/ArrayRef.h"
64 #include "llvm/ADT/DenseMap.h"
65 #include "llvm/ADT/DenseMapInfo.h"
66 #include "llvm/ADT/Hashing.h"
67 #include "llvm/ADT/MapVector.h"
68 #include "llvm/ADT/None.h"
69 #include "llvm/ADT/Optional.h"
70 #include "llvm/ADT/STLExtras.h"
71 #include "llvm/ADT/SmallPtrSet.h"
72 #include "llvm/ADT/SmallSet.h"
73 #include "llvm/ADT/SmallVector.h"
74 #include "llvm/ADT/Statistic.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/ADT/Twine.h"
77 #include "llvm/ADT/iterator_range.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/BasicAliasAnalysis.h"
80 #include "llvm/Analysis/BlockFrequencyInfo.h"
81 #include "llvm/Analysis/CFG.h"
82 #include "llvm/Analysis/CodeMetrics.h"
83 #include "llvm/Analysis/DemandedBits.h"
84 #include "llvm/Analysis/GlobalsModRef.h"
85 #include "llvm/Analysis/LoopAccessAnalysis.h"
86 #include "llvm/Analysis/LoopAnalysisManager.h"
87 #include "llvm/Analysis/LoopInfo.h"
88 #include "llvm/Analysis/LoopIterator.h"
89 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
90 #include "llvm/Analysis/ProfileSummaryInfo.h"
91 #include "llvm/Analysis/ScalarEvolution.h"
92 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
93 #include "llvm/Analysis/TargetLibraryInfo.h"
94 #include "llvm/Analysis/TargetTransformInfo.h"
95 #include "llvm/Analysis/VectorUtils.h"
96 #include "llvm/IR/Attributes.h"
97 #include "llvm/IR/BasicBlock.h"
98 #include "llvm/IR/CFG.h"
99 #include "llvm/IR/Constant.h"
100 #include "llvm/IR/Constants.h"
101 #include "llvm/IR/DataLayout.h"
102 #include "llvm/IR/DebugInfoMetadata.h"
103 #include "llvm/IR/DebugLoc.h"
104 #include "llvm/IR/DerivedTypes.h"
105 #include "llvm/IR/DiagnosticInfo.h"
106 #include "llvm/IR/Dominators.h"
107 #include "llvm/IR/Function.h"
108 #include "llvm/IR/IRBuilder.h"
109 #include "llvm/IR/InstrTypes.h"
110 #include "llvm/IR/Instruction.h"
111 #include "llvm/IR/Instructions.h"
112 #include "llvm/IR/IntrinsicInst.h"
113 #include "llvm/IR/Intrinsics.h"
114 #include "llvm/IR/Metadata.h"
115 #include "llvm/IR/Module.h"
116 #include "llvm/IR/Operator.h"
117 #include "llvm/IR/PatternMatch.h"
118 #include "llvm/IR/Type.h"
119 #include "llvm/IR/Use.h"
120 #include "llvm/IR/User.h"
121 #include "llvm/IR/Value.h"
122 #include "llvm/IR/ValueHandle.h"
123 #include "llvm/IR/Verifier.h"
124 #include "llvm/InitializePasses.h"
125 #include "llvm/Pass.h"
126 #include "llvm/Support/Casting.h"
127 #include "llvm/Support/CommandLine.h"
128 #include "llvm/Support/Compiler.h"
129 #include "llvm/Support/Debug.h"
130 #include "llvm/Support/ErrorHandling.h"
131 #include "llvm/Support/InstructionCost.h"
132 #include "llvm/Support/MathExtras.h"
133 #include "llvm/Support/raw_ostream.h"
134 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
135 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
136 #include "llvm/Transforms/Utils/LoopSimplify.h"
137 #include "llvm/Transforms/Utils/LoopUtils.h"
138 #include "llvm/Transforms/Utils/LoopVersioning.h"
139 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
140 #include "llvm/Transforms/Utils/SizeOpts.h"
141 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
142 #include <algorithm>
143 #include <cassert>
144 #include <cstdint>
145 #include <functional>
146 #include <iterator>
147 #include <limits>
148 #include <map>
149 #include <memory>
150 #include <string>
151 #include <tuple>
152 #include <utility>
153 
154 using namespace llvm;
155 
156 #define LV_NAME "loop-vectorize"
157 #define DEBUG_TYPE LV_NAME
158 
159 #ifndef NDEBUG
160 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
161 #endif
162 
163 /// @{
164 /// Metadata attribute names
165 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
166 const char LLVMLoopVectorizeFollowupVectorized[] =
167     "llvm.loop.vectorize.followup_vectorized";
168 const char LLVMLoopVectorizeFollowupEpilogue[] =
169     "llvm.loop.vectorize.followup_epilogue";
170 /// @}
171 
172 STATISTIC(LoopsVectorized, "Number of loops vectorized");
173 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
174 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
175 
176 static cl::opt<bool> EnableEpilogueVectorization(
177     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
178     cl::desc("Enable vectorization of epilogue loops."));
179 
180 static cl::opt<unsigned> EpilogueVectorizationForceVF(
181     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
182     cl::desc("When epilogue vectorization is enabled, and a value greater than "
183              "1 is specified, forces the given VF for all applicable epilogue "
184              "loops."));
185 
186 static cl::opt<unsigned> EpilogueVectorizationMinVF(
187     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
188     cl::desc("Only loops with vectorization factor equal to or larger than "
189              "the specified value are considered for epilogue vectorization."));
190 
191 /// Loops with a known constant trip count below this number are vectorized only
192 /// if no scalar iteration overheads are incurred.
193 static cl::opt<unsigned> TinyTripCountVectorThreshold(
194     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
195     cl::desc("Loops with a constant trip count that is smaller than this "
196              "value are vectorized only if no scalar iteration overheads "
197              "are incurred."));
198 
199 static cl::opt<unsigned> VectorizeMemoryCheckThreshold(
200     "vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
201     cl::desc("The maximum allowed number of runtime memory checks"));
202 
203 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
204 // that predication is preferred, and this lists all options. I.e., the
205 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
206 // and predicate the instructions accordingly. If tail-folding fails, there are
207 // different fallback strategies depending on these values:
208 namespace PreferPredicateTy {
209   enum Option {
210     ScalarEpilogue = 0,
211     PredicateElseScalarEpilogue,
212     PredicateOrDontVectorize
213   };
214 } // namespace PreferPredicateTy
215 
216 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
217     "prefer-predicate-over-epilogue",
218     cl::init(PreferPredicateTy::ScalarEpilogue),
219     cl::Hidden,
220     cl::desc("Tail-folding and predication preferences over creating a scalar "
221              "epilogue loop."),
222     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
223                          "scalar-epilogue",
224                          "Don't tail-predicate loops, create scalar epilogue"),
225               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
226                          "predicate-else-scalar-epilogue",
227                          "prefer tail-folding, create scalar epilogue if tail "
228                          "folding fails."),
229               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
230                          "predicate-dont-vectorize",
231                          "prefers tail-folding, don't attempt vectorization if "
232                          "tail-folding fails.")));
233 
234 static cl::opt<bool> MaximizeBandwidth(
235     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
236     cl::desc("Maximize bandwidth when selecting vectorization factor which "
237              "will be determined by the smallest type in loop."));
238 
239 static cl::opt<bool> EnableInterleavedMemAccesses(
240     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
241     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
242 
243 /// An interleave-group may need masking if it resides in a block that needs
244 /// predication, or in order to mask away gaps.
245 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
246     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
247     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
248 
249 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
250     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
251     cl::desc("We don't interleave loops with a estimated constant trip count "
252              "below this number"));
253 
254 static cl::opt<unsigned> ForceTargetNumScalarRegs(
255     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
256     cl::desc("A flag that overrides the target's number of scalar registers."));
257 
258 static cl::opt<unsigned> ForceTargetNumVectorRegs(
259     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
260     cl::desc("A flag that overrides the target's number of vector registers."));
261 
262 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
263     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
264     cl::desc("A flag that overrides the target's max interleave factor for "
265              "scalar loops."));
266 
267 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
268     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
269     cl::desc("A flag that overrides the target's max interleave factor for "
270              "vectorized loops."));
271 
272 static cl::opt<unsigned> ForceTargetInstructionCost(
273     "force-target-instruction-cost", cl::init(0), cl::Hidden,
274     cl::desc("A flag that overrides the target's expected cost for "
275              "an instruction to a single constant value. Mostly "
276              "useful for getting consistent testing."));
277 
278 static cl::opt<bool> ForceTargetSupportsScalableVectors(
279     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
280     cl::desc(
281         "Pretend that scalable vectors are supported, even if the target does "
282         "not support them. This flag should only be used for testing."));
283 
284 static cl::opt<unsigned> SmallLoopCost(
285     "small-loop-cost", cl::init(20), cl::Hidden,
286     cl::desc(
287         "The cost of a loop that is considered 'small' by the interleaver."));
288 
289 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
290     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
291     cl::desc("Enable the use of the block frequency analysis to access PGO "
292              "heuristics minimizing code growth in cold regions and being more "
293              "aggressive in hot regions."));
294 
295 // Runtime interleave loops for load/store throughput.
296 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
297     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
298     cl::desc(
299         "Enable runtime interleaving until load/store ports are saturated"));
300 
301 /// Interleave small loops with scalar reductions.
302 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
303     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
304     cl::desc("Enable interleaving for loops with small iteration counts that "
305              "contain scalar reductions to expose ILP."));
306 
307 /// The number of stores in a loop that are allowed to need predication.
308 static cl::opt<unsigned> NumberOfStoresToPredicate(
309     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
310     cl::desc("Max number of stores to be predicated behind an if."));
311 
312 static cl::opt<bool> EnableIndVarRegisterHeur(
313     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
314     cl::desc("Count the induction variable only once when interleaving"));
315 
316 static cl::opt<bool> EnableCondStoresVectorization(
317     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
318     cl::desc("Enable if predication of stores during vectorization."));
319 
320 static cl::opt<unsigned> MaxNestedScalarReductionIC(
321     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
322     cl::desc("The maximum interleave count to use when interleaving a scalar "
323              "reduction in a nested loop."));
324 
325 static cl::opt<bool>
326     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
327                            cl::Hidden,
328                            cl::desc("Prefer in-loop vector reductions, "
329                                     "overriding the targets preference."));
330 
331 static cl::opt<bool> ForceOrderedReductions(
332     "force-ordered-reductions", cl::init(false), cl::Hidden,
333     cl::desc("Enable the vectorisation of loops with in-order (strict) "
334              "FP reductions"));
335 
336 static cl::opt<bool> PreferPredicatedReductionSelect(
337     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
338     cl::desc(
339         "Prefer predicating a reduction operation over an after loop select."));
340 
341 cl::opt<bool> EnableVPlanNativePath(
342     "enable-vplan-native-path", cl::init(false), cl::Hidden,
343     cl::desc("Enable VPlan-native vectorization path with "
344              "support for outer loop vectorization."));
345 
346 // This flag enables the stress testing of the VPlan H-CFG construction in the
347 // VPlan-native vectorization path. It must be used in conjuction with
348 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
349 // verification of the H-CFGs built.
350 static cl::opt<bool> VPlanBuildStressTest(
351     "vplan-build-stress-test", cl::init(false), cl::Hidden,
352     cl::desc(
353         "Build VPlan for every supported loop nest in the function and bail "
354         "out right after the build (stress test the VPlan H-CFG construction "
355         "in the VPlan-native vectorization path)."));
356 
357 cl::opt<bool> llvm::EnableLoopInterleaving(
358     "interleave-loops", cl::init(true), cl::Hidden,
359     cl::desc("Enable loop interleaving in Loop vectorization passes"));
360 cl::opt<bool> llvm::EnableLoopVectorization(
361     "vectorize-loops", cl::init(true), cl::Hidden,
362     cl::desc("Run the Loop vectorization passes"));
363 
364 cl::opt<bool> PrintVPlansInDotFormat(
365     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
366     cl::desc("Use dot format instead of plain text when dumping VPlans"));
367 
368 /// A helper function that returns true if the given type is irregular. The
369 /// type is irregular if its allocated size doesn't equal the store size of an
370 /// element of the corresponding vector type.
371 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
372   // Determine if an array of N elements of type Ty is "bitcast compatible"
373   // with a <N x Ty> vector.
374   // This is only true if there is no padding between the array elements.
375   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
376 }
377 
378 /// A helper function that returns the reciprocal of the block probability of
379 /// predicated blocks. If we return X, we are assuming the predicated block
380 /// will execute once for every X iterations of the loop header.
381 ///
382 /// TODO: We should use actual block probability here, if available. Currently,
383 ///       we always assume predicated blocks have a 50% chance of executing.
384 static unsigned getReciprocalPredBlockProb() { return 2; }
385 
386 /// A helper function that returns an integer or floating-point constant with
387 /// value C.
388 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
389   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
390                            : ConstantFP::get(Ty, C);
391 }
392 
393 /// Returns "best known" trip count for the specified loop \p L as defined by
394 /// the following procedure:
395 ///   1) Returns exact trip count if it is known.
396 ///   2) Returns expected trip count according to profile data if any.
397 ///   3) Returns upper bound estimate if it is known.
398 ///   4) Returns None if all of the above failed.
399 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
400   // Check if exact trip count is known.
401   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
402     return ExpectedTC;
403 
404   // Check if there is an expected trip count available from profile data.
405   if (LoopVectorizeWithBlockFrequency)
406     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
407       return EstimatedTC;
408 
409   // Check if upper bound estimate is known.
410   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
411     return ExpectedTC;
412 
413   return None;
414 }
415 
416 // Forward declare GeneratedRTChecks.
417 class GeneratedRTChecks;
418 
419 namespace llvm {
420 
421 AnalysisKey ShouldRunExtraVectorPasses::Key;
422 
423 /// InnerLoopVectorizer vectorizes loops which contain only one basic
424 /// block to a specified vectorization factor (VF).
425 /// This class performs the widening of scalars into vectors, or multiple
426 /// scalars. This class also implements the following features:
427 /// * It inserts an epilogue loop for handling loops that don't have iteration
428 ///   counts that are known to be a multiple of the vectorization factor.
429 /// * It handles the code generation for reduction variables.
430 /// * Scalarization (implementation using scalars) of un-vectorizable
431 ///   instructions.
432 /// InnerLoopVectorizer does not perform any vectorization-legality
433 /// checks, and relies on the caller to check for the different legality
434 /// aspects. The InnerLoopVectorizer relies on the
435 /// LoopVectorizationLegality class to provide information about the induction
436 /// and reduction variables that were found to a given vectorization factor.
437 class InnerLoopVectorizer {
438 public:
439   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
440                       LoopInfo *LI, DominatorTree *DT,
441                       const TargetLibraryInfo *TLI,
442                       const TargetTransformInfo *TTI, AssumptionCache *AC,
443                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
444                       ElementCount MinProfitableTripCount,
445                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
446                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
447                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
448       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
449         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
450         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
451         PSI(PSI), RTChecks(RTChecks) {
452     // Query this against the original loop and save it here because the profile
453     // of the original loop header may change as the transformation happens.
454     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
455         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
456 
457     if (MinProfitableTripCount.isZero())
458       this->MinProfitableTripCount = VecWidth;
459     else
460       this->MinProfitableTripCount = MinProfitableTripCount;
461   }
462 
463   virtual ~InnerLoopVectorizer() = default;
464 
465   /// Create a new empty loop that will contain vectorized instructions later
466   /// on, while the old loop will be used as the scalar remainder. Control flow
467   /// is generated around the vectorized (and scalar epilogue) loops consisting
468   /// of various checks and bypasses. Return the pre-header block of the new
469   /// loop and the start value for the canonical induction, if it is != 0. The
470   /// latter is the case when vectorizing the epilogue loop. In the case of
471   /// epilogue vectorization, this function is overriden to handle the more
472   /// complex control flow around the loops.
473   virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton();
474 
475   /// Widen a single call instruction within the innermost loop.
476   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
477                             VPTransformState &State);
478 
479   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
480   void fixVectorizedLoop(VPTransformState &State, VPlan &Plan);
481 
482   // Return true if any runtime check is added.
483   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
484 
485   /// A type for vectorized values in the new loop. Each value from the
486   /// original loop, when vectorized, is represented by UF vector values in the
487   /// new unrolled loop, where UF is the unroll factor.
488   using VectorParts = SmallVector<Value *, 2>;
489 
490   /// A helper function to scalarize a single Instruction in the innermost loop.
491   /// Generates a sequence of scalar instances for each lane between \p MinLane
492   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
493   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
494   /// Instr's operands.
495   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
496                             const VPIteration &Instance, bool IfPredicateInstr,
497                             VPTransformState &State);
498 
499   /// Construct the vector value of a scalarized value \p V one lane at a time.
500   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
501                                  VPTransformState &State);
502 
503   /// Try to vectorize interleaved access group \p Group with the base address
504   /// given in \p Addr, optionally masking the vector operations if \p
505   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
506   /// values in the vectorized loop.
507   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
508                                 ArrayRef<VPValue *> VPDefs,
509                                 VPTransformState &State, VPValue *Addr,
510                                 ArrayRef<VPValue *> StoredValues,
511                                 VPValue *BlockInMask = nullptr);
512 
513   /// Fix the non-induction PHIs in \p Plan.
514   void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State);
515 
516   /// Returns true if the reordering of FP operations is not allowed, but we are
517   /// able to vectorize with strict in-order reductions for the given RdxDesc.
518   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc);
519 
520   /// Create a broadcast instruction. This method generates a broadcast
521   /// instruction (shuffle) for loop invariant values and for the induction
522   /// value. If this is the induction variable then we extend it to N, N+1, ...
523   /// this is needed because each iteration in the loop corresponds to a SIMD
524   /// element.
525   virtual Value *getBroadcastInstrs(Value *V);
526 
527   // Returns the resume value (bc.merge.rdx) for a reduction as
528   // generated by fixReduction.
529   PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc);
530 
531 protected:
532   friend class LoopVectorizationPlanner;
533 
534   /// A small list of PHINodes.
535   using PhiVector = SmallVector<PHINode *, 4>;
536 
537   /// A type for scalarized values in the new loop. Each value from the
538   /// original loop, when scalarized, is represented by UF x VF scalar values
539   /// in the new unrolled loop, where UF is the unroll factor and VF is the
540   /// vectorization factor.
541   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
542 
543   /// Set up the values of the IVs correctly when exiting the vector loop.
544   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
545                     Value *VectorTripCount, Value *EndValue,
546                     BasicBlock *MiddleBlock, BasicBlock *VectorHeader,
547                     VPlan &Plan);
548 
549   /// Handle all cross-iteration phis in the header.
550   void fixCrossIterationPHIs(VPTransformState &State);
551 
552   /// Create the exit value of first order recurrences in the middle block and
553   /// update their users.
554   void fixFirstOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR,
555                                VPTransformState &State);
556 
557   /// Create code for the loop exit value of the reduction.
558   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
559 
560   /// Clear NSW/NUW flags from reduction instructions if necessary.
561   void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
562                                VPTransformState &State);
563 
564   /// Iteratively sink the scalarized operands of a predicated instruction into
565   /// the block that was created for it.
566   void sinkScalarOperands(Instruction *PredInst);
567 
568   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
569   /// represented as.
570   void truncateToMinimalBitwidths(VPTransformState &State);
571 
572   /// Returns (and creates if needed) the original loop trip count.
573   Value *getOrCreateTripCount(BasicBlock *InsertBlock);
574 
575   /// Returns (and creates if needed) the trip count of the widened loop.
576   Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock);
577 
578   /// Returns a bitcasted value to the requested vector type.
579   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
580   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
581                                 const DataLayout &DL);
582 
583   /// Emit a bypass check to see if the vector trip count is zero, including if
584   /// it overflows.
585   void emitIterationCountCheck(BasicBlock *Bypass);
586 
587   /// Emit a bypass check to see if all of the SCEV assumptions we've
588   /// had to make are correct. Returns the block containing the checks or
589   /// nullptr if no checks have been added.
590   BasicBlock *emitSCEVChecks(BasicBlock *Bypass);
591 
592   /// Emit bypass checks to check any memory assumptions we may have made.
593   /// Returns the block containing the checks or nullptr if no checks have been
594   /// added.
595   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass);
596 
597   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
598   /// vector loop preheader, middle block and scalar preheader.
599   void createVectorLoopSkeleton(StringRef Prefix);
600 
601   /// Create new phi nodes for the induction variables to resume iteration count
602   /// in the scalar epilogue, from where the vectorized loop left off.
603   /// In cases where the loop skeleton is more complicated (eg. epilogue
604   /// vectorization) and the resume values can come from an additional bypass
605   /// block, the \p AdditionalBypass pair provides information about the bypass
606   /// block and the end value on the edge from bypass to this loop.
607   void createInductionResumeValues(
608       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
609 
610   /// Complete the loop skeleton by adding debug MDs, creating appropriate
611   /// conditional branches in the middle block, preparing the builder and
612   /// running the verifier. Return the preheader of the completed vector loop.
613   BasicBlock *completeLoopSkeleton(MDNode *OrigLoopID);
614 
615   /// Collect poison-generating recipes that may generate a poison value that is
616   /// used after vectorization, even when their operands are not poison. Those
617   /// recipes meet the following conditions:
618   ///  * Contribute to the address computation of a recipe generating a widen
619   ///    memory load/store (VPWidenMemoryInstructionRecipe or
620   ///    VPInterleaveRecipe).
621   ///  * Such a widen memory load/store has at least one underlying Instruction
622   ///    that is in a basic block that needs predication and after vectorization
623   ///    the generated instruction won't be predicated.
624   void collectPoisonGeneratingRecipes(VPTransformState &State);
625 
626   /// Allow subclasses to override and print debug traces before/after vplan
627   /// execution, when trace information is requested.
628   virtual void printDebugTracesAtStart(){};
629   virtual void printDebugTracesAtEnd(){};
630 
631   /// The original loop.
632   Loop *OrigLoop;
633 
634   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
635   /// dynamic knowledge to simplify SCEV expressions and converts them to a
636   /// more usable form.
637   PredicatedScalarEvolution &PSE;
638 
639   /// Loop Info.
640   LoopInfo *LI;
641 
642   /// Dominator Tree.
643   DominatorTree *DT;
644 
645   /// Alias Analysis.
646   AAResults *AA;
647 
648   /// Target Library Info.
649   const TargetLibraryInfo *TLI;
650 
651   /// Target Transform Info.
652   const TargetTransformInfo *TTI;
653 
654   /// Assumption Cache.
655   AssumptionCache *AC;
656 
657   /// Interface to emit optimization remarks.
658   OptimizationRemarkEmitter *ORE;
659 
660   /// The vectorization SIMD factor to use. Each vector will have this many
661   /// vector elements.
662   ElementCount VF;
663 
664   ElementCount MinProfitableTripCount;
665 
666   /// The vectorization unroll factor to use. Each scalar is vectorized to this
667   /// many different vector instructions.
668   unsigned UF;
669 
670   /// The builder that we use
671   IRBuilder<> Builder;
672 
673   // --- Vectorization state ---
674 
675   /// The vector-loop preheader.
676   BasicBlock *LoopVectorPreHeader;
677 
678   /// The scalar-loop preheader.
679   BasicBlock *LoopScalarPreHeader;
680 
681   /// Middle Block between the vector and the scalar.
682   BasicBlock *LoopMiddleBlock;
683 
684   /// The unique ExitBlock of the scalar loop if one exists.  Note that
685   /// there can be multiple exiting edges reaching this block.
686   BasicBlock *LoopExitBlock;
687 
688   /// The scalar loop body.
689   BasicBlock *LoopScalarBody;
690 
691   /// A list of all bypass blocks. The first block is the entry of the loop.
692   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
693 
694   /// Store instructions that were predicated.
695   SmallVector<Instruction *, 4> PredicatedInstructions;
696 
697   /// Trip count of the original loop.
698   Value *TripCount = nullptr;
699 
700   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
701   Value *VectorTripCount = nullptr;
702 
703   /// The legality analysis.
704   LoopVectorizationLegality *Legal;
705 
706   /// The profitablity analysis.
707   LoopVectorizationCostModel *Cost;
708 
709   // Record whether runtime checks are added.
710   bool AddedSafetyChecks = false;
711 
712   // Holds the end values for each induction variable. We save the end values
713   // so we can later fix-up the external users of the induction variables.
714   DenseMap<PHINode *, Value *> IVEndValues;
715 
716   /// BFI and PSI are used to check for profile guided size optimizations.
717   BlockFrequencyInfo *BFI;
718   ProfileSummaryInfo *PSI;
719 
720   // Whether this loop should be optimized for size based on profile guided size
721   // optimizatios.
722   bool OptForSizeBasedOnProfile;
723 
724   /// Structure to hold information about generated runtime checks, responsible
725   /// for cleaning the checks, if vectorization turns out unprofitable.
726   GeneratedRTChecks &RTChecks;
727 
728   // Holds the resume values for reductions in the loops, used to set the
729   // correct start value of reduction PHIs when vectorizing the epilogue.
730   SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4>
731       ReductionResumeValues;
732 };
733 
734 class InnerLoopUnroller : public InnerLoopVectorizer {
735 public:
736   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
737                     LoopInfo *LI, DominatorTree *DT,
738                     const TargetLibraryInfo *TLI,
739                     const TargetTransformInfo *TTI, AssumptionCache *AC,
740                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
741                     LoopVectorizationLegality *LVL,
742                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
743                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
744       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
745                             ElementCount::getFixed(1),
746                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
747                             BFI, PSI, Check) {}
748 
749 private:
750   Value *getBroadcastInstrs(Value *V) override;
751 };
752 
753 /// Encapsulate information regarding vectorization of a loop and its epilogue.
754 /// This information is meant to be updated and used across two stages of
755 /// epilogue vectorization.
756 struct EpilogueLoopVectorizationInfo {
757   ElementCount MainLoopVF = ElementCount::getFixed(0);
758   unsigned MainLoopUF = 0;
759   ElementCount EpilogueVF = ElementCount::getFixed(0);
760   unsigned EpilogueUF = 0;
761   BasicBlock *MainLoopIterationCountCheck = nullptr;
762   BasicBlock *EpilogueIterationCountCheck = nullptr;
763   BasicBlock *SCEVSafetyCheck = nullptr;
764   BasicBlock *MemSafetyCheck = nullptr;
765   Value *TripCount = nullptr;
766   Value *VectorTripCount = nullptr;
767 
768   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
769                                 ElementCount EVF, unsigned EUF)
770       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
771     assert(EUF == 1 &&
772            "A high UF for the epilogue loop is likely not beneficial.");
773   }
774 };
775 
776 /// An extension of the inner loop vectorizer that creates a skeleton for a
777 /// vectorized loop that has its epilogue (residual) also vectorized.
778 /// The idea is to run the vplan on a given loop twice, firstly to setup the
779 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
780 /// from the first step and vectorize the epilogue.  This is achieved by
781 /// deriving two concrete strategy classes from this base class and invoking
782 /// them in succession from the loop vectorizer planner.
783 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
784 public:
785   InnerLoopAndEpilogueVectorizer(
786       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
787       DominatorTree *DT, const TargetLibraryInfo *TLI,
788       const TargetTransformInfo *TTI, AssumptionCache *AC,
789       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
790       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
791       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
792       GeneratedRTChecks &Checks)
793       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
794                             EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL,
795                             CM, BFI, PSI, Checks),
796         EPI(EPI) {}
797 
798   // Override this function to handle the more complex control flow around the
799   // three loops.
800   std::pair<BasicBlock *, Value *>
801   createVectorizedLoopSkeleton() final override {
802     return createEpilogueVectorizedLoopSkeleton();
803   }
804 
805   /// The interface for creating a vectorized skeleton using one of two
806   /// different strategies, each corresponding to one execution of the vplan
807   /// as described above.
808   virtual std::pair<BasicBlock *, Value *>
809   createEpilogueVectorizedLoopSkeleton() = 0;
810 
811   /// Holds and updates state information required to vectorize the main loop
812   /// and its epilogue in two separate passes. This setup helps us avoid
813   /// regenerating and recomputing runtime safety checks. It also helps us to
814   /// shorten the iteration-count-check path length for the cases where the
815   /// iteration count of the loop is so small that the main vector loop is
816   /// completely skipped.
817   EpilogueLoopVectorizationInfo &EPI;
818 };
819 
820 /// A specialized derived class of inner loop vectorizer that performs
821 /// vectorization of *main* loops in the process of vectorizing loops and their
822 /// epilogues.
823 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
824 public:
825   EpilogueVectorizerMainLoop(
826       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
827       DominatorTree *DT, const TargetLibraryInfo *TLI,
828       const TargetTransformInfo *TTI, AssumptionCache *AC,
829       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
830       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
831       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
832       GeneratedRTChecks &Check)
833       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
834                                        EPI, LVL, CM, BFI, PSI, Check) {}
835   /// Implements the interface for creating a vectorized skeleton using the
836   /// *main loop* strategy (ie the first pass of vplan execution).
837   std::pair<BasicBlock *, Value *>
838   createEpilogueVectorizedLoopSkeleton() final override;
839 
840 protected:
841   /// Emits an iteration count bypass check once for the main loop (when \p
842   /// ForEpilogue is false) and once for the epilogue loop (when \p
843   /// ForEpilogue is true).
844   BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue);
845   void printDebugTracesAtStart() override;
846   void printDebugTracesAtEnd() override;
847 };
848 
849 // A specialized derived class of inner loop vectorizer that performs
850 // vectorization of *epilogue* loops in the process of vectorizing loops and
851 // their epilogues.
852 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
853 public:
854   EpilogueVectorizerEpilogueLoop(
855       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
856       DominatorTree *DT, const TargetLibraryInfo *TLI,
857       const TargetTransformInfo *TTI, AssumptionCache *AC,
858       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
859       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
860       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
861       GeneratedRTChecks &Checks)
862       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
863                                        EPI, LVL, CM, BFI, PSI, Checks) {
864     TripCount = EPI.TripCount;
865   }
866   /// Implements the interface for creating a vectorized skeleton using the
867   /// *epilogue loop* strategy (ie the second pass of vplan execution).
868   std::pair<BasicBlock *, Value *>
869   createEpilogueVectorizedLoopSkeleton() final override;
870 
871 protected:
872   /// Emits an iteration count bypass check after the main vector loop has
873   /// finished to see if there are any iterations left to execute by either
874   /// the vector epilogue or the scalar epilogue.
875   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(
876                                                       BasicBlock *Bypass,
877                                                       BasicBlock *Insert);
878   void printDebugTracesAtStart() override;
879   void printDebugTracesAtEnd() override;
880 };
881 } // end namespace llvm
882 
883 /// Look for a meaningful debug location on the instruction or it's
884 /// operands.
885 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
886   if (!I)
887     return I;
888 
889   DebugLoc Empty;
890   if (I->getDebugLoc() != Empty)
891     return I;
892 
893   for (Use &Op : I->operands()) {
894     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
895       if (OpInst->getDebugLoc() != Empty)
896         return OpInst;
897   }
898 
899   return I;
900 }
901 
902 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
903 /// is passed, the message relates to that particular instruction.
904 #ifndef NDEBUG
905 static void debugVectorizationMessage(const StringRef Prefix,
906                                       const StringRef DebugMsg,
907                                       Instruction *I) {
908   dbgs() << "LV: " << Prefix << DebugMsg;
909   if (I != nullptr)
910     dbgs() << " " << *I;
911   else
912     dbgs() << '.';
913   dbgs() << '\n';
914 }
915 #endif
916 
917 /// Create an analysis remark that explains why vectorization failed
918 ///
919 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
920 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
921 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
922 /// the location of the remark.  \return the remark object that can be
923 /// streamed to.
924 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
925     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
926   Value *CodeRegion = TheLoop->getHeader();
927   DebugLoc DL = TheLoop->getStartLoc();
928 
929   if (I) {
930     CodeRegion = I->getParent();
931     // If there is no debug location attached to the instruction, revert back to
932     // using the loop's.
933     if (I->getDebugLoc())
934       DL = I->getDebugLoc();
935   }
936 
937   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
938 }
939 
940 namespace llvm {
941 
942 /// Return a value for Step multiplied by VF.
943 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
944                        int64_t Step) {
945   assert(Ty->isIntegerTy() && "Expected an integer step");
946   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
947   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
948 }
949 
950 /// Return the runtime value for VF.
951 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) {
952   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
953   return VF.isScalable() ? B.CreateVScale(EC) : EC;
954 }
955 
956 static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy,
957                                   ElementCount VF) {
958   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
959   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
960   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
961   return B.CreateUIToFP(RuntimeVF, FTy);
962 }
963 
964 void reportVectorizationFailure(const StringRef DebugMsg,
965                                 const StringRef OREMsg, const StringRef ORETag,
966                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
967                                 Instruction *I) {
968   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
969   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
970   ORE->emit(
971       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
972       << "loop not vectorized: " << OREMsg);
973 }
974 
975 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
976                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
977                              Instruction *I) {
978   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
979   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
980   ORE->emit(
981       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
982       << Msg);
983 }
984 
985 } // end namespace llvm
986 
987 #ifndef NDEBUG
988 /// \return string containing a file name and a line # for the given loop.
989 static std::string getDebugLocString(const Loop *L) {
990   std::string Result;
991   if (L) {
992     raw_string_ostream OS(Result);
993     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
994       LoopDbgLoc.print(OS);
995     else
996       // Just print the module name.
997       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
998     OS.flush();
999   }
1000   return Result;
1001 }
1002 #endif
1003 
1004 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1005     VPTransformState &State) {
1006 
1007   // Collect recipes in the backward slice of `Root` that may generate a poison
1008   // value that is used after vectorization.
1009   SmallPtrSet<VPRecipeBase *, 16> Visited;
1010   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1011     SmallVector<VPRecipeBase *, 16> Worklist;
1012     Worklist.push_back(Root);
1013 
1014     // Traverse the backward slice of Root through its use-def chain.
1015     while (!Worklist.empty()) {
1016       VPRecipeBase *CurRec = Worklist.back();
1017       Worklist.pop_back();
1018 
1019       if (!Visited.insert(CurRec).second)
1020         continue;
1021 
1022       // Prune search if we find another recipe generating a widen memory
1023       // instruction. Widen memory instructions involved in address computation
1024       // will lead to gather/scatter instructions, which don't need to be
1025       // handled.
1026       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1027           isa<VPInterleaveRecipe>(CurRec) ||
1028           isa<VPScalarIVStepsRecipe>(CurRec) ||
1029           isa<VPCanonicalIVPHIRecipe>(CurRec) ||
1030           isa<VPActiveLaneMaskPHIRecipe>(CurRec))
1031         continue;
1032 
1033       // This recipe contributes to the address computation of a widen
1034       // load/store. Collect recipe if its underlying instruction has
1035       // poison-generating flags.
1036       Instruction *Instr = CurRec->getUnderlyingInstr();
1037       if (Instr && Instr->hasPoisonGeneratingFlags())
1038         State.MayGeneratePoisonRecipes.insert(CurRec);
1039 
1040       // Add new definitions to the worklist.
1041       for (VPValue *operand : CurRec->operands())
1042         if (VPDef *OpDef = operand->getDef())
1043           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1044     }
1045   });
1046 
1047   // Traverse all the recipes in the VPlan and collect the poison-generating
1048   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1049   // VPInterleaveRecipe.
1050   auto Iter = depth_first(
1051       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1052   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1053     for (VPRecipeBase &Recipe : *VPBB) {
1054       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1055         Instruction &UnderlyingInstr = WidenRec->getIngredient();
1056         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1057         if (AddrDef && WidenRec->isConsecutive() &&
1058             Legal->blockNeedsPredication(UnderlyingInstr.getParent()))
1059           collectPoisonGeneratingInstrsInBackwardSlice(
1060               cast<VPRecipeBase>(AddrDef));
1061       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1062         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1063         if (AddrDef) {
1064           // Check if any member of the interleave group needs predication.
1065           const InterleaveGroup<Instruction> *InterGroup =
1066               InterleaveRec->getInterleaveGroup();
1067           bool NeedPredication = false;
1068           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1069                I < NumMembers; ++I) {
1070             Instruction *Member = InterGroup->getMember(I);
1071             if (Member)
1072               NeedPredication |=
1073                   Legal->blockNeedsPredication(Member->getParent());
1074           }
1075 
1076           if (NeedPredication)
1077             collectPoisonGeneratingInstrsInBackwardSlice(
1078                 cast<VPRecipeBase>(AddrDef));
1079         }
1080       }
1081     }
1082   }
1083 }
1084 
1085 PHINode *InnerLoopVectorizer::getReductionResumeValue(
1086     const RecurrenceDescriptor &RdxDesc) {
1087   auto It = ReductionResumeValues.find(&RdxDesc);
1088   assert(It != ReductionResumeValues.end() &&
1089          "Expected to find a resume value for the reduction.");
1090   return It->second;
1091 }
1092 
1093 namespace llvm {
1094 
1095 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1096 // lowered.
1097 enum ScalarEpilogueLowering {
1098 
1099   // The default: allowing scalar epilogues.
1100   CM_ScalarEpilogueAllowed,
1101 
1102   // Vectorization with OptForSize: don't allow epilogues.
1103   CM_ScalarEpilogueNotAllowedOptSize,
1104 
1105   // A special case of vectorisation with OptForSize: loops with a very small
1106   // trip count are considered for vectorization under OptForSize, thereby
1107   // making sure the cost of their loop body is dominant, free of runtime
1108   // guards and scalar iteration overheads.
1109   CM_ScalarEpilogueNotAllowedLowTripLoop,
1110 
1111   // Loop hint predicate indicating an epilogue is undesired.
1112   CM_ScalarEpilogueNotNeededUsePredicate,
1113 
1114   // Directive indicating we must either tail fold or not vectorize
1115   CM_ScalarEpilogueNotAllowedUsePredicate
1116 };
1117 
1118 /// ElementCountComparator creates a total ordering for ElementCount
1119 /// for the purposes of using it in a set structure.
1120 struct ElementCountComparator {
1121   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1122     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1123            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1124   }
1125 };
1126 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1127 
1128 /// LoopVectorizationCostModel - estimates the expected speedups due to
1129 /// vectorization.
1130 /// In many cases vectorization is not profitable. This can happen because of
1131 /// a number of reasons. In this class we mainly attempt to predict the
1132 /// expected speedup/slowdowns due to the supported instruction set. We use the
1133 /// TargetTransformInfo to query the different backends for the cost of
1134 /// different operations.
1135 class LoopVectorizationCostModel {
1136 public:
1137   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1138                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1139                              LoopVectorizationLegality *Legal,
1140                              const TargetTransformInfo &TTI,
1141                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1142                              AssumptionCache *AC,
1143                              OptimizationRemarkEmitter *ORE, const Function *F,
1144                              const LoopVectorizeHints *Hints,
1145                              InterleavedAccessInfo &IAI)
1146       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1147         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1148         Hints(Hints), InterleaveInfo(IAI) {}
1149 
1150   /// \return An upper bound for the vectorization factors (both fixed and
1151   /// scalable). If the factors are 0, vectorization and interleaving should be
1152   /// avoided up front.
1153   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1154 
1155   /// \return True if runtime checks are required for vectorization, and false
1156   /// otherwise.
1157   bool runtimeChecksRequired();
1158 
1159   /// \return The most profitable vectorization factor and the cost of that VF.
1160   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1161   /// then this vectorization factor will be selected if vectorization is
1162   /// possible.
1163   VectorizationFactor
1164   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1165 
1166   VectorizationFactor
1167   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1168                                     const LoopVectorizationPlanner &LVP);
1169 
1170   /// Setup cost-based decisions for user vectorization factor.
1171   /// \return true if the UserVF is a feasible VF to be chosen.
1172   bool selectUserVectorizationFactor(ElementCount UserVF) {
1173     collectUniformsAndScalars(UserVF);
1174     collectInstsToScalarize(UserVF);
1175     return expectedCost(UserVF).first.isValid();
1176   }
1177 
1178   /// \return The size (in bits) of the smallest and widest types in the code
1179   /// that needs to be vectorized. We ignore values that remain scalar such as
1180   /// 64 bit loop indices.
1181   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1182 
1183   /// \return The desired interleave count.
1184   /// If interleave count has been specified by metadata it will be returned.
1185   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1186   /// are the selected vectorization factor and the cost of the selected VF.
1187   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1188 
1189   /// Memory access instruction may be vectorized in more than one way.
1190   /// Form of instruction after vectorization depends on cost.
1191   /// This function takes cost-based decisions for Load/Store instructions
1192   /// and collects them in a map. This decisions map is used for building
1193   /// the lists of loop-uniform and loop-scalar instructions.
1194   /// The calculated cost is saved with widening decision in order to
1195   /// avoid redundant calculations.
1196   void setCostBasedWideningDecision(ElementCount VF);
1197 
1198   /// A struct that represents some properties of the register usage
1199   /// of a loop.
1200   struct RegisterUsage {
1201     /// Holds the number of loop invariant values that are used in the loop.
1202     /// The key is ClassID of target-provided register class.
1203     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1204     /// Holds the maximum number of concurrent live intervals in the loop.
1205     /// The key is ClassID of target-provided register class.
1206     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1207   };
1208 
1209   /// \return Returns information about the register usages of the loop for the
1210   /// given vectorization factors.
1211   SmallVector<RegisterUsage, 8>
1212   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1213 
1214   /// Collect values we want to ignore in the cost model.
1215   void collectValuesToIgnore();
1216 
1217   /// Collect all element types in the loop for which widening is needed.
1218   void collectElementTypesForWidening();
1219 
1220   /// Split reductions into those that happen in the loop, and those that happen
1221   /// outside. In loop reductions are collected into InLoopReductionChains.
1222   void collectInLoopReductions();
1223 
1224   /// Returns true if we should use strict in-order reductions for the given
1225   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1226   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1227   /// of FP operations.
1228   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const {
1229     return !Hints->allowReordering() && RdxDesc.isOrdered();
1230   }
1231 
1232   /// \returns The smallest bitwidth each instruction can be represented with.
1233   /// The vector equivalents of these instructions should be truncated to this
1234   /// type.
1235   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1236     return MinBWs;
1237   }
1238 
1239   /// \returns True if it is more profitable to scalarize instruction \p I for
1240   /// vectorization factor \p VF.
1241   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1242     assert(VF.isVector() &&
1243            "Profitable to scalarize relevant only for VF > 1.");
1244 
1245     // Cost model is not run in the VPlan-native path - return conservative
1246     // result until this changes.
1247     if (EnableVPlanNativePath)
1248       return false;
1249 
1250     auto Scalars = InstsToScalarize.find(VF);
1251     assert(Scalars != InstsToScalarize.end() &&
1252            "VF not yet analyzed for scalarization profitability");
1253     return Scalars->second.find(I) != Scalars->second.end();
1254   }
1255 
1256   /// Returns true if \p I is known to be uniform after vectorization.
1257   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1258     if (VF.isScalar())
1259       return true;
1260 
1261     // Cost model is not run in the VPlan-native path - return conservative
1262     // result until this changes.
1263     if (EnableVPlanNativePath)
1264       return false;
1265 
1266     auto UniformsPerVF = Uniforms.find(VF);
1267     assert(UniformsPerVF != Uniforms.end() &&
1268            "VF not yet analyzed for uniformity");
1269     return UniformsPerVF->second.count(I);
1270   }
1271 
1272   /// Returns true if \p I is known to be scalar after vectorization.
1273   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1274     if (VF.isScalar())
1275       return true;
1276 
1277     // Cost model is not run in the VPlan-native path - return conservative
1278     // result until this changes.
1279     if (EnableVPlanNativePath)
1280       return false;
1281 
1282     auto ScalarsPerVF = Scalars.find(VF);
1283     assert(ScalarsPerVF != Scalars.end() &&
1284            "Scalar values are not calculated for VF");
1285     return ScalarsPerVF->second.count(I);
1286   }
1287 
1288   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1289   /// for vectorization factor \p VF.
1290   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1291     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1292            !isProfitableToScalarize(I, VF) &&
1293            !isScalarAfterVectorization(I, VF);
1294   }
1295 
1296   /// Decision that was taken during cost calculation for memory instruction.
1297   enum InstWidening {
1298     CM_Unknown,
1299     CM_Widen,         // For consecutive accesses with stride +1.
1300     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1301     CM_Interleave,
1302     CM_GatherScatter,
1303     CM_Scalarize
1304   };
1305 
1306   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1307   /// instruction \p I and vector width \p VF.
1308   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1309                            InstructionCost Cost) {
1310     assert(VF.isVector() && "Expected VF >=2");
1311     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1312   }
1313 
1314   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1315   /// interleaving group \p Grp and vector width \p VF.
1316   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1317                            ElementCount VF, InstWidening W,
1318                            InstructionCost Cost) {
1319     assert(VF.isVector() && "Expected VF >=2");
1320     /// Broadcast this decicion to all instructions inside the group.
1321     /// But the cost will be assigned to one instruction only.
1322     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1323       if (auto *I = Grp->getMember(i)) {
1324         if (Grp->getInsertPos() == I)
1325           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1326         else
1327           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1328       }
1329     }
1330   }
1331 
1332   /// Return the cost model decision for the given instruction \p I and vector
1333   /// width \p VF. Return CM_Unknown if this instruction did not pass
1334   /// through the cost modeling.
1335   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1336     assert(VF.isVector() && "Expected VF to be a vector VF");
1337     // Cost model is not run in the VPlan-native path - return conservative
1338     // result until this changes.
1339     if (EnableVPlanNativePath)
1340       return CM_GatherScatter;
1341 
1342     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1343     auto Itr = WideningDecisions.find(InstOnVF);
1344     if (Itr == WideningDecisions.end())
1345       return CM_Unknown;
1346     return Itr->second.first;
1347   }
1348 
1349   /// Return the vectorization cost for the given instruction \p I and vector
1350   /// width \p VF.
1351   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1352     assert(VF.isVector() && "Expected VF >=2");
1353     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1354     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1355            "The cost is not calculated");
1356     return WideningDecisions[InstOnVF].second;
1357   }
1358 
1359   /// Return True if instruction \p I is an optimizable truncate whose operand
1360   /// is an induction variable. Such a truncate will be removed by adding a new
1361   /// induction variable with the destination type.
1362   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1363     // If the instruction is not a truncate, return false.
1364     auto *Trunc = dyn_cast<TruncInst>(I);
1365     if (!Trunc)
1366       return false;
1367 
1368     // Get the source and destination types of the truncate.
1369     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1370     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1371 
1372     // If the truncate is free for the given types, return false. Replacing a
1373     // free truncate with an induction variable would add an induction variable
1374     // update instruction to each iteration of the loop. We exclude from this
1375     // check the primary induction variable since it will need an update
1376     // instruction regardless.
1377     Value *Op = Trunc->getOperand(0);
1378     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1379       return false;
1380 
1381     // If the truncated value is not an induction variable, return false.
1382     return Legal->isInductionPhi(Op);
1383   }
1384 
1385   /// Collects the instructions to scalarize for each predicated instruction in
1386   /// the loop.
1387   void collectInstsToScalarize(ElementCount VF);
1388 
1389   /// Collect Uniform and Scalar values for the given \p VF.
1390   /// The sets depend on CM decision for Load/Store instructions
1391   /// that may be vectorized as interleave, gather-scatter or scalarized.
1392   void collectUniformsAndScalars(ElementCount VF) {
1393     // Do the analysis once.
1394     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1395       return;
1396     setCostBasedWideningDecision(VF);
1397     collectLoopUniforms(VF);
1398     collectLoopScalars(VF);
1399   }
1400 
1401   /// Returns true if the target machine supports masked store operation
1402   /// for the given \p DataType and kind of access to \p Ptr.
1403   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1404     return Legal->isConsecutivePtr(DataType, Ptr) &&
1405            TTI.isLegalMaskedStore(DataType, Alignment);
1406   }
1407 
1408   /// Returns true if the target machine supports masked load operation
1409   /// for the given \p DataType and kind of access to \p Ptr.
1410   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1411     return Legal->isConsecutivePtr(DataType, Ptr) &&
1412            TTI.isLegalMaskedLoad(DataType, Alignment);
1413   }
1414 
1415   /// Returns true if the target machine can represent \p V as a masked gather
1416   /// or scatter operation.
1417   bool isLegalGatherOrScatter(Value *V,
1418                               ElementCount VF = ElementCount::getFixed(1)) {
1419     bool LI = isa<LoadInst>(V);
1420     bool SI = isa<StoreInst>(V);
1421     if (!LI && !SI)
1422       return false;
1423     auto *Ty = getLoadStoreType(V);
1424     Align Align = getLoadStoreAlignment(V);
1425     if (VF.isVector())
1426       Ty = VectorType::get(Ty, VF);
1427     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1428            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1429   }
1430 
1431   /// Returns true if the target machine supports all of the reduction
1432   /// variables found for the given VF.
1433   bool canVectorizeReductions(ElementCount VF) const {
1434     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1435       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1436       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1437     }));
1438   }
1439 
1440   /// Returns true if \p I is an instruction that will be scalarized with
1441   /// predication when vectorizing \p I with vectorization factor \p VF. Such
1442   /// instructions include conditional stores and instructions that may divide
1443   /// by zero.
1444   bool isScalarWithPredication(Instruction *I, ElementCount VF) const;
1445 
1446   // Returns true if \p I is an instruction that will be predicated either
1447   // through scalar predication or masked load/store or masked gather/scatter.
1448   // \p VF is the vectorization factor that will be used to vectorize \p I.
1449   // Superset of instructions that return true for isScalarWithPredication.
1450   bool isPredicatedInst(Instruction *I, ElementCount VF,
1451                         bool IsKnownUniform = false) {
1452     // When we know the load is uniform and the original scalar loop was not
1453     // predicated we don't need to mark it as a predicated instruction. Any
1454     // vectorised blocks created when tail-folding are something artificial we
1455     // have introduced and we know there is always at least one active lane.
1456     // That's why we call Legal->blockNeedsPredication here because it doesn't
1457     // query tail-folding.
1458     if (IsKnownUniform && isa<LoadInst>(I) &&
1459         !Legal->blockNeedsPredication(I->getParent()))
1460       return false;
1461     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1462       return false;
1463     // Loads and stores that need some form of masked operation are predicated
1464     // instructions.
1465     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1466       return Legal->isMaskRequired(I);
1467     return isScalarWithPredication(I, VF);
1468   }
1469 
1470   /// Returns true if \p I is a memory instruction with consecutive memory
1471   /// access that can be widened.
1472   bool
1473   memoryInstructionCanBeWidened(Instruction *I,
1474                                 ElementCount VF = ElementCount::getFixed(1));
1475 
1476   /// Returns true if \p I is a memory instruction in an interleaved-group
1477   /// of memory accesses that can be vectorized with wide vector loads/stores
1478   /// and shuffles.
1479   bool
1480   interleavedAccessCanBeWidened(Instruction *I,
1481                                 ElementCount VF = ElementCount::getFixed(1));
1482 
1483   /// Check if \p Instr belongs to any interleaved access group.
1484   bool isAccessInterleaved(Instruction *Instr) {
1485     return InterleaveInfo.isInterleaved(Instr);
1486   }
1487 
1488   /// Get the interleaved access group that \p Instr belongs to.
1489   const InterleaveGroup<Instruction> *
1490   getInterleavedAccessGroup(Instruction *Instr) {
1491     return InterleaveInfo.getInterleaveGroup(Instr);
1492   }
1493 
1494   /// Returns true if we're required to use a scalar epilogue for at least
1495   /// the final iteration of the original loop.
1496   bool requiresScalarEpilogue(ElementCount VF) const {
1497     if (!isScalarEpilogueAllowed())
1498       return false;
1499     // If we might exit from anywhere but the latch, must run the exiting
1500     // iteration in scalar form.
1501     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1502       return true;
1503     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1504   }
1505 
1506   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1507   /// loop hint annotation.
1508   bool isScalarEpilogueAllowed() const {
1509     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1510   }
1511 
1512   /// Returns true if all loop blocks should be masked to fold tail loop.
1513   bool foldTailByMasking() const { return FoldTailByMasking; }
1514 
1515   /// Returns true if were tail-folding and want to use the active lane mask
1516   /// for vector loop control flow.
1517   bool useActiveLaneMaskForControlFlow() const {
1518     return FoldTailByMasking &&
1519            TTI.emitGetActiveLaneMask() == PredicationStyle::DataAndControlFlow;
1520   }
1521 
1522   /// Returns true if the instructions in this block requires predication
1523   /// for any reason, e.g. because tail folding now requires a predicate
1524   /// or because the block in the original loop was predicated.
1525   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1526     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1527   }
1528 
1529   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1530   /// nodes to the chain of instructions representing the reductions. Uses a
1531   /// MapVector to ensure deterministic iteration order.
1532   using ReductionChainMap =
1533       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1534 
1535   /// Return the chain of instructions representing an inloop reduction.
1536   const ReductionChainMap &getInLoopReductionChains() const {
1537     return InLoopReductionChains;
1538   }
1539 
1540   /// Returns true if the Phi is part of an inloop reduction.
1541   bool isInLoopReduction(PHINode *Phi) const {
1542     return InLoopReductionChains.count(Phi);
1543   }
1544 
1545   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1546   /// with factor VF.  Return the cost of the instruction, including
1547   /// scalarization overhead if it's needed.
1548   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1549 
1550   /// Estimate cost of a call instruction CI if it were vectorized with factor
1551   /// VF. Return the cost of the instruction, including scalarization overhead
1552   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1553   /// scalarized -
1554   /// i.e. either vector version isn't available, or is too expensive.
1555   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1556                                     bool &NeedToScalarize) const;
1557 
1558   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1559   /// that of B.
1560   bool isMoreProfitable(const VectorizationFactor &A,
1561                         const VectorizationFactor &B) const;
1562 
1563   /// Invalidates decisions already taken by the cost model.
1564   void invalidateCostModelingDecisions() {
1565     WideningDecisions.clear();
1566     Uniforms.clear();
1567     Scalars.clear();
1568   }
1569 
1570   /// Convenience function that returns the value of vscale_range iff
1571   /// vscale_range.min == vscale_range.max or otherwise returns the value
1572   /// returned by the corresponding TLI method.
1573   Optional<unsigned> getVScaleForTuning() const;
1574 
1575 private:
1576   unsigned NumPredStores = 0;
1577 
1578   /// \return An upper bound for the vectorization factors for both
1579   /// fixed and scalable vectorization, where the minimum-known number of
1580   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1581   /// disabled or unsupported, then the scalable part will be equal to
1582   /// ElementCount::getScalable(0).
1583   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1584                                            ElementCount UserVF,
1585                                            bool FoldTailByMasking);
1586 
1587   /// \return the maximized element count based on the targets vector
1588   /// registers and the loop trip-count, but limited to a maximum safe VF.
1589   /// This is a helper function of computeFeasibleMaxVF.
1590   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1591                                        unsigned SmallestType,
1592                                        unsigned WidestType,
1593                                        ElementCount MaxSafeVF,
1594                                        bool FoldTailByMasking);
1595 
1596   /// \return the maximum legal scalable VF, based on the safe max number
1597   /// of elements.
1598   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1599 
1600   /// The vectorization cost is a combination of the cost itself and a boolean
1601   /// indicating whether any of the contributing operations will actually
1602   /// operate on vector values after type legalization in the backend. If this
1603   /// latter value is false, then all operations will be scalarized (i.e. no
1604   /// vectorization has actually taken place).
1605   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1606 
1607   /// Returns the expected execution cost. The unit of the cost does
1608   /// not matter because we use the 'cost' units to compare different
1609   /// vector widths. The cost that is returned is *not* normalized by
1610   /// the factor width. If \p Invalid is not nullptr, this function
1611   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1612   /// each instruction that has an Invalid cost for the given VF.
1613   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1614   VectorizationCostTy
1615   expectedCost(ElementCount VF,
1616                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1617 
1618   /// Returns the execution time cost of an instruction for a given vector
1619   /// width. Vector width of one means scalar.
1620   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1621 
1622   /// The cost-computation logic from getInstructionCost which provides
1623   /// the vector type as an output parameter.
1624   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1625                                      Type *&VectorTy);
1626 
1627   /// Return the cost of instructions in an inloop reduction pattern, if I is
1628   /// part of that pattern.
1629   Optional<InstructionCost>
1630   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1631                           TTI::TargetCostKind CostKind);
1632 
1633   /// Calculate vectorization cost of memory instruction \p I.
1634   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1635 
1636   /// The cost computation for scalarized memory instruction.
1637   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1638 
1639   /// The cost computation for interleaving group of memory instructions.
1640   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1641 
1642   /// The cost computation for Gather/Scatter instruction.
1643   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1644 
1645   /// The cost computation for widening instruction \p I with consecutive
1646   /// memory access.
1647   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1648 
1649   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1650   /// Load: scalar load + broadcast.
1651   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1652   /// element)
1653   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1654 
1655   /// Estimate the overhead of scalarizing an instruction. This is a
1656   /// convenience wrapper for the type-based getScalarizationOverhead API.
1657   InstructionCost getScalarizationOverhead(Instruction *I,
1658                                            ElementCount VF) const;
1659 
1660   /// Returns whether the instruction is a load or store and will be a emitted
1661   /// as a vector operation.
1662   bool isConsecutiveLoadOrStore(Instruction *I);
1663 
1664   /// Returns true if an artificially high cost for emulated masked memrefs
1665   /// should be used.
1666   bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF);
1667 
1668   /// Map of scalar integer values to the smallest bitwidth they can be legally
1669   /// represented as. The vector equivalents of these values should be truncated
1670   /// to this type.
1671   MapVector<Instruction *, uint64_t> MinBWs;
1672 
1673   /// A type representing the costs for instructions if they were to be
1674   /// scalarized rather than vectorized. The entries are Instruction-Cost
1675   /// pairs.
1676   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1677 
1678   /// A set containing all BasicBlocks that are known to present after
1679   /// vectorization as a predicated block.
1680   DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>>
1681       PredicatedBBsAfterVectorization;
1682 
1683   /// Records whether it is allowed to have the original scalar loop execute at
1684   /// least once. This may be needed as a fallback loop in case runtime
1685   /// aliasing/dependence checks fail, or to handle the tail/remainder
1686   /// iterations when the trip count is unknown or doesn't divide by the VF,
1687   /// or as a peel-loop to handle gaps in interleave-groups.
1688   /// Under optsize and when the trip count is very small we don't allow any
1689   /// iterations to execute in the scalar loop.
1690   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1691 
1692   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1693   bool FoldTailByMasking = false;
1694 
1695   /// A map holding scalar costs for different vectorization factors. The
1696   /// presence of a cost for an instruction in the mapping indicates that the
1697   /// instruction will be scalarized when vectorizing with the associated
1698   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1699   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1700 
1701   /// Holds the instructions known to be uniform after vectorization.
1702   /// The data is collected per VF.
1703   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1704 
1705   /// Holds the instructions known to be scalar after vectorization.
1706   /// The data is collected per VF.
1707   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1708 
1709   /// Holds the instructions (address computations) that are forced to be
1710   /// scalarized.
1711   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1712 
1713   /// PHINodes of the reductions that should be expanded in-loop along with
1714   /// their associated chains of reduction operations, in program order from top
1715   /// (PHI) to bottom
1716   ReductionChainMap InLoopReductionChains;
1717 
1718   /// A Map of inloop reduction operations and their immediate chain operand.
1719   /// FIXME: This can be removed once reductions can be costed correctly in
1720   /// vplan. This was added to allow quick lookup to the inloop operations,
1721   /// without having to loop through InLoopReductionChains.
1722   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1723 
1724   /// Returns the expected difference in cost from scalarizing the expression
1725   /// feeding a predicated instruction \p PredInst. The instructions to
1726   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1727   /// non-negative return value implies the expression will be scalarized.
1728   /// Currently, only single-use chains are considered for scalarization.
1729   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1730                               ElementCount VF);
1731 
1732   /// Collect the instructions that are uniform after vectorization. An
1733   /// instruction is uniform if we represent it with a single scalar value in
1734   /// the vectorized loop corresponding to each vector iteration. Examples of
1735   /// uniform instructions include pointer operands of consecutive or
1736   /// interleaved memory accesses. Note that although uniformity implies an
1737   /// instruction will be scalar, the reverse is not true. In general, a
1738   /// scalarized instruction will be represented by VF scalar values in the
1739   /// vectorized loop, each corresponding to an iteration of the original
1740   /// scalar loop.
1741   void collectLoopUniforms(ElementCount VF);
1742 
1743   /// Collect the instructions that are scalar after vectorization. An
1744   /// instruction is scalar if it is known to be uniform or will be scalarized
1745   /// during vectorization. collectLoopScalars should only add non-uniform nodes
1746   /// to the list if they are used by a load/store instruction that is marked as
1747   /// CM_Scalarize. Non-uniform scalarized instructions will be represented by
1748   /// VF values in the vectorized loop, each corresponding to an iteration of
1749   /// the original scalar loop.
1750   void collectLoopScalars(ElementCount VF);
1751 
1752   /// Keeps cost model vectorization decision and cost for instructions.
1753   /// Right now it is used for memory instructions only.
1754   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1755                                 std::pair<InstWidening, InstructionCost>>;
1756 
1757   DecisionList WideningDecisions;
1758 
1759   /// Returns true if \p V is expected to be vectorized and it needs to be
1760   /// extracted.
1761   bool needsExtract(Value *V, ElementCount VF) const {
1762     Instruction *I = dyn_cast<Instruction>(V);
1763     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1764         TheLoop->isLoopInvariant(I))
1765       return false;
1766 
1767     // Assume we can vectorize V (and hence we need extraction) if the
1768     // scalars are not computed yet. This can happen, because it is called
1769     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1770     // the scalars are collected. That should be a safe assumption in most
1771     // cases, because we check if the operands have vectorizable types
1772     // beforehand in LoopVectorizationLegality.
1773     return Scalars.find(VF) == Scalars.end() ||
1774            !isScalarAfterVectorization(I, VF);
1775   };
1776 
1777   /// Returns a range containing only operands needing to be extracted.
1778   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1779                                                    ElementCount VF) const {
1780     return SmallVector<Value *, 4>(make_filter_range(
1781         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1782   }
1783 
1784   /// Determines if we have the infrastructure to vectorize loop \p L and its
1785   /// epilogue, assuming the main loop is vectorized by \p VF.
1786   bool isCandidateForEpilogueVectorization(const Loop &L,
1787                                            const ElementCount VF) const;
1788 
1789   /// Returns true if epilogue vectorization is considered profitable, and
1790   /// false otherwise.
1791   /// \p VF is the vectorization factor chosen for the original loop.
1792   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1793 
1794 public:
1795   /// The loop that we evaluate.
1796   Loop *TheLoop;
1797 
1798   /// Predicated scalar evolution analysis.
1799   PredicatedScalarEvolution &PSE;
1800 
1801   /// Loop Info analysis.
1802   LoopInfo *LI;
1803 
1804   /// Vectorization legality.
1805   LoopVectorizationLegality *Legal;
1806 
1807   /// Vector target information.
1808   const TargetTransformInfo &TTI;
1809 
1810   /// Target Library Info.
1811   const TargetLibraryInfo *TLI;
1812 
1813   /// Demanded bits analysis.
1814   DemandedBits *DB;
1815 
1816   /// Assumption cache.
1817   AssumptionCache *AC;
1818 
1819   /// Interface to emit optimization remarks.
1820   OptimizationRemarkEmitter *ORE;
1821 
1822   const Function *TheFunction;
1823 
1824   /// Loop Vectorize Hint.
1825   const LoopVectorizeHints *Hints;
1826 
1827   /// The interleave access information contains groups of interleaved accesses
1828   /// with the same stride and close to each other.
1829   InterleavedAccessInfo &InterleaveInfo;
1830 
1831   /// Values to ignore in the cost model.
1832   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1833 
1834   /// Values to ignore in the cost model when VF > 1.
1835   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1836 
1837   /// All element types found in the loop.
1838   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1839 
1840   /// Profitable vector factors.
1841   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1842 };
1843 } // end namespace llvm
1844 
1845 /// Helper struct to manage generating runtime checks for vectorization.
1846 ///
1847 /// The runtime checks are created up-front in temporary blocks to allow better
1848 /// estimating the cost and un-linked from the existing IR. After deciding to
1849 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1850 /// temporary blocks are completely removed.
1851 class GeneratedRTChecks {
1852   /// Basic block which contains the generated SCEV checks, if any.
1853   BasicBlock *SCEVCheckBlock = nullptr;
1854 
1855   /// The value representing the result of the generated SCEV checks. If it is
1856   /// nullptr, either no SCEV checks have been generated or they have been used.
1857   Value *SCEVCheckCond = nullptr;
1858 
1859   /// Basic block which contains the generated memory runtime checks, if any.
1860   BasicBlock *MemCheckBlock = nullptr;
1861 
1862   /// The value representing the result of the generated memory runtime checks.
1863   /// If it is nullptr, either no memory runtime checks have been generated or
1864   /// they have been used.
1865   Value *MemRuntimeCheckCond = nullptr;
1866 
1867   DominatorTree *DT;
1868   LoopInfo *LI;
1869   TargetTransformInfo *TTI;
1870 
1871   SCEVExpander SCEVExp;
1872   SCEVExpander MemCheckExp;
1873 
1874   bool CostTooHigh = false;
1875 
1876 public:
1877   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1878                     TargetTransformInfo *TTI, const DataLayout &DL)
1879       : DT(DT), LI(LI), TTI(TTI), SCEVExp(SE, DL, "scev.check"),
1880         MemCheckExp(SE, DL, "scev.check") {}
1881 
1882   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1883   /// accurately estimate the cost of the runtime checks. The blocks are
1884   /// un-linked from the IR and is added back during vector code generation. If
1885   /// there is no vector code generation, the check blocks are removed
1886   /// completely.
1887   void Create(Loop *L, const LoopAccessInfo &LAI,
1888               const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) {
1889 
1890     // Hard cutoff to limit compile-time increase in case a very large number of
1891     // runtime checks needs to be generated.
1892     // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to
1893     // profile info.
1894     CostTooHigh =
1895         LAI.getNumRuntimePointerChecks() > VectorizeMemoryCheckThreshold;
1896     if (CostTooHigh)
1897       return;
1898 
1899     BasicBlock *LoopHeader = L->getHeader();
1900     BasicBlock *Preheader = L->getLoopPreheader();
1901 
1902     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1903     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1904     // may be used by SCEVExpander. The blocks will be un-linked from their
1905     // predecessors and removed from LI & DT at the end of the function.
1906     if (!UnionPred.isAlwaysTrue()) {
1907       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1908                                   nullptr, "vector.scevcheck");
1909 
1910       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1911           &UnionPred, SCEVCheckBlock->getTerminator());
1912     }
1913 
1914     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1915     if (RtPtrChecking.Need) {
1916       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1917       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1918                                  "vector.memcheck");
1919 
1920       auto DiffChecks = RtPtrChecking.getDiffChecks();
1921       if (DiffChecks) {
1922         Value *RuntimeVF = nullptr;
1923         MemRuntimeCheckCond = addDiffRuntimeChecks(
1924             MemCheckBlock->getTerminator(), L, *DiffChecks, MemCheckExp,
1925             [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) {
1926               if (!RuntimeVF)
1927                 RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF);
1928               return RuntimeVF;
1929             },
1930             IC);
1931       } else {
1932         MemRuntimeCheckCond =
1933             addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1934                              RtPtrChecking.getChecks(), MemCheckExp);
1935       }
1936       assert(MemRuntimeCheckCond &&
1937              "no RT checks generated although RtPtrChecking "
1938              "claimed checks are required");
1939     }
1940 
1941     if (!MemCheckBlock && !SCEVCheckBlock)
1942       return;
1943 
1944     // Unhook the temporary block with the checks, update various places
1945     // accordingly.
1946     if (SCEVCheckBlock)
1947       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1948     if (MemCheckBlock)
1949       MemCheckBlock->replaceAllUsesWith(Preheader);
1950 
1951     if (SCEVCheckBlock) {
1952       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1953       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1954       Preheader->getTerminator()->eraseFromParent();
1955     }
1956     if (MemCheckBlock) {
1957       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1958       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1959       Preheader->getTerminator()->eraseFromParent();
1960     }
1961 
1962     DT->changeImmediateDominator(LoopHeader, Preheader);
1963     if (MemCheckBlock) {
1964       DT->eraseNode(MemCheckBlock);
1965       LI->removeBlock(MemCheckBlock);
1966     }
1967     if (SCEVCheckBlock) {
1968       DT->eraseNode(SCEVCheckBlock);
1969       LI->removeBlock(SCEVCheckBlock);
1970     }
1971   }
1972 
1973   InstructionCost getCost() {
1974     if (SCEVCheckBlock || MemCheckBlock)
1975       LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n");
1976 
1977     if (CostTooHigh) {
1978       InstructionCost Cost;
1979       Cost.setInvalid();
1980       LLVM_DEBUG(dbgs() << "  number of checks exceeded threshold\n");
1981       return Cost;
1982     }
1983 
1984     InstructionCost RTCheckCost = 0;
1985     if (SCEVCheckBlock)
1986       for (Instruction &I : *SCEVCheckBlock) {
1987         if (SCEVCheckBlock->getTerminator() == &I)
1988           continue;
1989         InstructionCost C =
1990             TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput);
1991         LLVM_DEBUG(dbgs() << "  " << C << "  for " << I << "\n");
1992         RTCheckCost += C;
1993       }
1994     if (MemCheckBlock)
1995       for (Instruction &I : *MemCheckBlock) {
1996         if (MemCheckBlock->getTerminator() == &I)
1997           continue;
1998         InstructionCost C =
1999             TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput);
2000         LLVM_DEBUG(dbgs() << "  " << C << "  for " << I << "\n");
2001         RTCheckCost += C;
2002       }
2003 
2004     if (SCEVCheckBlock || MemCheckBlock)
2005       LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCost
2006                         << "\n");
2007 
2008     return RTCheckCost;
2009   }
2010 
2011   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2012   /// unused.
2013   ~GeneratedRTChecks() {
2014     SCEVExpanderCleaner SCEVCleaner(SCEVExp);
2015     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp);
2016     if (!SCEVCheckCond)
2017       SCEVCleaner.markResultUsed();
2018 
2019     if (!MemRuntimeCheckCond)
2020       MemCheckCleaner.markResultUsed();
2021 
2022     if (MemRuntimeCheckCond) {
2023       auto &SE = *MemCheckExp.getSE();
2024       // Memory runtime check generation creates compares that use expanded
2025       // values. Remove them before running the SCEVExpanderCleaners.
2026       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2027         if (MemCheckExp.isInsertedInstruction(&I))
2028           continue;
2029         SE.forgetValue(&I);
2030         I.eraseFromParent();
2031       }
2032     }
2033     MemCheckCleaner.cleanup();
2034     SCEVCleaner.cleanup();
2035 
2036     if (SCEVCheckCond)
2037       SCEVCheckBlock->eraseFromParent();
2038     if (MemRuntimeCheckCond)
2039       MemCheckBlock->eraseFromParent();
2040   }
2041 
2042   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2043   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2044   /// depending on the generated condition.
2045   BasicBlock *emitSCEVChecks(BasicBlock *Bypass,
2046                              BasicBlock *LoopVectorPreHeader,
2047                              BasicBlock *LoopExitBlock) {
2048     if (!SCEVCheckCond)
2049       return nullptr;
2050 
2051     Value *Cond = SCEVCheckCond;
2052     // Mark the check as used, to prevent it from being removed during cleanup.
2053     SCEVCheckCond = nullptr;
2054     if (auto *C = dyn_cast<ConstantInt>(Cond))
2055       if (C->isZero())
2056         return nullptr;
2057 
2058     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2059 
2060     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2061     // Create new preheader for vector loop.
2062     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2063       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2064 
2065     SCEVCheckBlock->getTerminator()->eraseFromParent();
2066     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2067     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2068                                                 SCEVCheckBlock);
2069 
2070     DT->addNewBlock(SCEVCheckBlock, Pred);
2071     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2072 
2073     ReplaceInstWithInst(SCEVCheckBlock->getTerminator(),
2074                         BranchInst::Create(Bypass, LoopVectorPreHeader, Cond));
2075     return SCEVCheckBlock;
2076   }
2077 
2078   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2079   /// the branches to branch to the vector preheader or \p Bypass, depending on
2080   /// the generated condition.
2081   BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass,
2082                                    BasicBlock *LoopVectorPreHeader) {
2083     // Check if we generated code that checks in runtime if arrays overlap.
2084     if (!MemRuntimeCheckCond)
2085       return nullptr;
2086 
2087     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2088     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2089                                                 MemCheckBlock);
2090 
2091     DT->addNewBlock(MemCheckBlock, Pred);
2092     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2093     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2094 
2095     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2096       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2097 
2098     ReplaceInstWithInst(
2099         MemCheckBlock->getTerminator(),
2100         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2101     MemCheckBlock->getTerminator()->setDebugLoc(
2102         Pred->getTerminator()->getDebugLoc());
2103 
2104     // Mark the check as used, to prevent it from being removed during cleanup.
2105     MemRuntimeCheckCond = nullptr;
2106     return MemCheckBlock;
2107   }
2108 };
2109 
2110 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2111 // vectorization. The loop needs to be annotated with #pragma omp simd
2112 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2113 // vector length information is not provided, vectorization is not considered
2114 // explicit. Interleave hints are not allowed either. These limitations will be
2115 // relaxed in the future.
2116 // Please, note that we are currently forced to abuse the pragma 'clang
2117 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2118 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2119 // provides *explicit vectorization hints* (LV can bypass legal checks and
2120 // assume that vectorization is legal). However, both hints are implemented
2121 // using the same metadata (llvm.loop.vectorize, processed by
2122 // LoopVectorizeHints). This will be fixed in the future when the native IR
2123 // representation for pragma 'omp simd' is introduced.
2124 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2125                                    OptimizationRemarkEmitter *ORE) {
2126   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2127   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2128 
2129   // Only outer loops with an explicit vectorization hint are supported.
2130   // Unannotated outer loops are ignored.
2131   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2132     return false;
2133 
2134   Function *Fn = OuterLp->getHeader()->getParent();
2135   if (!Hints.allowVectorization(Fn, OuterLp,
2136                                 true /*VectorizeOnlyWhenForced*/)) {
2137     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2138     return false;
2139   }
2140 
2141   if (Hints.getInterleave() > 1) {
2142     // TODO: Interleave support is future work.
2143     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2144                          "outer loops.\n");
2145     Hints.emitRemarkWithHints();
2146     return false;
2147   }
2148 
2149   return true;
2150 }
2151 
2152 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2153                                   OptimizationRemarkEmitter *ORE,
2154                                   SmallVectorImpl<Loop *> &V) {
2155   // Collect inner loops and outer loops without irreducible control flow. For
2156   // now, only collect outer loops that have explicit vectorization hints. If we
2157   // are stress testing the VPlan H-CFG construction, we collect the outermost
2158   // loop of every loop nest.
2159   if (L.isInnermost() || VPlanBuildStressTest ||
2160       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2161     LoopBlocksRPO RPOT(&L);
2162     RPOT.perform(LI);
2163     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2164       V.push_back(&L);
2165       // TODO: Collect inner loops inside marked outer loops in case
2166       // vectorization fails for the outer loop. Do not invoke
2167       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2168       // already known to be reducible. We can use an inherited attribute for
2169       // that.
2170       return;
2171     }
2172   }
2173   for (Loop *InnerL : L)
2174     collectSupportedLoops(*InnerL, LI, ORE, V);
2175 }
2176 
2177 namespace {
2178 
2179 /// The LoopVectorize Pass.
2180 struct LoopVectorize : public FunctionPass {
2181   /// Pass identification, replacement for typeid
2182   static char ID;
2183 
2184   LoopVectorizePass Impl;
2185 
2186   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2187                          bool VectorizeOnlyWhenForced = false)
2188       : FunctionPass(ID),
2189         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2190     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2191   }
2192 
2193   bool runOnFunction(Function &F) override {
2194     if (skipFunction(F))
2195       return false;
2196 
2197     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2198     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2199     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2200     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2201     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2202     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2203     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2204     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2205     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2206     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2207     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2208     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2209     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2210 
2211     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2212         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2213 
2214     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2215                         GetLAA, *ORE, PSI).MadeAnyChange;
2216   }
2217 
2218   void getAnalysisUsage(AnalysisUsage &AU) const override {
2219     AU.addRequired<AssumptionCacheTracker>();
2220     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2221     AU.addRequired<DominatorTreeWrapperPass>();
2222     AU.addRequired<LoopInfoWrapperPass>();
2223     AU.addRequired<ScalarEvolutionWrapperPass>();
2224     AU.addRequired<TargetTransformInfoWrapperPass>();
2225     AU.addRequired<AAResultsWrapperPass>();
2226     AU.addRequired<LoopAccessLegacyAnalysis>();
2227     AU.addRequired<DemandedBitsWrapperPass>();
2228     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2229     AU.addRequired<InjectTLIMappingsLegacy>();
2230 
2231     // We currently do not preserve loopinfo/dominator analyses with outer loop
2232     // vectorization. Until this is addressed, mark these analyses as preserved
2233     // only for non-VPlan-native path.
2234     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2235     if (!EnableVPlanNativePath) {
2236       AU.addPreserved<LoopInfoWrapperPass>();
2237       AU.addPreserved<DominatorTreeWrapperPass>();
2238     }
2239 
2240     AU.addPreserved<BasicAAWrapperPass>();
2241     AU.addPreserved<GlobalsAAWrapperPass>();
2242     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2243   }
2244 };
2245 
2246 } // end anonymous namespace
2247 
2248 //===----------------------------------------------------------------------===//
2249 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2250 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2251 //===----------------------------------------------------------------------===//
2252 
2253 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2254   // We need to place the broadcast of invariant variables outside the loop,
2255   // but only if it's proven safe to do so. Else, broadcast will be inside
2256   // vector loop body.
2257   Instruction *Instr = dyn_cast<Instruction>(V);
2258   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2259                      (!Instr ||
2260                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2261   // Place the code for broadcasting invariant variables in the new preheader.
2262   IRBuilder<>::InsertPointGuard Guard(Builder);
2263   if (SafeToHoist)
2264     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2265 
2266   // Broadcast the scalar into all locations in the vector.
2267   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2268 
2269   return Shuf;
2270 }
2271 
2272 /// This function adds
2273 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
2274 /// to each vector element of Val. The sequence starts at StartIndex.
2275 /// \p Opcode is relevant for FP induction variable.
2276 static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step,
2277                             Instruction::BinaryOps BinOp, ElementCount VF,
2278                             IRBuilderBase &Builder) {
2279   assert(VF.isVector() && "only vector VFs are supported");
2280 
2281   // Create and check the types.
2282   auto *ValVTy = cast<VectorType>(Val->getType());
2283   ElementCount VLen = ValVTy->getElementCount();
2284 
2285   Type *STy = Val->getType()->getScalarType();
2286   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2287          "Induction Step must be an integer or FP");
2288   assert(Step->getType() == STy && "Step has wrong type");
2289 
2290   SmallVector<Constant *, 8> Indices;
2291 
2292   // Create a vector of consecutive numbers from zero to VF.
2293   VectorType *InitVecValVTy = ValVTy;
2294   if (STy->isFloatingPointTy()) {
2295     Type *InitVecValSTy =
2296         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2297     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2298   }
2299   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2300 
2301   // Splat the StartIdx
2302   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2303 
2304   if (STy->isIntegerTy()) {
2305     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2306     Step = Builder.CreateVectorSplat(VLen, Step);
2307     assert(Step->getType() == Val->getType() && "Invalid step vec");
2308     // FIXME: The newly created binary instructions should contain nsw/nuw
2309     // flags, which can be found from the original scalar operations.
2310     Step = Builder.CreateMul(InitVec, Step);
2311     return Builder.CreateAdd(Val, Step, "induction");
2312   }
2313 
2314   // Floating point induction.
2315   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2316          "Binary Opcode should be specified for FP induction");
2317   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2318   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2319 
2320   Step = Builder.CreateVectorSplat(VLen, Step);
2321   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2322   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2323 }
2324 
2325 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
2326 /// variable on which to base the steps, \p Step is the size of the step.
2327 static void buildScalarSteps(Value *ScalarIV, Value *Step,
2328                              const InductionDescriptor &ID, VPValue *Def,
2329                              VPTransformState &State) {
2330   IRBuilderBase &Builder = State.Builder;
2331   // We shouldn't have to build scalar steps if we aren't vectorizing.
2332   assert(State.VF.isVector() && "VF should be greater than one");
2333   // Get the value type and ensure it and the step have the same integer type.
2334   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2335   assert(ScalarIVTy == Step->getType() &&
2336          "Val and Step should have the same type");
2337 
2338   // We build scalar steps for both integer and floating-point induction
2339   // variables. Here, we determine the kind of arithmetic we will perform.
2340   Instruction::BinaryOps AddOp;
2341   Instruction::BinaryOps MulOp;
2342   if (ScalarIVTy->isIntegerTy()) {
2343     AddOp = Instruction::Add;
2344     MulOp = Instruction::Mul;
2345   } else {
2346     AddOp = ID.getInductionOpcode();
2347     MulOp = Instruction::FMul;
2348   }
2349 
2350   // Determine the number of scalars we need to generate for each unroll
2351   // iteration.
2352   bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def);
2353   unsigned Lanes = FirstLaneOnly ? 1 : State.VF.getKnownMinValue();
2354   // Compute the scalar steps and save the results in State.
2355   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2356                                      ScalarIVTy->getScalarSizeInBits());
2357   Type *VecIVTy = nullptr;
2358   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2359   if (!FirstLaneOnly && State.VF.isScalable()) {
2360     VecIVTy = VectorType::get(ScalarIVTy, State.VF);
2361     UnitStepVec =
2362         Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF));
2363     SplatStep = Builder.CreateVectorSplat(State.VF, Step);
2364     SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV);
2365   }
2366 
2367   for (unsigned Part = 0; Part < State.UF; ++Part) {
2368     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part);
2369 
2370     if (!FirstLaneOnly && State.VF.isScalable()) {
2371       auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0);
2372       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2373       if (ScalarIVTy->isFloatingPointTy())
2374         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2375       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2376       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2377       State.set(Def, Add, Part);
2378       // It's useful to record the lane values too for the known minimum number
2379       // of elements so we do those below. This improves the code quality when
2380       // trying to extract the first element, for example.
2381     }
2382 
2383     if (ScalarIVTy->isFloatingPointTy())
2384       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2385 
2386     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2387       Value *StartIdx = Builder.CreateBinOp(
2388           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2389       // The step returned by `createStepForVF` is a runtime-evaluated value
2390       // when VF is scalable. Otherwise, it should be folded into a Constant.
2391       assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&
2392              "Expected StartIdx to be folded to a constant when VF is not "
2393              "scalable");
2394       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2395       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2396       State.set(Def, Add, VPIteration(Part, Lane));
2397     }
2398   }
2399 }
2400 
2401 // Generate code for the induction step. Note that induction steps are
2402 // required to be loop-invariant
2403 static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE,
2404                               Instruction *InsertBefore,
2405                               Loop *OrigLoop = nullptr) {
2406   const DataLayout &DL = SE.getDataLayout();
2407   assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&
2408          "Induction step should be loop invariant");
2409   if (auto *E = dyn_cast<SCEVUnknown>(Step))
2410     return E->getValue();
2411 
2412   SCEVExpander Exp(SE, DL, "induction");
2413   return Exp.expandCodeFor(Step, Step->getType(), InsertBefore);
2414 }
2415 
2416 /// Compute the transformed value of Index at offset StartValue using step
2417 /// StepValue.
2418 /// For integer induction, returns StartValue + Index * StepValue.
2419 /// For pointer induction, returns StartValue[Index * StepValue].
2420 /// FIXME: The newly created binary instructions should contain nsw/nuw
2421 /// flags, which can be found from the original scalar operations.
2422 static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index,
2423                                    Value *StartValue, Value *Step,
2424                                    const InductionDescriptor &ID) {
2425   assert(Index->getType()->getScalarType() == Step->getType() &&
2426          "Index scalar type does not match StepValue type");
2427 
2428   // Note: the IR at this point is broken. We cannot use SE to create any new
2429   // SCEV and then expand it, hoping that SCEV's simplification will give us
2430   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
2431   // lead to various SCEV crashes. So all we can do is to use builder and rely
2432   // on InstCombine for future simplifications. Here we handle some trivial
2433   // cases only.
2434   auto CreateAdd = [&B](Value *X, Value *Y) {
2435     assert(X->getType() == Y->getType() && "Types don't match!");
2436     if (auto *CX = dyn_cast<ConstantInt>(X))
2437       if (CX->isZero())
2438         return Y;
2439     if (auto *CY = dyn_cast<ConstantInt>(Y))
2440       if (CY->isZero())
2441         return X;
2442     return B.CreateAdd(X, Y);
2443   };
2444 
2445   // We allow X to be a vector type, in which case Y will potentially be
2446   // splatted into a vector with the same element count.
2447   auto CreateMul = [&B](Value *X, Value *Y) {
2448     assert(X->getType()->getScalarType() == Y->getType() &&
2449            "Types don't match!");
2450     if (auto *CX = dyn_cast<ConstantInt>(X))
2451       if (CX->isOne())
2452         return Y;
2453     if (auto *CY = dyn_cast<ConstantInt>(Y))
2454       if (CY->isOne())
2455         return X;
2456     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
2457     if (XVTy && !isa<VectorType>(Y->getType()))
2458       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
2459     return B.CreateMul(X, Y);
2460   };
2461 
2462   switch (ID.getKind()) {
2463   case InductionDescriptor::IK_IntInduction: {
2464     assert(!isa<VectorType>(Index->getType()) &&
2465            "Vector indices not supported for integer inductions yet");
2466     assert(Index->getType() == StartValue->getType() &&
2467            "Index type does not match StartValue type");
2468     if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne())
2469       return B.CreateSub(StartValue, Index);
2470     auto *Offset = CreateMul(Index, Step);
2471     return CreateAdd(StartValue, Offset);
2472   }
2473   case InductionDescriptor::IK_PtrInduction: {
2474     assert(isa<Constant>(Step) &&
2475            "Expected constant step for pointer induction");
2476     return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step));
2477   }
2478   case InductionDescriptor::IK_FpInduction: {
2479     assert(!isa<VectorType>(Index->getType()) &&
2480            "Vector indices not supported for FP inductions yet");
2481     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
2482     auto InductionBinOp = ID.getInductionBinOp();
2483     assert(InductionBinOp &&
2484            (InductionBinOp->getOpcode() == Instruction::FAdd ||
2485             InductionBinOp->getOpcode() == Instruction::FSub) &&
2486            "Original bin op should be defined for FP induction");
2487 
2488     Value *MulExp = B.CreateFMul(Step, Index);
2489     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
2490                          "induction");
2491   }
2492   case InductionDescriptor::IK_NoInduction:
2493     return nullptr;
2494   }
2495   llvm_unreachable("invalid enum");
2496 }
2497 
2498 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2499                                                     const VPIteration &Instance,
2500                                                     VPTransformState &State) {
2501   Value *ScalarInst = State.get(Def, Instance);
2502   Value *VectorValue = State.get(Def, Instance.Part);
2503   VectorValue = Builder.CreateInsertElement(
2504       VectorValue, ScalarInst,
2505       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2506   State.set(Def, VectorValue, Instance.Part);
2507 }
2508 
2509 // Return whether we allow using masked interleave-groups (for dealing with
2510 // strided loads/stores that reside in predicated blocks, or for dealing
2511 // with gaps).
2512 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2513   // If an override option has been passed in for interleaved accesses, use it.
2514   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2515     return EnableMaskedInterleavedMemAccesses;
2516 
2517   return TTI.enableMaskedInterleavedAccessVectorization();
2518 }
2519 
2520 // Try to vectorize the interleave group that \p Instr belongs to.
2521 //
2522 // E.g. Translate following interleaved load group (factor = 3):
2523 //   for (i = 0; i < N; i+=3) {
2524 //     R = Pic[i];             // Member of index 0
2525 //     G = Pic[i+1];           // Member of index 1
2526 //     B = Pic[i+2];           // Member of index 2
2527 //     ... // do something to R, G, B
2528 //   }
2529 // To:
2530 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2531 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2532 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2533 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2534 //
2535 // Or translate following interleaved store group (factor = 3):
2536 //   for (i = 0; i < N; i+=3) {
2537 //     ... do something to R, G, B
2538 //     Pic[i]   = R;           // Member of index 0
2539 //     Pic[i+1] = G;           // Member of index 1
2540 //     Pic[i+2] = B;           // Member of index 2
2541 //   }
2542 // To:
2543 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2544 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2545 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2546 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2547 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2548 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2549     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2550     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2551     VPValue *BlockInMask) {
2552   Instruction *Instr = Group->getInsertPos();
2553   const DataLayout &DL = Instr->getModule()->getDataLayout();
2554 
2555   // Prepare for the vector type of the interleaved load/store.
2556   Type *ScalarTy = getLoadStoreType(Instr);
2557   unsigned InterleaveFactor = Group->getFactor();
2558   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2559   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2560 
2561   // Prepare for the new pointers.
2562   SmallVector<Value *, 2> AddrParts;
2563   unsigned Index = Group->getIndex(Instr);
2564 
2565   // TODO: extend the masked interleaved-group support to reversed access.
2566   assert((!BlockInMask || !Group->isReverse()) &&
2567          "Reversed masked interleave-group not supported.");
2568 
2569   // If the group is reverse, adjust the index to refer to the last vector lane
2570   // instead of the first. We adjust the index from the first vector lane,
2571   // rather than directly getting the pointer for lane VF - 1, because the
2572   // pointer operand of the interleaved access is supposed to be uniform. For
2573   // uniform instructions, we're only required to generate a value for the
2574   // first vector lane in each unroll iteration.
2575   if (Group->isReverse())
2576     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2577 
2578   for (unsigned Part = 0; Part < UF; Part++) {
2579     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2580     State.setDebugLocFromInst(AddrPart);
2581 
2582     // Notice current instruction could be any index. Need to adjust the address
2583     // to the member of index 0.
2584     //
2585     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2586     //       b = A[i];       // Member of index 0
2587     // Current pointer is pointed to A[i+1], adjust it to A[i].
2588     //
2589     // E.g.  A[i+1] = a;     // Member of index 1
2590     //       A[i]   = b;     // Member of index 0
2591     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2592     // Current pointer is pointed to A[i+2], adjust it to A[i].
2593 
2594     bool InBounds = false;
2595     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2596       InBounds = gep->isInBounds();
2597     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2598     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2599 
2600     // Cast to the vector pointer type.
2601     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2602     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2603     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2604   }
2605 
2606   State.setDebugLocFromInst(Instr);
2607   Value *PoisonVec = PoisonValue::get(VecTy);
2608 
2609   Value *MaskForGaps = nullptr;
2610   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2611     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2612     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2613   }
2614 
2615   // Vectorize the interleaved load group.
2616   if (isa<LoadInst>(Instr)) {
2617     // For each unroll part, create a wide load for the group.
2618     SmallVector<Value *, 2> NewLoads;
2619     for (unsigned Part = 0; Part < UF; Part++) {
2620       Instruction *NewLoad;
2621       if (BlockInMask || MaskForGaps) {
2622         assert(useMaskedInterleavedAccesses(*TTI) &&
2623                "masked interleaved groups are not allowed.");
2624         Value *GroupMask = MaskForGaps;
2625         if (BlockInMask) {
2626           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2627           Value *ShuffledMask = Builder.CreateShuffleVector(
2628               BlockInMaskPart,
2629               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2630               "interleaved.mask");
2631           GroupMask = MaskForGaps
2632                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2633                                                 MaskForGaps)
2634                           : ShuffledMask;
2635         }
2636         NewLoad =
2637             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2638                                      GroupMask, PoisonVec, "wide.masked.vec");
2639       }
2640       else
2641         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2642                                             Group->getAlign(), "wide.vec");
2643       Group->addMetadata(NewLoad);
2644       NewLoads.push_back(NewLoad);
2645     }
2646 
2647     // For each member in the group, shuffle out the appropriate data from the
2648     // wide loads.
2649     unsigned J = 0;
2650     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2651       Instruction *Member = Group->getMember(I);
2652 
2653       // Skip the gaps in the group.
2654       if (!Member)
2655         continue;
2656 
2657       auto StrideMask =
2658           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2659       for (unsigned Part = 0; Part < UF; Part++) {
2660         Value *StridedVec = Builder.CreateShuffleVector(
2661             NewLoads[Part], StrideMask, "strided.vec");
2662 
2663         // If this member has different type, cast the result type.
2664         if (Member->getType() != ScalarTy) {
2665           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2666           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2667           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2668         }
2669 
2670         if (Group->isReverse())
2671           StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse");
2672 
2673         State.set(VPDefs[J], StridedVec, Part);
2674       }
2675       ++J;
2676     }
2677     return;
2678   }
2679 
2680   // The sub vector type for current instruction.
2681   auto *SubVT = VectorType::get(ScalarTy, VF);
2682 
2683   // Vectorize the interleaved store group.
2684   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2685   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2686          "masked interleaved groups are not allowed.");
2687   assert((!MaskForGaps || !VF.isScalable()) &&
2688          "masking gaps for scalable vectors is not yet supported.");
2689   for (unsigned Part = 0; Part < UF; Part++) {
2690     // Collect the stored vector from each member.
2691     SmallVector<Value *, 4> StoredVecs;
2692     for (unsigned i = 0; i < InterleaveFactor; i++) {
2693       assert((Group->getMember(i) || MaskForGaps) &&
2694              "Fail to get a member from an interleaved store group");
2695       Instruction *Member = Group->getMember(i);
2696 
2697       // Skip the gaps in the group.
2698       if (!Member) {
2699         Value *Undef = PoisonValue::get(SubVT);
2700         StoredVecs.push_back(Undef);
2701         continue;
2702       }
2703 
2704       Value *StoredVec = State.get(StoredValues[i], Part);
2705 
2706       if (Group->isReverse())
2707         StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse");
2708 
2709       // If this member has different type, cast it to a unified type.
2710 
2711       if (StoredVec->getType() != SubVT)
2712         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2713 
2714       StoredVecs.push_back(StoredVec);
2715     }
2716 
2717     // Concatenate all vectors into a wide vector.
2718     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2719 
2720     // Interleave the elements in the wide vector.
2721     Value *IVec = Builder.CreateShuffleVector(
2722         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2723         "interleaved.vec");
2724 
2725     Instruction *NewStoreInstr;
2726     if (BlockInMask || MaskForGaps) {
2727       Value *GroupMask = MaskForGaps;
2728       if (BlockInMask) {
2729         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2730         Value *ShuffledMask = Builder.CreateShuffleVector(
2731             BlockInMaskPart,
2732             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2733             "interleaved.mask");
2734         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2735                                                       ShuffledMask, MaskForGaps)
2736                                 : ShuffledMask;
2737       }
2738       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2739                                                 Group->getAlign(), GroupMask);
2740     } else
2741       NewStoreInstr =
2742           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2743 
2744     Group->addMetadata(NewStoreInstr);
2745   }
2746 }
2747 
2748 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2749                                                VPReplicateRecipe *RepRecipe,
2750                                                const VPIteration &Instance,
2751                                                bool IfPredicateInstr,
2752                                                VPTransformState &State) {
2753   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2754 
2755   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
2756   // the first lane and part.
2757   if (isa<NoAliasScopeDeclInst>(Instr))
2758     if (!Instance.isFirstIteration())
2759       return;
2760 
2761   // Does this instruction return a value ?
2762   bool IsVoidRetTy = Instr->getType()->isVoidTy();
2763 
2764   Instruction *Cloned = Instr->clone();
2765   if (!IsVoidRetTy)
2766     Cloned->setName(Instr->getName() + ".cloned");
2767 
2768   // If the scalarized instruction contributes to the address computation of a
2769   // widen masked load/store which was in a basic block that needed predication
2770   // and is not predicated after vectorization, we can't propagate
2771   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
2772   // instruction could feed a poison value to the base address of the widen
2773   // load/store.
2774   if (State.MayGeneratePoisonRecipes.contains(RepRecipe))
2775     Cloned->dropPoisonGeneratingFlags();
2776 
2777   if (Instr->getDebugLoc())
2778     State.setDebugLocFromInst(Instr);
2779 
2780   // Replace the operands of the cloned instructions with their scalar
2781   // equivalents in the new loop.
2782   for (auto &I : enumerate(RepRecipe->operands())) {
2783     auto InputInstance = Instance;
2784     VPValue *Operand = I.value();
2785     VPReplicateRecipe *OperandR = dyn_cast<VPReplicateRecipe>(Operand);
2786     if (OperandR && OperandR->isUniform())
2787       InputInstance.Lane = VPLane::getFirstLane();
2788     Cloned->setOperand(I.index(), State.get(Operand, InputInstance));
2789   }
2790   State.addNewMetadata(Cloned, Instr);
2791 
2792   // Place the cloned scalar in the new loop.
2793   State.Builder.Insert(Cloned);
2794 
2795   State.set(RepRecipe, Cloned, Instance);
2796 
2797   // If we just cloned a new assumption, add it the assumption cache.
2798   if (auto *II = dyn_cast<AssumeInst>(Cloned))
2799     AC->registerAssumption(II);
2800 
2801   // End if-block.
2802   if (IfPredicateInstr)
2803     PredicatedInstructions.push_back(Cloned);
2804 }
2805 
2806 Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) {
2807   if (TripCount)
2808     return TripCount;
2809 
2810   assert(InsertBlock);
2811   IRBuilder<> Builder(InsertBlock->getTerminator());
2812   // Find the loop boundaries.
2813   ScalarEvolution *SE = PSE.getSE();
2814   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2815   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
2816          "Invalid loop count");
2817 
2818   Type *IdxTy = Legal->getWidestInductionType();
2819   assert(IdxTy && "No type for induction");
2820 
2821   // The exit count might have the type of i64 while the phi is i32. This can
2822   // happen if we have an induction variable that is sign extended before the
2823   // compare. The only way that we get a backedge taken count is that the
2824   // induction variable was signed and as such will not overflow. In such a case
2825   // truncation is legal.
2826   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
2827       IdxTy->getPrimitiveSizeInBits())
2828     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2829   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2830 
2831   // Get the total trip count from the count by adding 1.
2832   const SCEV *ExitCount = SE->getAddExpr(
2833       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2834 
2835   const DataLayout &DL = InsertBlock->getModule()->getDataLayout();
2836 
2837   // Expand the trip count and place the new instructions in the preheader.
2838   // Notice that the pre-header does not change, only the loop body.
2839   SCEVExpander Exp(*SE, DL, "induction");
2840 
2841   // Count holds the overall loop count (N).
2842   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2843                                 InsertBlock->getTerminator());
2844 
2845   if (TripCount->getType()->isPointerTy())
2846     TripCount =
2847         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2848                                     InsertBlock->getTerminator());
2849 
2850   return TripCount;
2851 }
2852 
2853 Value *
2854 InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) {
2855   if (VectorTripCount)
2856     return VectorTripCount;
2857 
2858   Value *TC = getOrCreateTripCount(InsertBlock);
2859   IRBuilder<> Builder(InsertBlock->getTerminator());
2860 
2861   Type *Ty = TC->getType();
2862   // This is where we can make the step a runtime constant.
2863   Value *Step = createStepForVF(Builder, Ty, VF, UF);
2864 
2865   // If the tail is to be folded by masking, round the number of iterations N
2866   // up to a multiple of Step instead of rounding down. This is done by first
2867   // adding Step-1 and then rounding down. Note that it's ok if this addition
2868   // overflows: the vector induction variable will eventually wrap to zero given
2869   // that it starts at zero and its Step is a power of two; the loop will then
2870   // exit, with the last early-exit vector comparison also producing all-true.
2871   // For scalable vectors the VF is not guaranteed to be a power of 2, but this
2872   // is accounted for in emitIterationCountCheck that adds an overflow check.
2873   if (Cost->foldTailByMasking()) {
2874     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
2875            "VF*UF must be a power of 2 when folding tail by masking");
2876     Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF);
2877     TC = Builder.CreateAdd(
2878         TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up");
2879   }
2880 
2881   // Now we need to generate the expression for the part of the loop that the
2882   // vectorized body will execute. This is equal to N - (N % Step) if scalar
2883   // iterations are not required for correctness, or N - Step, otherwise. Step
2884   // is equal to the vectorization factor (number of SIMD elements) times the
2885   // unroll factor (number of SIMD instructions).
2886   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2887 
2888   // There are cases where we *must* run at least one iteration in the remainder
2889   // loop.  See the cost model for when this can happen.  If the step evenly
2890   // divides the trip count, we set the remainder to be equal to the step. If
2891   // the step does not evenly divide the trip count, no adjustment is necessary
2892   // since there will already be scalar iterations. Note that the minimum
2893   // iterations check ensures that N >= Step.
2894   if (Cost->requiresScalarEpilogue(VF)) {
2895     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2896     R = Builder.CreateSelect(IsZero, Step, R);
2897   }
2898 
2899   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2900 
2901   return VectorTripCount;
2902 }
2903 
2904 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2905                                                    const DataLayout &DL) {
2906   // Verify that V is a vector type with same number of elements as DstVTy.
2907   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
2908   unsigned VF = DstFVTy->getNumElements();
2909   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
2910   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2911   Type *SrcElemTy = SrcVecTy->getElementType();
2912   Type *DstElemTy = DstFVTy->getElementType();
2913   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2914          "Vector elements must have same size");
2915 
2916   // Do a direct cast if element types are castable.
2917   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2918     return Builder.CreateBitOrPointerCast(V, DstFVTy);
2919   }
2920   // V cannot be directly casted to desired vector type.
2921   // May happen when V is a floating point vector but DstVTy is a vector of
2922   // pointers or vice-versa. Handle this using a two-step bitcast using an
2923   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2924   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2925          "Only one type should be a pointer type");
2926   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2927          "Only one type should be a floating point type");
2928   Type *IntTy =
2929       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2930   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
2931   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2932   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
2933 }
2934 
2935 void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) {
2936   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
2937   // Reuse existing vector loop preheader for TC checks.
2938   // Note that new preheader block is generated for vector loop.
2939   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
2940   IRBuilder<> Builder(TCCheckBlock->getTerminator());
2941 
2942   // Generate code to check if the loop's trip count is less than VF * UF, or
2943   // equal to it in case a scalar epilogue is required; this implies that the
2944   // vector trip count is zero. This check also covers the case where adding one
2945   // to the backedge-taken count overflowed leading to an incorrect trip count
2946   // of zero. In this case we will also jump to the scalar loop.
2947   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
2948                                             : ICmpInst::ICMP_ULT;
2949 
2950   // If tail is to be folded, vector loop takes care of all iterations.
2951   Type *CountTy = Count->getType();
2952   Value *CheckMinIters = Builder.getFalse();
2953   auto CreateStep = [&]() -> Value * {
2954     // Create step with max(MinProTripCount, UF * VF).
2955     if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue())
2956       return createStepForVF(Builder, CountTy, VF, UF);
2957 
2958     Value *MinProfTC =
2959         createStepForVF(Builder, CountTy, MinProfitableTripCount, 1);
2960     if (!VF.isScalable())
2961       return MinProfTC;
2962     return Builder.CreateBinaryIntrinsic(
2963         Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF));
2964   };
2965 
2966   if (!Cost->foldTailByMasking())
2967     CheckMinIters =
2968         Builder.CreateICmp(P, Count, CreateStep(), "min.iters.check");
2969   else if (VF.isScalable()) {
2970     // vscale is not necessarily a power-of-2, which means we cannot guarantee
2971     // an overflow to zero when updating induction variables and so an
2972     // additional overflow check is required before entering the vector loop.
2973 
2974     // Get the maximum unsigned value for the type.
2975     Value *MaxUIntTripCount =
2976         ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask());
2977     Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count);
2978 
2979     // Don't execute the vector loop if (UMax - n) < (VF * UF).
2980     CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep());
2981   }
2982 
2983   // Create new preheader for vector loop.
2984   LoopVectorPreHeader =
2985       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
2986                  "vector.ph");
2987 
2988   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
2989                                DT->getNode(Bypass)->getIDom()) &&
2990          "TC check is expected to dominate Bypass");
2991 
2992   // Update dominator for Bypass & LoopExit (if needed).
2993   DT->changeImmediateDominator(Bypass, TCCheckBlock);
2994   if (!Cost->requiresScalarEpilogue(VF))
2995     // If there is an epilogue which must run, there's no edge from the
2996     // middle block to exit blocks  and thus no need to update the immediate
2997     // dominator of the exit blocks.
2998     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
2999 
3000   ReplaceInstWithInst(
3001       TCCheckBlock->getTerminator(),
3002       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3003   LoopBypassBlocks.push_back(TCCheckBlock);
3004 }
3005 
3006 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) {
3007   BasicBlock *const SCEVCheckBlock =
3008       RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock);
3009   if (!SCEVCheckBlock)
3010     return nullptr;
3011 
3012   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3013            (OptForSizeBasedOnProfile &&
3014             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3015          "Cannot SCEV check stride or overflow when optimizing for size");
3016 
3017 
3018   // Update dominator only if this is first RT check.
3019   if (LoopBypassBlocks.empty()) {
3020     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3021     if (!Cost->requiresScalarEpilogue(VF))
3022       // If there is an epilogue which must run, there's no edge from the
3023       // middle block to exit blocks  and thus no need to update the immediate
3024       // dominator of the exit blocks.
3025       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3026   }
3027 
3028   LoopBypassBlocks.push_back(SCEVCheckBlock);
3029   AddedSafetyChecks = true;
3030   return SCEVCheckBlock;
3031 }
3032 
3033 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) {
3034   // VPlan-native path does not do any analysis for runtime checks currently.
3035   if (EnableVPlanNativePath)
3036     return nullptr;
3037 
3038   BasicBlock *const MemCheckBlock =
3039       RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader);
3040 
3041   // Check if we generated code that checks in runtime if arrays overlap. We put
3042   // the checks into a separate block to make the more common case of few
3043   // elements faster.
3044   if (!MemCheckBlock)
3045     return nullptr;
3046 
3047   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3048     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3049            "Cannot emit memory checks when optimizing for size, unless forced "
3050            "to vectorize.");
3051     ORE->emit([&]() {
3052       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3053                                         OrigLoop->getStartLoc(),
3054                                         OrigLoop->getHeader())
3055              << "Code-size may be reduced by not forcing "
3056                 "vectorization, or by source-code modifications "
3057                 "eliminating the need for runtime checks "
3058                 "(e.g., adding 'restrict').";
3059     });
3060   }
3061 
3062   LoopBypassBlocks.push_back(MemCheckBlock);
3063 
3064   AddedSafetyChecks = true;
3065 
3066   return MemCheckBlock;
3067 }
3068 
3069 void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3070   LoopScalarBody = OrigLoop->getHeader();
3071   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3072   assert(LoopVectorPreHeader && "Invalid loop structure");
3073   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3074   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3075          "multiple exit loop without required epilogue?");
3076 
3077   LoopMiddleBlock =
3078       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3079                  LI, nullptr, Twine(Prefix) + "middle.block");
3080   LoopScalarPreHeader =
3081       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3082                  nullptr, Twine(Prefix) + "scalar.ph");
3083 
3084   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3085 
3086   // Set up the middle block terminator.  Two cases:
3087   // 1) If we know that we must execute the scalar epilogue, emit an
3088   //    unconditional branch.
3089   // 2) Otherwise, we must have a single unique exit block (due to how we
3090   //    implement the multiple exit case).  In this case, set up a conditonal
3091   //    branch from the middle block to the loop scalar preheader, and the
3092   //    exit block.  completeLoopSkeleton will update the condition to use an
3093   //    iteration check, if required to decide whether to execute the remainder.
3094   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3095     BranchInst::Create(LoopScalarPreHeader) :
3096     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3097                        Builder.getTrue());
3098   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3099   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3100 
3101   // Update dominator for loop exit. During skeleton creation, only the vector
3102   // pre-header and the middle block are created. The vector loop is entirely
3103   // created during VPlan exection.
3104   if (!Cost->requiresScalarEpilogue(VF))
3105     // If there is an epilogue which must run, there's no edge from the
3106     // middle block to exit blocks  and thus no need to update the immediate
3107     // dominator of the exit blocks.
3108     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3109 }
3110 
3111 void InnerLoopVectorizer::createInductionResumeValues(
3112     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3113   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3114           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3115          "Inconsistent information about additional bypass.");
3116 
3117   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3118   assert(VectorTripCount && "Expected valid arguments");
3119   // We are going to resume the execution of the scalar loop.
3120   // Go over all of the induction variables that we found and fix the
3121   // PHIs that are left in the scalar version of the loop.
3122   // The starting values of PHI nodes depend on the counter of the last
3123   // iteration in the vectorized loop.
3124   // If we come from a bypass edge then we need to start from the original
3125   // start value.
3126   Instruction *OldInduction = Legal->getPrimaryInduction();
3127   for (auto &InductionEntry : Legal->getInductionVars()) {
3128     PHINode *OrigPhi = InductionEntry.first;
3129     InductionDescriptor II = InductionEntry.second;
3130 
3131     Value *&EndValue = IVEndValues[OrigPhi];
3132     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3133     if (OrigPhi == OldInduction) {
3134       // We know what the end value is.
3135       EndValue = VectorTripCount;
3136     } else {
3137       IRBuilder<> B(LoopVectorPreHeader->getTerminator());
3138 
3139       // Fast-math-flags propagate from the original induction instruction.
3140       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3141         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3142 
3143       Type *StepType = II.getStep()->getType();
3144       Instruction::CastOps CastOp =
3145           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3146       Value *VTC = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.vtc");
3147       Value *Step =
3148           CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3149       EndValue = emitTransformedIndex(B, VTC, II.getStartValue(), Step, II);
3150       EndValue->setName("ind.end");
3151 
3152       // Compute the end value for the additional bypass (if applicable).
3153       if (AdditionalBypass.first) {
3154         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3155         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3156                                          StepType, true);
3157         Value *Step =
3158             CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint());
3159         VTC =
3160             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.vtc");
3161         EndValueFromAdditionalBypass =
3162             emitTransformedIndex(B, VTC, II.getStartValue(), Step, II);
3163         EndValueFromAdditionalBypass->setName("ind.end");
3164       }
3165     }
3166 
3167     // Create phi nodes to merge from the  backedge-taken check block.
3168     PHINode *BCResumeVal =
3169         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3170                         LoopScalarPreHeader->getTerminator());
3171     // Copy original phi DL over to the new one.
3172     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3173 
3174     // The new PHI merges the original incoming value, in case of a bypass,
3175     // or the value at the end of the vectorized loop.
3176     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3177 
3178     // Fix the scalar body counter (PHI node).
3179     // The old induction's phi node in the scalar body needs the truncated
3180     // value.
3181     for (BasicBlock *BB : LoopBypassBlocks)
3182       BCResumeVal->addIncoming(II.getStartValue(), BB);
3183 
3184     if (AdditionalBypass.first)
3185       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3186                                             EndValueFromAdditionalBypass);
3187 
3188     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3189   }
3190 }
3191 
3192 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(MDNode *OrigLoopID) {
3193   // The trip counts should be cached by now.
3194   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
3195   Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
3196 
3197   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3198 
3199   // Add a check in the middle block to see if we have completed
3200   // all of the iterations in the first vector loop.  Three cases:
3201   // 1) If we require a scalar epilogue, there is no conditional branch as
3202   //    we unconditionally branch to the scalar preheader.  Do nothing.
3203   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3204   //    Thus if tail is to be folded, we know we don't need to run the
3205   //    remainder and we can use the previous value for the condition (true).
3206   // 3) Otherwise, construct a runtime check.
3207   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3208     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3209                                         Count, VectorTripCount, "cmp.n",
3210                                         LoopMiddleBlock->getTerminator());
3211 
3212     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3213     // of the corresponding compare because they may have ended up with
3214     // different line numbers and we want to avoid awkward line stepping while
3215     // debugging. Eg. if the compare has got a line number inside the loop.
3216     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3217     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3218   }
3219 
3220 #ifdef EXPENSIVE_CHECKS
3221   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3222 #endif
3223 
3224   return LoopVectorPreHeader;
3225 }
3226 
3227 std::pair<BasicBlock *, Value *>
3228 InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3229   /*
3230    In this function we generate a new loop. The new loop will contain
3231    the vectorized instructions while the old loop will continue to run the
3232    scalar remainder.
3233 
3234        [ ] <-- loop iteration number check.
3235     /   |
3236    /    v
3237   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3238   |  /  |
3239   | /   v
3240   ||   [ ]     <-- vector pre header.
3241   |/    |
3242   |     v
3243   |    [  ] \
3244   |    [  ]_|   <-- vector loop (created during VPlan execution).
3245   |     |
3246   |     v
3247   \   -[ ]   <--- middle-block.
3248    \/   |
3249    /\   v
3250    | ->[ ]     <--- new preheader.
3251    |    |
3252  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3253    |   [ ] \
3254    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3255     \   |
3256      \  v
3257       >[ ]     <-- exit block(s).
3258    ...
3259    */
3260 
3261   // Get the metadata of the original loop before it gets modified.
3262   MDNode *OrigLoopID = OrigLoop->getLoopID();
3263 
3264   // Workaround!  Compute the trip count of the original loop and cache it
3265   // before we start modifying the CFG.  This code has a systemic problem
3266   // wherein it tries to run analysis over partially constructed IR; this is
3267   // wrong, and not simply for SCEV.  The trip count of the original loop
3268   // simply happens to be prone to hitting this in practice.  In theory, we
3269   // can hit the same issue for any SCEV, or ValueTracking query done during
3270   // mutation.  See PR49900.
3271   getOrCreateTripCount(OrigLoop->getLoopPreheader());
3272 
3273   // Create an empty vector loop, and prepare basic blocks for the runtime
3274   // checks.
3275   createVectorLoopSkeleton("");
3276 
3277   // Now, compare the new count to zero. If it is zero skip the vector loop and
3278   // jump to the scalar loop. This check also covers the case where the
3279   // backedge-taken count is uint##_max: adding one to it will overflow leading
3280   // to an incorrect trip count of zero. In this (rare) case we will also jump
3281   // to the scalar loop.
3282   emitIterationCountCheck(LoopScalarPreHeader);
3283 
3284   // Generate the code to check any assumptions that we've made for SCEV
3285   // expressions.
3286   emitSCEVChecks(LoopScalarPreHeader);
3287 
3288   // Generate the code that checks in runtime if arrays overlap. We put the
3289   // checks into a separate block to make the more common case of few elements
3290   // faster.
3291   emitMemRuntimeChecks(LoopScalarPreHeader);
3292 
3293   // Emit phis for the new starting index of the scalar loop.
3294   createInductionResumeValues();
3295 
3296   return {completeLoopSkeleton(OrigLoopID), nullptr};
3297 }
3298 
3299 // Fix up external users of the induction variable. At this point, we are
3300 // in LCSSA form, with all external PHIs that use the IV having one input value,
3301 // coming from the remainder loop. We need those PHIs to also have a correct
3302 // value for the IV when arriving directly from the middle block.
3303 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3304                                        const InductionDescriptor &II,
3305                                        Value *VectorTripCount, Value *EndValue,
3306                                        BasicBlock *MiddleBlock,
3307                                        BasicBlock *VectorHeader, VPlan &Plan) {
3308   // There are two kinds of external IV usages - those that use the value
3309   // computed in the last iteration (the PHI) and those that use the penultimate
3310   // value (the value that feeds into the phi from the loop latch).
3311   // We allow both, but they, obviously, have different values.
3312 
3313   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3314 
3315   DenseMap<Value *, Value *> MissingVals;
3316 
3317   // An external user of the last iteration's value should see the value that
3318   // the remainder loop uses to initialize its own IV.
3319   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3320   for (User *U : PostInc->users()) {
3321     Instruction *UI = cast<Instruction>(U);
3322     if (!OrigLoop->contains(UI)) {
3323       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3324       MissingVals[UI] = EndValue;
3325     }
3326   }
3327 
3328   // An external user of the penultimate value need to see EndValue - Step.
3329   // The simplest way to get this is to recompute it from the constituent SCEVs,
3330   // that is Start + (Step * (CRD - 1)).
3331   for (User *U : OrigPhi->users()) {
3332     auto *UI = cast<Instruction>(U);
3333     if (!OrigLoop->contains(UI)) {
3334       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3335 
3336       IRBuilder<> B(MiddleBlock->getTerminator());
3337 
3338       // Fast-math-flags propagate from the original induction instruction.
3339       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3340         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3341 
3342       Value *CountMinusOne = B.CreateSub(
3343           VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1));
3344       Value *CMO =
3345           !II.getStep()->getType()->isIntegerTy()
3346               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3347                              II.getStep()->getType())
3348               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3349       CMO->setName("cast.cmo");
3350 
3351       Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(),
3352                                     VectorHeader->getTerminator());
3353       Value *Escape =
3354           emitTransformedIndex(B, CMO, II.getStartValue(), Step, II);
3355       Escape->setName("ind.escape");
3356       MissingVals[UI] = Escape;
3357     }
3358   }
3359 
3360   for (auto &I : MissingVals) {
3361     PHINode *PHI = cast<PHINode>(I.first);
3362     // One corner case we have to handle is two IVs "chasing" each-other,
3363     // that is %IV2 = phi [...], [ %IV1, %latch ]
3364     // In this case, if IV1 has an external use, we need to avoid adding both
3365     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3366     // don't already have an incoming value for the middle block.
3367     if (PHI->getBasicBlockIndex(MiddleBlock) == -1) {
3368       PHI->addIncoming(I.second, MiddleBlock);
3369       Plan.removeLiveOut(PHI);
3370     }
3371   }
3372 }
3373 
3374 namespace {
3375 
3376 struct CSEDenseMapInfo {
3377   static bool canHandle(const Instruction *I) {
3378     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3379            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3380   }
3381 
3382   static inline Instruction *getEmptyKey() {
3383     return DenseMapInfo<Instruction *>::getEmptyKey();
3384   }
3385 
3386   static inline Instruction *getTombstoneKey() {
3387     return DenseMapInfo<Instruction *>::getTombstoneKey();
3388   }
3389 
3390   static unsigned getHashValue(const Instruction *I) {
3391     assert(canHandle(I) && "Unknown instruction!");
3392     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3393                                                            I->value_op_end()));
3394   }
3395 
3396   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3397     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3398         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3399       return LHS == RHS;
3400     return LHS->isIdenticalTo(RHS);
3401   }
3402 };
3403 
3404 } // end anonymous namespace
3405 
3406 ///Perform cse of induction variable instructions.
3407 static void cse(BasicBlock *BB) {
3408   // Perform simple cse.
3409   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3410   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3411     if (!CSEDenseMapInfo::canHandle(&In))
3412       continue;
3413 
3414     // Check if we can replace this instruction with any of the
3415     // visited instructions.
3416     if (Instruction *V = CSEMap.lookup(&In)) {
3417       In.replaceAllUsesWith(V);
3418       In.eraseFromParent();
3419       continue;
3420     }
3421 
3422     CSEMap[&In] = &In;
3423   }
3424 }
3425 
3426 InstructionCost
3427 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3428                                               bool &NeedToScalarize) const {
3429   Function *F = CI->getCalledFunction();
3430   Type *ScalarRetTy = CI->getType();
3431   SmallVector<Type *, 4> Tys, ScalarTys;
3432   for (auto &ArgOp : CI->args())
3433     ScalarTys.push_back(ArgOp->getType());
3434 
3435   // Estimate cost of scalarized vector call. The source operands are assumed
3436   // to be vectors, so we need to extract individual elements from there,
3437   // execute VF scalar calls, and then gather the result into the vector return
3438   // value.
3439   InstructionCost ScalarCallCost =
3440       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3441   if (VF.isScalar())
3442     return ScalarCallCost;
3443 
3444   // Compute corresponding vector type for return value and arguments.
3445   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3446   for (Type *ScalarTy : ScalarTys)
3447     Tys.push_back(ToVectorTy(ScalarTy, VF));
3448 
3449   // Compute costs of unpacking argument values for the scalar calls and
3450   // packing the return values to a vector.
3451   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3452 
3453   InstructionCost Cost =
3454       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3455 
3456   // If we can't emit a vector call for this function, then the currently found
3457   // cost is the cost we need to return.
3458   NeedToScalarize = true;
3459   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3460   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3461 
3462   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3463     return Cost;
3464 
3465   // If the corresponding vector cost is cheaper, return its cost.
3466   InstructionCost VectorCallCost =
3467       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3468   if (VectorCallCost < Cost) {
3469     NeedToScalarize = false;
3470     Cost = VectorCallCost;
3471   }
3472   return Cost;
3473 }
3474 
3475 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3476   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3477     return Elt;
3478   return VectorType::get(Elt, VF);
3479 }
3480 
3481 InstructionCost
3482 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3483                                                    ElementCount VF) const {
3484   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3485   assert(ID && "Expected intrinsic call!");
3486   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3487   FastMathFlags FMF;
3488   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3489     FMF = FPMO->getFastMathFlags();
3490 
3491   SmallVector<const Value *> Arguments(CI->args());
3492   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3493   SmallVector<Type *> ParamTys;
3494   std::transform(FTy->param_begin(), FTy->param_end(),
3495                  std::back_inserter(ParamTys),
3496                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3497 
3498   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3499                                     dyn_cast<IntrinsicInst>(CI));
3500   return TTI.getIntrinsicInstrCost(CostAttrs,
3501                                    TargetTransformInfo::TCK_RecipThroughput);
3502 }
3503 
3504 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3505   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3506   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3507   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3508 }
3509 
3510 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3511   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3512   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3513   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3514 }
3515 
3516 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3517   // For every instruction `I` in MinBWs, truncate the operands, create a
3518   // truncated version of `I` and reextend its result. InstCombine runs
3519   // later and will remove any ext/trunc pairs.
3520   SmallPtrSet<Value *, 4> Erased;
3521   for (const auto &KV : Cost->getMinimalBitwidths()) {
3522     // If the value wasn't vectorized, we must maintain the original scalar
3523     // type. The absence of the value from State indicates that it
3524     // wasn't vectorized.
3525     // FIXME: Should not rely on getVPValue at this point.
3526     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3527     if (!State.hasAnyVectorValue(Def))
3528       continue;
3529     for (unsigned Part = 0; Part < UF; ++Part) {
3530       Value *I = State.get(Def, Part);
3531       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3532         continue;
3533       Type *OriginalTy = I->getType();
3534       Type *ScalarTruncatedTy =
3535           IntegerType::get(OriginalTy->getContext(), KV.second);
3536       auto *TruncatedTy = VectorType::get(
3537           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
3538       if (TruncatedTy == OriginalTy)
3539         continue;
3540 
3541       IRBuilder<> B(cast<Instruction>(I));
3542       auto ShrinkOperand = [&](Value *V) -> Value * {
3543         if (auto *ZI = dyn_cast<ZExtInst>(V))
3544           if (ZI->getSrcTy() == TruncatedTy)
3545             return ZI->getOperand(0);
3546         return B.CreateZExtOrTrunc(V, TruncatedTy);
3547       };
3548 
3549       // The actual instruction modification depends on the instruction type,
3550       // unfortunately.
3551       Value *NewI = nullptr;
3552       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3553         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3554                              ShrinkOperand(BO->getOperand(1)));
3555 
3556         // Any wrapping introduced by shrinking this operation shouldn't be
3557         // considered undefined behavior. So, we can't unconditionally copy
3558         // arithmetic wrapping flags to NewI.
3559         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3560       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3561         NewI =
3562             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3563                          ShrinkOperand(CI->getOperand(1)));
3564       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3565         NewI = B.CreateSelect(SI->getCondition(),
3566                               ShrinkOperand(SI->getTrueValue()),
3567                               ShrinkOperand(SI->getFalseValue()));
3568       } else if (auto *CI = dyn_cast<CastInst>(I)) {
3569         switch (CI->getOpcode()) {
3570         default:
3571           llvm_unreachable("Unhandled cast!");
3572         case Instruction::Trunc:
3573           NewI = ShrinkOperand(CI->getOperand(0));
3574           break;
3575         case Instruction::SExt:
3576           NewI = B.CreateSExtOrTrunc(
3577               CI->getOperand(0),
3578               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3579           break;
3580         case Instruction::ZExt:
3581           NewI = B.CreateZExtOrTrunc(
3582               CI->getOperand(0),
3583               smallestIntegerVectorType(OriginalTy, TruncatedTy));
3584           break;
3585         }
3586       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3587         auto Elements0 =
3588             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
3589         auto *O0 = B.CreateZExtOrTrunc(
3590             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3591         auto Elements1 =
3592             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
3593         auto *O1 = B.CreateZExtOrTrunc(
3594             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3595 
3596         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
3597       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3598         // Don't do anything with the operands, just extend the result.
3599         continue;
3600       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3601         auto Elements =
3602             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
3603         auto *O0 = B.CreateZExtOrTrunc(
3604             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3605         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3606         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3607       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3608         auto Elements =
3609             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
3610         auto *O0 = B.CreateZExtOrTrunc(
3611             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3612         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3613       } else {
3614         // If we don't know what to do, be conservative and don't do anything.
3615         continue;
3616       }
3617 
3618       // Lastly, extend the result.
3619       NewI->takeName(cast<Instruction>(I));
3620       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3621       I->replaceAllUsesWith(Res);
3622       cast<Instruction>(I)->eraseFromParent();
3623       Erased.insert(I);
3624       State.reset(Def, Res, Part);
3625     }
3626   }
3627 
3628   // We'll have created a bunch of ZExts that are now parentless. Clean up.
3629   for (const auto &KV : Cost->getMinimalBitwidths()) {
3630     // If the value wasn't vectorized, we must maintain the original scalar
3631     // type. The absence of the value from State indicates that it
3632     // wasn't vectorized.
3633     // FIXME: Should not rely on getVPValue at this point.
3634     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3635     if (!State.hasAnyVectorValue(Def))
3636       continue;
3637     for (unsigned Part = 0; Part < UF; ++Part) {
3638       Value *I = State.get(Def, Part);
3639       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3640       if (Inst && Inst->use_empty()) {
3641         Value *NewI = Inst->getOperand(0);
3642         Inst->eraseFromParent();
3643         State.reset(Def, NewI, Part);
3644       }
3645     }
3646   }
3647 }
3648 
3649 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State,
3650                                             VPlan &Plan) {
3651   // Insert truncates and extends for any truncated instructions as hints to
3652   // InstCombine.
3653   if (VF.isVector())
3654     truncateToMinimalBitwidths(State);
3655 
3656   // Fix widened non-induction PHIs by setting up the PHI operands.
3657   if (EnableVPlanNativePath)
3658     fixNonInductionPHIs(Plan, State);
3659 
3660   // At this point every instruction in the original loop is widened to a
3661   // vector form. Now we need to fix the recurrences in the loop. These PHI
3662   // nodes are currently empty because we did not want to introduce cycles.
3663   // This is the second stage of vectorizing recurrences.
3664   fixCrossIterationPHIs(State);
3665 
3666   // Forget the original basic block.
3667   PSE.getSE()->forgetLoop(OrigLoop);
3668 
3669   VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock();
3670   Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]);
3671   if (Cost->requiresScalarEpilogue(VF)) {
3672     // No edge from the middle block to the unique exit block has been inserted
3673     // and there is nothing to fix from vector loop; phis should have incoming
3674     // from scalar loop only.
3675     Plan.clearLiveOuts();
3676   } else {
3677     // If we inserted an edge from the middle block to the unique exit block,
3678     // update uses outside the loop (phis) to account for the newly inserted
3679     // edge.
3680 
3681     // Fix-up external users of the induction variables.
3682     for (auto &Entry : Legal->getInductionVars())
3683       fixupIVUsers(Entry.first, Entry.second,
3684                    getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()),
3685                    IVEndValues[Entry.first], LoopMiddleBlock,
3686                    VectorLoop->getHeader(), Plan);
3687   }
3688 
3689   // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated
3690   // in the exit block, so update the builder.
3691   State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI());
3692   for (auto &KV : Plan.getLiveOuts())
3693     KV.second->fixPhi(Plan, State);
3694 
3695   for (Instruction *PI : PredicatedInstructions)
3696     sinkScalarOperands(&*PI);
3697 
3698   // Remove redundant induction instructions.
3699   cse(VectorLoop->getHeader());
3700 
3701   // Set/update profile weights for the vector and remainder loops as original
3702   // loop iterations are now distributed among them. Note that original loop
3703   // represented by LoopScalarBody becomes remainder loop after vectorization.
3704   //
3705   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
3706   // end up getting slightly roughened result but that should be OK since
3707   // profile is not inherently precise anyway. Note also possible bypass of
3708   // vector code caused by legality checks is ignored, assigning all the weight
3709   // to the vector loop, optimistically.
3710   //
3711   // For scalable vectorization we can't know at compile time how many iterations
3712   // of the loop are handled in one vector iteration, so instead assume a pessimistic
3713   // vscale of '1'.
3714   setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop,
3715                                LI->getLoopFor(LoopScalarBody),
3716                                VF.getKnownMinValue() * UF);
3717 }
3718 
3719 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
3720   // In order to support recurrences we need to be able to vectorize Phi nodes.
3721   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3722   // stage #2: We now need to fix the recurrences by adding incoming edges to
3723   // the currently empty PHI nodes. At this point every instruction in the
3724   // original loop is widened to a vector form so we can use them to construct
3725   // the incoming edges.
3726   VPBasicBlock *Header =
3727       State.Plan->getVectorLoopRegion()->getEntryBasicBlock();
3728   for (VPRecipeBase &R : Header->phis()) {
3729     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
3730       fixReduction(ReductionPhi, State);
3731     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
3732       fixFirstOrderRecurrence(FOR, State);
3733   }
3734 }
3735 
3736 void InnerLoopVectorizer::fixFirstOrderRecurrence(
3737     VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) {
3738   // This is the second phase of vectorizing first-order recurrences. An
3739   // overview of the transformation is described below. Suppose we have the
3740   // following loop.
3741   //
3742   //   for (int i = 0; i < n; ++i)
3743   //     b[i] = a[i] - a[i - 1];
3744   //
3745   // There is a first-order recurrence on "a". For this loop, the shorthand
3746   // scalar IR looks like:
3747   //
3748   //   scalar.ph:
3749   //     s_init = a[-1]
3750   //     br scalar.body
3751   //
3752   //   scalar.body:
3753   //     i = phi [0, scalar.ph], [i+1, scalar.body]
3754   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3755   //     s2 = a[i]
3756   //     b[i] = s2 - s1
3757   //     br cond, scalar.body, ...
3758   //
3759   // In this example, s1 is a recurrence because it's value depends on the
3760   // previous iteration. In the first phase of vectorization, we created a
3761   // vector phi v1 for s1. We now complete the vectorization and produce the
3762   // shorthand vector IR shown below (for VF = 4, UF = 1).
3763   //
3764   //   vector.ph:
3765   //     v_init = vector(..., ..., ..., a[-1])
3766   //     br vector.body
3767   //
3768   //   vector.body
3769   //     i = phi [0, vector.ph], [i+4, vector.body]
3770   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
3771   //     v2 = a[i, i+1, i+2, i+3];
3772   //     v3 = vector(v1(3), v2(0, 1, 2))
3773   //     b[i, i+1, i+2, i+3] = v2 - v3
3774   //     br cond, vector.body, middle.block
3775   //
3776   //   middle.block:
3777   //     x = v2(3)
3778   //     br scalar.ph
3779   //
3780   //   scalar.ph:
3781   //     s_init = phi [x, middle.block], [a[-1], otherwise]
3782   //     br scalar.body
3783   //
3784   // After execution completes the vector loop, we extract the next value of
3785   // the recurrence (x) to use as the initial value in the scalar loop.
3786 
3787   // Extract the last vector element in the middle block. This will be the
3788   // initial value for the recurrence when jumping to the scalar loop.
3789   VPValue *PreviousDef = PhiR->getBackedgeValue();
3790   Value *Incoming = State.get(PreviousDef, UF - 1);
3791   auto *ExtractForScalar = Incoming;
3792   auto *IdxTy = Builder.getInt32Ty();
3793   if (VF.isVector()) {
3794     auto *One = ConstantInt::get(IdxTy, 1);
3795     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3796     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3797     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
3798     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
3799                                                     "vector.recur.extract");
3800   }
3801   // Extract the second last element in the middle block if the
3802   // Phi is used outside the loop. We need to extract the phi itself
3803   // and not the last element (the phi update in the current iteration). This
3804   // will be the value when jumping to the exit block from the LoopMiddleBlock,
3805   // when the scalar loop is not run at all.
3806   Value *ExtractForPhiUsedOutsideLoop = nullptr;
3807   if (VF.isVector()) {
3808     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
3809     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
3810     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3811         Incoming, Idx, "vector.recur.extract.for.phi");
3812   } else if (UF > 1)
3813     // When loop is unrolled without vectorizing, initialize
3814     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
3815     // of `Incoming`. This is analogous to the vectorized case above: extracting
3816     // the second last element when VF > 1.
3817     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
3818 
3819   // Fix the initial value of the original recurrence in the scalar loop.
3820   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3821   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
3822   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3823   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
3824   for (auto *BB : predecessors(LoopScalarPreHeader)) {
3825     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3826     Start->addIncoming(Incoming, BB);
3827   }
3828 
3829   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
3830   Phi->setName("scalar.recur");
3831 
3832   // Finally, fix users of the recurrence outside the loop. The users will need
3833   // either the last value of the scalar recurrence or the last value of the
3834   // vector recurrence we extracted in the middle block. Since the loop is in
3835   // LCSSA form, we just need to find all the phi nodes for the original scalar
3836   // recurrence in the exit block, and then add an edge for the middle block.
3837   // Note that LCSSA does not imply single entry when the original scalar loop
3838   // had multiple exiting edges (as we always run the last iteration in the
3839   // scalar epilogue); in that case, there is no edge from middle to exit and
3840   // and thus no phis which needed updated.
3841   if (!Cost->requiresScalarEpilogue(VF))
3842     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
3843       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) {
3844         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3845         State.Plan->removeLiveOut(&LCSSAPhi);
3846       }
3847 }
3848 
3849 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
3850                                        VPTransformState &State) {
3851   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
3852   // Get it's reduction variable descriptor.
3853   assert(Legal->isReductionVariable(OrigPhi) &&
3854          "Unable to find the reduction variable");
3855   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
3856 
3857   RecurKind RK = RdxDesc.getRecurrenceKind();
3858   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3859   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3860   State.setDebugLocFromInst(ReductionStartValue);
3861 
3862   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
3863   // This is the vector-clone of the value that leaves the loop.
3864   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
3865 
3866   // Wrap flags are in general invalid after vectorization, clear them.
3867   clearReductionWrapFlags(PhiR, State);
3868 
3869   // Before each round, move the insertion point right between
3870   // the PHIs and the values we are going to write.
3871   // This allows us to write both PHINodes and the extractelement
3872   // instructions.
3873   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3874 
3875   State.setDebugLocFromInst(LoopExitInst);
3876 
3877   Type *PhiTy = OrigPhi->getType();
3878 
3879   VPBasicBlock *LatchVPBB =
3880       PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock();
3881   BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB];
3882   // If tail is folded by masking, the vector value to leave the loop should be
3883   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
3884   // instead of the former. For an inloop reduction the reduction will already
3885   // be predicated, and does not need to be handled here.
3886   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
3887     for (unsigned Part = 0; Part < UF; ++Part) {
3888       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
3889       SelectInst *Sel = nullptr;
3890       for (User *U : VecLoopExitInst->users()) {
3891         if (isa<SelectInst>(U)) {
3892           assert(!Sel && "Reduction exit feeding two selects");
3893           Sel = cast<SelectInst>(U);
3894         } else
3895           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
3896       }
3897       assert(Sel && "Reduction exit feeds no select");
3898       State.reset(LoopExitInstDef, Sel, Part);
3899 
3900       if (isa<FPMathOperator>(Sel))
3901         Sel->setFastMathFlags(RdxDesc.getFastMathFlags());
3902 
3903       // If the target can create a predicated operator for the reduction at no
3904       // extra cost in the loop (for example a predicated vadd), it can be
3905       // cheaper for the select to remain in the loop than be sunk out of it,
3906       // and so use the select value for the phi instead of the old
3907       // LoopExitValue.
3908       if (PreferPredicatedReductionSelect ||
3909           TTI->preferPredicatedReductionSelect(
3910               RdxDesc.getOpcode(), PhiTy,
3911               TargetTransformInfo::ReductionFlags())) {
3912         auto *VecRdxPhi =
3913             cast<PHINode>(State.get(PhiR, Part));
3914         VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel);
3915       }
3916     }
3917   }
3918 
3919   // If the vector reduction can be performed in a smaller type, we truncate
3920   // then extend the loop exit value to enable InstCombine to evaluate the
3921   // entire expression in the smaller type.
3922   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
3923     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
3924     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3925     Builder.SetInsertPoint(VectorLoopLatch->getTerminator());
3926     VectorParts RdxParts(UF);
3927     for (unsigned Part = 0; Part < UF; ++Part) {
3928       RdxParts[Part] = State.get(LoopExitInstDef, Part);
3929       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3930       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3931                                         : Builder.CreateZExt(Trunc, VecTy);
3932       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
3933         if (U != Trunc) {
3934           U->replaceUsesOfWith(RdxParts[Part], Extnd);
3935           RdxParts[Part] = Extnd;
3936         }
3937     }
3938     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3939     for (unsigned Part = 0; Part < UF; ++Part) {
3940       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3941       State.reset(LoopExitInstDef, RdxParts[Part], Part);
3942     }
3943   }
3944 
3945   // Reduce all of the unrolled parts into a single vector.
3946   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
3947   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
3948 
3949   // The middle block terminator has already been assigned a DebugLoc here (the
3950   // OrigLoop's single latch terminator). We want the whole middle block to
3951   // appear to execute on this line because: (a) it is all compiler generated,
3952   // (b) these instructions are always executed after evaluating the latch
3953   // conditional branch, and (c) other passes may add new predecessors which
3954   // terminate on this line. This is the easiest way to ensure we don't
3955   // accidentally cause an extra step back into the loop while debugging.
3956   State.setDebugLocFromInst(LoopMiddleBlock->getTerminator());
3957   if (PhiR->isOrdered())
3958     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
3959   else {
3960     // Floating-point operations should have some FMF to enable the reduction.
3961     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
3962     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
3963     for (unsigned Part = 1; Part < UF; ++Part) {
3964       Value *RdxPart = State.get(LoopExitInstDef, Part);
3965       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
3966         ReducedPartRdx = Builder.CreateBinOp(
3967             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
3968       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
3969         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
3970                                            ReducedPartRdx, RdxPart);
3971       else
3972         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
3973     }
3974   }
3975 
3976   // Create the reduction after the loop. Note that inloop reductions create the
3977   // target reduction in the loop using a Reduction recipe.
3978   if (VF.isVector() && !PhiR->isInLoop()) {
3979     ReducedPartRdx =
3980         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
3981     // If the reduction can be performed in a smaller type, we need to extend
3982     // the reduction to the wider type before we branch to the original loop.
3983     if (PhiTy != RdxDesc.getRecurrenceType())
3984       ReducedPartRdx = RdxDesc.isSigned()
3985                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
3986                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
3987   }
3988 
3989   PHINode *ResumePhi =
3990       dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
3991 
3992   // Create a phi node that merges control-flow from the backedge-taken check
3993   // block and the middle block.
3994   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
3995                                         LoopScalarPreHeader->getTerminator());
3996 
3997   // If we are fixing reductions in the epilogue loop then we should already
3998   // have created a bc.merge.rdx Phi after the main vector body. Ensure that
3999   // we carry over the incoming values correctly.
4000   for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
4001     if (Incoming == LoopMiddleBlock)
4002       BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
4003     else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
4004       BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
4005                               Incoming);
4006     else
4007       BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
4008   }
4009 
4010   // Set the resume value for this reduction
4011   ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
4012 
4013   // If there were stores of the reduction value to a uniform memory address
4014   // inside the loop, create the final store here.
4015   if (StoreInst *SI = RdxDesc.IntermediateStore) {
4016     StoreInst *NewSI =
4017         Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand());
4018     propagateMetadata(NewSI, SI);
4019 
4020     // If the reduction value is used in other places,
4021     // then let the code below create PHI's for that.
4022   }
4023 
4024   // Now, we need to fix the users of the reduction variable
4025   // inside and outside of the scalar remainder loop.
4026 
4027   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4028   // in the exit blocks.  See comment on analogous loop in
4029   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4030   if (!Cost->requiresScalarEpilogue(VF))
4031     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4032       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) {
4033         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4034         State.Plan->removeLiveOut(&LCSSAPhi);
4035       }
4036 
4037   // Fix the scalar loop reduction variable with the incoming reduction sum
4038   // from the vector body and from the backedge value.
4039   int IncomingEdgeBlockIdx =
4040       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4041   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4042   // Pick the other block.
4043   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4044   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4045   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4046 }
4047 
4048 void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR,
4049                                                   VPTransformState &State) {
4050   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4051   RecurKind RK = RdxDesc.getRecurrenceKind();
4052   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4053     return;
4054 
4055   SmallVector<VPValue *, 8> Worklist;
4056   SmallPtrSet<VPValue *, 8> Visited;
4057   Worklist.push_back(PhiR);
4058   Visited.insert(PhiR);
4059 
4060   while (!Worklist.empty()) {
4061     VPValue *Cur = Worklist.pop_back_val();
4062     for (unsigned Part = 0; Part < UF; ++Part) {
4063       Value *V = State.get(Cur, Part);
4064       if (!isa<OverflowingBinaryOperator>(V))
4065         break;
4066       cast<Instruction>(V)->dropPoisonGeneratingFlags();
4067       }
4068 
4069       for (VPUser *U : Cur->users()) {
4070         auto *UserRecipe = dyn_cast<VPRecipeBase>(U);
4071         if (!UserRecipe)
4072           continue;
4073         for (VPValue *V : UserRecipe->definedValues())
4074           if (Visited.insert(V).second)
4075             Worklist.push_back(V);
4076       }
4077   }
4078 }
4079 
4080 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4081   // The basic block and loop containing the predicated instruction.
4082   auto *PredBB = PredInst->getParent();
4083   auto *VectorLoop = LI->getLoopFor(PredBB);
4084 
4085   // Initialize a worklist with the operands of the predicated instruction.
4086   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4087 
4088   // Holds instructions that we need to analyze again. An instruction may be
4089   // reanalyzed if we don't yet know if we can sink it or not.
4090   SmallVector<Instruction *, 8> InstsToReanalyze;
4091 
4092   // Returns true if a given use occurs in the predicated block. Phi nodes use
4093   // their operands in their corresponding predecessor blocks.
4094   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4095     auto *I = cast<Instruction>(U.getUser());
4096     BasicBlock *BB = I->getParent();
4097     if (auto *Phi = dyn_cast<PHINode>(I))
4098       BB = Phi->getIncomingBlock(
4099           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4100     return BB == PredBB;
4101   };
4102 
4103   // Iteratively sink the scalarized operands of the predicated instruction
4104   // into the block we created for it. When an instruction is sunk, it's
4105   // operands are then added to the worklist. The algorithm ends after one pass
4106   // through the worklist doesn't sink a single instruction.
4107   bool Changed;
4108   do {
4109     // Add the instructions that need to be reanalyzed to the worklist, and
4110     // reset the changed indicator.
4111     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4112     InstsToReanalyze.clear();
4113     Changed = false;
4114 
4115     while (!Worklist.empty()) {
4116       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4117 
4118       // We can't sink an instruction if it is a phi node, is not in the loop,
4119       // or may have side effects.
4120       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4121           I->mayHaveSideEffects())
4122         continue;
4123 
4124       // If the instruction is already in PredBB, check if we can sink its
4125       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4126       // sinking the scalar instruction I, hence it appears in PredBB; but it
4127       // may have failed to sink I's operands (recursively), which we try
4128       // (again) here.
4129       if (I->getParent() == PredBB) {
4130         Worklist.insert(I->op_begin(), I->op_end());
4131         continue;
4132       }
4133 
4134       // It's legal to sink the instruction if all its uses occur in the
4135       // predicated block. Otherwise, there's nothing to do yet, and we may
4136       // need to reanalyze the instruction.
4137       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4138         InstsToReanalyze.push_back(I);
4139         continue;
4140       }
4141 
4142       // Move the instruction to the beginning of the predicated block, and add
4143       // it's operands to the worklist.
4144       I->moveBefore(&*PredBB->getFirstInsertionPt());
4145       Worklist.insert(I->op_begin(), I->op_end());
4146 
4147       // The sinking may have enabled other instructions to be sunk, so we will
4148       // need to iterate.
4149       Changed = true;
4150     }
4151   } while (Changed);
4152 }
4153 
4154 void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan,
4155                                               VPTransformState &State) {
4156   auto Iter = depth_first(
4157       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(Plan.getEntry()));
4158   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
4159     for (VPRecipeBase &P : VPBB->phis()) {
4160       VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P);
4161       if (!VPPhi)
4162         continue;
4163       PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4164       // Make sure the builder has a valid insert point.
4165       Builder.SetInsertPoint(NewPhi);
4166       for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4167         VPValue *Inc = VPPhi->getIncomingValue(i);
4168         VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4169         NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4170       }
4171     }
4172   }
4173 }
4174 
4175 bool InnerLoopVectorizer::useOrderedReductions(
4176     const RecurrenceDescriptor &RdxDesc) {
4177   return Cost->useOrderedReductions(RdxDesc);
4178 }
4179 
4180 /// A helper function for checking whether an integer division-related
4181 /// instruction may divide by zero (in which case it must be predicated if
4182 /// executed conditionally in the scalar code).
4183 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4184 /// Non-zero divisors that are non compile-time constants will not be
4185 /// converted into multiplication, so we will still end up scalarizing
4186 /// the division, but can do so w/o predication.
4187 static bool mayDivideByZero(Instruction &I) {
4188   assert((I.getOpcode() == Instruction::UDiv ||
4189           I.getOpcode() == Instruction::SDiv ||
4190           I.getOpcode() == Instruction::URem ||
4191           I.getOpcode() == Instruction::SRem) &&
4192          "Unexpected instruction");
4193   Value *Divisor = I.getOperand(1);
4194   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4195   return !CInt || CInt->isZero();
4196 }
4197 
4198 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4199                                                VPUser &ArgOperands,
4200                                                VPTransformState &State) {
4201   assert(!isa<DbgInfoIntrinsic>(I) &&
4202          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4203   State.setDebugLocFromInst(&I);
4204 
4205   Module *M = I.getParent()->getParent()->getParent();
4206   auto *CI = cast<CallInst>(&I);
4207 
4208   SmallVector<Type *, 4> Tys;
4209   for (Value *ArgOperand : CI->args())
4210     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4211 
4212   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4213 
4214   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4215   // version of the instruction.
4216   // Is it beneficial to perform intrinsic call compared to lib call?
4217   bool NeedToScalarize = false;
4218   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4219   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4220   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4221   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4222          "Instruction should be scalarized elsewhere.");
4223   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
4224          "Either the intrinsic cost or vector call cost must be valid");
4225 
4226   for (unsigned Part = 0; Part < UF; ++Part) {
4227     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
4228     SmallVector<Value *, 4> Args;
4229     for (auto &I : enumerate(ArgOperands.operands())) {
4230       // Some intrinsics have a scalar argument - don't replace it with a
4231       // vector.
4232       Value *Arg;
4233       if (!UseVectorIntrinsic ||
4234           !isVectorIntrinsicWithScalarOpAtArg(ID, I.index()))
4235         Arg = State.get(I.value(), Part);
4236       else
4237         Arg = State.get(I.value(), VPIteration(0, 0));
4238       if (isVectorIntrinsicWithOverloadTypeAtArg(ID, I.index()))
4239         TysForDecl.push_back(Arg->getType());
4240       Args.push_back(Arg);
4241     }
4242 
4243     Function *VectorF;
4244     if (UseVectorIntrinsic) {
4245       // Use vector version of the intrinsic.
4246       if (VF.isVector())
4247         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4248       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4249       assert(VectorF && "Can't retrieve vector intrinsic.");
4250     } else {
4251       // Use vector version of the function call.
4252       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4253 #ifndef NDEBUG
4254       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
4255              "Can't create vector function.");
4256 #endif
4257         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
4258     }
4259       SmallVector<OperandBundleDef, 1> OpBundles;
4260       CI->getOperandBundlesAsDefs(OpBundles);
4261       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4262 
4263       if (isa<FPMathOperator>(V))
4264         V->copyFastMathFlags(CI);
4265 
4266       State.set(Def, V, Part);
4267       State.addMetadata(V, &I);
4268   }
4269 }
4270 
4271 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
4272   // We should not collect Scalars more than once per VF. Right now, this
4273   // function is called from collectUniformsAndScalars(), which already does
4274   // this check. Collecting Scalars for VF=1 does not make any sense.
4275   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
4276          "This function should not be visited twice for the same VF");
4277 
4278   // This avoids any chances of creating a REPLICATE recipe during planning
4279   // since that would result in generation of scalarized code during execution,
4280   // which is not supported for scalable vectors.
4281   if (VF.isScalable()) {
4282     Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end());
4283     return;
4284   }
4285 
4286   SmallSetVector<Instruction *, 8> Worklist;
4287 
4288   // These sets are used to seed the analysis with pointers used by memory
4289   // accesses that will remain scalar.
4290   SmallSetVector<Instruction *, 8> ScalarPtrs;
4291   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4292   auto *Latch = TheLoop->getLoopLatch();
4293 
4294   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4295   // The pointer operands of loads and stores will be scalar as long as the
4296   // memory access is not a gather or scatter operation. The value operand of a
4297   // store will remain scalar if the store is scalarized.
4298   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4299     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4300     assert(WideningDecision != CM_Unknown &&
4301            "Widening decision should be ready at this moment");
4302     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4303       if (Ptr == Store->getValueOperand())
4304         return WideningDecision == CM_Scalarize;
4305     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4306            "Ptr is neither a value or pointer operand");
4307     return WideningDecision != CM_GatherScatter;
4308   };
4309 
4310   // A helper that returns true if the given value is a bitcast or
4311   // getelementptr instruction contained in the loop.
4312   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4313     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4314             isa<GetElementPtrInst>(V)) &&
4315            !TheLoop->isLoopInvariant(V);
4316   };
4317 
4318   // A helper that evaluates a memory access's use of a pointer. If the use will
4319   // be a scalar use and the pointer is only used by memory accesses, we place
4320   // the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4321   // PossibleNonScalarPtrs.
4322   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4323     // We only care about bitcast and getelementptr instructions contained in
4324     // the loop.
4325     if (!isLoopVaryingBitCastOrGEP(Ptr))
4326       return;
4327 
4328     // If the pointer has already been identified as scalar (e.g., if it was
4329     // also identified as uniform), there's nothing to do.
4330     auto *I = cast<Instruction>(Ptr);
4331     if (Worklist.count(I))
4332       return;
4333 
4334     // If the use of the pointer will be a scalar use, and all users of the
4335     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4336     // place the pointer in PossibleNonScalarPtrs.
4337     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4338           return isa<LoadInst>(U) || isa<StoreInst>(U);
4339         }))
4340       ScalarPtrs.insert(I);
4341     else
4342       PossibleNonScalarPtrs.insert(I);
4343   };
4344 
4345   // We seed the scalars analysis with three classes of instructions: (1)
4346   // instructions marked uniform-after-vectorization and (2) bitcast,
4347   // getelementptr and (pointer) phi instructions used by memory accesses
4348   // requiring a scalar use.
4349   //
4350   // (1) Add to the worklist all instructions that have been identified as
4351   // uniform-after-vectorization.
4352   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4353 
4354   // (2) Add to the worklist all bitcast and getelementptr instructions used by
4355   // memory accesses requiring a scalar use. The pointer operands of loads and
4356   // stores will be scalar as long as the memory accesses is not a gather or
4357   // scatter operation. The value operand of a store will remain scalar if the
4358   // store is scalarized.
4359   for (auto *BB : TheLoop->blocks())
4360     for (auto &I : *BB) {
4361       if (auto *Load = dyn_cast<LoadInst>(&I)) {
4362         evaluatePtrUse(Load, Load->getPointerOperand());
4363       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4364         evaluatePtrUse(Store, Store->getPointerOperand());
4365         evaluatePtrUse(Store, Store->getValueOperand());
4366       }
4367     }
4368   for (auto *I : ScalarPtrs)
4369     if (!PossibleNonScalarPtrs.count(I)) {
4370       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4371       Worklist.insert(I);
4372     }
4373 
4374   // Insert the forced scalars.
4375   // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector
4376   // induction variable when the PHI user is scalarized.
4377   auto ForcedScalar = ForcedScalars.find(VF);
4378   if (ForcedScalar != ForcedScalars.end())
4379     for (auto *I : ForcedScalar->second)
4380       Worklist.insert(I);
4381 
4382   // Expand the worklist by looking through any bitcasts and getelementptr
4383   // instructions we've already identified as scalar. This is similar to the
4384   // expansion step in collectLoopUniforms(); however, here we're only
4385   // expanding to include additional bitcasts and getelementptr instructions.
4386   unsigned Idx = 0;
4387   while (Idx != Worklist.size()) {
4388     Instruction *Dst = Worklist[Idx++];
4389     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4390       continue;
4391     auto *Src = cast<Instruction>(Dst->getOperand(0));
4392     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4393           auto *J = cast<Instruction>(U);
4394           return !TheLoop->contains(J) || Worklist.count(J) ||
4395                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4396                   isScalarUse(J, Src));
4397         })) {
4398       Worklist.insert(Src);
4399       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4400     }
4401   }
4402 
4403   // An induction variable will remain scalar if all users of the induction
4404   // variable and induction variable update remain scalar.
4405   for (auto &Induction : Legal->getInductionVars()) {
4406     auto *Ind = Induction.first;
4407     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4408 
4409     // If tail-folding is applied, the primary induction variable will be used
4410     // to feed a vector compare.
4411     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
4412       continue;
4413 
4414     // Returns true if \p Indvar is a pointer induction that is used directly by
4415     // load/store instruction \p I.
4416     auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar,
4417                                               Instruction *I) {
4418       return Induction.second.getKind() ==
4419                  InductionDescriptor::IK_PtrInduction &&
4420              (isa<LoadInst>(I) || isa<StoreInst>(I)) &&
4421              Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar);
4422     };
4423 
4424     // Determine if all users of the induction variable are scalar after
4425     // vectorization.
4426     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4427       auto *I = cast<Instruction>(U);
4428       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4429              IsDirectLoadStoreFromPtrIndvar(Ind, I);
4430     });
4431     if (!ScalarInd)
4432       continue;
4433 
4434     // Determine if all users of the induction variable update instruction are
4435     // scalar after vectorization.
4436     auto ScalarIndUpdate =
4437         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4438           auto *I = cast<Instruction>(U);
4439           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4440                  IsDirectLoadStoreFromPtrIndvar(IndUpdate, I);
4441         });
4442     if (!ScalarIndUpdate)
4443       continue;
4444 
4445     // The induction variable and its update instruction will remain scalar.
4446     Worklist.insert(Ind);
4447     Worklist.insert(IndUpdate);
4448     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4449     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4450                       << "\n");
4451   }
4452 
4453   Scalars[VF].insert(Worklist.begin(), Worklist.end());
4454 }
4455 
4456 bool LoopVectorizationCostModel::isScalarWithPredication(
4457     Instruction *I, ElementCount VF) const {
4458   if (!blockNeedsPredicationForAnyReason(I->getParent()))
4459     return false;
4460   switch(I->getOpcode()) {
4461   default:
4462     break;
4463   case Instruction::Load:
4464   case Instruction::Store: {
4465     if (!Legal->isMaskRequired(I))
4466       return false;
4467     auto *Ptr = getLoadStorePointerOperand(I);
4468     auto *Ty = getLoadStoreType(I);
4469     Type *VTy = Ty;
4470     if (VF.isVector())
4471       VTy = VectorType::get(Ty, VF);
4472     const Align Alignment = getLoadStoreAlignment(I);
4473     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
4474                                 TTI.isLegalMaskedGather(VTy, Alignment))
4475                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
4476                                 TTI.isLegalMaskedScatter(VTy, Alignment));
4477   }
4478   case Instruction::UDiv:
4479   case Instruction::SDiv:
4480   case Instruction::SRem:
4481   case Instruction::URem:
4482     return mayDivideByZero(*I);
4483   }
4484   return false;
4485 }
4486 
4487 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
4488     Instruction *I, ElementCount VF) {
4489   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
4490   assert(getWideningDecision(I, VF) == CM_Unknown &&
4491          "Decision should not be set yet.");
4492   auto *Group = getInterleavedAccessGroup(I);
4493   assert(Group && "Must have a group.");
4494 
4495   // If the instruction's allocated size doesn't equal it's type size, it
4496   // requires padding and will be scalarized.
4497   auto &DL = I->getModule()->getDataLayout();
4498   auto *ScalarTy = getLoadStoreType(I);
4499   if (hasIrregularType(ScalarTy, DL))
4500     return false;
4501 
4502   // If the group involves a non-integral pointer, we may not be able to
4503   // losslessly cast all values to a common type.
4504   unsigned InterleaveFactor = Group->getFactor();
4505   bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy);
4506   for (unsigned i = 0; i < InterleaveFactor; i++) {
4507     Instruction *Member = Group->getMember(i);
4508     if (!Member)
4509       continue;
4510     auto *MemberTy = getLoadStoreType(Member);
4511     bool MemberNI = DL.isNonIntegralPointerType(MemberTy);
4512     // Don't coerce non-integral pointers to integers or vice versa.
4513     if (MemberNI != ScalarNI) {
4514       // TODO: Consider adding special nullptr value case here
4515       return false;
4516     } else if (MemberNI && ScalarNI &&
4517                ScalarTy->getPointerAddressSpace() !=
4518                MemberTy->getPointerAddressSpace()) {
4519       return false;
4520     }
4521   }
4522 
4523   // Check if masking is required.
4524   // A Group may need masking for one of two reasons: it resides in a block that
4525   // needs predication, or it was decided to use masking to deal with gaps
4526   // (either a gap at the end of a load-access that may result in a speculative
4527   // load, or any gaps in a store-access).
4528   bool PredicatedAccessRequiresMasking =
4529       blockNeedsPredicationForAnyReason(I->getParent()) &&
4530       Legal->isMaskRequired(I);
4531   bool LoadAccessWithGapsRequiresEpilogMasking =
4532       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
4533       !isScalarEpilogueAllowed();
4534   bool StoreAccessWithGapsRequiresMasking =
4535       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
4536   if (!PredicatedAccessRequiresMasking &&
4537       !LoadAccessWithGapsRequiresEpilogMasking &&
4538       !StoreAccessWithGapsRequiresMasking)
4539     return true;
4540 
4541   // If masked interleaving is required, we expect that the user/target had
4542   // enabled it, because otherwise it either wouldn't have been created or
4543   // it should have been invalidated by the CostModel.
4544   assert(useMaskedInterleavedAccesses(TTI) &&
4545          "Masked interleave-groups for predicated accesses are not enabled.");
4546 
4547   if (Group->isReverse())
4548     return false;
4549 
4550   auto *Ty = getLoadStoreType(I);
4551   const Align Alignment = getLoadStoreAlignment(I);
4552   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
4553                           : TTI.isLegalMaskedStore(Ty, Alignment);
4554 }
4555 
4556 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
4557     Instruction *I, ElementCount VF) {
4558   // Get and ensure we have a valid memory instruction.
4559   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
4560 
4561   auto *Ptr = getLoadStorePointerOperand(I);
4562   auto *ScalarTy = getLoadStoreType(I);
4563 
4564   // In order to be widened, the pointer should be consecutive, first of all.
4565   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
4566     return false;
4567 
4568   // If the instruction is a store located in a predicated block, it will be
4569   // scalarized.
4570   if (isScalarWithPredication(I, VF))
4571     return false;
4572 
4573   // If the instruction's allocated size doesn't equal it's type size, it
4574   // requires padding and will be scalarized.
4575   auto &DL = I->getModule()->getDataLayout();
4576   if (hasIrregularType(ScalarTy, DL))
4577     return false;
4578 
4579   return true;
4580 }
4581 
4582 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
4583   // We should not collect Uniforms more than once per VF. Right now,
4584   // this function is called from collectUniformsAndScalars(), which
4585   // already does this check. Collecting Uniforms for VF=1 does not make any
4586   // sense.
4587 
4588   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
4589          "This function should not be visited twice for the same VF");
4590 
4591   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4592   // not analyze again.  Uniforms.count(VF) will return 1.
4593   Uniforms[VF].clear();
4594 
4595   // We now know that the loop is vectorizable!
4596   // Collect instructions inside the loop that will remain uniform after
4597   // vectorization.
4598 
4599   // Global values, params and instructions outside of current loop are out of
4600   // scope.
4601   auto isOutOfScope = [&](Value *V) -> bool {
4602     Instruction *I = dyn_cast<Instruction>(V);
4603     return (!I || !TheLoop->contains(I));
4604   };
4605 
4606   // Worklist containing uniform instructions demanding lane 0.
4607   SetVector<Instruction *> Worklist;
4608   BasicBlock *Latch = TheLoop->getLoopLatch();
4609 
4610   // Add uniform instructions demanding lane 0 to the worklist. Instructions
4611   // that are scalar with predication must not be considered uniform after
4612   // vectorization, because that would create an erroneous replicating region
4613   // where only a single instance out of VF should be formed.
4614   // TODO: optimize such seldom cases if found important, see PR40816.
4615   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
4616     if (isOutOfScope(I)) {
4617       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
4618                         << *I << "\n");
4619       return;
4620     }
4621     if (isScalarWithPredication(I, VF)) {
4622       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
4623                         << *I << "\n");
4624       return;
4625     }
4626     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
4627     Worklist.insert(I);
4628   };
4629 
4630   // Start with the conditional branch. If the branch condition is an
4631   // instruction contained in the loop that is only used by the branch, it is
4632   // uniform.
4633   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4634   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
4635     addToWorklistIfAllowed(Cmp);
4636 
4637   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
4638     InstWidening WideningDecision = getWideningDecision(I, VF);
4639     assert(WideningDecision != CM_Unknown &&
4640            "Widening decision should be ready at this moment");
4641 
4642     // A uniform memory op is itself uniform.  We exclude uniform stores
4643     // here as they demand the last lane, not the first one.
4644     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
4645       assert(WideningDecision == CM_Scalarize);
4646       return true;
4647     }
4648 
4649     return (WideningDecision == CM_Widen ||
4650             WideningDecision == CM_Widen_Reverse ||
4651             WideningDecision == CM_Interleave);
4652   };
4653 
4654 
4655   // Returns true if Ptr is the pointer operand of a memory access instruction
4656   // I, and I is known to not require scalarization.
4657   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4658     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4659   };
4660 
4661   // Holds a list of values which are known to have at least one uniform use.
4662   // Note that there may be other uses which aren't uniform.  A "uniform use"
4663   // here is something which only demands lane 0 of the unrolled iterations;
4664   // it does not imply that all lanes produce the same value (e.g. this is not
4665   // the usual meaning of uniform)
4666   SetVector<Value *> HasUniformUse;
4667 
4668   // Scan the loop for instructions which are either a) known to have only
4669   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
4670   for (auto *BB : TheLoop->blocks())
4671     for (auto &I : *BB) {
4672       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
4673         switch (II->getIntrinsicID()) {
4674         case Intrinsic::sideeffect:
4675         case Intrinsic::experimental_noalias_scope_decl:
4676         case Intrinsic::assume:
4677         case Intrinsic::lifetime_start:
4678         case Intrinsic::lifetime_end:
4679           if (TheLoop->hasLoopInvariantOperands(&I))
4680             addToWorklistIfAllowed(&I);
4681           break;
4682         default:
4683           break;
4684         }
4685       }
4686 
4687       // ExtractValue instructions must be uniform, because the operands are
4688       // known to be loop-invariant.
4689       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
4690         assert(isOutOfScope(EVI->getAggregateOperand()) &&
4691                "Expected aggregate value to be loop invariant");
4692         addToWorklistIfAllowed(EVI);
4693         continue;
4694       }
4695 
4696       // If there's no pointer operand, there's nothing to do.
4697       auto *Ptr = getLoadStorePointerOperand(&I);
4698       if (!Ptr)
4699         continue;
4700 
4701       // A uniform memory op is itself uniform.  We exclude uniform stores
4702       // here as they demand the last lane, not the first one.
4703       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
4704         addToWorklistIfAllowed(&I);
4705 
4706       if (isUniformDecision(&I, VF)) {
4707         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
4708         HasUniformUse.insert(Ptr);
4709       }
4710     }
4711 
4712   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
4713   // demanding) users.  Since loops are assumed to be in LCSSA form, this
4714   // disallows uses outside the loop as well.
4715   for (auto *V : HasUniformUse) {
4716     if (isOutOfScope(V))
4717       continue;
4718     auto *I = cast<Instruction>(V);
4719     auto UsersAreMemAccesses =
4720       llvm::all_of(I->users(), [&](User *U) -> bool {
4721         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
4722       });
4723     if (UsersAreMemAccesses)
4724       addToWorklistIfAllowed(I);
4725   }
4726 
4727   // Expand Worklist in topological order: whenever a new instruction
4728   // is added , its users should be already inside Worklist.  It ensures
4729   // a uniform instruction will only be used by uniform instructions.
4730   unsigned idx = 0;
4731   while (idx != Worklist.size()) {
4732     Instruction *I = Worklist[idx++];
4733 
4734     for (auto OV : I->operand_values()) {
4735       // isOutOfScope operands cannot be uniform instructions.
4736       if (isOutOfScope(OV))
4737         continue;
4738       // First order recurrence Phi's should typically be considered
4739       // non-uniform.
4740       auto *OP = dyn_cast<PHINode>(OV);
4741       if (OP && Legal->isFirstOrderRecurrence(OP))
4742         continue;
4743       // If all the users of the operand are uniform, then add the
4744       // operand into the uniform worklist.
4745       auto *OI = cast<Instruction>(OV);
4746       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4747             auto *J = cast<Instruction>(U);
4748             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
4749           }))
4750         addToWorklistIfAllowed(OI);
4751     }
4752   }
4753 
4754   // For an instruction to be added into Worklist above, all its users inside
4755   // the loop should also be in Worklist. However, this condition cannot be
4756   // true for phi nodes that form a cyclic dependence. We must process phi
4757   // nodes separately. An induction variable will remain uniform if all users
4758   // of the induction variable and induction variable update remain uniform.
4759   // The code below handles both pointer and non-pointer induction variables.
4760   for (auto &Induction : Legal->getInductionVars()) {
4761     auto *Ind = Induction.first;
4762     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4763 
4764     // Determine if all users of the induction variable are uniform after
4765     // vectorization.
4766     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4767       auto *I = cast<Instruction>(U);
4768       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4769              isVectorizedMemAccessUse(I, Ind);
4770     });
4771     if (!UniformInd)
4772       continue;
4773 
4774     // Determine if all users of the induction variable update instruction are
4775     // uniform after vectorization.
4776     auto UniformIndUpdate =
4777         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4778           auto *I = cast<Instruction>(U);
4779           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4780                  isVectorizedMemAccessUse(I, IndUpdate);
4781         });
4782     if (!UniformIndUpdate)
4783       continue;
4784 
4785     // The induction variable and its update instruction will remain uniform.
4786     addToWorklistIfAllowed(Ind);
4787     addToWorklistIfAllowed(IndUpdate);
4788   }
4789 
4790   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4791 }
4792 
4793 bool LoopVectorizationCostModel::runtimeChecksRequired() {
4794   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
4795 
4796   if (Legal->getRuntimePointerChecking()->Need) {
4797     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
4798         "runtime pointer checks needed. Enable vectorization of this "
4799         "loop with '#pragma clang loop vectorize(enable)' when "
4800         "compiling with -Os/-Oz",
4801         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4802     return true;
4803   }
4804 
4805   if (!PSE.getPredicate().isAlwaysTrue()) {
4806     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
4807         "runtime SCEV checks needed. Enable vectorization of this "
4808         "loop with '#pragma clang loop vectorize(enable)' when "
4809         "compiling with -Os/-Oz",
4810         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4811     return true;
4812   }
4813 
4814   // FIXME: Avoid specializing for stride==1 instead of bailing out.
4815   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
4816     reportVectorizationFailure("Runtime stride check for small trip count",
4817         "runtime stride == 1 checks needed. Enable vectorization of "
4818         "this loop without such check by compiling with -Os/-Oz",
4819         "CantVersionLoopWithOptForSize", ORE, TheLoop);
4820     return true;
4821   }
4822 
4823   return false;
4824 }
4825 
4826 ElementCount
4827 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
4828   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
4829     return ElementCount::getScalable(0);
4830 
4831   if (Hints->isScalableVectorizationDisabled()) {
4832     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
4833                             "ScalableVectorizationDisabled", ORE, TheLoop);
4834     return ElementCount::getScalable(0);
4835   }
4836 
4837   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
4838 
4839   auto MaxScalableVF = ElementCount::getScalable(
4840       std::numeric_limits<ElementCount::ScalarTy>::max());
4841 
4842   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
4843   // FIXME: While for scalable vectors this is currently sufficient, this should
4844   // be replaced by a more detailed mechanism that filters out specific VFs,
4845   // instead of invalidating vectorization for a whole set of VFs based on the
4846   // MaxVF.
4847 
4848   // Disable scalable vectorization if the loop contains unsupported reductions.
4849   if (!canVectorizeReductions(MaxScalableVF)) {
4850     reportVectorizationInfo(
4851         "Scalable vectorization not supported for the reduction "
4852         "operations found in this loop.",
4853         "ScalableVFUnfeasible", ORE, TheLoop);
4854     return ElementCount::getScalable(0);
4855   }
4856 
4857   // Disable scalable vectorization if the loop contains any instructions
4858   // with element types not supported for scalable vectors.
4859   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
4860         return !Ty->isVoidTy() &&
4861                !this->TTI.isElementTypeLegalForScalableVector(Ty);
4862       })) {
4863     reportVectorizationInfo("Scalable vectorization is not supported "
4864                             "for all element types found in this loop.",
4865                             "ScalableVFUnfeasible", ORE, TheLoop);
4866     return ElementCount::getScalable(0);
4867   }
4868 
4869   if (Legal->isSafeForAnyVectorWidth())
4870     return MaxScalableVF;
4871 
4872   // Limit MaxScalableVF by the maximum safe dependence distance.
4873   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
4874   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange))
4875     MaxVScale =
4876         TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax();
4877   MaxScalableVF = ElementCount::getScalable(
4878       MaxVScale ? (MaxSafeElements / MaxVScale.value()) : 0);
4879   if (!MaxScalableVF)
4880     reportVectorizationInfo(
4881         "Max legal vector width too small, scalable vectorization "
4882         "unfeasible.",
4883         "ScalableVFUnfeasible", ORE, TheLoop);
4884 
4885   return MaxScalableVF;
4886 }
4887 
4888 FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF(
4889     unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) {
4890   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
4891   unsigned SmallestType, WidestType;
4892   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
4893 
4894   // Get the maximum safe dependence distance in bits computed by LAA.
4895   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
4896   // the memory accesses that is most restrictive (involved in the smallest
4897   // dependence distance).
4898   unsigned MaxSafeElements =
4899       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
4900 
4901   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
4902   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
4903 
4904   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
4905                     << ".\n");
4906   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
4907                     << ".\n");
4908 
4909   // First analyze the UserVF, fall back if the UserVF should be ignored.
4910   if (UserVF) {
4911     auto MaxSafeUserVF =
4912         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
4913 
4914     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
4915       // If `VF=vscale x N` is safe, then so is `VF=N`
4916       if (UserVF.isScalable())
4917         return FixedScalableVFPair(
4918             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
4919       else
4920         return UserVF;
4921     }
4922 
4923     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
4924 
4925     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
4926     // is better to ignore the hint and let the compiler choose a suitable VF.
4927     if (!UserVF.isScalable()) {
4928       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4929                         << " is unsafe, clamping to max safe VF="
4930                         << MaxSafeFixedVF << ".\n");
4931       ORE->emit([&]() {
4932         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4933                                           TheLoop->getStartLoc(),
4934                                           TheLoop->getHeader())
4935                << "User-specified vectorization factor "
4936                << ore::NV("UserVectorizationFactor", UserVF)
4937                << " is unsafe, clamping to maximum safe vectorization factor "
4938                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
4939       });
4940       return MaxSafeFixedVF;
4941     }
4942 
4943     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
4944       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4945                         << " is ignored because scalable vectors are not "
4946                            "available.\n");
4947       ORE->emit([&]() {
4948         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4949                                           TheLoop->getStartLoc(),
4950                                           TheLoop->getHeader())
4951                << "User-specified vectorization factor "
4952                << ore::NV("UserVectorizationFactor", UserVF)
4953                << " is ignored because the target does not support scalable "
4954                   "vectors. The compiler will pick a more suitable value.";
4955       });
4956     } else {
4957       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
4958                         << " is unsafe. Ignoring scalable UserVF.\n");
4959       ORE->emit([&]() {
4960         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
4961                                           TheLoop->getStartLoc(),
4962                                           TheLoop->getHeader())
4963                << "User-specified vectorization factor "
4964                << ore::NV("UserVectorizationFactor", UserVF)
4965                << " is unsafe. Ignoring the hint to let the compiler pick a "
4966                   "more suitable value.";
4967       });
4968     }
4969   }
4970 
4971   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
4972                     << " / " << WidestType << " bits.\n");
4973 
4974   FixedScalableVFPair Result(ElementCount::getFixed(1),
4975                              ElementCount::getScalable(0));
4976   if (auto MaxVF =
4977           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4978                                   MaxSafeFixedVF, FoldTailByMasking))
4979     Result.FixedVF = MaxVF;
4980 
4981   if (auto MaxVF =
4982           getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType,
4983                                   MaxSafeScalableVF, FoldTailByMasking))
4984     if (MaxVF.isScalable()) {
4985       Result.ScalableVF = MaxVF;
4986       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
4987                         << "\n");
4988     }
4989 
4990   return Result;
4991 }
4992 
4993 FixedScalableVFPair
4994 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
4995   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
4996     // TODO: It may by useful to do since it's still likely to be dynamically
4997     // uniform if the target can skip.
4998     reportVectorizationFailure(
4999         "Not inserting runtime ptr check for divergent target",
5000         "runtime pointer checks needed. Not enabled for divergent target",
5001         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5002     return FixedScalableVFPair::getNone();
5003   }
5004 
5005   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5006   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5007   if (TC == 1) {
5008     reportVectorizationFailure("Single iteration (non) loop",
5009         "loop trip count is one, irrelevant for vectorization",
5010         "SingleIterationLoop", ORE, TheLoop);
5011     return FixedScalableVFPair::getNone();
5012   }
5013 
5014   switch (ScalarEpilogueStatus) {
5015   case CM_ScalarEpilogueAllowed:
5016     return computeFeasibleMaxVF(TC, UserVF, false);
5017   case CM_ScalarEpilogueNotAllowedUsePredicate:
5018     LLVM_FALLTHROUGH;
5019   case CM_ScalarEpilogueNotNeededUsePredicate:
5020     LLVM_DEBUG(
5021         dbgs() << "LV: vector predicate hint/switch found.\n"
5022                << "LV: Not allowing scalar epilogue, creating predicated "
5023                << "vector loop.\n");
5024     break;
5025   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5026     // fallthrough as a special case of OptForSize
5027   case CM_ScalarEpilogueNotAllowedOptSize:
5028     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5029       LLVM_DEBUG(
5030           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5031     else
5032       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5033                         << "count.\n");
5034 
5035     // Bail if runtime checks are required, which are not good when optimising
5036     // for size.
5037     if (runtimeChecksRequired())
5038       return FixedScalableVFPair::getNone();
5039 
5040     break;
5041   }
5042 
5043   // The only loops we can vectorize without a scalar epilogue, are loops with
5044   // a bottom-test and a single exiting block. We'd have to handle the fact
5045   // that not every instruction executes on the last iteration.  This will
5046   // require a lane mask which varies through the vector loop body.  (TODO)
5047   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5048     // If there was a tail-folding hint/switch, but we can't fold the tail by
5049     // masking, fallback to a vectorization with a scalar epilogue.
5050     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5051       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5052                            "scalar epilogue instead.\n");
5053       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5054       return computeFeasibleMaxVF(TC, UserVF, false);
5055     }
5056     return FixedScalableVFPair::getNone();
5057   }
5058 
5059   // Now try the tail folding
5060 
5061   // Invalidate interleave groups that require an epilogue if we can't mask
5062   // the interleave-group.
5063   if (!useMaskedInterleavedAccesses(TTI)) {
5064     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5065            "No decisions should have been taken at this point");
5066     // Note: There is no need to invalidate any cost modeling decisions here, as
5067     // non where taken so far.
5068     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5069   }
5070 
5071   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true);
5072   // Avoid tail folding if the trip count is known to be a multiple of any VF
5073   // we chose.
5074   // FIXME: The condition below pessimises the case for fixed-width vectors,
5075   // when scalable VFs are also candidates for vectorization.
5076   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5077     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5078     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5079            "MaxFixedVF must be a power of 2");
5080     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5081                                    : MaxFixedVF.getFixedValue();
5082     ScalarEvolution *SE = PSE.getSE();
5083     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5084     const SCEV *ExitCount = SE->getAddExpr(
5085         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5086     const SCEV *Rem = SE->getURemExpr(
5087         SE->applyLoopGuards(ExitCount, TheLoop),
5088         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5089     if (Rem->isZero()) {
5090       // Accept MaxFixedVF if we do not have a tail.
5091       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5092       return MaxFactors;
5093     }
5094   }
5095 
5096   // If we don't know the precise trip count, or if the trip count that we
5097   // found modulo the vectorization factor is not zero, try to fold the tail
5098   // by masking.
5099   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5100   if (Legal->prepareToFoldTailByMasking()) {
5101     FoldTailByMasking = true;
5102     return MaxFactors;
5103   }
5104 
5105   // If there was a tail-folding hint/switch, but we can't fold the tail by
5106   // masking, fallback to a vectorization with a scalar epilogue.
5107   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5108     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5109                          "scalar epilogue instead.\n");
5110     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5111     return MaxFactors;
5112   }
5113 
5114   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5115     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5116     return FixedScalableVFPair::getNone();
5117   }
5118 
5119   if (TC == 0) {
5120     reportVectorizationFailure(
5121         "Unable to calculate the loop count due to complex control flow",
5122         "unable to calculate the loop count due to complex control flow",
5123         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5124     return FixedScalableVFPair::getNone();
5125   }
5126 
5127   reportVectorizationFailure(
5128       "Cannot optimize for size and vectorize at the same time.",
5129       "cannot optimize for size and vectorize at the same time. "
5130       "Enable vectorization of this loop with '#pragma clang loop "
5131       "vectorize(enable)' when compiling with -Os/-Oz",
5132       "NoTailLoopWithOptForSize", ORE, TheLoop);
5133   return FixedScalableVFPair::getNone();
5134 }
5135 
5136 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5137     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5138     ElementCount MaxSafeVF, bool FoldTailByMasking) {
5139   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5140   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5141       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5142                            : TargetTransformInfo::RGK_FixedWidthVector);
5143 
5144   // Convenience function to return the minimum of two ElementCounts.
5145   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5146     assert((LHS.isScalable() == RHS.isScalable()) &&
5147            "Scalable flags must match");
5148     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5149   };
5150 
5151   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5152   // Note that both WidestRegister and WidestType may not be a powers of 2.
5153   auto MaxVectorElementCount = ElementCount::get(
5154       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5155       ComputeScalableMaxVF);
5156   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5157   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5158                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5159 
5160   if (!MaxVectorElementCount) {
5161     LLVM_DEBUG(dbgs() << "LV: The target has no "
5162                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5163                       << " vector registers.\n");
5164     return ElementCount::getFixed(1);
5165   }
5166 
5167   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5168   if (ConstTripCount &&
5169       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5170       (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) {
5171     // If loop trip count (TC) is known at compile time there is no point in
5172     // choosing VF greater than TC (as done in the loop below). Select maximum
5173     // power of two which doesn't exceed TC.
5174     // If MaxVectorElementCount is scalable, we only fall back on a fixed VF
5175     // when the TC is less than or equal to the known number of lanes.
5176     auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount);
5177     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "
5178                          "exceeding the constant trip count: "
5179                       << ClampedConstTripCount << "\n");
5180     return ElementCount::getFixed(ClampedConstTripCount);
5181   }
5182 
5183   TargetTransformInfo::RegisterKind RegKind =
5184       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5185                            : TargetTransformInfo::RGK_FixedWidthVector;
5186   ElementCount MaxVF = MaxVectorElementCount;
5187   if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 &&
5188                             TTI.shouldMaximizeVectorBandwidth(RegKind))) {
5189     auto MaxVectorElementCountMaxBW = ElementCount::get(
5190         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5191         ComputeScalableMaxVF);
5192     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5193 
5194     // Collect all viable vectorization factors larger than the default MaxVF
5195     // (i.e. MaxVectorElementCount).
5196     SmallVector<ElementCount, 8> VFs;
5197     for (ElementCount VS = MaxVectorElementCount * 2;
5198          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5199       VFs.push_back(VS);
5200 
5201     // For each VF calculate its register usage.
5202     auto RUs = calculateRegisterUsage(VFs);
5203 
5204     // Select the largest VF which doesn't require more registers than existing
5205     // ones.
5206     for (int i = RUs.size() - 1; i >= 0; --i) {
5207       bool Selected = true;
5208       for (auto &pair : RUs[i].MaxLocalUsers) {
5209         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5210         if (pair.second > TargetNumRegisters)
5211           Selected = false;
5212       }
5213       if (Selected) {
5214         MaxVF = VFs[i];
5215         break;
5216       }
5217     }
5218     if (ElementCount MinVF =
5219             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5220       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5221         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5222                           << ") with target's minimum: " << MinVF << '\n');
5223         MaxVF = MinVF;
5224       }
5225     }
5226 
5227     // Invalidate any widening decisions we might have made, in case the loop
5228     // requires prediction (decided later), but we have already made some
5229     // load/store widening decisions.
5230     invalidateCostModelingDecisions();
5231   }
5232   return MaxVF;
5233 }
5234 
5235 Optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const {
5236   if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5237     auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange);
5238     auto Min = Attr.getVScaleRangeMin();
5239     auto Max = Attr.getVScaleRangeMax();
5240     if (Max && Min == Max)
5241       return Max;
5242   }
5243 
5244   return TTI.getVScaleForTuning();
5245 }
5246 
5247 bool LoopVectorizationCostModel::isMoreProfitable(
5248     const VectorizationFactor &A, const VectorizationFactor &B) const {
5249   InstructionCost CostA = A.Cost;
5250   InstructionCost CostB = B.Cost;
5251 
5252   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
5253 
5254   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
5255       MaxTripCount) {
5256     // If we are folding the tail and the trip count is a known (possibly small)
5257     // constant, the trip count will be rounded up to an integer number of
5258     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
5259     // which we compare directly. When not folding the tail, the total cost will
5260     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
5261     // approximated with the per-lane cost below instead of using the tripcount
5262     // as here.
5263     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
5264     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
5265     return RTCostA < RTCostB;
5266   }
5267 
5268   // Improve estimate for the vector width if it is scalable.
5269   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
5270   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
5271   if (Optional<unsigned> VScale = getVScaleForTuning()) {
5272     if (A.Width.isScalable())
5273       EstimatedWidthA *= VScale.value();
5274     if (B.Width.isScalable())
5275       EstimatedWidthB *= VScale.value();
5276   }
5277 
5278   // Assume vscale may be larger than 1 (or the value being tuned for),
5279   // so that scalable vectorization is slightly favorable over fixed-width
5280   // vectorization.
5281   if (A.Width.isScalable() && !B.Width.isScalable())
5282     return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
5283 
5284   // To avoid the need for FP division:
5285   //      (CostA / A.Width) < (CostB / B.Width)
5286   // <=>  (CostA * B.Width) < (CostB * A.Width)
5287   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
5288 }
5289 
5290 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
5291     const ElementCountSet &VFCandidates) {
5292   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
5293   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
5294   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
5295   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
5296          "Expected Scalar VF to be a candidate");
5297 
5298   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost,
5299                                        ExpectedCost);
5300   VectorizationFactor ChosenFactor = ScalarCost;
5301 
5302   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5303   if (ForceVectorization && VFCandidates.size() > 1) {
5304     // Ignore scalar width, because the user explicitly wants vectorization.
5305     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5306     // evaluation.
5307     ChosenFactor.Cost = InstructionCost::getMax();
5308   }
5309 
5310   SmallVector<InstructionVFPair> InvalidCosts;
5311   for (const auto &i : VFCandidates) {
5312     // The cost for scalar VF=1 is already calculated, so ignore it.
5313     if (i.isScalar())
5314       continue;
5315 
5316     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
5317     VectorizationFactor Candidate(i, C.first, ScalarCost.ScalarCost);
5318 
5319 #ifndef NDEBUG
5320     unsigned AssumedMinimumVscale = 1;
5321     if (Optional<unsigned> VScale = getVScaleForTuning())
5322       AssumedMinimumVscale = *VScale;
5323     unsigned Width =
5324         Candidate.Width.isScalable()
5325             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
5326             : Candidate.Width.getFixedValue();
5327     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5328                       << " costs: " << (Candidate.Cost / Width));
5329     if (i.isScalable())
5330       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
5331                         << AssumedMinimumVscale << ")");
5332     LLVM_DEBUG(dbgs() << ".\n");
5333 #endif
5334 
5335     if (!C.second && !ForceVectorization) {
5336       LLVM_DEBUG(
5337           dbgs() << "LV: Not considering vector loop of width " << i
5338                  << " because it will not generate any vector instructions.\n");
5339       continue;
5340     }
5341 
5342     // If profitable add it to ProfitableVF list.
5343     if (isMoreProfitable(Candidate, ScalarCost))
5344       ProfitableVFs.push_back(Candidate);
5345 
5346     if (isMoreProfitable(Candidate, ChosenFactor))
5347       ChosenFactor = Candidate;
5348   }
5349 
5350   // Emit a report of VFs with invalid costs in the loop.
5351   if (!InvalidCosts.empty()) {
5352     // Group the remarks per instruction, keeping the instruction order from
5353     // InvalidCosts.
5354     std::map<Instruction *, unsigned> Numbering;
5355     unsigned I = 0;
5356     for (auto &Pair : InvalidCosts)
5357       if (!Numbering.count(Pair.first))
5358         Numbering[Pair.first] = I++;
5359 
5360     // Sort the list, first on instruction(number) then on VF.
5361     llvm::sort(InvalidCosts,
5362                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
5363                  if (Numbering[A.first] != Numbering[B.first])
5364                    return Numbering[A.first] < Numbering[B.first];
5365                  ElementCountComparator ECC;
5366                  return ECC(A.second, B.second);
5367                });
5368 
5369     // For a list of ordered instruction-vf pairs:
5370     //   [(load, vf1), (load, vf2), (store, vf1)]
5371     // Group the instructions together to emit separate remarks for:
5372     //   load  (vf1, vf2)
5373     //   store (vf1)
5374     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
5375     auto Subset = ArrayRef<InstructionVFPair>();
5376     do {
5377       if (Subset.empty())
5378         Subset = Tail.take_front(1);
5379 
5380       Instruction *I = Subset.front().first;
5381 
5382       // If the next instruction is different, or if there are no other pairs,
5383       // emit a remark for the collated subset. e.g.
5384       //   [(load, vf1), (load, vf2))]
5385       // to emit:
5386       //  remark: invalid costs for 'load' at VF=(vf, vf2)
5387       if (Subset == Tail || Tail[Subset.size()].first != I) {
5388         std::string OutString;
5389         raw_string_ostream OS(OutString);
5390         assert(!Subset.empty() && "Unexpected empty range");
5391         OS << "Instruction with invalid costs prevented vectorization at VF=(";
5392         for (auto &Pair : Subset)
5393           OS << (Pair.second == Subset.front().second ? "" : ", ")
5394              << Pair.second;
5395         OS << "):";
5396         if (auto *CI = dyn_cast<CallInst>(I))
5397           OS << " call to " << CI->getCalledFunction()->getName();
5398         else
5399           OS << " " << I->getOpcodeName();
5400         OS.flush();
5401         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
5402         Tail = Tail.drop_front(Subset.size());
5403         Subset = {};
5404       } else
5405         // Grow the subset by one element
5406         Subset = Tail.take_front(Subset.size() + 1);
5407     } while (!Tail.empty());
5408   }
5409 
5410   if (!EnableCondStoresVectorization && NumPredStores) {
5411     reportVectorizationFailure("There are conditional stores.",
5412         "store that is conditionally executed prevents vectorization",
5413         "ConditionalStore", ORE, TheLoop);
5414     ChosenFactor = ScalarCost;
5415   }
5416 
5417   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
5418                  !isMoreProfitable(ChosenFactor, ScalarCost)) dbgs()
5419              << "LV: Vectorization seems to be not beneficial, "
5420              << "but was forced by a user.\n");
5421   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
5422   return ChosenFactor;
5423 }
5424 
5425 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
5426     const Loop &L, ElementCount VF) const {
5427   // Cross iteration phis such as reductions need special handling and are
5428   // currently unsupported.
5429   if (any_of(L.getHeader()->phis(),
5430              [&](PHINode &Phi) { return Legal->isFirstOrderRecurrence(&Phi); }))
5431     return false;
5432 
5433   // Phis with uses outside of the loop require special handling and are
5434   // currently unsupported.
5435   for (auto &Entry : Legal->getInductionVars()) {
5436     // Look for uses of the value of the induction at the last iteration.
5437     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
5438     for (User *U : PostInc->users())
5439       if (!L.contains(cast<Instruction>(U)))
5440         return false;
5441     // Look for uses of penultimate value of the induction.
5442     for (User *U : Entry.first->users())
5443       if (!L.contains(cast<Instruction>(U)))
5444         return false;
5445   }
5446 
5447   // Induction variables that are widened require special handling that is
5448   // currently not supported.
5449   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
5450         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
5451                  this->isProfitableToScalarize(Entry.first, VF));
5452       }))
5453     return false;
5454 
5455   // Epilogue vectorization code has not been auditted to ensure it handles
5456   // non-latch exits properly.  It may be fine, but it needs auditted and
5457   // tested.
5458   if (L.getExitingBlock() != L.getLoopLatch())
5459     return false;
5460 
5461   return true;
5462 }
5463 
5464 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
5465     const ElementCount VF) const {
5466   // FIXME: We need a much better cost-model to take different parameters such
5467   // as register pressure, code size increase and cost of extra branches into
5468   // account. For now we apply a very crude heuristic and only consider loops
5469   // with vectorization factors larger than a certain value.
5470   // We also consider epilogue vectorization unprofitable for targets that don't
5471   // consider interleaving beneficial (eg. MVE).
5472   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
5473     return false;
5474   // FIXME: We should consider changing the threshold for scalable
5475   // vectors to take VScaleForTuning into account.
5476   if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF)
5477     return true;
5478   return false;
5479 }
5480 
5481 VectorizationFactor
5482 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
5483     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
5484   VectorizationFactor Result = VectorizationFactor::Disabled();
5485   if (!EnableEpilogueVectorization) {
5486     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
5487     return Result;
5488   }
5489 
5490   if (!isScalarEpilogueAllowed()) {
5491     LLVM_DEBUG(
5492         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
5493                   "allowed.\n";);
5494     return Result;
5495   }
5496 
5497   // Not really a cost consideration, but check for unsupported cases here to
5498   // simplify the logic.
5499   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
5500     LLVM_DEBUG(
5501         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
5502                   "not a supported candidate.\n";);
5503     return Result;
5504   }
5505 
5506   if (EpilogueVectorizationForceVF > 1) {
5507     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
5508     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
5509     if (LVP.hasPlanWithVF(ForcedEC))
5510       return {ForcedEC, 0, 0};
5511     else {
5512       LLVM_DEBUG(
5513           dbgs()
5514               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
5515       return Result;
5516     }
5517   }
5518 
5519   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
5520       TheLoop->getHeader()->getParent()->hasMinSize()) {
5521     LLVM_DEBUG(
5522         dbgs()
5523             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
5524     return Result;
5525   }
5526 
5527   if (!isEpilogueVectorizationProfitable(MainLoopVF)) {
5528     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
5529                          "this loop\n");
5530     return Result;
5531   }
5532 
5533   // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know
5534   // the main loop handles 8 lanes per iteration. We could still benefit from
5535   // vectorizing the epilogue loop with VF=4.
5536   ElementCount EstimatedRuntimeVF = MainLoopVF;
5537   if (MainLoopVF.isScalable()) {
5538     EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
5539     if (Optional<unsigned> VScale = getVScaleForTuning())
5540       EstimatedRuntimeVF *= *VScale;
5541   }
5542 
5543   for (auto &NextVF : ProfitableVFs)
5544     if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() &&
5545           ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) ||
5546          ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) &&
5547         (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) &&
5548         LVP.hasPlanWithVF(NextVF.Width))
5549       Result = NextVF;
5550 
5551   if (Result != VectorizationFactor::Disabled())
5552     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
5553                       << Result.Width << "\n";);
5554   return Result;
5555 }
5556 
5557 std::pair<unsigned, unsigned>
5558 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5559   unsigned MinWidth = -1U;
5560   unsigned MaxWidth = 8;
5561   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5562   // For in-loop reductions, no element types are added to ElementTypesInLoop
5563   // if there are no loads/stores in the loop. In this case, check through the
5564   // reduction variables to determine the maximum width.
5565   if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) {
5566     // Reset MaxWidth so that we can find the smallest type used by recurrences
5567     // in the loop.
5568     MaxWidth = -1U;
5569     for (auto &PhiDescriptorPair : Legal->getReductionVars()) {
5570       const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second;
5571       // When finding the min width used by the recurrence we need to account
5572       // for casts on the input operands of the recurrence.
5573       MaxWidth = std::min<unsigned>(
5574           MaxWidth, std::min<unsigned>(
5575                         RdxDesc.getMinWidthCastToRecurrenceTypeInBits(),
5576                         RdxDesc.getRecurrenceType()->getScalarSizeInBits()));
5577     }
5578   } else {
5579     for (Type *T : ElementTypesInLoop) {
5580       MinWidth = std::min<unsigned>(
5581           MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5582       MaxWidth = std::max<unsigned>(
5583           MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
5584     }
5585   }
5586   return {MinWidth, MaxWidth};
5587 }
5588 
5589 void LoopVectorizationCostModel::collectElementTypesForWidening() {
5590   ElementTypesInLoop.clear();
5591   // For each block.
5592   for (BasicBlock *BB : TheLoop->blocks()) {
5593     // For each instruction in the loop.
5594     for (Instruction &I : BB->instructionsWithoutDebug()) {
5595       Type *T = I.getType();
5596 
5597       // Skip ignored values.
5598       if (ValuesToIgnore.count(&I))
5599         continue;
5600 
5601       // Only examine Loads, Stores and PHINodes.
5602       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5603         continue;
5604 
5605       // Examine PHI nodes that are reduction variables. Update the type to
5606       // account for the recurrence type.
5607       if (auto *PN = dyn_cast<PHINode>(&I)) {
5608         if (!Legal->isReductionVariable(PN))
5609           continue;
5610         const RecurrenceDescriptor &RdxDesc =
5611             Legal->getReductionVars().find(PN)->second;
5612         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
5613             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
5614                                       RdxDesc.getRecurrenceType(),
5615                                       TargetTransformInfo::ReductionFlags()))
5616           continue;
5617         T = RdxDesc.getRecurrenceType();
5618       }
5619 
5620       // Examine the stored values.
5621       if (auto *ST = dyn_cast<StoreInst>(&I))
5622         T = ST->getValueOperand()->getType();
5623 
5624       assert(T->isSized() &&
5625              "Expected the load/store/recurrence type to be sized");
5626 
5627       ElementTypesInLoop.insert(T);
5628     }
5629   }
5630 }
5631 
5632 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
5633                                                            unsigned LoopCost) {
5634   // -- The interleave heuristics --
5635   // We interleave the loop in order to expose ILP and reduce the loop overhead.
5636   // There are many micro-architectural considerations that we can't predict
5637   // at this level. For example, frontend pressure (on decode or fetch) due to
5638   // code size, or the number and capabilities of the execution ports.
5639   //
5640   // We use the following heuristics to select the interleave count:
5641   // 1. If the code has reductions, then we interleave to break the cross
5642   // iteration dependency.
5643   // 2. If the loop is really small, then we interleave to reduce the loop
5644   // overhead.
5645   // 3. We don't interleave if we think that we will spill registers to memory
5646   // due to the increased register pressure.
5647 
5648   if (!isScalarEpilogueAllowed())
5649     return 1;
5650 
5651   // We used the distance for the interleave count.
5652   if (Legal->getMaxSafeDepDistBytes() != -1U)
5653     return 1;
5654 
5655   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
5656   const bool HasReductions = !Legal->getReductionVars().empty();
5657   // Do not interleave loops with a relatively small known or estimated trip
5658   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
5659   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
5660   // because with the above conditions interleaving can expose ILP and break
5661   // cross iteration dependences for reductions.
5662   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
5663       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
5664     return 1;
5665 
5666   // If we did not calculate the cost for VF (because the user selected the VF)
5667   // then we calculate the cost of VF here.
5668   if (LoopCost == 0) {
5669     InstructionCost C = expectedCost(VF).first;
5670     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
5671     LoopCost = *C.getValue();
5672 
5673     // Loop body is free and there is no need for interleaving.
5674     if (LoopCost == 0)
5675       return 1;
5676   }
5677 
5678   RegisterUsage R = calculateRegisterUsage({VF})[0];
5679   // We divide by these constants so assume that we have at least one
5680   // instruction that uses at least one register.
5681   for (auto& pair : R.MaxLocalUsers) {
5682     pair.second = std::max(pair.second, 1U);
5683   }
5684 
5685   // We calculate the interleave count using the following formula.
5686   // Subtract the number of loop invariants from the number of available
5687   // registers. These registers are used by all of the interleaved instances.
5688   // Next, divide the remaining registers by the number of registers that is
5689   // required by the loop, in order to estimate how many parallel instances
5690   // fit without causing spills. All of this is rounded down if necessary to be
5691   // a power of two. We want power of two interleave count to simplify any
5692   // addressing operations or alignment considerations.
5693   // We also want power of two interleave counts to ensure that the induction
5694   // variable of the vector loop wraps to zero, when tail is folded by masking;
5695   // this currently happens when OptForSize, in which case IC is set to 1 above.
5696   unsigned IC = UINT_MAX;
5697 
5698   for (auto& pair : R.MaxLocalUsers) {
5699     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5700     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5701                       << " registers of "
5702                       << TTI.getRegisterClassName(pair.first) << " register class\n");
5703     if (VF.isScalar()) {
5704       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5705         TargetNumRegisters = ForceTargetNumScalarRegs;
5706     } else {
5707       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5708         TargetNumRegisters = ForceTargetNumVectorRegs;
5709     }
5710     unsigned MaxLocalUsers = pair.second;
5711     unsigned LoopInvariantRegs = 0;
5712     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
5713       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
5714 
5715     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
5716     // Don't count the induction variable as interleaved.
5717     if (EnableIndVarRegisterHeur) {
5718       TmpIC =
5719           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
5720                         std::max(1U, (MaxLocalUsers - 1)));
5721     }
5722 
5723     IC = std::min(IC, TmpIC);
5724   }
5725 
5726   // Clamp the interleave ranges to reasonable counts.
5727   unsigned MaxInterleaveCount =
5728       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
5729 
5730   // Check if the user has overridden the max.
5731   if (VF.isScalar()) {
5732     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5733       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5734   } else {
5735     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5736       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5737   }
5738 
5739   // If trip count is known or estimated compile time constant, limit the
5740   // interleave count to be less than the trip count divided by VF, provided it
5741   // is at least 1.
5742   //
5743   // For scalable vectors we can't know if interleaving is beneficial. It may
5744   // not be beneficial for small loops if none of the lanes in the second vector
5745   // iterations is enabled. However, for larger loops, there is likely to be a
5746   // similar benefit as for fixed-width vectors. For now, we choose to leave
5747   // the InterleaveCount as if vscale is '1', although if some information about
5748   // the vector is known (e.g. min vector size), we can make a better decision.
5749   if (BestKnownTC) {
5750     MaxInterleaveCount =
5751         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
5752     // Make sure MaxInterleaveCount is greater than 0.
5753     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
5754   }
5755 
5756   assert(MaxInterleaveCount > 0 &&
5757          "Maximum interleave count must be greater than 0");
5758 
5759   // Clamp the calculated IC to be between the 1 and the max interleave count
5760   // that the target and trip count allows.
5761   if (IC > MaxInterleaveCount)
5762     IC = MaxInterleaveCount;
5763   else
5764     // Make sure IC is greater than 0.
5765     IC = std::max(1u, IC);
5766 
5767   assert(IC > 0 && "Interleave count must be greater than 0.");
5768 
5769   // Interleave if we vectorized this loop and there is a reduction that could
5770   // benefit from interleaving.
5771   if (VF.isVector() && HasReductions) {
5772     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5773     return IC;
5774   }
5775 
5776   // For any scalar loop that either requires runtime checks or predication we
5777   // are better off leaving this to the unroller. Note that if we've already
5778   // vectorized the loop we will have done the runtime check and so interleaving
5779   // won't require further checks.
5780   bool ScalarInterleavingRequiresPredication =
5781       (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) {
5782          return Legal->blockNeedsPredication(BB);
5783        }));
5784   bool ScalarInterleavingRequiresRuntimePointerCheck =
5785       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
5786 
5787   // We want to interleave small loops in order to reduce the loop overhead and
5788   // potentially expose ILP opportunities.
5789   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
5790                     << "LV: IC is " << IC << '\n'
5791                     << "LV: VF is " << VF << '\n');
5792   const bool AggressivelyInterleaveReductions =
5793       TTI.enableAggressiveInterleaving(HasReductions);
5794   if (!ScalarInterleavingRequiresRuntimePointerCheck &&
5795       !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) {
5796     // We assume that the cost overhead is 1 and we use the cost model
5797     // to estimate the cost of the loop and interleave until the cost of the
5798     // loop overhead is about 5% of the cost of the loop.
5799     unsigned SmallIC =
5800         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5801 
5802     // Interleave until store/load ports (estimated by max interleave count) are
5803     // saturated.
5804     unsigned NumStores = Legal->getNumStores();
5805     unsigned NumLoads = Legal->getNumLoads();
5806     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5807     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5808 
5809     // There is little point in interleaving for reductions containing selects
5810     // and compares when VF=1 since it may just create more overhead than it's
5811     // worth for loops with small trip counts. This is because we still have to
5812     // do the final reduction after the loop.
5813     bool HasSelectCmpReductions =
5814         HasReductions &&
5815         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5816           const RecurrenceDescriptor &RdxDesc = Reduction.second;
5817           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
5818               RdxDesc.getRecurrenceKind());
5819         });
5820     if (HasSelectCmpReductions) {
5821       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
5822       return 1;
5823     }
5824 
5825     // If we have a scalar reduction (vector reductions are already dealt with
5826     // by this point), we can increase the critical path length if the loop
5827     // we're interleaving is inside another loop. For tree-wise reductions
5828     // set the limit to 2, and for ordered reductions it's best to disable
5829     // interleaving entirely.
5830     if (HasReductions && TheLoop->getLoopDepth() > 1) {
5831       bool HasOrderedReductions =
5832           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
5833             const RecurrenceDescriptor &RdxDesc = Reduction.second;
5834             return RdxDesc.isOrdered();
5835           });
5836       if (HasOrderedReductions) {
5837         LLVM_DEBUG(
5838             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
5839         return 1;
5840       }
5841 
5842       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5843       SmallIC = std::min(SmallIC, F);
5844       StoresIC = std::min(StoresIC, F);
5845       LoadsIC = std::min(LoadsIC, F);
5846     }
5847 
5848     if (EnableLoadStoreRuntimeInterleave &&
5849         std::max(StoresIC, LoadsIC) > SmallIC) {
5850       LLVM_DEBUG(
5851           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5852       return std::max(StoresIC, LoadsIC);
5853     }
5854 
5855     // If there are scalar reductions and TTI has enabled aggressive
5856     // interleaving for reductions, we will interleave to expose ILP.
5857     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
5858         AggressivelyInterleaveReductions) {
5859       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5860       // Interleave no less than SmallIC but not as aggressive as the normal IC
5861       // to satisfy the rare situation when resources are too limited.
5862       return std::max(IC / 2, SmallIC);
5863     } else {
5864       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5865       return SmallIC;
5866     }
5867   }
5868 
5869   // Interleave if this is a large loop (small loops are already dealt with by
5870   // this point) that could benefit from interleaving.
5871   if (AggressivelyInterleaveReductions) {
5872     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5873     return IC;
5874   }
5875 
5876   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5877   return 1;
5878 }
5879 
5880 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
5881 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
5882   // This function calculates the register usage by measuring the highest number
5883   // of values that are alive at a single location. Obviously, this is a very
5884   // rough estimation. We scan the loop in a topological order in order and
5885   // assign a number to each instruction. We use RPO to ensure that defs are
5886   // met before their users. We assume that each instruction that has in-loop
5887   // users starts an interval. We record every time that an in-loop value is
5888   // used, so we have a list of the first and last occurrences of each
5889   // instruction. Next, we transpose this data structure into a multi map that
5890   // holds the list of intervals that *end* at a specific location. This multi
5891   // map allows us to perform a linear search. We scan the instructions linearly
5892   // and record each time that a new interval starts, by placing it in a set.
5893   // If we find this value in the multi-map then we remove it from the set.
5894   // The max register usage is the maximum size of the set.
5895   // We also search for instructions that are defined outside the loop, but are
5896   // used inside the loop. We need this number separately from the max-interval
5897   // usage number because when we unroll, loop-invariant values do not take
5898   // more register.
5899   LoopBlocksDFS DFS(TheLoop);
5900   DFS.perform(LI);
5901 
5902   RegisterUsage RU;
5903 
5904   // Each 'key' in the map opens a new interval. The values
5905   // of the map are the index of the 'last seen' usage of the
5906   // instruction that is the key.
5907   using IntervalMap = DenseMap<Instruction *, unsigned>;
5908 
5909   // Maps instruction to its index.
5910   SmallVector<Instruction *, 64> IdxToInstr;
5911   // Marks the end of each interval.
5912   IntervalMap EndPoint;
5913   // Saves the list of instruction indices that are used in the loop.
5914   SmallPtrSet<Instruction *, 8> Ends;
5915   // Saves the list of values that are used in the loop but are
5916   // defined outside the loop, such as arguments and constants.
5917   SmallPtrSet<Value *, 8> LoopInvariants;
5918 
5919   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5920     for (Instruction &I : BB->instructionsWithoutDebug()) {
5921       IdxToInstr.push_back(&I);
5922 
5923       // Save the end location of each USE.
5924       for (Value *U : I.operands()) {
5925         auto *Instr = dyn_cast<Instruction>(U);
5926 
5927         // Ignore non-instruction values such as arguments, constants, etc.
5928         if (!Instr)
5929           continue;
5930 
5931         // If this instruction is outside the loop then record it and continue.
5932         if (!TheLoop->contains(Instr)) {
5933           LoopInvariants.insert(Instr);
5934           continue;
5935         }
5936 
5937         // Overwrite previous end points.
5938         EndPoint[Instr] = IdxToInstr.size();
5939         Ends.insert(Instr);
5940       }
5941     }
5942   }
5943 
5944   // Saves the list of intervals that end with the index in 'key'.
5945   using InstrList = SmallVector<Instruction *, 2>;
5946   DenseMap<unsigned, InstrList> TransposeEnds;
5947 
5948   // Transpose the EndPoints to a list of values that end at each index.
5949   for (auto &Interval : EndPoint)
5950     TransposeEnds[Interval.second].push_back(Interval.first);
5951 
5952   SmallPtrSet<Instruction *, 8> OpenIntervals;
5953   SmallVector<RegisterUsage, 8> RUs(VFs.size());
5954   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
5955 
5956   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5957 
5958   const auto &TTICapture = TTI;
5959   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
5960     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
5961       return 0;
5962     return TTICapture.getRegUsageForType(VectorType::get(Ty, VF));
5963   };
5964 
5965   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
5966     Instruction *I = IdxToInstr[i];
5967 
5968     // Remove all of the instructions that end at this location.
5969     InstrList &List = TransposeEnds[i];
5970     for (Instruction *ToRemove : List)
5971       OpenIntervals.erase(ToRemove);
5972 
5973     // Ignore instructions that are never used within the loop.
5974     if (!Ends.count(I))
5975       continue;
5976 
5977     // Skip ignored values.
5978     if (ValuesToIgnore.count(I))
5979       continue;
5980 
5981     // For each VF find the maximum usage of registers.
5982     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5983       // Count the number of live intervals.
5984       SmallMapVector<unsigned, unsigned, 4> RegUsage;
5985 
5986       if (VFs[j].isScalar()) {
5987         for (auto Inst : OpenIntervals) {
5988           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
5989           if (RegUsage.find(ClassID) == RegUsage.end())
5990             RegUsage[ClassID] = 1;
5991           else
5992             RegUsage[ClassID] += 1;
5993         }
5994       } else {
5995         collectUniformsAndScalars(VFs[j]);
5996         for (auto Inst : OpenIntervals) {
5997           // Skip ignored values for VF > 1.
5998           if (VecValuesToIgnore.count(Inst))
5999             continue;
6000           if (isScalarAfterVectorization(Inst, VFs[j])) {
6001             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6002             if (RegUsage.find(ClassID) == RegUsage.end())
6003               RegUsage[ClassID] = 1;
6004             else
6005               RegUsage[ClassID] += 1;
6006           } else {
6007             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6008             if (RegUsage.find(ClassID) == RegUsage.end())
6009               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6010             else
6011               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6012           }
6013         }
6014       }
6015 
6016       for (auto& pair : RegUsage) {
6017         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6018           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6019         else
6020           MaxUsages[j][pair.first] = pair.second;
6021       }
6022     }
6023 
6024     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6025                       << OpenIntervals.size() << '\n');
6026 
6027     // Add the current instruction to the list of open intervals.
6028     OpenIntervals.insert(I);
6029   }
6030 
6031   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6032     SmallMapVector<unsigned, unsigned, 4> Invariant;
6033 
6034     for (auto Inst : LoopInvariants) {
6035       unsigned Usage =
6036           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6037       unsigned ClassID =
6038           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6039       if (Invariant.find(ClassID) == Invariant.end())
6040         Invariant[ClassID] = Usage;
6041       else
6042         Invariant[ClassID] += Usage;
6043     }
6044 
6045     LLVM_DEBUG({
6046       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6047       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6048              << " item\n";
6049       for (const auto &pair : MaxUsages[i]) {
6050         dbgs() << "LV(REG): RegisterClass: "
6051                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6052                << " registers\n";
6053       }
6054       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6055              << " item\n";
6056       for (const auto &pair : Invariant) {
6057         dbgs() << "LV(REG): RegisterClass: "
6058                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6059                << " registers\n";
6060       }
6061     });
6062 
6063     RU.LoopInvariantRegs = Invariant;
6064     RU.MaxLocalUsers = MaxUsages[i];
6065     RUs[i] = RU;
6066   }
6067 
6068   return RUs;
6069 }
6070 
6071 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I,
6072                                                            ElementCount VF) {
6073   // TODO: Cost model for emulated masked load/store is completely
6074   // broken. This hack guides the cost model to use an artificially
6075   // high enough value to practically disable vectorization with such
6076   // operations, except where previously deployed legality hack allowed
6077   // using very low cost values. This is to avoid regressions coming simply
6078   // from moving "masked load/store" check from legality to cost model.
6079   // Masked Load/Gather emulation was previously never allowed.
6080   // Limited number of Masked Store/Scatter emulation was allowed.
6081   assert(isPredicatedInst(I, VF) && "Expecting a scalar emulated instruction");
6082   return isa<LoadInst>(I) ||
6083          (isa<StoreInst>(I) &&
6084           NumPredStores > NumberOfStoresToPredicate);
6085 }
6086 
6087 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6088   // If we aren't vectorizing the loop, or if we've already collected the
6089   // instructions to scalarize, there's nothing to do. Collection may already
6090   // have occurred if we have a user-selected VF and are now computing the
6091   // expected cost for interleaving.
6092   if (VF.isScalar() || VF.isZero() ||
6093       InstsToScalarize.find(VF) != InstsToScalarize.end())
6094     return;
6095 
6096   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6097   // not profitable to scalarize any instructions, the presence of VF in the
6098   // map will indicate that we've analyzed it already.
6099   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6100 
6101   PredicatedBBsAfterVectorization[VF].clear();
6102 
6103   // Find all the instructions that are scalar with predication in the loop and
6104   // determine if it would be better to not if-convert the blocks they are in.
6105   // If so, we also record the instructions to scalarize.
6106   for (BasicBlock *BB : TheLoop->blocks()) {
6107     if (!blockNeedsPredicationForAnyReason(BB))
6108       continue;
6109     for (Instruction &I : *BB)
6110       if (isScalarWithPredication(&I, VF)) {
6111         ScalarCostsTy ScalarCosts;
6112         // Do not apply discount if scalable, because that would lead to
6113         // invalid scalarization costs.
6114         // Do not apply discount logic if hacked cost is needed
6115         // for emulated masked memrefs.
6116         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) &&
6117             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6118           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6119         // Remember that BB will remain after vectorization.
6120         PredicatedBBsAfterVectorization[VF].insert(BB);
6121       }
6122   }
6123 }
6124 
6125 int LoopVectorizationCostModel::computePredInstDiscount(
6126     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6127   assert(!isUniformAfterVectorization(PredInst, VF) &&
6128          "Instruction marked uniform-after-vectorization will be predicated");
6129 
6130   // Initialize the discount to zero, meaning that the scalar version and the
6131   // vector version cost the same.
6132   InstructionCost Discount = 0;
6133 
6134   // Holds instructions to analyze. The instructions we visit are mapped in
6135   // ScalarCosts. Those instructions are the ones that would be scalarized if
6136   // we find that the scalar version costs less.
6137   SmallVector<Instruction *, 8> Worklist;
6138 
6139   // Returns true if the given instruction can be scalarized.
6140   auto canBeScalarized = [&](Instruction *I) -> bool {
6141     // We only attempt to scalarize instructions forming a single-use chain
6142     // from the original predicated block that would otherwise be vectorized.
6143     // Although not strictly necessary, we give up on instructions we know will
6144     // already be scalar to avoid traversing chains that are unlikely to be
6145     // beneficial.
6146     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6147         isScalarAfterVectorization(I, VF))
6148       return false;
6149 
6150     // If the instruction is scalar with predication, it will be analyzed
6151     // separately. We ignore it within the context of PredInst.
6152     if (isScalarWithPredication(I, VF))
6153       return false;
6154 
6155     // If any of the instruction's operands are uniform after vectorization,
6156     // the instruction cannot be scalarized. This prevents, for example, a
6157     // masked load from being scalarized.
6158     //
6159     // We assume we will only emit a value for lane zero of an instruction
6160     // marked uniform after vectorization, rather than VF identical values.
6161     // Thus, if we scalarize an instruction that uses a uniform, we would
6162     // create uses of values corresponding to the lanes we aren't emitting code
6163     // for. This behavior can be changed by allowing getScalarValue to clone
6164     // the lane zero values for uniforms rather than asserting.
6165     for (Use &U : I->operands())
6166       if (auto *J = dyn_cast<Instruction>(U.get()))
6167         if (isUniformAfterVectorization(J, VF))
6168           return false;
6169 
6170     // Otherwise, we can scalarize the instruction.
6171     return true;
6172   };
6173 
6174   // Compute the expected cost discount from scalarizing the entire expression
6175   // feeding the predicated instruction. We currently only consider expressions
6176   // that are single-use instruction chains.
6177   Worklist.push_back(PredInst);
6178   while (!Worklist.empty()) {
6179     Instruction *I = Worklist.pop_back_val();
6180 
6181     // If we've already analyzed the instruction, there's nothing to do.
6182     if (ScalarCosts.find(I) != ScalarCosts.end())
6183       continue;
6184 
6185     // Compute the cost of the vector instruction. Note that this cost already
6186     // includes the scalarization overhead of the predicated instruction.
6187     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6188 
6189     // Compute the cost of the scalarized instruction. This cost is the cost of
6190     // the instruction as if it wasn't if-converted and instead remained in the
6191     // predicated block. We will scale this cost by block probability after
6192     // computing the scalarization overhead.
6193     InstructionCost ScalarCost =
6194         VF.getFixedValue() *
6195         getInstructionCost(I, ElementCount::getFixed(1)).first;
6196 
6197     // Compute the scalarization overhead of needed insertelement instructions
6198     // and phi nodes.
6199     if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) {
6200       ScalarCost += TTI.getScalarizationOverhead(
6201           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6202           APInt::getAllOnes(VF.getFixedValue()), true, false);
6203       ScalarCost +=
6204           VF.getFixedValue() *
6205           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6206     }
6207 
6208     // Compute the scalarization overhead of needed extractelement
6209     // instructions. For each of the instruction's operands, if the operand can
6210     // be scalarized, add it to the worklist; otherwise, account for the
6211     // overhead.
6212     for (Use &U : I->operands())
6213       if (auto *J = dyn_cast<Instruction>(U.get())) {
6214         assert(VectorType::isValidElementType(J->getType()) &&
6215                "Instruction has non-scalar type");
6216         if (canBeScalarized(J))
6217           Worklist.push_back(J);
6218         else if (needsExtract(J, VF)) {
6219           ScalarCost += TTI.getScalarizationOverhead(
6220               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6221               APInt::getAllOnes(VF.getFixedValue()), false, true);
6222         }
6223       }
6224 
6225     // Scale the total scalar cost by block probability.
6226     ScalarCost /= getReciprocalPredBlockProb();
6227 
6228     // Compute the discount. A non-negative discount means the vector version
6229     // of the instruction costs more, and scalarizing would be beneficial.
6230     Discount += VectorCost - ScalarCost;
6231     ScalarCosts[I] = ScalarCost;
6232   }
6233 
6234   return *Discount.getValue();
6235 }
6236 
6237 LoopVectorizationCostModel::VectorizationCostTy
6238 LoopVectorizationCostModel::expectedCost(
6239     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6240   VectorizationCostTy Cost;
6241 
6242   // For each block.
6243   for (BasicBlock *BB : TheLoop->blocks()) {
6244     VectorizationCostTy BlockCost;
6245 
6246     // For each instruction in the old loop.
6247     for (Instruction &I : BB->instructionsWithoutDebug()) {
6248       // Skip ignored values.
6249       if (ValuesToIgnore.count(&I) ||
6250           (VF.isVector() && VecValuesToIgnore.count(&I)))
6251         continue;
6252 
6253       VectorizationCostTy C = getInstructionCost(&I, VF);
6254 
6255       // Check if we should override the cost.
6256       if (C.first.isValid() &&
6257           ForceTargetInstructionCost.getNumOccurrences() > 0)
6258         C.first = InstructionCost(ForceTargetInstructionCost);
6259 
6260       // Keep a list of instructions with invalid costs.
6261       if (Invalid && !C.first.isValid())
6262         Invalid->emplace_back(&I, VF);
6263 
6264       BlockCost.first += C.first;
6265       BlockCost.second |= C.second;
6266       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6267                         << " for VF " << VF << " For instruction: " << I
6268                         << '\n');
6269     }
6270 
6271     // If we are vectorizing a predicated block, it will have been
6272     // if-converted. This means that the block's instructions (aside from
6273     // stores and instructions that may divide by zero) will now be
6274     // unconditionally executed. For the scalar case, we may not always execute
6275     // the predicated block, if it is an if-else block. Thus, scale the block's
6276     // cost by the probability of executing it. blockNeedsPredication from
6277     // Legal is used so as to not include all blocks in tail folded loops.
6278     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6279       BlockCost.first /= getReciprocalPredBlockProb();
6280 
6281     Cost.first += BlockCost.first;
6282     Cost.second |= BlockCost.second;
6283   }
6284 
6285   return Cost;
6286 }
6287 
6288 /// Gets Address Access SCEV after verifying that the access pattern
6289 /// is loop invariant except the induction variable dependence.
6290 ///
6291 /// This SCEV can be sent to the Target in order to estimate the address
6292 /// calculation cost.
6293 static const SCEV *getAddressAccessSCEV(
6294               Value *Ptr,
6295               LoopVectorizationLegality *Legal,
6296               PredicatedScalarEvolution &PSE,
6297               const Loop *TheLoop) {
6298 
6299   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6300   if (!Gep)
6301     return nullptr;
6302 
6303   // We are looking for a gep with all loop invariant indices except for one
6304   // which should be an induction variable.
6305   auto SE = PSE.getSE();
6306   unsigned NumOperands = Gep->getNumOperands();
6307   for (unsigned i = 1; i < NumOperands; ++i) {
6308     Value *Opd = Gep->getOperand(i);
6309     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6310         !Legal->isInductionVariable(Opd))
6311       return nullptr;
6312   }
6313 
6314   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6315   return PSE.getSCEV(Ptr);
6316 }
6317 
6318 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6319   return Legal->hasStride(I->getOperand(0)) ||
6320          Legal->hasStride(I->getOperand(1));
6321 }
6322 
6323 InstructionCost
6324 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6325                                                         ElementCount VF) {
6326   assert(VF.isVector() &&
6327          "Scalarization cost of instruction implies vectorization.");
6328   if (VF.isScalable())
6329     return InstructionCost::getInvalid();
6330 
6331   Type *ValTy = getLoadStoreType(I);
6332   auto SE = PSE.getSE();
6333 
6334   unsigned AS = getLoadStoreAddressSpace(I);
6335   Value *Ptr = getLoadStorePointerOperand(I);
6336   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6337   // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost`
6338   //       that it is being called from this specific place.
6339 
6340   // Figure out whether the access is strided and get the stride value
6341   // if it's known in compile time
6342   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6343 
6344   // Get the cost of the scalar memory instruction and address computation.
6345   InstructionCost Cost =
6346       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6347 
6348   // Don't pass *I here, since it is scalar but will actually be part of a
6349   // vectorized loop where the user of it is a vectorized instruction.
6350   const Align Alignment = getLoadStoreAlignment(I);
6351   Cost += VF.getKnownMinValue() *
6352           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6353                               AS, TTI::TCK_RecipThroughput);
6354 
6355   // Get the overhead of the extractelement and insertelement instructions
6356   // we might create due to scalarization.
6357   Cost += getScalarizationOverhead(I, VF);
6358 
6359   // If we have a predicated load/store, it will need extra i1 extracts and
6360   // conditional branches, but may not be executed for each vector lane. Scale
6361   // the cost by the probability of executing the predicated block.
6362   if (isPredicatedInst(I, VF)) {
6363     Cost /= getReciprocalPredBlockProb();
6364 
6365     // Add the cost of an i1 extract and a branch
6366     auto *Vec_i1Ty =
6367         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
6368     Cost += TTI.getScalarizationOverhead(
6369         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
6370         /*Insert=*/false, /*Extract=*/true);
6371     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
6372 
6373     if (useEmulatedMaskMemRefHack(I, VF))
6374       // Artificially setting to a high enough value to practically disable
6375       // vectorization with such operations.
6376       Cost = 3000000;
6377   }
6378 
6379   return Cost;
6380 }
6381 
6382 InstructionCost
6383 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6384                                                     ElementCount VF) {
6385   Type *ValTy = getLoadStoreType(I);
6386   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6387   Value *Ptr = getLoadStorePointerOperand(I);
6388   unsigned AS = getLoadStoreAddressSpace(I);
6389   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
6390   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6391 
6392   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6393          "Stride should be 1 or -1 for consecutive memory access");
6394   const Align Alignment = getLoadStoreAlignment(I);
6395   InstructionCost Cost = 0;
6396   if (Legal->isMaskRequired(I))
6397     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6398                                       CostKind);
6399   else
6400     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
6401                                 CostKind, I);
6402 
6403   bool Reverse = ConsecutiveStride < 0;
6404   if (Reverse)
6405     Cost +=
6406         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6407   return Cost;
6408 }
6409 
6410 InstructionCost
6411 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6412                                                 ElementCount VF) {
6413   assert(Legal->isUniformMemOp(*I));
6414 
6415   Type *ValTy = getLoadStoreType(I);
6416   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6417   const Align Alignment = getLoadStoreAlignment(I);
6418   unsigned AS = getLoadStoreAddressSpace(I);
6419   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6420   if (isa<LoadInst>(I)) {
6421     return TTI.getAddressComputationCost(ValTy) +
6422            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
6423                                CostKind) +
6424            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6425   }
6426   StoreInst *SI = cast<StoreInst>(I);
6427 
6428   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
6429   return TTI.getAddressComputationCost(ValTy) +
6430          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
6431                              CostKind) +
6432          (isLoopInvariantStoreValue
6433               ? 0
6434               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
6435                                        VF.getKnownMinValue() - 1));
6436 }
6437 
6438 InstructionCost
6439 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6440                                                  ElementCount VF) {
6441   Type *ValTy = getLoadStoreType(I);
6442   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6443   const Align Alignment = getLoadStoreAlignment(I);
6444   const Value *Ptr = getLoadStorePointerOperand(I);
6445 
6446   return TTI.getAddressComputationCost(VectorTy) +
6447          TTI.getGatherScatterOpCost(
6448              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
6449              TargetTransformInfo::TCK_RecipThroughput, I);
6450 }
6451 
6452 InstructionCost
6453 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6454                                                    ElementCount VF) {
6455   // TODO: Once we have support for interleaving with scalable vectors
6456   // we can calculate the cost properly here.
6457   if (VF.isScalable())
6458     return InstructionCost::getInvalid();
6459 
6460   Type *ValTy = getLoadStoreType(I);
6461   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
6462   unsigned AS = getLoadStoreAddressSpace(I);
6463 
6464   auto Group = getInterleavedAccessGroup(I);
6465   assert(Group && "Fail to get an interleaved access group.");
6466 
6467   unsigned InterleaveFactor = Group->getFactor();
6468   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6469 
6470   // Holds the indices of existing members in the interleaved group.
6471   SmallVector<unsigned, 4> Indices;
6472   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
6473     if (Group->getMember(IF))
6474       Indices.push_back(IF);
6475 
6476   // Calculate the cost of the whole interleaved group.
6477   bool UseMaskForGaps =
6478       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
6479       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
6480   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
6481       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
6482       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
6483 
6484   if (Group->isReverse()) {
6485     // TODO: Add support for reversed masked interleaved access.
6486     assert(!Legal->isMaskRequired(I) &&
6487            "Reverse masked interleaved access not supported.");
6488     Cost +=
6489         Group->getNumMembers() *
6490         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
6491   }
6492   return Cost;
6493 }
6494 
6495 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
6496     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
6497   using namespace llvm::PatternMatch;
6498   // Early exit for no inloop reductions
6499   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
6500     return None;
6501   auto *VectorTy = cast<VectorType>(Ty);
6502 
6503   // We are looking for a pattern of, and finding the minimal acceptable cost:
6504   //  reduce(mul(ext(A), ext(B))) or
6505   //  reduce(mul(A, B)) or
6506   //  reduce(ext(A)) or
6507   //  reduce(A).
6508   // The basic idea is that we walk down the tree to do that, finding the root
6509   // reduction instruction in InLoopReductionImmediateChains. From there we find
6510   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
6511   // of the components. If the reduction cost is lower then we return it for the
6512   // reduction instruction and 0 for the other instructions in the pattern. If
6513   // it is not we return an invalid cost specifying the orignal cost method
6514   // should be used.
6515   Instruction *RetI = I;
6516   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
6517     if (!RetI->hasOneUser())
6518       return None;
6519     RetI = RetI->user_back();
6520   }
6521   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
6522       RetI->user_back()->getOpcode() == Instruction::Add) {
6523     if (!RetI->hasOneUser())
6524       return None;
6525     RetI = RetI->user_back();
6526   }
6527 
6528   // Test if the found instruction is a reduction, and if not return an invalid
6529   // cost specifying the parent to use the original cost modelling.
6530   if (!InLoopReductionImmediateChains.count(RetI))
6531     return None;
6532 
6533   // Find the reduction this chain is a part of and calculate the basic cost of
6534   // the reduction on its own.
6535   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
6536   Instruction *ReductionPhi = LastChain;
6537   while (!isa<PHINode>(ReductionPhi))
6538     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
6539 
6540   const RecurrenceDescriptor &RdxDesc =
6541       Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second;
6542 
6543   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
6544       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
6545 
6546   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
6547   // normal fmul instruction to the cost of the fadd reduction.
6548   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
6549     BaseCost +=
6550         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
6551 
6552   // If we're using ordered reductions then we can just return the base cost
6553   // here, since getArithmeticReductionCost calculates the full ordered
6554   // reduction cost when FP reassociation is not allowed.
6555   if (useOrderedReductions(RdxDesc))
6556     return BaseCost;
6557 
6558   // Get the operand that was not the reduction chain and match it to one of the
6559   // patterns, returning the better cost if it is found.
6560   Instruction *RedOp = RetI->getOperand(1) == LastChain
6561                            ? dyn_cast<Instruction>(RetI->getOperand(0))
6562                            : dyn_cast<Instruction>(RetI->getOperand(1));
6563 
6564   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
6565 
6566   Instruction *Op0, *Op1;
6567   if (RedOp &&
6568       match(RedOp,
6569             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
6570       match(Op0, m_ZExtOrSExt(m_Value())) &&
6571       Op0->getOpcode() == Op1->getOpcode() &&
6572       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
6573       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
6574       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
6575 
6576     // Matched reduce(ext(mul(ext(A), ext(B)))
6577     // Note that the extend opcodes need to all match, or if A==B they will have
6578     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
6579     // which is equally fine.
6580     bool IsUnsigned = isa<ZExtInst>(Op0);
6581     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
6582     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
6583 
6584     InstructionCost ExtCost =
6585         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
6586                              TTI::CastContextHint::None, CostKind, Op0);
6587     InstructionCost MulCost =
6588         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
6589     InstructionCost Ext2Cost =
6590         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
6591                              TTI::CastContextHint::None, CostKind, RedOp);
6592 
6593     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6594         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6595         CostKind);
6596 
6597     if (RedCost.isValid() &&
6598         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
6599       return I == RetI ? RedCost : 0;
6600   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
6601              !TheLoop->isLoopInvariant(RedOp)) {
6602     // Matched reduce(ext(A))
6603     bool IsUnsigned = isa<ZExtInst>(RedOp);
6604     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
6605     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6606         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6607         CostKind);
6608 
6609     InstructionCost ExtCost =
6610         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
6611                              TTI::CastContextHint::None, CostKind, RedOp);
6612     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
6613       return I == RetI ? RedCost : 0;
6614   } else if (RedOp &&
6615              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
6616     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
6617         Op0->getOpcode() == Op1->getOpcode() &&
6618         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
6619       bool IsUnsigned = isa<ZExtInst>(Op0);
6620       Type *Op0Ty = Op0->getOperand(0)->getType();
6621       Type *Op1Ty = Op1->getOperand(0)->getType();
6622       Type *LargestOpTy =
6623           Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty
6624                                                                     : Op0Ty;
6625       auto *ExtType = VectorType::get(LargestOpTy, VectorTy);
6626 
6627       // Matched reduce(mul(ext(A), ext(B))), where the two ext may be of
6628       // different sizes. We take the largest type as the ext to reduce, and add
6629       // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))).
6630       InstructionCost ExtCost0 = TTI.getCastInstrCost(
6631           Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy),
6632           TTI::CastContextHint::None, CostKind, Op0);
6633       InstructionCost ExtCost1 = TTI.getCastInstrCost(
6634           Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy),
6635           TTI::CastContextHint::None, CostKind, Op1);
6636       InstructionCost MulCost =
6637           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6638 
6639       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6640           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
6641           CostKind);
6642       InstructionCost ExtraExtCost = 0;
6643       if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) {
6644         Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1;
6645         ExtraExtCost = TTI.getCastInstrCost(
6646             ExtraExtOp->getOpcode(), ExtType,
6647             VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy),
6648             TTI::CastContextHint::None, CostKind, ExtraExtOp);
6649       }
6650 
6651       if (RedCost.isValid() &&
6652           (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost))
6653         return I == RetI ? RedCost : 0;
6654     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
6655       // Matched reduce(mul())
6656       InstructionCost MulCost =
6657           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
6658 
6659       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
6660           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
6661           CostKind);
6662 
6663       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
6664         return I == RetI ? RedCost : 0;
6665     }
6666   }
6667 
6668   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
6669 }
6670 
6671 InstructionCost
6672 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6673                                                      ElementCount VF) {
6674   // Calculate scalar cost only. Vectorization cost should be ready at this
6675   // moment.
6676   if (VF.isScalar()) {
6677     Type *ValTy = getLoadStoreType(I);
6678     const Align Alignment = getLoadStoreAlignment(I);
6679     unsigned AS = getLoadStoreAddressSpace(I);
6680 
6681     return TTI.getAddressComputationCost(ValTy) +
6682            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
6683                                TTI::TCK_RecipThroughput, I);
6684   }
6685   return getWideningCost(I, VF);
6686 }
6687 
6688 LoopVectorizationCostModel::VectorizationCostTy
6689 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
6690                                                ElementCount VF) {
6691   // If we know that this instruction will remain uniform, check the cost of
6692   // the scalar version.
6693   if (isUniformAfterVectorization(I, VF))
6694     VF = ElementCount::getFixed(1);
6695 
6696   if (VF.isVector() && isProfitableToScalarize(I, VF))
6697     return VectorizationCostTy(InstsToScalarize[VF][I], false);
6698 
6699   // Forced scalars do not have any scalarization overhead.
6700   auto ForcedScalar = ForcedScalars.find(VF);
6701   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
6702     auto InstSet = ForcedScalar->second;
6703     if (InstSet.count(I))
6704       return VectorizationCostTy(
6705           (getInstructionCost(I, ElementCount::getFixed(1)).first *
6706            VF.getKnownMinValue()),
6707           false);
6708   }
6709 
6710   Type *VectorTy;
6711   InstructionCost C = getInstructionCost(I, VF, VectorTy);
6712 
6713   bool TypeNotScalarized = false;
6714   if (VF.isVector() && VectorTy->isVectorTy()) {
6715     if (unsigned NumParts = TTI.getNumberOfParts(VectorTy)) {
6716       if (VF.isScalable())
6717         // <vscale x 1 x iN> is assumed to be profitable over iN because
6718         // scalable registers are a distinct register class from scalar ones.
6719         // If we ever find a target which wants to lower scalable vectors
6720         // back to scalars, we'll need to update this code to explicitly
6721         // ask TTI about the register class uses for each part.
6722         TypeNotScalarized = NumParts <= VF.getKnownMinValue();
6723       else
6724         TypeNotScalarized = NumParts < VF.getKnownMinValue();
6725     } else
6726       C = InstructionCost::getInvalid();
6727   }
6728   return VectorizationCostTy(C, TypeNotScalarized);
6729 }
6730 
6731 InstructionCost
6732 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
6733                                                      ElementCount VF) const {
6734 
6735   // There is no mechanism yet to create a scalable scalarization loop,
6736   // so this is currently Invalid.
6737   if (VF.isScalable())
6738     return InstructionCost::getInvalid();
6739 
6740   if (VF.isScalar())
6741     return 0;
6742 
6743   InstructionCost Cost = 0;
6744   Type *RetTy = ToVectorTy(I->getType(), VF);
6745   if (!RetTy->isVoidTy() &&
6746       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
6747     Cost += TTI.getScalarizationOverhead(
6748         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
6749         false);
6750 
6751   // Some targets keep addresses scalar.
6752   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
6753     return Cost;
6754 
6755   // Some targets support efficient element stores.
6756   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
6757     return Cost;
6758 
6759   // Collect operands to consider.
6760   CallInst *CI = dyn_cast<CallInst>(I);
6761   Instruction::op_range Ops = CI ? CI->args() : I->operands();
6762 
6763   // Skip operands that do not require extraction/scalarization and do not incur
6764   // any overhead.
6765   SmallVector<Type *> Tys;
6766   for (auto *V : filterExtractingOperands(Ops, VF))
6767     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
6768   return Cost + TTI.getOperandsScalarizationOverhead(
6769                     filterExtractingOperands(Ops, VF), Tys);
6770 }
6771 
6772 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
6773   if (VF.isScalar())
6774     return;
6775   NumPredStores = 0;
6776   for (BasicBlock *BB : TheLoop->blocks()) {
6777     // For each instruction in the old loop.
6778     for (Instruction &I : *BB) {
6779       Value *Ptr =  getLoadStorePointerOperand(&I);
6780       if (!Ptr)
6781         continue;
6782 
6783       // TODO: We should generate better code and update the cost model for
6784       // predicated uniform stores. Today they are treated as any other
6785       // predicated store (see added test cases in
6786       // invariant-store-vectorization.ll).
6787       if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF))
6788         NumPredStores++;
6789 
6790       if (Legal->isUniformMemOp(I)) {
6791         // TODO: Avoid replicating loads and stores instead of
6792         // relying on instcombine to remove them.
6793         // Load: Scalar load + broadcast
6794         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
6795         InstructionCost Cost;
6796         if (isa<StoreInst>(&I) && VF.isScalable() &&
6797             isLegalGatherOrScatter(&I, VF)) {
6798           Cost = getGatherScatterCost(&I, VF);
6799           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
6800         } else {
6801           Cost = getUniformMemOpCost(&I, VF);
6802           setWideningDecision(&I, VF, CM_Scalarize, Cost);
6803         }
6804         continue;
6805       }
6806 
6807       // We assume that widening is the best solution when possible.
6808       if (memoryInstructionCanBeWidened(&I, VF)) {
6809         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
6810         int ConsecutiveStride = Legal->isConsecutivePtr(
6811             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
6812         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
6813                "Expected consecutive stride.");
6814         InstWidening Decision =
6815             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6816         setWideningDecision(&I, VF, Decision, Cost);
6817         continue;
6818       }
6819 
6820       // Choose between Interleaving, Gather/Scatter or Scalarization.
6821       InstructionCost InterleaveCost = InstructionCost::getInvalid();
6822       unsigned NumAccesses = 1;
6823       if (isAccessInterleaved(&I)) {
6824         auto Group = getInterleavedAccessGroup(&I);
6825         assert(Group && "Fail to get an interleaved access group.");
6826 
6827         // Make one decision for the whole group.
6828         if (getWideningDecision(&I, VF) != CM_Unknown)
6829           continue;
6830 
6831         NumAccesses = Group->getNumMembers();
6832         if (interleavedAccessCanBeWidened(&I, VF))
6833           InterleaveCost = getInterleaveGroupCost(&I, VF);
6834       }
6835 
6836       InstructionCost GatherScatterCost =
6837           isLegalGatherOrScatter(&I, VF)
6838               ? getGatherScatterCost(&I, VF) * NumAccesses
6839               : InstructionCost::getInvalid();
6840 
6841       InstructionCost ScalarizationCost =
6842           getMemInstScalarizationCost(&I, VF) * NumAccesses;
6843 
6844       // Choose better solution for the current VF,
6845       // write down this decision and use it during vectorization.
6846       InstructionCost Cost;
6847       InstWidening Decision;
6848       if (InterleaveCost <= GatherScatterCost &&
6849           InterleaveCost < ScalarizationCost) {
6850         Decision = CM_Interleave;
6851         Cost = InterleaveCost;
6852       } else if (GatherScatterCost < ScalarizationCost) {
6853         Decision = CM_GatherScatter;
6854         Cost = GatherScatterCost;
6855       } else {
6856         Decision = CM_Scalarize;
6857         Cost = ScalarizationCost;
6858       }
6859       // If the instructions belongs to an interleave group, the whole group
6860       // receives the same decision. The whole group receives the cost, but
6861       // the cost will actually be assigned to one instruction.
6862       if (auto Group = getInterleavedAccessGroup(&I))
6863         setWideningDecision(Group, VF, Decision, Cost);
6864       else
6865         setWideningDecision(&I, VF, Decision, Cost);
6866     }
6867   }
6868 
6869   // Make sure that any load of address and any other address computation
6870   // remains scalar unless there is gather/scatter support. This avoids
6871   // inevitable extracts into address registers, and also has the benefit of
6872   // activating LSR more, since that pass can't optimize vectorized
6873   // addresses.
6874   if (TTI.prefersVectorizedAddressing())
6875     return;
6876 
6877   // Start with all scalar pointer uses.
6878   SmallPtrSet<Instruction *, 8> AddrDefs;
6879   for (BasicBlock *BB : TheLoop->blocks())
6880     for (Instruction &I : *BB) {
6881       Instruction *PtrDef =
6882         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
6883       if (PtrDef && TheLoop->contains(PtrDef) &&
6884           getWideningDecision(&I, VF) != CM_GatherScatter)
6885         AddrDefs.insert(PtrDef);
6886     }
6887 
6888   // Add all instructions used to generate the addresses.
6889   SmallVector<Instruction *, 4> Worklist;
6890   append_range(Worklist, AddrDefs);
6891   while (!Worklist.empty()) {
6892     Instruction *I = Worklist.pop_back_val();
6893     for (auto &Op : I->operands())
6894       if (auto *InstOp = dyn_cast<Instruction>(Op))
6895         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
6896             AddrDefs.insert(InstOp).second)
6897           Worklist.push_back(InstOp);
6898   }
6899 
6900   for (auto *I : AddrDefs) {
6901     if (isa<LoadInst>(I)) {
6902       // Setting the desired widening decision should ideally be handled in
6903       // by cost functions, but since this involves the task of finding out
6904       // if the loaded register is involved in an address computation, it is
6905       // instead changed here when we know this is the case.
6906       InstWidening Decision = getWideningDecision(I, VF);
6907       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
6908         // Scalarize a widened load of address.
6909         setWideningDecision(
6910             I, VF, CM_Scalarize,
6911             (VF.getKnownMinValue() *
6912              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
6913       else if (auto Group = getInterleavedAccessGroup(I)) {
6914         // Scalarize an interleave group of address loads.
6915         for (unsigned I = 0; I < Group->getFactor(); ++I) {
6916           if (Instruction *Member = Group->getMember(I))
6917             setWideningDecision(
6918                 Member, VF, CM_Scalarize,
6919                 (VF.getKnownMinValue() *
6920                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
6921         }
6922       }
6923     } else
6924       // Make sure I gets scalarized and a cost estimate without
6925       // scalarization overhead.
6926       ForcedScalars[VF].insert(I);
6927   }
6928 }
6929 
6930 InstructionCost
6931 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
6932                                                Type *&VectorTy) {
6933   Type *RetTy = I->getType();
6934   if (canTruncateToMinimalBitwidth(I, VF))
6935     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
6936   auto SE = PSE.getSE();
6937   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
6938 
6939   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
6940                                                 ElementCount VF) -> bool {
6941     if (VF.isScalar())
6942       return true;
6943 
6944     auto Scalarized = InstsToScalarize.find(VF);
6945     assert(Scalarized != InstsToScalarize.end() &&
6946            "VF not yet analyzed for scalarization profitability");
6947     return !Scalarized->second.count(I) &&
6948            llvm::all_of(I->users(), [&](User *U) {
6949              auto *UI = cast<Instruction>(U);
6950              return !Scalarized->second.count(UI);
6951            });
6952   };
6953   (void) hasSingleCopyAfterVectorization;
6954 
6955   if (isScalarAfterVectorization(I, VF)) {
6956     // With the exception of GEPs and PHIs, after scalarization there should
6957     // only be one copy of the instruction generated in the loop. This is
6958     // because the VF is either 1, or any instructions that need scalarizing
6959     // have already been dealt with by the the time we get here. As a result,
6960     // it means we don't have to multiply the instruction cost by VF.
6961     assert(I->getOpcode() == Instruction::GetElementPtr ||
6962            I->getOpcode() == Instruction::PHI ||
6963            (I->getOpcode() == Instruction::BitCast &&
6964             I->getType()->isPointerTy()) ||
6965            hasSingleCopyAfterVectorization(I, VF));
6966     VectorTy = RetTy;
6967   } else
6968     VectorTy = ToVectorTy(RetTy, VF);
6969 
6970   // TODO: We need to estimate the cost of intrinsic calls.
6971   switch (I->getOpcode()) {
6972   case Instruction::GetElementPtr:
6973     // We mark this instruction as zero-cost because the cost of GEPs in
6974     // vectorized code depends on whether the corresponding memory instruction
6975     // is scalarized or not. Therefore, we handle GEPs with the memory
6976     // instruction cost.
6977     return 0;
6978   case Instruction::Br: {
6979     // In cases of scalarized and predicated instructions, there will be VF
6980     // predicated blocks in the vectorized loop. Each branch around these
6981     // blocks requires also an extract of its vector compare i1 element.
6982     bool ScalarPredicatedBB = false;
6983     BranchInst *BI = cast<BranchInst>(I);
6984     if (VF.isVector() && BI->isConditional() &&
6985         (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) ||
6986          PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1))))
6987       ScalarPredicatedBB = true;
6988 
6989     if (ScalarPredicatedBB) {
6990       // Not possible to scalarize scalable vector with predicated instructions.
6991       if (VF.isScalable())
6992         return InstructionCost::getInvalid();
6993       // Return cost for branches around scalarized and predicated blocks.
6994       auto *Vec_i1Ty =
6995           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6996       return (
6997           TTI.getScalarizationOverhead(
6998               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
6999           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7000     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7001       // The back-edge branch will remain, as will all scalar branches.
7002       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7003     else
7004       // This branch will be eliminated by if-conversion.
7005       return 0;
7006     // Note: We currently assume zero cost for an unconditional branch inside
7007     // a predicated block since it will become a fall-through, although we
7008     // may decide in the future to call TTI for all branches.
7009   }
7010   case Instruction::PHI: {
7011     auto *Phi = cast<PHINode>(I);
7012 
7013     // First-order recurrences are replaced by vector shuffles inside the loop.
7014     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7015     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7016       return TTI.getShuffleCost(
7017           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7018           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7019 
7020     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7021     // converted into select instructions. We require N - 1 selects per phi
7022     // node, where N is the number of incoming values.
7023     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7024       return (Phi->getNumIncomingValues() - 1) *
7025              TTI.getCmpSelInstrCost(
7026                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7027                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7028                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7029 
7030     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7031   }
7032   case Instruction::UDiv:
7033   case Instruction::SDiv:
7034   case Instruction::URem:
7035   case Instruction::SRem:
7036     // If we have a predicated instruction, it may not be executed for each
7037     // vector lane. Get the scalarization cost and scale this amount by the
7038     // probability of executing the predicated block. If the instruction is not
7039     // predicated, we fall through to the next case.
7040     if (VF.isVector() && isScalarWithPredication(I, VF)) {
7041       InstructionCost Cost = 0;
7042 
7043       // These instructions have a non-void type, so account for the phi nodes
7044       // that we will create. This cost is likely to be zero. The phi node
7045       // cost, if any, should be scaled by the block probability because it
7046       // models a copy at the end of each predicated block.
7047       Cost += VF.getKnownMinValue() *
7048               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7049 
7050       // The cost of the non-predicated instruction.
7051       Cost += VF.getKnownMinValue() *
7052               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7053 
7054       // The cost of insertelement and extractelement instructions needed for
7055       // scalarization.
7056       Cost += getScalarizationOverhead(I, VF);
7057 
7058       // Scale the cost by the probability of executing the predicated blocks.
7059       // This assumes the predicated block for each vector lane is equally
7060       // likely.
7061       return Cost / getReciprocalPredBlockProb();
7062     }
7063     LLVM_FALLTHROUGH;
7064   case Instruction::Add:
7065   case Instruction::FAdd:
7066   case Instruction::Sub:
7067   case Instruction::FSub:
7068   case Instruction::Mul:
7069   case Instruction::FMul:
7070   case Instruction::FDiv:
7071   case Instruction::FRem:
7072   case Instruction::Shl:
7073   case Instruction::LShr:
7074   case Instruction::AShr:
7075   case Instruction::And:
7076   case Instruction::Or:
7077   case Instruction::Xor: {
7078     // Since we will replace the stride by 1 the multiplication should go away.
7079     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7080       return 0;
7081 
7082     // Detect reduction patterns
7083     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7084       return *RedCost;
7085 
7086     // Certain instructions can be cheaper to vectorize if they have a constant
7087     // second vector operand. One example of this are shifts on x86.
7088     Value *Op2 = I->getOperand(1);
7089     TargetTransformInfo::OperandValueProperties Op2VP;
7090     TargetTransformInfo::OperandValueKind Op2VK =
7091         TTI.getOperandInfo(Op2, Op2VP);
7092     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7093       Op2VK = TargetTransformInfo::OK_UniformValue;
7094 
7095     SmallVector<const Value *, 4> Operands(I->operand_values());
7096     return TTI.getArithmeticInstrCost(
7097         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7098         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7099   }
7100   case Instruction::FNeg: {
7101     return TTI.getArithmeticInstrCost(
7102         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7103         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7104         TargetTransformInfo::OP_None, I->getOperand(0), I);
7105   }
7106   case Instruction::Select: {
7107     SelectInst *SI = cast<SelectInst>(I);
7108     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7109     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7110 
7111     const Value *Op0, *Op1;
7112     using namespace llvm::PatternMatch;
7113     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7114                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7115       // select x, y, false --> x & y
7116       // select x, true, y --> x | y
7117       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7118       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7119       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7120       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7121       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7122               Op1->getType()->getScalarSizeInBits() == 1);
7123 
7124       SmallVector<const Value *, 2> Operands{Op0, Op1};
7125       return TTI.getArithmeticInstrCost(
7126           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7127           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7128     }
7129 
7130     Type *CondTy = SI->getCondition()->getType();
7131     if (!ScalarCond)
7132       CondTy = VectorType::get(CondTy, VF);
7133 
7134     CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
7135     if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition()))
7136       Pred = Cmp->getPredicate();
7137     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred,
7138                                   CostKind, I);
7139   }
7140   case Instruction::ICmp:
7141   case Instruction::FCmp: {
7142     Type *ValTy = I->getOperand(0)->getType();
7143     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7144     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7145       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7146     VectorTy = ToVectorTy(ValTy, VF);
7147     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7148                                   cast<CmpInst>(I)->getPredicate(), CostKind,
7149                                   I);
7150   }
7151   case Instruction::Store:
7152   case Instruction::Load: {
7153     ElementCount Width = VF;
7154     if (Width.isVector()) {
7155       InstWidening Decision = getWideningDecision(I, Width);
7156       assert(Decision != CM_Unknown &&
7157              "CM decision should be taken at this point");
7158       if (Decision == CM_Scalarize) {
7159         if (VF.isScalable() && isa<StoreInst>(I))
7160           // We can't scalarize a scalable vector store (even a uniform one
7161           // currently), return an invalid cost so as to prevent vectorization.
7162           return InstructionCost::getInvalid();
7163         Width = ElementCount::getFixed(1);
7164       }
7165     }
7166     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7167     return getMemoryInstructionCost(I, VF);
7168   }
7169   case Instruction::BitCast:
7170     if (I->getType()->isPointerTy())
7171       return 0;
7172     LLVM_FALLTHROUGH;
7173   case Instruction::ZExt:
7174   case Instruction::SExt:
7175   case Instruction::FPToUI:
7176   case Instruction::FPToSI:
7177   case Instruction::FPExt:
7178   case Instruction::PtrToInt:
7179   case Instruction::IntToPtr:
7180   case Instruction::SIToFP:
7181   case Instruction::UIToFP:
7182   case Instruction::Trunc:
7183   case Instruction::FPTrunc: {
7184     // Computes the CastContextHint from a Load/Store instruction.
7185     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7186       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7187              "Expected a load or a store!");
7188 
7189       if (VF.isScalar() || !TheLoop->contains(I))
7190         return TTI::CastContextHint::Normal;
7191 
7192       switch (getWideningDecision(I, VF)) {
7193       case LoopVectorizationCostModel::CM_GatherScatter:
7194         return TTI::CastContextHint::GatherScatter;
7195       case LoopVectorizationCostModel::CM_Interleave:
7196         return TTI::CastContextHint::Interleave;
7197       case LoopVectorizationCostModel::CM_Scalarize:
7198       case LoopVectorizationCostModel::CM_Widen:
7199         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7200                                         : TTI::CastContextHint::Normal;
7201       case LoopVectorizationCostModel::CM_Widen_Reverse:
7202         return TTI::CastContextHint::Reversed;
7203       case LoopVectorizationCostModel::CM_Unknown:
7204         llvm_unreachable("Instr did not go through cost modelling?");
7205       }
7206 
7207       llvm_unreachable("Unhandled case!");
7208     };
7209 
7210     unsigned Opcode = I->getOpcode();
7211     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7212     // For Trunc, the context is the only user, which must be a StoreInst.
7213     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7214       if (I->hasOneUse())
7215         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7216           CCH = ComputeCCH(Store);
7217     }
7218     // For Z/Sext, the context is the operand, which must be a LoadInst.
7219     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7220              Opcode == Instruction::FPExt) {
7221       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7222         CCH = ComputeCCH(Load);
7223     }
7224 
7225     // We optimize the truncation of induction variables having constant
7226     // integer steps. The cost of these truncations is the same as the scalar
7227     // operation.
7228     if (isOptimizableIVTruncate(I, VF)) {
7229       auto *Trunc = cast<TruncInst>(I);
7230       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7231                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7232     }
7233 
7234     // Detect reduction patterns
7235     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7236       return *RedCost;
7237 
7238     Type *SrcScalarTy = I->getOperand(0)->getType();
7239     Type *SrcVecTy =
7240         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7241     if (canTruncateToMinimalBitwidth(I, VF)) {
7242       // This cast is going to be shrunk. This may remove the cast or it might
7243       // turn it into slightly different cast. For example, if MinBW == 16,
7244       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7245       //
7246       // Calculate the modified src and dest types.
7247       Type *MinVecTy = VectorTy;
7248       if (Opcode == Instruction::Trunc) {
7249         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7250         VectorTy =
7251             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7252       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7253         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7254         VectorTy =
7255             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7256       }
7257     }
7258 
7259     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7260   }
7261   case Instruction::Call: {
7262     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
7263       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7264         return *RedCost;
7265     bool NeedToScalarize;
7266     CallInst *CI = cast<CallInst>(I);
7267     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7268     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7269       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7270       return std::min(CallCost, IntrinsicCost);
7271     }
7272     return CallCost;
7273   }
7274   case Instruction::ExtractValue:
7275     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7276   case Instruction::Alloca:
7277     // We cannot easily widen alloca to a scalable alloca, as
7278     // the result would need to be a vector of pointers.
7279     if (VF.isScalable())
7280       return InstructionCost::getInvalid();
7281     LLVM_FALLTHROUGH;
7282   default:
7283     // This opcode is unknown. Assume that it is the same as 'mul'.
7284     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7285   } // end of switch.
7286 }
7287 
7288 char LoopVectorize::ID = 0;
7289 
7290 static const char lv_name[] = "Loop Vectorization";
7291 
7292 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7293 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7294 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7295 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7296 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7297 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7298 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7299 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7300 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7301 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7302 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7303 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7304 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7305 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7306 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7307 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7308 
7309 namespace llvm {
7310 
7311 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7312 
7313 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7314                               bool VectorizeOnlyWhenForced) {
7315   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7316 }
7317 
7318 } // end namespace llvm
7319 
7320 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7321   // Check if the pointer operand of a load or store instruction is
7322   // consecutive.
7323   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7324     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
7325   return false;
7326 }
7327 
7328 void LoopVectorizationCostModel::collectValuesToIgnore() {
7329   // Ignore ephemeral values.
7330   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7331 
7332   // Find all stores to invariant variables. Since they are going to sink
7333   // outside the loop we do not need calculate cost for them.
7334   for (BasicBlock *BB : TheLoop->blocks())
7335     for (Instruction &I : *BB) {
7336       StoreInst *SI;
7337       if ((SI = dyn_cast<StoreInst>(&I)) &&
7338           Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
7339         ValuesToIgnore.insert(&I);
7340     }
7341 
7342   // Ignore type-promoting instructions we identified during reduction
7343   // detection.
7344   for (auto &Reduction : Legal->getReductionVars()) {
7345     const RecurrenceDescriptor &RedDes = Reduction.second;
7346     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7347     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7348   }
7349   // Ignore type-casting instructions we identified during induction
7350   // detection.
7351   for (auto &Induction : Legal->getInductionVars()) {
7352     const InductionDescriptor &IndDes = Induction.second;
7353     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7354     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7355   }
7356 }
7357 
7358 void LoopVectorizationCostModel::collectInLoopReductions() {
7359   for (auto &Reduction : Legal->getReductionVars()) {
7360     PHINode *Phi = Reduction.first;
7361     const RecurrenceDescriptor &RdxDesc = Reduction.second;
7362 
7363     // We don't collect reductions that are type promoted (yet).
7364     if (RdxDesc.getRecurrenceType() != Phi->getType())
7365       continue;
7366 
7367     // If the target would prefer this reduction to happen "in-loop", then we
7368     // want to record it as such.
7369     unsigned Opcode = RdxDesc.getOpcode();
7370     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
7371         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
7372                                    TargetTransformInfo::ReductionFlags()))
7373       continue;
7374 
7375     // Check that we can correctly put the reductions into the loop, by
7376     // finding the chain of operations that leads from the phi to the loop
7377     // exit value.
7378     SmallVector<Instruction *, 4> ReductionOperations =
7379         RdxDesc.getReductionOpChain(Phi, TheLoop);
7380     bool InLoop = !ReductionOperations.empty();
7381     if (InLoop) {
7382       InLoopReductionChains[Phi] = ReductionOperations;
7383       // Add the elements to InLoopReductionImmediateChains for cost modelling.
7384       Instruction *LastChain = Phi;
7385       for (auto *I : ReductionOperations) {
7386         InLoopReductionImmediateChains[I] = LastChain;
7387         LastChain = I;
7388       }
7389     }
7390     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
7391                       << " reduction for phi: " << *Phi << "\n");
7392   }
7393 }
7394 
7395 // TODO: we could return a pair of values that specify the max VF and
7396 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
7397 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
7398 // doesn't have a cost model that can choose which plan to execute if
7399 // more than one is generated.
7400 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
7401                                  LoopVectorizationCostModel &CM) {
7402   unsigned WidestType;
7403   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
7404   return WidestVectorRegBits / WidestType;
7405 }
7406 
7407 VectorizationFactor
7408 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
7409   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
7410   ElementCount VF = UserVF;
7411   // Outer loop handling: They may require CFG and instruction level
7412   // transformations before even evaluating whether vectorization is profitable.
7413   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7414   // the vectorization pipeline.
7415   if (!OrigLoop->isInnermost()) {
7416     // If the user doesn't provide a vectorization factor, determine a
7417     // reasonable one.
7418     if (UserVF.isZero()) {
7419       VF = ElementCount::getFixed(determineVPlanVF(
7420           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
7421               .getFixedSize(),
7422           CM));
7423       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
7424 
7425       // Make sure we have a VF > 1 for stress testing.
7426       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
7427         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
7428                           << "overriding computed VF.\n");
7429         VF = ElementCount::getFixed(4);
7430       }
7431     }
7432     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7433     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
7434            "VF needs to be a power of two");
7435     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
7436                       << "VF " << VF << " to build VPlans.\n");
7437     buildVPlans(VF, VF);
7438 
7439     // For VPlan build stress testing, we bail out after VPlan construction.
7440     if (VPlanBuildStressTest)
7441       return VectorizationFactor::Disabled();
7442 
7443     return {VF, 0 /*Cost*/, 0 /* ScalarCost */};
7444   }
7445 
7446   LLVM_DEBUG(
7447       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
7448                 "VPlan-native path.\n");
7449   return VectorizationFactor::Disabled();
7450 }
7451 
7452 Optional<VectorizationFactor>
7453 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
7454   assert(OrigLoop->isInnermost() && "Inner loop expected.");
7455   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
7456   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
7457     return None;
7458 
7459   // Invalidate interleave groups if all blocks of loop will be predicated.
7460   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
7461       !useMaskedInterleavedAccesses(*TTI)) {
7462     LLVM_DEBUG(
7463         dbgs()
7464         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
7465            "which requires masked-interleaved support.\n");
7466     if (CM.InterleaveInfo.invalidateGroups())
7467       // Invalidating interleave groups also requires invalidating all decisions
7468       // based on them, which includes widening decisions and uniform and scalar
7469       // values.
7470       CM.invalidateCostModelingDecisions();
7471   }
7472 
7473   ElementCount MaxUserVF =
7474       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
7475   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
7476   if (!UserVF.isZero() && UserVFIsLegal) {
7477     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
7478            "VF needs to be a power of two");
7479     // Collect the instructions (and their associated costs) that will be more
7480     // profitable to scalarize.
7481     if (CM.selectUserVectorizationFactor(UserVF)) {
7482       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
7483       CM.collectInLoopReductions();
7484       buildVPlansWithVPRecipes(UserVF, UserVF);
7485       LLVM_DEBUG(printPlans(dbgs()));
7486       return {{UserVF, 0, 0}};
7487     } else
7488       reportVectorizationInfo("UserVF ignored because of invalid costs.",
7489                               "InvalidCost", ORE, OrigLoop);
7490   }
7491 
7492   // Populate the set of Vectorization Factor Candidates.
7493   ElementCountSet VFCandidates;
7494   for (auto VF = ElementCount::getFixed(1);
7495        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
7496     VFCandidates.insert(VF);
7497   for (auto VF = ElementCount::getScalable(1);
7498        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
7499     VFCandidates.insert(VF);
7500 
7501   for (const auto &VF : VFCandidates) {
7502     // Collect Uniform and Scalar instructions after vectorization with VF.
7503     CM.collectUniformsAndScalars(VF);
7504 
7505     // Collect the instructions (and their associated costs) that will be more
7506     // profitable to scalarize.
7507     if (VF.isVector())
7508       CM.collectInstsToScalarize(VF);
7509   }
7510 
7511   CM.collectInLoopReductions();
7512   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
7513   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
7514 
7515   LLVM_DEBUG(printPlans(dbgs()));
7516   if (!MaxFactors.hasVector())
7517     return VectorizationFactor::Disabled();
7518 
7519   // Select the optimal vectorization factor.
7520   VectorizationFactor VF = CM.selectVectorizationFactor(VFCandidates);
7521   assert((VF.Width.isScalar() || VF.ScalarCost > 0) && "when vectorizing, the scalar cost must be non-zero.");
7522   return VF;
7523 }
7524 
7525 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
7526   assert(count_if(VPlans,
7527                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
7528              1 &&
7529          "Best VF has not a single VPlan.");
7530 
7531   for (const VPlanPtr &Plan : VPlans) {
7532     if (Plan->hasVF(VF))
7533       return *Plan.get();
7534   }
7535   llvm_unreachable("No plan found!");
7536 }
7537 
7538 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7539   SmallVector<Metadata *, 4> MDs;
7540   // Reserve first location for self reference to the LoopID metadata node.
7541   MDs.push_back(nullptr);
7542   bool IsUnrollMetadata = false;
7543   MDNode *LoopID = L->getLoopID();
7544   if (LoopID) {
7545     // First find existing loop unrolling disable metadata.
7546     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7547       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7548       if (MD) {
7549         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7550         IsUnrollMetadata =
7551             S && S->getString().startswith("llvm.loop.unroll.disable");
7552       }
7553       MDs.push_back(LoopID->getOperand(i));
7554     }
7555   }
7556 
7557   if (!IsUnrollMetadata) {
7558     // Add runtime unroll disable metadata.
7559     LLVMContext &Context = L->getHeader()->getContext();
7560     SmallVector<Metadata *, 1> DisableOperands;
7561     DisableOperands.push_back(
7562         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7563     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7564     MDs.push_back(DisableNode);
7565     MDNode *NewLoopID = MDNode::get(Context, MDs);
7566     // Set operand 0 to refer to the loop id itself.
7567     NewLoopID->replaceOperandWith(0, NewLoopID);
7568     L->setLoopID(NewLoopID);
7569   }
7570 }
7571 
7572 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
7573                                            VPlan &BestVPlan,
7574                                            InnerLoopVectorizer &ILV,
7575                                            DominatorTree *DT,
7576                                            bool IsEpilogueVectorization) {
7577   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
7578                     << '\n');
7579 
7580   // Perform the actual loop transformation.
7581 
7582   // 1. Set up the skeleton for vectorization, including vector pre-header and
7583   // middle block. The vector loop is created during VPlan execution.
7584   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
7585   Value *CanonicalIVStartValue;
7586   std::tie(State.CFG.PrevBB, CanonicalIVStartValue) =
7587       ILV.createVectorizedLoopSkeleton();
7588 
7589   // Only use noalias metadata when using memory checks guaranteeing no overlap
7590   // across all iterations.
7591   const LoopAccessInfo *LAI = ILV.Legal->getLAI();
7592   if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() &&
7593       !LAI->getRuntimePointerChecking()->getDiffChecks()) {
7594 
7595     //  We currently don't use LoopVersioning for the actual loop cloning but we
7596     //  still use it to add the noalias metadata.
7597     //  TODO: Find a better way to re-use LoopVersioning functionality to add
7598     //        metadata.
7599     State.LVer = std::make_unique<LoopVersioning>(
7600         *LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT,
7601         PSE.getSE());
7602     State.LVer->prepareNoAliasMetadata();
7603   }
7604 
7605   ILV.collectPoisonGeneratingRecipes(State);
7606 
7607   ILV.printDebugTracesAtStart();
7608 
7609   //===------------------------------------------------===//
7610   //
7611   // Notice: any optimization or new instruction that go
7612   // into the code below should also be implemented in
7613   // the cost-model.
7614   //
7615   //===------------------------------------------------===//
7616 
7617   // 2. Copy and widen instructions from the old loop into the new loop.
7618   BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr),
7619                              ILV.getOrCreateVectorTripCount(nullptr),
7620                              CanonicalIVStartValue, State,
7621                              IsEpilogueVectorization);
7622 
7623   BestVPlan.execute(&State);
7624 
7625   // Keep all loop hints from the original loop on the vector loop (we'll
7626   // replace the vectorizer-specific hints below).
7627   MDNode *OrigLoopID = OrigLoop->getLoopID();
7628 
7629   Optional<MDNode *> VectorizedLoopID =
7630       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
7631                                       LLVMLoopVectorizeFollowupVectorized});
7632 
7633   VPBasicBlock *HeaderVPBB =
7634       BestVPlan.getVectorLoopRegion()->getEntryBasicBlock();
7635   Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]);
7636   if (VectorizedLoopID)
7637     L->setLoopID(VectorizedLoopID.value());
7638   else {
7639     // Keep all loop hints from the original loop on the vector loop (we'll
7640     // replace the vectorizer-specific hints below).
7641     if (MDNode *LID = OrigLoop->getLoopID())
7642       L->setLoopID(LID);
7643 
7644     LoopVectorizeHints Hints(L, true, *ORE);
7645     Hints.setAlreadyVectorized();
7646   }
7647   // Disable runtime unrolling when vectorizing the epilogue loop.
7648   if (CanonicalIVStartValue)
7649     AddRuntimeUnrollDisableMetaData(L);
7650 
7651   // 3. Fix the vectorized code: take care of header phi's, live-outs,
7652   //    predication, updating analyses.
7653   ILV.fixVectorizedLoop(State, BestVPlan);
7654 
7655   ILV.printDebugTracesAtEnd();
7656 }
7657 
7658 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
7659 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
7660   for (const auto &Plan : VPlans)
7661     if (PrintVPlansInDotFormat)
7662       Plan->printDOT(O);
7663     else
7664       Plan->print(O);
7665 }
7666 #endif
7667 
7668 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7669 
7670 //===--------------------------------------------------------------------===//
7671 // EpilogueVectorizerMainLoop
7672 //===--------------------------------------------------------------------===//
7673 
7674 /// This function is partially responsible for generating the control flow
7675 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7676 std::pair<BasicBlock *, Value *>
7677 EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
7678   MDNode *OrigLoopID = OrigLoop->getLoopID();
7679 
7680   // Workaround!  Compute the trip count of the original loop and cache it
7681   // before we start modifying the CFG.  This code has a systemic problem
7682   // wherein it tries to run analysis over partially constructed IR; this is
7683   // wrong, and not simply for SCEV.  The trip count of the original loop
7684   // simply happens to be prone to hitting this in practice.  In theory, we
7685   // can hit the same issue for any SCEV, or ValueTracking query done during
7686   // mutation.  See PR49900.
7687   getOrCreateTripCount(OrigLoop->getLoopPreheader());
7688   createVectorLoopSkeleton("");
7689 
7690   // Generate the code to check the minimum iteration count of the vector
7691   // epilogue (see below).
7692   EPI.EpilogueIterationCountCheck =
7693       emitIterationCountCheck(LoopScalarPreHeader, true);
7694   EPI.EpilogueIterationCountCheck->setName("iter.check");
7695 
7696   // Generate the code to check any assumptions that we've made for SCEV
7697   // expressions.
7698   EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader);
7699 
7700   // Generate the code that checks at runtime if arrays overlap. We put the
7701   // checks into a separate block to make the more common case of few elements
7702   // faster.
7703   EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader);
7704 
7705   // Generate the iteration count check for the main loop, *after* the check
7706   // for the epilogue loop, so that the path-length is shorter for the case
7707   // that goes directly through the vector epilogue. The longer-path length for
7708   // the main loop is compensated for, by the gain from vectorizing the larger
7709   // trip count. Note: the branch will get updated later on when we vectorize
7710   // the epilogue.
7711   EPI.MainLoopIterationCountCheck =
7712       emitIterationCountCheck(LoopScalarPreHeader, false);
7713 
7714   // Generate the induction variable.
7715   EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader);
7716 
7717   // Skip induction resume value creation here because they will be created in
7718   // the second pass. If we created them here, they wouldn't be used anyway,
7719   // because the vplan in the second pass still contains the inductions from the
7720   // original loop.
7721 
7722   return {completeLoopSkeleton(OrigLoopID), nullptr};
7723 }
7724 
7725 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
7726   LLVM_DEBUG({
7727     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
7728            << "Main Loop VF:" << EPI.MainLoopVF
7729            << ", Main Loop UF:" << EPI.MainLoopUF
7730            << ", Epilogue Loop VF:" << EPI.EpilogueVF
7731            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7732   });
7733 }
7734 
7735 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
7736   DEBUG_WITH_TYPE(VerboseDebug, {
7737     dbgs() << "intermediate fn:\n"
7738            << *OrigLoop->getHeader()->getParent() << "\n";
7739   });
7740 }
7741 
7742 BasicBlock *
7743 EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass,
7744                                                     bool ForEpilogue) {
7745   assert(Bypass && "Expected valid bypass basic block.");
7746   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
7747   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
7748   Value *Count = getOrCreateTripCount(LoopVectorPreHeader);
7749   // Reuse existing vector loop preheader for TC checks.
7750   // Note that new preheader block is generated for vector loop.
7751   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
7752   IRBuilder<> Builder(TCCheckBlock->getTerminator());
7753 
7754   // Generate code to check if the loop's trip count is less than VF * UF of the
7755   // main vector loop.
7756   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
7757       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7758 
7759   Value *CheckMinIters = Builder.CreateICmp(
7760       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
7761       "min.iters.check");
7762 
7763   if (!ForEpilogue)
7764     TCCheckBlock->setName("vector.main.loop.iter.check");
7765 
7766   // Create new preheader for vector loop.
7767   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
7768                                    DT, LI, nullptr, "vector.ph");
7769 
7770   if (ForEpilogue) {
7771     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
7772                                  DT->getNode(Bypass)->getIDom()) &&
7773            "TC check is expected to dominate Bypass");
7774 
7775     // Update dominator for Bypass & LoopExit.
7776     DT->changeImmediateDominator(Bypass, TCCheckBlock);
7777     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7778       // For loops with multiple exits, there's no edge from the middle block
7779       // to exit blocks (as the epilogue must run) and thus no need to update
7780       // the immediate dominator of the exit blocks.
7781       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
7782 
7783     LoopBypassBlocks.push_back(TCCheckBlock);
7784 
7785     // Save the trip count so we don't have to regenerate it in the
7786     // vec.epilog.iter.check. This is safe to do because the trip count
7787     // generated here dominates the vector epilog iter check.
7788     EPI.TripCount = Count;
7789   }
7790 
7791   ReplaceInstWithInst(
7792       TCCheckBlock->getTerminator(),
7793       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7794 
7795   return TCCheckBlock;
7796 }
7797 
7798 //===--------------------------------------------------------------------===//
7799 // EpilogueVectorizerEpilogueLoop
7800 //===--------------------------------------------------------------------===//
7801 
7802 /// This function is partially responsible for generating the control flow
7803 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
7804 std::pair<BasicBlock *, Value *>
7805 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
7806   MDNode *OrigLoopID = OrigLoop->getLoopID();
7807   createVectorLoopSkeleton("vec.epilog.");
7808 
7809   // Now, compare the remaining count and if there aren't enough iterations to
7810   // execute the vectorized epilogue skip to the scalar part.
7811   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
7812   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
7813   LoopVectorPreHeader =
7814       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
7815                  LI, nullptr, "vec.epilog.ph");
7816   emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader,
7817                                           VecEpilogueIterationCountCheck);
7818 
7819   // Adjust the control flow taking the state info from the main loop
7820   // vectorization into account.
7821   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
7822          "expected this to be saved from the previous pass.");
7823   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
7824       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
7825 
7826   DT->changeImmediateDominator(LoopVectorPreHeader,
7827                                EPI.MainLoopIterationCountCheck);
7828 
7829   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
7830       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7831 
7832   if (EPI.SCEVSafetyCheck)
7833     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
7834         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7835   if (EPI.MemSafetyCheck)
7836     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
7837         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
7838 
7839   DT->changeImmediateDominator(
7840       VecEpilogueIterationCountCheck,
7841       VecEpilogueIterationCountCheck->getSinglePredecessor());
7842 
7843   DT->changeImmediateDominator(LoopScalarPreHeader,
7844                                EPI.EpilogueIterationCountCheck);
7845   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
7846     // If there is an epilogue which must run, there's no edge from the
7847     // middle block to exit blocks  and thus no need to update the immediate
7848     // dominator of the exit blocks.
7849     DT->changeImmediateDominator(LoopExitBlock,
7850                                  EPI.EpilogueIterationCountCheck);
7851 
7852   // Keep track of bypass blocks, as they feed start values to the induction
7853   // phis in the scalar loop preheader.
7854   if (EPI.SCEVSafetyCheck)
7855     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
7856   if (EPI.MemSafetyCheck)
7857     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
7858   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
7859 
7860   // The vec.epilog.iter.check block may contain Phi nodes from reductions which
7861   // merge control-flow from the latch block and the middle block. Update the
7862   // incoming values here and move the Phi into the preheader.
7863   SmallVector<PHINode *, 4> PhisInBlock;
7864   for (PHINode &Phi : VecEpilogueIterationCountCheck->phis())
7865     PhisInBlock.push_back(&Phi);
7866 
7867   for (PHINode *Phi : PhisInBlock) {
7868     Phi->replaceIncomingBlockWith(
7869         VecEpilogueIterationCountCheck->getSinglePredecessor(),
7870         VecEpilogueIterationCountCheck);
7871     Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck);
7872     if (EPI.SCEVSafetyCheck)
7873       Phi->removeIncomingValue(EPI.SCEVSafetyCheck);
7874     if (EPI.MemSafetyCheck)
7875       Phi->removeIncomingValue(EPI.MemSafetyCheck);
7876     Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI());
7877   }
7878 
7879   // Generate a resume induction for the vector epilogue and put it in the
7880   // vector epilogue preheader
7881   Type *IdxTy = Legal->getWidestInductionType();
7882   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
7883                                          LoopVectorPreHeader->getFirstNonPHI());
7884   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
7885   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
7886                            EPI.MainLoopIterationCountCheck);
7887 
7888   // Generate induction resume values. These variables save the new starting
7889   // indexes for the scalar loop. They are used to test if there are any tail
7890   // iterations left once the vector loop has completed.
7891   // Note that when the vectorized epilogue is skipped due to iteration count
7892   // check, then the resume value for the induction variable comes from
7893   // the trip count of the main vector loop, hence passing the AdditionalBypass
7894   // argument.
7895   createInductionResumeValues({VecEpilogueIterationCountCheck,
7896                                EPI.VectorTripCount} /* AdditionalBypass */);
7897 
7898   return {completeLoopSkeleton(OrigLoopID), EPResumeVal};
7899 }
7900 
7901 BasicBlock *
7902 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
7903     BasicBlock *Bypass, BasicBlock *Insert) {
7904 
7905   assert(EPI.TripCount &&
7906          "Expected trip count to have been safed in the first pass.");
7907   assert(
7908       (!isa<Instruction>(EPI.TripCount) ||
7909        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
7910       "saved trip count does not dominate insertion point.");
7911   Value *TC = EPI.TripCount;
7912   IRBuilder<> Builder(Insert->getTerminator());
7913   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
7914 
7915   // Generate code to check if the loop's trip count is less than VF * UF of the
7916   // vector epilogue loop.
7917   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
7918       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
7919 
7920   Value *CheckMinIters =
7921       Builder.CreateICmp(P, Count,
7922                          createStepForVF(Builder, Count->getType(),
7923                                          EPI.EpilogueVF, EPI.EpilogueUF),
7924                          "min.epilog.iters.check");
7925 
7926   ReplaceInstWithInst(
7927       Insert->getTerminator(),
7928       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
7929 
7930   LoopBypassBlocks.push_back(Insert);
7931   return Insert;
7932 }
7933 
7934 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
7935   LLVM_DEBUG({
7936     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
7937            << "Epilogue Loop VF:" << EPI.EpilogueVF
7938            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
7939   });
7940 }
7941 
7942 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
7943   DEBUG_WITH_TYPE(VerboseDebug, {
7944     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
7945   });
7946 }
7947 
7948 bool LoopVectorizationPlanner::getDecisionAndClampRange(
7949     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
7950   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
7951   bool PredicateAtRangeStart = Predicate(Range.Start);
7952 
7953   for (ElementCount TmpVF = Range.Start * 2;
7954        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
7955     if (Predicate(TmpVF) != PredicateAtRangeStart) {
7956       Range.End = TmpVF;
7957       break;
7958     }
7959 
7960   return PredicateAtRangeStart;
7961 }
7962 
7963 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
7964 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
7965 /// of VF's starting at a given VF and extending it as much as possible. Each
7966 /// vectorization decision can potentially shorten this sub-range during
7967 /// buildVPlan().
7968 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
7969                                            ElementCount MaxVF) {
7970   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
7971   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
7972     VFRange SubRange = {VF, MaxVFPlusOne};
7973     VPlans.push_back(buildVPlan(SubRange));
7974     VF = SubRange.End;
7975   }
7976 }
7977 
7978 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
7979                                          VPlanPtr &Plan) {
7980   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
7981 
7982   // Look for cached value.
7983   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
7984   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
7985   if (ECEntryIt != EdgeMaskCache.end())
7986     return ECEntryIt->second;
7987 
7988   VPValue *SrcMask = createBlockInMask(Src, Plan);
7989 
7990   // The terminator has to be a branch inst!
7991   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
7992   assert(BI && "Unexpected terminator found");
7993 
7994   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
7995     return EdgeMaskCache[Edge] = SrcMask;
7996 
7997   // If source is an exiting block, we know the exit edge is dynamically dead
7998   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
7999   // adding uses of an otherwise potentially dead instruction.
8000   if (OrigLoop->isLoopExiting(Src))
8001     return EdgeMaskCache[Edge] = SrcMask;
8002 
8003   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8004   assert(EdgeMask && "No Edge Mask found for condition");
8005 
8006   if (BI->getSuccessor(0) != Dst)
8007     EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc());
8008 
8009   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8010     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8011     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8012     // The select version does not introduce new UB if SrcMask is false and
8013     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8014     VPValue *False = Plan->getOrAddVPValue(
8015         ConstantInt::getFalse(BI->getCondition()->getType()));
8016     EdgeMask =
8017         Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc());
8018   }
8019 
8020   return EdgeMaskCache[Edge] = EdgeMask;
8021 }
8022 
8023 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8024   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8025 
8026   // Look for cached value.
8027   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8028   if (BCEntryIt != BlockMaskCache.end())
8029     return BCEntryIt->second;
8030 
8031   // All-one mask is modelled as no-mask following the convention for masked
8032   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8033   VPValue *BlockMask = nullptr;
8034 
8035   if (OrigLoop->getHeader() == BB) {
8036     if (!CM.blockNeedsPredicationForAnyReason(BB))
8037       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8038 
8039     assert(CM.foldTailByMasking() && "must fold the tail");
8040 
8041     // If we're using the active lane mask for control flow, then we get the
8042     // mask from the active lane mask PHI that is cached in the VPlan.
8043     PredicationStyle EmitGetActiveLaneMask = CM.TTI.emitGetActiveLaneMask();
8044     if (EmitGetActiveLaneMask == PredicationStyle::DataAndControlFlow)
8045       return BlockMaskCache[BB] = Plan->getActiveLaneMaskPhi();
8046 
8047     // Introduce the early-exit compare IV <= BTC to form header block mask.
8048     // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by
8049     // constructing the desired canonical IV in the header block as its first
8050     // non-phi instructions.
8051 
8052     VPBasicBlock *HeaderVPBB =
8053         Plan->getVectorLoopRegion()->getEntryBasicBlock();
8054     auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi();
8055     auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV());
8056     HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi());
8057 
8058     VPBuilder::InsertPointGuard Guard(Builder);
8059     Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint);
8060     if (EmitGetActiveLaneMask != PredicationStyle::None) {
8061       VPValue *TC = Plan->getOrCreateTripCount();
8062       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC},
8063                                        nullptr, "active.lane.mask");
8064     } else {
8065       VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8066       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8067     }
8068     return BlockMaskCache[BB] = BlockMask;
8069   }
8070 
8071   // This is the block mask. We OR all incoming edges.
8072   for (auto *Predecessor : predecessors(BB)) {
8073     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8074     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8075       return BlockMaskCache[BB] = EdgeMask;
8076 
8077     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8078       BlockMask = EdgeMask;
8079       continue;
8080     }
8081 
8082     BlockMask = Builder.createOr(BlockMask, EdgeMask, {});
8083   }
8084 
8085   return BlockMaskCache[BB] = BlockMask;
8086 }
8087 
8088 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8089                                                 ArrayRef<VPValue *> Operands,
8090                                                 VFRange &Range,
8091                                                 VPlanPtr &Plan) {
8092   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8093          "Must be called with either a load or store");
8094 
8095   auto willWiden = [&](ElementCount VF) -> bool {
8096     LoopVectorizationCostModel::InstWidening Decision =
8097         CM.getWideningDecision(I, VF);
8098     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8099            "CM decision should be taken at this point.");
8100     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8101       return true;
8102     if (CM.isScalarAfterVectorization(I, VF) ||
8103         CM.isProfitableToScalarize(I, VF))
8104       return false;
8105     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8106   };
8107 
8108   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8109     return nullptr;
8110 
8111   VPValue *Mask = nullptr;
8112   if (Legal->isMaskRequired(I))
8113     Mask = createBlockInMask(I->getParent(), Plan);
8114 
8115   // Determine if the pointer operand of the access is either consecutive or
8116   // reverse consecutive.
8117   LoopVectorizationCostModel::InstWidening Decision =
8118       CM.getWideningDecision(I, Range.Start);
8119   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8120   bool Consecutive =
8121       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8122 
8123   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8124     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8125                                               Consecutive, Reverse);
8126 
8127   StoreInst *Store = cast<StoreInst>(I);
8128   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8129                                             Mask, Consecutive, Reverse);
8130 }
8131 
8132 /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also
8133 /// insert a recipe to expand the step for the induction recipe.
8134 static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes(
8135     PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start,
8136     const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM,
8137     VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) {
8138   // Returns true if an instruction \p I should be scalarized instead of
8139   // vectorized for the chosen vectorization factor.
8140   auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) {
8141     return CM.isScalarAfterVectorization(I, VF) ||
8142            CM.isProfitableToScalarize(I, VF);
8143   };
8144 
8145   bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange(
8146       [&](ElementCount VF) {
8147         return ShouldScalarizeInstruction(PhiOrTrunc, VF);
8148       },
8149       Range);
8150   assert(IndDesc.getStartValue() ==
8151          Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()));
8152   assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&
8153          "step must be loop invariant");
8154 
8155   VPValue *Step =
8156       vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE);
8157   if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) {
8158     return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI,
8159                                              !NeedsScalarIVOnly);
8160   }
8161   assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here");
8162   return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc,
8163                                            !NeedsScalarIVOnly);
8164 }
8165 
8166 VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI(
8167     PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) {
8168 
8169   // Check if this is an integer or fp induction. If so, build the recipe that
8170   // produces its scalar and vector values.
8171   if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi))
8172     return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan,
8173                                        *PSE.getSE(), *OrigLoop, Range);
8174 
8175   // Check if this is pointer induction. If so, build the recipe for it.
8176   if (auto *II = Legal->getPointerInductionDescriptor(Phi))
8177     return new VPWidenPointerInductionRecipe(Phi, Operands[0], *II,
8178                                              *PSE.getSE());
8179   return nullptr;
8180 }
8181 
8182 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8183     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) {
8184   // Optimize the special case where the source is a constant integer
8185   // induction variable. Notice that we can only optimize the 'trunc' case
8186   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8187   // (c) other casts depend on pointer size.
8188 
8189   // Determine whether \p K is a truncation based on an induction variable that
8190   // can be optimized.
8191   auto isOptimizableIVTruncate =
8192       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8193     return [=](ElementCount VF) -> bool {
8194       return CM.isOptimizableIVTruncate(K, VF);
8195     };
8196   };
8197 
8198   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8199           isOptimizableIVTruncate(I), Range)) {
8200 
8201     auto *Phi = cast<PHINode>(I->getOperand(0));
8202     const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi);
8203     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8204     return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan,
8205                                        *PSE.getSE(), *OrigLoop, Range);
8206   }
8207   return nullptr;
8208 }
8209 
8210 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8211                                                 ArrayRef<VPValue *> Operands,
8212                                                 VPlanPtr &Plan) {
8213   // If all incoming values are equal, the incoming VPValue can be used directly
8214   // instead of creating a new VPBlendRecipe.
8215   VPValue *FirstIncoming = Operands[0];
8216   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8217         return FirstIncoming == Inc;
8218       })) {
8219     return Operands[0];
8220   }
8221 
8222   unsigned NumIncoming = Phi->getNumIncomingValues();
8223   // For in-loop reductions, we do not need to create an additional select.
8224   VPValue *InLoopVal = nullptr;
8225   for (unsigned In = 0; In < NumIncoming; In++) {
8226     PHINode *PhiOp =
8227         dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue());
8228     if (PhiOp && CM.isInLoopReduction(PhiOp)) {
8229       assert(!InLoopVal && "Found more than one in-loop reduction!");
8230       InLoopVal = Operands[In];
8231     }
8232   }
8233 
8234   assert((!InLoopVal || NumIncoming == 2) &&
8235          "Found an in-loop reduction for PHI with unexpected number of "
8236          "incoming values");
8237   if (InLoopVal)
8238     return Operands[Operands[0] == InLoopVal ? 1 : 0];
8239 
8240   // We know that all PHIs in non-header blocks are converted into selects, so
8241   // we don't have to worry about the insertion order and we can just use the
8242   // builder. At this point we generate the predication tree. There may be
8243   // duplications since this is a simple recursive scan, but future
8244   // optimizations will clean it up.
8245   SmallVector<VPValue *, 2> OperandsWithMask;
8246 
8247   for (unsigned In = 0; In < NumIncoming; In++) {
8248     VPValue *EdgeMask =
8249       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8250     assert((EdgeMask || NumIncoming == 1) &&
8251            "Multiple predecessors with one having a full mask");
8252     OperandsWithMask.push_back(Operands[In]);
8253     if (EdgeMask)
8254       OperandsWithMask.push_back(EdgeMask);
8255   }
8256   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8257 }
8258 
8259 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8260                                                    ArrayRef<VPValue *> Operands,
8261                                                    VFRange &Range) const {
8262 
8263   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8264       [this, CI](ElementCount VF) {
8265         return CM.isScalarWithPredication(CI, VF);
8266       },
8267       Range);
8268 
8269   if (IsPredicated)
8270     return nullptr;
8271 
8272   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8273   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8274              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8275              ID == Intrinsic::pseudoprobe ||
8276              ID == Intrinsic::experimental_noalias_scope_decl))
8277     return nullptr;
8278 
8279   auto willWiden = [&](ElementCount VF) -> bool {
8280     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8281     // The following case may be scalarized depending on the VF.
8282     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8283     // version of the instruction.
8284     // Is it beneficial to perform intrinsic call compared to lib call?
8285     bool NeedToScalarize = false;
8286     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8287     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8288     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8289     return UseVectorIntrinsic || !NeedToScalarize;
8290   };
8291 
8292   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8293     return nullptr;
8294 
8295   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
8296   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8297 }
8298 
8299 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8300   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8301          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8302   // Instruction should be widened, unless it is scalar after vectorization,
8303   // scalarization is profitable or it is predicated.
8304   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8305     return CM.isScalarAfterVectorization(I, VF) ||
8306            CM.isProfitableToScalarize(I, VF) ||
8307            CM.isScalarWithPredication(I, VF);
8308   };
8309   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8310                                                              Range);
8311 }
8312 
8313 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8314                                            ArrayRef<VPValue *> Operands) const {
8315   auto IsVectorizableOpcode = [](unsigned Opcode) {
8316     switch (Opcode) {
8317     case Instruction::Add:
8318     case Instruction::And:
8319     case Instruction::AShr:
8320     case Instruction::BitCast:
8321     case Instruction::FAdd:
8322     case Instruction::FCmp:
8323     case Instruction::FDiv:
8324     case Instruction::FMul:
8325     case Instruction::FNeg:
8326     case Instruction::FPExt:
8327     case Instruction::FPToSI:
8328     case Instruction::FPToUI:
8329     case Instruction::FPTrunc:
8330     case Instruction::FRem:
8331     case Instruction::FSub:
8332     case Instruction::ICmp:
8333     case Instruction::IntToPtr:
8334     case Instruction::LShr:
8335     case Instruction::Mul:
8336     case Instruction::Or:
8337     case Instruction::PtrToInt:
8338     case Instruction::SDiv:
8339     case Instruction::Select:
8340     case Instruction::SExt:
8341     case Instruction::Shl:
8342     case Instruction::SIToFP:
8343     case Instruction::SRem:
8344     case Instruction::Sub:
8345     case Instruction::Trunc:
8346     case Instruction::UDiv:
8347     case Instruction::UIToFP:
8348     case Instruction::URem:
8349     case Instruction::Xor:
8350     case Instruction::ZExt:
8351     case Instruction::Freeze:
8352       return true;
8353     }
8354     return false;
8355   };
8356 
8357   if (!IsVectorizableOpcode(I->getOpcode()))
8358     return nullptr;
8359 
8360   // Success: widen this instruction.
8361   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8362 }
8363 
8364 void VPRecipeBuilder::fixHeaderPhis() {
8365   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8366   for (VPHeaderPHIRecipe *R : PhisToFix) {
8367     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8368     VPRecipeBase *IncR =
8369         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8370     R->addOperand(IncR->getVPSingleValue());
8371   }
8372 }
8373 
8374 VPBasicBlock *VPRecipeBuilder::handleReplication(
8375     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8376     VPlanPtr &Plan) {
8377   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8378       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8379       Range);
8380 
8381   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8382       [&](ElementCount VF) { return CM.isPredicatedInst(I, VF, IsUniform); },
8383       Range);
8384 
8385   // Even if the instruction is not marked as uniform, there are certain
8386   // intrinsic calls that can be effectively treated as such, so we check for
8387   // them here. Conservatively, we only do this for scalable vectors, since
8388   // for fixed-width VFs we can always fall back on full scalarization.
8389   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
8390     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
8391     case Intrinsic::assume:
8392     case Intrinsic::lifetime_start:
8393     case Intrinsic::lifetime_end:
8394       // For scalable vectors if one of the operands is variant then we still
8395       // want to mark as uniform, which will generate one instruction for just
8396       // the first lane of the vector. We can't scalarize the call in the same
8397       // way as for fixed-width vectors because we don't know how many lanes
8398       // there are.
8399       //
8400       // The reasons for doing it this way for scalable vectors are:
8401       //   1. For the assume intrinsic generating the instruction for the first
8402       //      lane is still be better than not generating any at all. For
8403       //      example, the input may be a splat across all lanes.
8404       //   2. For the lifetime start/end intrinsics the pointer operand only
8405       //      does anything useful when the input comes from a stack object,
8406       //      which suggests it should always be uniform. For non-stack objects
8407       //      the effect is to poison the object, which still allows us to
8408       //      remove the call.
8409       IsUniform = true;
8410       break;
8411     default:
8412       break;
8413     }
8414   }
8415 
8416   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
8417                                        IsUniform, IsPredicated);
8418   setRecipe(I, Recipe);
8419   Plan->addVPValue(I, Recipe);
8420 
8421   // Find if I uses a predicated instruction. If so, it will use its scalar
8422   // value. Avoid hoisting the insert-element which packs the scalar value into
8423   // a vector value, as that happens iff all users use the vector value.
8424   for (VPValue *Op : Recipe->operands()) {
8425     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
8426     if (!PredR)
8427       continue;
8428     auto *RepR =
8429         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
8430     assert(RepR->isPredicated() &&
8431            "expected Replicate recipe to be predicated");
8432     RepR->setAlsoPack(false);
8433   }
8434 
8435   // Finalize the recipe for Instr, first if it is not predicated.
8436   if (!IsPredicated) {
8437     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
8438     VPBB->appendRecipe(Recipe);
8439     return VPBB;
8440   }
8441   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
8442 
8443   VPBlockBase *SingleSucc = VPBB->getSingleSuccessor();
8444   assert(SingleSucc && "VPBB must have a single successor when handling "
8445                        "predicated replication.");
8446   VPBlockUtils::disconnectBlocks(VPBB, SingleSucc);
8447   // Record predicated instructions for above packing optimizations.
8448   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
8449   VPBlockUtils::insertBlockAfter(Region, VPBB);
8450   auto *RegSucc = new VPBasicBlock();
8451   VPBlockUtils::insertBlockAfter(RegSucc, Region);
8452   VPBlockUtils::connectBlocks(RegSucc, SingleSucc);
8453   return RegSucc;
8454 }
8455 
8456 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(
8457     Instruction *Instr, VPReplicateRecipe *PredRecipe, VPlanPtr &Plan) {
8458   // Instructions marked for predication are replicated and placed under an
8459   // if-then construct to prevent side-effects.
8460 
8461   // Generate recipes to compute the block mask for this region.
8462   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
8463 
8464   // Build the triangular if-then region.
8465   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
8466   assert(Instr->getParent() && "Predicated instruction not in any basic block");
8467   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
8468   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
8469   auto *PHIRecipe = Instr->getType()->isVoidTy()
8470                         ? nullptr
8471                         : new VPPredInstPHIRecipe(PredRecipe);
8472   if (PHIRecipe) {
8473     Plan->removeVPValueFor(Instr);
8474     Plan->addVPValue(Instr, PHIRecipe);
8475   }
8476   auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
8477   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
8478   VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true);
8479 
8480   // Note: first set Entry as region entry and then connect successors starting
8481   // from it in order, to propagate the "parent" of each VPBasicBlock.
8482   VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry);
8483   VPBlockUtils::connectBlocks(Pred, Exiting);
8484 
8485   return Region;
8486 }
8487 
8488 VPRecipeOrVPValueTy
8489 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
8490                                         ArrayRef<VPValue *> Operands,
8491                                         VFRange &Range, VPlanPtr &Plan) {
8492   // First, check for specific widening recipes that deal with inductions, Phi
8493   // nodes, calls and memory operations.
8494   VPRecipeBase *Recipe;
8495   if (auto Phi = dyn_cast<PHINode>(Instr)) {
8496     if (Phi->getParent() != OrigLoop->getHeader())
8497       return tryToBlend(Phi, Operands, Plan);
8498     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range)))
8499       return toVPRecipeResult(Recipe);
8500 
8501     VPHeaderPHIRecipe *PhiRecipe = nullptr;
8502     assert((Legal->isReductionVariable(Phi) ||
8503             Legal->isFirstOrderRecurrence(Phi)) &&
8504            "can only widen reductions and first-order recurrences here");
8505     VPValue *StartV = Operands[0];
8506     if (Legal->isReductionVariable(Phi)) {
8507       const RecurrenceDescriptor &RdxDesc =
8508           Legal->getReductionVars().find(Phi)->second;
8509       assert(RdxDesc.getRecurrenceStartValue() ==
8510              Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8511       PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
8512                                            CM.isInLoopReduction(Phi),
8513                                            CM.useOrderedReductions(RdxDesc));
8514     } else {
8515       PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
8516     }
8517 
8518     // Record the incoming value from the backedge, so we can add the incoming
8519     // value from the backedge after all recipes have been created.
8520     recordRecipeOf(cast<Instruction>(
8521         Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
8522     PhisToFix.push_back(PhiRecipe);
8523     return toVPRecipeResult(PhiRecipe);
8524   }
8525 
8526   if (isa<TruncInst>(Instr) &&
8527       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
8528                                                Range, *Plan)))
8529     return toVPRecipeResult(Recipe);
8530 
8531   // All widen recipes below deal only with VF > 1.
8532   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8533           [&](ElementCount VF) { return VF.isScalar(); }, Range))
8534     return nullptr;
8535 
8536   if (auto *CI = dyn_cast<CallInst>(Instr))
8537     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
8538 
8539   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
8540     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
8541 
8542   if (!shouldWiden(Instr, Range))
8543     return nullptr;
8544 
8545   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
8546     return toVPRecipeResult(new VPWidenGEPRecipe(
8547         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
8548 
8549   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
8550     bool InvariantCond =
8551         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
8552     return toVPRecipeResult(new VPWidenSelectRecipe(
8553         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
8554   }
8555 
8556   return toVPRecipeResult(tryToWiden(Instr, Operands));
8557 }
8558 
8559 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
8560                                                         ElementCount MaxVF) {
8561   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8562 
8563   // Add assume instructions we need to drop to DeadInstructions, to prevent
8564   // them from being added to the VPlan.
8565   // TODO: We only need to drop assumes in blocks that get flattend. If the
8566   // control flow is preserved, we should keep them.
8567   SmallPtrSet<Instruction *, 4> DeadInstructions;
8568   auto &ConditionalAssumes = Legal->getConditionalAssumes();
8569   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
8570 
8571   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
8572   // Dead instructions do not need sinking. Remove them from SinkAfter.
8573   for (Instruction *I : DeadInstructions)
8574     SinkAfter.erase(I);
8575 
8576   // Cannot sink instructions after dead instructions (there won't be any
8577   // recipes for them). Instead, find the first non-dead previous instruction.
8578   for (auto &P : Legal->getSinkAfter()) {
8579     Instruction *SinkTarget = P.second;
8580     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
8581     (void)FirstInst;
8582     while (DeadInstructions.contains(SinkTarget)) {
8583       assert(
8584           SinkTarget != FirstInst &&
8585           "Must find a live instruction (at least the one feeding the "
8586           "first-order recurrence PHI) before reaching beginning of the block");
8587       SinkTarget = SinkTarget->getPrevNode();
8588       assert(SinkTarget != P.first &&
8589              "sink source equals target, no sinking required");
8590     }
8591     P.second = SinkTarget;
8592   }
8593 
8594   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8595   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8596     VFRange SubRange = {VF, MaxVFPlusOne};
8597     VPlans.push_back(
8598         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
8599     VF = SubRange.End;
8600   }
8601 }
8602 
8603 // Add the necessary canonical IV and branch recipes required to control the
8604 // loop.
8605 static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL,
8606                                   bool HasNUW,
8607                                   bool UseLaneMaskForLoopControlFlow) {
8608   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8609   auto *StartV = Plan.getOrAddVPValue(StartIdx);
8610 
8611   // Add a VPCanonicalIVPHIRecipe starting at 0 to the header.
8612   auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
8613   VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
8614   VPBasicBlock *Header = TopRegion->getEntryBasicBlock();
8615   Header->insert(CanonicalIVPHI, Header->begin());
8616 
8617   // Add a CanonicalIVIncrement{NUW} VPInstruction to increment the scalar
8618   // IV by VF * UF.
8619   auto *CanonicalIVIncrement =
8620       new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW
8621                                : VPInstruction::CanonicalIVIncrement,
8622                         {CanonicalIVPHI}, DL, "index.next");
8623   CanonicalIVPHI->addOperand(CanonicalIVIncrement);
8624 
8625   VPBasicBlock *EB = TopRegion->getExitingBasicBlock();
8626   EB->appendRecipe(CanonicalIVIncrement);
8627 
8628   if (UseLaneMaskForLoopControlFlow) {
8629     // Create the active lane mask instruction in the vplan preheader.
8630     VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock();
8631 
8632     // We can't use StartV directly in the ActiveLaneMask VPInstruction, since
8633     // we have to take unrolling into account. Each part needs to start at
8634     //   Part * VF
8635     auto *CanonicalIVIncrementParts =
8636         new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW
8637                                  : VPInstruction::CanonicalIVIncrementForPart,
8638                           {StartV}, DL, "index.part.next");
8639     Preheader->appendRecipe(CanonicalIVIncrementParts);
8640 
8641     // Create the ActiveLaneMask instruction using the correct start values.
8642     VPValue *TC = Plan.getOrCreateTripCount();
8643     auto *EntryALM = new VPInstruction(VPInstruction::ActiveLaneMask,
8644                                        {CanonicalIVIncrementParts, TC}, DL,
8645                                        "active.lane.mask.entry");
8646     Preheader->appendRecipe(EntryALM);
8647 
8648     // Now create the ActiveLaneMaskPhi recipe in the main loop using the
8649     // preheader ActiveLaneMask instruction.
8650     auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc());
8651     Header->insert(LaneMaskPhi, Header->getFirstNonPhi());
8652 
8653     // Create the active lane mask for the next iteration of the loop.
8654     CanonicalIVIncrementParts =
8655         new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW
8656                                  : VPInstruction::CanonicalIVIncrementForPart,
8657                           {CanonicalIVIncrement}, DL);
8658     EB->appendRecipe(CanonicalIVIncrementParts);
8659 
8660     auto *ALM = new VPInstruction(VPInstruction::ActiveLaneMask,
8661                                   {CanonicalIVIncrementParts, TC}, DL,
8662                                   "active.lane.mask.next");
8663     EB->appendRecipe(ALM);
8664     LaneMaskPhi->addOperand(ALM);
8665 
8666     // We have to invert the mask here because a true condition means jumping
8667     // to the exit block.
8668     auto *NotMask = new VPInstruction(VPInstruction::Not, ALM, DL);
8669     EB->appendRecipe(NotMask);
8670 
8671     VPInstruction *BranchBack =
8672         new VPInstruction(VPInstruction::BranchOnCond, {NotMask}, DL);
8673     EB->appendRecipe(BranchBack);
8674   } else {
8675     // Add the BranchOnCount VPInstruction to the latch.
8676     VPInstruction *BranchBack = new VPInstruction(
8677         VPInstruction::BranchOnCount,
8678         {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL);
8679     EB->appendRecipe(BranchBack);
8680   }
8681 }
8682 
8683 // Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the
8684 // original exit block.
8685 static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB,
8686                                 VPBasicBlock *MiddleVPBB, Loop *OrigLoop,
8687                                 VPlan &Plan) {
8688   BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock();
8689   BasicBlock *ExitingBB = OrigLoop->getExitingBlock();
8690   // Only handle single-exit loops with unique exit blocks for now.
8691   if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB)
8692     return;
8693 
8694   // Introduce VPUsers modeling the exit values.
8695   for (PHINode &ExitPhi : ExitBB->phis()) {
8696     Value *IncomingValue =
8697         ExitPhi.getIncomingValueForBlock(ExitingBB);
8698     VPValue *V = Plan.getOrAddVPValue(IncomingValue, true);
8699     Plan.addLiveOut(&ExitPhi, V);
8700   }
8701 }
8702 
8703 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
8704     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
8705     const MapVector<Instruction *, Instruction *> &SinkAfter) {
8706 
8707   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
8708 
8709   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
8710 
8711   // ---------------------------------------------------------------------------
8712   // Pre-construction: record ingredients whose recipes we'll need to further
8713   // process after constructing the initial VPlan.
8714   // ---------------------------------------------------------------------------
8715 
8716   // Mark instructions we'll need to sink later and their targets as
8717   // ingredients whose recipe we'll need to record.
8718   for (auto &Entry : SinkAfter) {
8719     RecipeBuilder.recordRecipeOf(Entry.first);
8720     RecipeBuilder.recordRecipeOf(Entry.second);
8721   }
8722   for (auto &Reduction : CM.getInLoopReductionChains()) {
8723     PHINode *Phi = Reduction.first;
8724     RecurKind Kind =
8725         Legal->getReductionVars().find(Phi)->second.getRecurrenceKind();
8726     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
8727 
8728     RecipeBuilder.recordRecipeOf(Phi);
8729     for (auto &R : ReductionOperations) {
8730       RecipeBuilder.recordRecipeOf(R);
8731       // For min/max reductions, where we have a pair of icmp/select, we also
8732       // need to record the ICmp recipe, so it can be removed later.
8733       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
8734              "Only min/max recurrences allowed for inloop reductions");
8735       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
8736         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
8737     }
8738   }
8739 
8740   // For each interleave group which is relevant for this (possibly trimmed)
8741   // Range, add it to the set of groups to be later applied to the VPlan and add
8742   // placeholders for its members' Recipes which we'll be replacing with a
8743   // single VPInterleaveRecipe.
8744   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
8745     auto applyIG = [IG, this](ElementCount VF) -> bool {
8746       return (VF.isVector() && // Query is illegal for VF == 1
8747               CM.getWideningDecision(IG->getInsertPos(), VF) ==
8748                   LoopVectorizationCostModel::CM_Interleave);
8749     };
8750     if (!getDecisionAndClampRange(applyIG, Range))
8751       continue;
8752     InterleaveGroups.insert(IG);
8753     for (unsigned i = 0; i < IG->getFactor(); i++)
8754       if (Instruction *Member = IG->getMember(i))
8755         RecipeBuilder.recordRecipeOf(Member);
8756   };
8757 
8758   // ---------------------------------------------------------------------------
8759   // Build initial VPlan: Scan the body of the loop in a topological order to
8760   // visit each basic block after having visited its predecessor basic blocks.
8761   // ---------------------------------------------------------------------------
8762 
8763   // Create initial VPlan skeleton, starting with a block for the pre-header,
8764   // followed by a region for the vector loop, followed by the middle block. The
8765   // skeleton vector loop region contains a header and latch block.
8766   VPBasicBlock *Preheader = new VPBasicBlock("vector.ph");
8767   auto Plan = std::make_unique<VPlan>(Preheader);
8768 
8769   VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
8770   VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
8771   VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
8772   auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop");
8773   VPBlockUtils::insertBlockAfter(TopRegion, Preheader);
8774   VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
8775   VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
8776 
8777   Instruction *DLInst =
8778       getDebugLocFromInstOrOperands(Legal->getPrimaryInduction());
8779   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(),
8780                         DLInst ? DLInst->getDebugLoc() : DebugLoc(),
8781                         !CM.foldTailByMasking(),
8782                         CM.useActiveLaneMaskForControlFlow());
8783 
8784   // Scan the body of the loop in a topological order to visit each basic block
8785   // after having visited its predecessor basic blocks.
8786   LoopBlocksDFS DFS(OrigLoop);
8787   DFS.perform(LI);
8788 
8789   VPBasicBlock *VPBB = HeaderVPBB;
8790   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
8791   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
8792     // Relevant instructions from basic block BB will be grouped into VPRecipe
8793     // ingredients and fill a new VPBasicBlock.
8794     unsigned VPBBsForBB = 0;
8795     if (VPBB != HeaderVPBB)
8796       VPBB->setName(BB->getName());
8797     Builder.setInsertPoint(VPBB);
8798 
8799     // Introduce each ingredient into VPlan.
8800     // TODO: Model and preserve debug intrinsics in VPlan.
8801     for (Instruction &I : BB->instructionsWithoutDebug()) {
8802       Instruction *Instr = &I;
8803 
8804       // First filter out irrelevant instructions, to ensure no recipes are
8805       // built for them.
8806       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
8807         continue;
8808 
8809       SmallVector<VPValue *, 4> Operands;
8810       auto *Phi = dyn_cast<PHINode>(Instr);
8811       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
8812         Operands.push_back(Plan->getOrAddVPValue(
8813             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
8814       } else {
8815         auto OpRange = Plan->mapToVPValues(Instr->operands());
8816         Operands = {OpRange.begin(), OpRange.end()};
8817       }
8818 
8819       // Invariant stores inside loop will be deleted and a single store
8820       // with the final reduction value will be added to the exit block
8821       StoreInst *SI;
8822       if ((SI = dyn_cast<StoreInst>(&I)) &&
8823           Legal->isInvariantAddressOfReduction(SI->getPointerOperand()))
8824         continue;
8825 
8826       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
8827               Instr, Operands, Range, Plan)) {
8828         // If Instr can be simplified to an existing VPValue, use it.
8829         if (RecipeOrValue.is<VPValue *>()) {
8830           auto *VPV = RecipeOrValue.get<VPValue *>();
8831           Plan->addVPValue(Instr, VPV);
8832           // If the re-used value is a recipe, register the recipe for the
8833           // instruction, in case the recipe for Instr needs to be recorded.
8834           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
8835             RecipeBuilder.setRecipe(Instr, R);
8836           continue;
8837         }
8838         // Otherwise, add the new recipe.
8839         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
8840         for (auto *Def : Recipe->definedValues()) {
8841           auto *UV = Def->getUnderlyingValue();
8842           Plan->addVPValue(UV, Def);
8843         }
8844 
8845         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
8846             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
8847           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
8848           // of the header block. That can happen for truncates of induction
8849           // variables. Those recipes are moved to the phi section of the header
8850           // block after applying SinkAfter, which relies on the original
8851           // position of the trunc.
8852           assert(isa<TruncInst>(Instr));
8853           InductionsToMove.push_back(
8854               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
8855         }
8856         RecipeBuilder.setRecipe(Instr, Recipe);
8857         VPBB->appendRecipe(Recipe);
8858         continue;
8859       }
8860 
8861       // Otherwise, if all widening options failed, Instruction is to be
8862       // replicated. This may create a successor for VPBB.
8863       VPBasicBlock *NextVPBB =
8864           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
8865       if (NextVPBB != VPBB) {
8866         VPBB = NextVPBB;
8867         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8868                                     : "");
8869       }
8870     }
8871 
8872     VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB);
8873     VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor());
8874   }
8875 
8876   HeaderVPBB->setName("vector.body");
8877 
8878   // Fold the last, empty block into its predecessor.
8879   VPBB = VPBlockUtils::tryToMergeBlockIntoPredecessor(VPBB);
8880   assert(VPBB && "expected to fold last (empty) block");
8881   // After here, VPBB should not be used.
8882   VPBB = nullptr;
8883 
8884   addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan);
8885 
8886   assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&
8887          !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&
8888          "entry block must be set to a VPRegionBlock having a non-empty entry "
8889          "VPBasicBlock");
8890   RecipeBuilder.fixHeaderPhis();
8891 
8892   // ---------------------------------------------------------------------------
8893   // Transform initial VPlan: Apply previously taken decisions, in order, to
8894   // bring the VPlan to its final state.
8895   // ---------------------------------------------------------------------------
8896 
8897   // Apply Sink-After legal constraints.
8898   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
8899     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
8900     if (Region && Region->isReplicator()) {
8901       assert(Region->getNumSuccessors() == 1 &&
8902              Region->getNumPredecessors() == 1 && "Expected SESE region!");
8903       assert(R->getParent()->size() == 1 &&
8904              "A recipe in an original replicator region must be the only "
8905              "recipe in its block");
8906       return Region;
8907     }
8908     return nullptr;
8909   };
8910   for (auto &Entry : SinkAfter) {
8911     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
8912     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
8913 
8914     auto *TargetRegion = GetReplicateRegion(Target);
8915     auto *SinkRegion = GetReplicateRegion(Sink);
8916     if (!SinkRegion) {
8917       // If the sink source is not a replicate region, sink the recipe directly.
8918       if (TargetRegion) {
8919         // The target is in a replication region, make sure to move Sink to
8920         // the block after it, not into the replication region itself.
8921         VPBasicBlock *NextBlock =
8922             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
8923         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
8924       } else
8925         Sink->moveAfter(Target);
8926       continue;
8927     }
8928 
8929     // The sink source is in a replicate region. Unhook the region from the CFG.
8930     auto *SinkPred = SinkRegion->getSinglePredecessor();
8931     auto *SinkSucc = SinkRegion->getSingleSuccessor();
8932     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
8933     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
8934     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
8935 
8936     if (TargetRegion) {
8937       // The target recipe is also in a replicate region, move the sink region
8938       // after the target region.
8939       auto *TargetSucc = TargetRegion->getSingleSuccessor();
8940       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
8941       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
8942       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
8943     } else {
8944       // The sink source is in a replicate region, we need to move the whole
8945       // replicate region, which should only contain a single recipe in the
8946       // main block.
8947       auto *SplitBlock =
8948           Target->getParent()->splitAt(std::next(Target->getIterator()));
8949 
8950       auto *SplitPred = SplitBlock->getSinglePredecessor();
8951 
8952       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
8953       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
8954       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
8955     }
8956   }
8957 
8958   VPlanTransforms::removeRedundantCanonicalIVs(*Plan);
8959   VPlanTransforms::removeRedundantInductionCasts(*Plan);
8960 
8961   // Now that sink-after is done, move induction recipes for optimized truncates
8962   // to the phi section of the header block.
8963   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
8964     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
8965 
8966   // Adjust the recipes for any inloop reductions.
8967   adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan,
8968                              RecipeBuilder, Range.Start);
8969 
8970   // Introduce a recipe to combine the incoming and previous values of a
8971   // first-order recurrence.
8972   for (VPRecipeBase &R :
8973        Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
8974     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
8975     if (!RecurPhi)
8976       continue;
8977 
8978     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
8979     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
8980     auto *Region = GetReplicateRegion(PrevRecipe);
8981     if (Region)
8982       InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor());
8983     if (!InsertBlock) {
8984       InsertBlock = new VPBasicBlock(Region->getName() + ".succ");
8985       VPBlockUtils::insertBlockAfter(InsertBlock, Region);
8986     }
8987     if (Region || PrevRecipe->isPhi())
8988       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
8989     else
8990       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
8991 
8992     auto *RecurSplice = cast<VPInstruction>(
8993         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
8994                              {RecurPhi, RecurPhi->getBackedgeValue()}));
8995 
8996     RecurPhi->replaceAllUsesWith(RecurSplice);
8997     // Set the first operand of RecurSplice to RecurPhi again, after replacing
8998     // all users.
8999     RecurSplice->setOperand(0, RecurPhi);
9000   }
9001 
9002   // Interleave memory: for each Interleave Group we marked earlier as relevant
9003   // for this VPlan, replace the Recipes widening its memory instructions with a
9004   // single VPInterleaveRecipe at its insertion point.
9005   for (auto IG : InterleaveGroups) {
9006     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9007         RecipeBuilder.getRecipe(IG->getInsertPos()));
9008     SmallVector<VPValue *, 4> StoredValues;
9009     for (unsigned i = 0; i < IG->getFactor(); ++i)
9010       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9011         auto *StoreR =
9012             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9013         StoredValues.push_back(StoreR->getStoredValue());
9014       }
9015 
9016     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9017                                         Recipe->getMask());
9018     VPIG->insertBefore(Recipe);
9019     unsigned J = 0;
9020     for (unsigned i = 0; i < IG->getFactor(); ++i)
9021       if (Instruction *Member = IG->getMember(i)) {
9022         if (!Member->getType()->isVoidTy()) {
9023           VPValue *OriginalV = Plan->getVPValue(Member);
9024           Plan->removeVPValueFor(Member);
9025           Plan->addVPValue(Member, VPIG->getVPValue(J));
9026           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9027           J++;
9028         }
9029         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9030       }
9031   }
9032 
9033   std::string PlanName;
9034   raw_string_ostream RSO(PlanName);
9035   ElementCount VF = Range.Start;
9036   Plan->addVF(VF);
9037   RSO << "Initial VPlan for VF={" << VF;
9038   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9039     Plan->addVF(VF);
9040     RSO << "," << VF;
9041   }
9042   RSO << "},UF>=1";
9043   RSO.flush();
9044   Plan->setName(PlanName);
9045 
9046   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9047   // in ways that accessing values using original IR values is incorrect.
9048   Plan->disableValue2VPValue();
9049 
9050   VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE());
9051   VPlanTransforms::sinkScalarOperands(*Plan);
9052   VPlanTransforms::removeDeadRecipes(*Plan);
9053   VPlanTransforms::mergeReplicateRegions(*Plan);
9054   VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan);
9055 
9056   // Fold Exit block into its predecessor if possible.
9057   // TODO: Fold block earlier once all VPlan transforms properly maintain a
9058   // VPBasicBlock as exit.
9059   VPBlockUtils::tryToMergeBlockIntoPredecessor(TopRegion->getExiting());
9060 
9061   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9062   return Plan;
9063 }
9064 
9065 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9066   // Outer loop handling: They may require CFG and instruction level
9067   // transformations before even evaluating whether vectorization is profitable.
9068   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9069   // the vectorization pipeline.
9070   assert(!OrigLoop->isInnermost());
9071   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9072 
9073   // Create new empty VPlan
9074   auto Plan = std::make_unique<VPlan>();
9075 
9076   // Build hierarchical CFG
9077   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9078   HCFGBuilder.buildHierarchicalCFG();
9079 
9080   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9081        VF *= 2)
9082     Plan->addVF(VF);
9083 
9084   SmallPtrSet<Instruction *, 1> DeadInstructions;
9085   VPlanTransforms::VPInstructionsToVPRecipes(
9086       OrigLoop, Plan,
9087       [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); },
9088       DeadInstructions, *PSE.getSE());
9089 
9090   // Remove the existing terminator of the exiting block of the top-most region.
9091   // A BranchOnCount will be added instead when adding the canonical IV recipes.
9092   auto *Term =
9093       Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator();
9094   Term->eraseFromParent();
9095 
9096   addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(),
9097                         true, CM.useActiveLaneMaskForControlFlow());
9098   return Plan;
9099 }
9100 
9101 // Adjust the recipes for reductions. For in-loop reductions the chain of
9102 // instructions leading from the loop exit instr to the phi need to be converted
9103 // to reductions, with one operand being vector and the other being the scalar
9104 // reduction chain. For other reductions, a select is introduced between the phi
9105 // and live-out recipes when folding the tail.
9106 void LoopVectorizationPlanner::adjustRecipesForReductions(
9107     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9108     ElementCount MinVF) {
9109   for (auto &Reduction : CM.getInLoopReductionChains()) {
9110     PHINode *Phi = Reduction.first;
9111     const RecurrenceDescriptor &RdxDesc =
9112         Legal->getReductionVars().find(Phi)->second;
9113     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9114 
9115     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9116       continue;
9117 
9118     // ReductionOperations are orders top-down from the phi's use to the
9119     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9120     // which of the two operands will remain scalar and which will be reduced.
9121     // For minmax the chain will be the select instructions.
9122     Instruction *Chain = Phi;
9123     for (Instruction *R : ReductionOperations) {
9124       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9125       RecurKind Kind = RdxDesc.getRecurrenceKind();
9126 
9127       VPValue *ChainOp = Plan->getVPValue(Chain);
9128       unsigned FirstOpId;
9129       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9130              "Only min/max recurrences allowed for inloop reductions");
9131       // Recognize a call to the llvm.fmuladd intrinsic.
9132       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9133       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9134              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9135       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9136         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9137                "Expected to replace a VPWidenSelectSC");
9138         FirstOpId = 1;
9139       } else {
9140         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9141                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9142                "Expected to replace a VPWidenSC");
9143         FirstOpId = 0;
9144       }
9145       unsigned VecOpId =
9146           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9147       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9148 
9149       auto *CondOp = CM.blockNeedsPredicationForAnyReason(R->getParent())
9150                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9151                          : nullptr;
9152 
9153       if (IsFMulAdd) {
9154         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9155         // need to create an fmul recipe to use as the vector operand for the
9156         // fadd reduction.
9157         VPInstruction *FMulRecipe = new VPInstruction(
9158             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9159         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9160         WidenRecipe->getParent()->insert(FMulRecipe,
9161                                          WidenRecipe->getIterator());
9162         VecOp = FMulRecipe;
9163       }
9164       VPReductionRecipe *RedRecipe =
9165           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9166       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9167       Plan->removeVPValueFor(R);
9168       Plan->addVPValue(R, RedRecipe);
9169       // Append the recipe to the end of the VPBasicBlock because we need to
9170       // ensure that it comes after all of it's inputs, including CondOp.
9171       WidenRecipe->getParent()->appendRecipe(RedRecipe);
9172       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9173       WidenRecipe->eraseFromParent();
9174 
9175       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9176         VPRecipeBase *CompareRecipe =
9177             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9178         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9179                "Expected to replace a VPWidenSC");
9180         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9181                "Expected no remaining users");
9182         CompareRecipe->eraseFromParent();
9183       }
9184       Chain = R;
9185     }
9186   }
9187 
9188   // If tail is folded by masking, introduce selects between the phi
9189   // and the live-out instruction of each reduction, at the beginning of the
9190   // dedicated latch block.
9191   if (CM.foldTailByMasking()) {
9192     Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin());
9193     for (VPRecipeBase &R :
9194          Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
9195       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9196       if (!PhiR || PhiR->isInLoop())
9197         continue;
9198       VPValue *Cond =
9199           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9200       VPValue *Red = PhiR->getBackedgeValue();
9201       assert(cast<VPRecipeBase>(Red->getDef())->getParent() != LatchVPBB &&
9202              "reduction recipe must be defined before latch");
9203       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9204     }
9205   }
9206 }
9207 
9208 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9209 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9210                                VPSlotTracker &SlotTracker) const {
9211   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9212   IG->getInsertPos()->printAsOperand(O, false);
9213   O << ", ";
9214   getAddr()->printAsOperand(O, SlotTracker);
9215   VPValue *Mask = getMask();
9216   if (Mask) {
9217     O << ", ";
9218     Mask->printAsOperand(O, SlotTracker);
9219   }
9220 
9221   unsigned OpIdx = 0;
9222   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9223     if (!IG->getMember(i))
9224       continue;
9225     if (getNumStoreOperands() > 0) {
9226       O << "\n" << Indent << "  store ";
9227       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9228       O << " to index " << i;
9229     } else {
9230       O << "\n" << Indent << "  ";
9231       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9232       O << " = load from index " << i;
9233     }
9234     ++OpIdx;
9235   }
9236 }
9237 #endif
9238 
9239 void VPWidenCallRecipe::execute(VPTransformState &State) {
9240   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9241                                   *this, State);
9242 }
9243 
9244 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9245   assert(!State.Instance && "Int or FP induction being replicated.");
9246 
9247   Value *Start = getStartValue()->getLiveInIRValue();
9248   const InductionDescriptor &ID = getInductionDescriptor();
9249   TruncInst *Trunc = getTruncInst();
9250   IRBuilderBase &Builder = State.Builder;
9251   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
9252   assert(State.VF.isVector() && "must have vector VF");
9253 
9254   // The value from the original loop to which we are mapping the new induction
9255   // variable.
9256   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
9257 
9258   // Fast-math-flags propagate from the original induction instruction.
9259   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
9260   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
9261     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
9262 
9263   // Now do the actual transformations, and start with fetching the step value.
9264   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9265 
9266   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
9267          "Expected either an induction phi-node or a truncate of it!");
9268 
9269   // Construct the initial value of the vector IV in the vector loop preheader
9270   auto CurrIP = Builder.saveIP();
9271   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9272   Builder.SetInsertPoint(VectorPH->getTerminator());
9273   if (isa<TruncInst>(EntryVal)) {
9274     assert(Start->getType()->isIntegerTy() &&
9275            "Truncation requires an integer type");
9276     auto *TruncType = cast<IntegerType>(EntryVal->getType());
9277     Step = Builder.CreateTrunc(Step, TruncType);
9278     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
9279   }
9280 
9281   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
9282   Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start);
9283   Value *SteppedStart = getStepVector(
9284       SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder);
9285 
9286   // We create vector phi nodes for both integer and floating-point induction
9287   // variables. Here, we determine the kind of arithmetic we will perform.
9288   Instruction::BinaryOps AddOp;
9289   Instruction::BinaryOps MulOp;
9290   if (Step->getType()->isIntegerTy()) {
9291     AddOp = Instruction::Add;
9292     MulOp = Instruction::Mul;
9293   } else {
9294     AddOp = ID.getInductionOpcode();
9295     MulOp = Instruction::FMul;
9296   }
9297 
9298   // Multiply the vectorization factor by the step using integer or
9299   // floating-point arithmetic as appropriate.
9300   Type *StepType = Step->getType();
9301   Value *RuntimeVF;
9302   if (Step->getType()->isFloatingPointTy())
9303     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF);
9304   else
9305     RuntimeVF = getRuntimeVF(Builder, StepType, State.VF);
9306   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
9307 
9308   // Create a vector splat to use in the induction update.
9309   //
9310   // FIXME: If the step is non-constant, we create the vector splat with
9311   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
9312   //        handle a constant vector splat.
9313   Value *SplatVF = isa<Constant>(Mul)
9314                        ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul))
9315                        : Builder.CreateVectorSplat(State.VF, Mul);
9316   Builder.restoreIP(CurrIP);
9317 
9318   // We may need to add the step a number of times, depending on the unroll
9319   // factor. The last of those goes into the PHI.
9320   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
9321                                     &*State.CFG.PrevBB->getFirstInsertionPt());
9322   VecInd->setDebugLoc(EntryVal->getDebugLoc());
9323   Instruction *LastInduction = VecInd;
9324   for (unsigned Part = 0; Part < State.UF; ++Part) {
9325     State.set(this, LastInduction, Part);
9326 
9327     if (isa<TruncInst>(EntryVal))
9328       State.addMetadata(LastInduction, EntryVal);
9329 
9330     LastInduction = cast<Instruction>(
9331         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
9332     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
9333   }
9334 
9335   LastInduction->setName("vec.ind.next");
9336   VecInd->addIncoming(SteppedStart, VectorPH);
9337   // Add induction update using an incorrect block temporarily. The phi node
9338   // will be fixed after VPlan execution. Note that at this point the latch
9339   // block cannot be used, as it does not exist yet.
9340   // TODO: Model increment value in VPlan, by turning the recipe into a
9341   // multi-def and a subclass of VPHeaderPHIRecipe.
9342   VecInd->addIncoming(LastInduction, VectorPH);
9343 }
9344 
9345 void VPWidenPointerInductionRecipe::execute(VPTransformState &State) {
9346   assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&
9347          "Not a pointer induction according to InductionDescriptor!");
9348   assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&
9349          "Unexpected type.");
9350 
9351   auto *IVR = getParent()->getPlan()->getCanonicalIV();
9352   PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0));
9353 
9354   if (onlyScalarsGenerated(State.VF)) {
9355     // This is the normalized GEP that starts counting at zero.
9356     Value *PtrInd = State.Builder.CreateSExtOrTrunc(
9357         CanonicalIV, IndDesc.getStep()->getType());
9358     // Determine the number of scalars we need to generate for each unroll
9359     // iteration. If the instruction is uniform, we only need to generate the
9360     // first lane. Otherwise, we generate all VF values.
9361     bool IsUniform = vputils::onlyFirstLaneUsed(this);
9362     assert((IsUniform || !State.VF.isScalable()) &&
9363            "Cannot scalarize a scalable VF");
9364     unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue();
9365 
9366     for (unsigned Part = 0; Part < State.UF; ++Part) {
9367       Value *PartStart =
9368           createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part);
9369 
9370       for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
9371         Value *Idx = State.Builder.CreateAdd(
9372             PartStart, ConstantInt::get(PtrInd->getType(), Lane));
9373         Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx);
9374 
9375         Value *Step = CreateStepValue(IndDesc.getStep(), SE,
9376                                       State.CFG.PrevBB->getTerminator());
9377         Value *SclrGep = emitTransformedIndex(
9378             State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc);
9379         SclrGep->setName("next.gep");
9380         State.set(this, SclrGep, VPIteration(Part, Lane));
9381       }
9382     }
9383     return;
9384   }
9385 
9386   assert(isa<SCEVConstant>(IndDesc.getStep()) &&
9387          "Induction step not a SCEV constant!");
9388   Type *PhiType = IndDesc.getStep()->getType();
9389 
9390   // Build a pointer phi
9391   Value *ScalarStartValue = getStartValue()->getLiveInIRValue();
9392   Type *ScStValueType = ScalarStartValue->getType();
9393   PHINode *NewPointerPhi =
9394       PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV);
9395 
9396   BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this);
9397   NewPointerPhi->addIncoming(ScalarStartValue, VectorPH);
9398 
9399   // A pointer induction, performed by using a gep
9400   const DataLayout &DL = NewPointerPhi->getModule()->getDataLayout();
9401   Instruction *InductionLoc = &*State.Builder.GetInsertPoint();
9402 
9403   const SCEV *ScalarStep = IndDesc.getStep();
9404   SCEVExpander Exp(SE, DL, "induction");
9405   Value *ScalarStepValue = Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
9406   Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF);
9407   Value *NumUnrolledElems =
9408       State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
9409   Value *InductionGEP = GetElementPtrInst::Create(
9410       IndDesc.getElementType(), NewPointerPhi,
9411       State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
9412       InductionLoc);
9413   // Add induction update using an incorrect block temporarily. The phi node
9414   // will be fixed after VPlan execution. Note that at this point the latch
9415   // block cannot be used, as it does not exist yet.
9416   // TODO: Model increment value in VPlan, by turning the recipe into a
9417   // multi-def and a subclass of VPHeaderPHIRecipe.
9418   NewPointerPhi->addIncoming(InductionGEP, VectorPH);
9419 
9420   // Create UF many actual address geps that use the pointer
9421   // phi as base and a vectorized version of the step value
9422   // (<step*0, ..., step*N>) as offset.
9423   for (unsigned Part = 0; Part < State.UF; ++Part) {
9424     Type *VecPhiType = VectorType::get(PhiType, State.VF);
9425     Value *StartOffsetScalar =
9426         State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
9427     Value *StartOffset =
9428         State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
9429     // Create a vector of consecutive numbers from zero to VF.
9430     StartOffset = State.Builder.CreateAdd(
9431         StartOffset, State.Builder.CreateStepVector(VecPhiType));
9432 
9433     Value *GEP = State.Builder.CreateGEP(
9434         IndDesc.getElementType(), NewPointerPhi,
9435         State.Builder.CreateMul(
9436             StartOffset,
9437             State.Builder.CreateVectorSplat(State.VF, ScalarStepValue),
9438             "vector.gep"));
9439     State.set(this, GEP, Part);
9440   }
9441 }
9442 
9443 void VPScalarIVStepsRecipe::execute(VPTransformState &State) {
9444   assert(!State.Instance && "VPScalarIVStepsRecipe being replicated.");
9445 
9446   // Fast-math-flags propagate from the original induction instruction.
9447   IRBuilder<>::FastMathFlagGuard FMFG(State.Builder);
9448   if (IndDesc.getInductionBinOp() &&
9449       isa<FPMathOperator>(IndDesc.getInductionBinOp()))
9450     State.Builder.setFastMathFlags(
9451         IndDesc.getInductionBinOp()->getFastMathFlags());
9452 
9453   Value *Step = State.get(getStepValue(), VPIteration(0, 0));
9454   auto CreateScalarIV = [&](Value *&Step) -> Value * {
9455     Value *ScalarIV = State.get(getCanonicalIV(), VPIteration(0, 0));
9456     auto *CanonicalIV = State.get(getParent()->getPlan()->getCanonicalIV(), 0);
9457     if (!isCanonical() || CanonicalIV->getType() != Ty) {
9458       ScalarIV =
9459           Ty->isIntegerTy()
9460               ? State.Builder.CreateSExtOrTrunc(ScalarIV, Ty)
9461               : State.Builder.CreateCast(Instruction::SIToFP, ScalarIV, Ty);
9462       ScalarIV = emitTransformedIndex(State.Builder, ScalarIV,
9463                                       getStartValue()->getLiveInIRValue(), Step,
9464                                       IndDesc);
9465       ScalarIV->setName("offset.idx");
9466     }
9467     if (TruncToTy) {
9468       assert(Step->getType()->isIntegerTy() &&
9469              "Truncation requires an integer step");
9470       ScalarIV = State.Builder.CreateTrunc(ScalarIV, TruncToTy);
9471       Step = State.Builder.CreateTrunc(Step, TruncToTy);
9472     }
9473     return ScalarIV;
9474   };
9475 
9476   Value *ScalarIV = CreateScalarIV(Step);
9477   if (State.VF.isVector()) {
9478     buildScalarSteps(ScalarIV, Step, IndDesc, this, State);
9479     return;
9480   }
9481 
9482   for (unsigned Part = 0; Part < State.UF; ++Part) {
9483     assert(!State.VF.isScalable() && "scalable vectors not yet supported.");
9484     Value *EntryPart;
9485     if (Step->getType()->isFloatingPointTy()) {
9486       Value *StartIdx =
9487           getRuntimeVFAsFloat(State.Builder, Step->getType(), State.VF * Part);
9488       // Floating-point operations inherit FMF via the builder's flags.
9489       Value *MulOp = State.Builder.CreateFMul(StartIdx, Step);
9490       EntryPart = State.Builder.CreateBinOp(IndDesc.getInductionOpcode(),
9491                                             ScalarIV, MulOp);
9492     } else {
9493       Value *StartIdx =
9494           getRuntimeVF(State.Builder, Step->getType(), State.VF * Part);
9495       EntryPart = State.Builder.CreateAdd(
9496           ScalarIV, State.Builder.CreateMul(StartIdx, Step), "induction");
9497     }
9498     State.set(this, EntryPart, Part);
9499   }
9500 }
9501 
9502 void VPInterleaveRecipe::execute(VPTransformState &State) {
9503   assert(!State.Instance && "Interleave group being replicated.");
9504   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9505                                       getStoredValues(), getMask());
9506 }
9507 
9508 void VPReductionRecipe::execute(VPTransformState &State) {
9509   assert(!State.Instance && "Reduction being replicated.");
9510   Value *PrevInChain = State.get(getChainOp(), 0);
9511   RecurKind Kind = RdxDesc->getRecurrenceKind();
9512   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9513   // Propagate the fast-math flags carried by the underlying instruction.
9514   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9515   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9516   for (unsigned Part = 0; Part < State.UF; ++Part) {
9517     Value *NewVecOp = State.get(getVecOp(), Part);
9518     if (VPValue *Cond = getCondOp()) {
9519       Value *NewCond = State.get(Cond, Part);
9520       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9521       Value *Iden = RdxDesc->getRecurrenceIdentity(
9522           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9523       Value *IdenVec =
9524           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9525       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9526       NewVecOp = Select;
9527     }
9528     Value *NewRed;
9529     Value *NextInChain;
9530     if (IsOrdered) {
9531       if (State.VF.isVector())
9532         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9533                                         PrevInChain);
9534       else
9535         NewRed = State.Builder.CreateBinOp(
9536             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9537             NewVecOp);
9538       PrevInChain = NewRed;
9539     } else {
9540       PrevInChain = State.get(getChainOp(), Part);
9541       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9542     }
9543     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9544       NextInChain =
9545           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9546                          NewRed, PrevInChain);
9547     } else if (IsOrdered)
9548       NextInChain = NewRed;
9549     else
9550       NextInChain = State.Builder.CreateBinOp(
9551           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
9552           PrevInChain);
9553     State.set(this, NextInChain, Part);
9554   }
9555 }
9556 
9557 void VPReplicateRecipe::execute(VPTransformState &State) {
9558   if (State.Instance) { // Generate a single instance.
9559     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9560     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
9561                                     IsPredicated, State);
9562     // Insert scalar instance packing it into a vector.
9563     if (AlsoPack && State.VF.isVector()) {
9564       // If we're constructing lane 0, initialize to start from poison.
9565       if (State.Instance->Lane.isFirstLane()) {
9566         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9567         Value *Poison = PoisonValue::get(
9568             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9569         State.set(this, Poison, State.Instance->Part);
9570       }
9571       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9572     }
9573     return;
9574   }
9575 
9576   // Generate scalar instances for all VF lanes of all UF parts, unless the
9577   // instruction is uniform inwhich case generate only the first lane for each
9578   // of the UF parts.
9579   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9580   assert((!State.VF.isScalable() || IsUniform) &&
9581          "Can't scalarize a scalable vector");
9582   for (unsigned Part = 0; Part < State.UF; ++Part)
9583     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9584       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
9585                                       VPIteration(Part, Lane), IsPredicated,
9586                                       State);
9587 }
9588 
9589 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9590   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9591 
9592   // Attempt to issue a wide load.
9593   LoadInst *LI = dyn_cast<LoadInst>(&Ingredient);
9594   StoreInst *SI = dyn_cast<StoreInst>(&Ingredient);
9595 
9596   assert((LI || SI) && "Invalid Load/Store instruction");
9597   assert((!SI || StoredValue) && "No stored value provided for widened store");
9598   assert((!LI || !StoredValue) && "Stored value provided for widened load");
9599 
9600   Type *ScalarDataTy = getLoadStoreType(&Ingredient);
9601 
9602   auto *DataTy = VectorType::get(ScalarDataTy, State.VF);
9603   const Align Alignment = getLoadStoreAlignment(&Ingredient);
9604   bool CreateGatherScatter = !Consecutive;
9605 
9606   auto &Builder = State.Builder;
9607   InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF);
9608   bool isMaskRequired = getMask();
9609   if (isMaskRequired)
9610     for (unsigned Part = 0; Part < State.UF; ++Part)
9611       BlockInMaskParts[Part] = State.get(getMask(), Part);
9612 
9613   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
9614     // Calculate the pointer for the specific unroll-part.
9615     GetElementPtrInst *PartPtr = nullptr;
9616 
9617     bool InBounds = false;
9618     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
9619       InBounds = gep->isInBounds();
9620     if (Reverse) {
9621       // If the address is consecutive but reversed, then the
9622       // wide store needs to start at the last vector element.
9623       // RunTimeVF =  VScale * VF.getKnownMinValue()
9624       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
9625       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF);
9626       // NumElt = -Part * RunTimeVF
9627       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
9628       // LastLane = 1 - RunTimeVF
9629       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
9630       PartPtr =
9631           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
9632       PartPtr->setIsInBounds(InBounds);
9633       PartPtr = cast<GetElementPtrInst>(
9634           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
9635       PartPtr->setIsInBounds(InBounds);
9636       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
9637         BlockInMaskParts[Part] =
9638             Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse");
9639     } else {
9640       Value *Increment =
9641           createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part);
9642       PartPtr = cast<GetElementPtrInst>(
9643           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
9644       PartPtr->setIsInBounds(InBounds);
9645     }
9646 
9647     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
9648     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
9649   };
9650 
9651   // Handle Stores:
9652   if (SI) {
9653     State.setDebugLocFromInst(SI);
9654 
9655     for (unsigned Part = 0; Part < State.UF; ++Part) {
9656       Instruction *NewSI = nullptr;
9657       Value *StoredVal = State.get(StoredValue, Part);
9658       if (CreateGatherScatter) {
9659         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9660         Value *VectorGep = State.get(getAddr(), Part);
9661         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
9662                                             MaskPart);
9663       } else {
9664         if (Reverse) {
9665           // If we store to reverse consecutive memory locations, then we need
9666           // to reverse the order of elements in the stored value.
9667           StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse");
9668           // We don't want to update the value in the map as it might be used in
9669           // another expression. So don't call resetVectorValue(StoredVal).
9670         }
9671         auto *VecPtr =
9672             CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
9673         if (isMaskRequired)
9674           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
9675                                             BlockInMaskParts[Part]);
9676         else
9677           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
9678       }
9679       State.addMetadata(NewSI, SI);
9680     }
9681     return;
9682   }
9683 
9684   // Handle loads.
9685   assert(LI && "Must have a load instruction");
9686   State.setDebugLocFromInst(LI);
9687   for (unsigned Part = 0; Part < State.UF; ++Part) {
9688     Value *NewLI;
9689     if (CreateGatherScatter) {
9690       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
9691       Value *VectorGep = State.get(getAddr(), Part);
9692       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
9693                                          nullptr, "wide.masked.gather");
9694       State.addMetadata(NewLI, LI);
9695     } else {
9696       auto *VecPtr =
9697           CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0)));
9698       if (isMaskRequired)
9699         NewLI = Builder.CreateMaskedLoad(
9700             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
9701             PoisonValue::get(DataTy), "wide.masked.load");
9702       else
9703         NewLI =
9704             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
9705 
9706       // Add metadata to the load, but setVectorValue to the reverse shuffle.
9707       State.addMetadata(NewLI, LI);
9708       if (Reverse)
9709         NewLI = Builder.CreateVectorReverse(NewLI, "reverse");
9710     }
9711 
9712     State.set(getVPSingleValue(), NewLI, Part);
9713   }
9714 }
9715 
9716 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9717 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9718 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9719 // for predication.
9720 static ScalarEpilogueLowering getScalarEpilogueLowering(
9721     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9722     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9723     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9724     LoopVectorizationLegality &LVL) {
9725   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9726   // don't look at hints or options, and don't request a scalar epilogue.
9727   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9728   // LoopAccessInfo (due to code dependency and not being able to reliably get
9729   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9730   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9731   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9732   // back to the old way and vectorize with versioning when forced. See D81345.)
9733   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9734                                                       PGSOQueryType::IRPass) &&
9735                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9736     return CM_ScalarEpilogueNotAllowedOptSize;
9737 
9738   // 2) If set, obey the directives
9739   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9740     switch (PreferPredicateOverEpilogue) {
9741     case PreferPredicateTy::ScalarEpilogue:
9742       return CM_ScalarEpilogueAllowed;
9743     case PreferPredicateTy::PredicateElseScalarEpilogue:
9744       return CM_ScalarEpilogueNotNeededUsePredicate;
9745     case PreferPredicateTy::PredicateOrDontVectorize:
9746       return CM_ScalarEpilogueNotAllowedUsePredicate;
9747     };
9748   }
9749 
9750   // 3) If set, obey the hints
9751   switch (Hints.getPredicate()) {
9752   case LoopVectorizeHints::FK_Enabled:
9753     return CM_ScalarEpilogueNotNeededUsePredicate;
9754   case LoopVectorizeHints::FK_Disabled:
9755     return CM_ScalarEpilogueAllowed;
9756   };
9757 
9758   // 4) if the TTI hook indicates this is profitable, request predication.
9759   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9760                                        LVL.getLAI()))
9761     return CM_ScalarEpilogueNotNeededUsePredicate;
9762 
9763   return CM_ScalarEpilogueAllowed;
9764 }
9765 
9766 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9767   // If Values have been set for this Def return the one relevant for \p Part.
9768   if (hasVectorValue(Def, Part))
9769     return Data.PerPartOutput[Def][Part];
9770 
9771   if (!hasScalarValue(Def, {Part, 0})) {
9772     Value *IRV = Def->getLiveInIRValue();
9773     Value *B = ILV->getBroadcastInstrs(IRV);
9774     set(Def, B, Part);
9775     return B;
9776   }
9777 
9778   Value *ScalarValue = get(Def, {Part, 0});
9779   // If we aren't vectorizing, we can just copy the scalar map values over
9780   // to the vector map.
9781   if (VF.isScalar()) {
9782     set(Def, ScalarValue, Part);
9783     return ScalarValue;
9784   }
9785 
9786   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9787   bool IsUniform = RepR && RepR->isUniform();
9788 
9789   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9790   // Check if there is a scalar value for the selected lane.
9791   if (!hasScalarValue(Def, {Part, LastLane})) {
9792     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9793     assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) ||
9794             isa<VPScalarIVStepsRecipe>(Def->getDef())) &&
9795            "unexpected recipe found to be invariant");
9796     IsUniform = true;
9797     LastLane = 0;
9798   }
9799 
9800   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9801   // Set the insert point after the last scalarized instruction or after the
9802   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
9803   // will directly follow the scalar definitions.
9804   auto OldIP = Builder.saveIP();
9805   auto NewIP =
9806       isa<PHINode>(LastInst)
9807           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
9808           : std::next(BasicBlock::iterator(LastInst));
9809   Builder.SetInsertPoint(&*NewIP);
9810 
9811   // However, if we are vectorizing, we need to construct the vector values.
9812   // If the value is known to be uniform after vectorization, we can just
9813   // broadcast the scalar value corresponding to lane zero for each unroll
9814   // iteration. Otherwise, we construct the vector values using
9815   // insertelement instructions. Since the resulting vectors are stored in
9816   // State, we will only generate the insertelements once.
9817   Value *VectorValue = nullptr;
9818   if (IsUniform) {
9819     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9820     set(Def, VectorValue, Part);
9821   } else {
9822     // Initialize packing with insertelements to start from undef.
9823     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
9824     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
9825     set(Def, Undef, Part);
9826     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
9827       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
9828     VectorValue = get(Def, Part);
9829   }
9830   Builder.restoreIP(OldIP);
9831   return VectorValue;
9832 }
9833 
9834 // Process the loop in the VPlan-native vectorization path. This path builds
9835 // VPlan upfront in the vectorization pipeline, which allows to apply
9836 // VPlan-to-VPlan transformations from the very beginning without modifying the
9837 // input LLVM IR.
9838 static bool processLoopInVPlanNativePath(
9839     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
9840     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
9841     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
9842     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
9843     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
9844     LoopVectorizationRequirements &Requirements) {
9845 
9846   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
9847     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
9848     return false;
9849   }
9850   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
9851   Function *F = L->getHeader()->getParent();
9852   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
9853 
9854   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
9855       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
9856 
9857   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
9858                                 &Hints, IAI);
9859   // Use the planner for outer loop vectorization.
9860   // TODO: CM is not used at this point inside the planner. Turn CM into an
9861   // optional argument if we don't need it in the future.
9862   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, ORE);
9863 
9864   // Get user vectorization factor.
9865   ElementCount UserVF = Hints.getWidth();
9866 
9867   CM.collectElementTypesForWidening();
9868 
9869   // Plan how to best vectorize, return the best VF and its cost.
9870   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
9871 
9872   // If we are stress testing VPlan builds, do not attempt to generate vector
9873   // code. Masked vector code generation support will follow soon.
9874   // Also, do not attempt to vectorize if no vector code will be produced.
9875   if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF)
9876     return false;
9877 
9878   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
9879 
9880   {
9881     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI,
9882                              F->getParent()->getDataLayout());
9883     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width,
9884                            VF.Width, 1, LVL, &CM, BFI, PSI, Checks);
9885     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
9886                       << L->getHeader()->getParent()->getName() << "\"\n");
9887     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false);
9888   }
9889 
9890   // Mark the loop as already vectorized to avoid vectorizing again.
9891   Hints.setAlreadyVectorized();
9892   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
9893   return true;
9894 }
9895 
9896 // Emit a remark if there are stores to floats that required a floating point
9897 // extension. If the vectorized loop was generated with floating point there
9898 // will be a performance penalty from the conversion overhead and the change in
9899 // the vector width.
9900 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
9901   SmallVector<Instruction *, 4> Worklist;
9902   for (BasicBlock *BB : L->getBlocks()) {
9903     for (Instruction &Inst : *BB) {
9904       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
9905         if (S->getValueOperand()->getType()->isFloatTy())
9906           Worklist.push_back(S);
9907       }
9908     }
9909   }
9910 
9911   // Traverse the floating point stores upwards searching, for floating point
9912   // conversions.
9913   SmallPtrSet<const Instruction *, 4> Visited;
9914   SmallPtrSet<const Instruction *, 4> EmittedRemark;
9915   while (!Worklist.empty()) {
9916     auto *I = Worklist.pop_back_val();
9917     if (!L->contains(I))
9918       continue;
9919     if (!Visited.insert(I).second)
9920       continue;
9921 
9922     // Emit a remark if the floating point store required a floating
9923     // point conversion.
9924     // TODO: More work could be done to identify the root cause such as a
9925     // constant or a function return type and point the user to it.
9926     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
9927       ORE->emit([&]() {
9928         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
9929                                           I->getDebugLoc(), L->getHeader())
9930                << "floating point conversion changes vector width. "
9931                << "Mixed floating point precision requires an up/down "
9932                << "cast that will negatively impact performance.";
9933       });
9934 
9935     for (Use &Op : I->operands())
9936       if (auto *OpI = dyn_cast<Instruction>(Op))
9937         Worklist.push_back(OpI);
9938   }
9939 }
9940 
9941 static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks,
9942                                        VectorizationFactor &VF,
9943                                        Optional<unsigned> VScale, Loop *L,
9944                                        ScalarEvolution &SE) {
9945   InstructionCost CheckCost = Checks.getCost();
9946   if (!CheckCost.isValid())
9947     return false;
9948 
9949   // When interleaving only scalar and vector cost will be equal, which in turn
9950   // would lead to a divide by 0. Fall back to hard threshold.
9951   if (VF.Width.isScalar()) {
9952     if (CheckCost > VectorizeMemoryCheckThreshold) {
9953       LLVM_DEBUG(
9954           dbgs()
9955           << "LV: Interleaving only is not profitable due to runtime checks\n");
9956       return false;
9957     }
9958     return true;
9959   }
9960 
9961   // The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated.
9962   double ScalarC = *VF.ScalarCost.getValue();
9963   if (ScalarC == 0)
9964     return true;
9965 
9966   // First, compute the minimum iteration count required so that the vector
9967   // loop outperforms the scalar loop.
9968   //  The total cost of the scalar loop is
9969   //   ScalarC * TC
9970   //  where
9971   //  * TC is the actual trip count of the loop.
9972   //  * ScalarC is the cost of a single scalar iteration.
9973   //
9974   //  The total cost of the vector loop is
9975   //    RtC + VecC * (TC / VF) + EpiC
9976   //  where
9977   //  * RtC is the cost of the generated runtime checks
9978   //  * VecC is the cost of a single vector iteration.
9979   //  * TC is the actual trip count of the loop
9980   //  * VF is the vectorization factor
9981   //  * EpiCost is the cost of the generated epilogue, including the cost
9982   //    of the remaining scalar operations.
9983   //
9984   // Vectorization is profitable once the total vector cost is less than the
9985   // total scalar cost:
9986   //   RtC + VecC * (TC / VF) + EpiC <  ScalarC * TC
9987   //
9988   // Now we can compute the minimum required trip count TC as
9989   //   (RtC + EpiC) / (ScalarC - (VecC / VF)) < TC
9990   //
9991   // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that
9992   // the computations are performed on doubles, not integers and the result
9993   // is rounded up, hence we get an upper estimate of the TC.
9994   unsigned IntVF = VF.Width.getKnownMinValue();
9995   if (VF.Width.isScalable()) {
9996     unsigned AssumedMinimumVscale = 1;
9997     if (VScale)
9998       AssumedMinimumVscale = *VScale;
9999     IntVF *= AssumedMinimumVscale;
10000   }
10001   double VecCOverVF = double(*VF.Cost.getValue()) / IntVF;
10002   double RtC = *CheckCost.getValue();
10003   double MinTC1 = RtC / (ScalarC - VecCOverVF);
10004 
10005   // Second, compute a minimum iteration count so that the cost of the
10006   // runtime checks is only a fraction of the total scalar loop cost. This
10007   // adds a loop-dependent bound on the overhead incurred if the runtime
10008   // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC
10009   // * TC. To bound the runtime check to be a fraction 1/X of the scalar
10010   // cost, compute
10011   //   RtC < ScalarC * TC * (1 / X)  ==>  RtC * X / ScalarC < TC
10012   double MinTC2 = RtC * 10 / ScalarC;
10013 
10014   // Now pick the larger minimum. If it is not a multiple of VF, choose the
10015   // next closest multiple of VF. This should partly compensate for ignoring
10016   // the epilogue cost.
10017   uint64_t MinTC = std::ceil(std::max(MinTC1, MinTC2));
10018   VF.MinProfitableTripCount = ElementCount::getFixed(alignTo(MinTC, IntVF));
10019 
10020   LLVM_DEBUG(
10021       dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"
10022              << VF.MinProfitableTripCount << "\n");
10023 
10024   // Skip vectorization if the expected trip count is less than the minimum
10025   // required trip count.
10026   if (auto ExpectedTC = getSmallBestKnownTC(SE, L)) {
10027     if (ElementCount::isKnownLT(ElementCount::getFixed(*ExpectedTC),
10028                                 VF.MinProfitableTripCount)) {
10029       LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "
10030                            "trip count < minimum profitable VF ("
10031                         << *ExpectedTC << " < " << VF.MinProfitableTripCount
10032                         << ")\n");
10033 
10034       return false;
10035     }
10036   }
10037   return true;
10038 }
10039 
10040 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10041     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10042                                !EnableLoopInterleaving),
10043       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10044                               !EnableLoopVectorization) {}
10045 
10046 bool LoopVectorizePass::processLoop(Loop *L) {
10047   assert((EnableVPlanNativePath || L->isInnermost()) &&
10048          "VPlan-native path is not enabled. Only process inner loops.");
10049 
10050 #ifndef NDEBUG
10051   const std::string DebugLocStr = getDebugLocString(L);
10052 #endif /* NDEBUG */
10053 
10054   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"
10055                     << L->getHeader()->getParent()->getName() << "' from "
10056                     << DebugLocStr << "\n");
10057 
10058   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI);
10059 
10060   LLVM_DEBUG(
10061       dbgs() << "LV: Loop hints:"
10062              << " force="
10063              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10064                      ? "disabled"
10065                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10066                             ? "enabled"
10067                             : "?"))
10068              << " width=" << Hints.getWidth()
10069              << " interleave=" << Hints.getInterleave() << "\n");
10070 
10071   // Function containing loop
10072   Function *F = L->getHeader()->getParent();
10073 
10074   // Looking at the diagnostic output is the only way to determine if a loop
10075   // was vectorized (other than looking at the IR or machine code), so it
10076   // is important to generate an optimization remark for each loop. Most of
10077   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10078   // generated as OptimizationRemark and OptimizationRemarkMissed are
10079   // less verbose reporting vectorized loops and unvectorized loops that may
10080   // benefit from vectorization, respectively.
10081 
10082   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10083     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10084     return false;
10085   }
10086 
10087   PredicatedScalarEvolution PSE(*SE, *L);
10088 
10089   // Check if it is legal to vectorize the loop.
10090   LoopVectorizationRequirements Requirements;
10091   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10092                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10093   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10094     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10095     Hints.emitRemarkWithHints();
10096     return false;
10097   }
10098 
10099   // Check the function attributes and profiles to find out if this function
10100   // should be optimized for size.
10101   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10102       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10103 
10104   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10105   // here. They may require CFG and instruction level transformations before
10106   // even evaluating whether vectorization is profitable. Since we cannot modify
10107   // the incoming IR, we need to build VPlan upfront in the vectorization
10108   // pipeline.
10109   if (!L->isInnermost())
10110     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10111                                         ORE, BFI, PSI, Hints, Requirements);
10112 
10113   assert(L->isInnermost() && "Inner loop expected.");
10114 
10115   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10116   // count by optimizing for size, to minimize overheads.
10117   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10118   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10119     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10120                       << "This loop is worth vectorizing only if no scalar "
10121                       << "iteration overheads are incurred.");
10122     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10123       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10124     else {
10125       LLVM_DEBUG(dbgs() << "\n");
10126       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10127     }
10128   }
10129 
10130   // Check the function attributes to see if implicit floats are allowed.
10131   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10132   // an integer loop and the vector instructions selected are purely integer
10133   // vector instructions?
10134   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10135     reportVectorizationFailure(
10136         "Can't vectorize when the NoImplicitFloat attribute is used",
10137         "loop not vectorized due to NoImplicitFloat attribute",
10138         "NoImplicitFloat", ORE, L);
10139     Hints.emitRemarkWithHints();
10140     return false;
10141   }
10142 
10143   // Check if the target supports potentially unsafe FP vectorization.
10144   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10145   // for the target we're vectorizing for, to make sure none of the
10146   // additional fp-math flags can help.
10147   if (Hints.isPotentiallyUnsafe() &&
10148       TTI->isFPVectorizationPotentiallyUnsafe()) {
10149     reportVectorizationFailure(
10150         "Potentially unsafe FP op prevents vectorization",
10151         "loop not vectorized due to unsafe FP support.",
10152         "UnsafeFP", ORE, L);
10153     Hints.emitRemarkWithHints();
10154     return false;
10155   }
10156 
10157   bool AllowOrderedReductions;
10158   // If the flag is set, use that instead and override the TTI behaviour.
10159   if (ForceOrderedReductions.getNumOccurrences() > 0)
10160     AllowOrderedReductions = ForceOrderedReductions;
10161   else
10162     AllowOrderedReductions = TTI->enableOrderedReductions();
10163   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10164     ORE->emit([&]() {
10165       auto *ExactFPMathInst = Requirements.getExactFPInst();
10166       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10167                                                  ExactFPMathInst->getDebugLoc(),
10168                                                  ExactFPMathInst->getParent())
10169              << "loop not vectorized: cannot prove it is safe to reorder "
10170                 "floating-point operations";
10171     });
10172     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10173                          "reorder floating-point operations\n");
10174     Hints.emitRemarkWithHints();
10175     return false;
10176   }
10177 
10178   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10179   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10180 
10181   // If an override option has been passed in for interleaved accesses, use it.
10182   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10183     UseInterleaved = EnableInterleavedMemAccesses;
10184 
10185   // Analyze interleaved memory accesses.
10186   if (UseInterleaved) {
10187     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10188   }
10189 
10190   // Use the cost model.
10191   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10192                                 F, &Hints, IAI);
10193   CM.collectValuesToIgnore();
10194   CM.collectElementTypesForWidening();
10195 
10196   // Use the planner for vectorization.
10197   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, ORE);
10198 
10199   // Get user vectorization factor and interleave count.
10200   ElementCount UserVF = Hints.getWidth();
10201   unsigned UserIC = Hints.getInterleave();
10202 
10203   // Plan how to best vectorize, return the best VF and its cost.
10204   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10205 
10206   VectorizationFactor VF = VectorizationFactor::Disabled();
10207   unsigned IC = 1;
10208 
10209   GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI,
10210                            F->getParent()->getDataLayout());
10211   if (MaybeVF) {
10212     VF = *MaybeVF;
10213     // Select the interleave count.
10214     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10215 
10216     unsigned SelectedIC = std::max(IC, UserIC);
10217     //  Optimistically generate runtime checks if they are needed. Drop them if
10218     //  they turn out to not be profitable.
10219     if (VF.Width.isVector() || SelectedIC > 1)
10220       Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC);
10221 
10222     // Check if it is profitable to vectorize with runtime checks.
10223     bool ForceVectorization =
10224         Hints.getForce() == LoopVectorizeHints::FK_Enabled;
10225     if (!ForceVectorization &&
10226         !areRuntimeChecksProfitable(Checks, VF, CM.getVScaleForTuning(), L,
10227                                     *PSE.getSE())) {
10228       ORE->emit([&]() {
10229         return OptimizationRemarkAnalysisAliasing(
10230                    DEBUG_TYPE, "CantReorderMemOps", L->getStartLoc(),
10231                    L->getHeader())
10232                << "loop not vectorized: cannot prove it is safe to reorder "
10233                   "memory operations";
10234       });
10235       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
10236       Hints.emitRemarkWithHints();
10237       return false;
10238     }
10239   }
10240 
10241   // Identify the diagnostic messages that should be produced.
10242   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10243   bool VectorizeLoop = true, InterleaveLoop = true;
10244   if (VF.Width.isScalar()) {
10245     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10246     VecDiagMsg = std::make_pair(
10247         "VectorizationNotBeneficial",
10248         "the cost-model indicates that vectorization is not beneficial");
10249     VectorizeLoop = false;
10250   }
10251 
10252   if (!MaybeVF && UserIC > 1) {
10253     // Tell the user interleaving was avoided up-front, despite being explicitly
10254     // requested.
10255     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10256                          "interleaving should be avoided up front\n");
10257     IntDiagMsg = std::make_pair(
10258         "InterleavingAvoided",
10259         "Ignoring UserIC, because interleaving was avoided up front");
10260     InterleaveLoop = false;
10261   } else if (IC == 1 && UserIC <= 1) {
10262     // Tell the user interleaving is not beneficial.
10263     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10264     IntDiagMsg = std::make_pair(
10265         "InterleavingNotBeneficial",
10266         "the cost-model indicates that interleaving is not beneficial");
10267     InterleaveLoop = false;
10268     if (UserIC == 1) {
10269       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10270       IntDiagMsg.second +=
10271           " and is explicitly disabled or interleave count is set to 1";
10272     }
10273   } else if (IC > 1 && UserIC == 1) {
10274     // Tell the user interleaving is beneficial, but it explicitly disabled.
10275     LLVM_DEBUG(
10276         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10277     IntDiagMsg = std::make_pair(
10278         "InterleavingBeneficialButDisabled",
10279         "the cost-model indicates that interleaving is beneficial "
10280         "but is explicitly disabled or interleave count is set to 1");
10281     InterleaveLoop = false;
10282   }
10283 
10284   // Override IC if user provided an interleave count.
10285   IC = UserIC > 0 ? UserIC : IC;
10286 
10287   // Emit diagnostic messages, if any.
10288   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10289   if (!VectorizeLoop && !InterleaveLoop) {
10290     // Do not vectorize or interleaving the loop.
10291     ORE->emit([&]() {
10292       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10293                                       L->getStartLoc(), L->getHeader())
10294              << VecDiagMsg.second;
10295     });
10296     ORE->emit([&]() {
10297       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10298                                       L->getStartLoc(), L->getHeader())
10299              << IntDiagMsg.second;
10300     });
10301     return false;
10302   } else if (!VectorizeLoop && InterleaveLoop) {
10303     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10304     ORE->emit([&]() {
10305       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10306                                         L->getStartLoc(), L->getHeader())
10307              << VecDiagMsg.second;
10308     });
10309   } else if (VectorizeLoop && !InterleaveLoop) {
10310     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10311                       << ") in " << DebugLocStr << '\n');
10312     ORE->emit([&]() {
10313       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10314                                         L->getStartLoc(), L->getHeader())
10315              << IntDiagMsg.second;
10316     });
10317   } else if (VectorizeLoop && InterleaveLoop) {
10318     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10319                       << ") in " << DebugLocStr << '\n');
10320     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10321   }
10322 
10323   bool DisableRuntimeUnroll = false;
10324   MDNode *OrigLoopID = L->getLoopID();
10325   {
10326     using namespace ore;
10327     if (!VectorizeLoop) {
10328       assert(IC > 1 && "interleave count should not be 1 or 0");
10329       // If we decided that it is not legal to vectorize the loop, then
10330       // interleave it.
10331       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10332                                  &CM, BFI, PSI, Checks);
10333 
10334       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10335       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false);
10336 
10337       ORE->emit([&]() {
10338         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10339                                   L->getHeader())
10340                << "interleaved loop (interleaved count: "
10341                << NV("InterleaveCount", IC) << ")";
10342       });
10343     } else {
10344       // If we decided that it is *legal* to vectorize the loop, then do it.
10345 
10346       // Consider vectorizing the epilogue too if it's profitable.
10347       VectorizationFactor EpilogueVF =
10348           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10349       if (EpilogueVF.Width.isVector()) {
10350 
10351         // The first pass vectorizes the main loop and creates a scalar epilogue
10352         // to be vectorized by executing the plan (potentially with a different
10353         // factor) again shortly afterwards.
10354         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10355         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10356                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10357 
10358         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10359         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10360                         DT, true);
10361         ++LoopsVectorized;
10362 
10363         // Second pass vectorizes the epilogue and adjusts the control flow
10364         // edges from the first pass.
10365         EPI.MainLoopVF = EPI.EpilogueVF;
10366         EPI.MainLoopUF = EPI.EpilogueUF;
10367         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10368                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10369                                                  Checks);
10370 
10371         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10372         VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion();
10373         VPBasicBlock *Header = VectorLoop->getEntryBasicBlock();
10374         Header->setName("vec.epilog.vector.body");
10375 
10376         // Ensure that the start values for any VPReductionPHIRecipes are
10377         // updated before vectorising the epilogue loop.
10378         for (VPRecipeBase &R : Header->phis()) {
10379           if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) {
10380             if (auto *Resume = MainILV.getReductionResumeValue(
10381                     ReductionPhi->getRecurrenceDescriptor())) {
10382               VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(Resume);
10383               ReductionPhi->setOperand(0, StartVal);
10384             }
10385           }
10386         }
10387 
10388         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10389                         DT, true);
10390         ++LoopsEpilogueVectorized;
10391 
10392         if (!MainILV.areSafetyChecksAdded())
10393           DisableRuntimeUnroll = true;
10394       } else {
10395         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width,
10396                                VF.MinProfitableTripCount, IC, &LVL, &CM, BFI,
10397                                PSI, Checks);
10398 
10399         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10400         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false);
10401         ++LoopsVectorized;
10402 
10403         // Add metadata to disable runtime unrolling a scalar loop when there
10404         // are no runtime checks about strides and memory. A scalar loop that is
10405         // rarely used is not worth unrolling.
10406         if (!LB.areSafetyChecksAdded())
10407           DisableRuntimeUnroll = true;
10408       }
10409       // Report the vectorization decision.
10410       ORE->emit([&]() {
10411         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10412                                   L->getHeader())
10413                << "vectorized loop (vectorization width: "
10414                << NV("VectorizationFactor", VF.Width)
10415                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10416       });
10417     }
10418 
10419     if (ORE->allowExtraAnalysis(LV_NAME))
10420       checkMixedPrecision(L, ORE);
10421   }
10422 
10423   Optional<MDNode *> RemainderLoopID =
10424       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10425                                       LLVMLoopVectorizeFollowupEpilogue});
10426   if (RemainderLoopID) {
10427     L->setLoopID(RemainderLoopID.value());
10428   } else {
10429     if (DisableRuntimeUnroll)
10430       AddRuntimeUnrollDisableMetaData(L);
10431 
10432     // Mark the loop as already vectorized to avoid vectorizing again.
10433     Hints.setAlreadyVectorized();
10434   }
10435 
10436   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10437   return true;
10438 }
10439 
10440 LoopVectorizeResult LoopVectorizePass::runImpl(
10441     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10442     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10443     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10444     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10445     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10446   SE = &SE_;
10447   LI = &LI_;
10448   TTI = &TTI_;
10449   DT = &DT_;
10450   BFI = &BFI_;
10451   TLI = TLI_;
10452   AA = &AA_;
10453   AC = &AC_;
10454   GetLAA = &GetLAA_;
10455   DB = &DB_;
10456   ORE = &ORE_;
10457   PSI = PSI_;
10458 
10459   // Don't attempt if
10460   // 1. the target claims to have no vector registers, and
10461   // 2. interleaving won't help ILP.
10462   //
10463   // The second condition is necessary because, even if the target has no
10464   // vector registers, loop vectorization may still enable scalar
10465   // interleaving.
10466   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10467       TTI->getMaxInterleaveFactor(1) < 2)
10468     return LoopVectorizeResult(false, false);
10469 
10470   bool Changed = false, CFGChanged = false;
10471 
10472   // The vectorizer requires loops to be in simplified form.
10473   // Since simplification may add new inner loops, it has to run before the
10474   // legality and profitability checks. This means running the loop vectorizer
10475   // will simplify all loops, regardless of whether anything end up being
10476   // vectorized.
10477   for (auto &L : *LI)
10478     Changed |= CFGChanged |=
10479         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10480 
10481   // Build up a worklist of inner-loops to vectorize. This is necessary as
10482   // the act of vectorizing or partially unrolling a loop creates new loops
10483   // and can invalidate iterators across the loops.
10484   SmallVector<Loop *, 8> Worklist;
10485 
10486   for (Loop *L : *LI)
10487     collectSupportedLoops(*L, LI, ORE, Worklist);
10488 
10489   LoopsAnalyzed += Worklist.size();
10490 
10491   // Now walk the identified inner loops.
10492   while (!Worklist.empty()) {
10493     Loop *L = Worklist.pop_back_val();
10494 
10495     // For the inner loops we actually process, form LCSSA to simplify the
10496     // transform.
10497     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10498 
10499     Changed |= CFGChanged |= processLoop(L);
10500   }
10501 
10502   // Process each loop nest in the function.
10503   return LoopVectorizeResult(Changed, CFGChanged);
10504 }
10505 
10506 PreservedAnalyses LoopVectorizePass::run(Function &F,
10507                                          FunctionAnalysisManager &AM) {
10508     auto &LI = AM.getResult<LoopAnalysis>(F);
10509     // There are no loops in the function. Return before computing other expensive
10510     // analyses.
10511     if (LI.empty())
10512       return PreservedAnalyses::all();
10513     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10514     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10515     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10516     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10517     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10518     auto &AA = AM.getResult<AAManager>(F);
10519     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10520     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10521     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10522 
10523     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10524     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10525         [&](Loop &L) -> const LoopAccessInfo & {
10526       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10527                                         TLI, TTI, nullptr, nullptr, nullptr};
10528       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10529     };
10530     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10531     ProfileSummaryInfo *PSI =
10532         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10533     LoopVectorizeResult Result =
10534         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10535     if (!Result.MadeAnyChange)
10536       return PreservedAnalyses::all();
10537     PreservedAnalyses PA;
10538 
10539     // We currently do not preserve loopinfo/dominator analyses with outer loop
10540     // vectorization. Until this is addressed, mark these analyses as preserved
10541     // only for non-VPlan-native path.
10542     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10543     if (!EnableVPlanNativePath) {
10544       PA.preserve<LoopAnalysis>();
10545       PA.preserve<DominatorTreeAnalysis>();
10546     }
10547 
10548     if (Result.MadeCFGChange) {
10549       // Making CFG changes likely means a loop got vectorized. Indicate that
10550       // extra simplification passes should be run.
10551       // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only
10552       // be run if runtime checks have been added.
10553       AM.getResult<ShouldRunExtraVectorPasses>(F);
10554       PA.preserve<ShouldRunExtraVectorPasses>();
10555     } else {
10556       PA.preserveSet<CFGAnalyses>();
10557     }
10558     return PA;
10559 }
10560 
10561 void LoopVectorizePass::printPipeline(
10562     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10563   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10564       OS, MapClassName2PassName);
10565 
10566   OS << "<";
10567   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10568   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10569   OS << ">";
10570 }
10571