1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/PatternMatch.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 202 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 203 cl::desc("The maximum allowed number of runtime memory checks with a " 204 "vectorize(enable) pragma.")); 205 206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 207 // that predication is preferred, and this lists all options. I.e., the 208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 209 // and predicate the instructions accordingly. If tail-folding fails, there are 210 // different fallback strategies depending on these values: 211 namespace PreferPredicateTy { 212 enum Option { 213 ScalarEpilogue = 0, 214 PredicateElseScalarEpilogue, 215 PredicateOrDontVectorize 216 }; 217 } // namespace PreferPredicateTy 218 219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 220 "prefer-predicate-over-epilogue", 221 cl::init(PreferPredicateTy::ScalarEpilogue), 222 cl::Hidden, 223 cl::desc("Tail-folding and predication preferences over creating a scalar " 224 "epilogue loop."), 225 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 226 "scalar-epilogue", 227 "Don't tail-predicate loops, create scalar epilogue"), 228 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 229 "predicate-else-scalar-epilogue", 230 "prefer tail-folding, create scalar epilogue if tail " 231 "folding fails."), 232 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 233 "predicate-dont-vectorize", 234 "prefers tail-folding, don't attempt vectorization if " 235 "tail-folding fails."))); 236 237 static cl::opt<bool> MaximizeBandwidth( 238 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 239 cl::desc("Maximize bandwidth when selecting vectorization factor which " 240 "will be determined by the smallest type in loop.")); 241 242 static cl::opt<bool> EnableInterleavedMemAccesses( 243 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 245 246 /// An interleave-group may need masking if it resides in a block that needs 247 /// predication, or in order to mask away gaps. 248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 249 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 250 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 251 252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 253 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 254 cl::desc("We don't interleave loops with a estimated constant trip count " 255 "below this number")); 256 257 static cl::opt<unsigned> ForceTargetNumScalarRegs( 258 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 259 cl::desc("A flag that overrides the target's number of scalar registers.")); 260 261 static cl::opt<unsigned> ForceTargetNumVectorRegs( 262 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 263 cl::desc("A flag that overrides the target's number of vector registers.")); 264 265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 266 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "scalar loops.")); 269 270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 271 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's max interleave factor for " 273 "vectorized loops.")); 274 275 static cl::opt<unsigned> ForceTargetInstructionCost( 276 "force-target-instruction-cost", cl::init(0), cl::Hidden, 277 cl::desc("A flag that overrides the target's expected cost for " 278 "an instruction to a single constant value. Mostly " 279 "useful for getting consistent testing.")); 280 281 static cl::opt<bool> ForceTargetSupportsScalableVectors( 282 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 283 cl::desc( 284 "Pretend that scalable vectors are supported, even if the target does " 285 "not support them. This flag should only be used for testing.")); 286 287 static cl::opt<unsigned> SmallLoopCost( 288 "small-loop-cost", cl::init(20), cl::Hidden, 289 cl::desc( 290 "The cost of a loop that is considered 'small' by the interleaver.")); 291 292 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 293 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 294 cl::desc("Enable the use of the block frequency analysis to access PGO " 295 "heuristics minimizing code growth in cold regions and being more " 296 "aggressive in hot regions.")); 297 298 // Runtime interleave loops for load/store throughput. 299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 300 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 301 cl::desc( 302 "Enable runtime interleaving until load/store ports are saturated")); 303 304 /// Interleave small loops with scalar reductions. 305 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 306 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 307 cl::desc("Enable interleaving for loops with small iteration counts that " 308 "contain scalar reductions to expose ILP.")); 309 310 /// The number of stores in a loop that are allowed to need predication. 311 static cl::opt<unsigned> NumberOfStoresToPredicate( 312 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 313 cl::desc("Max number of stores to be predicated behind an if.")); 314 315 static cl::opt<bool> EnableIndVarRegisterHeur( 316 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 317 cl::desc("Count the induction variable only once when interleaving")); 318 319 static cl::opt<bool> EnableCondStoresVectorization( 320 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 321 cl::desc("Enable if predication of stores during vectorization.")); 322 323 static cl::opt<unsigned> MaxNestedScalarReductionIC( 324 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 325 cl::desc("The maximum interleave count to use when interleaving a scalar " 326 "reduction in a nested loop.")); 327 328 static cl::opt<bool> 329 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 330 cl::Hidden, 331 cl::desc("Prefer in-loop vector reductions, " 332 "overriding the targets preference.")); 333 334 static cl::opt<bool> ForceOrderedReductions( 335 "force-ordered-reductions", cl::init(false), cl::Hidden, 336 cl::desc("Enable the vectorisation of loops with in-order (strict) " 337 "FP reductions")); 338 339 static cl::opt<bool> PreferPredicatedReductionSelect( 340 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 341 cl::desc( 342 "Prefer predicating a reduction operation over an after loop select.")); 343 344 cl::opt<bool> EnableVPlanNativePath( 345 "enable-vplan-native-path", cl::init(false), cl::Hidden, 346 cl::desc("Enable VPlan-native vectorization path with " 347 "support for outer loop vectorization.")); 348 349 // FIXME: Remove this switch once we have divergence analysis. Currently we 350 // assume divergent non-backedge branches when this switch is true. 351 cl::opt<bool> EnableVPlanPredication( 352 "enable-vplan-predication", cl::init(false), cl::Hidden, 353 cl::desc("Enable VPlan-native vectorization path predicator with " 354 "support for outer loop vectorization.")); 355 356 // This flag enables the stress testing of the VPlan H-CFG construction in the 357 // VPlan-native vectorization path. It must be used in conjuction with 358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 359 // verification of the H-CFGs built. 360 static cl::opt<bool> VPlanBuildStressTest( 361 "vplan-build-stress-test", cl::init(false), cl::Hidden, 362 cl::desc( 363 "Build VPlan for every supported loop nest in the function and bail " 364 "out right after the build (stress test the VPlan H-CFG construction " 365 "in the VPlan-native vectorization path).")); 366 367 cl::opt<bool> llvm::EnableLoopInterleaving( 368 "interleave-loops", cl::init(true), cl::Hidden, 369 cl::desc("Enable loop interleaving in Loop vectorization passes")); 370 cl::opt<bool> llvm::EnableLoopVectorization( 371 "vectorize-loops", cl::init(true), cl::Hidden, 372 cl::desc("Run the Loop vectorization passes")); 373 374 cl::opt<bool> PrintVPlansInDotFormat( 375 "vplan-print-in-dot-format", cl::init(false), cl::Hidden, 376 cl::desc("Use dot format instead of plain text when dumping VPlans")); 377 378 /// A helper function that returns true if the given type is irregular. The 379 /// type is irregular if its allocated size doesn't equal the store size of an 380 /// element of the corresponding vector type. 381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) { 382 // Determine if an array of N elements of type Ty is "bitcast compatible" 383 // with a <N x Ty> vector. 384 // This is only true if there is no padding between the array elements. 385 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 386 } 387 388 /// A helper function that returns the reciprocal of the block probability of 389 /// predicated blocks. If we return X, we are assuming the predicated block 390 /// will execute once for every X iterations of the loop header. 391 /// 392 /// TODO: We should use actual block probability here, if available. Currently, 393 /// we always assume predicated blocks have a 50% chance of executing. 394 static unsigned getReciprocalPredBlockProb() { return 2; } 395 396 /// A helper function that returns an integer or floating-point constant with 397 /// value C. 398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 399 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 400 : ConstantFP::get(Ty, C); 401 } 402 403 /// Returns "best known" trip count for the specified loop \p L as defined by 404 /// the following procedure: 405 /// 1) Returns exact trip count if it is known. 406 /// 2) Returns expected trip count according to profile data if any. 407 /// 3) Returns upper bound estimate if it is known. 408 /// 4) Returns None if all of the above failed. 409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 410 // Check if exact trip count is known. 411 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 412 return ExpectedTC; 413 414 // Check if there is an expected trip count available from profile data. 415 if (LoopVectorizeWithBlockFrequency) 416 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 417 return EstimatedTC; 418 419 // Check if upper bound estimate is known. 420 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 421 return ExpectedTC; 422 423 return None; 424 } 425 426 // Forward declare GeneratedRTChecks. 427 class GeneratedRTChecks; 428 429 namespace llvm { 430 431 /// InnerLoopVectorizer vectorizes loops which contain only one basic 432 /// block to a specified vectorization factor (VF). 433 /// This class performs the widening of scalars into vectors, or multiple 434 /// scalars. This class also implements the following features: 435 /// * It inserts an epilogue loop for handling loops that don't have iteration 436 /// counts that are known to be a multiple of the vectorization factor. 437 /// * It handles the code generation for reduction variables. 438 /// * Scalarization (implementation using scalars) of un-vectorizable 439 /// instructions. 440 /// InnerLoopVectorizer does not perform any vectorization-legality 441 /// checks, and relies on the caller to check for the different legality 442 /// aspects. The InnerLoopVectorizer relies on the 443 /// LoopVectorizationLegality class to provide information about the induction 444 /// and reduction variables that were found to a given vectorization factor. 445 class InnerLoopVectorizer { 446 public: 447 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 448 LoopInfo *LI, DominatorTree *DT, 449 const TargetLibraryInfo *TLI, 450 const TargetTransformInfo *TTI, AssumptionCache *AC, 451 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 452 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 453 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 454 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 455 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 456 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 457 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 458 PSI(PSI), RTChecks(RTChecks) { 459 // Query this against the original loop and save it here because the profile 460 // of the original loop header may change as the transformation happens. 461 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 462 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 463 } 464 465 virtual ~InnerLoopVectorizer() = default; 466 467 /// Create a new empty loop that will contain vectorized instructions later 468 /// on, while the old loop will be used as the scalar remainder. Control flow 469 /// is generated around the vectorized (and scalar epilogue) loops consisting 470 /// of various checks and bypasses. Return the pre-header block of the new 471 /// loop. 472 /// In the case of epilogue vectorization, this function is overriden to 473 /// handle the more complex control flow around the loops. 474 virtual BasicBlock *createVectorizedLoopSkeleton(); 475 476 /// Widen a single instruction within the innermost loop. 477 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 478 VPTransformState &State); 479 480 /// Widen a single call instruction within the innermost loop. 481 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 482 VPTransformState &State); 483 484 /// Widen a single select instruction within the innermost loop. 485 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 486 bool InvariantCond, VPTransformState &State); 487 488 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 489 void fixVectorizedLoop(VPTransformState &State); 490 491 // Return true if any runtime check is added. 492 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 493 494 /// A type for vectorized values in the new loop. Each value from the 495 /// original loop, when vectorized, is represented by UF vector values in the 496 /// new unrolled loop, where UF is the unroll factor. 497 using VectorParts = SmallVector<Value *, 2>; 498 499 /// Vectorize a single GetElementPtrInst based on information gathered and 500 /// decisions taken during planning. 501 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 502 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 503 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 504 505 /// Vectorize a single first-order recurrence or pointer induction PHINode in 506 /// a block. This method handles the induction variable canonicalization. It 507 /// supports both VF = 1 for unrolled loops and arbitrary length vectors. 508 void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR, 509 VPTransformState &State); 510 511 /// A helper function to scalarize a single Instruction in the innermost loop. 512 /// Generates a sequence of scalar instances for each lane between \p MinLane 513 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 514 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 515 /// Instr's operands. 516 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 517 const VPIteration &Instance, bool IfPredicateInstr, 518 VPTransformState &State); 519 520 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 521 /// is provided, the integer induction variable will first be truncated to 522 /// the corresponding type. 523 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 524 VPValue *Def, VPValue *CastDef, 525 VPTransformState &State); 526 527 /// Construct the vector value of a scalarized value \p V one lane at a time. 528 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 529 VPTransformState &State); 530 531 /// Try to vectorize interleaved access group \p Group with the base address 532 /// given in \p Addr, optionally masking the vector operations if \p 533 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 534 /// values in the vectorized loop. 535 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 536 ArrayRef<VPValue *> VPDefs, 537 VPTransformState &State, VPValue *Addr, 538 ArrayRef<VPValue *> StoredValues, 539 VPValue *BlockInMask = nullptr); 540 541 /// Vectorize Load and Store instructions with the base address given in \p 542 /// Addr, optionally masking the vector operations if \p BlockInMask is 543 /// non-null. Use \p State to translate given VPValues to IR values in the 544 /// vectorized loop. 545 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 546 VPValue *Def, VPValue *Addr, 547 VPValue *StoredValue, VPValue *BlockInMask); 548 549 /// Set the debug location in the builder \p Ptr using the debug location in 550 /// \p V. If \p Ptr is None then it uses the class member's Builder. 551 void setDebugLocFromInst(const Value *V, 552 Optional<IRBuilder<> *> CustomBuilder = None); 553 554 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 555 void fixNonInductionPHIs(VPTransformState &State); 556 557 /// Returns true if the reordering of FP operations is not allowed, but we are 558 /// able to vectorize with strict in-order reductions for the given RdxDesc. 559 bool useOrderedReductions(RecurrenceDescriptor &RdxDesc); 560 561 /// Create a broadcast instruction. This method generates a broadcast 562 /// instruction (shuffle) for loop invariant values and for the induction 563 /// value. If this is the induction variable then we extend it to N, N+1, ... 564 /// this is needed because each iteration in the loop corresponds to a SIMD 565 /// element. 566 virtual Value *getBroadcastInstrs(Value *V); 567 568 protected: 569 friend class LoopVectorizationPlanner; 570 571 /// A small list of PHINodes. 572 using PhiVector = SmallVector<PHINode *, 4>; 573 574 /// A type for scalarized values in the new loop. Each value from the 575 /// original loop, when scalarized, is represented by UF x VF scalar values 576 /// in the new unrolled loop, where UF is the unroll factor and VF is the 577 /// vectorization factor. 578 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 579 580 /// Set up the values of the IVs correctly when exiting the vector loop. 581 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 582 Value *CountRoundDown, Value *EndValue, 583 BasicBlock *MiddleBlock); 584 585 /// Create a new induction variable inside L. 586 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 587 Value *Step, Instruction *DL); 588 589 /// Handle all cross-iteration phis in the header. 590 void fixCrossIterationPHIs(VPTransformState &State); 591 592 /// Create the exit value of first order recurrences in the middle block and 593 /// update their users. 594 void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State); 595 596 /// Create code for the loop exit value of the reduction. 597 void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); 598 599 /// Clear NSW/NUW flags from reduction instructions if necessary. 600 void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 601 VPTransformState &State); 602 603 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 604 /// means we need to add the appropriate incoming value from the middle 605 /// block as exiting edges from the scalar epilogue loop (if present) are 606 /// already in place, and we exit the vector loop exclusively to the middle 607 /// block. 608 void fixLCSSAPHIs(VPTransformState &State); 609 610 /// Iteratively sink the scalarized operands of a predicated instruction into 611 /// the block that was created for it. 612 void sinkScalarOperands(Instruction *PredInst); 613 614 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 615 /// represented as. 616 void truncateToMinimalBitwidths(VPTransformState &State); 617 618 /// This function adds 619 /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) 620 /// to each vector element of Val. The sequence starts at StartIndex. 621 /// \p Opcode is relevant for FP induction variable. 622 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 623 Instruction::BinaryOps Opcode = 624 Instruction::BinaryOpsEnd); 625 626 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 627 /// variable on which to base the steps, \p Step is the size of the step, and 628 /// \p EntryVal is the value from the original loop that maps to the steps. 629 /// Note that \p EntryVal doesn't have to be an induction variable - it 630 /// can also be a truncate instruction. 631 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 632 const InductionDescriptor &ID, VPValue *Def, 633 VPValue *CastDef, VPTransformState &State); 634 635 /// Create a vector induction phi node based on an existing scalar one. \p 636 /// EntryVal is the value from the original loop that maps to the vector phi 637 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 638 /// truncate instruction, instead of widening the original IV, we widen a 639 /// version of the IV truncated to \p EntryVal's type. 640 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 641 Value *Step, Value *Start, 642 Instruction *EntryVal, VPValue *Def, 643 VPValue *CastDef, 644 VPTransformState &State); 645 646 /// Returns true if an instruction \p I should be scalarized instead of 647 /// vectorized for the chosen vectorization factor. 648 bool shouldScalarizeInstruction(Instruction *I) const; 649 650 /// Returns true if we should generate a scalar version of \p IV. 651 bool needsScalarInduction(Instruction *IV) const; 652 653 /// If there is a cast involved in the induction variable \p ID, which should 654 /// be ignored in the vectorized loop body, this function records the 655 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 656 /// cast. We had already proved that the casted Phi is equal to the uncasted 657 /// Phi in the vectorized loop (under a runtime guard), and therefore 658 /// there is no need to vectorize the cast - the same value can be used in the 659 /// vector loop for both the Phi and the cast. 660 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 661 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 662 /// 663 /// \p EntryVal is the value from the original loop that maps to the vector 664 /// phi node and is used to distinguish what is the IV currently being 665 /// processed - original one (if \p EntryVal is a phi corresponding to the 666 /// original IV) or the "newly-created" one based on the proof mentioned above 667 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 668 /// latter case \p EntryVal is a TruncInst and we must not record anything for 669 /// that IV, but it's error-prone to expect callers of this routine to care 670 /// about that, hence this explicit parameter. 671 void recordVectorLoopValueForInductionCast( 672 const InductionDescriptor &ID, const Instruction *EntryVal, 673 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 674 unsigned Part, unsigned Lane = UINT_MAX); 675 676 /// Generate a shuffle sequence that will reverse the vector Vec. 677 virtual Value *reverseVector(Value *Vec); 678 679 /// Returns (and creates if needed) the original loop trip count. 680 Value *getOrCreateTripCount(Loop *NewLoop); 681 682 /// Returns (and creates if needed) the trip count of the widened loop. 683 Value *getOrCreateVectorTripCount(Loop *NewLoop); 684 685 /// Returns a bitcasted value to the requested vector type. 686 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 687 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 688 const DataLayout &DL); 689 690 /// Emit a bypass check to see if the vector trip count is zero, including if 691 /// it overflows. 692 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 693 694 /// Emit a bypass check to see if all of the SCEV assumptions we've 695 /// had to make are correct. Returns the block containing the checks or 696 /// nullptr if no checks have been added. 697 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 698 699 /// Emit bypass checks to check any memory assumptions we may have made. 700 /// Returns the block containing the checks or nullptr if no checks have been 701 /// added. 702 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 703 704 /// Compute the transformed value of Index at offset StartValue using step 705 /// StepValue. 706 /// For integer induction, returns StartValue + Index * StepValue. 707 /// For pointer induction, returns StartValue[Index * StepValue]. 708 /// FIXME: The newly created binary instructions should contain nsw/nuw 709 /// flags, which can be found from the original scalar operations. 710 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 711 const DataLayout &DL, 712 const InductionDescriptor &ID) const; 713 714 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 715 /// vector loop preheader, middle block and scalar preheader. Also 716 /// allocate a loop object for the new vector loop and return it. 717 Loop *createVectorLoopSkeleton(StringRef Prefix); 718 719 /// Create new phi nodes for the induction variables to resume iteration count 720 /// in the scalar epilogue, from where the vectorized loop left off (given by 721 /// \p VectorTripCount). 722 /// In cases where the loop skeleton is more complicated (eg. epilogue 723 /// vectorization) and the resume values can come from an additional bypass 724 /// block, the \p AdditionalBypass pair provides information about the bypass 725 /// block and the end value on the edge from bypass to this loop. 726 void createInductionResumeValues( 727 Loop *L, Value *VectorTripCount, 728 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 729 730 /// Complete the loop skeleton by adding debug MDs, creating appropriate 731 /// conditional branches in the middle block, preparing the builder and 732 /// running the verifier. Take in the vector loop \p L as argument, and return 733 /// the preheader of the completed vector loop. 734 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 735 736 /// Add additional metadata to \p To that was not present on \p Orig. 737 /// 738 /// Currently this is used to add the noalias annotations based on the 739 /// inserted memchecks. Use this for instructions that are *cloned* into the 740 /// vector loop. 741 void addNewMetadata(Instruction *To, const Instruction *Orig); 742 743 /// Add metadata from one instruction to another. 744 /// 745 /// This includes both the original MDs from \p From and additional ones (\see 746 /// addNewMetadata). Use this for *newly created* instructions in the vector 747 /// loop. 748 void addMetadata(Instruction *To, Instruction *From); 749 750 /// Similar to the previous function but it adds the metadata to a 751 /// vector of instructions. 752 void addMetadata(ArrayRef<Value *> To, Instruction *From); 753 754 /// Allow subclasses to override and print debug traces before/after vplan 755 /// execution, when trace information is requested. 756 virtual void printDebugTracesAtStart(){}; 757 virtual void printDebugTracesAtEnd(){}; 758 759 /// The original loop. 760 Loop *OrigLoop; 761 762 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 763 /// dynamic knowledge to simplify SCEV expressions and converts them to a 764 /// more usable form. 765 PredicatedScalarEvolution &PSE; 766 767 /// Loop Info. 768 LoopInfo *LI; 769 770 /// Dominator Tree. 771 DominatorTree *DT; 772 773 /// Alias Analysis. 774 AAResults *AA; 775 776 /// Target Library Info. 777 const TargetLibraryInfo *TLI; 778 779 /// Target Transform Info. 780 const TargetTransformInfo *TTI; 781 782 /// Assumption Cache. 783 AssumptionCache *AC; 784 785 /// Interface to emit optimization remarks. 786 OptimizationRemarkEmitter *ORE; 787 788 /// LoopVersioning. It's only set up (non-null) if memchecks were 789 /// used. 790 /// 791 /// This is currently only used to add no-alias metadata based on the 792 /// memchecks. The actually versioning is performed manually. 793 std::unique_ptr<LoopVersioning> LVer; 794 795 /// The vectorization SIMD factor to use. Each vector will have this many 796 /// vector elements. 797 ElementCount VF; 798 799 /// The vectorization unroll factor to use. Each scalar is vectorized to this 800 /// many different vector instructions. 801 unsigned UF; 802 803 /// The builder that we use 804 IRBuilder<> Builder; 805 806 // --- Vectorization state --- 807 808 /// The vector-loop preheader. 809 BasicBlock *LoopVectorPreHeader; 810 811 /// The scalar-loop preheader. 812 BasicBlock *LoopScalarPreHeader; 813 814 /// Middle Block between the vector and the scalar. 815 BasicBlock *LoopMiddleBlock; 816 817 /// The unique ExitBlock of the scalar loop if one exists. Note that 818 /// there can be multiple exiting edges reaching this block. 819 BasicBlock *LoopExitBlock; 820 821 /// The vector loop body. 822 BasicBlock *LoopVectorBody; 823 824 /// The scalar loop body. 825 BasicBlock *LoopScalarBody; 826 827 /// A list of all bypass blocks. The first block is the entry of the loop. 828 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 829 830 /// The new Induction variable which was added to the new block. 831 PHINode *Induction = nullptr; 832 833 /// The induction variable of the old basic block. 834 PHINode *OldInduction = nullptr; 835 836 /// Store instructions that were predicated. 837 SmallVector<Instruction *, 4> PredicatedInstructions; 838 839 /// Trip count of the original loop. 840 Value *TripCount = nullptr; 841 842 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 843 Value *VectorTripCount = nullptr; 844 845 /// The legality analysis. 846 LoopVectorizationLegality *Legal; 847 848 /// The profitablity analysis. 849 LoopVectorizationCostModel *Cost; 850 851 // Record whether runtime checks are added. 852 bool AddedSafetyChecks = false; 853 854 // Holds the end values for each induction variable. We save the end values 855 // so we can later fix-up the external users of the induction variables. 856 DenseMap<PHINode *, Value *> IVEndValues; 857 858 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 859 // fixed up at the end of vector code generation. 860 SmallVector<PHINode *, 8> OrigPHIsToFix; 861 862 /// BFI and PSI are used to check for profile guided size optimizations. 863 BlockFrequencyInfo *BFI; 864 ProfileSummaryInfo *PSI; 865 866 // Whether this loop should be optimized for size based on profile guided size 867 // optimizatios. 868 bool OptForSizeBasedOnProfile; 869 870 /// Structure to hold information about generated runtime checks, responsible 871 /// for cleaning the checks, if vectorization turns out unprofitable. 872 GeneratedRTChecks &RTChecks; 873 }; 874 875 class InnerLoopUnroller : public InnerLoopVectorizer { 876 public: 877 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 878 LoopInfo *LI, DominatorTree *DT, 879 const TargetLibraryInfo *TLI, 880 const TargetTransformInfo *TTI, AssumptionCache *AC, 881 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 882 LoopVectorizationLegality *LVL, 883 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 884 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 885 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 886 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 887 BFI, PSI, Check) {} 888 889 private: 890 Value *getBroadcastInstrs(Value *V) override; 891 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 892 Instruction::BinaryOps Opcode = 893 Instruction::BinaryOpsEnd) override; 894 Value *reverseVector(Value *Vec) override; 895 }; 896 897 /// Encapsulate information regarding vectorization of a loop and its epilogue. 898 /// This information is meant to be updated and used across two stages of 899 /// epilogue vectorization. 900 struct EpilogueLoopVectorizationInfo { 901 ElementCount MainLoopVF = ElementCount::getFixed(0); 902 unsigned MainLoopUF = 0; 903 ElementCount EpilogueVF = ElementCount::getFixed(0); 904 unsigned EpilogueUF = 0; 905 BasicBlock *MainLoopIterationCountCheck = nullptr; 906 BasicBlock *EpilogueIterationCountCheck = nullptr; 907 BasicBlock *SCEVSafetyCheck = nullptr; 908 BasicBlock *MemSafetyCheck = nullptr; 909 Value *TripCount = nullptr; 910 Value *VectorTripCount = nullptr; 911 912 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 913 unsigned EUF) 914 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 915 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 916 assert(EUF == 1 && 917 "A high UF for the epilogue loop is likely not beneficial."); 918 } 919 }; 920 921 /// An extension of the inner loop vectorizer that creates a skeleton for a 922 /// vectorized loop that has its epilogue (residual) also vectorized. 923 /// The idea is to run the vplan on a given loop twice, firstly to setup the 924 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 925 /// from the first step and vectorize the epilogue. This is achieved by 926 /// deriving two concrete strategy classes from this base class and invoking 927 /// them in succession from the loop vectorizer planner. 928 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 929 public: 930 InnerLoopAndEpilogueVectorizer( 931 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 932 DominatorTree *DT, const TargetLibraryInfo *TLI, 933 const TargetTransformInfo *TTI, AssumptionCache *AC, 934 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 935 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 936 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 937 GeneratedRTChecks &Checks) 938 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 939 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 940 Checks), 941 EPI(EPI) {} 942 943 // Override this function to handle the more complex control flow around the 944 // three loops. 945 BasicBlock *createVectorizedLoopSkeleton() final override { 946 return createEpilogueVectorizedLoopSkeleton(); 947 } 948 949 /// The interface for creating a vectorized skeleton using one of two 950 /// different strategies, each corresponding to one execution of the vplan 951 /// as described above. 952 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 953 954 /// Holds and updates state information required to vectorize the main loop 955 /// and its epilogue in two separate passes. This setup helps us avoid 956 /// regenerating and recomputing runtime safety checks. It also helps us to 957 /// shorten the iteration-count-check path length for the cases where the 958 /// iteration count of the loop is so small that the main vector loop is 959 /// completely skipped. 960 EpilogueLoopVectorizationInfo &EPI; 961 }; 962 963 /// A specialized derived class of inner loop vectorizer that performs 964 /// vectorization of *main* loops in the process of vectorizing loops and their 965 /// epilogues. 966 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 967 public: 968 EpilogueVectorizerMainLoop( 969 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 970 DominatorTree *DT, const TargetLibraryInfo *TLI, 971 const TargetTransformInfo *TTI, AssumptionCache *AC, 972 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 973 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 974 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 975 GeneratedRTChecks &Check) 976 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 977 EPI, LVL, CM, BFI, PSI, Check) {} 978 /// Implements the interface for creating a vectorized skeleton using the 979 /// *main loop* strategy (ie the first pass of vplan execution). 980 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 981 982 protected: 983 /// Emits an iteration count bypass check once for the main loop (when \p 984 /// ForEpilogue is false) and once for the epilogue loop (when \p 985 /// ForEpilogue is true). 986 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 987 bool ForEpilogue); 988 void printDebugTracesAtStart() override; 989 void printDebugTracesAtEnd() override; 990 }; 991 992 // A specialized derived class of inner loop vectorizer that performs 993 // vectorization of *epilogue* loops in the process of vectorizing loops and 994 // their epilogues. 995 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 996 public: 997 EpilogueVectorizerEpilogueLoop( 998 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 999 DominatorTree *DT, const TargetLibraryInfo *TLI, 1000 const TargetTransformInfo *TTI, AssumptionCache *AC, 1001 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1002 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1003 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1004 GeneratedRTChecks &Checks) 1005 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1006 EPI, LVL, CM, BFI, PSI, Checks) {} 1007 /// Implements the interface for creating a vectorized skeleton using the 1008 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1009 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1010 1011 protected: 1012 /// Emits an iteration count bypass check after the main vector loop has 1013 /// finished to see if there are any iterations left to execute by either 1014 /// the vector epilogue or the scalar epilogue. 1015 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1016 BasicBlock *Bypass, 1017 BasicBlock *Insert); 1018 void printDebugTracesAtStart() override; 1019 void printDebugTracesAtEnd() override; 1020 }; 1021 } // end namespace llvm 1022 1023 /// Look for a meaningful debug location on the instruction or it's 1024 /// operands. 1025 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1026 if (!I) 1027 return I; 1028 1029 DebugLoc Empty; 1030 if (I->getDebugLoc() != Empty) 1031 return I; 1032 1033 for (Use &Op : I->operands()) { 1034 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1035 if (OpInst->getDebugLoc() != Empty) 1036 return OpInst; 1037 } 1038 1039 return I; 1040 } 1041 1042 void InnerLoopVectorizer::setDebugLocFromInst( 1043 const Value *V, Optional<IRBuilder<> *> CustomBuilder) { 1044 IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder; 1045 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) { 1046 const DILocation *DIL = Inst->getDebugLoc(); 1047 1048 // When a FSDiscriminator is enabled, we don't need to add the multiply 1049 // factors to the discriminators. 1050 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1051 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 1052 // FIXME: For scalable vectors, assume vscale=1. 1053 auto NewDIL = 1054 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1055 if (NewDIL) 1056 B->SetCurrentDebugLocation(NewDIL.getValue()); 1057 else 1058 LLVM_DEBUG(dbgs() 1059 << "Failed to create new discriminator: " 1060 << DIL->getFilename() << " Line: " << DIL->getLine()); 1061 } else 1062 B->SetCurrentDebugLocation(DIL); 1063 } else 1064 B->SetCurrentDebugLocation(DebugLoc()); 1065 } 1066 1067 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I 1068 /// is passed, the message relates to that particular instruction. 1069 #ifndef NDEBUG 1070 static void debugVectorizationMessage(const StringRef Prefix, 1071 const StringRef DebugMsg, 1072 Instruction *I) { 1073 dbgs() << "LV: " << Prefix << DebugMsg; 1074 if (I != nullptr) 1075 dbgs() << " " << *I; 1076 else 1077 dbgs() << '.'; 1078 dbgs() << '\n'; 1079 } 1080 #endif 1081 1082 /// Create an analysis remark that explains why vectorization failed 1083 /// 1084 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1085 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1086 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1087 /// the location of the remark. \return the remark object that can be 1088 /// streamed to. 1089 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1090 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1091 Value *CodeRegion = TheLoop->getHeader(); 1092 DebugLoc DL = TheLoop->getStartLoc(); 1093 1094 if (I) { 1095 CodeRegion = I->getParent(); 1096 // If there is no debug location attached to the instruction, revert back to 1097 // using the loop's. 1098 if (I->getDebugLoc()) 1099 DL = I->getDebugLoc(); 1100 } 1101 1102 return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); 1103 } 1104 1105 /// Return a value for Step multiplied by VF. 1106 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1107 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1108 Constant *StepVal = ConstantInt::get( 1109 Step->getType(), 1110 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1111 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1112 } 1113 1114 namespace llvm { 1115 1116 /// Return the runtime value for VF. 1117 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1118 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1119 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1120 } 1121 1122 void reportVectorizationFailure(const StringRef DebugMsg, 1123 const StringRef OREMsg, const StringRef ORETag, 1124 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1125 Instruction *I) { 1126 LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I)); 1127 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1128 ORE->emit( 1129 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1130 << "loop not vectorized: " << OREMsg); 1131 } 1132 1133 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, 1134 OptimizationRemarkEmitter *ORE, Loop *TheLoop, 1135 Instruction *I) { 1136 LLVM_DEBUG(debugVectorizationMessage("", Msg, I)); 1137 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1138 ORE->emit( 1139 createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) 1140 << Msg); 1141 } 1142 1143 } // end namespace llvm 1144 1145 #ifndef NDEBUG 1146 /// \return string containing a file name and a line # for the given loop. 1147 static std::string getDebugLocString(const Loop *L) { 1148 std::string Result; 1149 if (L) { 1150 raw_string_ostream OS(Result); 1151 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1152 LoopDbgLoc.print(OS); 1153 else 1154 // Just print the module name. 1155 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1156 OS.flush(); 1157 } 1158 return Result; 1159 } 1160 #endif 1161 1162 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1163 const Instruction *Orig) { 1164 // If the loop was versioned with memchecks, add the corresponding no-alias 1165 // metadata. 1166 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1167 LVer->annotateInstWithNoAlias(To, Orig); 1168 } 1169 1170 void InnerLoopVectorizer::addMetadata(Instruction *To, 1171 Instruction *From) { 1172 propagateMetadata(To, From); 1173 addNewMetadata(To, From); 1174 } 1175 1176 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1177 Instruction *From) { 1178 for (Value *V : To) { 1179 if (Instruction *I = dyn_cast<Instruction>(V)) 1180 addMetadata(I, From); 1181 } 1182 } 1183 1184 namespace llvm { 1185 1186 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1187 // lowered. 1188 enum ScalarEpilogueLowering { 1189 1190 // The default: allowing scalar epilogues. 1191 CM_ScalarEpilogueAllowed, 1192 1193 // Vectorization with OptForSize: don't allow epilogues. 1194 CM_ScalarEpilogueNotAllowedOptSize, 1195 1196 // A special case of vectorisation with OptForSize: loops with a very small 1197 // trip count are considered for vectorization under OptForSize, thereby 1198 // making sure the cost of their loop body is dominant, free of runtime 1199 // guards and scalar iteration overheads. 1200 CM_ScalarEpilogueNotAllowedLowTripLoop, 1201 1202 // Loop hint predicate indicating an epilogue is undesired. 1203 CM_ScalarEpilogueNotNeededUsePredicate, 1204 1205 // Directive indicating we must either tail fold or not vectorize 1206 CM_ScalarEpilogueNotAllowedUsePredicate 1207 }; 1208 1209 /// ElementCountComparator creates a total ordering for ElementCount 1210 /// for the purposes of using it in a set structure. 1211 struct ElementCountComparator { 1212 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { 1213 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < 1214 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); 1215 } 1216 }; 1217 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; 1218 1219 /// LoopVectorizationCostModel - estimates the expected speedups due to 1220 /// vectorization. 1221 /// In many cases vectorization is not profitable. This can happen because of 1222 /// a number of reasons. In this class we mainly attempt to predict the 1223 /// expected speedup/slowdowns due to the supported instruction set. We use the 1224 /// TargetTransformInfo to query the different backends for the cost of 1225 /// different operations. 1226 class LoopVectorizationCostModel { 1227 public: 1228 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1229 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1230 LoopVectorizationLegality *Legal, 1231 const TargetTransformInfo &TTI, 1232 const TargetLibraryInfo *TLI, DemandedBits *DB, 1233 AssumptionCache *AC, 1234 OptimizationRemarkEmitter *ORE, const Function *F, 1235 const LoopVectorizeHints *Hints, 1236 InterleavedAccessInfo &IAI) 1237 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1238 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1239 Hints(Hints), InterleaveInfo(IAI) {} 1240 1241 /// \return An upper bound for the vectorization factors (both fixed and 1242 /// scalable). If the factors are 0, vectorization and interleaving should be 1243 /// avoided up front. 1244 FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); 1245 1246 /// \return True if runtime checks are required for vectorization, and false 1247 /// otherwise. 1248 bool runtimeChecksRequired(); 1249 1250 /// \return The most profitable vectorization factor and the cost of that VF. 1251 /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO 1252 /// then this vectorization factor will be selected if vectorization is 1253 /// possible. 1254 VectorizationFactor 1255 selectVectorizationFactor(const ElementCountSet &CandidateVFs); 1256 1257 VectorizationFactor 1258 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1259 const LoopVectorizationPlanner &LVP); 1260 1261 /// Setup cost-based decisions for user vectorization factor. 1262 /// \return true if the UserVF is a feasible VF to be chosen. 1263 bool selectUserVectorizationFactor(ElementCount UserVF) { 1264 collectUniformsAndScalars(UserVF); 1265 collectInstsToScalarize(UserVF); 1266 return expectedCost(UserVF).first.isValid(); 1267 } 1268 1269 /// \return The size (in bits) of the smallest and widest types in the code 1270 /// that needs to be vectorized. We ignore values that remain scalar such as 1271 /// 64 bit loop indices. 1272 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1273 1274 /// \return The desired interleave count. 1275 /// If interleave count has been specified by metadata it will be returned. 1276 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1277 /// are the selected vectorization factor and the cost of the selected VF. 1278 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1279 1280 /// Memory access instruction may be vectorized in more than one way. 1281 /// Form of instruction after vectorization depends on cost. 1282 /// This function takes cost-based decisions for Load/Store instructions 1283 /// and collects them in a map. This decisions map is used for building 1284 /// the lists of loop-uniform and loop-scalar instructions. 1285 /// The calculated cost is saved with widening decision in order to 1286 /// avoid redundant calculations. 1287 void setCostBasedWideningDecision(ElementCount VF); 1288 1289 /// A struct that represents some properties of the register usage 1290 /// of a loop. 1291 struct RegisterUsage { 1292 /// Holds the number of loop invariant values that are used in the loop. 1293 /// The key is ClassID of target-provided register class. 1294 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1295 /// Holds the maximum number of concurrent live intervals in the loop. 1296 /// The key is ClassID of target-provided register class. 1297 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1298 }; 1299 1300 /// \return Returns information about the register usages of the loop for the 1301 /// given vectorization factors. 1302 SmallVector<RegisterUsage, 8> 1303 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1304 1305 /// Collect values we want to ignore in the cost model. 1306 void collectValuesToIgnore(); 1307 1308 /// Collect all element types in the loop for which widening is needed. 1309 void collectElementTypesForWidening(); 1310 1311 /// Split reductions into those that happen in the loop, and those that happen 1312 /// outside. In loop reductions are collected into InLoopReductionChains. 1313 void collectInLoopReductions(); 1314 1315 /// Returns true if we should use strict in-order reductions for the given 1316 /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, 1317 /// the IsOrdered flag of RdxDesc is set and we do not allow reordering 1318 /// of FP operations. 1319 bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) { 1320 return !Hints->allowReordering() && RdxDesc.isOrdered(); 1321 } 1322 1323 /// \returns The smallest bitwidth each instruction can be represented with. 1324 /// The vector equivalents of these instructions should be truncated to this 1325 /// type. 1326 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1327 return MinBWs; 1328 } 1329 1330 /// \returns True if it is more profitable to scalarize instruction \p I for 1331 /// vectorization factor \p VF. 1332 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1333 assert(VF.isVector() && 1334 "Profitable to scalarize relevant only for VF > 1."); 1335 1336 // Cost model is not run in the VPlan-native path - return conservative 1337 // result until this changes. 1338 if (EnableVPlanNativePath) 1339 return false; 1340 1341 auto Scalars = InstsToScalarize.find(VF); 1342 assert(Scalars != InstsToScalarize.end() && 1343 "VF not yet analyzed for scalarization profitability"); 1344 return Scalars->second.find(I) != Scalars->second.end(); 1345 } 1346 1347 /// Returns true if \p I is known to be uniform after vectorization. 1348 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1349 if (VF.isScalar()) 1350 return true; 1351 1352 // Cost model is not run in the VPlan-native path - return conservative 1353 // result until this changes. 1354 if (EnableVPlanNativePath) 1355 return false; 1356 1357 auto UniformsPerVF = Uniforms.find(VF); 1358 assert(UniformsPerVF != Uniforms.end() && 1359 "VF not yet analyzed for uniformity"); 1360 return UniformsPerVF->second.count(I); 1361 } 1362 1363 /// Returns true if \p I is known to be scalar after vectorization. 1364 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1365 if (VF.isScalar()) 1366 return true; 1367 1368 // Cost model is not run in the VPlan-native path - return conservative 1369 // result until this changes. 1370 if (EnableVPlanNativePath) 1371 return false; 1372 1373 auto ScalarsPerVF = Scalars.find(VF); 1374 assert(ScalarsPerVF != Scalars.end() && 1375 "Scalar values are not calculated for VF"); 1376 return ScalarsPerVF->second.count(I); 1377 } 1378 1379 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1380 /// for vectorization factor \p VF. 1381 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1382 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1383 !isProfitableToScalarize(I, VF) && 1384 !isScalarAfterVectorization(I, VF); 1385 } 1386 1387 /// Decision that was taken during cost calculation for memory instruction. 1388 enum InstWidening { 1389 CM_Unknown, 1390 CM_Widen, // For consecutive accesses with stride +1. 1391 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1392 CM_Interleave, 1393 CM_GatherScatter, 1394 CM_Scalarize 1395 }; 1396 1397 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1398 /// instruction \p I and vector width \p VF. 1399 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1400 InstructionCost Cost) { 1401 assert(VF.isVector() && "Expected VF >=2"); 1402 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1403 } 1404 1405 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1406 /// interleaving group \p Grp and vector width \p VF. 1407 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1408 ElementCount VF, InstWidening W, 1409 InstructionCost Cost) { 1410 assert(VF.isVector() && "Expected VF >=2"); 1411 /// Broadcast this decicion to all instructions inside the group. 1412 /// But the cost will be assigned to one instruction only. 1413 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1414 if (auto *I = Grp->getMember(i)) { 1415 if (Grp->getInsertPos() == I) 1416 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1417 else 1418 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1419 } 1420 } 1421 } 1422 1423 /// Return the cost model decision for the given instruction \p I and vector 1424 /// width \p VF. Return CM_Unknown if this instruction did not pass 1425 /// through the cost modeling. 1426 InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { 1427 assert(VF.isVector() && "Expected VF to be a vector VF"); 1428 // Cost model is not run in the VPlan-native path - return conservative 1429 // result until this changes. 1430 if (EnableVPlanNativePath) 1431 return CM_GatherScatter; 1432 1433 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1434 auto Itr = WideningDecisions.find(InstOnVF); 1435 if (Itr == WideningDecisions.end()) 1436 return CM_Unknown; 1437 return Itr->second.first; 1438 } 1439 1440 /// Return the vectorization cost for the given instruction \p I and vector 1441 /// width \p VF. 1442 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1443 assert(VF.isVector() && "Expected VF >=2"); 1444 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1445 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1446 "The cost is not calculated"); 1447 return WideningDecisions[InstOnVF].second; 1448 } 1449 1450 /// Return True if instruction \p I is an optimizable truncate whose operand 1451 /// is an induction variable. Such a truncate will be removed by adding a new 1452 /// induction variable with the destination type. 1453 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1454 // If the instruction is not a truncate, return false. 1455 auto *Trunc = dyn_cast<TruncInst>(I); 1456 if (!Trunc) 1457 return false; 1458 1459 // Get the source and destination types of the truncate. 1460 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1461 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1462 1463 // If the truncate is free for the given types, return false. Replacing a 1464 // free truncate with an induction variable would add an induction variable 1465 // update instruction to each iteration of the loop. We exclude from this 1466 // check the primary induction variable since it will need an update 1467 // instruction regardless. 1468 Value *Op = Trunc->getOperand(0); 1469 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1470 return false; 1471 1472 // If the truncated value is not an induction variable, return false. 1473 return Legal->isInductionPhi(Op); 1474 } 1475 1476 /// Collects the instructions to scalarize for each predicated instruction in 1477 /// the loop. 1478 void collectInstsToScalarize(ElementCount VF); 1479 1480 /// Collect Uniform and Scalar values for the given \p VF. 1481 /// The sets depend on CM decision for Load/Store instructions 1482 /// that may be vectorized as interleave, gather-scatter or scalarized. 1483 void collectUniformsAndScalars(ElementCount VF) { 1484 // Do the analysis once. 1485 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1486 return; 1487 setCostBasedWideningDecision(VF); 1488 collectLoopUniforms(VF); 1489 collectLoopScalars(VF); 1490 } 1491 1492 /// Returns true if the target machine supports masked store operation 1493 /// for the given \p DataType and kind of access to \p Ptr. 1494 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { 1495 return Legal->isConsecutivePtr(Ptr) && 1496 TTI.isLegalMaskedStore(DataType, Alignment); 1497 } 1498 1499 /// Returns true if the target machine supports masked load operation 1500 /// for the given \p DataType and kind of access to \p Ptr. 1501 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { 1502 return Legal->isConsecutivePtr(Ptr) && 1503 TTI.isLegalMaskedLoad(DataType, Alignment); 1504 } 1505 1506 /// Returns true if the target machine can represent \p V as a masked gather 1507 /// or scatter operation. 1508 bool isLegalGatherOrScatter(Value *V) { 1509 bool LI = isa<LoadInst>(V); 1510 bool SI = isa<StoreInst>(V); 1511 if (!LI && !SI) 1512 return false; 1513 auto *Ty = getLoadStoreType(V); 1514 Align Align = getLoadStoreAlignment(V); 1515 return (LI && TTI.isLegalMaskedGather(Ty, Align)) || 1516 (SI && TTI.isLegalMaskedScatter(Ty, Align)); 1517 } 1518 1519 /// Returns true if the target machine supports all of the reduction 1520 /// variables found for the given VF. 1521 bool canVectorizeReductions(ElementCount VF) const { 1522 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1523 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1524 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1525 })); 1526 } 1527 1528 /// Returns true if \p I is an instruction that will be scalarized with 1529 /// predication. Such instructions include conditional stores and 1530 /// instructions that may divide by zero. 1531 /// If a non-zero VF has been calculated, we check if I will be scalarized 1532 /// predication for that VF. 1533 bool isScalarWithPredication(Instruction *I) const; 1534 1535 // Returns true if \p I is an instruction that will be predicated either 1536 // through scalar predication or masked load/store or masked gather/scatter. 1537 // Superset of instructions that return true for isScalarWithPredication. 1538 bool isPredicatedInst(Instruction *I) { 1539 if (!blockNeedsPredication(I->getParent())) 1540 return false; 1541 // Loads and stores that need some form of masked operation are predicated 1542 // instructions. 1543 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1544 return Legal->isMaskRequired(I); 1545 return isScalarWithPredication(I); 1546 } 1547 1548 /// Returns true if \p I is a memory instruction with consecutive memory 1549 /// access that can be widened. 1550 bool 1551 memoryInstructionCanBeWidened(Instruction *I, 1552 ElementCount VF = ElementCount::getFixed(1)); 1553 1554 /// Returns true if \p I is a memory instruction in an interleaved-group 1555 /// of memory accesses that can be vectorized with wide vector loads/stores 1556 /// and shuffles. 1557 bool 1558 interleavedAccessCanBeWidened(Instruction *I, 1559 ElementCount VF = ElementCount::getFixed(1)); 1560 1561 /// Check if \p Instr belongs to any interleaved access group. 1562 bool isAccessInterleaved(Instruction *Instr) { 1563 return InterleaveInfo.isInterleaved(Instr); 1564 } 1565 1566 /// Get the interleaved access group that \p Instr belongs to. 1567 const InterleaveGroup<Instruction> * 1568 getInterleavedAccessGroup(Instruction *Instr) { 1569 return InterleaveInfo.getInterleaveGroup(Instr); 1570 } 1571 1572 /// Returns true if we're required to use a scalar epilogue for at least 1573 /// the final iteration of the original loop. 1574 bool requiresScalarEpilogue(ElementCount VF) const { 1575 if (!isScalarEpilogueAllowed()) 1576 return false; 1577 // If we might exit from anywhere but the latch, must run the exiting 1578 // iteration in scalar form. 1579 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1580 return true; 1581 return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); 1582 } 1583 1584 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1585 /// loop hint annotation. 1586 bool isScalarEpilogueAllowed() const { 1587 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1588 } 1589 1590 /// Returns true if all loop blocks should be masked to fold tail loop. 1591 bool foldTailByMasking() const { return FoldTailByMasking; } 1592 1593 bool blockNeedsPredication(BasicBlock *BB) const { 1594 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1595 } 1596 1597 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1598 /// nodes to the chain of instructions representing the reductions. Uses a 1599 /// MapVector to ensure deterministic iteration order. 1600 using ReductionChainMap = 1601 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1602 1603 /// Return the chain of instructions representing an inloop reduction. 1604 const ReductionChainMap &getInLoopReductionChains() const { 1605 return InLoopReductionChains; 1606 } 1607 1608 /// Returns true if the Phi is part of an inloop reduction. 1609 bool isInLoopReduction(PHINode *Phi) const { 1610 return InLoopReductionChains.count(Phi); 1611 } 1612 1613 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1614 /// with factor VF. Return the cost of the instruction, including 1615 /// scalarization overhead if it's needed. 1616 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; 1617 1618 /// Estimate cost of a call instruction CI if it were vectorized with factor 1619 /// VF. Return the cost of the instruction, including scalarization overhead 1620 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1621 /// scalarized - 1622 /// i.e. either vector version isn't available, or is too expensive. 1623 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1624 bool &NeedToScalarize) const; 1625 1626 /// Returns true if the per-lane cost of VectorizationFactor A is lower than 1627 /// that of B. 1628 bool isMoreProfitable(const VectorizationFactor &A, 1629 const VectorizationFactor &B) const; 1630 1631 /// Invalidates decisions already taken by the cost model. 1632 void invalidateCostModelingDecisions() { 1633 WideningDecisions.clear(); 1634 Uniforms.clear(); 1635 Scalars.clear(); 1636 } 1637 1638 private: 1639 unsigned NumPredStores = 0; 1640 1641 /// \return An upper bound for the vectorization factors for both 1642 /// fixed and scalable vectorization, where the minimum-known number of 1643 /// elements is a power-of-2 larger than zero. If scalable vectorization is 1644 /// disabled or unsupported, then the scalable part will be equal to 1645 /// ElementCount::getScalable(0). 1646 FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, 1647 ElementCount UserVF); 1648 1649 /// \return the maximized element count based on the targets vector 1650 /// registers and the loop trip-count, but limited to a maximum safe VF. 1651 /// This is a helper function of computeFeasibleMaxVF. 1652 /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure 1653 /// issue that occurred on one of the buildbots which cannot be reproduced 1654 /// without having access to the properietary compiler (see comments on 1655 /// D98509). The issue is currently under investigation and this workaround 1656 /// will be removed as soon as possible. 1657 ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, 1658 unsigned SmallestType, 1659 unsigned WidestType, 1660 const ElementCount &MaxSafeVF); 1661 1662 /// \return the maximum legal scalable VF, based on the safe max number 1663 /// of elements. 1664 ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); 1665 1666 /// The vectorization cost is a combination of the cost itself and a boolean 1667 /// indicating whether any of the contributing operations will actually 1668 /// operate on vector values after type legalization in the backend. If this 1669 /// latter value is false, then all operations will be scalarized (i.e. no 1670 /// vectorization has actually taken place). 1671 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1672 1673 /// Returns the expected execution cost. The unit of the cost does 1674 /// not matter because we use the 'cost' units to compare different 1675 /// vector widths. The cost that is returned is *not* normalized by 1676 /// the factor width. If \p Invalid is not nullptr, this function 1677 /// will add a pair(Instruction*, ElementCount) to \p Invalid for 1678 /// each instruction that has an Invalid cost for the given VF. 1679 using InstructionVFPair = std::pair<Instruction *, ElementCount>; 1680 VectorizationCostTy 1681 expectedCost(ElementCount VF, 1682 SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); 1683 1684 /// Returns the execution time cost of an instruction for a given vector 1685 /// width. Vector width of one means scalar. 1686 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1687 1688 /// The cost-computation logic from getInstructionCost which provides 1689 /// the vector type as an output parameter. 1690 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1691 Type *&VectorTy); 1692 1693 /// Return the cost of instructions in an inloop reduction pattern, if I is 1694 /// part of that pattern. 1695 Optional<InstructionCost> 1696 getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, 1697 TTI::TargetCostKind CostKind); 1698 1699 /// Calculate vectorization cost of memory instruction \p I. 1700 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1701 1702 /// The cost computation for scalarized memory instruction. 1703 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1704 1705 /// The cost computation for interleaving group of memory instructions. 1706 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1707 1708 /// The cost computation for Gather/Scatter instruction. 1709 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1710 1711 /// The cost computation for widening instruction \p I with consecutive 1712 /// memory access. 1713 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1714 1715 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1716 /// Load: scalar load + broadcast. 1717 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1718 /// element) 1719 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1720 1721 /// Estimate the overhead of scalarizing an instruction. This is a 1722 /// convenience wrapper for the type-based getScalarizationOverhead API. 1723 InstructionCost getScalarizationOverhead(Instruction *I, 1724 ElementCount VF) const; 1725 1726 /// Returns whether the instruction is a load or store and will be a emitted 1727 /// as a vector operation. 1728 bool isConsecutiveLoadOrStore(Instruction *I); 1729 1730 /// Returns true if an artificially high cost for emulated masked memrefs 1731 /// should be used. 1732 bool useEmulatedMaskMemRefHack(Instruction *I); 1733 1734 /// Map of scalar integer values to the smallest bitwidth they can be legally 1735 /// represented as. The vector equivalents of these values should be truncated 1736 /// to this type. 1737 MapVector<Instruction *, uint64_t> MinBWs; 1738 1739 /// A type representing the costs for instructions if they were to be 1740 /// scalarized rather than vectorized. The entries are Instruction-Cost 1741 /// pairs. 1742 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1743 1744 /// A set containing all BasicBlocks that are known to present after 1745 /// vectorization as a predicated block. 1746 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1747 1748 /// Records whether it is allowed to have the original scalar loop execute at 1749 /// least once. This may be needed as a fallback loop in case runtime 1750 /// aliasing/dependence checks fail, or to handle the tail/remainder 1751 /// iterations when the trip count is unknown or doesn't divide by the VF, 1752 /// or as a peel-loop to handle gaps in interleave-groups. 1753 /// Under optsize and when the trip count is very small we don't allow any 1754 /// iterations to execute in the scalar loop. 1755 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1756 1757 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1758 bool FoldTailByMasking = false; 1759 1760 /// A map holding scalar costs for different vectorization factors. The 1761 /// presence of a cost for an instruction in the mapping indicates that the 1762 /// instruction will be scalarized when vectorizing with the associated 1763 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1764 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1765 1766 /// Holds the instructions known to be uniform after vectorization. 1767 /// The data is collected per VF. 1768 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1769 1770 /// Holds the instructions known to be scalar after vectorization. 1771 /// The data is collected per VF. 1772 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1773 1774 /// Holds the instructions (address computations) that are forced to be 1775 /// scalarized. 1776 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1777 1778 /// PHINodes of the reductions that should be expanded in-loop along with 1779 /// their associated chains of reduction operations, in program order from top 1780 /// (PHI) to bottom 1781 ReductionChainMap InLoopReductionChains; 1782 1783 /// A Map of inloop reduction operations and their immediate chain operand. 1784 /// FIXME: This can be removed once reductions can be costed correctly in 1785 /// vplan. This was added to allow quick lookup to the inloop operations, 1786 /// without having to loop through InLoopReductionChains. 1787 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1788 1789 /// Returns the expected difference in cost from scalarizing the expression 1790 /// feeding a predicated instruction \p PredInst. The instructions to 1791 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1792 /// non-negative return value implies the expression will be scalarized. 1793 /// Currently, only single-use chains are considered for scalarization. 1794 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1795 ElementCount VF); 1796 1797 /// Collect the instructions that are uniform after vectorization. An 1798 /// instruction is uniform if we represent it with a single scalar value in 1799 /// the vectorized loop corresponding to each vector iteration. Examples of 1800 /// uniform instructions include pointer operands of consecutive or 1801 /// interleaved memory accesses. Note that although uniformity implies an 1802 /// instruction will be scalar, the reverse is not true. In general, a 1803 /// scalarized instruction will be represented by VF scalar values in the 1804 /// vectorized loop, each corresponding to an iteration of the original 1805 /// scalar loop. 1806 void collectLoopUniforms(ElementCount VF); 1807 1808 /// Collect the instructions that are scalar after vectorization. An 1809 /// instruction is scalar if it is known to be uniform or will be scalarized 1810 /// during vectorization. Non-uniform scalarized instructions will be 1811 /// represented by VF values in the vectorized loop, each corresponding to an 1812 /// iteration of the original scalar loop. 1813 void collectLoopScalars(ElementCount VF); 1814 1815 /// Keeps cost model vectorization decision and cost for instructions. 1816 /// Right now it is used for memory instructions only. 1817 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1818 std::pair<InstWidening, InstructionCost>>; 1819 1820 DecisionList WideningDecisions; 1821 1822 /// Returns true if \p V is expected to be vectorized and it needs to be 1823 /// extracted. 1824 bool needsExtract(Value *V, ElementCount VF) const { 1825 Instruction *I = dyn_cast<Instruction>(V); 1826 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1827 TheLoop->isLoopInvariant(I)) 1828 return false; 1829 1830 // Assume we can vectorize V (and hence we need extraction) if the 1831 // scalars are not computed yet. This can happen, because it is called 1832 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1833 // the scalars are collected. That should be a safe assumption in most 1834 // cases, because we check if the operands have vectorizable types 1835 // beforehand in LoopVectorizationLegality. 1836 return Scalars.find(VF) == Scalars.end() || 1837 !isScalarAfterVectorization(I, VF); 1838 }; 1839 1840 /// Returns a range containing only operands needing to be extracted. 1841 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1842 ElementCount VF) const { 1843 return SmallVector<Value *, 4>(make_filter_range( 1844 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1845 } 1846 1847 /// Determines if we have the infrastructure to vectorize loop \p L and its 1848 /// epilogue, assuming the main loop is vectorized by \p VF. 1849 bool isCandidateForEpilogueVectorization(const Loop &L, 1850 const ElementCount VF) const; 1851 1852 /// Returns true if epilogue vectorization is considered profitable, and 1853 /// false otherwise. 1854 /// \p VF is the vectorization factor chosen for the original loop. 1855 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1856 1857 public: 1858 /// The loop that we evaluate. 1859 Loop *TheLoop; 1860 1861 /// Predicated scalar evolution analysis. 1862 PredicatedScalarEvolution &PSE; 1863 1864 /// Loop Info analysis. 1865 LoopInfo *LI; 1866 1867 /// Vectorization legality. 1868 LoopVectorizationLegality *Legal; 1869 1870 /// Vector target information. 1871 const TargetTransformInfo &TTI; 1872 1873 /// Target Library Info. 1874 const TargetLibraryInfo *TLI; 1875 1876 /// Demanded bits analysis. 1877 DemandedBits *DB; 1878 1879 /// Assumption cache. 1880 AssumptionCache *AC; 1881 1882 /// Interface to emit optimization remarks. 1883 OptimizationRemarkEmitter *ORE; 1884 1885 const Function *TheFunction; 1886 1887 /// Loop Vectorize Hint. 1888 const LoopVectorizeHints *Hints; 1889 1890 /// The interleave access information contains groups of interleaved accesses 1891 /// with the same stride and close to each other. 1892 InterleavedAccessInfo &InterleaveInfo; 1893 1894 /// Values to ignore in the cost model. 1895 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1896 1897 /// Values to ignore in the cost model when VF > 1. 1898 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1899 1900 /// All element types found in the loop. 1901 SmallPtrSet<Type *, 16> ElementTypesInLoop; 1902 1903 /// Profitable vector factors. 1904 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1905 }; 1906 } // end namespace llvm 1907 1908 /// Helper struct to manage generating runtime checks for vectorization. 1909 /// 1910 /// The runtime checks are created up-front in temporary blocks to allow better 1911 /// estimating the cost and un-linked from the existing IR. After deciding to 1912 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1913 /// temporary blocks are completely removed. 1914 class GeneratedRTChecks { 1915 /// Basic block which contains the generated SCEV checks, if any. 1916 BasicBlock *SCEVCheckBlock = nullptr; 1917 1918 /// The value representing the result of the generated SCEV checks. If it is 1919 /// nullptr, either no SCEV checks have been generated or they have been used. 1920 Value *SCEVCheckCond = nullptr; 1921 1922 /// Basic block which contains the generated memory runtime checks, if any. 1923 BasicBlock *MemCheckBlock = nullptr; 1924 1925 /// The value representing the result of the generated memory runtime checks. 1926 /// If it is nullptr, either no memory runtime checks have been generated or 1927 /// they have been used. 1928 Instruction *MemRuntimeCheckCond = nullptr; 1929 1930 DominatorTree *DT; 1931 LoopInfo *LI; 1932 1933 SCEVExpander SCEVExp; 1934 SCEVExpander MemCheckExp; 1935 1936 public: 1937 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1938 const DataLayout &DL) 1939 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1940 MemCheckExp(SE, DL, "scev.check") {} 1941 1942 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1943 /// accurately estimate the cost of the runtime checks. The blocks are 1944 /// un-linked from the IR and is added back during vector code generation. If 1945 /// there is no vector code generation, the check blocks are removed 1946 /// completely. 1947 void Create(Loop *L, const LoopAccessInfo &LAI, 1948 const SCEVUnionPredicate &UnionPred) { 1949 1950 BasicBlock *LoopHeader = L->getHeader(); 1951 BasicBlock *Preheader = L->getLoopPreheader(); 1952 1953 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1954 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1955 // may be used by SCEVExpander. The blocks will be un-linked from their 1956 // predecessors and removed from LI & DT at the end of the function. 1957 if (!UnionPred.isAlwaysTrue()) { 1958 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1959 nullptr, "vector.scevcheck"); 1960 1961 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1962 &UnionPred, SCEVCheckBlock->getTerminator()); 1963 } 1964 1965 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1966 if (RtPtrChecking.Need) { 1967 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1968 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1969 "vector.memcheck"); 1970 1971 std::tie(std::ignore, MemRuntimeCheckCond) = 1972 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1973 RtPtrChecking.getChecks(), MemCheckExp); 1974 assert(MemRuntimeCheckCond && 1975 "no RT checks generated although RtPtrChecking " 1976 "claimed checks are required"); 1977 } 1978 1979 if (!MemCheckBlock && !SCEVCheckBlock) 1980 return; 1981 1982 // Unhook the temporary block with the checks, update various places 1983 // accordingly. 1984 if (SCEVCheckBlock) 1985 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1986 if (MemCheckBlock) 1987 MemCheckBlock->replaceAllUsesWith(Preheader); 1988 1989 if (SCEVCheckBlock) { 1990 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1991 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1992 Preheader->getTerminator()->eraseFromParent(); 1993 } 1994 if (MemCheckBlock) { 1995 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1996 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1997 Preheader->getTerminator()->eraseFromParent(); 1998 } 1999 2000 DT->changeImmediateDominator(LoopHeader, Preheader); 2001 if (MemCheckBlock) { 2002 DT->eraseNode(MemCheckBlock); 2003 LI->removeBlock(MemCheckBlock); 2004 } 2005 if (SCEVCheckBlock) { 2006 DT->eraseNode(SCEVCheckBlock); 2007 LI->removeBlock(SCEVCheckBlock); 2008 } 2009 } 2010 2011 /// Remove the created SCEV & memory runtime check blocks & instructions, if 2012 /// unused. 2013 ~GeneratedRTChecks() { 2014 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 2015 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 2016 if (!SCEVCheckCond) 2017 SCEVCleaner.markResultUsed(); 2018 2019 if (!MemRuntimeCheckCond) 2020 MemCheckCleaner.markResultUsed(); 2021 2022 if (MemRuntimeCheckCond) { 2023 auto &SE = *MemCheckExp.getSE(); 2024 // Memory runtime check generation creates compares that use expanded 2025 // values. Remove them before running the SCEVExpanderCleaners. 2026 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 2027 if (MemCheckExp.isInsertedInstruction(&I)) 2028 continue; 2029 SE.forgetValue(&I); 2030 SE.eraseValueFromMap(&I); 2031 I.eraseFromParent(); 2032 } 2033 } 2034 MemCheckCleaner.cleanup(); 2035 SCEVCleaner.cleanup(); 2036 2037 if (SCEVCheckCond) 2038 SCEVCheckBlock->eraseFromParent(); 2039 if (MemRuntimeCheckCond) 2040 MemCheckBlock->eraseFromParent(); 2041 } 2042 2043 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 2044 /// adjusts the branches to branch to the vector preheader or \p Bypass, 2045 /// depending on the generated condition. 2046 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 2047 BasicBlock *LoopVectorPreHeader, 2048 BasicBlock *LoopExitBlock) { 2049 if (!SCEVCheckCond) 2050 return nullptr; 2051 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 2052 if (C->isZero()) 2053 return nullptr; 2054 2055 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2056 2057 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 2058 // Create new preheader for vector loop. 2059 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2060 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2061 2062 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2063 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2064 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2065 SCEVCheckBlock); 2066 2067 DT->addNewBlock(SCEVCheckBlock, Pred); 2068 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2069 2070 ReplaceInstWithInst( 2071 SCEVCheckBlock->getTerminator(), 2072 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2073 // Mark the check as used, to prevent it from being removed during cleanup. 2074 SCEVCheckCond = nullptr; 2075 return SCEVCheckBlock; 2076 } 2077 2078 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2079 /// the branches to branch to the vector preheader or \p Bypass, depending on 2080 /// the generated condition. 2081 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2082 BasicBlock *LoopVectorPreHeader) { 2083 // Check if we generated code that checks in runtime if arrays overlap. 2084 if (!MemRuntimeCheckCond) 2085 return nullptr; 2086 2087 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2088 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2089 MemCheckBlock); 2090 2091 DT->addNewBlock(MemCheckBlock, Pred); 2092 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2093 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2094 2095 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2096 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2097 2098 ReplaceInstWithInst( 2099 MemCheckBlock->getTerminator(), 2100 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2101 MemCheckBlock->getTerminator()->setDebugLoc( 2102 Pred->getTerminator()->getDebugLoc()); 2103 2104 // Mark the check as used, to prevent it from being removed during cleanup. 2105 MemRuntimeCheckCond = nullptr; 2106 return MemCheckBlock; 2107 } 2108 }; 2109 2110 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2111 // vectorization. The loop needs to be annotated with #pragma omp simd 2112 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2113 // vector length information is not provided, vectorization is not considered 2114 // explicit. Interleave hints are not allowed either. These limitations will be 2115 // relaxed in the future. 2116 // Please, note that we are currently forced to abuse the pragma 'clang 2117 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2118 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2119 // provides *explicit vectorization hints* (LV can bypass legal checks and 2120 // assume that vectorization is legal). However, both hints are implemented 2121 // using the same metadata (llvm.loop.vectorize, processed by 2122 // LoopVectorizeHints). This will be fixed in the future when the native IR 2123 // representation for pragma 'omp simd' is introduced. 2124 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2125 OptimizationRemarkEmitter *ORE) { 2126 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2127 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2128 2129 // Only outer loops with an explicit vectorization hint are supported. 2130 // Unannotated outer loops are ignored. 2131 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2132 return false; 2133 2134 Function *Fn = OuterLp->getHeader()->getParent(); 2135 if (!Hints.allowVectorization(Fn, OuterLp, 2136 true /*VectorizeOnlyWhenForced*/)) { 2137 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2138 return false; 2139 } 2140 2141 if (Hints.getInterleave() > 1) { 2142 // TODO: Interleave support is future work. 2143 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2144 "outer loops.\n"); 2145 Hints.emitRemarkWithHints(); 2146 return false; 2147 } 2148 2149 return true; 2150 } 2151 2152 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2153 OptimizationRemarkEmitter *ORE, 2154 SmallVectorImpl<Loop *> &V) { 2155 // Collect inner loops and outer loops without irreducible control flow. For 2156 // now, only collect outer loops that have explicit vectorization hints. If we 2157 // are stress testing the VPlan H-CFG construction, we collect the outermost 2158 // loop of every loop nest. 2159 if (L.isInnermost() || VPlanBuildStressTest || 2160 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2161 LoopBlocksRPO RPOT(&L); 2162 RPOT.perform(LI); 2163 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2164 V.push_back(&L); 2165 // TODO: Collect inner loops inside marked outer loops in case 2166 // vectorization fails for the outer loop. Do not invoke 2167 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2168 // already known to be reducible. We can use an inherited attribute for 2169 // that. 2170 return; 2171 } 2172 } 2173 for (Loop *InnerL : L) 2174 collectSupportedLoops(*InnerL, LI, ORE, V); 2175 } 2176 2177 namespace { 2178 2179 /// The LoopVectorize Pass. 2180 struct LoopVectorize : public FunctionPass { 2181 /// Pass identification, replacement for typeid 2182 static char ID; 2183 2184 LoopVectorizePass Impl; 2185 2186 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2187 bool VectorizeOnlyWhenForced = false) 2188 : FunctionPass(ID), 2189 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2190 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2191 } 2192 2193 bool runOnFunction(Function &F) override { 2194 if (skipFunction(F)) 2195 return false; 2196 2197 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2198 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2199 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2200 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2201 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2202 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2203 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2204 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2205 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2206 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2207 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2208 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2209 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2210 2211 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2212 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2213 2214 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2215 GetLAA, *ORE, PSI).MadeAnyChange; 2216 } 2217 2218 void getAnalysisUsage(AnalysisUsage &AU) const override { 2219 AU.addRequired<AssumptionCacheTracker>(); 2220 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2221 AU.addRequired<DominatorTreeWrapperPass>(); 2222 AU.addRequired<LoopInfoWrapperPass>(); 2223 AU.addRequired<ScalarEvolutionWrapperPass>(); 2224 AU.addRequired<TargetTransformInfoWrapperPass>(); 2225 AU.addRequired<AAResultsWrapperPass>(); 2226 AU.addRequired<LoopAccessLegacyAnalysis>(); 2227 AU.addRequired<DemandedBitsWrapperPass>(); 2228 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2229 AU.addRequired<InjectTLIMappingsLegacy>(); 2230 2231 // We currently do not preserve loopinfo/dominator analyses with outer loop 2232 // vectorization. Until this is addressed, mark these analyses as preserved 2233 // only for non-VPlan-native path. 2234 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2235 if (!EnableVPlanNativePath) { 2236 AU.addPreserved<LoopInfoWrapperPass>(); 2237 AU.addPreserved<DominatorTreeWrapperPass>(); 2238 } 2239 2240 AU.addPreserved<BasicAAWrapperPass>(); 2241 AU.addPreserved<GlobalsAAWrapperPass>(); 2242 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2243 } 2244 }; 2245 2246 } // end anonymous namespace 2247 2248 //===----------------------------------------------------------------------===// 2249 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2250 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2251 //===----------------------------------------------------------------------===// 2252 2253 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2254 // We need to place the broadcast of invariant variables outside the loop, 2255 // but only if it's proven safe to do so. Else, broadcast will be inside 2256 // vector loop body. 2257 Instruction *Instr = dyn_cast<Instruction>(V); 2258 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2259 (!Instr || 2260 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2261 // Place the code for broadcasting invariant variables in the new preheader. 2262 IRBuilder<>::InsertPointGuard Guard(Builder); 2263 if (SafeToHoist) 2264 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2265 2266 // Broadcast the scalar into all locations in the vector. 2267 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2268 2269 return Shuf; 2270 } 2271 2272 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2273 const InductionDescriptor &II, Value *Step, Value *Start, 2274 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2275 VPTransformState &State) { 2276 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2277 "Expected either an induction phi-node or a truncate of it!"); 2278 2279 // Construct the initial value of the vector IV in the vector loop preheader 2280 auto CurrIP = Builder.saveIP(); 2281 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2282 if (isa<TruncInst>(EntryVal)) { 2283 assert(Start->getType()->isIntegerTy() && 2284 "Truncation requires an integer type"); 2285 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2286 Step = Builder.CreateTrunc(Step, TruncType); 2287 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2288 } 2289 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2290 Value *SteppedStart = 2291 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2292 2293 // We create vector phi nodes for both integer and floating-point induction 2294 // variables. Here, we determine the kind of arithmetic we will perform. 2295 Instruction::BinaryOps AddOp; 2296 Instruction::BinaryOps MulOp; 2297 if (Step->getType()->isIntegerTy()) { 2298 AddOp = Instruction::Add; 2299 MulOp = Instruction::Mul; 2300 } else { 2301 AddOp = II.getInductionOpcode(); 2302 MulOp = Instruction::FMul; 2303 } 2304 2305 // Multiply the vectorization factor by the step using integer or 2306 // floating-point arithmetic as appropriate. 2307 Type *StepType = Step->getType(); 2308 if (Step->getType()->isFloatingPointTy()) 2309 StepType = IntegerType::get(StepType->getContext(), 2310 StepType->getScalarSizeInBits()); 2311 Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF); 2312 if (Step->getType()->isFloatingPointTy()) 2313 RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType()); 2314 Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); 2315 2316 // Create a vector splat to use in the induction update. 2317 // 2318 // FIXME: If the step is non-constant, we create the vector splat with 2319 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2320 // handle a constant vector splat. 2321 Value *SplatVF = isa<Constant>(Mul) 2322 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2323 : Builder.CreateVectorSplat(VF, Mul); 2324 Builder.restoreIP(CurrIP); 2325 2326 // We may need to add the step a number of times, depending on the unroll 2327 // factor. The last of those goes into the PHI. 2328 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2329 &*LoopVectorBody->getFirstInsertionPt()); 2330 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2331 Instruction *LastInduction = VecInd; 2332 for (unsigned Part = 0; Part < UF; ++Part) { 2333 State.set(Def, LastInduction, Part); 2334 2335 if (isa<TruncInst>(EntryVal)) 2336 addMetadata(LastInduction, EntryVal); 2337 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2338 State, Part); 2339 2340 LastInduction = cast<Instruction>( 2341 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2342 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2343 } 2344 2345 // Move the last step to the end of the latch block. This ensures consistent 2346 // placement of all induction updates. 2347 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2348 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2349 auto *ICmp = cast<Instruction>(Br->getCondition()); 2350 LastInduction->moveBefore(ICmp); 2351 LastInduction->setName("vec.ind.next"); 2352 2353 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2354 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2355 } 2356 2357 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2358 return Cost->isScalarAfterVectorization(I, VF) || 2359 Cost->isProfitableToScalarize(I, VF); 2360 } 2361 2362 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2363 if (shouldScalarizeInstruction(IV)) 2364 return true; 2365 auto isScalarInst = [&](User *U) -> bool { 2366 auto *I = cast<Instruction>(U); 2367 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2368 }; 2369 return llvm::any_of(IV->users(), isScalarInst); 2370 } 2371 2372 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2373 const InductionDescriptor &ID, const Instruction *EntryVal, 2374 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2375 unsigned Part, unsigned Lane) { 2376 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2377 "Expected either an induction phi-node or a truncate of it!"); 2378 2379 // This induction variable is not the phi from the original loop but the 2380 // newly-created IV based on the proof that casted Phi is equal to the 2381 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2382 // re-uses the same InductionDescriptor that original IV uses but we don't 2383 // have to do any recording in this case - that is done when original IV is 2384 // processed. 2385 if (isa<TruncInst>(EntryVal)) 2386 return; 2387 2388 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2389 if (Casts.empty()) 2390 return; 2391 // Only the first Cast instruction in the Casts vector is of interest. 2392 // The rest of the Casts (if exist) have no uses outside the 2393 // induction update chain itself. 2394 if (Lane < UINT_MAX) 2395 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2396 else 2397 State.set(CastDef, VectorLoopVal, Part); 2398 } 2399 2400 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2401 TruncInst *Trunc, VPValue *Def, 2402 VPValue *CastDef, 2403 VPTransformState &State) { 2404 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2405 "Primary induction variable must have an integer type"); 2406 2407 auto II = Legal->getInductionVars().find(IV); 2408 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2409 2410 auto ID = II->second; 2411 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2412 2413 // The value from the original loop to which we are mapping the new induction 2414 // variable. 2415 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2416 2417 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2418 2419 // Generate code for the induction step. Note that induction steps are 2420 // required to be loop-invariant 2421 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2422 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2423 "Induction step should be loop invariant"); 2424 if (PSE.getSE()->isSCEVable(IV->getType())) { 2425 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2426 return Exp.expandCodeFor(Step, Step->getType(), 2427 LoopVectorPreHeader->getTerminator()); 2428 } 2429 return cast<SCEVUnknown>(Step)->getValue(); 2430 }; 2431 2432 // The scalar value to broadcast. This is derived from the canonical 2433 // induction variable. If a truncation type is given, truncate the canonical 2434 // induction variable and step. Otherwise, derive these values from the 2435 // induction descriptor. 2436 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2437 Value *ScalarIV = Induction; 2438 if (IV != OldInduction) { 2439 ScalarIV = IV->getType()->isIntegerTy() 2440 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2441 : Builder.CreateCast(Instruction::SIToFP, Induction, 2442 IV->getType()); 2443 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2444 ScalarIV->setName("offset.idx"); 2445 } 2446 if (Trunc) { 2447 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2448 assert(Step->getType()->isIntegerTy() && 2449 "Truncation requires an integer step"); 2450 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2451 Step = Builder.CreateTrunc(Step, TruncType); 2452 } 2453 return ScalarIV; 2454 }; 2455 2456 // Create the vector values from the scalar IV, in the absence of creating a 2457 // vector IV. 2458 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2459 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2460 for (unsigned Part = 0; Part < UF; ++Part) { 2461 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2462 Value *EntryPart = 2463 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2464 ID.getInductionOpcode()); 2465 State.set(Def, EntryPart, Part); 2466 if (Trunc) 2467 addMetadata(EntryPart, Trunc); 2468 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2469 State, Part); 2470 } 2471 }; 2472 2473 // Fast-math-flags propagate from the original induction instruction. 2474 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2475 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2476 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2477 2478 // Now do the actual transformations, and start with creating the step value. 2479 Value *Step = CreateStepValue(ID.getStep()); 2480 if (VF.isZero() || VF.isScalar()) { 2481 Value *ScalarIV = CreateScalarIV(Step); 2482 CreateSplatIV(ScalarIV, Step); 2483 return; 2484 } 2485 2486 // Determine if we want a scalar version of the induction variable. This is 2487 // true if the induction variable itself is not widened, or if it has at 2488 // least one user in the loop that is not widened. 2489 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2490 if (!NeedsScalarIV) { 2491 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2492 State); 2493 return; 2494 } 2495 2496 // Try to create a new independent vector induction variable. If we can't 2497 // create the phi node, we will splat the scalar induction variable in each 2498 // loop iteration. 2499 if (!shouldScalarizeInstruction(EntryVal)) { 2500 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2501 State); 2502 Value *ScalarIV = CreateScalarIV(Step); 2503 // Create scalar steps that can be used by instructions we will later 2504 // scalarize. Note that the addition of the scalar steps will not increase 2505 // the number of instructions in the loop in the common case prior to 2506 // InstCombine. We will be trading one vector extract for each scalar step. 2507 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2508 return; 2509 } 2510 2511 // All IV users are scalar instructions, so only emit a scalar IV, not a 2512 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2513 // predicate used by the masked loads/stores. 2514 Value *ScalarIV = CreateScalarIV(Step); 2515 if (!Cost->isScalarEpilogueAllowed()) 2516 CreateSplatIV(ScalarIV, Step); 2517 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2518 } 2519 2520 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2521 Instruction::BinaryOps BinOp) { 2522 // Create and check the types. 2523 auto *ValVTy = cast<VectorType>(Val->getType()); 2524 ElementCount VLen = ValVTy->getElementCount(); 2525 2526 Type *STy = Val->getType()->getScalarType(); 2527 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2528 "Induction Step must be an integer or FP"); 2529 assert(Step->getType() == STy && "Step has wrong type"); 2530 2531 SmallVector<Constant *, 8> Indices; 2532 2533 // Create a vector of consecutive numbers from zero to VF. 2534 VectorType *InitVecValVTy = ValVTy; 2535 Type *InitVecValSTy = STy; 2536 if (STy->isFloatingPointTy()) { 2537 InitVecValSTy = 2538 IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); 2539 InitVecValVTy = VectorType::get(InitVecValSTy, VLen); 2540 } 2541 Value *InitVec = Builder.CreateStepVector(InitVecValVTy); 2542 2543 // Add on StartIdx 2544 Value *StartIdxSplat = Builder.CreateVectorSplat( 2545 VLen, ConstantInt::get(InitVecValSTy, StartIdx)); 2546 InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); 2547 2548 if (STy->isIntegerTy()) { 2549 Step = Builder.CreateVectorSplat(VLen, Step); 2550 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2551 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2552 // which can be found from the original scalar operations. 2553 Step = Builder.CreateMul(InitVec, Step); 2554 return Builder.CreateAdd(Val, Step, "induction"); 2555 } 2556 2557 // Floating point induction. 2558 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2559 "Binary Opcode should be specified for FP induction"); 2560 InitVec = Builder.CreateUIToFP(InitVec, ValVTy); 2561 Step = Builder.CreateVectorSplat(VLen, Step); 2562 Value *MulOp = Builder.CreateFMul(InitVec, Step); 2563 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2564 } 2565 2566 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2567 Instruction *EntryVal, 2568 const InductionDescriptor &ID, 2569 VPValue *Def, VPValue *CastDef, 2570 VPTransformState &State) { 2571 // We shouldn't have to build scalar steps if we aren't vectorizing. 2572 assert(VF.isVector() && "VF should be greater than one"); 2573 // Get the value type and ensure it and the step have the same integer type. 2574 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2575 assert(ScalarIVTy == Step->getType() && 2576 "Val and Step should have the same type"); 2577 2578 // We build scalar steps for both integer and floating-point induction 2579 // variables. Here, we determine the kind of arithmetic we will perform. 2580 Instruction::BinaryOps AddOp; 2581 Instruction::BinaryOps MulOp; 2582 if (ScalarIVTy->isIntegerTy()) { 2583 AddOp = Instruction::Add; 2584 MulOp = Instruction::Mul; 2585 } else { 2586 AddOp = ID.getInductionOpcode(); 2587 MulOp = Instruction::FMul; 2588 } 2589 2590 // Determine the number of scalars we need to generate for each unroll 2591 // iteration. If EntryVal is uniform, we only need to generate the first 2592 // lane. Otherwise, we generate all VF values. 2593 bool IsUniform = 2594 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF); 2595 unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue(); 2596 // Compute the scalar steps and save the results in State. 2597 Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2598 ScalarIVTy->getScalarSizeInBits()); 2599 Type *VecIVTy = nullptr; 2600 Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; 2601 if (!IsUniform && VF.isScalable()) { 2602 VecIVTy = VectorType::get(ScalarIVTy, VF); 2603 UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF)); 2604 SplatStep = Builder.CreateVectorSplat(VF, Step); 2605 SplatIV = Builder.CreateVectorSplat(VF, ScalarIV); 2606 } 2607 2608 for (unsigned Part = 0; Part < UF; ++Part) { 2609 Value *StartIdx0 = 2610 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2611 2612 if (!IsUniform && VF.isScalable()) { 2613 auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0); 2614 auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); 2615 if (ScalarIVTy->isFloatingPointTy()) 2616 InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); 2617 auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); 2618 auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); 2619 State.set(Def, Add, Part); 2620 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2621 Part); 2622 // It's useful to record the lane values too for the known minimum number 2623 // of elements so we do those below. This improves the code quality when 2624 // trying to extract the first element, for example. 2625 } 2626 2627 if (ScalarIVTy->isFloatingPointTy()) 2628 StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); 2629 2630 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2631 Value *StartIdx = Builder.CreateBinOp( 2632 AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2633 // The step returned by `createStepForVF` is a runtime-evaluated value 2634 // when VF is scalable. Otherwise, it should be folded into a Constant. 2635 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2636 "Expected StartIdx to be folded to a constant when VF is not " 2637 "scalable"); 2638 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2639 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2640 State.set(Def, Add, VPIteration(Part, Lane)); 2641 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2642 Part, Lane); 2643 } 2644 } 2645 } 2646 2647 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2648 const VPIteration &Instance, 2649 VPTransformState &State) { 2650 Value *ScalarInst = State.get(Def, Instance); 2651 Value *VectorValue = State.get(Def, Instance.Part); 2652 VectorValue = Builder.CreateInsertElement( 2653 VectorValue, ScalarInst, 2654 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2655 State.set(Def, VectorValue, Instance.Part); 2656 } 2657 2658 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2659 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2660 return Builder.CreateVectorReverse(Vec, "reverse"); 2661 } 2662 2663 // Return whether we allow using masked interleave-groups (for dealing with 2664 // strided loads/stores that reside in predicated blocks, or for dealing 2665 // with gaps). 2666 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2667 // If an override option has been passed in for interleaved accesses, use it. 2668 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2669 return EnableMaskedInterleavedMemAccesses; 2670 2671 return TTI.enableMaskedInterleavedAccessVectorization(); 2672 } 2673 2674 // Try to vectorize the interleave group that \p Instr belongs to. 2675 // 2676 // E.g. Translate following interleaved load group (factor = 3): 2677 // for (i = 0; i < N; i+=3) { 2678 // R = Pic[i]; // Member of index 0 2679 // G = Pic[i+1]; // Member of index 1 2680 // B = Pic[i+2]; // Member of index 2 2681 // ... // do something to R, G, B 2682 // } 2683 // To: 2684 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2685 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2686 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2687 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2688 // 2689 // Or translate following interleaved store group (factor = 3): 2690 // for (i = 0; i < N; i+=3) { 2691 // ... do something to R, G, B 2692 // Pic[i] = R; // Member of index 0 2693 // Pic[i+1] = G; // Member of index 1 2694 // Pic[i+2] = B; // Member of index 2 2695 // } 2696 // To: 2697 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2698 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2699 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2700 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2701 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2702 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2703 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2704 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2705 VPValue *BlockInMask) { 2706 Instruction *Instr = Group->getInsertPos(); 2707 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2708 2709 // Prepare for the vector type of the interleaved load/store. 2710 Type *ScalarTy = getLoadStoreType(Instr); 2711 unsigned InterleaveFactor = Group->getFactor(); 2712 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2713 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2714 2715 // Prepare for the new pointers. 2716 SmallVector<Value *, 2> AddrParts; 2717 unsigned Index = Group->getIndex(Instr); 2718 2719 // TODO: extend the masked interleaved-group support to reversed access. 2720 assert((!BlockInMask || !Group->isReverse()) && 2721 "Reversed masked interleave-group not supported."); 2722 2723 // If the group is reverse, adjust the index to refer to the last vector lane 2724 // instead of the first. We adjust the index from the first vector lane, 2725 // rather than directly getting the pointer for lane VF - 1, because the 2726 // pointer operand of the interleaved access is supposed to be uniform. For 2727 // uniform instructions, we're only required to generate a value for the 2728 // first vector lane in each unroll iteration. 2729 if (Group->isReverse()) 2730 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2731 2732 for (unsigned Part = 0; Part < UF; Part++) { 2733 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2734 setDebugLocFromInst(AddrPart); 2735 2736 // Notice current instruction could be any index. Need to adjust the address 2737 // to the member of index 0. 2738 // 2739 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2740 // b = A[i]; // Member of index 0 2741 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2742 // 2743 // E.g. A[i+1] = a; // Member of index 1 2744 // A[i] = b; // Member of index 0 2745 // A[i+2] = c; // Member of index 2 (Current instruction) 2746 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2747 2748 bool InBounds = false; 2749 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2750 InBounds = gep->isInBounds(); 2751 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2752 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2753 2754 // Cast to the vector pointer type. 2755 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2756 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2757 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2758 } 2759 2760 setDebugLocFromInst(Instr); 2761 Value *PoisonVec = PoisonValue::get(VecTy); 2762 2763 Value *MaskForGaps = nullptr; 2764 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2765 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2766 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2767 } 2768 2769 // Vectorize the interleaved load group. 2770 if (isa<LoadInst>(Instr)) { 2771 // For each unroll part, create a wide load for the group. 2772 SmallVector<Value *, 2> NewLoads; 2773 for (unsigned Part = 0; Part < UF; Part++) { 2774 Instruction *NewLoad; 2775 if (BlockInMask || MaskForGaps) { 2776 assert(useMaskedInterleavedAccesses(*TTI) && 2777 "masked interleaved groups are not allowed."); 2778 Value *GroupMask = MaskForGaps; 2779 if (BlockInMask) { 2780 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2781 Value *ShuffledMask = Builder.CreateShuffleVector( 2782 BlockInMaskPart, 2783 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2784 "interleaved.mask"); 2785 GroupMask = MaskForGaps 2786 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2787 MaskForGaps) 2788 : ShuffledMask; 2789 } 2790 NewLoad = 2791 Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), 2792 GroupMask, PoisonVec, "wide.masked.vec"); 2793 } 2794 else 2795 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2796 Group->getAlign(), "wide.vec"); 2797 Group->addMetadata(NewLoad); 2798 NewLoads.push_back(NewLoad); 2799 } 2800 2801 // For each member in the group, shuffle out the appropriate data from the 2802 // wide loads. 2803 unsigned J = 0; 2804 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2805 Instruction *Member = Group->getMember(I); 2806 2807 // Skip the gaps in the group. 2808 if (!Member) 2809 continue; 2810 2811 auto StrideMask = 2812 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2813 for (unsigned Part = 0; Part < UF; Part++) { 2814 Value *StridedVec = Builder.CreateShuffleVector( 2815 NewLoads[Part], StrideMask, "strided.vec"); 2816 2817 // If this member has different type, cast the result type. 2818 if (Member->getType() != ScalarTy) { 2819 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2820 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2821 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2822 } 2823 2824 if (Group->isReverse()) 2825 StridedVec = reverseVector(StridedVec); 2826 2827 State.set(VPDefs[J], StridedVec, Part); 2828 } 2829 ++J; 2830 } 2831 return; 2832 } 2833 2834 // The sub vector type for current instruction. 2835 auto *SubVT = VectorType::get(ScalarTy, VF); 2836 2837 // Vectorize the interleaved store group. 2838 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2839 assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && 2840 "masked interleaved groups are not allowed."); 2841 assert((!MaskForGaps || !VF.isScalable()) && 2842 "masking gaps for scalable vectors is not yet supported."); 2843 for (unsigned Part = 0; Part < UF; Part++) { 2844 // Collect the stored vector from each member. 2845 SmallVector<Value *, 4> StoredVecs; 2846 for (unsigned i = 0; i < InterleaveFactor; i++) { 2847 assert((Group->getMember(i) || MaskForGaps) && 2848 "Fail to get a member from an interleaved store group"); 2849 Instruction *Member = Group->getMember(i); 2850 2851 // Skip the gaps in the group. 2852 if (!Member) { 2853 Value *Undef = PoisonValue::get(SubVT); 2854 StoredVecs.push_back(Undef); 2855 continue; 2856 } 2857 2858 Value *StoredVec = State.get(StoredValues[i], Part); 2859 2860 if (Group->isReverse()) 2861 StoredVec = reverseVector(StoredVec); 2862 2863 // If this member has different type, cast it to a unified type. 2864 2865 if (StoredVec->getType() != SubVT) 2866 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2867 2868 StoredVecs.push_back(StoredVec); 2869 } 2870 2871 // Concatenate all vectors into a wide vector. 2872 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2873 2874 // Interleave the elements in the wide vector. 2875 Value *IVec = Builder.CreateShuffleVector( 2876 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2877 "interleaved.vec"); 2878 2879 Instruction *NewStoreInstr; 2880 if (BlockInMask || MaskForGaps) { 2881 Value *GroupMask = MaskForGaps; 2882 if (BlockInMask) { 2883 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2884 Value *ShuffledMask = Builder.CreateShuffleVector( 2885 BlockInMaskPart, 2886 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2887 "interleaved.mask"); 2888 GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, 2889 ShuffledMask, MaskForGaps) 2890 : ShuffledMask; 2891 } 2892 NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], 2893 Group->getAlign(), GroupMask); 2894 } else 2895 NewStoreInstr = 2896 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2897 2898 Group->addMetadata(NewStoreInstr); 2899 } 2900 } 2901 2902 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2903 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2904 VPValue *StoredValue, VPValue *BlockInMask) { 2905 // Attempt to issue a wide load. 2906 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2907 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2908 2909 assert((LI || SI) && "Invalid Load/Store instruction"); 2910 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2911 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2912 2913 LoopVectorizationCostModel::InstWidening Decision = 2914 Cost->getWideningDecision(Instr, VF); 2915 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2916 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2917 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2918 "CM decision is not to widen the memory instruction"); 2919 2920 Type *ScalarDataTy = getLoadStoreType(Instr); 2921 2922 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2923 const Align Alignment = getLoadStoreAlignment(Instr); 2924 2925 // Determine if the pointer operand of the access is either consecutive or 2926 // reverse consecutive. 2927 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2928 bool ConsecutiveStride = 2929 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2930 bool CreateGatherScatter = 2931 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2932 2933 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2934 // gather/scatter. Otherwise Decision should have been to Scalarize. 2935 assert((ConsecutiveStride || CreateGatherScatter) && 2936 "The instruction should be scalarized"); 2937 (void)ConsecutiveStride; 2938 2939 VectorParts BlockInMaskParts(UF); 2940 bool isMaskRequired = BlockInMask; 2941 if (isMaskRequired) 2942 for (unsigned Part = 0; Part < UF; ++Part) 2943 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2944 2945 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2946 // Calculate the pointer for the specific unroll-part. 2947 GetElementPtrInst *PartPtr = nullptr; 2948 2949 bool InBounds = false; 2950 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2951 InBounds = gep->isInBounds(); 2952 if (Reverse) { 2953 // If the address is consecutive but reversed, then the 2954 // wide store needs to start at the last vector element. 2955 // RunTimeVF = VScale * VF.getKnownMinValue() 2956 // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() 2957 Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF); 2958 // NumElt = -Part * RunTimeVF 2959 Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); 2960 // LastLane = 1 - RunTimeVF 2961 Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); 2962 PartPtr = 2963 cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); 2964 PartPtr->setIsInBounds(InBounds); 2965 PartPtr = cast<GetElementPtrInst>( 2966 Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); 2967 PartPtr->setIsInBounds(InBounds); 2968 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2969 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2970 } else { 2971 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2972 PartPtr = cast<GetElementPtrInst>( 2973 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2974 PartPtr->setIsInBounds(InBounds); 2975 } 2976 2977 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2978 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2979 }; 2980 2981 // Handle Stores: 2982 if (SI) { 2983 setDebugLocFromInst(SI); 2984 2985 for (unsigned Part = 0; Part < UF; ++Part) { 2986 Instruction *NewSI = nullptr; 2987 Value *StoredVal = State.get(StoredValue, Part); 2988 if (CreateGatherScatter) { 2989 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2990 Value *VectorGep = State.get(Addr, Part); 2991 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2992 MaskPart); 2993 } else { 2994 if (Reverse) { 2995 // If we store to reverse consecutive memory locations, then we need 2996 // to reverse the order of elements in the stored value. 2997 StoredVal = reverseVector(StoredVal); 2998 // We don't want to update the value in the map as it might be used in 2999 // another expression. So don't call resetVectorValue(StoredVal). 3000 } 3001 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 3002 if (isMaskRequired) 3003 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 3004 BlockInMaskParts[Part]); 3005 else 3006 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 3007 } 3008 addMetadata(NewSI, SI); 3009 } 3010 return; 3011 } 3012 3013 // Handle loads. 3014 assert(LI && "Must have a load instruction"); 3015 setDebugLocFromInst(LI); 3016 for (unsigned Part = 0; Part < UF; ++Part) { 3017 Value *NewLI; 3018 if (CreateGatherScatter) { 3019 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 3020 Value *VectorGep = State.get(Addr, Part); 3021 NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, 3022 nullptr, "wide.masked.gather"); 3023 addMetadata(NewLI, LI); 3024 } else { 3025 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 3026 if (isMaskRequired) 3027 NewLI = Builder.CreateMaskedLoad( 3028 DataTy, VecPtr, Alignment, BlockInMaskParts[Part], 3029 PoisonValue::get(DataTy), "wide.masked.load"); 3030 else 3031 NewLI = 3032 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 3033 3034 // Add metadata to the load, but setVectorValue to the reverse shuffle. 3035 addMetadata(NewLI, LI); 3036 if (Reverse) 3037 NewLI = reverseVector(NewLI); 3038 } 3039 3040 State.set(Def, NewLI, Part); 3041 } 3042 } 3043 3044 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 3045 VPUser &User, 3046 const VPIteration &Instance, 3047 bool IfPredicateInstr, 3048 VPTransformState &State) { 3049 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 3050 3051 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 3052 // the first lane and part. 3053 if (isa<NoAliasScopeDeclInst>(Instr)) 3054 if (!Instance.isFirstIteration()) 3055 return; 3056 3057 setDebugLocFromInst(Instr); 3058 3059 // Does this instruction return a value ? 3060 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 3061 3062 Instruction *Cloned = Instr->clone(); 3063 if (!IsVoidRetTy) 3064 Cloned->setName(Instr->getName() + ".cloned"); 3065 3066 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 3067 Builder.GetInsertPoint()); 3068 // Replace the operands of the cloned instructions with their scalar 3069 // equivalents in the new loop. 3070 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 3071 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 3072 auto InputInstance = Instance; 3073 if (!Operand || !OrigLoop->contains(Operand) || 3074 (Cost->isUniformAfterVectorization(Operand, State.VF))) 3075 InputInstance.Lane = VPLane::getFirstLane(); 3076 auto *NewOp = State.get(User.getOperand(op), InputInstance); 3077 Cloned->setOperand(op, NewOp); 3078 } 3079 addNewMetadata(Cloned, Instr); 3080 3081 // Place the cloned scalar in the new loop. 3082 Builder.Insert(Cloned); 3083 3084 State.set(Def, Cloned, Instance); 3085 3086 // If we just cloned a new assumption, add it the assumption cache. 3087 if (auto *II = dyn_cast<AssumeInst>(Cloned)) 3088 AC->registerAssumption(II); 3089 3090 // End if-block. 3091 if (IfPredicateInstr) 3092 PredicatedInstructions.push_back(Cloned); 3093 } 3094 3095 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 3096 Value *End, Value *Step, 3097 Instruction *DL) { 3098 BasicBlock *Header = L->getHeader(); 3099 BasicBlock *Latch = L->getLoopLatch(); 3100 // As we're just creating this loop, it's possible no latch exists 3101 // yet. If so, use the header as this will be a single block loop. 3102 if (!Latch) 3103 Latch = Header; 3104 3105 IRBuilder<> B(&*Header->getFirstInsertionPt()); 3106 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3107 setDebugLocFromInst(OldInst, &B); 3108 auto *Induction = B.CreatePHI(Start->getType(), 2, "index"); 3109 3110 B.SetInsertPoint(Latch->getTerminator()); 3111 setDebugLocFromInst(OldInst, &B); 3112 3113 // Create i+1 and fill the PHINode. 3114 // 3115 // If the tail is not folded, we know that End - Start >= Step (either 3116 // statically or through the minimum iteration checks). We also know that both 3117 // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV + 3118 // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned 3119 // overflows and we can mark the induction increment as NUW. 3120 Value *Next = B.CreateAdd(Induction, Step, "index.next", 3121 /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false); 3122 Induction->addIncoming(Start, L->getLoopPreheader()); 3123 Induction->addIncoming(Next, Latch); 3124 // Create the compare. 3125 Value *ICmp = B.CreateICmpEQ(Next, End); 3126 B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3127 3128 // Now we have two terminators. Remove the old one from the block. 3129 Latch->getTerminator()->eraseFromParent(); 3130 3131 return Induction; 3132 } 3133 3134 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3135 if (TripCount) 3136 return TripCount; 3137 3138 assert(L && "Create Trip Count for null loop."); 3139 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3140 // Find the loop boundaries. 3141 ScalarEvolution *SE = PSE.getSE(); 3142 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3143 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3144 "Invalid loop count"); 3145 3146 Type *IdxTy = Legal->getWidestInductionType(); 3147 assert(IdxTy && "No type for induction"); 3148 3149 // The exit count might have the type of i64 while the phi is i32. This can 3150 // happen if we have an induction variable that is sign extended before the 3151 // compare. The only way that we get a backedge taken count is that the 3152 // induction variable was signed and as such will not overflow. In such a case 3153 // truncation is legal. 3154 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3155 IdxTy->getPrimitiveSizeInBits()) 3156 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3157 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3158 3159 // Get the total trip count from the count by adding 1. 3160 const SCEV *ExitCount = SE->getAddExpr( 3161 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3162 3163 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3164 3165 // Expand the trip count and place the new instructions in the preheader. 3166 // Notice that the pre-header does not change, only the loop body. 3167 SCEVExpander Exp(*SE, DL, "induction"); 3168 3169 // Count holds the overall loop count (N). 3170 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3171 L->getLoopPreheader()->getTerminator()); 3172 3173 if (TripCount->getType()->isPointerTy()) 3174 TripCount = 3175 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3176 L->getLoopPreheader()->getTerminator()); 3177 3178 return TripCount; 3179 } 3180 3181 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3182 if (VectorTripCount) 3183 return VectorTripCount; 3184 3185 Value *TC = getOrCreateTripCount(L); 3186 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3187 3188 Type *Ty = TC->getType(); 3189 // This is where we can make the step a runtime constant. 3190 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3191 3192 // If the tail is to be folded by masking, round the number of iterations N 3193 // up to a multiple of Step instead of rounding down. This is done by first 3194 // adding Step-1 and then rounding down. Note that it's ok if this addition 3195 // overflows: the vector induction variable will eventually wrap to zero given 3196 // that it starts at zero and its Step is a power of two; the loop will then 3197 // exit, with the last early-exit vector comparison also producing all-true. 3198 if (Cost->foldTailByMasking()) { 3199 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3200 "VF*UF must be a power of 2 when folding tail by masking"); 3201 assert(!VF.isScalable() && 3202 "Tail folding not yet supported for scalable vectors"); 3203 TC = Builder.CreateAdd( 3204 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3205 } 3206 3207 // Now we need to generate the expression for the part of the loop that the 3208 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3209 // iterations are not required for correctness, or N - Step, otherwise. Step 3210 // is equal to the vectorization factor (number of SIMD elements) times the 3211 // unroll factor (number of SIMD instructions). 3212 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3213 3214 // There are cases where we *must* run at least one iteration in the remainder 3215 // loop. See the cost model for when this can happen. If the step evenly 3216 // divides the trip count, we set the remainder to be equal to the step. If 3217 // the step does not evenly divide the trip count, no adjustment is necessary 3218 // since there will already be scalar iterations. Note that the minimum 3219 // iterations check ensures that N >= Step. 3220 if (Cost->requiresScalarEpilogue(VF)) { 3221 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3222 R = Builder.CreateSelect(IsZero, Step, R); 3223 } 3224 3225 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3226 3227 return VectorTripCount; 3228 } 3229 3230 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3231 const DataLayout &DL) { 3232 // Verify that V is a vector type with same number of elements as DstVTy. 3233 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3234 unsigned VF = DstFVTy->getNumElements(); 3235 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3236 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3237 Type *SrcElemTy = SrcVecTy->getElementType(); 3238 Type *DstElemTy = DstFVTy->getElementType(); 3239 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3240 "Vector elements must have same size"); 3241 3242 // Do a direct cast if element types are castable. 3243 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3244 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3245 } 3246 // V cannot be directly casted to desired vector type. 3247 // May happen when V is a floating point vector but DstVTy is a vector of 3248 // pointers or vice-versa. Handle this using a two-step bitcast using an 3249 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3250 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3251 "Only one type should be a pointer type"); 3252 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3253 "Only one type should be a floating point type"); 3254 Type *IntTy = 3255 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3256 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3257 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3258 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3259 } 3260 3261 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3262 BasicBlock *Bypass) { 3263 Value *Count = getOrCreateTripCount(L); 3264 // Reuse existing vector loop preheader for TC checks. 3265 // Note that new preheader block is generated for vector loop. 3266 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3267 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3268 3269 // Generate code to check if the loop's trip count is less than VF * UF, or 3270 // equal to it in case a scalar epilogue is required; this implies that the 3271 // vector trip count is zero. This check also covers the case where adding one 3272 // to the backedge-taken count overflowed leading to an incorrect trip count 3273 // of zero. In this case we will also jump to the scalar loop. 3274 auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE 3275 : ICmpInst::ICMP_ULT; 3276 3277 // If tail is to be folded, vector loop takes care of all iterations. 3278 Value *CheckMinIters = Builder.getFalse(); 3279 if (!Cost->foldTailByMasking()) { 3280 Value *Step = 3281 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3282 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3283 } 3284 // Create new preheader for vector loop. 3285 LoopVectorPreHeader = 3286 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3287 "vector.ph"); 3288 3289 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3290 DT->getNode(Bypass)->getIDom()) && 3291 "TC check is expected to dominate Bypass"); 3292 3293 // Update dominator for Bypass & LoopExit (if needed). 3294 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3295 if (!Cost->requiresScalarEpilogue(VF)) 3296 // If there is an epilogue which must run, there's no edge from the 3297 // middle block to exit blocks and thus no need to update the immediate 3298 // dominator of the exit blocks. 3299 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3300 3301 ReplaceInstWithInst( 3302 TCCheckBlock->getTerminator(), 3303 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3304 LoopBypassBlocks.push_back(TCCheckBlock); 3305 } 3306 3307 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3308 3309 BasicBlock *const SCEVCheckBlock = 3310 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3311 if (!SCEVCheckBlock) 3312 return nullptr; 3313 3314 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3315 (OptForSizeBasedOnProfile && 3316 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3317 "Cannot SCEV check stride or overflow when optimizing for size"); 3318 3319 3320 // Update dominator only if this is first RT check. 3321 if (LoopBypassBlocks.empty()) { 3322 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3323 if (!Cost->requiresScalarEpilogue(VF)) 3324 // If there is an epilogue which must run, there's no edge from the 3325 // middle block to exit blocks and thus no need to update the immediate 3326 // dominator of the exit blocks. 3327 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3328 } 3329 3330 LoopBypassBlocks.push_back(SCEVCheckBlock); 3331 AddedSafetyChecks = true; 3332 return SCEVCheckBlock; 3333 } 3334 3335 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3336 BasicBlock *Bypass) { 3337 // VPlan-native path does not do any analysis for runtime checks currently. 3338 if (EnableVPlanNativePath) 3339 return nullptr; 3340 3341 BasicBlock *const MemCheckBlock = 3342 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3343 3344 // Check if we generated code that checks in runtime if arrays overlap. We put 3345 // the checks into a separate block to make the more common case of few 3346 // elements faster. 3347 if (!MemCheckBlock) 3348 return nullptr; 3349 3350 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3351 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3352 "Cannot emit memory checks when optimizing for size, unless forced " 3353 "to vectorize."); 3354 ORE->emit([&]() { 3355 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3356 L->getStartLoc(), L->getHeader()) 3357 << "Code-size may be reduced by not forcing " 3358 "vectorization, or by source-code modifications " 3359 "eliminating the need for runtime checks " 3360 "(e.g., adding 'restrict')."; 3361 }); 3362 } 3363 3364 LoopBypassBlocks.push_back(MemCheckBlock); 3365 3366 AddedSafetyChecks = true; 3367 3368 // We currently don't use LoopVersioning for the actual loop cloning but we 3369 // still use it to add the noalias metadata. 3370 LVer = std::make_unique<LoopVersioning>( 3371 *Legal->getLAI(), 3372 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3373 DT, PSE.getSE()); 3374 LVer->prepareNoAliasMetadata(); 3375 return MemCheckBlock; 3376 } 3377 3378 Value *InnerLoopVectorizer::emitTransformedIndex( 3379 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3380 const InductionDescriptor &ID) const { 3381 3382 SCEVExpander Exp(*SE, DL, "induction"); 3383 auto Step = ID.getStep(); 3384 auto StartValue = ID.getStartValue(); 3385 assert(Index->getType()->getScalarType() == Step->getType() && 3386 "Index scalar type does not match StepValue type"); 3387 3388 // Note: the IR at this point is broken. We cannot use SE to create any new 3389 // SCEV and then expand it, hoping that SCEV's simplification will give us 3390 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3391 // lead to various SCEV crashes. So all we can do is to use builder and rely 3392 // on InstCombine for future simplifications. Here we handle some trivial 3393 // cases only. 3394 auto CreateAdd = [&B](Value *X, Value *Y) { 3395 assert(X->getType() == Y->getType() && "Types don't match!"); 3396 if (auto *CX = dyn_cast<ConstantInt>(X)) 3397 if (CX->isZero()) 3398 return Y; 3399 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3400 if (CY->isZero()) 3401 return X; 3402 return B.CreateAdd(X, Y); 3403 }; 3404 3405 // We allow X to be a vector type, in which case Y will potentially be 3406 // splatted into a vector with the same element count. 3407 auto CreateMul = [&B](Value *X, Value *Y) { 3408 assert(X->getType()->getScalarType() == Y->getType() && 3409 "Types don't match!"); 3410 if (auto *CX = dyn_cast<ConstantInt>(X)) 3411 if (CX->isOne()) 3412 return Y; 3413 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3414 if (CY->isOne()) 3415 return X; 3416 VectorType *XVTy = dyn_cast<VectorType>(X->getType()); 3417 if (XVTy && !isa<VectorType>(Y->getType())) 3418 Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); 3419 return B.CreateMul(X, Y); 3420 }; 3421 3422 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3423 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3424 // the DomTree is not kept up-to-date for additional blocks generated in the 3425 // vector loop. By using the header as insertion point, we guarantee that the 3426 // expanded instructions dominate all their uses. 3427 auto GetInsertPoint = [this, &B]() { 3428 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3429 if (InsertBB != LoopVectorBody && 3430 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3431 return LoopVectorBody->getTerminator(); 3432 return &*B.GetInsertPoint(); 3433 }; 3434 3435 switch (ID.getKind()) { 3436 case InductionDescriptor::IK_IntInduction: { 3437 assert(!isa<VectorType>(Index->getType()) && 3438 "Vector indices not supported for integer inductions yet"); 3439 assert(Index->getType() == StartValue->getType() && 3440 "Index type does not match StartValue type"); 3441 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3442 return B.CreateSub(StartValue, Index); 3443 auto *Offset = CreateMul( 3444 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3445 return CreateAdd(StartValue, Offset); 3446 } 3447 case InductionDescriptor::IK_PtrInduction: { 3448 assert(isa<SCEVConstant>(Step) && 3449 "Expected constant step for pointer induction"); 3450 return B.CreateGEP( 3451 ID.getElementType(), StartValue, 3452 CreateMul(Index, 3453 Exp.expandCodeFor(Step, Index->getType()->getScalarType(), 3454 GetInsertPoint()))); 3455 } 3456 case InductionDescriptor::IK_FpInduction: { 3457 assert(!isa<VectorType>(Index->getType()) && 3458 "Vector indices not supported for FP inductions yet"); 3459 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3460 auto InductionBinOp = ID.getInductionBinOp(); 3461 assert(InductionBinOp && 3462 (InductionBinOp->getOpcode() == Instruction::FAdd || 3463 InductionBinOp->getOpcode() == Instruction::FSub) && 3464 "Original bin op should be defined for FP induction"); 3465 3466 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3467 Value *MulExp = B.CreateFMul(StepValue, Index); 3468 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3469 "induction"); 3470 } 3471 case InductionDescriptor::IK_NoInduction: 3472 return nullptr; 3473 } 3474 llvm_unreachable("invalid enum"); 3475 } 3476 3477 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3478 LoopScalarBody = OrigLoop->getHeader(); 3479 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3480 assert(LoopVectorPreHeader && "Invalid loop structure"); 3481 LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr 3482 assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && 3483 "multiple exit loop without required epilogue?"); 3484 3485 LoopMiddleBlock = 3486 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3487 LI, nullptr, Twine(Prefix) + "middle.block"); 3488 LoopScalarPreHeader = 3489 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3490 nullptr, Twine(Prefix) + "scalar.ph"); 3491 3492 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3493 3494 // Set up the middle block terminator. Two cases: 3495 // 1) If we know that we must execute the scalar epilogue, emit an 3496 // unconditional branch. 3497 // 2) Otherwise, we must have a single unique exit block (due to how we 3498 // implement the multiple exit case). In this case, set up a conditonal 3499 // branch from the middle block to the loop scalar preheader, and the 3500 // exit block. completeLoopSkeleton will update the condition to use an 3501 // iteration check, if required to decide whether to execute the remainder. 3502 BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? 3503 BranchInst::Create(LoopScalarPreHeader) : 3504 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, 3505 Builder.getTrue()); 3506 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3507 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3508 3509 // We intentionally don't let SplitBlock to update LoopInfo since 3510 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3511 // LoopVectorBody is explicitly added to the correct place few lines later. 3512 LoopVectorBody = 3513 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3514 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3515 3516 // Update dominator for loop exit. 3517 if (!Cost->requiresScalarEpilogue(VF)) 3518 // If there is an epilogue which must run, there's no edge from the 3519 // middle block to exit blocks and thus no need to update the immediate 3520 // dominator of the exit blocks. 3521 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3522 3523 // Create and register the new vector loop. 3524 Loop *Lp = LI->AllocateLoop(); 3525 Loop *ParentLoop = OrigLoop->getParentLoop(); 3526 3527 // Insert the new loop into the loop nest and register the new basic blocks 3528 // before calling any utilities such as SCEV that require valid LoopInfo. 3529 if (ParentLoop) { 3530 ParentLoop->addChildLoop(Lp); 3531 } else { 3532 LI->addTopLevelLoop(Lp); 3533 } 3534 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3535 return Lp; 3536 } 3537 3538 void InnerLoopVectorizer::createInductionResumeValues( 3539 Loop *L, Value *VectorTripCount, 3540 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3541 assert(VectorTripCount && L && "Expected valid arguments"); 3542 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3543 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3544 "Inconsistent information about additional bypass."); 3545 // We are going to resume the execution of the scalar loop. 3546 // Go over all of the induction variables that we found and fix the 3547 // PHIs that are left in the scalar version of the loop. 3548 // The starting values of PHI nodes depend on the counter of the last 3549 // iteration in the vectorized loop. 3550 // If we come from a bypass edge then we need to start from the original 3551 // start value. 3552 for (auto &InductionEntry : Legal->getInductionVars()) { 3553 PHINode *OrigPhi = InductionEntry.first; 3554 InductionDescriptor II = InductionEntry.second; 3555 3556 // Create phi nodes to merge from the backedge-taken check block. 3557 PHINode *BCResumeVal = 3558 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3559 LoopScalarPreHeader->getTerminator()); 3560 // Copy original phi DL over to the new one. 3561 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3562 Value *&EndValue = IVEndValues[OrigPhi]; 3563 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3564 if (OrigPhi == OldInduction) { 3565 // We know what the end value is. 3566 EndValue = VectorTripCount; 3567 } else { 3568 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3569 3570 // Fast-math-flags propagate from the original induction instruction. 3571 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3572 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3573 3574 Type *StepType = II.getStep()->getType(); 3575 Instruction::CastOps CastOp = 3576 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3577 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3578 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3579 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3580 EndValue->setName("ind.end"); 3581 3582 // Compute the end value for the additional bypass (if applicable). 3583 if (AdditionalBypass.first) { 3584 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3585 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3586 StepType, true); 3587 CRD = 3588 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3589 EndValueFromAdditionalBypass = 3590 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3591 EndValueFromAdditionalBypass->setName("ind.end"); 3592 } 3593 } 3594 // The new PHI merges the original incoming value, in case of a bypass, 3595 // or the value at the end of the vectorized loop. 3596 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3597 3598 // Fix the scalar body counter (PHI node). 3599 // The old induction's phi node in the scalar body needs the truncated 3600 // value. 3601 for (BasicBlock *BB : LoopBypassBlocks) 3602 BCResumeVal->addIncoming(II.getStartValue(), BB); 3603 3604 if (AdditionalBypass.first) 3605 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3606 EndValueFromAdditionalBypass); 3607 3608 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3609 } 3610 } 3611 3612 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3613 MDNode *OrigLoopID) { 3614 assert(L && "Expected valid loop."); 3615 3616 // The trip counts should be cached by now. 3617 Value *Count = getOrCreateTripCount(L); 3618 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3619 3620 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3621 3622 // Add a check in the middle block to see if we have completed 3623 // all of the iterations in the first vector loop. Three cases: 3624 // 1) If we require a scalar epilogue, there is no conditional branch as 3625 // we unconditionally branch to the scalar preheader. Do nothing. 3626 // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. 3627 // Thus if tail is to be folded, we know we don't need to run the 3628 // remainder and we can use the previous value for the condition (true). 3629 // 3) Otherwise, construct a runtime check. 3630 if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { 3631 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3632 Count, VectorTripCount, "cmp.n", 3633 LoopMiddleBlock->getTerminator()); 3634 3635 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3636 // of the corresponding compare because they may have ended up with 3637 // different line numbers and we want to avoid awkward line stepping while 3638 // debugging. Eg. if the compare has got a line number inside the loop. 3639 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3640 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3641 } 3642 3643 // Get ready to start creating new instructions into the vectorized body. 3644 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3645 "Inconsistent vector loop preheader"); 3646 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3647 3648 Optional<MDNode *> VectorizedLoopID = 3649 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3650 LLVMLoopVectorizeFollowupVectorized}); 3651 if (VectorizedLoopID.hasValue()) { 3652 L->setLoopID(VectorizedLoopID.getValue()); 3653 3654 // Do not setAlreadyVectorized if loop attributes have been defined 3655 // explicitly. 3656 return LoopVectorPreHeader; 3657 } 3658 3659 // Keep all loop hints from the original loop on the vector loop (we'll 3660 // replace the vectorizer-specific hints below). 3661 if (MDNode *LID = OrigLoop->getLoopID()) 3662 L->setLoopID(LID); 3663 3664 LoopVectorizeHints Hints(L, true, *ORE); 3665 Hints.setAlreadyVectorized(); 3666 3667 #ifdef EXPENSIVE_CHECKS 3668 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3669 LI->verify(*DT); 3670 #endif 3671 3672 return LoopVectorPreHeader; 3673 } 3674 3675 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3676 /* 3677 In this function we generate a new loop. The new loop will contain 3678 the vectorized instructions while the old loop will continue to run the 3679 scalar remainder. 3680 3681 [ ] <-- loop iteration number check. 3682 / | 3683 / v 3684 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3685 | / | 3686 | / v 3687 || [ ] <-- vector pre header. 3688 |/ | 3689 | v 3690 | [ ] \ 3691 | [ ]_| <-- vector loop. 3692 | | 3693 | v 3694 \ -[ ] <--- middle-block. 3695 \/ | 3696 /\ v 3697 | ->[ ] <--- new preheader. 3698 | | 3699 (opt) v <-- edge from middle to exit iff epilogue is not required. 3700 | [ ] \ 3701 | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). 3702 \ | 3703 \ v 3704 >[ ] <-- exit block(s). 3705 ... 3706 */ 3707 3708 // Get the metadata of the original loop before it gets modified. 3709 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3710 3711 // Workaround! Compute the trip count of the original loop and cache it 3712 // before we start modifying the CFG. This code has a systemic problem 3713 // wherein it tries to run analysis over partially constructed IR; this is 3714 // wrong, and not simply for SCEV. The trip count of the original loop 3715 // simply happens to be prone to hitting this in practice. In theory, we 3716 // can hit the same issue for any SCEV, or ValueTracking query done during 3717 // mutation. See PR49900. 3718 getOrCreateTripCount(OrigLoop); 3719 3720 // Create an empty vector loop, and prepare basic blocks for the runtime 3721 // checks. 3722 Loop *Lp = createVectorLoopSkeleton(""); 3723 3724 // Now, compare the new count to zero. If it is zero skip the vector loop and 3725 // jump to the scalar loop. This check also covers the case where the 3726 // backedge-taken count is uint##_max: adding one to it will overflow leading 3727 // to an incorrect trip count of zero. In this (rare) case we will also jump 3728 // to the scalar loop. 3729 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3730 3731 // Generate the code to check any assumptions that we've made for SCEV 3732 // expressions. 3733 emitSCEVChecks(Lp, LoopScalarPreHeader); 3734 3735 // Generate the code that checks in runtime if arrays overlap. We put the 3736 // checks into a separate block to make the more common case of few elements 3737 // faster. 3738 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3739 3740 // Some loops have a single integer induction variable, while other loops 3741 // don't. One example is c++ iterators that often have multiple pointer 3742 // induction variables. In the code below we also support a case where we 3743 // don't have a single induction variable. 3744 // 3745 // We try to obtain an induction variable from the original loop as hard 3746 // as possible. However if we don't find one that: 3747 // - is an integer 3748 // - counts from zero, stepping by one 3749 // - is the size of the widest induction variable type 3750 // then we create a new one. 3751 OldInduction = Legal->getPrimaryInduction(); 3752 Type *IdxTy = Legal->getWidestInductionType(); 3753 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3754 // The loop step is equal to the vectorization factor (num of SIMD elements) 3755 // times the unroll factor (num of SIMD instructions). 3756 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3757 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3758 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3759 Induction = 3760 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3761 getDebugLocFromInstOrOperands(OldInduction)); 3762 3763 // Emit phis for the new starting index of the scalar loop. 3764 createInductionResumeValues(Lp, CountRoundDown); 3765 3766 return completeLoopSkeleton(Lp, OrigLoopID); 3767 } 3768 3769 // Fix up external users of the induction variable. At this point, we are 3770 // in LCSSA form, with all external PHIs that use the IV having one input value, 3771 // coming from the remainder loop. We need those PHIs to also have a correct 3772 // value for the IV when arriving directly from the middle block. 3773 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3774 const InductionDescriptor &II, 3775 Value *CountRoundDown, Value *EndValue, 3776 BasicBlock *MiddleBlock) { 3777 // There are two kinds of external IV usages - those that use the value 3778 // computed in the last iteration (the PHI) and those that use the penultimate 3779 // value (the value that feeds into the phi from the loop latch). 3780 // We allow both, but they, obviously, have different values. 3781 3782 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3783 3784 DenseMap<Value *, Value *> MissingVals; 3785 3786 // An external user of the last iteration's value should see the value that 3787 // the remainder loop uses to initialize its own IV. 3788 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3789 for (User *U : PostInc->users()) { 3790 Instruction *UI = cast<Instruction>(U); 3791 if (!OrigLoop->contains(UI)) { 3792 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3793 MissingVals[UI] = EndValue; 3794 } 3795 } 3796 3797 // An external user of the penultimate value need to see EndValue - Step. 3798 // The simplest way to get this is to recompute it from the constituent SCEVs, 3799 // that is Start + (Step * (CRD - 1)). 3800 for (User *U : OrigPhi->users()) { 3801 auto *UI = cast<Instruction>(U); 3802 if (!OrigLoop->contains(UI)) { 3803 const DataLayout &DL = 3804 OrigLoop->getHeader()->getModule()->getDataLayout(); 3805 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3806 3807 IRBuilder<> B(MiddleBlock->getTerminator()); 3808 3809 // Fast-math-flags propagate from the original induction instruction. 3810 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3811 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3812 3813 Value *CountMinusOne = B.CreateSub( 3814 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3815 Value *CMO = 3816 !II.getStep()->getType()->isIntegerTy() 3817 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3818 II.getStep()->getType()) 3819 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3820 CMO->setName("cast.cmo"); 3821 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3822 Escape->setName("ind.escape"); 3823 MissingVals[UI] = Escape; 3824 } 3825 } 3826 3827 for (auto &I : MissingVals) { 3828 PHINode *PHI = cast<PHINode>(I.first); 3829 // One corner case we have to handle is two IVs "chasing" each-other, 3830 // that is %IV2 = phi [...], [ %IV1, %latch ] 3831 // In this case, if IV1 has an external use, we need to avoid adding both 3832 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3833 // don't already have an incoming value for the middle block. 3834 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3835 PHI->addIncoming(I.second, MiddleBlock); 3836 } 3837 } 3838 3839 namespace { 3840 3841 struct CSEDenseMapInfo { 3842 static bool canHandle(const Instruction *I) { 3843 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3844 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3845 } 3846 3847 static inline Instruction *getEmptyKey() { 3848 return DenseMapInfo<Instruction *>::getEmptyKey(); 3849 } 3850 3851 static inline Instruction *getTombstoneKey() { 3852 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3853 } 3854 3855 static unsigned getHashValue(const Instruction *I) { 3856 assert(canHandle(I) && "Unknown instruction!"); 3857 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3858 I->value_op_end())); 3859 } 3860 3861 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3862 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3863 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3864 return LHS == RHS; 3865 return LHS->isIdenticalTo(RHS); 3866 } 3867 }; 3868 3869 } // end anonymous namespace 3870 3871 ///Perform cse of induction variable instructions. 3872 static void cse(BasicBlock *BB) { 3873 // Perform simple cse. 3874 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3875 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3876 Instruction *In = &*I++; 3877 3878 if (!CSEDenseMapInfo::canHandle(In)) 3879 continue; 3880 3881 // Check if we can replace this instruction with any of the 3882 // visited instructions. 3883 if (Instruction *V = CSEMap.lookup(In)) { 3884 In->replaceAllUsesWith(V); 3885 In->eraseFromParent(); 3886 continue; 3887 } 3888 3889 CSEMap[In] = In; 3890 } 3891 } 3892 3893 InstructionCost 3894 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3895 bool &NeedToScalarize) const { 3896 Function *F = CI->getCalledFunction(); 3897 Type *ScalarRetTy = CI->getType(); 3898 SmallVector<Type *, 4> Tys, ScalarTys; 3899 for (auto &ArgOp : CI->arg_operands()) 3900 ScalarTys.push_back(ArgOp->getType()); 3901 3902 // Estimate cost of scalarized vector call. The source operands are assumed 3903 // to be vectors, so we need to extract individual elements from there, 3904 // execute VF scalar calls, and then gather the result into the vector return 3905 // value. 3906 InstructionCost ScalarCallCost = 3907 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3908 if (VF.isScalar()) 3909 return ScalarCallCost; 3910 3911 // Compute corresponding vector type for return value and arguments. 3912 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3913 for (Type *ScalarTy : ScalarTys) 3914 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3915 3916 // Compute costs of unpacking argument values for the scalar calls and 3917 // packing the return values to a vector. 3918 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3919 3920 InstructionCost Cost = 3921 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3922 3923 // If we can't emit a vector call for this function, then the currently found 3924 // cost is the cost we need to return. 3925 NeedToScalarize = true; 3926 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3927 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3928 3929 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3930 return Cost; 3931 3932 // If the corresponding vector cost is cheaper, return its cost. 3933 InstructionCost VectorCallCost = 3934 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3935 if (VectorCallCost < Cost) { 3936 NeedToScalarize = false; 3937 Cost = VectorCallCost; 3938 } 3939 return Cost; 3940 } 3941 3942 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3943 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3944 return Elt; 3945 return VectorType::get(Elt, VF); 3946 } 3947 3948 InstructionCost 3949 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3950 ElementCount VF) const { 3951 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3952 assert(ID && "Expected intrinsic call!"); 3953 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3954 FastMathFlags FMF; 3955 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3956 FMF = FPMO->getFastMathFlags(); 3957 3958 SmallVector<const Value *> Arguments(CI->args()); 3959 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3960 SmallVector<Type *> ParamTys; 3961 std::transform(FTy->param_begin(), FTy->param_end(), 3962 std::back_inserter(ParamTys), 3963 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3964 3965 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3966 dyn_cast<IntrinsicInst>(CI)); 3967 return TTI.getIntrinsicInstrCost(CostAttrs, 3968 TargetTransformInfo::TCK_RecipThroughput); 3969 } 3970 3971 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3972 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3973 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3974 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3975 } 3976 3977 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3978 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3979 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3980 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3981 } 3982 3983 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3984 // For every instruction `I` in MinBWs, truncate the operands, create a 3985 // truncated version of `I` and reextend its result. InstCombine runs 3986 // later and will remove any ext/trunc pairs. 3987 SmallPtrSet<Value *, 4> Erased; 3988 for (const auto &KV : Cost->getMinimalBitwidths()) { 3989 // If the value wasn't vectorized, we must maintain the original scalar 3990 // type. The absence of the value from State indicates that it 3991 // wasn't vectorized. 3992 // FIXME: Should not rely on getVPValue at this point. 3993 VPValue *Def = State.Plan->getVPValue(KV.first, true); 3994 if (!State.hasAnyVectorValue(Def)) 3995 continue; 3996 for (unsigned Part = 0; Part < UF; ++Part) { 3997 Value *I = State.get(Def, Part); 3998 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3999 continue; 4000 Type *OriginalTy = I->getType(); 4001 Type *ScalarTruncatedTy = 4002 IntegerType::get(OriginalTy->getContext(), KV.second); 4003 auto *TruncatedTy = VectorType::get( 4004 ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); 4005 if (TruncatedTy == OriginalTy) 4006 continue; 4007 4008 IRBuilder<> B(cast<Instruction>(I)); 4009 auto ShrinkOperand = [&](Value *V) -> Value * { 4010 if (auto *ZI = dyn_cast<ZExtInst>(V)) 4011 if (ZI->getSrcTy() == TruncatedTy) 4012 return ZI->getOperand(0); 4013 return B.CreateZExtOrTrunc(V, TruncatedTy); 4014 }; 4015 4016 // The actual instruction modification depends on the instruction type, 4017 // unfortunately. 4018 Value *NewI = nullptr; 4019 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4020 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 4021 ShrinkOperand(BO->getOperand(1))); 4022 4023 // Any wrapping introduced by shrinking this operation shouldn't be 4024 // considered undefined behavior. So, we can't unconditionally copy 4025 // arithmetic wrapping flags to NewI. 4026 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 4027 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 4028 NewI = 4029 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 4030 ShrinkOperand(CI->getOperand(1))); 4031 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 4032 NewI = B.CreateSelect(SI->getCondition(), 4033 ShrinkOperand(SI->getTrueValue()), 4034 ShrinkOperand(SI->getFalseValue())); 4035 } else if (auto *CI = dyn_cast<CastInst>(I)) { 4036 switch (CI->getOpcode()) { 4037 default: 4038 llvm_unreachable("Unhandled cast!"); 4039 case Instruction::Trunc: 4040 NewI = ShrinkOperand(CI->getOperand(0)); 4041 break; 4042 case Instruction::SExt: 4043 NewI = B.CreateSExtOrTrunc( 4044 CI->getOperand(0), 4045 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4046 break; 4047 case Instruction::ZExt: 4048 NewI = B.CreateZExtOrTrunc( 4049 CI->getOperand(0), 4050 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 4051 break; 4052 } 4053 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 4054 auto Elements0 = 4055 cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); 4056 auto *O0 = B.CreateZExtOrTrunc( 4057 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); 4058 auto Elements1 = 4059 cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); 4060 auto *O1 = B.CreateZExtOrTrunc( 4061 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); 4062 4063 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 4064 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 4065 // Don't do anything with the operands, just extend the result. 4066 continue; 4067 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 4068 auto Elements = 4069 cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); 4070 auto *O0 = B.CreateZExtOrTrunc( 4071 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4072 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 4073 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 4074 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 4075 auto Elements = 4076 cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); 4077 auto *O0 = B.CreateZExtOrTrunc( 4078 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); 4079 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 4080 } else { 4081 // If we don't know what to do, be conservative and don't do anything. 4082 continue; 4083 } 4084 4085 // Lastly, extend the result. 4086 NewI->takeName(cast<Instruction>(I)); 4087 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 4088 I->replaceAllUsesWith(Res); 4089 cast<Instruction>(I)->eraseFromParent(); 4090 Erased.insert(I); 4091 State.reset(Def, Res, Part); 4092 } 4093 } 4094 4095 // We'll have created a bunch of ZExts that are now parentless. Clean up. 4096 for (const auto &KV : Cost->getMinimalBitwidths()) { 4097 // If the value wasn't vectorized, we must maintain the original scalar 4098 // type. The absence of the value from State indicates that it 4099 // wasn't vectorized. 4100 // FIXME: Should not rely on getVPValue at this point. 4101 VPValue *Def = State.Plan->getVPValue(KV.first, true); 4102 if (!State.hasAnyVectorValue(Def)) 4103 continue; 4104 for (unsigned Part = 0; Part < UF; ++Part) { 4105 Value *I = State.get(Def, Part); 4106 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 4107 if (Inst && Inst->use_empty()) { 4108 Value *NewI = Inst->getOperand(0); 4109 Inst->eraseFromParent(); 4110 State.reset(Def, NewI, Part); 4111 } 4112 } 4113 } 4114 } 4115 4116 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 4117 // Insert truncates and extends for any truncated instructions as hints to 4118 // InstCombine. 4119 if (VF.isVector()) 4120 truncateToMinimalBitwidths(State); 4121 4122 // Fix widened non-induction PHIs by setting up the PHI operands. 4123 if (OrigPHIsToFix.size()) { 4124 assert(EnableVPlanNativePath && 4125 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 4126 fixNonInductionPHIs(State); 4127 } 4128 4129 // At this point every instruction in the original loop is widened to a 4130 // vector form. Now we need to fix the recurrences in the loop. These PHI 4131 // nodes are currently empty because we did not want to introduce cycles. 4132 // This is the second stage of vectorizing recurrences. 4133 fixCrossIterationPHIs(State); 4134 4135 // Forget the original basic block. 4136 PSE.getSE()->forgetLoop(OrigLoop); 4137 4138 // If we inserted an edge from the middle block to the unique exit block, 4139 // update uses outside the loop (phis) to account for the newly inserted 4140 // edge. 4141 if (!Cost->requiresScalarEpilogue(VF)) { 4142 // Fix-up external users of the induction variables. 4143 for (auto &Entry : Legal->getInductionVars()) 4144 fixupIVUsers(Entry.first, Entry.second, 4145 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4146 IVEndValues[Entry.first], LoopMiddleBlock); 4147 4148 fixLCSSAPHIs(State); 4149 } 4150 4151 for (Instruction *PI : PredicatedInstructions) 4152 sinkScalarOperands(&*PI); 4153 4154 // Remove redundant induction instructions. 4155 cse(LoopVectorBody); 4156 4157 // Set/update profile weights for the vector and remainder loops as original 4158 // loop iterations are now distributed among them. Note that original loop 4159 // represented by LoopScalarBody becomes remainder loop after vectorization. 4160 // 4161 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4162 // end up getting slightly roughened result but that should be OK since 4163 // profile is not inherently precise anyway. Note also possible bypass of 4164 // vector code caused by legality checks is ignored, assigning all the weight 4165 // to the vector loop, optimistically. 4166 // 4167 // For scalable vectorization we can't know at compile time how many iterations 4168 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4169 // vscale of '1'. 4170 setProfileInfoAfterUnrolling( 4171 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4172 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4173 } 4174 4175 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4176 // In order to support recurrences we need to be able to vectorize Phi nodes. 4177 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4178 // stage #2: We now need to fix the recurrences by adding incoming edges to 4179 // the currently empty PHI nodes. At this point every instruction in the 4180 // original loop is widened to a vector form so we can use them to construct 4181 // the incoming edges. 4182 VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock(); 4183 for (VPRecipeBase &R : Header->phis()) { 4184 if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) 4185 fixReduction(ReductionPhi, State); 4186 else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) 4187 fixFirstOrderRecurrence(FOR, State); 4188 } 4189 } 4190 4191 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, 4192 VPTransformState &State) { 4193 // This is the second phase of vectorizing first-order recurrences. An 4194 // overview of the transformation is described below. Suppose we have the 4195 // following loop. 4196 // 4197 // for (int i = 0; i < n; ++i) 4198 // b[i] = a[i] - a[i - 1]; 4199 // 4200 // There is a first-order recurrence on "a". For this loop, the shorthand 4201 // scalar IR looks like: 4202 // 4203 // scalar.ph: 4204 // s_init = a[-1] 4205 // br scalar.body 4206 // 4207 // scalar.body: 4208 // i = phi [0, scalar.ph], [i+1, scalar.body] 4209 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4210 // s2 = a[i] 4211 // b[i] = s2 - s1 4212 // br cond, scalar.body, ... 4213 // 4214 // In this example, s1 is a recurrence because it's value depends on the 4215 // previous iteration. In the first phase of vectorization, we created a 4216 // vector phi v1 for s1. We now complete the vectorization and produce the 4217 // shorthand vector IR shown below (for VF = 4, UF = 1). 4218 // 4219 // vector.ph: 4220 // v_init = vector(..., ..., ..., a[-1]) 4221 // br vector.body 4222 // 4223 // vector.body 4224 // i = phi [0, vector.ph], [i+4, vector.body] 4225 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4226 // v2 = a[i, i+1, i+2, i+3]; 4227 // v3 = vector(v1(3), v2(0, 1, 2)) 4228 // b[i, i+1, i+2, i+3] = v2 - v3 4229 // br cond, vector.body, middle.block 4230 // 4231 // middle.block: 4232 // x = v2(3) 4233 // br scalar.ph 4234 // 4235 // scalar.ph: 4236 // s_init = phi [x, middle.block], [a[-1], otherwise] 4237 // br scalar.body 4238 // 4239 // After execution completes the vector loop, we extract the next value of 4240 // the recurrence (x) to use as the initial value in the scalar loop. 4241 4242 // Extract the last vector element in the middle block. This will be the 4243 // initial value for the recurrence when jumping to the scalar loop. 4244 VPValue *PreviousDef = PhiR->getBackedgeValue(); 4245 Value *Incoming = State.get(PreviousDef, UF - 1); 4246 auto *ExtractForScalar = Incoming; 4247 auto *IdxTy = Builder.getInt32Ty(); 4248 if (VF.isVector()) { 4249 auto *One = ConstantInt::get(IdxTy, 1); 4250 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4251 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4252 auto *LastIdx = Builder.CreateSub(RuntimeVF, One); 4253 ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, 4254 "vector.recur.extract"); 4255 } 4256 // Extract the second last element in the middle block if the 4257 // Phi is used outside the loop. We need to extract the phi itself 4258 // and not the last element (the phi update in the current iteration). This 4259 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4260 // when the scalar loop is not run at all. 4261 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4262 if (VF.isVector()) { 4263 auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); 4264 auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); 4265 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4266 Incoming, Idx, "vector.recur.extract.for.phi"); 4267 } else if (UF > 1) 4268 // When loop is unrolled without vectorizing, initialize 4269 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value 4270 // of `Incoming`. This is analogous to the vectorized case above: extracting 4271 // the second last element when VF > 1. 4272 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4273 4274 // Fix the initial value of the original recurrence in the scalar loop. 4275 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4276 PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); 4277 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4278 auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); 4279 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4280 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4281 Start->addIncoming(Incoming, BB); 4282 } 4283 4284 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4285 Phi->setName("scalar.recur"); 4286 4287 // Finally, fix users of the recurrence outside the loop. The users will need 4288 // either the last value of the scalar recurrence or the last value of the 4289 // vector recurrence we extracted in the middle block. Since the loop is in 4290 // LCSSA form, we just need to find all the phi nodes for the original scalar 4291 // recurrence in the exit block, and then add an edge for the middle block. 4292 // Note that LCSSA does not imply single entry when the original scalar loop 4293 // had multiple exiting edges (as we always run the last iteration in the 4294 // scalar epilogue); in that case, there is no edge from middle to exit and 4295 // and thus no phis which needed updated. 4296 if (!Cost->requiresScalarEpilogue(VF)) 4297 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4298 if (any_of(LCSSAPhi.incoming_values(), 4299 [Phi](Value *V) { return V == Phi; })) 4300 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4301 } 4302 4303 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, 4304 VPTransformState &State) { 4305 PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); 4306 // Get it's reduction variable descriptor. 4307 assert(Legal->isReductionVariable(OrigPhi) && 4308 "Unable to find the reduction variable"); 4309 const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); 4310 4311 RecurKind RK = RdxDesc.getRecurrenceKind(); 4312 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4313 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4314 setDebugLocFromInst(ReductionStartValue); 4315 4316 VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); 4317 // This is the vector-clone of the value that leaves the loop. 4318 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4319 4320 // Wrap flags are in general invalid after vectorization, clear them. 4321 clearReductionWrapFlags(RdxDesc, State); 4322 4323 // Before each round, move the insertion point right between 4324 // the PHIs and the values we are going to write. 4325 // This allows us to write both PHINodes and the extractelement 4326 // instructions. 4327 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4328 4329 setDebugLocFromInst(LoopExitInst); 4330 4331 Type *PhiTy = OrigPhi->getType(); 4332 // If tail is folded by masking, the vector value to leave the loop should be 4333 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4334 // instead of the former. For an inloop reduction the reduction will already 4335 // be predicated, and does not need to be handled here. 4336 if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { 4337 for (unsigned Part = 0; Part < UF; ++Part) { 4338 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4339 Value *Sel = nullptr; 4340 for (User *U : VecLoopExitInst->users()) { 4341 if (isa<SelectInst>(U)) { 4342 assert(!Sel && "Reduction exit feeding two selects"); 4343 Sel = U; 4344 } else 4345 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4346 } 4347 assert(Sel && "Reduction exit feeds no select"); 4348 State.reset(LoopExitInstDef, Sel, Part); 4349 4350 // If the target can create a predicated operator for the reduction at no 4351 // extra cost in the loop (for example a predicated vadd), it can be 4352 // cheaper for the select to remain in the loop than be sunk out of it, 4353 // and so use the select value for the phi instead of the old 4354 // LoopExitValue. 4355 if (PreferPredicatedReductionSelect || 4356 TTI->preferPredicatedReductionSelect( 4357 RdxDesc.getOpcode(), PhiTy, 4358 TargetTransformInfo::ReductionFlags())) { 4359 auto *VecRdxPhi = 4360 cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part)); 4361 VecRdxPhi->setIncomingValueForBlock( 4362 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4363 } 4364 } 4365 } 4366 4367 // If the vector reduction can be performed in a smaller type, we truncate 4368 // then extend the loop exit value to enable InstCombine to evaluate the 4369 // entire expression in the smaller type. 4370 if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { 4371 assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!"); 4372 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4373 Builder.SetInsertPoint( 4374 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4375 VectorParts RdxParts(UF); 4376 for (unsigned Part = 0; Part < UF; ++Part) { 4377 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4378 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4379 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4380 : Builder.CreateZExt(Trunc, VecTy); 4381 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4382 UI != RdxParts[Part]->user_end();) 4383 if (*UI != Trunc) { 4384 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4385 RdxParts[Part] = Extnd; 4386 } else { 4387 ++UI; 4388 } 4389 } 4390 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4391 for (unsigned Part = 0; Part < UF; ++Part) { 4392 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4393 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4394 } 4395 } 4396 4397 // Reduce all of the unrolled parts into a single vector. 4398 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4399 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4400 4401 // The middle block terminator has already been assigned a DebugLoc here (the 4402 // OrigLoop's single latch terminator). We want the whole middle block to 4403 // appear to execute on this line because: (a) it is all compiler generated, 4404 // (b) these instructions are always executed after evaluating the latch 4405 // conditional branch, and (c) other passes may add new predecessors which 4406 // terminate on this line. This is the easiest way to ensure we don't 4407 // accidentally cause an extra step back into the loop while debugging. 4408 setDebugLocFromInst(LoopMiddleBlock->getTerminator()); 4409 if (PhiR->isOrdered()) 4410 ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); 4411 else { 4412 // Floating-point operations should have some FMF to enable the reduction. 4413 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4414 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4415 for (unsigned Part = 1; Part < UF; ++Part) { 4416 Value *RdxPart = State.get(LoopExitInstDef, Part); 4417 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4418 ReducedPartRdx = Builder.CreateBinOp( 4419 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4420 } else { 4421 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4422 } 4423 } 4424 } 4425 4426 // Create the reduction after the loop. Note that inloop reductions create the 4427 // target reduction in the loop using a Reduction recipe. 4428 if (VF.isVector() && !PhiR->isInLoop()) { 4429 ReducedPartRdx = 4430 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4431 // If the reduction can be performed in a smaller type, we need to extend 4432 // the reduction to the wider type before we branch to the original loop. 4433 if (PhiTy != RdxDesc.getRecurrenceType()) 4434 ReducedPartRdx = RdxDesc.isSigned() 4435 ? Builder.CreateSExt(ReducedPartRdx, PhiTy) 4436 : Builder.CreateZExt(ReducedPartRdx, PhiTy); 4437 } 4438 4439 // Create a phi node that merges control-flow from the backedge-taken check 4440 // block and the middle block. 4441 PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", 4442 LoopScalarPreHeader->getTerminator()); 4443 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4444 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4445 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4446 4447 // Now, we need to fix the users of the reduction variable 4448 // inside and outside of the scalar remainder loop. 4449 4450 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4451 // in the exit blocks. See comment on analogous loop in 4452 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4453 if (!Cost->requiresScalarEpilogue(VF)) 4454 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4455 if (any_of(LCSSAPhi.incoming_values(), 4456 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4457 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4458 4459 // Fix the scalar loop reduction variable with the incoming reduction sum 4460 // from the vector body and from the backedge value. 4461 int IncomingEdgeBlockIdx = 4462 OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4463 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4464 // Pick the other block. 4465 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4466 OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4467 OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4468 } 4469 4470 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc, 4471 VPTransformState &State) { 4472 RecurKind RK = RdxDesc.getRecurrenceKind(); 4473 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4474 return; 4475 4476 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4477 assert(LoopExitInstr && "null loop exit instruction"); 4478 SmallVector<Instruction *, 8> Worklist; 4479 SmallPtrSet<Instruction *, 8> Visited; 4480 Worklist.push_back(LoopExitInstr); 4481 Visited.insert(LoopExitInstr); 4482 4483 while (!Worklist.empty()) { 4484 Instruction *Cur = Worklist.pop_back_val(); 4485 if (isa<OverflowingBinaryOperator>(Cur)) 4486 for (unsigned Part = 0; Part < UF; ++Part) { 4487 // FIXME: Should not rely on getVPValue at this point. 4488 Value *V = State.get(State.Plan->getVPValue(Cur, true), Part); 4489 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4490 } 4491 4492 for (User *U : Cur->users()) { 4493 Instruction *UI = cast<Instruction>(U); 4494 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4495 Visited.insert(UI).second) 4496 Worklist.push_back(UI); 4497 } 4498 } 4499 } 4500 4501 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4502 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4503 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4504 // Some phis were already hand updated by the reduction and recurrence 4505 // code above, leave them alone. 4506 continue; 4507 4508 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4509 // Non-instruction incoming values will have only one value. 4510 4511 VPLane Lane = VPLane::getFirstLane(); 4512 if (isa<Instruction>(IncomingValue) && 4513 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4514 VF)) 4515 Lane = VPLane::getLastLaneForVF(VF); 4516 4517 // Can be a loop invariant incoming value or the last scalar value to be 4518 // extracted from the vectorized loop. 4519 // FIXME: Should not rely on getVPValue at this point. 4520 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4521 Value *lastIncomingValue = 4522 OrigLoop->isLoopInvariant(IncomingValue) 4523 ? IncomingValue 4524 : State.get(State.Plan->getVPValue(IncomingValue, true), 4525 VPIteration(UF - 1, Lane)); 4526 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4527 } 4528 } 4529 4530 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4531 // The basic block and loop containing the predicated instruction. 4532 auto *PredBB = PredInst->getParent(); 4533 auto *VectorLoop = LI->getLoopFor(PredBB); 4534 4535 // Initialize a worklist with the operands of the predicated instruction. 4536 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4537 4538 // Holds instructions that we need to analyze again. An instruction may be 4539 // reanalyzed if we don't yet know if we can sink it or not. 4540 SmallVector<Instruction *, 8> InstsToReanalyze; 4541 4542 // Returns true if a given use occurs in the predicated block. Phi nodes use 4543 // their operands in their corresponding predecessor blocks. 4544 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4545 auto *I = cast<Instruction>(U.getUser()); 4546 BasicBlock *BB = I->getParent(); 4547 if (auto *Phi = dyn_cast<PHINode>(I)) 4548 BB = Phi->getIncomingBlock( 4549 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4550 return BB == PredBB; 4551 }; 4552 4553 // Iteratively sink the scalarized operands of the predicated instruction 4554 // into the block we created for it. When an instruction is sunk, it's 4555 // operands are then added to the worklist. The algorithm ends after one pass 4556 // through the worklist doesn't sink a single instruction. 4557 bool Changed; 4558 do { 4559 // Add the instructions that need to be reanalyzed to the worklist, and 4560 // reset the changed indicator. 4561 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4562 InstsToReanalyze.clear(); 4563 Changed = false; 4564 4565 while (!Worklist.empty()) { 4566 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4567 4568 // We can't sink an instruction if it is a phi node, is not in the loop, 4569 // or may have side effects. 4570 if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || 4571 I->mayHaveSideEffects()) 4572 continue; 4573 4574 // If the instruction is already in PredBB, check if we can sink its 4575 // operands. In that case, VPlan's sinkScalarOperands() succeeded in 4576 // sinking the scalar instruction I, hence it appears in PredBB; but it 4577 // may have failed to sink I's operands (recursively), which we try 4578 // (again) here. 4579 if (I->getParent() == PredBB) { 4580 Worklist.insert(I->op_begin(), I->op_end()); 4581 continue; 4582 } 4583 4584 // It's legal to sink the instruction if all its uses occur in the 4585 // predicated block. Otherwise, there's nothing to do yet, and we may 4586 // need to reanalyze the instruction. 4587 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4588 InstsToReanalyze.push_back(I); 4589 continue; 4590 } 4591 4592 // Move the instruction to the beginning of the predicated block, and add 4593 // it's operands to the worklist. 4594 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4595 Worklist.insert(I->op_begin(), I->op_end()); 4596 4597 // The sinking may have enabled other instructions to be sunk, so we will 4598 // need to iterate. 4599 Changed = true; 4600 } 4601 } while (Changed); 4602 } 4603 4604 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4605 for (PHINode *OrigPhi : OrigPHIsToFix) { 4606 VPWidenPHIRecipe *VPPhi = 4607 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4608 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4609 // Make sure the builder has a valid insert point. 4610 Builder.SetInsertPoint(NewPhi); 4611 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4612 VPValue *Inc = VPPhi->getIncomingValue(i); 4613 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4614 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4615 } 4616 } 4617 } 4618 4619 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) { 4620 return Cost->useOrderedReductions(RdxDesc); 4621 } 4622 4623 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4624 VPUser &Operands, unsigned UF, 4625 ElementCount VF, bool IsPtrLoopInvariant, 4626 SmallBitVector &IsIndexLoopInvariant, 4627 VPTransformState &State) { 4628 // Construct a vector GEP by widening the operands of the scalar GEP as 4629 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4630 // results in a vector of pointers when at least one operand of the GEP 4631 // is vector-typed. Thus, to keep the representation compact, we only use 4632 // vector-typed operands for loop-varying values. 4633 4634 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4635 // If we are vectorizing, but the GEP has only loop-invariant operands, 4636 // the GEP we build (by only using vector-typed operands for 4637 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4638 // produce a vector of pointers, we need to either arbitrarily pick an 4639 // operand to broadcast, or broadcast a clone of the original GEP. 4640 // Here, we broadcast a clone of the original. 4641 // 4642 // TODO: If at some point we decide to scalarize instructions having 4643 // loop-invariant operands, this special case will no longer be 4644 // required. We would add the scalarization decision to 4645 // collectLoopScalars() and teach getVectorValue() to broadcast 4646 // the lane-zero scalar value. 4647 auto *Clone = Builder.Insert(GEP->clone()); 4648 for (unsigned Part = 0; Part < UF; ++Part) { 4649 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4650 State.set(VPDef, EntryPart, Part); 4651 addMetadata(EntryPart, GEP); 4652 } 4653 } else { 4654 // If the GEP has at least one loop-varying operand, we are sure to 4655 // produce a vector of pointers. But if we are only unrolling, we want 4656 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4657 // produce with the code below will be scalar (if VF == 1) or vector 4658 // (otherwise). Note that for the unroll-only case, we still maintain 4659 // values in the vector mapping with initVector, as we do for other 4660 // instructions. 4661 for (unsigned Part = 0; Part < UF; ++Part) { 4662 // The pointer operand of the new GEP. If it's loop-invariant, we 4663 // won't broadcast it. 4664 auto *Ptr = IsPtrLoopInvariant 4665 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4666 : State.get(Operands.getOperand(0), Part); 4667 4668 // Collect all the indices for the new GEP. If any index is 4669 // loop-invariant, we won't broadcast it. 4670 SmallVector<Value *, 4> Indices; 4671 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4672 VPValue *Operand = Operands.getOperand(I); 4673 if (IsIndexLoopInvariant[I - 1]) 4674 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4675 else 4676 Indices.push_back(State.get(Operand, Part)); 4677 } 4678 4679 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4680 // but it should be a vector, otherwise. 4681 auto *NewGEP = 4682 GEP->isInBounds() 4683 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4684 Indices) 4685 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4686 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4687 "NewGEP is not a pointer vector"); 4688 State.set(VPDef, NewGEP, Part); 4689 addMetadata(NewGEP, GEP); 4690 } 4691 } 4692 } 4693 4694 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4695 VPWidenPHIRecipe *PhiR, 4696 VPTransformState &State) { 4697 PHINode *P = cast<PHINode>(PN); 4698 if (EnableVPlanNativePath) { 4699 // Currently we enter here in the VPlan-native path for non-induction 4700 // PHIs where all control flow is uniform. We simply widen these PHIs. 4701 // Create a vector phi with no operands - the vector phi operands will be 4702 // set at the end of vector code generation. 4703 Type *VecTy = (State.VF.isScalar()) 4704 ? PN->getType() 4705 : VectorType::get(PN->getType(), State.VF); 4706 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4707 State.set(PhiR, VecPhi, 0); 4708 OrigPHIsToFix.push_back(P); 4709 4710 return; 4711 } 4712 4713 assert(PN->getParent() == OrigLoop->getHeader() && 4714 "Non-header phis should have been handled elsewhere"); 4715 4716 // In order to support recurrences we need to be able to vectorize Phi nodes. 4717 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4718 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4719 // this value when we vectorize all of the instructions that use the PHI. 4720 4721 assert(!Legal->isReductionVariable(P) && 4722 "reductions should be handled elsewhere"); 4723 4724 setDebugLocFromInst(P); 4725 4726 // This PHINode must be an induction variable. 4727 // Make sure that we know about it. 4728 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4729 4730 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4731 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4732 4733 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4734 // which can be found from the original scalar operations. 4735 switch (II.getKind()) { 4736 case InductionDescriptor::IK_NoInduction: 4737 llvm_unreachable("Unknown induction"); 4738 case InductionDescriptor::IK_IntInduction: 4739 case InductionDescriptor::IK_FpInduction: 4740 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4741 case InductionDescriptor::IK_PtrInduction: { 4742 // Handle the pointer induction variable case. 4743 assert(P->getType()->isPointerTy() && "Unexpected type."); 4744 4745 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4746 // This is the normalized GEP that starts counting at zero. 4747 Value *PtrInd = 4748 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4749 // Determine the number of scalars we need to generate for each unroll 4750 // iteration. If the instruction is uniform, we only need to generate the 4751 // first lane. Otherwise, we generate all VF values. 4752 bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF); 4753 unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue(); 4754 4755 bool NeedsVectorIndex = !IsUniform && VF.isScalable(); 4756 Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr; 4757 if (NeedsVectorIndex) { 4758 Type *VecIVTy = VectorType::get(PtrInd->getType(), VF); 4759 UnitStepVec = Builder.CreateStepVector(VecIVTy); 4760 PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd); 4761 } 4762 4763 for (unsigned Part = 0; Part < UF; ++Part) { 4764 Value *PartStart = createStepForVF( 4765 Builder, ConstantInt::get(PtrInd->getType(), Part), VF); 4766 4767 if (NeedsVectorIndex) { 4768 // Here we cache the whole vector, which means we can support the 4769 // extraction of any lane. However, in some cases the extractelement 4770 // instruction that is generated for scalar uses of this vector (e.g. 4771 // a load instruction) is not folded away. Therefore we still 4772 // calculate values for the first n lanes to avoid redundant moves 4773 // (when extracting the 0th element) and to produce scalar code (i.e. 4774 // additional add/gep instructions instead of expensive extractelement 4775 // instructions) when extracting higher-order elements. 4776 Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart); 4777 Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec); 4778 Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices); 4779 Value *SclrGep = 4780 emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II); 4781 SclrGep->setName("next.gep"); 4782 State.set(PhiR, SclrGep, Part); 4783 } 4784 4785 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4786 Value *Idx = Builder.CreateAdd( 4787 PartStart, ConstantInt::get(PtrInd->getType(), Lane)); 4788 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4789 Value *SclrGep = 4790 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4791 SclrGep->setName("next.gep"); 4792 State.set(PhiR, SclrGep, VPIteration(Part, Lane)); 4793 } 4794 } 4795 return; 4796 } 4797 assert(isa<SCEVConstant>(II.getStep()) && 4798 "Induction step not a SCEV constant!"); 4799 Type *PhiType = II.getStep()->getType(); 4800 4801 // Build a pointer phi 4802 Value *ScalarStartValue = II.getStartValue(); 4803 Type *ScStValueType = ScalarStartValue->getType(); 4804 PHINode *NewPointerPhi = 4805 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4806 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4807 4808 // A pointer induction, performed by using a gep 4809 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4810 Instruction *InductionLoc = LoopLatch->getTerminator(); 4811 const SCEV *ScalarStep = II.getStep(); 4812 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4813 Value *ScalarStepValue = 4814 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4815 Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF); 4816 Value *NumUnrolledElems = 4817 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); 4818 Value *InductionGEP = GetElementPtrInst::Create( 4819 II.getElementType(), NewPointerPhi, 4820 Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", 4821 InductionLoc); 4822 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4823 4824 // Create UF many actual address geps that use the pointer 4825 // phi as base and a vectorized version of the step value 4826 // (<step*0, ..., step*N>) as offset. 4827 for (unsigned Part = 0; Part < State.UF; ++Part) { 4828 Type *VecPhiType = VectorType::get(PhiType, State.VF); 4829 Value *StartOffsetScalar = 4830 Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); 4831 Value *StartOffset = 4832 Builder.CreateVectorSplat(State.VF, StartOffsetScalar); 4833 // Create a vector of consecutive numbers from zero to VF. 4834 StartOffset = 4835 Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType)); 4836 4837 Value *GEP = Builder.CreateGEP( 4838 II.getElementType(), NewPointerPhi, 4839 Builder.CreateMul( 4840 StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue), 4841 "vector.gep")); 4842 State.set(PhiR, GEP, Part); 4843 } 4844 } 4845 } 4846 } 4847 4848 /// A helper function for checking whether an integer division-related 4849 /// instruction may divide by zero (in which case it must be predicated if 4850 /// executed conditionally in the scalar code). 4851 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4852 /// Non-zero divisors that are non compile-time constants will not be 4853 /// converted into multiplication, so we will still end up scalarizing 4854 /// the division, but can do so w/o predication. 4855 static bool mayDivideByZero(Instruction &I) { 4856 assert((I.getOpcode() == Instruction::UDiv || 4857 I.getOpcode() == Instruction::SDiv || 4858 I.getOpcode() == Instruction::URem || 4859 I.getOpcode() == Instruction::SRem) && 4860 "Unexpected instruction"); 4861 Value *Divisor = I.getOperand(1); 4862 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4863 return !CInt || CInt->isZero(); 4864 } 4865 4866 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4867 VPUser &User, 4868 VPTransformState &State) { 4869 switch (I.getOpcode()) { 4870 case Instruction::Call: 4871 case Instruction::Br: 4872 case Instruction::PHI: 4873 case Instruction::GetElementPtr: 4874 case Instruction::Select: 4875 llvm_unreachable("This instruction is handled by a different recipe."); 4876 case Instruction::UDiv: 4877 case Instruction::SDiv: 4878 case Instruction::SRem: 4879 case Instruction::URem: 4880 case Instruction::Add: 4881 case Instruction::FAdd: 4882 case Instruction::Sub: 4883 case Instruction::FSub: 4884 case Instruction::FNeg: 4885 case Instruction::Mul: 4886 case Instruction::FMul: 4887 case Instruction::FDiv: 4888 case Instruction::FRem: 4889 case Instruction::Shl: 4890 case Instruction::LShr: 4891 case Instruction::AShr: 4892 case Instruction::And: 4893 case Instruction::Or: 4894 case Instruction::Xor: { 4895 // Just widen unops and binops. 4896 setDebugLocFromInst(&I); 4897 4898 for (unsigned Part = 0; Part < UF; ++Part) { 4899 SmallVector<Value *, 2> Ops; 4900 for (VPValue *VPOp : User.operands()) 4901 Ops.push_back(State.get(VPOp, Part)); 4902 4903 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4904 4905 if (auto *VecOp = dyn_cast<Instruction>(V)) 4906 VecOp->copyIRFlags(&I); 4907 4908 // Use this vector value for all users of the original instruction. 4909 State.set(Def, V, Part); 4910 addMetadata(V, &I); 4911 } 4912 4913 break; 4914 } 4915 case Instruction::ICmp: 4916 case Instruction::FCmp: { 4917 // Widen compares. Generate vector compares. 4918 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4919 auto *Cmp = cast<CmpInst>(&I); 4920 setDebugLocFromInst(Cmp); 4921 for (unsigned Part = 0; Part < UF; ++Part) { 4922 Value *A = State.get(User.getOperand(0), Part); 4923 Value *B = State.get(User.getOperand(1), Part); 4924 Value *C = nullptr; 4925 if (FCmp) { 4926 // Propagate fast math flags. 4927 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4928 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4929 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4930 } else { 4931 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4932 } 4933 State.set(Def, C, Part); 4934 addMetadata(C, &I); 4935 } 4936 4937 break; 4938 } 4939 4940 case Instruction::ZExt: 4941 case Instruction::SExt: 4942 case Instruction::FPToUI: 4943 case Instruction::FPToSI: 4944 case Instruction::FPExt: 4945 case Instruction::PtrToInt: 4946 case Instruction::IntToPtr: 4947 case Instruction::SIToFP: 4948 case Instruction::UIToFP: 4949 case Instruction::Trunc: 4950 case Instruction::FPTrunc: 4951 case Instruction::BitCast: { 4952 auto *CI = cast<CastInst>(&I); 4953 setDebugLocFromInst(CI); 4954 4955 /// Vectorize casts. 4956 Type *DestTy = 4957 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4958 4959 for (unsigned Part = 0; Part < UF; ++Part) { 4960 Value *A = State.get(User.getOperand(0), Part); 4961 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4962 State.set(Def, Cast, Part); 4963 addMetadata(Cast, &I); 4964 } 4965 break; 4966 } 4967 default: 4968 // This instruction is not vectorized by simple widening. 4969 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4970 llvm_unreachable("Unhandled instruction!"); 4971 } // end of switch. 4972 } 4973 4974 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4975 VPUser &ArgOperands, 4976 VPTransformState &State) { 4977 assert(!isa<DbgInfoIntrinsic>(I) && 4978 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4979 setDebugLocFromInst(&I); 4980 4981 Module *M = I.getParent()->getParent()->getParent(); 4982 auto *CI = cast<CallInst>(&I); 4983 4984 SmallVector<Type *, 4> Tys; 4985 for (Value *ArgOperand : CI->arg_operands()) 4986 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4987 4988 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4989 4990 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4991 // version of the instruction. 4992 // Is it beneficial to perform intrinsic call compared to lib call? 4993 bool NeedToScalarize = false; 4994 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4995 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4996 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4997 assert((UseVectorIntrinsic || !NeedToScalarize) && 4998 "Instruction should be scalarized elsewhere."); 4999 assert((IntrinsicCost.isValid() || CallCost.isValid()) && 5000 "Either the intrinsic cost or vector call cost must be valid"); 5001 5002 for (unsigned Part = 0; Part < UF; ++Part) { 5003 SmallVector<Type *, 2> TysForDecl = {CI->getType()}; 5004 SmallVector<Value *, 4> Args; 5005 for (auto &I : enumerate(ArgOperands.operands())) { 5006 // Some intrinsics have a scalar argument - don't replace it with a 5007 // vector. 5008 Value *Arg; 5009 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 5010 Arg = State.get(I.value(), Part); 5011 else { 5012 Arg = State.get(I.value(), VPIteration(0, 0)); 5013 if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index())) 5014 TysForDecl.push_back(Arg->getType()); 5015 } 5016 Args.push_back(Arg); 5017 } 5018 5019 Function *VectorF; 5020 if (UseVectorIntrinsic) { 5021 // Use vector version of the intrinsic. 5022 if (VF.isVector()) 5023 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 5024 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 5025 assert(VectorF && "Can't retrieve vector intrinsic."); 5026 } else { 5027 // Use vector version of the function call. 5028 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 5029 #ifndef NDEBUG 5030 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 5031 "Can't create vector function."); 5032 #endif 5033 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 5034 } 5035 SmallVector<OperandBundleDef, 1> OpBundles; 5036 CI->getOperandBundlesAsDefs(OpBundles); 5037 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 5038 5039 if (isa<FPMathOperator>(V)) 5040 V->copyFastMathFlags(CI); 5041 5042 State.set(Def, V, Part); 5043 addMetadata(V, &I); 5044 } 5045 } 5046 5047 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5048 VPUser &Operands, 5049 bool InvariantCond, 5050 VPTransformState &State) { 5051 setDebugLocFromInst(&I); 5052 5053 // The condition can be loop invariant but still defined inside the 5054 // loop. This means that we can't just use the original 'cond' value. 5055 // We have to take the 'vectorized' value and pick the first lane. 5056 // Instcombine will make this a no-op. 5057 auto *InvarCond = InvariantCond 5058 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5059 : nullptr; 5060 5061 for (unsigned Part = 0; Part < UF; ++Part) { 5062 Value *Cond = 5063 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5064 Value *Op0 = State.get(Operands.getOperand(1), Part); 5065 Value *Op1 = State.get(Operands.getOperand(2), Part); 5066 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5067 State.set(VPDef, Sel, Part); 5068 addMetadata(Sel, &I); 5069 } 5070 } 5071 5072 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5073 // We should not collect Scalars more than once per VF. Right now, this 5074 // function is called from collectUniformsAndScalars(), which already does 5075 // this check. Collecting Scalars for VF=1 does not make any sense. 5076 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5077 "This function should not be visited twice for the same VF"); 5078 5079 SmallSetVector<Instruction *, 8> Worklist; 5080 5081 // These sets are used to seed the analysis with pointers used by memory 5082 // accesses that will remain scalar. 5083 SmallSetVector<Instruction *, 8> ScalarPtrs; 5084 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5085 auto *Latch = TheLoop->getLoopLatch(); 5086 5087 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5088 // The pointer operands of loads and stores will be scalar as long as the 5089 // memory access is not a gather or scatter operation. The value operand of a 5090 // store will remain scalar if the store is scalarized. 5091 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5092 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5093 assert(WideningDecision != CM_Unknown && 5094 "Widening decision should be ready at this moment"); 5095 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5096 if (Ptr == Store->getValueOperand()) 5097 return WideningDecision == CM_Scalarize; 5098 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5099 "Ptr is neither a value or pointer operand"); 5100 return WideningDecision != CM_GatherScatter; 5101 }; 5102 5103 // A helper that returns true if the given value is a bitcast or 5104 // getelementptr instruction contained in the loop. 5105 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5106 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5107 isa<GetElementPtrInst>(V)) && 5108 !TheLoop->isLoopInvariant(V); 5109 }; 5110 5111 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5112 if (!isa<PHINode>(Ptr) || 5113 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5114 return false; 5115 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5116 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5117 return false; 5118 return isScalarUse(MemAccess, Ptr); 5119 }; 5120 5121 // A helper that evaluates a memory access's use of a pointer. If the 5122 // pointer is actually the pointer induction of a loop, it is being 5123 // inserted into Worklist. If the use will be a scalar use, and the 5124 // pointer is only used by memory accesses, we place the pointer in 5125 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5126 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5127 if (isScalarPtrInduction(MemAccess, Ptr)) { 5128 Worklist.insert(cast<Instruction>(Ptr)); 5129 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5130 << "\n"); 5131 5132 Instruction *Update = cast<Instruction>( 5133 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5134 ScalarPtrs.insert(Update); 5135 return; 5136 } 5137 // We only care about bitcast and getelementptr instructions contained in 5138 // the loop. 5139 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5140 return; 5141 5142 // If the pointer has already been identified as scalar (e.g., if it was 5143 // also identified as uniform), there's nothing to do. 5144 auto *I = cast<Instruction>(Ptr); 5145 if (Worklist.count(I)) 5146 return; 5147 5148 // If the use of the pointer will be a scalar use, and all users of the 5149 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5150 // place the pointer in PossibleNonScalarPtrs. 5151 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5152 return isa<LoadInst>(U) || isa<StoreInst>(U); 5153 })) 5154 ScalarPtrs.insert(I); 5155 else 5156 PossibleNonScalarPtrs.insert(I); 5157 }; 5158 5159 // We seed the scalars analysis with three classes of instructions: (1) 5160 // instructions marked uniform-after-vectorization and (2) bitcast, 5161 // getelementptr and (pointer) phi instructions used by memory accesses 5162 // requiring a scalar use. 5163 // 5164 // (1) Add to the worklist all instructions that have been identified as 5165 // uniform-after-vectorization. 5166 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5167 5168 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5169 // memory accesses requiring a scalar use. The pointer operands of loads and 5170 // stores will be scalar as long as the memory accesses is not a gather or 5171 // scatter operation. The value operand of a store will remain scalar if the 5172 // store is scalarized. 5173 for (auto *BB : TheLoop->blocks()) 5174 for (auto &I : *BB) { 5175 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5176 evaluatePtrUse(Load, Load->getPointerOperand()); 5177 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5178 evaluatePtrUse(Store, Store->getPointerOperand()); 5179 evaluatePtrUse(Store, Store->getValueOperand()); 5180 } 5181 } 5182 for (auto *I : ScalarPtrs) 5183 if (!PossibleNonScalarPtrs.count(I)) { 5184 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5185 Worklist.insert(I); 5186 } 5187 5188 // Insert the forced scalars. 5189 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5190 // induction variable when the PHI user is scalarized. 5191 auto ForcedScalar = ForcedScalars.find(VF); 5192 if (ForcedScalar != ForcedScalars.end()) 5193 for (auto *I : ForcedScalar->second) 5194 Worklist.insert(I); 5195 5196 // Expand the worklist by looking through any bitcasts and getelementptr 5197 // instructions we've already identified as scalar. This is similar to the 5198 // expansion step in collectLoopUniforms(); however, here we're only 5199 // expanding to include additional bitcasts and getelementptr instructions. 5200 unsigned Idx = 0; 5201 while (Idx != Worklist.size()) { 5202 Instruction *Dst = Worklist[Idx++]; 5203 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5204 continue; 5205 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5206 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5207 auto *J = cast<Instruction>(U); 5208 return !TheLoop->contains(J) || Worklist.count(J) || 5209 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5210 isScalarUse(J, Src)); 5211 })) { 5212 Worklist.insert(Src); 5213 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5214 } 5215 } 5216 5217 // An induction variable will remain scalar if all users of the induction 5218 // variable and induction variable update remain scalar. 5219 for (auto &Induction : Legal->getInductionVars()) { 5220 auto *Ind = Induction.first; 5221 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5222 5223 // If tail-folding is applied, the primary induction variable will be used 5224 // to feed a vector compare. 5225 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5226 continue; 5227 5228 // Determine if all users of the induction variable are scalar after 5229 // vectorization. 5230 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5231 auto *I = cast<Instruction>(U); 5232 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5233 }); 5234 if (!ScalarInd) 5235 continue; 5236 5237 // Determine if all users of the induction variable update instruction are 5238 // scalar after vectorization. 5239 auto ScalarIndUpdate = 5240 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5241 auto *I = cast<Instruction>(U); 5242 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5243 }); 5244 if (!ScalarIndUpdate) 5245 continue; 5246 5247 // The induction variable and its update instruction will remain scalar. 5248 Worklist.insert(Ind); 5249 Worklist.insert(IndUpdate); 5250 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5251 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5252 << "\n"); 5253 } 5254 5255 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5256 } 5257 5258 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const { 5259 if (!blockNeedsPredication(I->getParent())) 5260 return false; 5261 switch(I->getOpcode()) { 5262 default: 5263 break; 5264 case Instruction::Load: 5265 case Instruction::Store: { 5266 if (!Legal->isMaskRequired(I)) 5267 return false; 5268 auto *Ptr = getLoadStorePointerOperand(I); 5269 auto *Ty = getLoadStoreType(I); 5270 const Align Alignment = getLoadStoreAlignment(I); 5271 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5272 TTI.isLegalMaskedGather(Ty, Alignment)) 5273 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5274 TTI.isLegalMaskedScatter(Ty, Alignment)); 5275 } 5276 case Instruction::UDiv: 5277 case Instruction::SDiv: 5278 case Instruction::SRem: 5279 case Instruction::URem: 5280 return mayDivideByZero(*I); 5281 } 5282 return false; 5283 } 5284 5285 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5286 Instruction *I, ElementCount VF) { 5287 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5288 assert(getWideningDecision(I, VF) == CM_Unknown && 5289 "Decision should not be set yet."); 5290 auto *Group = getInterleavedAccessGroup(I); 5291 assert(Group && "Must have a group."); 5292 5293 // If the instruction's allocated size doesn't equal it's type size, it 5294 // requires padding and will be scalarized. 5295 auto &DL = I->getModule()->getDataLayout(); 5296 auto *ScalarTy = getLoadStoreType(I); 5297 if (hasIrregularType(ScalarTy, DL)) 5298 return false; 5299 5300 // Check if masking is required. 5301 // A Group may need masking for one of two reasons: it resides in a block that 5302 // needs predication, or it was decided to use masking to deal with gaps 5303 // (either a gap at the end of a load-access that may result in a speculative 5304 // load, or any gaps in a store-access). 5305 bool PredicatedAccessRequiresMasking = 5306 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5307 bool LoadAccessWithGapsRequiresEpilogMasking = 5308 isa<LoadInst>(I) && Group->requiresScalarEpilogue() && 5309 !isScalarEpilogueAllowed(); 5310 bool StoreAccessWithGapsRequiresMasking = 5311 isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); 5312 if (!PredicatedAccessRequiresMasking && 5313 !LoadAccessWithGapsRequiresEpilogMasking && 5314 !StoreAccessWithGapsRequiresMasking) 5315 return true; 5316 5317 // If masked interleaving is required, we expect that the user/target had 5318 // enabled it, because otherwise it either wouldn't have been created or 5319 // it should have been invalidated by the CostModel. 5320 assert(useMaskedInterleavedAccesses(TTI) && 5321 "Masked interleave-groups for predicated accesses are not enabled."); 5322 5323 auto *Ty = getLoadStoreType(I); 5324 const Align Alignment = getLoadStoreAlignment(I); 5325 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5326 : TTI.isLegalMaskedStore(Ty, Alignment); 5327 } 5328 5329 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5330 Instruction *I, ElementCount VF) { 5331 // Get and ensure we have a valid memory instruction. 5332 LoadInst *LI = dyn_cast<LoadInst>(I); 5333 StoreInst *SI = dyn_cast<StoreInst>(I); 5334 assert((LI || SI) && "Invalid memory instruction"); 5335 5336 auto *Ptr = getLoadStorePointerOperand(I); 5337 5338 // In order to be widened, the pointer should be consecutive, first of all. 5339 if (!Legal->isConsecutivePtr(Ptr)) 5340 return false; 5341 5342 // If the instruction is a store located in a predicated block, it will be 5343 // scalarized. 5344 if (isScalarWithPredication(I)) 5345 return false; 5346 5347 // If the instruction's allocated size doesn't equal it's type size, it 5348 // requires padding and will be scalarized. 5349 auto &DL = I->getModule()->getDataLayout(); 5350 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5351 if (hasIrregularType(ScalarTy, DL)) 5352 return false; 5353 5354 return true; 5355 } 5356 5357 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5358 // We should not collect Uniforms more than once per VF. Right now, 5359 // this function is called from collectUniformsAndScalars(), which 5360 // already does this check. Collecting Uniforms for VF=1 does not make any 5361 // sense. 5362 5363 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5364 "This function should not be visited twice for the same VF"); 5365 5366 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5367 // not analyze again. Uniforms.count(VF) will return 1. 5368 Uniforms[VF].clear(); 5369 5370 // We now know that the loop is vectorizable! 5371 // Collect instructions inside the loop that will remain uniform after 5372 // vectorization. 5373 5374 // Global values, params and instructions outside of current loop are out of 5375 // scope. 5376 auto isOutOfScope = [&](Value *V) -> bool { 5377 Instruction *I = dyn_cast<Instruction>(V); 5378 return (!I || !TheLoop->contains(I)); 5379 }; 5380 5381 SetVector<Instruction *> Worklist; 5382 BasicBlock *Latch = TheLoop->getLoopLatch(); 5383 5384 // Instructions that are scalar with predication must not be considered 5385 // uniform after vectorization, because that would create an erroneous 5386 // replicating region where only a single instance out of VF should be formed. 5387 // TODO: optimize such seldom cases if found important, see PR40816. 5388 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5389 if (isOutOfScope(I)) { 5390 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5391 << *I << "\n"); 5392 return; 5393 } 5394 if (isScalarWithPredication(I)) { 5395 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5396 << *I << "\n"); 5397 return; 5398 } 5399 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5400 Worklist.insert(I); 5401 }; 5402 5403 // Start with the conditional branch. If the branch condition is an 5404 // instruction contained in the loop that is only used by the branch, it is 5405 // uniform. 5406 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5407 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5408 addToWorklistIfAllowed(Cmp); 5409 5410 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5411 InstWidening WideningDecision = getWideningDecision(I, VF); 5412 assert(WideningDecision != CM_Unknown && 5413 "Widening decision should be ready at this moment"); 5414 5415 // A uniform memory op is itself uniform. We exclude uniform stores 5416 // here as they demand the last lane, not the first one. 5417 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5418 assert(WideningDecision == CM_Scalarize); 5419 return true; 5420 } 5421 5422 return (WideningDecision == CM_Widen || 5423 WideningDecision == CM_Widen_Reverse || 5424 WideningDecision == CM_Interleave); 5425 }; 5426 5427 5428 // Returns true if Ptr is the pointer operand of a memory access instruction 5429 // I, and I is known to not require scalarization. 5430 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5431 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5432 }; 5433 5434 // Holds a list of values which are known to have at least one uniform use. 5435 // Note that there may be other uses which aren't uniform. A "uniform use" 5436 // here is something which only demands lane 0 of the unrolled iterations; 5437 // it does not imply that all lanes produce the same value (e.g. this is not 5438 // the usual meaning of uniform) 5439 SetVector<Value *> HasUniformUse; 5440 5441 // Scan the loop for instructions which are either a) known to have only 5442 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5443 for (auto *BB : TheLoop->blocks()) 5444 for (auto &I : *BB) { 5445 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { 5446 switch (II->getIntrinsicID()) { 5447 case Intrinsic::sideeffect: 5448 case Intrinsic::experimental_noalias_scope_decl: 5449 case Intrinsic::assume: 5450 case Intrinsic::lifetime_start: 5451 case Intrinsic::lifetime_end: 5452 if (TheLoop->hasLoopInvariantOperands(&I)) 5453 addToWorklistIfAllowed(&I); 5454 break; 5455 default: 5456 break; 5457 } 5458 } 5459 5460 // ExtractValue instructions must be uniform, because the operands are 5461 // known to be loop-invariant. 5462 if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { 5463 assert(isOutOfScope(EVI->getAggregateOperand()) && 5464 "Expected aggregate value to be loop invariant"); 5465 addToWorklistIfAllowed(EVI); 5466 continue; 5467 } 5468 5469 // If there's no pointer operand, there's nothing to do. 5470 auto *Ptr = getLoadStorePointerOperand(&I); 5471 if (!Ptr) 5472 continue; 5473 5474 // A uniform memory op is itself uniform. We exclude uniform stores 5475 // here as they demand the last lane, not the first one. 5476 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5477 addToWorklistIfAllowed(&I); 5478 5479 if (isUniformDecision(&I, VF)) { 5480 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5481 HasUniformUse.insert(Ptr); 5482 } 5483 } 5484 5485 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5486 // demanding) users. Since loops are assumed to be in LCSSA form, this 5487 // disallows uses outside the loop as well. 5488 for (auto *V : HasUniformUse) { 5489 if (isOutOfScope(V)) 5490 continue; 5491 auto *I = cast<Instruction>(V); 5492 auto UsersAreMemAccesses = 5493 llvm::all_of(I->users(), [&](User *U) -> bool { 5494 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5495 }); 5496 if (UsersAreMemAccesses) 5497 addToWorklistIfAllowed(I); 5498 } 5499 5500 // Expand Worklist in topological order: whenever a new instruction 5501 // is added , its users should be already inside Worklist. It ensures 5502 // a uniform instruction will only be used by uniform instructions. 5503 unsigned idx = 0; 5504 while (idx != Worklist.size()) { 5505 Instruction *I = Worklist[idx++]; 5506 5507 for (auto OV : I->operand_values()) { 5508 // isOutOfScope operands cannot be uniform instructions. 5509 if (isOutOfScope(OV)) 5510 continue; 5511 // First order recurrence Phi's should typically be considered 5512 // non-uniform. 5513 auto *OP = dyn_cast<PHINode>(OV); 5514 if (OP && Legal->isFirstOrderRecurrence(OP)) 5515 continue; 5516 // If all the users of the operand are uniform, then add the 5517 // operand into the uniform worklist. 5518 auto *OI = cast<Instruction>(OV); 5519 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5520 auto *J = cast<Instruction>(U); 5521 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5522 })) 5523 addToWorklistIfAllowed(OI); 5524 } 5525 } 5526 5527 // For an instruction to be added into Worklist above, all its users inside 5528 // the loop should also be in Worklist. However, this condition cannot be 5529 // true for phi nodes that form a cyclic dependence. We must process phi 5530 // nodes separately. An induction variable will remain uniform if all users 5531 // of the induction variable and induction variable update remain uniform. 5532 // The code below handles both pointer and non-pointer induction variables. 5533 for (auto &Induction : Legal->getInductionVars()) { 5534 auto *Ind = Induction.first; 5535 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5536 5537 // Determine if all users of the induction variable are uniform after 5538 // vectorization. 5539 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5540 auto *I = cast<Instruction>(U); 5541 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5542 isVectorizedMemAccessUse(I, Ind); 5543 }); 5544 if (!UniformInd) 5545 continue; 5546 5547 // Determine if all users of the induction variable update instruction are 5548 // uniform after vectorization. 5549 auto UniformIndUpdate = 5550 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5551 auto *I = cast<Instruction>(U); 5552 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5553 isVectorizedMemAccessUse(I, IndUpdate); 5554 }); 5555 if (!UniformIndUpdate) 5556 continue; 5557 5558 // The induction variable and its update instruction will remain uniform. 5559 addToWorklistIfAllowed(Ind); 5560 addToWorklistIfAllowed(IndUpdate); 5561 } 5562 5563 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5564 } 5565 5566 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5567 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5568 5569 if (Legal->getRuntimePointerChecking()->Need) { 5570 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5571 "runtime pointer checks needed. Enable vectorization of this " 5572 "loop with '#pragma clang loop vectorize(enable)' when " 5573 "compiling with -Os/-Oz", 5574 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5575 return true; 5576 } 5577 5578 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5579 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5580 "runtime SCEV checks needed. Enable vectorization of this " 5581 "loop with '#pragma clang loop vectorize(enable)' when " 5582 "compiling with -Os/-Oz", 5583 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5584 return true; 5585 } 5586 5587 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5588 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5589 reportVectorizationFailure("Runtime stride check for small trip count", 5590 "runtime stride == 1 checks needed. Enable vectorization of " 5591 "this loop without such check by compiling with -Os/-Oz", 5592 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5593 return true; 5594 } 5595 5596 return false; 5597 } 5598 5599 ElementCount 5600 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { 5601 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) 5602 return ElementCount::getScalable(0); 5603 5604 if (Hints->isScalableVectorizationDisabled()) { 5605 reportVectorizationInfo("Scalable vectorization is explicitly disabled", 5606 "ScalableVectorizationDisabled", ORE, TheLoop); 5607 return ElementCount::getScalable(0); 5608 } 5609 5610 LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n"); 5611 5612 auto MaxScalableVF = ElementCount::getScalable( 5613 std::numeric_limits<ElementCount::ScalarTy>::max()); 5614 5615 // Test that the loop-vectorizer can legalize all operations for this MaxVF. 5616 // FIXME: While for scalable vectors this is currently sufficient, this should 5617 // be replaced by a more detailed mechanism that filters out specific VFs, 5618 // instead of invalidating vectorization for a whole set of VFs based on the 5619 // MaxVF. 5620 5621 // Disable scalable vectorization if the loop contains unsupported reductions. 5622 if (!canVectorizeReductions(MaxScalableVF)) { 5623 reportVectorizationInfo( 5624 "Scalable vectorization not supported for the reduction " 5625 "operations found in this loop.", 5626 "ScalableVFUnfeasible", ORE, TheLoop); 5627 return ElementCount::getScalable(0); 5628 } 5629 5630 // Disable scalable vectorization if the loop contains any instructions 5631 // with element types not supported for scalable vectors. 5632 if (any_of(ElementTypesInLoop, [&](Type *Ty) { 5633 return !Ty->isVoidTy() && 5634 !this->TTI.isElementTypeLegalForScalableVector(Ty); 5635 })) { 5636 reportVectorizationInfo("Scalable vectorization is not supported " 5637 "for all element types found in this loop.", 5638 "ScalableVFUnfeasible", ORE, TheLoop); 5639 return ElementCount::getScalable(0); 5640 } 5641 5642 if (Legal->isSafeForAnyVectorWidth()) 5643 return MaxScalableVF; 5644 5645 // Limit MaxScalableVF by the maximum safe dependence distance. 5646 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5647 if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) { 5648 unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange) 5649 .getVScaleRangeArgs() 5650 .second; 5651 if (VScaleMax > 0) 5652 MaxVScale = VScaleMax; 5653 } 5654 MaxScalableVF = ElementCount::getScalable( 5655 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5656 if (!MaxScalableVF) 5657 reportVectorizationInfo( 5658 "Max legal vector width too small, scalable vectorization " 5659 "unfeasible.", 5660 "ScalableVFUnfeasible", ORE, TheLoop); 5661 5662 return MaxScalableVF; 5663 } 5664 5665 FixedScalableVFPair 5666 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5667 ElementCount UserVF) { 5668 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5669 unsigned SmallestType, WidestType; 5670 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5671 5672 // Get the maximum safe dependence distance in bits computed by LAA. 5673 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5674 // the memory accesses that is most restrictive (involved in the smallest 5675 // dependence distance). 5676 unsigned MaxSafeElements = 5677 PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); 5678 5679 auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); 5680 auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); 5681 5682 LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF 5683 << ".\n"); 5684 LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF 5685 << ".\n"); 5686 5687 // First analyze the UserVF, fall back if the UserVF should be ignored. 5688 if (UserVF) { 5689 auto MaxSafeUserVF = 5690 UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; 5691 5692 if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { 5693 // If `VF=vscale x N` is safe, then so is `VF=N` 5694 if (UserVF.isScalable()) 5695 return FixedScalableVFPair( 5696 ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); 5697 else 5698 return UserVF; 5699 } 5700 5701 assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); 5702 5703 // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it 5704 // is better to ignore the hint and let the compiler choose a suitable VF. 5705 if (!UserVF.isScalable()) { 5706 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5707 << " is unsafe, clamping to max safe VF=" 5708 << MaxSafeFixedVF << ".\n"); 5709 ORE->emit([&]() { 5710 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5711 TheLoop->getStartLoc(), 5712 TheLoop->getHeader()) 5713 << "User-specified vectorization factor " 5714 << ore::NV("UserVectorizationFactor", UserVF) 5715 << " is unsafe, clamping to maximum safe vectorization factor " 5716 << ore::NV("VectorizationFactor", MaxSafeFixedVF); 5717 }); 5718 return MaxSafeFixedVF; 5719 } 5720 5721 if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { 5722 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5723 << " is ignored because scalable vectors are not " 5724 "available.\n"); 5725 ORE->emit([&]() { 5726 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5727 TheLoop->getStartLoc(), 5728 TheLoop->getHeader()) 5729 << "User-specified vectorization factor " 5730 << ore::NV("UserVectorizationFactor", UserVF) 5731 << " is ignored because the target does not support scalable " 5732 "vectors. The compiler will pick a more suitable value."; 5733 }); 5734 } else { 5735 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5736 << " is unsafe. Ignoring scalable UserVF.\n"); 5737 ORE->emit([&]() { 5738 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5739 TheLoop->getStartLoc(), 5740 TheLoop->getHeader()) 5741 << "User-specified vectorization factor " 5742 << ore::NV("UserVectorizationFactor", UserVF) 5743 << " is unsafe. Ignoring the hint to let the compiler pick a " 5744 "more suitable value."; 5745 }); 5746 } 5747 } 5748 5749 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5750 << " / " << WidestType << " bits.\n"); 5751 5752 FixedScalableVFPair Result(ElementCount::getFixed(1), 5753 ElementCount::getScalable(0)); 5754 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5755 WidestType, MaxSafeFixedVF)) 5756 Result.FixedVF = MaxVF; 5757 5758 if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, 5759 WidestType, MaxSafeScalableVF)) 5760 if (MaxVF.isScalable()) { 5761 Result.ScalableVF = MaxVF; 5762 LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF 5763 << "\n"); 5764 } 5765 5766 return Result; 5767 } 5768 5769 FixedScalableVFPair 5770 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5771 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5772 // TODO: It may by useful to do since it's still likely to be dynamically 5773 // uniform if the target can skip. 5774 reportVectorizationFailure( 5775 "Not inserting runtime ptr check for divergent target", 5776 "runtime pointer checks needed. Not enabled for divergent target", 5777 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5778 return FixedScalableVFPair::getNone(); 5779 } 5780 5781 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5782 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5783 if (TC == 1) { 5784 reportVectorizationFailure("Single iteration (non) loop", 5785 "loop trip count is one, irrelevant for vectorization", 5786 "SingleIterationLoop", ORE, TheLoop); 5787 return FixedScalableVFPair::getNone(); 5788 } 5789 5790 switch (ScalarEpilogueStatus) { 5791 case CM_ScalarEpilogueAllowed: 5792 return computeFeasibleMaxVF(TC, UserVF); 5793 case CM_ScalarEpilogueNotAllowedUsePredicate: 5794 LLVM_FALLTHROUGH; 5795 case CM_ScalarEpilogueNotNeededUsePredicate: 5796 LLVM_DEBUG( 5797 dbgs() << "LV: vector predicate hint/switch found.\n" 5798 << "LV: Not allowing scalar epilogue, creating predicated " 5799 << "vector loop.\n"); 5800 break; 5801 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5802 // fallthrough as a special case of OptForSize 5803 case CM_ScalarEpilogueNotAllowedOptSize: 5804 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5805 LLVM_DEBUG( 5806 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5807 else 5808 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5809 << "count.\n"); 5810 5811 // Bail if runtime checks are required, which are not good when optimising 5812 // for size. 5813 if (runtimeChecksRequired()) 5814 return FixedScalableVFPair::getNone(); 5815 5816 break; 5817 } 5818 5819 // The only loops we can vectorize without a scalar epilogue, are loops with 5820 // a bottom-test and a single exiting block. We'd have to handle the fact 5821 // that not every instruction executes on the last iteration. This will 5822 // require a lane mask which varies through the vector loop body. (TODO) 5823 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5824 // If there was a tail-folding hint/switch, but we can't fold the tail by 5825 // masking, fallback to a vectorization with a scalar epilogue. 5826 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5827 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5828 "scalar epilogue instead.\n"); 5829 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5830 return computeFeasibleMaxVF(TC, UserVF); 5831 } 5832 return FixedScalableVFPair::getNone(); 5833 } 5834 5835 // Now try the tail folding 5836 5837 // Invalidate interleave groups that require an epilogue if we can't mask 5838 // the interleave-group. 5839 if (!useMaskedInterleavedAccesses(TTI)) { 5840 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5841 "No decisions should have been taken at this point"); 5842 // Note: There is no need to invalidate any cost modeling decisions here, as 5843 // non where taken so far. 5844 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5845 } 5846 5847 FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); 5848 // Avoid tail folding if the trip count is known to be a multiple of any VF 5849 // we chose. 5850 // FIXME: The condition below pessimises the case for fixed-width vectors, 5851 // when scalable VFs are also candidates for vectorization. 5852 if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { 5853 ElementCount MaxFixedVF = MaxFactors.FixedVF; 5854 assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && 5855 "MaxFixedVF must be a power of 2"); 5856 unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC 5857 : MaxFixedVF.getFixedValue(); 5858 ScalarEvolution *SE = PSE.getSE(); 5859 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5860 const SCEV *ExitCount = SE->getAddExpr( 5861 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5862 const SCEV *Rem = SE->getURemExpr( 5863 SE->applyLoopGuards(ExitCount, TheLoop), 5864 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5865 if (Rem->isZero()) { 5866 // Accept MaxFixedVF if we do not have a tail. 5867 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5868 return MaxFactors; 5869 } 5870 } 5871 5872 // For scalable vectors, don't use tail folding as this is currently not yet 5873 // supported. The code is likely to have ended up here if the tripcount is 5874 // low, in which case it makes sense not to use scalable vectors. 5875 if (MaxFactors.ScalableVF.isVector()) 5876 MaxFactors.ScalableVF = ElementCount::getScalable(0); 5877 5878 // If we don't know the precise trip count, or if the trip count that we 5879 // found modulo the vectorization factor is not zero, try to fold the tail 5880 // by masking. 5881 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5882 if (Legal->prepareToFoldTailByMasking()) { 5883 FoldTailByMasking = true; 5884 return MaxFactors; 5885 } 5886 5887 // If there was a tail-folding hint/switch, but we can't fold the tail by 5888 // masking, fallback to a vectorization with a scalar epilogue. 5889 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5890 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5891 "scalar epilogue instead.\n"); 5892 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5893 return MaxFactors; 5894 } 5895 5896 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5897 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5898 return FixedScalableVFPair::getNone(); 5899 } 5900 5901 if (TC == 0) { 5902 reportVectorizationFailure( 5903 "Unable to calculate the loop count due to complex control flow", 5904 "unable to calculate the loop count due to complex control flow", 5905 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5906 return FixedScalableVFPair::getNone(); 5907 } 5908 5909 reportVectorizationFailure( 5910 "Cannot optimize for size and vectorize at the same time.", 5911 "cannot optimize for size and vectorize at the same time. " 5912 "Enable vectorization of this loop with '#pragma clang loop " 5913 "vectorize(enable)' when compiling with -Os/-Oz", 5914 "NoTailLoopWithOptForSize", ORE, TheLoop); 5915 return FixedScalableVFPair::getNone(); 5916 } 5917 5918 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( 5919 unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, 5920 const ElementCount &MaxSafeVF) { 5921 bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); 5922 TypeSize WidestRegister = TTI.getRegisterBitWidth( 5923 ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector 5924 : TargetTransformInfo::RGK_FixedWidthVector); 5925 5926 // Convenience function to return the minimum of two ElementCounts. 5927 auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { 5928 assert((LHS.isScalable() == RHS.isScalable()) && 5929 "Scalable flags must match"); 5930 return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; 5931 }; 5932 5933 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5934 // Note that both WidestRegister and WidestType may not be a powers of 2. 5935 auto MaxVectorElementCount = ElementCount::get( 5936 PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType), 5937 ComputeScalableMaxVF); 5938 MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); 5939 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5940 << (MaxVectorElementCount * WidestType) << " bits.\n"); 5941 5942 if (!MaxVectorElementCount) { 5943 LLVM_DEBUG(dbgs() << "LV: The target has no " 5944 << (ComputeScalableMaxVF ? "scalable" : "fixed") 5945 << " vector registers.\n"); 5946 return ElementCount::getFixed(1); 5947 } 5948 5949 const auto TripCountEC = ElementCount::getFixed(ConstTripCount); 5950 if (ConstTripCount && 5951 ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && 5952 isPowerOf2_32(ConstTripCount)) { 5953 // We need to clamp the VF to be the ConstTripCount. There is no point in 5954 // choosing a higher viable VF as done in the loop below. If 5955 // MaxVectorElementCount is scalable, we only fall back on a fixed VF when 5956 // the TC is less than or equal to the known number of lanes. 5957 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5958 << ConstTripCount << "\n"); 5959 return TripCountEC; 5960 } 5961 5962 ElementCount MaxVF = MaxVectorElementCount; 5963 if (TTI.shouldMaximizeVectorBandwidth() || 5964 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5965 auto MaxVectorElementCountMaxBW = ElementCount::get( 5966 PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType), 5967 ComputeScalableMaxVF); 5968 MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); 5969 5970 // Collect all viable vectorization factors larger than the default MaxVF 5971 // (i.e. MaxVectorElementCount). 5972 SmallVector<ElementCount, 8> VFs; 5973 for (ElementCount VS = MaxVectorElementCount * 2; 5974 ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) 5975 VFs.push_back(VS); 5976 5977 // For each VF calculate its register usage. 5978 auto RUs = calculateRegisterUsage(VFs); 5979 5980 // Select the largest VF which doesn't require more registers than existing 5981 // ones. 5982 for (int i = RUs.size() - 1; i >= 0; --i) { 5983 bool Selected = true; 5984 for (auto &pair : RUs[i].MaxLocalUsers) { 5985 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5986 if (pair.second > TargetNumRegisters) 5987 Selected = false; 5988 } 5989 if (Selected) { 5990 MaxVF = VFs[i]; 5991 break; 5992 } 5993 } 5994 if (ElementCount MinVF = 5995 TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { 5996 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5997 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5998 << ") with target's minimum: " << MinVF << '\n'); 5999 MaxVF = MinVF; 6000 } 6001 } 6002 } 6003 return MaxVF; 6004 } 6005 6006 bool LoopVectorizationCostModel::isMoreProfitable( 6007 const VectorizationFactor &A, const VectorizationFactor &B) const { 6008 InstructionCost CostA = A.Cost; 6009 InstructionCost CostB = B.Cost; 6010 6011 unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); 6012 6013 if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && 6014 MaxTripCount) { 6015 // If we are folding the tail and the trip count is a known (possibly small) 6016 // constant, the trip count will be rounded up to an integer number of 6017 // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), 6018 // which we compare directly. When not folding the tail, the total cost will 6019 // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is 6020 // approximated with the per-lane cost below instead of using the tripcount 6021 // as here. 6022 auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); 6023 auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); 6024 return RTCostA < RTCostB; 6025 } 6026 6027 // When set to preferred, for now assume vscale may be larger than 1, so 6028 // that scalable vectorization is slightly favorable over fixed-width 6029 // vectorization. 6030 if (Hints->isScalableVectorizationPreferred()) 6031 if (A.Width.isScalable() && !B.Width.isScalable()) 6032 return (CostA * B.Width.getKnownMinValue()) <= 6033 (CostB * A.Width.getKnownMinValue()); 6034 6035 // To avoid the need for FP division: 6036 // (CostA / A.Width) < (CostB / B.Width) 6037 // <=> (CostA * B.Width) < (CostB * A.Width) 6038 return (CostA * B.Width.getKnownMinValue()) < 6039 (CostB * A.Width.getKnownMinValue()); 6040 } 6041 6042 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( 6043 const ElementCountSet &VFCandidates) { 6044 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 6045 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 6046 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 6047 assert(VFCandidates.count(ElementCount::getFixed(1)) && 6048 "Expected Scalar VF to be a candidate"); 6049 6050 const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost); 6051 VectorizationFactor ChosenFactor = ScalarCost; 6052 6053 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 6054 if (ForceVectorization && VFCandidates.size() > 1) { 6055 // Ignore scalar width, because the user explicitly wants vectorization. 6056 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 6057 // evaluation. 6058 ChosenFactor.Cost = InstructionCost::getMax(); 6059 } 6060 6061 SmallVector<InstructionVFPair> InvalidCosts; 6062 for (const auto &i : VFCandidates) { 6063 // The cost for scalar VF=1 is already calculated, so ignore it. 6064 if (i.isScalar()) 6065 continue; 6066 6067 VectorizationCostTy C = expectedCost(i, &InvalidCosts); 6068 VectorizationFactor Candidate(i, C.first); 6069 LLVM_DEBUG( 6070 dbgs() << "LV: Vector loop of width " << i << " costs: " 6071 << (Candidate.Cost / Candidate.Width.getKnownMinValue()) 6072 << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "") 6073 << ".\n"); 6074 6075 if (!C.second && !ForceVectorization) { 6076 LLVM_DEBUG( 6077 dbgs() << "LV: Not considering vector loop of width " << i 6078 << " because it will not generate any vector instructions.\n"); 6079 continue; 6080 } 6081 6082 // If profitable add it to ProfitableVF list. 6083 if (isMoreProfitable(Candidate, ScalarCost)) 6084 ProfitableVFs.push_back(Candidate); 6085 6086 if (isMoreProfitable(Candidate, ChosenFactor)) 6087 ChosenFactor = Candidate; 6088 } 6089 6090 // Emit a report of VFs with invalid costs in the loop. 6091 if (!InvalidCosts.empty()) { 6092 // Group the remarks per instruction, keeping the instruction order from 6093 // InvalidCosts. 6094 std::map<Instruction *, unsigned> Numbering; 6095 unsigned I = 0; 6096 for (auto &Pair : InvalidCosts) 6097 if (!Numbering.count(Pair.first)) 6098 Numbering[Pair.first] = I++; 6099 6100 // Sort the list, first on instruction(number) then on VF. 6101 llvm::sort(InvalidCosts, 6102 [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { 6103 if (Numbering[A.first] != Numbering[B.first]) 6104 return Numbering[A.first] < Numbering[B.first]; 6105 ElementCountComparator ECC; 6106 return ECC(A.second, B.second); 6107 }); 6108 6109 // For a list of ordered instruction-vf pairs: 6110 // [(load, vf1), (load, vf2), (store, vf1)] 6111 // Group the instructions together to emit separate remarks for: 6112 // load (vf1, vf2) 6113 // store (vf1) 6114 auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); 6115 auto Subset = ArrayRef<InstructionVFPair>(); 6116 do { 6117 if (Subset.empty()) 6118 Subset = Tail.take_front(1); 6119 6120 Instruction *I = Subset.front().first; 6121 6122 // If the next instruction is different, or if there are no other pairs, 6123 // emit a remark for the collated subset. e.g. 6124 // [(load, vf1), (load, vf2))] 6125 // to emit: 6126 // remark: invalid costs for 'load' at VF=(vf, vf2) 6127 if (Subset == Tail || Tail[Subset.size()].first != I) { 6128 std::string OutString; 6129 raw_string_ostream OS(OutString); 6130 assert(!Subset.empty() && "Unexpected empty range"); 6131 OS << "Instruction with invalid costs prevented vectorization at VF=("; 6132 for (auto &Pair : Subset) 6133 OS << (Pair.second == Subset.front().second ? "" : ", ") 6134 << Pair.second; 6135 OS << "):"; 6136 if (auto *CI = dyn_cast<CallInst>(I)) 6137 OS << " call to " << CI->getCalledFunction()->getName(); 6138 else 6139 OS << " " << I->getOpcodeName(); 6140 OS.flush(); 6141 reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); 6142 Tail = Tail.drop_front(Subset.size()); 6143 Subset = {}; 6144 } else 6145 // Grow the subset by one element 6146 Subset = Tail.take_front(Subset.size() + 1); 6147 } while (!Tail.empty()); 6148 } 6149 6150 if (!EnableCondStoresVectorization && NumPredStores) { 6151 reportVectorizationFailure("There are conditional stores.", 6152 "store that is conditionally executed prevents vectorization", 6153 "ConditionalStore", ORE, TheLoop); 6154 ChosenFactor = ScalarCost; 6155 } 6156 6157 LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && 6158 ChosenFactor.Cost >= ScalarCost.Cost) dbgs() 6159 << "LV: Vectorization seems to be not beneficial, " 6160 << "but was forced by a user.\n"); 6161 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); 6162 return ChosenFactor; 6163 } 6164 6165 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 6166 const Loop &L, ElementCount VF) const { 6167 // Cross iteration phis such as reductions need special handling and are 6168 // currently unsupported. 6169 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 6170 return Legal->isFirstOrderRecurrence(&Phi) || 6171 Legal->isReductionVariable(&Phi); 6172 })) 6173 return false; 6174 6175 // Phis with uses outside of the loop require special handling and are 6176 // currently unsupported. 6177 for (auto &Entry : Legal->getInductionVars()) { 6178 // Look for uses of the value of the induction at the last iteration. 6179 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 6180 for (User *U : PostInc->users()) 6181 if (!L.contains(cast<Instruction>(U))) 6182 return false; 6183 // Look for uses of penultimate value of the induction. 6184 for (User *U : Entry.first->users()) 6185 if (!L.contains(cast<Instruction>(U))) 6186 return false; 6187 } 6188 6189 // Induction variables that are widened require special handling that is 6190 // currently not supported. 6191 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 6192 return !(this->isScalarAfterVectorization(Entry.first, VF) || 6193 this->isProfitableToScalarize(Entry.first, VF)); 6194 })) 6195 return false; 6196 6197 // Epilogue vectorization code has not been auditted to ensure it handles 6198 // non-latch exits properly. It may be fine, but it needs auditted and 6199 // tested. 6200 if (L.getExitingBlock() != L.getLoopLatch()) 6201 return false; 6202 6203 return true; 6204 } 6205 6206 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 6207 const ElementCount VF) const { 6208 // FIXME: We need a much better cost-model to take different parameters such 6209 // as register pressure, code size increase and cost of extra branches into 6210 // account. For now we apply a very crude heuristic and only consider loops 6211 // with vectorization factors larger than a certain value. 6212 // We also consider epilogue vectorization unprofitable for targets that don't 6213 // consider interleaving beneficial (eg. MVE). 6214 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 6215 return false; 6216 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 6217 return true; 6218 return false; 6219 } 6220 6221 VectorizationFactor 6222 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 6223 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 6224 VectorizationFactor Result = VectorizationFactor::Disabled(); 6225 if (!EnableEpilogueVectorization) { 6226 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 6227 return Result; 6228 } 6229 6230 if (!isScalarEpilogueAllowed()) { 6231 LLVM_DEBUG( 6232 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 6233 "allowed.\n";); 6234 return Result; 6235 } 6236 6237 // FIXME: This can be fixed for scalable vectors later, because at this stage 6238 // the LoopVectorizer will only consider vectorizing a loop with scalable 6239 // vectors when the loop has a hint to enable vectorization for a given VF. 6240 if (MainLoopVF.isScalable()) { 6241 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 6242 "yet supported.\n"); 6243 return Result; 6244 } 6245 6246 // Not really a cost consideration, but check for unsupported cases here to 6247 // simplify the logic. 6248 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 6249 LLVM_DEBUG( 6250 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 6251 "not a supported candidate.\n";); 6252 return Result; 6253 } 6254 6255 if (EpilogueVectorizationForceVF > 1) { 6256 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6257 if (LVP.hasPlanWithVFs( 6258 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 6259 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 6260 else { 6261 LLVM_DEBUG( 6262 dbgs() 6263 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6264 return Result; 6265 } 6266 } 6267 6268 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6269 TheLoop->getHeader()->getParent()->hasMinSize()) { 6270 LLVM_DEBUG( 6271 dbgs() 6272 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6273 return Result; 6274 } 6275 6276 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6277 return Result; 6278 6279 for (auto &NextVF : ProfitableVFs) 6280 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6281 (Result.Width.getFixedValue() == 1 || 6282 isMoreProfitable(NextVF, Result)) && 6283 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6284 Result = NextVF; 6285 6286 if (Result != VectorizationFactor::Disabled()) 6287 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6288 << Result.Width.getFixedValue() << "\n";); 6289 return Result; 6290 } 6291 6292 std::pair<unsigned, unsigned> 6293 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6294 unsigned MinWidth = -1U; 6295 unsigned MaxWidth = 8; 6296 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6297 for (Type *T : ElementTypesInLoop) { 6298 MinWidth = std::min<unsigned>( 6299 MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6300 MaxWidth = std::max<unsigned>( 6301 MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize()); 6302 } 6303 return {MinWidth, MaxWidth}; 6304 } 6305 6306 void LoopVectorizationCostModel::collectElementTypesForWidening() { 6307 ElementTypesInLoop.clear(); 6308 // For each block. 6309 for (BasicBlock *BB : TheLoop->blocks()) { 6310 // For each instruction in the loop. 6311 for (Instruction &I : BB->instructionsWithoutDebug()) { 6312 Type *T = I.getType(); 6313 6314 // Skip ignored values. 6315 if (ValuesToIgnore.count(&I)) 6316 continue; 6317 6318 // Only examine Loads, Stores and PHINodes. 6319 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6320 continue; 6321 6322 // Examine PHI nodes that are reduction variables. Update the type to 6323 // account for the recurrence type. 6324 if (auto *PN = dyn_cast<PHINode>(&I)) { 6325 if (!Legal->isReductionVariable(PN)) 6326 continue; 6327 const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN]; 6328 if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || 6329 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6330 RdxDesc.getRecurrenceType(), 6331 TargetTransformInfo::ReductionFlags())) 6332 continue; 6333 T = RdxDesc.getRecurrenceType(); 6334 } 6335 6336 // Examine the stored values. 6337 if (auto *ST = dyn_cast<StoreInst>(&I)) 6338 T = ST->getValueOperand()->getType(); 6339 6340 // Ignore loaded pointer types and stored pointer types that are not 6341 // vectorizable. 6342 // 6343 // FIXME: The check here attempts to predict whether a load or store will 6344 // be vectorized. We only know this for certain after a VF has 6345 // been selected. Here, we assume that if an access can be 6346 // vectorized, it will be. We should also look at extending this 6347 // optimization to non-pointer types. 6348 // 6349 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6350 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6351 continue; 6352 6353 ElementTypesInLoop.insert(T); 6354 } 6355 } 6356 } 6357 6358 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6359 unsigned LoopCost) { 6360 // -- The interleave heuristics -- 6361 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6362 // There are many micro-architectural considerations that we can't predict 6363 // at this level. For example, frontend pressure (on decode or fetch) due to 6364 // code size, or the number and capabilities of the execution ports. 6365 // 6366 // We use the following heuristics to select the interleave count: 6367 // 1. If the code has reductions, then we interleave to break the cross 6368 // iteration dependency. 6369 // 2. If the loop is really small, then we interleave to reduce the loop 6370 // overhead. 6371 // 3. We don't interleave if we think that we will spill registers to memory 6372 // due to the increased register pressure. 6373 6374 if (!isScalarEpilogueAllowed()) 6375 return 1; 6376 6377 // We used the distance for the interleave count. 6378 if (Legal->getMaxSafeDepDistBytes() != -1U) 6379 return 1; 6380 6381 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6382 const bool HasReductions = !Legal->getReductionVars().empty(); 6383 // Do not interleave loops with a relatively small known or estimated trip 6384 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6385 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6386 // because with the above conditions interleaving can expose ILP and break 6387 // cross iteration dependences for reductions. 6388 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6389 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6390 return 1; 6391 6392 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6393 // We divide by these constants so assume that we have at least one 6394 // instruction that uses at least one register. 6395 for (auto& pair : R.MaxLocalUsers) { 6396 pair.second = std::max(pair.second, 1U); 6397 } 6398 6399 // We calculate the interleave count using the following formula. 6400 // Subtract the number of loop invariants from the number of available 6401 // registers. These registers are used by all of the interleaved instances. 6402 // Next, divide the remaining registers by the number of registers that is 6403 // required by the loop, in order to estimate how many parallel instances 6404 // fit without causing spills. All of this is rounded down if necessary to be 6405 // a power of two. We want power of two interleave count to simplify any 6406 // addressing operations or alignment considerations. 6407 // We also want power of two interleave counts to ensure that the induction 6408 // variable of the vector loop wraps to zero, when tail is folded by masking; 6409 // this currently happens when OptForSize, in which case IC is set to 1 above. 6410 unsigned IC = UINT_MAX; 6411 6412 for (auto& pair : R.MaxLocalUsers) { 6413 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6414 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6415 << " registers of " 6416 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6417 if (VF.isScalar()) { 6418 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6419 TargetNumRegisters = ForceTargetNumScalarRegs; 6420 } else { 6421 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6422 TargetNumRegisters = ForceTargetNumVectorRegs; 6423 } 6424 unsigned MaxLocalUsers = pair.second; 6425 unsigned LoopInvariantRegs = 0; 6426 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6427 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6428 6429 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6430 // Don't count the induction variable as interleaved. 6431 if (EnableIndVarRegisterHeur) { 6432 TmpIC = 6433 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6434 std::max(1U, (MaxLocalUsers - 1))); 6435 } 6436 6437 IC = std::min(IC, TmpIC); 6438 } 6439 6440 // Clamp the interleave ranges to reasonable counts. 6441 unsigned MaxInterleaveCount = 6442 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6443 6444 // Check if the user has overridden the max. 6445 if (VF.isScalar()) { 6446 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6447 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6448 } else { 6449 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6450 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6451 } 6452 6453 // If trip count is known or estimated compile time constant, limit the 6454 // interleave count to be less than the trip count divided by VF, provided it 6455 // is at least 1. 6456 // 6457 // For scalable vectors we can't know if interleaving is beneficial. It may 6458 // not be beneficial for small loops if none of the lanes in the second vector 6459 // iterations is enabled. However, for larger loops, there is likely to be a 6460 // similar benefit as for fixed-width vectors. For now, we choose to leave 6461 // the InterleaveCount as if vscale is '1', although if some information about 6462 // the vector is known (e.g. min vector size), we can make a better decision. 6463 if (BestKnownTC) { 6464 MaxInterleaveCount = 6465 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6466 // Make sure MaxInterleaveCount is greater than 0. 6467 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6468 } 6469 6470 assert(MaxInterleaveCount > 0 && 6471 "Maximum interleave count must be greater than 0"); 6472 6473 // Clamp the calculated IC to be between the 1 and the max interleave count 6474 // that the target and trip count allows. 6475 if (IC > MaxInterleaveCount) 6476 IC = MaxInterleaveCount; 6477 else 6478 // Make sure IC is greater than 0. 6479 IC = std::max(1u, IC); 6480 6481 assert(IC > 0 && "Interleave count must be greater than 0."); 6482 6483 // If we did not calculate the cost for VF (because the user selected the VF) 6484 // then we calculate the cost of VF here. 6485 if (LoopCost == 0) { 6486 InstructionCost C = expectedCost(VF).first; 6487 assert(C.isValid() && "Expected to have chosen a VF with valid cost"); 6488 LoopCost = *C.getValue(); 6489 } 6490 6491 assert(LoopCost && "Non-zero loop cost expected"); 6492 6493 // Interleave if we vectorized this loop and there is a reduction that could 6494 // benefit from interleaving. 6495 if (VF.isVector() && HasReductions) { 6496 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6497 return IC; 6498 } 6499 6500 // Note that if we've already vectorized the loop we will have done the 6501 // runtime check and so interleaving won't require further checks. 6502 bool InterleavingRequiresRuntimePointerCheck = 6503 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6504 6505 // We want to interleave small loops in order to reduce the loop overhead and 6506 // potentially expose ILP opportunities. 6507 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6508 << "LV: IC is " << IC << '\n' 6509 << "LV: VF is " << VF << '\n'); 6510 const bool AggressivelyInterleaveReductions = 6511 TTI.enableAggressiveInterleaving(HasReductions); 6512 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6513 // We assume that the cost overhead is 1 and we use the cost model 6514 // to estimate the cost of the loop and interleave until the cost of the 6515 // loop overhead is about 5% of the cost of the loop. 6516 unsigned SmallIC = 6517 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6518 6519 // Interleave until store/load ports (estimated by max interleave count) are 6520 // saturated. 6521 unsigned NumStores = Legal->getNumStores(); 6522 unsigned NumLoads = Legal->getNumLoads(); 6523 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6524 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6525 6526 // If we have a scalar reduction (vector reductions are already dealt with 6527 // by this point), we can increase the critical path length if the loop 6528 // we're interleaving is inside another loop. For tree-wise reductions 6529 // set the limit to 2, and for ordered reductions it's best to disable 6530 // interleaving entirely. 6531 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6532 bool HasOrderedReductions = 6533 any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 6534 const RecurrenceDescriptor &RdxDesc = Reduction.second; 6535 return RdxDesc.isOrdered(); 6536 }); 6537 if (HasOrderedReductions) { 6538 LLVM_DEBUG( 6539 dbgs() << "LV: Not interleaving scalar ordered reductions.\n"); 6540 return 1; 6541 } 6542 6543 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6544 SmallIC = std::min(SmallIC, F); 6545 StoresIC = std::min(StoresIC, F); 6546 LoadsIC = std::min(LoadsIC, F); 6547 } 6548 6549 if (EnableLoadStoreRuntimeInterleave && 6550 std::max(StoresIC, LoadsIC) > SmallIC) { 6551 LLVM_DEBUG( 6552 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6553 return std::max(StoresIC, LoadsIC); 6554 } 6555 6556 // If there are scalar reductions and TTI has enabled aggressive 6557 // interleaving for reductions, we will interleave to expose ILP. 6558 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6559 AggressivelyInterleaveReductions) { 6560 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6561 // Interleave no less than SmallIC but not as aggressive as the normal IC 6562 // to satisfy the rare situation when resources are too limited. 6563 return std::max(IC / 2, SmallIC); 6564 } else { 6565 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6566 return SmallIC; 6567 } 6568 } 6569 6570 // Interleave if this is a large loop (small loops are already dealt with by 6571 // this point) that could benefit from interleaving. 6572 if (AggressivelyInterleaveReductions) { 6573 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6574 return IC; 6575 } 6576 6577 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6578 return 1; 6579 } 6580 6581 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6582 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6583 // This function calculates the register usage by measuring the highest number 6584 // of values that are alive at a single location. Obviously, this is a very 6585 // rough estimation. We scan the loop in a topological order in order and 6586 // assign a number to each instruction. We use RPO to ensure that defs are 6587 // met before their users. We assume that each instruction that has in-loop 6588 // users starts an interval. We record every time that an in-loop value is 6589 // used, so we have a list of the first and last occurrences of each 6590 // instruction. Next, we transpose this data structure into a multi map that 6591 // holds the list of intervals that *end* at a specific location. This multi 6592 // map allows us to perform a linear search. We scan the instructions linearly 6593 // and record each time that a new interval starts, by placing it in a set. 6594 // If we find this value in the multi-map then we remove it from the set. 6595 // The max register usage is the maximum size of the set. 6596 // We also search for instructions that are defined outside the loop, but are 6597 // used inside the loop. We need this number separately from the max-interval 6598 // usage number because when we unroll, loop-invariant values do not take 6599 // more register. 6600 LoopBlocksDFS DFS(TheLoop); 6601 DFS.perform(LI); 6602 6603 RegisterUsage RU; 6604 6605 // Each 'key' in the map opens a new interval. The values 6606 // of the map are the index of the 'last seen' usage of the 6607 // instruction that is the key. 6608 using IntervalMap = DenseMap<Instruction *, unsigned>; 6609 6610 // Maps instruction to its index. 6611 SmallVector<Instruction *, 64> IdxToInstr; 6612 // Marks the end of each interval. 6613 IntervalMap EndPoint; 6614 // Saves the list of instruction indices that are used in the loop. 6615 SmallPtrSet<Instruction *, 8> Ends; 6616 // Saves the list of values that are used in the loop but are 6617 // defined outside the loop, such as arguments and constants. 6618 SmallPtrSet<Value *, 8> LoopInvariants; 6619 6620 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6621 for (Instruction &I : BB->instructionsWithoutDebug()) { 6622 IdxToInstr.push_back(&I); 6623 6624 // Save the end location of each USE. 6625 for (Value *U : I.operands()) { 6626 auto *Instr = dyn_cast<Instruction>(U); 6627 6628 // Ignore non-instruction values such as arguments, constants, etc. 6629 if (!Instr) 6630 continue; 6631 6632 // If this instruction is outside the loop then record it and continue. 6633 if (!TheLoop->contains(Instr)) { 6634 LoopInvariants.insert(Instr); 6635 continue; 6636 } 6637 6638 // Overwrite previous end points. 6639 EndPoint[Instr] = IdxToInstr.size(); 6640 Ends.insert(Instr); 6641 } 6642 } 6643 } 6644 6645 // Saves the list of intervals that end with the index in 'key'. 6646 using InstrList = SmallVector<Instruction *, 2>; 6647 DenseMap<unsigned, InstrList> TransposeEnds; 6648 6649 // Transpose the EndPoints to a list of values that end at each index. 6650 for (auto &Interval : EndPoint) 6651 TransposeEnds[Interval.second].push_back(Interval.first); 6652 6653 SmallPtrSet<Instruction *, 8> OpenIntervals; 6654 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6655 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6656 6657 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6658 6659 // A lambda that gets the register usage for the given type and VF. 6660 const auto &TTICapture = TTI; 6661 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { 6662 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6663 return 0; 6664 InstructionCost::CostType RegUsage = 6665 *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue(); 6666 assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() && 6667 "Nonsensical values for register usage."); 6668 return RegUsage; 6669 }; 6670 6671 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6672 Instruction *I = IdxToInstr[i]; 6673 6674 // Remove all of the instructions that end at this location. 6675 InstrList &List = TransposeEnds[i]; 6676 for (Instruction *ToRemove : List) 6677 OpenIntervals.erase(ToRemove); 6678 6679 // Ignore instructions that are never used within the loop. 6680 if (!Ends.count(I)) 6681 continue; 6682 6683 // Skip ignored values. 6684 if (ValuesToIgnore.count(I)) 6685 continue; 6686 6687 // For each VF find the maximum usage of registers. 6688 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6689 // Count the number of live intervals. 6690 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6691 6692 if (VFs[j].isScalar()) { 6693 for (auto Inst : OpenIntervals) { 6694 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6695 if (RegUsage.find(ClassID) == RegUsage.end()) 6696 RegUsage[ClassID] = 1; 6697 else 6698 RegUsage[ClassID] += 1; 6699 } 6700 } else { 6701 collectUniformsAndScalars(VFs[j]); 6702 for (auto Inst : OpenIntervals) { 6703 // Skip ignored values for VF > 1. 6704 if (VecValuesToIgnore.count(Inst)) 6705 continue; 6706 if (isScalarAfterVectorization(Inst, VFs[j])) { 6707 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6708 if (RegUsage.find(ClassID) == RegUsage.end()) 6709 RegUsage[ClassID] = 1; 6710 else 6711 RegUsage[ClassID] += 1; 6712 } else { 6713 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6714 if (RegUsage.find(ClassID) == RegUsage.end()) 6715 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6716 else 6717 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6718 } 6719 } 6720 } 6721 6722 for (auto& pair : RegUsage) { 6723 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6724 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6725 else 6726 MaxUsages[j][pair.first] = pair.second; 6727 } 6728 } 6729 6730 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6731 << OpenIntervals.size() << '\n'); 6732 6733 // Add the current instruction to the list of open intervals. 6734 OpenIntervals.insert(I); 6735 } 6736 6737 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6738 SmallMapVector<unsigned, unsigned, 4> Invariant; 6739 6740 for (auto Inst : LoopInvariants) { 6741 unsigned Usage = 6742 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6743 unsigned ClassID = 6744 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6745 if (Invariant.find(ClassID) == Invariant.end()) 6746 Invariant[ClassID] = Usage; 6747 else 6748 Invariant[ClassID] += Usage; 6749 } 6750 6751 LLVM_DEBUG({ 6752 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6753 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6754 << " item\n"; 6755 for (const auto &pair : MaxUsages[i]) { 6756 dbgs() << "LV(REG): RegisterClass: " 6757 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6758 << " registers\n"; 6759 } 6760 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6761 << " item\n"; 6762 for (const auto &pair : Invariant) { 6763 dbgs() << "LV(REG): RegisterClass: " 6764 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6765 << " registers\n"; 6766 } 6767 }); 6768 6769 RU.LoopInvariantRegs = Invariant; 6770 RU.MaxLocalUsers = MaxUsages[i]; 6771 RUs[i] = RU; 6772 } 6773 6774 return RUs; 6775 } 6776 6777 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6778 // TODO: Cost model for emulated masked load/store is completely 6779 // broken. This hack guides the cost model to use an artificially 6780 // high enough value to practically disable vectorization with such 6781 // operations, except where previously deployed legality hack allowed 6782 // using very low cost values. This is to avoid regressions coming simply 6783 // from moving "masked load/store" check from legality to cost model. 6784 // Masked Load/Gather emulation was previously never allowed. 6785 // Limited number of Masked Store/Scatter emulation was allowed. 6786 assert(isPredicatedInst(I) && 6787 "Expecting a scalar emulated instruction"); 6788 return isa<LoadInst>(I) || 6789 (isa<StoreInst>(I) && 6790 NumPredStores > NumberOfStoresToPredicate); 6791 } 6792 6793 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6794 // If we aren't vectorizing the loop, or if we've already collected the 6795 // instructions to scalarize, there's nothing to do. Collection may already 6796 // have occurred if we have a user-selected VF and are now computing the 6797 // expected cost for interleaving. 6798 if (VF.isScalar() || VF.isZero() || 6799 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6800 return; 6801 6802 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6803 // not profitable to scalarize any instructions, the presence of VF in the 6804 // map will indicate that we've analyzed it already. 6805 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6806 6807 // Find all the instructions that are scalar with predication in the loop and 6808 // determine if it would be better to not if-convert the blocks they are in. 6809 // If so, we also record the instructions to scalarize. 6810 for (BasicBlock *BB : TheLoop->blocks()) { 6811 if (!blockNeedsPredication(BB)) 6812 continue; 6813 for (Instruction &I : *BB) 6814 if (isScalarWithPredication(&I)) { 6815 ScalarCostsTy ScalarCosts; 6816 // Do not apply discount if scalable, because that would lead to 6817 // invalid scalarization costs. 6818 // Do not apply discount logic if hacked cost is needed 6819 // for emulated masked memrefs. 6820 if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) && 6821 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6822 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6823 // Remember that BB will remain after vectorization. 6824 PredicatedBBsAfterVectorization.insert(BB); 6825 } 6826 } 6827 } 6828 6829 int LoopVectorizationCostModel::computePredInstDiscount( 6830 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6831 assert(!isUniformAfterVectorization(PredInst, VF) && 6832 "Instruction marked uniform-after-vectorization will be predicated"); 6833 6834 // Initialize the discount to zero, meaning that the scalar version and the 6835 // vector version cost the same. 6836 InstructionCost Discount = 0; 6837 6838 // Holds instructions to analyze. The instructions we visit are mapped in 6839 // ScalarCosts. Those instructions are the ones that would be scalarized if 6840 // we find that the scalar version costs less. 6841 SmallVector<Instruction *, 8> Worklist; 6842 6843 // Returns true if the given instruction can be scalarized. 6844 auto canBeScalarized = [&](Instruction *I) -> bool { 6845 // We only attempt to scalarize instructions forming a single-use chain 6846 // from the original predicated block that would otherwise be vectorized. 6847 // Although not strictly necessary, we give up on instructions we know will 6848 // already be scalar to avoid traversing chains that are unlikely to be 6849 // beneficial. 6850 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6851 isScalarAfterVectorization(I, VF)) 6852 return false; 6853 6854 // If the instruction is scalar with predication, it will be analyzed 6855 // separately. We ignore it within the context of PredInst. 6856 if (isScalarWithPredication(I)) 6857 return false; 6858 6859 // If any of the instruction's operands are uniform after vectorization, 6860 // the instruction cannot be scalarized. This prevents, for example, a 6861 // masked load from being scalarized. 6862 // 6863 // We assume we will only emit a value for lane zero of an instruction 6864 // marked uniform after vectorization, rather than VF identical values. 6865 // Thus, if we scalarize an instruction that uses a uniform, we would 6866 // create uses of values corresponding to the lanes we aren't emitting code 6867 // for. This behavior can be changed by allowing getScalarValue to clone 6868 // the lane zero values for uniforms rather than asserting. 6869 for (Use &U : I->operands()) 6870 if (auto *J = dyn_cast<Instruction>(U.get())) 6871 if (isUniformAfterVectorization(J, VF)) 6872 return false; 6873 6874 // Otherwise, we can scalarize the instruction. 6875 return true; 6876 }; 6877 6878 // Compute the expected cost discount from scalarizing the entire expression 6879 // feeding the predicated instruction. We currently only consider expressions 6880 // that are single-use instruction chains. 6881 Worklist.push_back(PredInst); 6882 while (!Worklist.empty()) { 6883 Instruction *I = Worklist.pop_back_val(); 6884 6885 // If we've already analyzed the instruction, there's nothing to do. 6886 if (ScalarCosts.find(I) != ScalarCosts.end()) 6887 continue; 6888 6889 // Compute the cost of the vector instruction. Note that this cost already 6890 // includes the scalarization overhead of the predicated instruction. 6891 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6892 6893 // Compute the cost of the scalarized instruction. This cost is the cost of 6894 // the instruction as if it wasn't if-converted and instead remained in the 6895 // predicated block. We will scale this cost by block probability after 6896 // computing the scalarization overhead. 6897 InstructionCost ScalarCost = 6898 VF.getFixedValue() * 6899 getInstructionCost(I, ElementCount::getFixed(1)).first; 6900 6901 // Compute the scalarization overhead of needed insertelement instructions 6902 // and phi nodes. 6903 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6904 ScalarCost += TTI.getScalarizationOverhead( 6905 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6906 APInt::getAllOnes(VF.getFixedValue()), true, false); 6907 ScalarCost += 6908 VF.getFixedValue() * 6909 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6910 } 6911 6912 // Compute the scalarization overhead of needed extractelement 6913 // instructions. For each of the instruction's operands, if the operand can 6914 // be scalarized, add it to the worklist; otherwise, account for the 6915 // overhead. 6916 for (Use &U : I->operands()) 6917 if (auto *J = dyn_cast<Instruction>(U.get())) { 6918 assert(VectorType::isValidElementType(J->getType()) && 6919 "Instruction has non-scalar type"); 6920 if (canBeScalarized(J)) 6921 Worklist.push_back(J); 6922 else if (needsExtract(J, VF)) { 6923 ScalarCost += TTI.getScalarizationOverhead( 6924 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6925 APInt::getAllOnes(VF.getFixedValue()), false, true); 6926 } 6927 } 6928 6929 // Scale the total scalar cost by block probability. 6930 ScalarCost /= getReciprocalPredBlockProb(); 6931 6932 // Compute the discount. A non-negative discount means the vector version 6933 // of the instruction costs more, and scalarizing would be beneficial. 6934 Discount += VectorCost - ScalarCost; 6935 ScalarCosts[I] = ScalarCost; 6936 } 6937 6938 return *Discount.getValue(); 6939 } 6940 6941 LoopVectorizationCostModel::VectorizationCostTy 6942 LoopVectorizationCostModel::expectedCost( 6943 ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { 6944 VectorizationCostTy Cost; 6945 6946 // For each block. 6947 for (BasicBlock *BB : TheLoop->blocks()) { 6948 VectorizationCostTy BlockCost; 6949 6950 // For each instruction in the old loop. 6951 for (Instruction &I : BB->instructionsWithoutDebug()) { 6952 // Skip ignored values. 6953 if (ValuesToIgnore.count(&I) || 6954 (VF.isVector() && VecValuesToIgnore.count(&I))) 6955 continue; 6956 6957 VectorizationCostTy C = getInstructionCost(&I, VF); 6958 6959 // Check if we should override the cost. 6960 if (C.first.isValid() && 6961 ForceTargetInstructionCost.getNumOccurrences() > 0) 6962 C.first = InstructionCost(ForceTargetInstructionCost); 6963 6964 // Keep a list of instructions with invalid costs. 6965 if (Invalid && !C.first.isValid()) 6966 Invalid->emplace_back(&I, VF); 6967 6968 BlockCost.first += C.first; 6969 BlockCost.second |= C.second; 6970 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6971 << " for VF " << VF << " For instruction: " << I 6972 << '\n'); 6973 } 6974 6975 // If we are vectorizing a predicated block, it will have been 6976 // if-converted. This means that the block's instructions (aside from 6977 // stores and instructions that may divide by zero) will now be 6978 // unconditionally executed. For the scalar case, we may not always execute 6979 // the predicated block, if it is an if-else block. Thus, scale the block's 6980 // cost by the probability of executing it. blockNeedsPredication from 6981 // Legal is used so as to not include all blocks in tail folded loops. 6982 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6983 BlockCost.first /= getReciprocalPredBlockProb(); 6984 6985 Cost.first += BlockCost.first; 6986 Cost.second |= BlockCost.second; 6987 } 6988 6989 return Cost; 6990 } 6991 6992 /// Gets Address Access SCEV after verifying that the access pattern 6993 /// is loop invariant except the induction variable dependence. 6994 /// 6995 /// This SCEV can be sent to the Target in order to estimate the address 6996 /// calculation cost. 6997 static const SCEV *getAddressAccessSCEV( 6998 Value *Ptr, 6999 LoopVectorizationLegality *Legal, 7000 PredicatedScalarEvolution &PSE, 7001 const Loop *TheLoop) { 7002 7003 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 7004 if (!Gep) 7005 return nullptr; 7006 7007 // We are looking for a gep with all loop invariant indices except for one 7008 // which should be an induction variable. 7009 auto SE = PSE.getSE(); 7010 unsigned NumOperands = Gep->getNumOperands(); 7011 for (unsigned i = 1; i < NumOperands; ++i) { 7012 Value *Opd = Gep->getOperand(i); 7013 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 7014 !Legal->isInductionVariable(Opd)) 7015 return nullptr; 7016 } 7017 7018 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 7019 return PSE.getSCEV(Ptr); 7020 } 7021 7022 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 7023 return Legal->hasStride(I->getOperand(0)) || 7024 Legal->hasStride(I->getOperand(1)); 7025 } 7026 7027 InstructionCost 7028 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 7029 ElementCount VF) { 7030 assert(VF.isVector() && 7031 "Scalarization cost of instruction implies vectorization."); 7032 if (VF.isScalable()) 7033 return InstructionCost::getInvalid(); 7034 7035 Type *ValTy = getLoadStoreType(I); 7036 auto SE = PSE.getSE(); 7037 7038 unsigned AS = getLoadStoreAddressSpace(I); 7039 Value *Ptr = getLoadStorePointerOperand(I); 7040 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 7041 7042 // Figure out whether the access is strided and get the stride value 7043 // if it's known in compile time 7044 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 7045 7046 // Get the cost of the scalar memory instruction and address computation. 7047 InstructionCost Cost = 7048 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 7049 7050 // Don't pass *I here, since it is scalar but will actually be part of a 7051 // vectorized loop where the user of it is a vectorized instruction. 7052 const Align Alignment = getLoadStoreAlignment(I); 7053 Cost += VF.getKnownMinValue() * 7054 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 7055 AS, TTI::TCK_RecipThroughput); 7056 7057 // Get the overhead of the extractelement and insertelement instructions 7058 // we might create due to scalarization. 7059 Cost += getScalarizationOverhead(I, VF); 7060 7061 // If we have a predicated load/store, it will need extra i1 extracts and 7062 // conditional branches, but may not be executed for each vector lane. Scale 7063 // the cost by the probability of executing the predicated block. 7064 if (isPredicatedInst(I)) { 7065 Cost /= getReciprocalPredBlockProb(); 7066 7067 // Add the cost of an i1 extract and a branch 7068 auto *Vec_i1Ty = 7069 VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); 7070 Cost += TTI.getScalarizationOverhead( 7071 Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), 7072 /*Insert=*/false, /*Extract=*/true); 7073 Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 7074 7075 if (useEmulatedMaskMemRefHack(I)) 7076 // Artificially setting to a high enough value to practically disable 7077 // vectorization with such operations. 7078 Cost = 3000000; 7079 } 7080 7081 return Cost; 7082 } 7083 7084 InstructionCost 7085 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 7086 ElementCount VF) { 7087 Type *ValTy = getLoadStoreType(I); 7088 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7089 Value *Ptr = getLoadStorePointerOperand(I); 7090 unsigned AS = getLoadStoreAddressSpace(I); 7091 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 7092 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7093 7094 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7095 "Stride should be 1 or -1 for consecutive memory access"); 7096 const Align Alignment = getLoadStoreAlignment(I); 7097 InstructionCost Cost = 0; 7098 if (Legal->isMaskRequired(I)) 7099 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7100 CostKind); 7101 else 7102 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 7103 CostKind, I); 7104 7105 bool Reverse = ConsecutiveStride < 0; 7106 if (Reverse) 7107 Cost += 7108 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7109 return Cost; 7110 } 7111 7112 InstructionCost 7113 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 7114 ElementCount VF) { 7115 assert(Legal->isUniformMemOp(*I)); 7116 7117 Type *ValTy = getLoadStoreType(I); 7118 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7119 const Align Alignment = getLoadStoreAlignment(I); 7120 unsigned AS = getLoadStoreAddressSpace(I); 7121 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7122 if (isa<LoadInst>(I)) { 7123 return TTI.getAddressComputationCost(ValTy) + 7124 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 7125 CostKind) + 7126 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 7127 } 7128 StoreInst *SI = cast<StoreInst>(I); 7129 7130 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 7131 return TTI.getAddressComputationCost(ValTy) + 7132 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 7133 CostKind) + 7134 (isLoopInvariantStoreValue 7135 ? 0 7136 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 7137 VF.getKnownMinValue() - 1)); 7138 } 7139 7140 InstructionCost 7141 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 7142 ElementCount VF) { 7143 Type *ValTy = getLoadStoreType(I); 7144 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7145 const Align Alignment = getLoadStoreAlignment(I); 7146 const Value *Ptr = getLoadStorePointerOperand(I); 7147 7148 return TTI.getAddressComputationCost(VectorTy) + 7149 TTI.getGatherScatterOpCost( 7150 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 7151 TargetTransformInfo::TCK_RecipThroughput, I); 7152 } 7153 7154 InstructionCost 7155 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 7156 ElementCount VF) { 7157 // TODO: Once we have support for interleaving with scalable vectors 7158 // we can calculate the cost properly here. 7159 if (VF.isScalable()) 7160 return InstructionCost::getInvalid(); 7161 7162 Type *ValTy = getLoadStoreType(I); 7163 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 7164 unsigned AS = getLoadStoreAddressSpace(I); 7165 7166 auto Group = getInterleavedAccessGroup(I); 7167 assert(Group && "Fail to get an interleaved access group."); 7168 7169 unsigned InterleaveFactor = Group->getFactor(); 7170 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 7171 7172 // Holds the indices of existing members in the interleaved group. 7173 SmallVector<unsigned, 4> Indices; 7174 for (unsigned IF = 0; IF < InterleaveFactor; IF++) 7175 if (Group->getMember(IF)) 7176 Indices.push_back(IF); 7177 7178 // Calculate the cost of the whole interleaved group. 7179 bool UseMaskForGaps = 7180 (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || 7181 (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); 7182 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 7183 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 7184 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 7185 7186 if (Group->isReverse()) { 7187 // TODO: Add support for reversed masked interleaved access. 7188 assert(!Legal->isMaskRequired(I) && 7189 "Reverse masked interleaved access not supported."); 7190 Cost += 7191 Group->getNumMembers() * 7192 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0); 7193 } 7194 return Cost; 7195 } 7196 7197 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost( 7198 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 7199 using namespace llvm::PatternMatch; 7200 // Early exit for no inloop reductions 7201 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 7202 return None; 7203 auto *VectorTy = cast<VectorType>(Ty); 7204 7205 // We are looking for a pattern of, and finding the minimal acceptable cost: 7206 // reduce(mul(ext(A), ext(B))) or 7207 // reduce(mul(A, B)) or 7208 // reduce(ext(A)) or 7209 // reduce(A). 7210 // The basic idea is that we walk down the tree to do that, finding the root 7211 // reduction instruction in InLoopReductionImmediateChains. From there we find 7212 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 7213 // of the components. If the reduction cost is lower then we return it for the 7214 // reduction instruction and 0 for the other instructions in the pattern. If 7215 // it is not we return an invalid cost specifying the orignal cost method 7216 // should be used. 7217 Instruction *RetI = I; 7218 if (match(RetI, m_ZExtOrSExt(m_Value()))) { 7219 if (!RetI->hasOneUser()) 7220 return None; 7221 RetI = RetI->user_back(); 7222 } 7223 if (match(RetI, m_Mul(m_Value(), m_Value())) && 7224 RetI->user_back()->getOpcode() == Instruction::Add) { 7225 if (!RetI->hasOneUser()) 7226 return None; 7227 RetI = RetI->user_back(); 7228 } 7229 7230 // Test if the found instruction is a reduction, and if not return an invalid 7231 // cost specifying the parent to use the original cost modelling. 7232 if (!InLoopReductionImmediateChains.count(RetI)) 7233 return None; 7234 7235 // Find the reduction this chain is a part of and calculate the basic cost of 7236 // the reduction on its own. 7237 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 7238 Instruction *ReductionPhi = LastChain; 7239 while (!isa<PHINode>(ReductionPhi)) 7240 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 7241 7242 const RecurrenceDescriptor &RdxDesc = 7243 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 7244 7245 InstructionCost BaseCost = TTI.getArithmeticReductionCost( 7246 RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); 7247 7248 // If we're using ordered reductions then we can just return the base cost 7249 // here, since getArithmeticReductionCost calculates the full ordered 7250 // reduction cost when FP reassociation is not allowed. 7251 if (useOrderedReductions(RdxDesc)) 7252 return BaseCost; 7253 7254 // Get the operand that was not the reduction chain and match it to one of the 7255 // patterns, returning the better cost if it is found. 7256 Instruction *RedOp = RetI->getOperand(1) == LastChain 7257 ? dyn_cast<Instruction>(RetI->getOperand(0)) 7258 : dyn_cast<Instruction>(RetI->getOperand(1)); 7259 7260 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 7261 7262 Instruction *Op0, *Op1; 7263 if (RedOp && 7264 match(RedOp, 7265 m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && 7266 match(Op0, m_ZExtOrSExt(m_Value())) && 7267 Op0->getOpcode() == Op1->getOpcode() && 7268 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7269 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && 7270 (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { 7271 7272 // Matched reduce(ext(mul(ext(A), ext(B))) 7273 // Note that the extend opcodes need to all match, or if A==B they will have 7274 // been converted to zext(mul(sext(A), sext(A))) as it is known positive, 7275 // which is equally fine. 7276 bool IsUnsigned = isa<ZExtInst>(Op0); 7277 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7278 auto *MulType = VectorType::get(Op0->getType(), VectorTy); 7279 7280 InstructionCost ExtCost = 7281 TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, 7282 TTI::CastContextHint::None, CostKind, Op0); 7283 InstructionCost MulCost = 7284 TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); 7285 InstructionCost Ext2Cost = 7286 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, 7287 TTI::CastContextHint::None, CostKind, RedOp); 7288 7289 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7290 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7291 CostKind); 7292 7293 if (RedCost.isValid() && 7294 RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) 7295 return I == RetI ? RedCost : 0; 7296 } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && 7297 !TheLoop->isLoopInvariant(RedOp)) { 7298 // Matched reduce(ext(A)) 7299 bool IsUnsigned = isa<ZExtInst>(RedOp); 7300 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 7301 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7302 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7303 CostKind); 7304 7305 InstructionCost ExtCost = 7306 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 7307 TTI::CastContextHint::None, CostKind, RedOp); 7308 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 7309 return I == RetI ? RedCost : 0; 7310 } else if (RedOp && 7311 match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { 7312 if (match(Op0, m_ZExtOrSExt(m_Value())) && 7313 Op0->getOpcode() == Op1->getOpcode() && 7314 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 7315 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 7316 bool IsUnsigned = isa<ZExtInst>(Op0); 7317 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 7318 // Matched reduce(mul(ext, ext)) 7319 InstructionCost ExtCost = 7320 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 7321 TTI::CastContextHint::None, CostKind, Op0); 7322 InstructionCost MulCost = 7323 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7324 7325 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7326 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 7327 CostKind); 7328 7329 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 7330 return I == RetI ? RedCost : 0; 7331 } else if (!match(I, m_ZExtOrSExt(m_Value()))) { 7332 // Matched reduce(mul()) 7333 InstructionCost MulCost = 7334 TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7335 7336 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7337 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7338 CostKind); 7339 7340 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7341 return I == RetI ? RedCost : 0; 7342 } 7343 } 7344 7345 return I == RetI ? Optional<InstructionCost>(BaseCost) : None; 7346 } 7347 7348 InstructionCost 7349 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7350 ElementCount VF) { 7351 // Calculate scalar cost only. Vectorization cost should be ready at this 7352 // moment. 7353 if (VF.isScalar()) { 7354 Type *ValTy = getLoadStoreType(I); 7355 const Align Alignment = getLoadStoreAlignment(I); 7356 unsigned AS = getLoadStoreAddressSpace(I); 7357 7358 return TTI.getAddressComputationCost(ValTy) + 7359 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7360 TTI::TCK_RecipThroughput, I); 7361 } 7362 return getWideningCost(I, VF); 7363 } 7364 7365 LoopVectorizationCostModel::VectorizationCostTy 7366 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7367 ElementCount VF) { 7368 // If we know that this instruction will remain uniform, check the cost of 7369 // the scalar version. 7370 if (isUniformAfterVectorization(I, VF)) 7371 VF = ElementCount::getFixed(1); 7372 7373 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7374 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7375 7376 // Forced scalars do not have any scalarization overhead. 7377 auto ForcedScalar = ForcedScalars.find(VF); 7378 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7379 auto InstSet = ForcedScalar->second; 7380 if (InstSet.count(I)) 7381 return VectorizationCostTy( 7382 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7383 VF.getKnownMinValue()), 7384 false); 7385 } 7386 7387 Type *VectorTy; 7388 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7389 7390 bool TypeNotScalarized = 7391 VF.isVector() && VectorTy->isVectorTy() && 7392 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7393 return VectorizationCostTy(C, TypeNotScalarized); 7394 } 7395 7396 InstructionCost 7397 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7398 ElementCount VF) const { 7399 7400 // There is no mechanism yet to create a scalable scalarization loop, 7401 // so this is currently Invalid. 7402 if (VF.isScalable()) 7403 return InstructionCost::getInvalid(); 7404 7405 if (VF.isScalar()) 7406 return 0; 7407 7408 InstructionCost Cost = 0; 7409 Type *RetTy = ToVectorTy(I->getType(), VF); 7410 if (!RetTy->isVoidTy() && 7411 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7412 Cost += TTI.getScalarizationOverhead( 7413 cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true, 7414 false); 7415 7416 // Some targets keep addresses scalar. 7417 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7418 return Cost; 7419 7420 // Some targets support efficient element stores. 7421 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7422 return Cost; 7423 7424 // Collect operands to consider. 7425 CallInst *CI = dyn_cast<CallInst>(I); 7426 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7427 7428 // Skip operands that do not require extraction/scalarization and do not incur 7429 // any overhead. 7430 SmallVector<Type *> Tys; 7431 for (auto *V : filterExtractingOperands(Ops, VF)) 7432 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7433 return Cost + TTI.getOperandsScalarizationOverhead( 7434 filterExtractingOperands(Ops, VF), Tys); 7435 } 7436 7437 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7438 if (VF.isScalar()) 7439 return; 7440 NumPredStores = 0; 7441 for (BasicBlock *BB : TheLoop->blocks()) { 7442 // For each instruction in the old loop. 7443 for (Instruction &I : *BB) { 7444 Value *Ptr = getLoadStorePointerOperand(&I); 7445 if (!Ptr) 7446 continue; 7447 7448 // TODO: We should generate better code and update the cost model for 7449 // predicated uniform stores. Today they are treated as any other 7450 // predicated store (see added test cases in 7451 // invariant-store-vectorization.ll). 7452 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7453 NumPredStores++; 7454 7455 if (Legal->isUniformMemOp(I)) { 7456 // TODO: Avoid replicating loads and stores instead of 7457 // relying on instcombine to remove them. 7458 // Load: Scalar load + broadcast 7459 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7460 InstructionCost Cost; 7461 if (isa<StoreInst>(&I) && VF.isScalable() && 7462 isLegalGatherOrScatter(&I)) { 7463 Cost = getGatherScatterCost(&I, VF); 7464 setWideningDecision(&I, VF, CM_GatherScatter, Cost); 7465 } else { 7466 assert((isa<LoadInst>(&I) || !VF.isScalable()) && 7467 "Cannot yet scalarize uniform stores"); 7468 Cost = getUniformMemOpCost(&I, VF); 7469 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7470 } 7471 continue; 7472 } 7473 7474 // We assume that widening is the best solution when possible. 7475 if (memoryInstructionCanBeWidened(&I, VF)) { 7476 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7477 int ConsecutiveStride = 7478 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7479 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7480 "Expected consecutive stride."); 7481 InstWidening Decision = 7482 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7483 setWideningDecision(&I, VF, Decision, Cost); 7484 continue; 7485 } 7486 7487 // Choose between Interleaving, Gather/Scatter or Scalarization. 7488 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7489 unsigned NumAccesses = 1; 7490 if (isAccessInterleaved(&I)) { 7491 auto Group = getInterleavedAccessGroup(&I); 7492 assert(Group && "Fail to get an interleaved access group."); 7493 7494 // Make one decision for the whole group. 7495 if (getWideningDecision(&I, VF) != CM_Unknown) 7496 continue; 7497 7498 NumAccesses = Group->getNumMembers(); 7499 if (interleavedAccessCanBeWidened(&I, VF)) 7500 InterleaveCost = getInterleaveGroupCost(&I, VF); 7501 } 7502 7503 InstructionCost GatherScatterCost = 7504 isLegalGatherOrScatter(&I) 7505 ? getGatherScatterCost(&I, VF) * NumAccesses 7506 : InstructionCost::getInvalid(); 7507 7508 InstructionCost ScalarizationCost = 7509 getMemInstScalarizationCost(&I, VF) * NumAccesses; 7510 7511 // Choose better solution for the current VF, 7512 // write down this decision and use it during vectorization. 7513 InstructionCost Cost; 7514 InstWidening Decision; 7515 if (InterleaveCost <= GatherScatterCost && 7516 InterleaveCost < ScalarizationCost) { 7517 Decision = CM_Interleave; 7518 Cost = InterleaveCost; 7519 } else if (GatherScatterCost < ScalarizationCost) { 7520 Decision = CM_GatherScatter; 7521 Cost = GatherScatterCost; 7522 } else { 7523 Decision = CM_Scalarize; 7524 Cost = ScalarizationCost; 7525 } 7526 // If the instructions belongs to an interleave group, the whole group 7527 // receives the same decision. The whole group receives the cost, but 7528 // the cost will actually be assigned to one instruction. 7529 if (auto Group = getInterleavedAccessGroup(&I)) 7530 setWideningDecision(Group, VF, Decision, Cost); 7531 else 7532 setWideningDecision(&I, VF, Decision, Cost); 7533 } 7534 } 7535 7536 // Make sure that any load of address and any other address computation 7537 // remains scalar unless there is gather/scatter support. This avoids 7538 // inevitable extracts into address registers, and also has the benefit of 7539 // activating LSR more, since that pass can't optimize vectorized 7540 // addresses. 7541 if (TTI.prefersVectorizedAddressing()) 7542 return; 7543 7544 // Start with all scalar pointer uses. 7545 SmallPtrSet<Instruction *, 8> AddrDefs; 7546 for (BasicBlock *BB : TheLoop->blocks()) 7547 for (Instruction &I : *BB) { 7548 Instruction *PtrDef = 7549 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7550 if (PtrDef && TheLoop->contains(PtrDef) && 7551 getWideningDecision(&I, VF) != CM_GatherScatter) 7552 AddrDefs.insert(PtrDef); 7553 } 7554 7555 // Add all instructions used to generate the addresses. 7556 SmallVector<Instruction *, 4> Worklist; 7557 append_range(Worklist, AddrDefs); 7558 while (!Worklist.empty()) { 7559 Instruction *I = Worklist.pop_back_val(); 7560 for (auto &Op : I->operands()) 7561 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7562 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7563 AddrDefs.insert(InstOp).second) 7564 Worklist.push_back(InstOp); 7565 } 7566 7567 for (auto *I : AddrDefs) { 7568 if (isa<LoadInst>(I)) { 7569 // Setting the desired widening decision should ideally be handled in 7570 // by cost functions, but since this involves the task of finding out 7571 // if the loaded register is involved in an address computation, it is 7572 // instead changed here when we know this is the case. 7573 InstWidening Decision = getWideningDecision(I, VF); 7574 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7575 // Scalarize a widened load of address. 7576 setWideningDecision( 7577 I, VF, CM_Scalarize, 7578 (VF.getKnownMinValue() * 7579 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7580 else if (auto Group = getInterleavedAccessGroup(I)) { 7581 // Scalarize an interleave group of address loads. 7582 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7583 if (Instruction *Member = Group->getMember(I)) 7584 setWideningDecision( 7585 Member, VF, CM_Scalarize, 7586 (VF.getKnownMinValue() * 7587 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7588 } 7589 } 7590 } else 7591 // Make sure I gets scalarized and a cost estimate without 7592 // scalarization overhead. 7593 ForcedScalars[VF].insert(I); 7594 } 7595 } 7596 7597 InstructionCost 7598 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7599 Type *&VectorTy) { 7600 Type *RetTy = I->getType(); 7601 if (canTruncateToMinimalBitwidth(I, VF)) 7602 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7603 auto SE = PSE.getSE(); 7604 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7605 7606 auto hasSingleCopyAfterVectorization = [this](Instruction *I, 7607 ElementCount VF) -> bool { 7608 if (VF.isScalar()) 7609 return true; 7610 7611 auto Scalarized = InstsToScalarize.find(VF); 7612 assert(Scalarized != InstsToScalarize.end() && 7613 "VF not yet analyzed for scalarization profitability"); 7614 return !Scalarized->second.count(I) && 7615 llvm::all_of(I->users(), [&](User *U) { 7616 auto *UI = cast<Instruction>(U); 7617 return !Scalarized->second.count(UI); 7618 }); 7619 }; 7620 (void) hasSingleCopyAfterVectorization; 7621 7622 if (isScalarAfterVectorization(I, VF)) { 7623 // With the exception of GEPs and PHIs, after scalarization there should 7624 // only be one copy of the instruction generated in the loop. This is 7625 // because the VF is either 1, or any instructions that need scalarizing 7626 // have already been dealt with by the the time we get here. As a result, 7627 // it means we don't have to multiply the instruction cost by VF. 7628 assert(I->getOpcode() == Instruction::GetElementPtr || 7629 I->getOpcode() == Instruction::PHI || 7630 (I->getOpcode() == Instruction::BitCast && 7631 I->getType()->isPointerTy()) || 7632 hasSingleCopyAfterVectorization(I, VF)); 7633 VectorTy = RetTy; 7634 } else 7635 VectorTy = ToVectorTy(RetTy, VF); 7636 7637 // TODO: We need to estimate the cost of intrinsic calls. 7638 switch (I->getOpcode()) { 7639 case Instruction::GetElementPtr: 7640 // We mark this instruction as zero-cost because the cost of GEPs in 7641 // vectorized code depends on whether the corresponding memory instruction 7642 // is scalarized or not. Therefore, we handle GEPs with the memory 7643 // instruction cost. 7644 return 0; 7645 case Instruction::Br: { 7646 // In cases of scalarized and predicated instructions, there will be VF 7647 // predicated blocks in the vectorized loop. Each branch around these 7648 // blocks requires also an extract of its vector compare i1 element. 7649 bool ScalarPredicatedBB = false; 7650 BranchInst *BI = cast<BranchInst>(I); 7651 if (VF.isVector() && BI->isConditional() && 7652 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7653 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7654 ScalarPredicatedBB = true; 7655 7656 if (ScalarPredicatedBB) { 7657 // Not possible to scalarize scalable vector with predicated instructions. 7658 if (VF.isScalable()) 7659 return InstructionCost::getInvalid(); 7660 // Return cost for branches around scalarized and predicated blocks. 7661 auto *Vec_i1Ty = 7662 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7663 return ( 7664 TTI.getScalarizationOverhead( 7665 Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) + 7666 (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); 7667 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7668 // The back-edge branch will remain, as will all scalar branches. 7669 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7670 else 7671 // This branch will be eliminated by if-conversion. 7672 return 0; 7673 // Note: We currently assume zero cost for an unconditional branch inside 7674 // a predicated block since it will become a fall-through, although we 7675 // may decide in the future to call TTI for all branches. 7676 } 7677 case Instruction::PHI: { 7678 auto *Phi = cast<PHINode>(I); 7679 7680 // First-order recurrences are replaced by vector shuffles inside the loop. 7681 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7682 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7683 return TTI.getShuffleCost( 7684 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7685 None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7686 7687 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7688 // converted into select instructions. We require N - 1 selects per phi 7689 // node, where N is the number of incoming values. 7690 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7691 return (Phi->getNumIncomingValues() - 1) * 7692 TTI.getCmpSelInstrCost( 7693 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7694 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7695 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7696 7697 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7698 } 7699 case Instruction::UDiv: 7700 case Instruction::SDiv: 7701 case Instruction::URem: 7702 case Instruction::SRem: 7703 // If we have a predicated instruction, it may not be executed for each 7704 // vector lane. Get the scalarization cost and scale this amount by the 7705 // probability of executing the predicated block. If the instruction is not 7706 // predicated, we fall through to the next case. 7707 if (VF.isVector() && isScalarWithPredication(I)) { 7708 InstructionCost Cost = 0; 7709 7710 // These instructions have a non-void type, so account for the phi nodes 7711 // that we will create. This cost is likely to be zero. The phi node 7712 // cost, if any, should be scaled by the block probability because it 7713 // models a copy at the end of each predicated block. 7714 Cost += VF.getKnownMinValue() * 7715 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7716 7717 // The cost of the non-predicated instruction. 7718 Cost += VF.getKnownMinValue() * 7719 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7720 7721 // The cost of insertelement and extractelement instructions needed for 7722 // scalarization. 7723 Cost += getScalarizationOverhead(I, VF); 7724 7725 // Scale the cost by the probability of executing the predicated blocks. 7726 // This assumes the predicated block for each vector lane is equally 7727 // likely. 7728 return Cost / getReciprocalPredBlockProb(); 7729 } 7730 LLVM_FALLTHROUGH; 7731 case Instruction::Add: 7732 case Instruction::FAdd: 7733 case Instruction::Sub: 7734 case Instruction::FSub: 7735 case Instruction::Mul: 7736 case Instruction::FMul: 7737 case Instruction::FDiv: 7738 case Instruction::FRem: 7739 case Instruction::Shl: 7740 case Instruction::LShr: 7741 case Instruction::AShr: 7742 case Instruction::And: 7743 case Instruction::Or: 7744 case Instruction::Xor: { 7745 // Since we will replace the stride by 1 the multiplication should go away. 7746 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7747 return 0; 7748 7749 // Detect reduction patterns 7750 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7751 return *RedCost; 7752 7753 // Certain instructions can be cheaper to vectorize if they have a constant 7754 // second vector operand. One example of this are shifts on x86. 7755 Value *Op2 = I->getOperand(1); 7756 TargetTransformInfo::OperandValueProperties Op2VP; 7757 TargetTransformInfo::OperandValueKind Op2VK = 7758 TTI.getOperandInfo(Op2, Op2VP); 7759 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7760 Op2VK = TargetTransformInfo::OK_UniformValue; 7761 7762 SmallVector<const Value *, 4> Operands(I->operand_values()); 7763 return TTI.getArithmeticInstrCost( 7764 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7765 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7766 } 7767 case Instruction::FNeg: { 7768 return TTI.getArithmeticInstrCost( 7769 I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue, 7770 TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None, 7771 TargetTransformInfo::OP_None, I->getOperand(0), I); 7772 } 7773 case Instruction::Select: { 7774 SelectInst *SI = cast<SelectInst>(I); 7775 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7776 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7777 7778 const Value *Op0, *Op1; 7779 using namespace llvm::PatternMatch; 7780 if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || 7781 match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { 7782 // select x, y, false --> x & y 7783 // select x, true, y --> x | y 7784 TTI::OperandValueProperties Op1VP = TTI::OP_None; 7785 TTI::OperandValueProperties Op2VP = TTI::OP_None; 7786 TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP); 7787 TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP); 7788 assert(Op0->getType()->getScalarSizeInBits() == 1 && 7789 Op1->getType()->getScalarSizeInBits() == 1); 7790 7791 SmallVector<const Value *, 2> Operands{Op0, Op1}; 7792 return TTI.getArithmeticInstrCost( 7793 match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, 7794 CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); 7795 } 7796 7797 Type *CondTy = SI->getCondition()->getType(); 7798 if (!ScalarCond) 7799 CondTy = VectorType::get(CondTy, VF); 7800 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7801 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7802 } 7803 case Instruction::ICmp: 7804 case Instruction::FCmp: { 7805 Type *ValTy = I->getOperand(0)->getType(); 7806 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7807 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7808 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7809 VectorTy = ToVectorTy(ValTy, VF); 7810 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7811 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7812 } 7813 case Instruction::Store: 7814 case Instruction::Load: { 7815 ElementCount Width = VF; 7816 if (Width.isVector()) { 7817 InstWidening Decision = getWideningDecision(I, Width); 7818 assert(Decision != CM_Unknown && 7819 "CM decision should be taken at this point"); 7820 if (Decision == CM_Scalarize) 7821 Width = ElementCount::getFixed(1); 7822 } 7823 VectorTy = ToVectorTy(getLoadStoreType(I), Width); 7824 return getMemoryInstructionCost(I, VF); 7825 } 7826 case Instruction::BitCast: 7827 if (I->getType()->isPointerTy()) 7828 return 0; 7829 LLVM_FALLTHROUGH; 7830 case Instruction::ZExt: 7831 case Instruction::SExt: 7832 case Instruction::FPToUI: 7833 case Instruction::FPToSI: 7834 case Instruction::FPExt: 7835 case Instruction::PtrToInt: 7836 case Instruction::IntToPtr: 7837 case Instruction::SIToFP: 7838 case Instruction::UIToFP: 7839 case Instruction::Trunc: 7840 case Instruction::FPTrunc: { 7841 // Computes the CastContextHint from a Load/Store instruction. 7842 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7843 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7844 "Expected a load or a store!"); 7845 7846 if (VF.isScalar() || !TheLoop->contains(I)) 7847 return TTI::CastContextHint::Normal; 7848 7849 switch (getWideningDecision(I, VF)) { 7850 case LoopVectorizationCostModel::CM_GatherScatter: 7851 return TTI::CastContextHint::GatherScatter; 7852 case LoopVectorizationCostModel::CM_Interleave: 7853 return TTI::CastContextHint::Interleave; 7854 case LoopVectorizationCostModel::CM_Scalarize: 7855 case LoopVectorizationCostModel::CM_Widen: 7856 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7857 : TTI::CastContextHint::Normal; 7858 case LoopVectorizationCostModel::CM_Widen_Reverse: 7859 return TTI::CastContextHint::Reversed; 7860 case LoopVectorizationCostModel::CM_Unknown: 7861 llvm_unreachable("Instr did not go through cost modelling?"); 7862 } 7863 7864 llvm_unreachable("Unhandled case!"); 7865 }; 7866 7867 unsigned Opcode = I->getOpcode(); 7868 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7869 // For Trunc, the context is the only user, which must be a StoreInst. 7870 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7871 if (I->hasOneUse()) 7872 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7873 CCH = ComputeCCH(Store); 7874 } 7875 // For Z/Sext, the context is the operand, which must be a LoadInst. 7876 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7877 Opcode == Instruction::FPExt) { 7878 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7879 CCH = ComputeCCH(Load); 7880 } 7881 7882 // We optimize the truncation of induction variables having constant 7883 // integer steps. The cost of these truncations is the same as the scalar 7884 // operation. 7885 if (isOptimizableIVTruncate(I, VF)) { 7886 auto *Trunc = cast<TruncInst>(I); 7887 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7888 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7889 } 7890 7891 // Detect reduction patterns 7892 if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7893 return *RedCost; 7894 7895 Type *SrcScalarTy = I->getOperand(0)->getType(); 7896 Type *SrcVecTy = 7897 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7898 if (canTruncateToMinimalBitwidth(I, VF)) { 7899 // This cast is going to be shrunk. This may remove the cast or it might 7900 // turn it into slightly different cast. For example, if MinBW == 16, 7901 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7902 // 7903 // Calculate the modified src and dest types. 7904 Type *MinVecTy = VectorTy; 7905 if (Opcode == Instruction::Trunc) { 7906 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7907 VectorTy = 7908 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7909 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7910 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7911 VectorTy = 7912 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7913 } 7914 } 7915 7916 return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7917 } 7918 case Instruction::Call: { 7919 bool NeedToScalarize; 7920 CallInst *CI = cast<CallInst>(I); 7921 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7922 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7923 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7924 return std::min(CallCost, IntrinsicCost); 7925 } 7926 return CallCost; 7927 } 7928 case Instruction::ExtractValue: 7929 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7930 case Instruction::Alloca: 7931 // We cannot easily widen alloca to a scalable alloca, as 7932 // the result would need to be a vector of pointers. 7933 if (VF.isScalable()) 7934 return InstructionCost::getInvalid(); 7935 LLVM_FALLTHROUGH; 7936 default: 7937 // This opcode is unknown. Assume that it is the same as 'mul'. 7938 return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); 7939 } // end of switch. 7940 } 7941 7942 char LoopVectorize::ID = 0; 7943 7944 static const char lv_name[] = "Loop Vectorization"; 7945 7946 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7947 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7948 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7949 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7950 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7951 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7952 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7953 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7954 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7955 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7956 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7957 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7958 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7959 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7960 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7961 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7962 7963 namespace llvm { 7964 7965 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7966 7967 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7968 bool VectorizeOnlyWhenForced) { 7969 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7970 } 7971 7972 } // end namespace llvm 7973 7974 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7975 // Check if the pointer operand of a load or store instruction is 7976 // consecutive. 7977 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7978 return Legal->isConsecutivePtr(Ptr); 7979 return false; 7980 } 7981 7982 void LoopVectorizationCostModel::collectValuesToIgnore() { 7983 // Ignore ephemeral values. 7984 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7985 7986 // Ignore type-promoting instructions we identified during reduction 7987 // detection. 7988 for (auto &Reduction : Legal->getReductionVars()) { 7989 RecurrenceDescriptor &RedDes = Reduction.second; 7990 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7991 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7992 } 7993 // Ignore type-casting instructions we identified during induction 7994 // detection. 7995 for (auto &Induction : Legal->getInductionVars()) { 7996 InductionDescriptor &IndDes = Induction.second; 7997 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7998 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7999 } 8000 } 8001 8002 void LoopVectorizationCostModel::collectInLoopReductions() { 8003 for (auto &Reduction : Legal->getReductionVars()) { 8004 PHINode *Phi = Reduction.first; 8005 RecurrenceDescriptor &RdxDesc = Reduction.second; 8006 8007 // We don't collect reductions that are type promoted (yet). 8008 if (RdxDesc.getRecurrenceType() != Phi->getType()) 8009 continue; 8010 8011 // If the target would prefer this reduction to happen "in-loop", then we 8012 // want to record it as such. 8013 unsigned Opcode = RdxDesc.getOpcode(); 8014 if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && 8015 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 8016 TargetTransformInfo::ReductionFlags())) 8017 continue; 8018 8019 // Check that we can correctly put the reductions into the loop, by 8020 // finding the chain of operations that leads from the phi to the loop 8021 // exit value. 8022 SmallVector<Instruction *, 4> ReductionOperations = 8023 RdxDesc.getReductionOpChain(Phi, TheLoop); 8024 bool InLoop = !ReductionOperations.empty(); 8025 if (InLoop) { 8026 InLoopReductionChains[Phi] = ReductionOperations; 8027 // Add the elements to InLoopReductionImmediateChains for cost modelling. 8028 Instruction *LastChain = Phi; 8029 for (auto *I : ReductionOperations) { 8030 InLoopReductionImmediateChains[I] = LastChain; 8031 LastChain = I; 8032 } 8033 } 8034 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 8035 << " reduction for phi: " << *Phi << "\n"); 8036 } 8037 } 8038 8039 // TODO: we could return a pair of values that specify the max VF and 8040 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 8041 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 8042 // doesn't have a cost model that can choose which plan to execute if 8043 // more than one is generated. 8044 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 8045 LoopVectorizationCostModel &CM) { 8046 unsigned WidestType; 8047 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 8048 return WidestVectorRegBits / WidestType; 8049 } 8050 8051 VectorizationFactor 8052 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 8053 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 8054 ElementCount VF = UserVF; 8055 // Outer loop handling: They may require CFG and instruction level 8056 // transformations before even evaluating whether vectorization is profitable. 8057 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8058 // the vectorization pipeline. 8059 if (!OrigLoop->isInnermost()) { 8060 // If the user doesn't provide a vectorization factor, determine a 8061 // reasonable one. 8062 if (UserVF.isZero()) { 8063 VF = ElementCount::getFixed(determineVPlanVF( 8064 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) 8065 .getFixedSize(), 8066 CM)); 8067 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 8068 8069 // Make sure we have a VF > 1 for stress testing. 8070 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 8071 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 8072 << "overriding computed VF.\n"); 8073 VF = ElementCount::getFixed(4); 8074 } 8075 } 8076 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8077 assert(isPowerOf2_32(VF.getKnownMinValue()) && 8078 "VF needs to be a power of two"); 8079 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 8080 << "VF " << VF << " to build VPlans.\n"); 8081 buildVPlans(VF, VF); 8082 8083 // For VPlan build stress testing, we bail out after VPlan construction. 8084 if (VPlanBuildStressTest) 8085 return VectorizationFactor::Disabled(); 8086 8087 return {VF, 0 /*Cost*/}; 8088 } 8089 8090 LLVM_DEBUG( 8091 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 8092 "VPlan-native path.\n"); 8093 return VectorizationFactor::Disabled(); 8094 } 8095 8096 Optional<VectorizationFactor> 8097 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 8098 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8099 FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); 8100 if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. 8101 return None; 8102 8103 // Invalidate interleave groups if all blocks of loop will be predicated. 8104 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 8105 !useMaskedInterleavedAccesses(*TTI)) { 8106 LLVM_DEBUG( 8107 dbgs() 8108 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 8109 "which requires masked-interleaved support.\n"); 8110 if (CM.InterleaveInfo.invalidateGroups()) 8111 // Invalidating interleave groups also requires invalidating all decisions 8112 // based on them, which includes widening decisions and uniform and scalar 8113 // values. 8114 CM.invalidateCostModelingDecisions(); 8115 } 8116 8117 ElementCount MaxUserVF = 8118 UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; 8119 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); 8120 if (!UserVF.isZero() && UserVFIsLegal) { 8121 assert(isPowerOf2_32(UserVF.getKnownMinValue()) && 8122 "VF needs to be a power of two"); 8123 // Collect the instructions (and their associated costs) that will be more 8124 // profitable to scalarize. 8125 if (CM.selectUserVectorizationFactor(UserVF)) { 8126 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n"); 8127 CM.collectInLoopReductions(); 8128 buildVPlansWithVPRecipes(UserVF, UserVF); 8129 LLVM_DEBUG(printPlans(dbgs())); 8130 return {{UserVF, 0}}; 8131 } else 8132 reportVectorizationInfo("UserVF ignored because of invalid costs.", 8133 "InvalidCost", ORE, OrigLoop); 8134 } 8135 8136 // Populate the set of Vectorization Factor Candidates. 8137 ElementCountSet VFCandidates; 8138 for (auto VF = ElementCount::getFixed(1); 8139 ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) 8140 VFCandidates.insert(VF); 8141 for (auto VF = ElementCount::getScalable(1); 8142 ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) 8143 VFCandidates.insert(VF); 8144 8145 for (const auto &VF : VFCandidates) { 8146 // Collect Uniform and Scalar instructions after vectorization with VF. 8147 CM.collectUniformsAndScalars(VF); 8148 8149 // Collect the instructions (and their associated costs) that will be more 8150 // profitable to scalarize. 8151 if (VF.isVector()) 8152 CM.collectInstsToScalarize(VF); 8153 } 8154 8155 CM.collectInLoopReductions(); 8156 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); 8157 buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); 8158 8159 LLVM_DEBUG(printPlans(dbgs())); 8160 if (!MaxFactors.hasVector()) 8161 return VectorizationFactor::Disabled(); 8162 8163 // Select the optimal vectorization factor. 8164 auto SelectedVF = CM.selectVectorizationFactor(VFCandidates); 8165 8166 // Check if it is profitable to vectorize with runtime checks. 8167 unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks(); 8168 if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) { 8169 bool PragmaThresholdReached = 8170 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 8171 bool ThresholdReached = 8172 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 8173 if ((ThresholdReached && !Hints.allowReordering()) || 8174 PragmaThresholdReached) { 8175 ORE->emit([&]() { 8176 return OptimizationRemarkAnalysisAliasing( 8177 DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(), 8178 OrigLoop->getHeader()) 8179 << "loop not vectorized: cannot prove it is safe to reorder " 8180 "memory operations"; 8181 }); 8182 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 8183 Hints.emitRemarkWithHints(); 8184 return VectorizationFactor::Disabled(); 8185 } 8186 } 8187 return SelectedVF; 8188 } 8189 8190 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 8191 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 8192 << '\n'); 8193 BestVF = VF; 8194 BestUF = UF; 8195 8196 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 8197 return !Plan->hasVF(VF); 8198 }); 8199 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 8200 } 8201 8202 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 8203 DominatorTree *DT) { 8204 // Perform the actual loop transformation. 8205 8206 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 8207 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 8208 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 8209 8210 VPTransformState State{ 8211 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 8212 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 8213 State.TripCount = ILV.getOrCreateTripCount(nullptr); 8214 State.CanonicalIV = ILV.Induction; 8215 8216 ILV.printDebugTracesAtStart(); 8217 8218 //===------------------------------------------------===// 8219 // 8220 // Notice: any optimization or new instruction that go 8221 // into the code below should also be implemented in 8222 // the cost-model. 8223 // 8224 //===------------------------------------------------===// 8225 8226 // 2. Copy and widen instructions from the old loop into the new loop. 8227 VPlans.front()->execute(&State); 8228 8229 // 3. Fix the vectorized code: take care of header phi's, live-outs, 8230 // predication, updating analyses. 8231 ILV.fixVectorizedLoop(State); 8232 8233 ILV.printDebugTracesAtEnd(); 8234 } 8235 8236 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 8237 void LoopVectorizationPlanner::printPlans(raw_ostream &O) { 8238 for (const auto &Plan : VPlans) 8239 if (PrintVPlansInDotFormat) 8240 Plan->printDOT(O); 8241 else 8242 Plan->print(O); 8243 } 8244 #endif 8245 8246 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 8247 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 8248 8249 // We create new control-flow for the vectorized loop, so the original exit 8250 // conditions will be dead after vectorization if it's only used by the 8251 // terminator 8252 SmallVector<BasicBlock*> ExitingBlocks; 8253 OrigLoop->getExitingBlocks(ExitingBlocks); 8254 for (auto *BB : ExitingBlocks) { 8255 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 8256 if (!Cmp || !Cmp->hasOneUse()) 8257 continue; 8258 8259 // TODO: we should introduce a getUniqueExitingBlocks on Loop 8260 if (!DeadInstructions.insert(Cmp).second) 8261 continue; 8262 8263 // The operands of the icmp is often a dead trunc, used by IndUpdate. 8264 // TODO: can recurse through operands in general 8265 for (Value *Op : Cmp->operands()) { 8266 if (isa<TruncInst>(Op) && Op->hasOneUse()) 8267 DeadInstructions.insert(cast<Instruction>(Op)); 8268 } 8269 } 8270 8271 // We create new "steps" for induction variable updates to which the original 8272 // induction variables map. An original update instruction will be dead if 8273 // all its users except the induction variable are dead. 8274 auto *Latch = OrigLoop->getLoopLatch(); 8275 for (auto &Induction : Legal->getInductionVars()) { 8276 PHINode *Ind = Induction.first; 8277 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 8278 8279 // If the tail is to be folded by masking, the primary induction variable, 8280 // if exists, isn't dead: it will be used for masking. Don't kill it. 8281 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 8282 continue; 8283 8284 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 8285 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 8286 })) 8287 DeadInstructions.insert(IndUpdate); 8288 8289 // We record as "Dead" also the type-casting instructions we had identified 8290 // during induction analysis. We don't need any handling for them in the 8291 // vectorized loop because we have proven that, under a proper runtime 8292 // test guarding the vectorized loop, the value of the phi, and the casted 8293 // value of the phi, are the same. The last instruction in this casting chain 8294 // will get its scalar/vector/widened def from the scalar/vector/widened def 8295 // of the respective phi node. Any other casts in the induction def-use chain 8296 // have no other uses outside the phi update chain, and will be ignored. 8297 InductionDescriptor &IndDes = Induction.second; 8298 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 8299 DeadInstructions.insert(Casts.begin(), Casts.end()); 8300 } 8301 } 8302 8303 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 8304 8305 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 8306 8307 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 8308 Instruction::BinaryOps BinOp) { 8309 // When unrolling and the VF is 1, we only need to add a simple scalar. 8310 Type *Ty = Val->getType(); 8311 assert(!Ty->isVectorTy() && "Val must be a scalar"); 8312 8313 if (Ty->isFloatingPointTy()) { 8314 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 8315 8316 // Floating-point operations inherit FMF via the builder's flags. 8317 Value *MulOp = Builder.CreateFMul(C, Step); 8318 return Builder.CreateBinOp(BinOp, Val, MulOp); 8319 } 8320 Constant *C = ConstantInt::get(Ty, StartIdx); 8321 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 8322 } 8323 8324 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 8325 SmallVector<Metadata *, 4> MDs; 8326 // Reserve first location for self reference to the LoopID metadata node. 8327 MDs.push_back(nullptr); 8328 bool IsUnrollMetadata = false; 8329 MDNode *LoopID = L->getLoopID(); 8330 if (LoopID) { 8331 // First find existing loop unrolling disable metadata. 8332 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 8333 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 8334 if (MD) { 8335 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 8336 IsUnrollMetadata = 8337 S && S->getString().startswith("llvm.loop.unroll.disable"); 8338 } 8339 MDs.push_back(LoopID->getOperand(i)); 8340 } 8341 } 8342 8343 if (!IsUnrollMetadata) { 8344 // Add runtime unroll disable metadata. 8345 LLVMContext &Context = L->getHeader()->getContext(); 8346 SmallVector<Metadata *, 1> DisableOperands; 8347 DisableOperands.push_back( 8348 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 8349 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 8350 MDs.push_back(DisableNode); 8351 MDNode *NewLoopID = MDNode::get(Context, MDs); 8352 // Set operand 0 to refer to the loop id itself. 8353 NewLoopID->replaceOperandWith(0, NewLoopID); 8354 L->setLoopID(NewLoopID); 8355 } 8356 } 8357 8358 //===--------------------------------------------------------------------===// 8359 // EpilogueVectorizerMainLoop 8360 //===--------------------------------------------------------------------===// 8361 8362 /// This function is partially responsible for generating the control flow 8363 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8364 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 8365 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8366 Loop *Lp = createVectorLoopSkeleton(""); 8367 8368 // Generate the code to check the minimum iteration count of the vector 8369 // epilogue (see below). 8370 EPI.EpilogueIterationCountCheck = 8371 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 8372 EPI.EpilogueIterationCountCheck->setName("iter.check"); 8373 8374 // Generate the code to check any assumptions that we've made for SCEV 8375 // expressions. 8376 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 8377 8378 // Generate the code that checks at runtime if arrays overlap. We put the 8379 // checks into a separate block to make the more common case of few elements 8380 // faster. 8381 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 8382 8383 // Generate the iteration count check for the main loop, *after* the check 8384 // for the epilogue loop, so that the path-length is shorter for the case 8385 // that goes directly through the vector epilogue. The longer-path length for 8386 // the main loop is compensated for, by the gain from vectorizing the larger 8387 // trip count. Note: the branch will get updated later on when we vectorize 8388 // the epilogue. 8389 EPI.MainLoopIterationCountCheck = 8390 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 8391 8392 // Generate the induction variable. 8393 OldInduction = Legal->getPrimaryInduction(); 8394 Type *IdxTy = Legal->getWidestInductionType(); 8395 Value *StartIdx = ConstantInt::get(IdxTy, 0); 8396 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8397 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8398 EPI.VectorTripCount = CountRoundDown; 8399 Induction = 8400 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8401 getDebugLocFromInstOrOperands(OldInduction)); 8402 8403 // Skip induction resume value creation here because they will be created in 8404 // the second pass. If we created them here, they wouldn't be used anyway, 8405 // because the vplan in the second pass still contains the inductions from the 8406 // original loop. 8407 8408 return completeLoopSkeleton(Lp, OrigLoopID); 8409 } 8410 8411 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8412 LLVM_DEBUG({ 8413 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8414 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8415 << ", Main Loop UF:" << EPI.MainLoopUF 8416 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8417 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8418 }); 8419 } 8420 8421 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8422 DEBUG_WITH_TYPE(VerboseDebug, { 8423 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8424 }); 8425 } 8426 8427 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8428 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8429 assert(L && "Expected valid Loop."); 8430 assert(Bypass && "Expected valid bypass basic block."); 8431 unsigned VFactor = 8432 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 8433 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8434 Value *Count = getOrCreateTripCount(L); 8435 // Reuse existing vector loop preheader for TC checks. 8436 // Note that new preheader block is generated for vector loop. 8437 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8438 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8439 8440 // Generate code to check if the loop's trip count is less than VF * UF of the 8441 // main vector loop. 8442 auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? 8443 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8444 8445 Value *CheckMinIters = Builder.CreateICmp( 8446 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8447 "min.iters.check"); 8448 8449 if (!ForEpilogue) 8450 TCCheckBlock->setName("vector.main.loop.iter.check"); 8451 8452 // Create new preheader for vector loop. 8453 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8454 DT, LI, nullptr, "vector.ph"); 8455 8456 if (ForEpilogue) { 8457 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8458 DT->getNode(Bypass)->getIDom()) && 8459 "TC check is expected to dominate Bypass"); 8460 8461 // Update dominator for Bypass & LoopExit. 8462 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8463 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8464 // For loops with multiple exits, there's no edge from the middle block 8465 // to exit blocks (as the epilogue must run) and thus no need to update 8466 // the immediate dominator of the exit blocks. 8467 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8468 8469 LoopBypassBlocks.push_back(TCCheckBlock); 8470 8471 // Save the trip count so we don't have to regenerate it in the 8472 // vec.epilog.iter.check. This is safe to do because the trip count 8473 // generated here dominates the vector epilog iter check. 8474 EPI.TripCount = Count; 8475 } 8476 8477 ReplaceInstWithInst( 8478 TCCheckBlock->getTerminator(), 8479 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8480 8481 return TCCheckBlock; 8482 } 8483 8484 //===--------------------------------------------------------------------===// 8485 // EpilogueVectorizerEpilogueLoop 8486 //===--------------------------------------------------------------------===// 8487 8488 /// This function is partially responsible for generating the control flow 8489 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8490 BasicBlock * 8491 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8492 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8493 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8494 8495 // Now, compare the remaining count and if there aren't enough iterations to 8496 // execute the vectorized epilogue skip to the scalar part. 8497 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8498 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8499 LoopVectorPreHeader = 8500 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8501 LI, nullptr, "vec.epilog.ph"); 8502 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8503 VecEpilogueIterationCountCheck); 8504 8505 // Adjust the control flow taking the state info from the main loop 8506 // vectorization into account. 8507 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8508 "expected this to be saved from the previous pass."); 8509 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8510 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8511 8512 DT->changeImmediateDominator(LoopVectorPreHeader, 8513 EPI.MainLoopIterationCountCheck); 8514 8515 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8516 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8517 8518 if (EPI.SCEVSafetyCheck) 8519 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8520 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8521 if (EPI.MemSafetyCheck) 8522 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8523 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8524 8525 DT->changeImmediateDominator( 8526 VecEpilogueIterationCountCheck, 8527 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8528 8529 DT->changeImmediateDominator(LoopScalarPreHeader, 8530 EPI.EpilogueIterationCountCheck); 8531 if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) 8532 // If there is an epilogue which must run, there's no edge from the 8533 // middle block to exit blocks and thus no need to update the immediate 8534 // dominator of the exit blocks. 8535 DT->changeImmediateDominator(LoopExitBlock, 8536 EPI.EpilogueIterationCountCheck); 8537 8538 // Keep track of bypass blocks, as they feed start values to the induction 8539 // phis in the scalar loop preheader. 8540 if (EPI.SCEVSafetyCheck) 8541 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8542 if (EPI.MemSafetyCheck) 8543 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8544 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8545 8546 // Generate a resume induction for the vector epilogue and put it in the 8547 // vector epilogue preheader 8548 Type *IdxTy = Legal->getWidestInductionType(); 8549 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8550 LoopVectorPreHeader->getFirstNonPHI()); 8551 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8552 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8553 EPI.MainLoopIterationCountCheck); 8554 8555 // Generate the induction variable. 8556 OldInduction = Legal->getPrimaryInduction(); 8557 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8558 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8559 Value *StartIdx = EPResumeVal; 8560 Induction = 8561 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8562 getDebugLocFromInstOrOperands(OldInduction)); 8563 8564 // Generate induction resume values. These variables save the new starting 8565 // indexes for the scalar loop. They are used to test if there are any tail 8566 // iterations left once the vector loop has completed. 8567 // Note that when the vectorized epilogue is skipped due to iteration count 8568 // check, then the resume value for the induction variable comes from 8569 // the trip count of the main vector loop, hence passing the AdditionalBypass 8570 // argument. 8571 createInductionResumeValues(Lp, CountRoundDown, 8572 {VecEpilogueIterationCountCheck, 8573 EPI.VectorTripCount} /* AdditionalBypass */); 8574 8575 AddRuntimeUnrollDisableMetaData(Lp); 8576 return completeLoopSkeleton(Lp, OrigLoopID); 8577 } 8578 8579 BasicBlock * 8580 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8581 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8582 8583 assert(EPI.TripCount && 8584 "Expected trip count to have been safed in the first pass."); 8585 assert( 8586 (!isa<Instruction>(EPI.TripCount) || 8587 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8588 "saved trip count does not dominate insertion point."); 8589 Value *TC = EPI.TripCount; 8590 IRBuilder<> Builder(Insert->getTerminator()); 8591 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8592 8593 // Generate code to check if the loop's trip count is less than VF * UF of the 8594 // vector epilogue loop. 8595 auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? 8596 ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8597 8598 Value *CheckMinIters = Builder.CreateICmp( 8599 P, Count, 8600 ConstantInt::get(Count->getType(), 8601 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8602 "min.epilog.iters.check"); 8603 8604 ReplaceInstWithInst( 8605 Insert->getTerminator(), 8606 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8607 8608 LoopBypassBlocks.push_back(Insert); 8609 return Insert; 8610 } 8611 8612 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8613 LLVM_DEBUG({ 8614 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8615 << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8616 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8617 }); 8618 } 8619 8620 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8621 DEBUG_WITH_TYPE(VerboseDebug, { 8622 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8623 }); 8624 } 8625 8626 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8627 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8628 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8629 bool PredicateAtRangeStart = Predicate(Range.Start); 8630 8631 for (ElementCount TmpVF = Range.Start * 2; 8632 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8633 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8634 Range.End = TmpVF; 8635 break; 8636 } 8637 8638 return PredicateAtRangeStart; 8639 } 8640 8641 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8642 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8643 /// of VF's starting at a given VF and extending it as much as possible. Each 8644 /// vectorization decision can potentially shorten this sub-range during 8645 /// buildVPlan(). 8646 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8647 ElementCount MaxVF) { 8648 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8649 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8650 VFRange SubRange = {VF, MaxVFPlusOne}; 8651 VPlans.push_back(buildVPlan(SubRange)); 8652 VF = SubRange.End; 8653 } 8654 } 8655 8656 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8657 VPlanPtr &Plan) { 8658 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8659 8660 // Look for cached value. 8661 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8662 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8663 if (ECEntryIt != EdgeMaskCache.end()) 8664 return ECEntryIt->second; 8665 8666 VPValue *SrcMask = createBlockInMask(Src, Plan); 8667 8668 // The terminator has to be a branch inst! 8669 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8670 assert(BI && "Unexpected terminator found"); 8671 8672 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8673 return EdgeMaskCache[Edge] = SrcMask; 8674 8675 // If source is an exiting block, we know the exit edge is dynamically dead 8676 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8677 // adding uses of an otherwise potentially dead instruction. 8678 if (OrigLoop->isLoopExiting(Src)) 8679 return EdgeMaskCache[Edge] = SrcMask; 8680 8681 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8682 assert(EdgeMask && "No Edge Mask found for condition"); 8683 8684 if (BI->getSuccessor(0) != Dst) 8685 EdgeMask = Builder.createNot(EdgeMask); 8686 8687 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8688 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8689 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8690 // The select version does not introduce new UB if SrcMask is false and 8691 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8692 VPValue *False = Plan->getOrAddVPValue( 8693 ConstantInt::getFalse(BI->getCondition()->getType())); 8694 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8695 } 8696 8697 return EdgeMaskCache[Edge] = EdgeMask; 8698 } 8699 8700 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8701 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8702 8703 // Look for cached value. 8704 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8705 if (BCEntryIt != BlockMaskCache.end()) 8706 return BCEntryIt->second; 8707 8708 // All-one mask is modelled as no-mask following the convention for masked 8709 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8710 VPValue *BlockMask = nullptr; 8711 8712 if (OrigLoop->getHeader() == BB) { 8713 if (!CM.blockNeedsPredication(BB)) 8714 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8715 8716 // Create the block in mask as the first non-phi instruction in the block. 8717 VPBuilder::InsertPointGuard Guard(Builder); 8718 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8719 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8720 8721 // Introduce the early-exit compare IV <= BTC to form header block mask. 8722 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8723 // Start by constructing the desired canonical IV. 8724 VPValue *IV = nullptr; 8725 if (Legal->getPrimaryInduction()) 8726 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8727 else { 8728 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8729 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8730 IV = IVRecipe->getVPSingleValue(); 8731 } 8732 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8733 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8734 8735 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8736 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8737 // as a second argument, we only pass the IV here and extract the 8738 // tripcount from the transform state where codegen of the VP instructions 8739 // happen. 8740 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8741 } else { 8742 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8743 } 8744 return BlockMaskCache[BB] = BlockMask; 8745 } 8746 8747 // This is the block mask. We OR all incoming edges. 8748 for (auto *Predecessor : predecessors(BB)) { 8749 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8750 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8751 return BlockMaskCache[BB] = EdgeMask; 8752 8753 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8754 BlockMask = EdgeMask; 8755 continue; 8756 } 8757 8758 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8759 } 8760 8761 return BlockMaskCache[BB] = BlockMask; 8762 } 8763 8764 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, 8765 ArrayRef<VPValue *> Operands, 8766 VFRange &Range, 8767 VPlanPtr &Plan) { 8768 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8769 "Must be called with either a load or store"); 8770 8771 auto willWiden = [&](ElementCount VF) -> bool { 8772 if (VF.isScalar()) 8773 return false; 8774 LoopVectorizationCostModel::InstWidening Decision = 8775 CM.getWideningDecision(I, VF); 8776 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8777 "CM decision should be taken at this point."); 8778 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8779 return true; 8780 if (CM.isScalarAfterVectorization(I, VF) || 8781 CM.isProfitableToScalarize(I, VF)) 8782 return false; 8783 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8784 }; 8785 8786 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8787 return nullptr; 8788 8789 VPValue *Mask = nullptr; 8790 if (Legal->isMaskRequired(I)) 8791 Mask = createBlockInMask(I->getParent(), Plan); 8792 8793 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8794 return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask); 8795 8796 StoreInst *Store = cast<StoreInst>(I); 8797 return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], 8798 Mask); 8799 } 8800 8801 VPWidenIntOrFpInductionRecipe * 8802 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, 8803 ArrayRef<VPValue *> Operands) const { 8804 // Check if this is an integer or fp induction. If so, build the recipe that 8805 // produces its scalar and vector values. 8806 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8807 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8808 II.getKind() == InductionDescriptor::IK_FpInduction) { 8809 assert(II.getStartValue() == 8810 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 8811 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8812 return new VPWidenIntOrFpInductionRecipe( 8813 Phi, Operands[0], Casts.empty() ? nullptr : Casts.front()); 8814 } 8815 8816 return nullptr; 8817 } 8818 8819 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( 8820 TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, 8821 VPlan &Plan) const { 8822 // Optimize the special case where the source is a constant integer 8823 // induction variable. Notice that we can only optimize the 'trunc' case 8824 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8825 // (c) other casts depend on pointer size. 8826 8827 // Determine whether \p K is a truncation based on an induction variable that 8828 // can be optimized. 8829 auto isOptimizableIVTruncate = 8830 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8831 return [=](ElementCount VF) -> bool { 8832 return CM.isOptimizableIVTruncate(K, VF); 8833 }; 8834 }; 8835 8836 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8837 isOptimizableIVTruncate(I), Range)) { 8838 8839 InductionDescriptor II = 8840 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8841 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8842 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8843 Start, nullptr, I); 8844 } 8845 return nullptr; 8846 } 8847 8848 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, 8849 ArrayRef<VPValue *> Operands, 8850 VPlanPtr &Plan) { 8851 // If all incoming values are equal, the incoming VPValue can be used directly 8852 // instead of creating a new VPBlendRecipe. 8853 VPValue *FirstIncoming = Operands[0]; 8854 if (all_of(Operands, [FirstIncoming](const VPValue *Inc) { 8855 return FirstIncoming == Inc; 8856 })) { 8857 return Operands[0]; 8858 } 8859 8860 // We know that all PHIs in non-header blocks are converted into selects, so 8861 // we don't have to worry about the insertion order and we can just use the 8862 // builder. At this point we generate the predication tree. There may be 8863 // duplications since this is a simple recursive scan, but future 8864 // optimizations will clean it up. 8865 SmallVector<VPValue *, 2> OperandsWithMask; 8866 unsigned NumIncoming = Phi->getNumIncomingValues(); 8867 8868 for (unsigned In = 0; In < NumIncoming; In++) { 8869 VPValue *EdgeMask = 8870 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8871 assert((EdgeMask || NumIncoming == 1) && 8872 "Multiple predecessors with one having a full mask"); 8873 OperandsWithMask.push_back(Operands[In]); 8874 if (EdgeMask) 8875 OperandsWithMask.push_back(EdgeMask); 8876 } 8877 return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); 8878 } 8879 8880 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, 8881 ArrayRef<VPValue *> Operands, 8882 VFRange &Range) const { 8883 8884 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8885 [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); }, 8886 Range); 8887 8888 if (IsPredicated) 8889 return nullptr; 8890 8891 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8892 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8893 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8894 ID == Intrinsic::pseudoprobe || 8895 ID == Intrinsic::experimental_noalias_scope_decl)) 8896 return nullptr; 8897 8898 auto willWiden = [&](ElementCount VF) -> bool { 8899 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8900 // The following case may be scalarized depending on the VF. 8901 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8902 // version of the instruction. 8903 // Is it beneficial to perform intrinsic call compared to lib call? 8904 bool NeedToScalarize = false; 8905 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8906 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8907 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8908 return UseVectorIntrinsic || !NeedToScalarize; 8909 }; 8910 8911 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8912 return nullptr; 8913 8914 ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands()); 8915 return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end())); 8916 } 8917 8918 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8919 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8920 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8921 // Instruction should be widened, unless it is scalar after vectorization, 8922 // scalarization is profitable or it is predicated. 8923 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8924 return CM.isScalarAfterVectorization(I, VF) || 8925 CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I); 8926 }; 8927 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8928 Range); 8929 } 8930 8931 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, 8932 ArrayRef<VPValue *> Operands) const { 8933 auto IsVectorizableOpcode = [](unsigned Opcode) { 8934 switch (Opcode) { 8935 case Instruction::Add: 8936 case Instruction::And: 8937 case Instruction::AShr: 8938 case Instruction::BitCast: 8939 case Instruction::FAdd: 8940 case Instruction::FCmp: 8941 case Instruction::FDiv: 8942 case Instruction::FMul: 8943 case Instruction::FNeg: 8944 case Instruction::FPExt: 8945 case Instruction::FPToSI: 8946 case Instruction::FPToUI: 8947 case Instruction::FPTrunc: 8948 case Instruction::FRem: 8949 case Instruction::FSub: 8950 case Instruction::ICmp: 8951 case Instruction::IntToPtr: 8952 case Instruction::LShr: 8953 case Instruction::Mul: 8954 case Instruction::Or: 8955 case Instruction::PtrToInt: 8956 case Instruction::SDiv: 8957 case Instruction::Select: 8958 case Instruction::SExt: 8959 case Instruction::Shl: 8960 case Instruction::SIToFP: 8961 case Instruction::SRem: 8962 case Instruction::Sub: 8963 case Instruction::Trunc: 8964 case Instruction::UDiv: 8965 case Instruction::UIToFP: 8966 case Instruction::URem: 8967 case Instruction::Xor: 8968 case Instruction::ZExt: 8969 return true; 8970 } 8971 return false; 8972 }; 8973 8974 if (!IsVectorizableOpcode(I->getOpcode())) 8975 return nullptr; 8976 8977 // Success: widen this instruction. 8978 return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); 8979 } 8980 8981 void VPRecipeBuilder::fixHeaderPhis() { 8982 BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); 8983 for (VPWidenPHIRecipe *R : PhisToFix) { 8984 auto *PN = cast<PHINode>(R->getUnderlyingValue()); 8985 VPRecipeBase *IncR = 8986 getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); 8987 R->addOperand(IncR->getVPSingleValue()); 8988 } 8989 } 8990 8991 VPBasicBlock *VPRecipeBuilder::handleReplication( 8992 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8993 VPlanPtr &Plan) { 8994 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8995 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8996 Range); 8997 8998 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8999 [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range); 9000 9001 // Even if the instruction is not marked as uniform, there are certain 9002 // intrinsic calls that can be effectively treated as such, so we check for 9003 // them here. Conservatively, we only do this for scalable vectors, since 9004 // for fixed-width VFs we can always fall back on full scalarization. 9005 if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { 9006 switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { 9007 case Intrinsic::assume: 9008 case Intrinsic::lifetime_start: 9009 case Intrinsic::lifetime_end: 9010 // For scalable vectors if one of the operands is variant then we still 9011 // want to mark as uniform, which will generate one instruction for just 9012 // the first lane of the vector. We can't scalarize the call in the same 9013 // way as for fixed-width vectors because we don't know how many lanes 9014 // there are. 9015 // 9016 // The reasons for doing it this way for scalable vectors are: 9017 // 1. For the assume intrinsic generating the instruction for the first 9018 // lane is still be better than not generating any at all. For 9019 // example, the input may be a splat across all lanes. 9020 // 2. For the lifetime start/end intrinsics the pointer operand only 9021 // does anything useful when the input comes from a stack object, 9022 // which suggests it should always be uniform. For non-stack objects 9023 // the effect is to poison the object, which still allows us to 9024 // remove the call. 9025 IsUniform = true; 9026 break; 9027 default: 9028 break; 9029 } 9030 } 9031 9032 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 9033 IsUniform, IsPredicated); 9034 setRecipe(I, Recipe); 9035 Plan->addVPValue(I, Recipe); 9036 9037 // Find if I uses a predicated instruction. If so, it will use its scalar 9038 // value. Avoid hoisting the insert-element which packs the scalar value into 9039 // a vector value, as that happens iff all users use the vector value. 9040 for (VPValue *Op : Recipe->operands()) { 9041 auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef()); 9042 if (!PredR) 9043 continue; 9044 auto *RepR = 9045 cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef()); 9046 assert(RepR->isPredicated() && 9047 "expected Replicate recipe to be predicated"); 9048 RepR->setAlsoPack(false); 9049 } 9050 9051 // Finalize the recipe for Instr, first if it is not predicated. 9052 if (!IsPredicated) { 9053 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 9054 VPBB->appendRecipe(Recipe); 9055 return VPBB; 9056 } 9057 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 9058 assert(VPBB->getSuccessors().empty() && 9059 "VPBB has successors when handling predicated replication."); 9060 // Record predicated instructions for above packing optimizations. 9061 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 9062 VPBlockUtils::insertBlockAfter(Region, VPBB); 9063 auto *RegSucc = new VPBasicBlock(); 9064 VPBlockUtils::insertBlockAfter(RegSucc, Region); 9065 return RegSucc; 9066 } 9067 9068 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 9069 VPRecipeBase *PredRecipe, 9070 VPlanPtr &Plan) { 9071 // Instructions marked for predication are replicated and placed under an 9072 // if-then construct to prevent side-effects. 9073 9074 // Generate recipes to compute the block mask for this region. 9075 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 9076 9077 // Build the triangular if-then region. 9078 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 9079 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 9080 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 9081 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 9082 auto *PHIRecipe = Instr->getType()->isVoidTy() 9083 ? nullptr 9084 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 9085 if (PHIRecipe) { 9086 Plan->removeVPValueFor(Instr); 9087 Plan->addVPValue(Instr, PHIRecipe); 9088 } 9089 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 9090 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 9091 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 9092 9093 // Note: first set Entry as region entry and then connect successors starting 9094 // from it in order, to propagate the "parent" of each VPBasicBlock. 9095 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 9096 VPBlockUtils::connectBlocks(Pred, Exit); 9097 9098 return Region; 9099 } 9100 9101 VPRecipeOrVPValueTy 9102 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 9103 ArrayRef<VPValue *> Operands, 9104 VFRange &Range, VPlanPtr &Plan) { 9105 // First, check for specific widening recipes that deal with calls, memory 9106 // operations, inductions and Phi nodes. 9107 if (auto *CI = dyn_cast<CallInst>(Instr)) 9108 return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); 9109 9110 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 9111 return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); 9112 9113 VPRecipeBase *Recipe; 9114 if (auto Phi = dyn_cast<PHINode>(Instr)) { 9115 if (Phi->getParent() != OrigLoop->getHeader()) 9116 return tryToBlend(Phi, Operands, Plan); 9117 if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands))) 9118 return toVPRecipeResult(Recipe); 9119 9120 VPWidenPHIRecipe *PhiRecipe = nullptr; 9121 if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) { 9122 VPValue *StartV = Operands[0]; 9123 if (Legal->isReductionVariable(Phi)) { 9124 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9125 assert(RdxDesc.getRecurrenceStartValue() == 9126 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())); 9127 PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, 9128 CM.isInLoopReduction(Phi), 9129 CM.useOrderedReductions(RdxDesc)); 9130 } else { 9131 PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); 9132 } 9133 9134 // Record the incoming value from the backedge, so we can add the incoming 9135 // value from the backedge after all recipes have been created. 9136 recordRecipeOf(cast<Instruction>( 9137 Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch()))); 9138 PhisToFix.push_back(PhiRecipe); 9139 } else { 9140 // TODO: record start and backedge value for remaining pointer induction 9141 // phis. 9142 assert(Phi->getType()->isPointerTy() && 9143 "only pointer phis should be handled here"); 9144 PhiRecipe = new VPWidenPHIRecipe(Phi); 9145 } 9146 9147 return toVPRecipeResult(PhiRecipe); 9148 } 9149 9150 if (isa<TruncInst>(Instr) && 9151 (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, 9152 Range, *Plan))) 9153 return toVPRecipeResult(Recipe); 9154 9155 if (!shouldWiden(Instr, Range)) 9156 return nullptr; 9157 9158 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 9159 return toVPRecipeResult(new VPWidenGEPRecipe( 9160 GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); 9161 9162 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 9163 bool InvariantCond = 9164 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 9165 return toVPRecipeResult(new VPWidenSelectRecipe( 9166 *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); 9167 } 9168 9169 return toVPRecipeResult(tryToWiden(Instr, Operands)); 9170 } 9171 9172 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 9173 ElementCount MaxVF) { 9174 assert(OrigLoop->isInnermost() && "Inner loop expected."); 9175 9176 // Collect instructions from the original loop that will become trivially dead 9177 // in the vectorized loop. We don't need to vectorize these instructions. For 9178 // example, original induction update instructions can become dead because we 9179 // separately emit induction "steps" when generating code for the new loop. 9180 // Similarly, we create a new latch condition when setting up the structure 9181 // of the new loop, so the old one can become dead. 9182 SmallPtrSet<Instruction *, 4> DeadInstructions; 9183 collectTriviallyDeadInstructions(DeadInstructions); 9184 9185 // Add assume instructions we need to drop to DeadInstructions, to prevent 9186 // them from being added to the VPlan. 9187 // TODO: We only need to drop assumes in blocks that get flattend. If the 9188 // control flow is preserved, we should keep them. 9189 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 9190 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 9191 9192 MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 9193 // Dead instructions do not need sinking. Remove them from SinkAfter. 9194 for (Instruction *I : DeadInstructions) 9195 SinkAfter.erase(I); 9196 9197 // Cannot sink instructions after dead instructions (there won't be any 9198 // recipes for them). Instead, find the first non-dead previous instruction. 9199 for (auto &P : Legal->getSinkAfter()) { 9200 Instruction *SinkTarget = P.second; 9201 Instruction *FirstInst = &*SinkTarget->getParent()->begin(); 9202 (void)FirstInst; 9203 while (DeadInstructions.contains(SinkTarget)) { 9204 assert( 9205 SinkTarget != FirstInst && 9206 "Must find a live instruction (at least the one feeding the " 9207 "first-order recurrence PHI) before reaching beginning of the block"); 9208 SinkTarget = SinkTarget->getPrevNode(); 9209 assert(SinkTarget != P.first && 9210 "sink source equals target, no sinking required"); 9211 } 9212 P.second = SinkTarget; 9213 } 9214 9215 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 9216 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 9217 VFRange SubRange = {VF, MaxVFPlusOne}; 9218 VPlans.push_back( 9219 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 9220 VF = SubRange.End; 9221 } 9222 } 9223 9224 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 9225 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 9226 const MapVector<Instruction *, Instruction *> &SinkAfter) { 9227 9228 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 9229 9230 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 9231 9232 // --------------------------------------------------------------------------- 9233 // Pre-construction: record ingredients whose recipes we'll need to further 9234 // process after constructing the initial VPlan. 9235 // --------------------------------------------------------------------------- 9236 9237 // Mark instructions we'll need to sink later and their targets as 9238 // ingredients whose recipe we'll need to record. 9239 for (auto &Entry : SinkAfter) { 9240 RecipeBuilder.recordRecipeOf(Entry.first); 9241 RecipeBuilder.recordRecipeOf(Entry.second); 9242 } 9243 for (auto &Reduction : CM.getInLoopReductionChains()) { 9244 PHINode *Phi = Reduction.first; 9245 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 9246 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9247 9248 RecipeBuilder.recordRecipeOf(Phi); 9249 for (auto &R : ReductionOperations) { 9250 RecipeBuilder.recordRecipeOf(R); 9251 // For min/max reducitons, where we have a pair of icmp/select, we also 9252 // need to record the ICmp recipe, so it can be removed later. 9253 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 9254 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 9255 } 9256 } 9257 9258 // For each interleave group which is relevant for this (possibly trimmed) 9259 // Range, add it to the set of groups to be later applied to the VPlan and add 9260 // placeholders for its members' Recipes which we'll be replacing with a 9261 // single VPInterleaveRecipe. 9262 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 9263 auto applyIG = [IG, this](ElementCount VF) -> bool { 9264 return (VF.isVector() && // Query is illegal for VF == 1 9265 CM.getWideningDecision(IG->getInsertPos(), VF) == 9266 LoopVectorizationCostModel::CM_Interleave); 9267 }; 9268 if (!getDecisionAndClampRange(applyIG, Range)) 9269 continue; 9270 InterleaveGroups.insert(IG); 9271 for (unsigned i = 0; i < IG->getFactor(); i++) 9272 if (Instruction *Member = IG->getMember(i)) 9273 RecipeBuilder.recordRecipeOf(Member); 9274 }; 9275 9276 // --------------------------------------------------------------------------- 9277 // Build initial VPlan: Scan the body of the loop in a topological order to 9278 // visit each basic block after having visited its predecessor basic blocks. 9279 // --------------------------------------------------------------------------- 9280 9281 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 9282 auto Plan = std::make_unique<VPlan>(); 9283 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 9284 Plan->setEntry(VPBB); 9285 9286 // Scan the body of the loop in a topological order to visit each basic block 9287 // after having visited its predecessor basic blocks. 9288 LoopBlocksDFS DFS(OrigLoop); 9289 DFS.perform(LI); 9290 9291 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 9292 // Relevant instructions from basic block BB will be grouped into VPRecipe 9293 // ingredients and fill a new VPBasicBlock. 9294 unsigned VPBBsForBB = 0; 9295 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 9296 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 9297 VPBB = FirstVPBBForBB; 9298 Builder.setInsertPoint(VPBB); 9299 9300 // Introduce each ingredient into VPlan. 9301 // TODO: Model and preserve debug instrinsics in VPlan. 9302 for (Instruction &I : BB->instructionsWithoutDebug()) { 9303 Instruction *Instr = &I; 9304 9305 // First filter out irrelevant instructions, to ensure no recipes are 9306 // built for them. 9307 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 9308 continue; 9309 9310 SmallVector<VPValue *, 4> Operands; 9311 auto *Phi = dyn_cast<PHINode>(Instr); 9312 if (Phi && Phi->getParent() == OrigLoop->getHeader()) { 9313 Operands.push_back(Plan->getOrAddVPValue( 9314 Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); 9315 } else { 9316 auto OpRange = Plan->mapToVPValues(Instr->operands()); 9317 Operands = {OpRange.begin(), OpRange.end()}; 9318 } 9319 if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( 9320 Instr, Operands, Range, Plan)) { 9321 // If Instr can be simplified to an existing VPValue, use it. 9322 if (RecipeOrValue.is<VPValue *>()) { 9323 auto *VPV = RecipeOrValue.get<VPValue *>(); 9324 Plan->addVPValue(Instr, VPV); 9325 // If the re-used value is a recipe, register the recipe for the 9326 // instruction, in case the recipe for Instr needs to be recorded. 9327 if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef())) 9328 RecipeBuilder.setRecipe(Instr, R); 9329 continue; 9330 } 9331 // Otherwise, add the new recipe. 9332 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 9333 for (auto *Def : Recipe->definedValues()) { 9334 auto *UV = Def->getUnderlyingValue(); 9335 Plan->addVPValue(UV, Def); 9336 } 9337 9338 RecipeBuilder.setRecipe(Instr, Recipe); 9339 VPBB->appendRecipe(Recipe); 9340 continue; 9341 } 9342 9343 // Otherwise, if all widening options failed, Instruction is to be 9344 // replicated. This may create a successor for VPBB. 9345 VPBasicBlock *NextVPBB = 9346 RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); 9347 if (NextVPBB != VPBB) { 9348 VPBB = NextVPBB; 9349 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 9350 : ""); 9351 } 9352 } 9353 } 9354 9355 RecipeBuilder.fixHeaderPhis(); 9356 9357 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 9358 // may also be empty, such as the last one VPBB, reflecting original 9359 // basic-blocks with no recipes. 9360 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 9361 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 9362 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 9363 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 9364 delete PreEntry; 9365 9366 // --------------------------------------------------------------------------- 9367 // Transform initial VPlan: Apply previously taken decisions, in order, to 9368 // bring the VPlan to its final state. 9369 // --------------------------------------------------------------------------- 9370 9371 // Apply Sink-After legal constraints. 9372 auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { 9373 auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); 9374 if (Region && Region->isReplicator()) { 9375 assert(Region->getNumSuccessors() == 1 && 9376 Region->getNumPredecessors() == 1 && "Expected SESE region!"); 9377 assert(R->getParent()->size() == 1 && 9378 "A recipe in an original replicator region must be the only " 9379 "recipe in its block"); 9380 return Region; 9381 } 9382 return nullptr; 9383 }; 9384 for (auto &Entry : SinkAfter) { 9385 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 9386 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 9387 9388 auto *TargetRegion = GetReplicateRegion(Target); 9389 auto *SinkRegion = GetReplicateRegion(Sink); 9390 if (!SinkRegion) { 9391 // If the sink source is not a replicate region, sink the recipe directly. 9392 if (TargetRegion) { 9393 // The target is in a replication region, make sure to move Sink to 9394 // the block after it, not into the replication region itself. 9395 VPBasicBlock *NextBlock = 9396 cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); 9397 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 9398 } else 9399 Sink->moveAfter(Target); 9400 continue; 9401 } 9402 9403 // The sink source is in a replicate region. Unhook the region from the CFG. 9404 auto *SinkPred = SinkRegion->getSinglePredecessor(); 9405 auto *SinkSucc = SinkRegion->getSingleSuccessor(); 9406 VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); 9407 VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); 9408 VPBlockUtils::connectBlocks(SinkPred, SinkSucc); 9409 9410 if (TargetRegion) { 9411 // The target recipe is also in a replicate region, move the sink region 9412 // after the target region. 9413 auto *TargetSucc = TargetRegion->getSingleSuccessor(); 9414 VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); 9415 VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); 9416 VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); 9417 } else { 9418 // The sink source is in a replicate region, we need to move the whole 9419 // replicate region, which should only contain a single recipe in the 9420 // main block. 9421 auto *SplitBlock = 9422 Target->getParent()->splitAt(std::next(Target->getIterator())); 9423 9424 auto *SplitPred = SplitBlock->getSinglePredecessor(); 9425 9426 VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); 9427 VPBlockUtils::connectBlocks(SplitPred, SinkRegion); 9428 VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); 9429 if (VPBB == SplitPred) 9430 VPBB = SplitBlock; 9431 } 9432 } 9433 9434 // Adjust the recipes for any inloop reductions. 9435 adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start); 9436 9437 // Introduce a recipe to combine the incoming and previous values of a 9438 // first-order recurrence. 9439 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9440 auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); 9441 if (!RecurPhi) 9442 continue; 9443 9444 auto *RecurSplice = cast<VPInstruction>( 9445 Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, 9446 {RecurPhi, RecurPhi->getBackedgeValue()})); 9447 9448 VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe(); 9449 if (auto *Region = GetReplicateRegion(PrevRecipe)) { 9450 VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor()); 9451 RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi()); 9452 } else 9453 RecurSplice->moveAfter(PrevRecipe); 9454 RecurPhi->replaceAllUsesWith(RecurSplice); 9455 // Set the first operand of RecurSplice to RecurPhi again, after replacing 9456 // all users. 9457 RecurSplice->setOperand(0, RecurPhi); 9458 } 9459 9460 // Interleave memory: for each Interleave Group we marked earlier as relevant 9461 // for this VPlan, replace the Recipes widening its memory instructions with a 9462 // single VPInterleaveRecipe at its insertion point. 9463 for (auto IG : InterleaveGroups) { 9464 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 9465 RecipeBuilder.getRecipe(IG->getInsertPos())); 9466 SmallVector<VPValue *, 4> StoredValues; 9467 for (unsigned i = 0; i < IG->getFactor(); ++i) 9468 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { 9469 auto *StoreR = 9470 cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); 9471 StoredValues.push_back(StoreR->getStoredValue()); 9472 } 9473 9474 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 9475 Recipe->getMask()); 9476 VPIG->insertBefore(Recipe); 9477 unsigned J = 0; 9478 for (unsigned i = 0; i < IG->getFactor(); ++i) 9479 if (Instruction *Member = IG->getMember(i)) { 9480 if (!Member->getType()->isVoidTy()) { 9481 VPValue *OriginalV = Plan->getVPValue(Member); 9482 Plan->removeVPValueFor(Member); 9483 Plan->addVPValue(Member, VPIG->getVPValue(J)); 9484 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 9485 J++; 9486 } 9487 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 9488 } 9489 } 9490 9491 // From this point onwards, VPlan-to-VPlan transformations may change the plan 9492 // in ways that accessing values using original IR values is incorrect. 9493 Plan->disableValue2VPValue(); 9494 9495 VPlanTransforms::sinkScalarOperands(*Plan); 9496 VPlanTransforms::mergeReplicateRegions(*Plan); 9497 9498 std::string PlanName; 9499 raw_string_ostream RSO(PlanName); 9500 ElementCount VF = Range.Start; 9501 Plan->addVF(VF); 9502 RSO << "Initial VPlan for VF={" << VF; 9503 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 9504 Plan->addVF(VF); 9505 RSO << "," << VF; 9506 } 9507 RSO << "},UF>=1"; 9508 RSO.flush(); 9509 Plan->setName(PlanName); 9510 9511 return Plan; 9512 } 9513 9514 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 9515 // Outer loop handling: They may require CFG and instruction level 9516 // transformations before even evaluating whether vectorization is profitable. 9517 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 9518 // the vectorization pipeline. 9519 assert(!OrigLoop->isInnermost()); 9520 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 9521 9522 // Create new empty VPlan 9523 auto Plan = std::make_unique<VPlan>(); 9524 9525 // Build hierarchical CFG 9526 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 9527 HCFGBuilder.buildHierarchicalCFG(); 9528 9529 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 9530 VF *= 2) 9531 Plan->addVF(VF); 9532 9533 if (EnableVPlanPredication) { 9534 VPlanPredicator VPP(*Plan); 9535 VPP.predicate(); 9536 9537 // Avoid running transformation to recipes until masked code generation in 9538 // VPlan-native path is in place. 9539 return Plan; 9540 } 9541 9542 SmallPtrSet<Instruction *, 1> DeadInstructions; 9543 VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan, 9544 Legal->getInductionVars(), 9545 DeadInstructions, *PSE.getSE()); 9546 return Plan; 9547 } 9548 9549 // Adjust the recipes for reductions. For in-loop reductions the chain of 9550 // instructions leading from the loop exit instr to the phi need to be converted 9551 // to reductions, with one operand being vector and the other being the scalar 9552 // reduction chain. For other reductions, a select is introduced between the phi 9553 // and live-out recipes when folding the tail. 9554 void LoopVectorizationPlanner::adjustRecipesForReductions( 9555 VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, 9556 ElementCount MinVF) { 9557 for (auto &Reduction : CM.getInLoopReductionChains()) { 9558 PHINode *Phi = Reduction.first; 9559 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 9560 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 9561 9562 if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) 9563 continue; 9564 9565 // ReductionOperations are orders top-down from the phi's use to the 9566 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 9567 // which of the two operands will remain scalar and which will be reduced. 9568 // For minmax the chain will be the select instructions. 9569 Instruction *Chain = Phi; 9570 for (Instruction *R : ReductionOperations) { 9571 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 9572 RecurKind Kind = RdxDesc.getRecurrenceKind(); 9573 9574 VPValue *ChainOp = Plan->getVPValue(Chain); 9575 unsigned FirstOpId; 9576 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9577 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 9578 "Expected to replace a VPWidenSelectSC"); 9579 FirstOpId = 1; 9580 } else { 9581 assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) && 9582 "Expected to replace a VPWidenSC"); 9583 FirstOpId = 0; 9584 } 9585 unsigned VecOpId = 9586 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 9587 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 9588 9589 auto *CondOp = CM.foldTailByMasking() 9590 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 9591 : nullptr; 9592 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 9593 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 9594 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9595 Plan->removeVPValueFor(R); 9596 Plan->addVPValue(R, RedRecipe); 9597 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9598 WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); 9599 WidenRecipe->eraseFromParent(); 9600 9601 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9602 VPRecipeBase *CompareRecipe = 9603 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9604 assert(isa<VPWidenRecipe>(CompareRecipe) && 9605 "Expected to replace a VPWidenSC"); 9606 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9607 "Expected no remaining users"); 9608 CompareRecipe->eraseFromParent(); 9609 } 9610 Chain = R; 9611 } 9612 } 9613 9614 // If tail is folded by masking, introduce selects between the phi 9615 // and the live-out instruction of each reduction, at the end of the latch. 9616 if (CM.foldTailByMasking()) { 9617 for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) { 9618 VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); 9619 if (!PhiR || PhiR->isInLoop()) 9620 continue; 9621 Builder.setInsertPoint(LatchVPBB); 9622 VPValue *Cond = 9623 RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 9624 VPValue *Red = PhiR->getBackedgeValue(); 9625 Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); 9626 } 9627 } 9628 } 9629 9630 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 9631 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9632 VPSlotTracker &SlotTracker) const { 9633 O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9634 IG->getInsertPos()->printAsOperand(O, false); 9635 O << ", "; 9636 getAddr()->printAsOperand(O, SlotTracker); 9637 VPValue *Mask = getMask(); 9638 if (Mask) { 9639 O << ", "; 9640 Mask->printAsOperand(O, SlotTracker); 9641 } 9642 9643 unsigned OpIdx = 0; 9644 for (unsigned i = 0; i < IG->getFactor(); ++i) { 9645 if (!IG->getMember(i)) 9646 continue; 9647 if (getNumStoreOperands() > 0) { 9648 O << "\n" << Indent << " store "; 9649 getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); 9650 O << " to index " << i; 9651 } else { 9652 O << "\n" << Indent << " "; 9653 getVPValue(OpIdx)->printAsOperand(O, SlotTracker); 9654 O << " = load from index " << i; 9655 } 9656 ++OpIdx; 9657 } 9658 } 9659 #endif 9660 9661 void VPWidenCallRecipe::execute(VPTransformState &State) { 9662 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9663 *this, State); 9664 } 9665 9666 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9667 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9668 this, *this, InvariantCond, State); 9669 } 9670 9671 void VPWidenRecipe::execute(VPTransformState &State) { 9672 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9673 } 9674 9675 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9676 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9677 *this, State.UF, State.VF, IsPtrLoopInvariant, 9678 IsIndexLoopInvariant, State); 9679 } 9680 9681 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9682 assert(!State.Instance && "Int or FP induction being replicated."); 9683 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9684 getTruncInst(), getVPValue(0), 9685 getCastValue(), State); 9686 } 9687 9688 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9689 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this, 9690 State); 9691 } 9692 9693 void VPBlendRecipe::execute(VPTransformState &State) { 9694 State.ILV->setDebugLocFromInst(Phi, &State.Builder); 9695 // We know that all PHIs in non-header blocks are converted into 9696 // selects, so we don't have to worry about the insertion order and we 9697 // can just use the builder. 9698 // At this point we generate the predication tree. There may be 9699 // duplications since this is a simple recursive scan, but future 9700 // optimizations will clean it up. 9701 9702 unsigned NumIncoming = getNumIncomingValues(); 9703 9704 // Generate a sequence of selects of the form: 9705 // SELECT(Mask3, In3, 9706 // SELECT(Mask2, In2, 9707 // SELECT(Mask1, In1, 9708 // In0))) 9709 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9710 // are essentially undef are taken from In0. 9711 InnerLoopVectorizer::VectorParts Entry(State.UF); 9712 for (unsigned In = 0; In < NumIncoming; ++In) { 9713 for (unsigned Part = 0; Part < State.UF; ++Part) { 9714 // We might have single edge PHIs (blocks) - use an identity 9715 // 'select' for the first PHI operand. 9716 Value *In0 = State.get(getIncomingValue(In), Part); 9717 if (In == 0) 9718 Entry[Part] = In0; // Initialize with the first incoming value. 9719 else { 9720 // Select between the current value and the previous incoming edge 9721 // based on the incoming mask. 9722 Value *Cond = State.get(getMask(In), Part); 9723 Entry[Part] = 9724 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9725 } 9726 } 9727 } 9728 for (unsigned Part = 0; Part < State.UF; ++Part) 9729 State.set(this, Entry[Part], Part); 9730 } 9731 9732 void VPInterleaveRecipe::execute(VPTransformState &State) { 9733 assert(!State.Instance && "Interleave group being replicated."); 9734 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9735 getStoredValues(), getMask()); 9736 } 9737 9738 void VPReductionRecipe::execute(VPTransformState &State) { 9739 assert(!State.Instance && "Reduction being replicated."); 9740 Value *PrevInChain = State.get(getChainOp(), 0); 9741 for (unsigned Part = 0; Part < State.UF; ++Part) { 9742 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9743 bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); 9744 Value *NewVecOp = State.get(getVecOp(), Part); 9745 if (VPValue *Cond = getCondOp()) { 9746 Value *NewCond = State.get(Cond, Part); 9747 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9748 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9749 Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); 9750 Constant *IdenVec = 9751 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9752 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9753 NewVecOp = Select; 9754 } 9755 Value *NewRed; 9756 Value *NextInChain; 9757 if (IsOrdered) { 9758 if (State.VF.isVector()) 9759 NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, 9760 PrevInChain); 9761 else 9762 NewRed = State.Builder.CreateBinOp( 9763 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), 9764 PrevInChain, NewVecOp); 9765 PrevInChain = NewRed; 9766 } else { 9767 PrevInChain = State.get(getChainOp(), Part); 9768 NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9769 } 9770 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9771 NextInChain = 9772 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9773 NewRed, PrevInChain); 9774 } else if (IsOrdered) 9775 NextInChain = NewRed; 9776 else { 9777 NextInChain = State.Builder.CreateBinOp( 9778 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9779 PrevInChain); 9780 } 9781 State.set(this, NextInChain, Part); 9782 } 9783 } 9784 9785 void VPReplicateRecipe::execute(VPTransformState &State) { 9786 if (State.Instance) { // Generate a single instance. 9787 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9788 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9789 *State.Instance, IsPredicated, State); 9790 // Insert scalar instance packing it into a vector. 9791 if (AlsoPack && State.VF.isVector()) { 9792 // If we're constructing lane 0, initialize to start from poison. 9793 if (State.Instance->Lane.isFirstLane()) { 9794 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9795 Value *Poison = PoisonValue::get( 9796 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9797 State.set(this, Poison, State.Instance->Part); 9798 } 9799 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9800 } 9801 return; 9802 } 9803 9804 // Generate scalar instances for all VF lanes of all UF parts, unless the 9805 // instruction is uniform inwhich case generate only the first lane for each 9806 // of the UF parts. 9807 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9808 assert((!State.VF.isScalable() || IsUniform) && 9809 "Can't scalarize a scalable vector"); 9810 for (unsigned Part = 0; Part < State.UF; ++Part) 9811 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9812 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9813 VPIteration(Part, Lane), IsPredicated, 9814 State); 9815 } 9816 9817 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9818 assert(State.Instance && "Branch on Mask works only on single instance."); 9819 9820 unsigned Part = State.Instance->Part; 9821 unsigned Lane = State.Instance->Lane.getKnownLane(); 9822 9823 Value *ConditionBit = nullptr; 9824 VPValue *BlockInMask = getMask(); 9825 if (BlockInMask) { 9826 ConditionBit = State.get(BlockInMask, Part); 9827 if (ConditionBit->getType()->isVectorTy()) 9828 ConditionBit = State.Builder.CreateExtractElement( 9829 ConditionBit, State.Builder.getInt32(Lane)); 9830 } else // Block in mask is all-one. 9831 ConditionBit = State.Builder.getTrue(); 9832 9833 // Replace the temporary unreachable terminator with a new conditional branch, 9834 // whose two destinations will be set later when they are created. 9835 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9836 assert(isa<UnreachableInst>(CurrentTerminator) && 9837 "Expected to replace unreachable terminator with conditional branch."); 9838 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9839 CondBr->setSuccessor(0, nullptr); 9840 ReplaceInstWithInst(CurrentTerminator, CondBr); 9841 } 9842 9843 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9844 assert(State.Instance && "Predicated instruction PHI works per instance."); 9845 Instruction *ScalarPredInst = 9846 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9847 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9848 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9849 assert(PredicatingBB && "Predicated block has no single predecessor."); 9850 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9851 "operand must be VPReplicateRecipe"); 9852 9853 // By current pack/unpack logic we need to generate only a single phi node: if 9854 // a vector value for the predicated instruction exists at this point it means 9855 // the instruction has vector users only, and a phi for the vector value is 9856 // needed. In this case the recipe of the predicated instruction is marked to 9857 // also do that packing, thereby "hoisting" the insert-element sequence. 9858 // Otherwise, a phi node for the scalar value is needed. 9859 unsigned Part = State.Instance->Part; 9860 if (State.hasVectorValue(getOperand(0), Part)) { 9861 Value *VectorValue = State.get(getOperand(0), Part); 9862 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9863 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9864 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9865 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9866 if (State.hasVectorValue(this, Part)) 9867 State.reset(this, VPhi, Part); 9868 else 9869 State.set(this, VPhi, Part); 9870 // NOTE: Currently we need to update the value of the operand, so the next 9871 // predicated iteration inserts its generated value in the correct vector. 9872 State.reset(getOperand(0), VPhi, Part); 9873 } else { 9874 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9875 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9876 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9877 PredicatingBB); 9878 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9879 if (State.hasScalarValue(this, *State.Instance)) 9880 State.reset(this, Phi, *State.Instance); 9881 else 9882 State.set(this, Phi, *State.Instance); 9883 // NOTE: Currently we need to update the value of the operand, so the next 9884 // predicated iteration inserts its generated value in the correct vector. 9885 State.reset(getOperand(0), Phi, *State.Instance); 9886 } 9887 } 9888 9889 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9890 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9891 State.ILV->vectorizeMemoryInstruction( 9892 &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(), 9893 StoredValue, getMask()); 9894 } 9895 9896 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9897 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9898 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9899 // for predication. 9900 static ScalarEpilogueLowering getScalarEpilogueLowering( 9901 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9902 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9903 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9904 LoopVectorizationLegality &LVL) { 9905 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9906 // don't look at hints or options, and don't request a scalar epilogue. 9907 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9908 // LoopAccessInfo (due to code dependency and not being able to reliably get 9909 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9910 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9911 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9912 // back to the old way and vectorize with versioning when forced. See D81345.) 9913 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9914 PGSOQueryType::IRPass) && 9915 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9916 return CM_ScalarEpilogueNotAllowedOptSize; 9917 9918 // 2) If set, obey the directives 9919 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9920 switch (PreferPredicateOverEpilogue) { 9921 case PreferPredicateTy::ScalarEpilogue: 9922 return CM_ScalarEpilogueAllowed; 9923 case PreferPredicateTy::PredicateElseScalarEpilogue: 9924 return CM_ScalarEpilogueNotNeededUsePredicate; 9925 case PreferPredicateTy::PredicateOrDontVectorize: 9926 return CM_ScalarEpilogueNotAllowedUsePredicate; 9927 }; 9928 } 9929 9930 // 3) If set, obey the hints 9931 switch (Hints.getPredicate()) { 9932 case LoopVectorizeHints::FK_Enabled: 9933 return CM_ScalarEpilogueNotNeededUsePredicate; 9934 case LoopVectorizeHints::FK_Disabled: 9935 return CM_ScalarEpilogueAllowed; 9936 }; 9937 9938 // 4) if the TTI hook indicates this is profitable, request predication. 9939 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9940 LVL.getLAI())) 9941 return CM_ScalarEpilogueNotNeededUsePredicate; 9942 9943 return CM_ScalarEpilogueAllowed; 9944 } 9945 9946 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9947 // If Values have been set for this Def return the one relevant for \p Part. 9948 if (hasVectorValue(Def, Part)) 9949 return Data.PerPartOutput[Def][Part]; 9950 9951 if (!hasScalarValue(Def, {Part, 0})) { 9952 Value *IRV = Def->getLiveInIRValue(); 9953 Value *B = ILV->getBroadcastInstrs(IRV); 9954 set(Def, B, Part); 9955 return B; 9956 } 9957 9958 Value *ScalarValue = get(Def, {Part, 0}); 9959 // If we aren't vectorizing, we can just copy the scalar map values over 9960 // to the vector map. 9961 if (VF.isScalar()) { 9962 set(Def, ScalarValue, Part); 9963 return ScalarValue; 9964 } 9965 9966 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9967 bool IsUniform = RepR && RepR->isUniform(); 9968 9969 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9970 // Check if there is a scalar value for the selected lane. 9971 if (!hasScalarValue(Def, {Part, LastLane})) { 9972 // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform. 9973 assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) && 9974 "unexpected recipe found to be invariant"); 9975 IsUniform = true; 9976 LastLane = 0; 9977 } 9978 9979 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9980 // Set the insert point after the last scalarized instruction or after the 9981 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 9982 // will directly follow the scalar definitions. 9983 auto OldIP = Builder.saveIP(); 9984 auto NewIP = 9985 isa<PHINode>(LastInst) 9986 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 9987 : std::next(BasicBlock::iterator(LastInst)); 9988 Builder.SetInsertPoint(&*NewIP); 9989 9990 // However, if we are vectorizing, we need to construct the vector values. 9991 // If the value is known to be uniform after vectorization, we can just 9992 // broadcast the scalar value corresponding to lane zero for each unroll 9993 // iteration. Otherwise, we construct the vector values using 9994 // insertelement instructions. Since the resulting vectors are stored in 9995 // State, we will only generate the insertelements once. 9996 Value *VectorValue = nullptr; 9997 if (IsUniform) { 9998 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9999 set(Def, VectorValue, Part); 10000 } else { 10001 // Initialize packing with insertelements to start from undef. 10002 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 10003 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 10004 set(Def, Undef, Part); 10005 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 10006 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 10007 VectorValue = get(Def, Part); 10008 } 10009 Builder.restoreIP(OldIP); 10010 return VectorValue; 10011 } 10012 10013 // Process the loop in the VPlan-native vectorization path. This path builds 10014 // VPlan upfront in the vectorization pipeline, which allows to apply 10015 // VPlan-to-VPlan transformations from the very beginning without modifying the 10016 // input LLVM IR. 10017 static bool processLoopInVPlanNativePath( 10018 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 10019 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 10020 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 10021 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 10022 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, 10023 LoopVectorizationRequirements &Requirements) { 10024 10025 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 10026 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 10027 return false; 10028 } 10029 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 10030 Function *F = L->getHeader()->getParent(); 10031 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 10032 10033 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10034 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 10035 10036 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 10037 &Hints, IAI); 10038 // Use the planner for outer loop vectorization. 10039 // TODO: CM is not used at this point inside the planner. Turn CM into an 10040 // optional argument if we don't need it in the future. 10041 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, 10042 Requirements, ORE); 10043 10044 // Get user vectorization factor. 10045 ElementCount UserVF = Hints.getWidth(); 10046 10047 CM.collectElementTypesForWidening(); 10048 10049 // Plan how to best vectorize, return the best VF and its cost. 10050 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 10051 10052 // If we are stress testing VPlan builds, do not attempt to generate vector 10053 // code. Masked vector code generation support will follow soon. 10054 // Also, do not attempt to vectorize if no vector code will be produced. 10055 if (VPlanBuildStressTest || EnableVPlanPredication || 10056 VectorizationFactor::Disabled() == VF) 10057 return false; 10058 10059 LVP.setBestPlan(VF.Width, 1); 10060 10061 { 10062 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10063 F->getParent()->getDataLayout()); 10064 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 10065 &CM, BFI, PSI, Checks); 10066 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 10067 << L->getHeader()->getParent()->getName() << "\"\n"); 10068 LVP.executePlan(LB, DT); 10069 } 10070 10071 // Mark the loop as already vectorized to avoid vectorizing again. 10072 Hints.setAlreadyVectorized(); 10073 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10074 return true; 10075 } 10076 10077 // Emit a remark if there are stores to floats that required a floating point 10078 // extension. If the vectorized loop was generated with floating point there 10079 // will be a performance penalty from the conversion overhead and the change in 10080 // the vector width. 10081 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 10082 SmallVector<Instruction *, 4> Worklist; 10083 for (BasicBlock *BB : L->getBlocks()) { 10084 for (Instruction &Inst : *BB) { 10085 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 10086 if (S->getValueOperand()->getType()->isFloatTy()) 10087 Worklist.push_back(S); 10088 } 10089 } 10090 } 10091 10092 // Traverse the floating point stores upwards searching, for floating point 10093 // conversions. 10094 SmallPtrSet<const Instruction *, 4> Visited; 10095 SmallPtrSet<const Instruction *, 4> EmittedRemark; 10096 while (!Worklist.empty()) { 10097 auto *I = Worklist.pop_back_val(); 10098 if (!L->contains(I)) 10099 continue; 10100 if (!Visited.insert(I).second) 10101 continue; 10102 10103 // Emit a remark if the floating point store required a floating 10104 // point conversion. 10105 // TODO: More work could be done to identify the root cause such as a 10106 // constant or a function return type and point the user to it. 10107 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 10108 ORE->emit([&]() { 10109 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 10110 I->getDebugLoc(), L->getHeader()) 10111 << "floating point conversion changes vector width. " 10112 << "Mixed floating point precision requires an up/down " 10113 << "cast that will negatively impact performance."; 10114 }); 10115 10116 for (Use &Op : I->operands()) 10117 if (auto *OpI = dyn_cast<Instruction>(Op)) 10118 Worklist.push_back(OpI); 10119 } 10120 } 10121 10122 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 10123 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 10124 !EnableLoopInterleaving), 10125 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 10126 !EnableLoopVectorization) {} 10127 10128 bool LoopVectorizePass::processLoop(Loop *L) { 10129 assert((EnableVPlanNativePath || L->isInnermost()) && 10130 "VPlan-native path is not enabled. Only process inner loops."); 10131 10132 #ifndef NDEBUG 10133 const std::string DebugLocStr = getDebugLocString(L); 10134 #endif /* NDEBUG */ 10135 10136 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 10137 << L->getHeader()->getParent()->getName() << "\" from " 10138 << DebugLocStr << "\n"); 10139 10140 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 10141 10142 LLVM_DEBUG( 10143 dbgs() << "LV: Loop hints:" 10144 << " force=" 10145 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 10146 ? "disabled" 10147 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 10148 ? "enabled" 10149 : "?")) 10150 << " width=" << Hints.getWidth() 10151 << " interleave=" << Hints.getInterleave() << "\n"); 10152 10153 // Function containing loop 10154 Function *F = L->getHeader()->getParent(); 10155 10156 // Looking at the diagnostic output is the only way to determine if a loop 10157 // was vectorized (other than looking at the IR or machine code), so it 10158 // is important to generate an optimization remark for each loop. Most of 10159 // these messages are generated as OptimizationRemarkAnalysis. Remarks 10160 // generated as OptimizationRemark and OptimizationRemarkMissed are 10161 // less verbose reporting vectorized loops and unvectorized loops that may 10162 // benefit from vectorization, respectively. 10163 10164 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 10165 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 10166 return false; 10167 } 10168 10169 PredicatedScalarEvolution PSE(*SE, *L); 10170 10171 // Check if it is legal to vectorize the loop. 10172 LoopVectorizationRequirements Requirements; 10173 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 10174 &Requirements, &Hints, DB, AC, BFI, PSI); 10175 if (!LVL.canVectorize(EnableVPlanNativePath)) { 10176 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 10177 Hints.emitRemarkWithHints(); 10178 return false; 10179 } 10180 10181 // Check the function attributes and profiles to find out if this function 10182 // should be optimized for size. 10183 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 10184 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 10185 10186 // Entrance to the VPlan-native vectorization path. Outer loops are processed 10187 // here. They may require CFG and instruction level transformations before 10188 // even evaluating whether vectorization is profitable. Since we cannot modify 10189 // the incoming IR, we need to build VPlan upfront in the vectorization 10190 // pipeline. 10191 if (!L->isInnermost()) 10192 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 10193 ORE, BFI, PSI, Hints, Requirements); 10194 10195 assert(L->isInnermost() && "Inner loop expected."); 10196 10197 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 10198 // count by optimizing for size, to minimize overheads. 10199 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 10200 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 10201 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 10202 << "This loop is worth vectorizing only if no scalar " 10203 << "iteration overheads are incurred."); 10204 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 10205 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 10206 else { 10207 LLVM_DEBUG(dbgs() << "\n"); 10208 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 10209 } 10210 } 10211 10212 // Check the function attributes to see if implicit floats are allowed. 10213 // FIXME: This check doesn't seem possibly correct -- what if the loop is 10214 // an integer loop and the vector instructions selected are purely integer 10215 // vector instructions? 10216 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10217 reportVectorizationFailure( 10218 "Can't vectorize when the NoImplicitFloat attribute is used", 10219 "loop not vectorized due to NoImplicitFloat attribute", 10220 "NoImplicitFloat", ORE, L); 10221 Hints.emitRemarkWithHints(); 10222 return false; 10223 } 10224 10225 // Check if the target supports potentially unsafe FP vectorization. 10226 // FIXME: Add a check for the type of safety issue (denormal, signaling) 10227 // for the target we're vectorizing for, to make sure none of the 10228 // additional fp-math flags can help. 10229 if (Hints.isPotentiallyUnsafe() && 10230 TTI->isFPVectorizationPotentiallyUnsafe()) { 10231 reportVectorizationFailure( 10232 "Potentially unsafe FP op prevents vectorization", 10233 "loop not vectorized due to unsafe FP support.", 10234 "UnsafeFP", ORE, L); 10235 Hints.emitRemarkWithHints(); 10236 return false; 10237 } 10238 10239 bool AllowOrderedReductions; 10240 // If the flag is set, use that instead and override the TTI behaviour. 10241 if (ForceOrderedReductions.getNumOccurrences() > 0) 10242 AllowOrderedReductions = ForceOrderedReductions; 10243 else 10244 AllowOrderedReductions = TTI->enableOrderedReductions(); 10245 if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { 10246 ORE->emit([&]() { 10247 auto *ExactFPMathInst = Requirements.getExactFPInst(); 10248 return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps", 10249 ExactFPMathInst->getDebugLoc(), 10250 ExactFPMathInst->getParent()) 10251 << "loop not vectorized: cannot prove it is safe to reorder " 10252 "floating-point operations"; 10253 }); 10254 LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to " 10255 "reorder floating-point operations\n"); 10256 Hints.emitRemarkWithHints(); 10257 return false; 10258 } 10259 10260 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 10261 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 10262 10263 // If an override option has been passed in for interleaved accesses, use it. 10264 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 10265 UseInterleaved = EnableInterleavedMemAccesses; 10266 10267 // Analyze interleaved memory accesses. 10268 if (UseInterleaved) { 10269 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 10270 } 10271 10272 // Use the cost model. 10273 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 10274 F, &Hints, IAI); 10275 CM.collectValuesToIgnore(); 10276 CM.collectElementTypesForWidening(); 10277 10278 // Use the planner for vectorization. 10279 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, 10280 Requirements, ORE); 10281 10282 // Get user vectorization factor and interleave count. 10283 ElementCount UserVF = Hints.getWidth(); 10284 unsigned UserIC = Hints.getInterleave(); 10285 10286 // Plan how to best vectorize, return the best VF and its cost. 10287 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 10288 10289 VectorizationFactor VF = VectorizationFactor::Disabled(); 10290 unsigned IC = 1; 10291 10292 if (MaybeVF) { 10293 VF = *MaybeVF; 10294 // Select the interleave count. 10295 IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue()); 10296 } 10297 10298 // Identify the diagnostic messages that should be produced. 10299 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 10300 bool VectorizeLoop = true, InterleaveLoop = true; 10301 if (VF.Width.isScalar()) { 10302 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 10303 VecDiagMsg = std::make_pair( 10304 "VectorizationNotBeneficial", 10305 "the cost-model indicates that vectorization is not beneficial"); 10306 VectorizeLoop = false; 10307 } 10308 10309 if (!MaybeVF && UserIC > 1) { 10310 // Tell the user interleaving was avoided up-front, despite being explicitly 10311 // requested. 10312 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 10313 "interleaving should be avoided up front\n"); 10314 IntDiagMsg = std::make_pair( 10315 "InterleavingAvoided", 10316 "Ignoring UserIC, because interleaving was avoided up front"); 10317 InterleaveLoop = false; 10318 } else if (IC == 1 && UserIC <= 1) { 10319 // Tell the user interleaving is not beneficial. 10320 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 10321 IntDiagMsg = std::make_pair( 10322 "InterleavingNotBeneficial", 10323 "the cost-model indicates that interleaving is not beneficial"); 10324 InterleaveLoop = false; 10325 if (UserIC == 1) { 10326 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 10327 IntDiagMsg.second += 10328 " and is explicitly disabled or interleave count is set to 1"; 10329 } 10330 } else if (IC > 1 && UserIC == 1) { 10331 // Tell the user interleaving is beneficial, but it explicitly disabled. 10332 LLVM_DEBUG( 10333 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 10334 IntDiagMsg = std::make_pair( 10335 "InterleavingBeneficialButDisabled", 10336 "the cost-model indicates that interleaving is beneficial " 10337 "but is explicitly disabled or interleave count is set to 1"); 10338 InterleaveLoop = false; 10339 } 10340 10341 // Override IC if user provided an interleave count. 10342 IC = UserIC > 0 ? UserIC : IC; 10343 10344 // Emit diagnostic messages, if any. 10345 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 10346 if (!VectorizeLoop && !InterleaveLoop) { 10347 // Do not vectorize or interleaving the loop. 10348 ORE->emit([&]() { 10349 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 10350 L->getStartLoc(), L->getHeader()) 10351 << VecDiagMsg.second; 10352 }); 10353 ORE->emit([&]() { 10354 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 10355 L->getStartLoc(), L->getHeader()) 10356 << IntDiagMsg.second; 10357 }); 10358 return false; 10359 } else if (!VectorizeLoop && InterleaveLoop) { 10360 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10361 ORE->emit([&]() { 10362 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 10363 L->getStartLoc(), L->getHeader()) 10364 << VecDiagMsg.second; 10365 }); 10366 } else if (VectorizeLoop && !InterleaveLoop) { 10367 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10368 << ") in " << DebugLocStr << '\n'); 10369 ORE->emit([&]() { 10370 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 10371 L->getStartLoc(), L->getHeader()) 10372 << IntDiagMsg.second; 10373 }); 10374 } else if (VectorizeLoop && InterleaveLoop) { 10375 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 10376 << ") in " << DebugLocStr << '\n'); 10377 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 10378 } 10379 10380 bool DisableRuntimeUnroll = false; 10381 MDNode *OrigLoopID = L->getLoopID(); 10382 { 10383 // Optimistically generate runtime checks. Drop them if they turn out to not 10384 // be profitable. Limit the scope of Checks, so the cleanup happens 10385 // immediately after vector codegeneration is done. 10386 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 10387 F->getParent()->getDataLayout()); 10388 if (!VF.Width.isScalar() || IC > 1) 10389 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 10390 LVP.setBestPlan(VF.Width, IC); 10391 10392 using namespace ore; 10393 if (!VectorizeLoop) { 10394 assert(IC > 1 && "interleave count should not be 1 or 0"); 10395 // If we decided that it is not legal to vectorize the loop, then 10396 // interleave it. 10397 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 10398 &CM, BFI, PSI, Checks); 10399 LVP.executePlan(Unroller, DT); 10400 10401 ORE->emit([&]() { 10402 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 10403 L->getHeader()) 10404 << "interleaved loop (interleaved count: " 10405 << NV("InterleaveCount", IC) << ")"; 10406 }); 10407 } else { 10408 // If we decided that it is *legal* to vectorize the loop, then do it. 10409 10410 // Consider vectorizing the epilogue too if it's profitable. 10411 VectorizationFactor EpilogueVF = 10412 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 10413 if (EpilogueVF.Width.isVector()) { 10414 10415 // The first pass vectorizes the main loop and creates a scalar epilogue 10416 // to be vectorized by executing the plan (potentially with a different 10417 // factor) again shortly afterwards. 10418 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 10419 EpilogueVF.Width.getKnownMinValue(), 10420 1); 10421 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 10422 EPI, &LVL, &CM, BFI, PSI, Checks); 10423 10424 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 10425 LVP.executePlan(MainILV, DT); 10426 ++LoopsVectorized; 10427 10428 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10429 formLCSSARecursively(*L, *DT, LI, SE); 10430 10431 // Second pass vectorizes the epilogue and adjusts the control flow 10432 // edges from the first pass. 10433 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 10434 EPI.MainLoopVF = EPI.EpilogueVF; 10435 EPI.MainLoopUF = EPI.EpilogueUF; 10436 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 10437 ORE, EPI, &LVL, &CM, BFI, PSI, 10438 Checks); 10439 LVP.executePlan(EpilogILV, DT); 10440 ++LoopsEpilogueVectorized; 10441 10442 if (!MainILV.areSafetyChecksAdded()) 10443 DisableRuntimeUnroll = true; 10444 } else { 10445 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 10446 &LVL, &CM, BFI, PSI, Checks); 10447 LVP.executePlan(LB, DT); 10448 ++LoopsVectorized; 10449 10450 // Add metadata to disable runtime unrolling a scalar loop when there 10451 // are no runtime checks about strides and memory. A scalar loop that is 10452 // rarely used is not worth unrolling. 10453 if (!LB.areSafetyChecksAdded()) 10454 DisableRuntimeUnroll = true; 10455 } 10456 // Report the vectorization decision. 10457 ORE->emit([&]() { 10458 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 10459 L->getHeader()) 10460 << "vectorized loop (vectorization width: " 10461 << NV("VectorizationFactor", VF.Width) 10462 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 10463 }); 10464 } 10465 10466 if (ORE->allowExtraAnalysis(LV_NAME)) 10467 checkMixedPrecision(L, ORE); 10468 } 10469 10470 Optional<MDNode *> RemainderLoopID = 10471 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 10472 LLVMLoopVectorizeFollowupEpilogue}); 10473 if (RemainderLoopID.hasValue()) { 10474 L->setLoopID(RemainderLoopID.getValue()); 10475 } else { 10476 if (DisableRuntimeUnroll) 10477 AddRuntimeUnrollDisableMetaData(L); 10478 10479 // Mark the loop as already vectorized to avoid vectorizing again. 10480 Hints.setAlreadyVectorized(); 10481 } 10482 10483 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 10484 return true; 10485 } 10486 10487 LoopVectorizeResult LoopVectorizePass::runImpl( 10488 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 10489 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 10490 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 10491 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 10492 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 10493 SE = &SE_; 10494 LI = &LI_; 10495 TTI = &TTI_; 10496 DT = &DT_; 10497 BFI = &BFI_; 10498 TLI = TLI_; 10499 AA = &AA_; 10500 AC = &AC_; 10501 GetLAA = &GetLAA_; 10502 DB = &DB_; 10503 ORE = &ORE_; 10504 PSI = PSI_; 10505 10506 // Don't attempt if 10507 // 1. the target claims to have no vector registers, and 10508 // 2. interleaving won't help ILP. 10509 // 10510 // The second condition is necessary because, even if the target has no 10511 // vector registers, loop vectorization may still enable scalar 10512 // interleaving. 10513 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 10514 TTI->getMaxInterleaveFactor(1) < 2) 10515 return LoopVectorizeResult(false, false); 10516 10517 bool Changed = false, CFGChanged = false; 10518 10519 // The vectorizer requires loops to be in simplified form. 10520 // Since simplification may add new inner loops, it has to run before the 10521 // legality and profitability checks. This means running the loop vectorizer 10522 // will simplify all loops, regardless of whether anything end up being 10523 // vectorized. 10524 for (auto &L : *LI) 10525 Changed |= CFGChanged |= 10526 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 10527 10528 // Build up a worklist of inner-loops to vectorize. This is necessary as 10529 // the act of vectorizing or partially unrolling a loop creates new loops 10530 // and can invalidate iterators across the loops. 10531 SmallVector<Loop *, 8> Worklist; 10532 10533 for (Loop *L : *LI) 10534 collectSupportedLoops(*L, LI, ORE, Worklist); 10535 10536 LoopsAnalyzed += Worklist.size(); 10537 10538 // Now walk the identified inner loops. 10539 while (!Worklist.empty()) { 10540 Loop *L = Worklist.pop_back_val(); 10541 10542 // For the inner loops we actually process, form LCSSA to simplify the 10543 // transform. 10544 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 10545 10546 Changed |= CFGChanged |= processLoop(L); 10547 } 10548 10549 // Process each loop nest in the function. 10550 return LoopVectorizeResult(Changed, CFGChanged); 10551 } 10552 10553 PreservedAnalyses LoopVectorizePass::run(Function &F, 10554 FunctionAnalysisManager &AM) { 10555 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 10556 auto &LI = AM.getResult<LoopAnalysis>(F); 10557 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 10558 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 10559 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 10560 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 10561 auto &AA = AM.getResult<AAManager>(F); 10562 auto &AC = AM.getResult<AssumptionAnalysis>(F); 10563 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 10564 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 10565 10566 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 10567 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 10568 [&](Loop &L) -> const LoopAccessInfo & { 10569 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 10570 TLI, TTI, nullptr, nullptr}; 10571 return LAM.getResult<LoopAccessAnalysis>(L, AR); 10572 }; 10573 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 10574 ProfileSummaryInfo *PSI = 10575 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 10576 LoopVectorizeResult Result = 10577 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 10578 if (!Result.MadeAnyChange) 10579 return PreservedAnalyses::all(); 10580 PreservedAnalyses PA; 10581 10582 // We currently do not preserve loopinfo/dominator analyses with outer loop 10583 // vectorization. Until this is addressed, mark these analyses as preserved 10584 // only for non-VPlan-native path. 10585 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 10586 if (!EnableVPlanNativePath) { 10587 PA.preserve<LoopAnalysis>(); 10588 PA.preserve<DominatorTreeAnalysis>(); 10589 } 10590 if (!Result.MadeCFGChange) 10591 PA.preserveSet<CFGAnalyses>(); 10592 return PA; 10593 } 10594