1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 /// InnerLoopVectorizer vectorizes loops which contain only one basic
432 /// block to a specified vectorization factor (VF).
433 /// This class performs the widening of scalars into vectors, or multiple
434 /// scalars. This class also implements the following features:
435 /// * It inserts an epilogue loop for handling loops that don't have iteration
436 ///   counts that are known to be a multiple of the vectorization factor.
437 /// * It handles the code generation for reduction variables.
438 /// * Scalarization (implementation using scalars) of un-vectorizable
439 ///   instructions.
440 /// InnerLoopVectorizer does not perform any vectorization-legality
441 /// checks, and relies on the caller to check for the different legality
442 /// aspects. The InnerLoopVectorizer relies on the
443 /// LoopVectorizationLegality class to provide information about the induction
444 /// and reduction variables that were found to a given vectorization factor.
445 class InnerLoopVectorizer {
446 public:
447   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
448                       LoopInfo *LI, DominatorTree *DT,
449                       const TargetLibraryInfo *TLI,
450                       const TargetTransformInfo *TTI, AssumptionCache *AC,
451                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
452                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
453                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
454                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
455       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
456         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
457         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
458         PSI(PSI), RTChecks(RTChecks) {
459     // Query this against the original loop and save it here because the profile
460     // of the original loop header may change as the transformation happens.
461     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
462         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
463   }
464 
465   virtual ~InnerLoopVectorizer() = default;
466 
467   /// Create a new empty loop that will contain vectorized instructions later
468   /// on, while the old loop will be used as the scalar remainder. Control flow
469   /// is generated around the vectorized (and scalar epilogue) loops consisting
470   /// of various checks and bypasses. Return the pre-header block of the new
471   /// loop.
472   /// In the case of epilogue vectorization, this function is overriden to
473   /// handle the more complex control flow around the loops.
474   virtual BasicBlock *createVectorizedLoopSkeleton();
475 
476   /// Widen a single instruction within the innermost loop.
477   void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands,
478                         VPTransformState &State);
479 
480   /// Widen a single call instruction within the innermost loop.
481   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
482                             VPTransformState &State);
483 
484   /// Widen a single select instruction within the innermost loop.
485   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
486                               bool InvariantCond, VPTransformState &State);
487 
488   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
489   void fixVectorizedLoop(VPTransformState &State);
490 
491   // Return true if any runtime check is added.
492   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
493 
494   /// A type for vectorized values in the new loop. Each value from the
495   /// original loop, when vectorized, is represented by UF vector values in the
496   /// new unrolled loop, where UF is the unroll factor.
497   using VectorParts = SmallVector<Value *, 2>;
498 
499   /// Vectorize a single GetElementPtrInst based on information gathered and
500   /// decisions taken during planning.
501   void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices,
502                 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant,
503                 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State);
504 
505   /// Vectorize a single first-order recurrence or pointer induction PHINode in
506   /// a block. This method handles the induction variable canonicalization. It
507   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
508   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
509                            VPTransformState &State);
510 
511   /// A helper function to scalarize a single Instruction in the innermost loop.
512   /// Generates a sequence of scalar instances for each lane between \p MinLane
513   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
514   /// inclusive. Uses the VPValue operands from \p Operands instead of \p
515   /// Instr's operands.
516   void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands,
517                             const VPIteration &Instance, bool IfPredicateInstr,
518                             VPTransformState &State);
519 
520   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
521   /// is provided, the integer induction variable will first be truncated to
522   /// the corresponding type.
523   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
524                              VPValue *Def, VPValue *CastDef,
525                              VPTransformState &State);
526 
527   /// Construct the vector value of a scalarized value \p V one lane at a time.
528   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
529                                  VPTransformState &State);
530 
531   /// Try to vectorize interleaved access group \p Group with the base address
532   /// given in \p Addr, optionally masking the vector operations if \p
533   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
534   /// values in the vectorized loop.
535   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
536                                 ArrayRef<VPValue *> VPDefs,
537                                 VPTransformState &State, VPValue *Addr,
538                                 ArrayRef<VPValue *> StoredValues,
539                                 VPValue *BlockInMask = nullptr);
540 
541   /// Vectorize Load and Store instructions with the base address given in \p
542   /// Addr, optionally masking the vector operations if \p BlockInMask is
543   /// non-null. Use \p State to translate given VPValues to IR values in the
544   /// vectorized loop.
545   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
546                                   VPValue *Def, VPValue *Addr,
547                                   VPValue *StoredValue, VPValue *BlockInMask);
548 
549   /// Set the debug location in the builder \p Ptr using the debug location in
550   /// \p V. If \p Ptr is None then it uses the class member's Builder.
551   void setDebugLocFromInst(const Value *V,
552                            Optional<IRBuilder<> *> CustomBuilder = None);
553 
554   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
555   void fixNonInductionPHIs(VPTransformState &State);
556 
557   /// Returns true if the reordering of FP operations is not allowed, but we are
558   /// able to vectorize with strict in-order reductions for the given RdxDesc.
559   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
560 
561   /// Create a broadcast instruction. This method generates a broadcast
562   /// instruction (shuffle) for loop invariant values and for the induction
563   /// value. If this is the induction variable then we extend it to N, N+1, ...
564   /// this is needed because each iteration in the loop corresponds to a SIMD
565   /// element.
566   virtual Value *getBroadcastInstrs(Value *V);
567 
568 protected:
569   friend class LoopVectorizationPlanner;
570 
571   /// A small list of PHINodes.
572   using PhiVector = SmallVector<PHINode *, 4>;
573 
574   /// A type for scalarized values in the new loop. Each value from the
575   /// original loop, when scalarized, is represented by UF x VF scalar values
576   /// in the new unrolled loop, where UF is the unroll factor and VF is the
577   /// vectorization factor.
578   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
579 
580   /// Set up the values of the IVs correctly when exiting the vector loop.
581   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
582                     Value *CountRoundDown, Value *EndValue,
583                     BasicBlock *MiddleBlock);
584 
585   /// Create a new induction variable inside L.
586   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
587                                    Value *Step, Instruction *DL);
588 
589   /// Handle all cross-iteration phis in the header.
590   void fixCrossIterationPHIs(VPTransformState &State);
591 
592   /// Create the exit value of first order recurrences in the middle block and
593   /// update their users.
594   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
595 
596   /// Create code for the loop exit value of the reduction.
597   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
598 
599   /// Clear NSW/NUW flags from reduction instructions if necessary.
600   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
601                                VPTransformState &State);
602 
603   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
604   /// means we need to add the appropriate incoming value from the middle
605   /// block as exiting edges from the scalar epilogue loop (if present) are
606   /// already in place, and we exit the vector loop exclusively to the middle
607   /// block.
608   void fixLCSSAPHIs(VPTransformState &State);
609 
610   /// Iteratively sink the scalarized operands of a predicated instruction into
611   /// the block that was created for it.
612   void sinkScalarOperands(Instruction *PredInst);
613 
614   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
615   /// represented as.
616   void truncateToMinimalBitwidths(VPTransformState &State);
617 
618   /// This function adds
619   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
620   /// to each vector element of Val. The sequence starts at StartIndex.
621   /// \p Opcode is relevant for FP induction variable.
622   virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
623                                Instruction::BinaryOps Opcode =
624                                Instruction::BinaryOpsEnd);
625 
626   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
627   /// variable on which to base the steps, \p Step is the size of the step, and
628   /// \p EntryVal is the value from the original loop that maps to the steps.
629   /// Note that \p EntryVal doesn't have to be an induction variable - it
630   /// can also be a truncate instruction.
631   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
632                         const InductionDescriptor &ID, VPValue *Def,
633                         VPValue *CastDef, VPTransformState &State);
634 
635   /// Create a vector induction phi node based on an existing scalar one. \p
636   /// EntryVal is the value from the original loop that maps to the vector phi
637   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
638   /// truncate instruction, instead of widening the original IV, we widen a
639   /// version of the IV truncated to \p EntryVal's type.
640   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
641                                        Value *Step, Value *Start,
642                                        Instruction *EntryVal, VPValue *Def,
643                                        VPValue *CastDef,
644                                        VPTransformState &State);
645 
646   /// Returns true if an instruction \p I should be scalarized instead of
647   /// vectorized for the chosen vectorization factor.
648   bool shouldScalarizeInstruction(Instruction *I) const;
649 
650   /// Returns true if we should generate a scalar version of \p IV.
651   bool needsScalarInduction(Instruction *IV) const;
652 
653   /// If there is a cast involved in the induction variable \p ID, which should
654   /// be ignored in the vectorized loop body, this function records the
655   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
656   /// cast. We had already proved that the casted Phi is equal to the uncasted
657   /// Phi in the vectorized loop (under a runtime guard), and therefore
658   /// there is no need to vectorize the cast - the same value can be used in the
659   /// vector loop for both the Phi and the cast.
660   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
661   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
662   ///
663   /// \p EntryVal is the value from the original loop that maps to the vector
664   /// phi node and is used to distinguish what is the IV currently being
665   /// processed - original one (if \p EntryVal is a phi corresponding to the
666   /// original IV) or the "newly-created" one based on the proof mentioned above
667   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
668   /// latter case \p EntryVal is a TruncInst and we must not record anything for
669   /// that IV, but it's error-prone to expect callers of this routine to care
670   /// about that, hence this explicit parameter.
671   void recordVectorLoopValueForInductionCast(
672       const InductionDescriptor &ID, const Instruction *EntryVal,
673       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
674       unsigned Part, unsigned Lane = UINT_MAX);
675 
676   /// Generate a shuffle sequence that will reverse the vector Vec.
677   virtual Value *reverseVector(Value *Vec);
678 
679   /// Returns (and creates if needed) the original loop trip count.
680   Value *getOrCreateTripCount(Loop *NewLoop);
681 
682   /// Returns (and creates if needed) the trip count of the widened loop.
683   Value *getOrCreateVectorTripCount(Loop *NewLoop);
684 
685   /// Returns a bitcasted value to the requested vector type.
686   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
687   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
688                                 const DataLayout &DL);
689 
690   /// Emit a bypass check to see if the vector trip count is zero, including if
691   /// it overflows.
692   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
693 
694   /// Emit a bypass check to see if all of the SCEV assumptions we've
695   /// had to make are correct. Returns the block containing the checks or
696   /// nullptr if no checks have been added.
697   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
698 
699   /// Emit bypass checks to check any memory assumptions we may have made.
700   /// Returns the block containing the checks or nullptr if no checks have been
701   /// added.
702   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
703 
704   /// Compute the transformed value of Index at offset StartValue using step
705   /// StepValue.
706   /// For integer induction, returns StartValue + Index * StepValue.
707   /// For pointer induction, returns StartValue[Index * StepValue].
708   /// FIXME: The newly created binary instructions should contain nsw/nuw
709   /// flags, which can be found from the original scalar operations.
710   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
711                               const DataLayout &DL,
712                               const InductionDescriptor &ID) const;
713 
714   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
715   /// vector loop preheader, middle block and scalar preheader. Also
716   /// allocate a loop object for the new vector loop and return it.
717   Loop *createVectorLoopSkeleton(StringRef Prefix);
718 
719   /// Create new phi nodes for the induction variables to resume iteration count
720   /// in the scalar epilogue, from where the vectorized loop left off (given by
721   /// \p VectorTripCount).
722   /// In cases where the loop skeleton is more complicated (eg. epilogue
723   /// vectorization) and the resume values can come from an additional bypass
724   /// block, the \p AdditionalBypass pair provides information about the bypass
725   /// block and the end value on the edge from bypass to this loop.
726   void createInductionResumeValues(
727       Loop *L, Value *VectorTripCount,
728       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
729 
730   /// Complete the loop skeleton by adding debug MDs, creating appropriate
731   /// conditional branches in the middle block, preparing the builder and
732   /// running the verifier. Take in the vector loop \p L as argument, and return
733   /// the preheader of the completed vector loop.
734   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
735 
736   /// Add additional metadata to \p To that was not present on \p Orig.
737   ///
738   /// Currently this is used to add the noalias annotations based on the
739   /// inserted memchecks.  Use this for instructions that are *cloned* into the
740   /// vector loop.
741   void addNewMetadata(Instruction *To, const Instruction *Orig);
742 
743   /// Add metadata from one instruction to another.
744   ///
745   /// This includes both the original MDs from \p From and additional ones (\see
746   /// addNewMetadata).  Use this for *newly created* instructions in the vector
747   /// loop.
748   void addMetadata(Instruction *To, Instruction *From);
749 
750   /// Similar to the previous function but it adds the metadata to a
751   /// vector of instructions.
752   void addMetadata(ArrayRef<Value *> To, Instruction *From);
753 
754   /// Allow subclasses to override and print debug traces before/after vplan
755   /// execution, when trace information is requested.
756   virtual void printDebugTracesAtStart(){};
757   virtual void printDebugTracesAtEnd(){};
758 
759   /// The original loop.
760   Loop *OrigLoop;
761 
762   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
763   /// dynamic knowledge to simplify SCEV expressions and converts them to a
764   /// more usable form.
765   PredicatedScalarEvolution &PSE;
766 
767   /// Loop Info.
768   LoopInfo *LI;
769 
770   /// Dominator Tree.
771   DominatorTree *DT;
772 
773   /// Alias Analysis.
774   AAResults *AA;
775 
776   /// Target Library Info.
777   const TargetLibraryInfo *TLI;
778 
779   /// Target Transform Info.
780   const TargetTransformInfo *TTI;
781 
782   /// Assumption Cache.
783   AssumptionCache *AC;
784 
785   /// Interface to emit optimization remarks.
786   OptimizationRemarkEmitter *ORE;
787 
788   /// LoopVersioning.  It's only set up (non-null) if memchecks were
789   /// used.
790   ///
791   /// This is currently only used to add no-alias metadata based on the
792   /// memchecks.  The actually versioning is performed manually.
793   std::unique_ptr<LoopVersioning> LVer;
794 
795   /// The vectorization SIMD factor to use. Each vector will have this many
796   /// vector elements.
797   ElementCount VF;
798 
799   /// The vectorization unroll factor to use. Each scalar is vectorized to this
800   /// many different vector instructions.
801   unsigned UF;
802 
803   /// The builder that we use
804   IRBuilder<> Builder;
805 
806   // --- Vectorization state ---
807 
808   /// The vector-loop preheader.
809   BasicBlock *LoopVectorPreHeader;
810 
811   /// The scalar-loop preheader.
812   BasicBlock *LoopScalarPreHeader;
813 
814   /// Middle Block between the vector and the scalar.
815   BasicBlock *LoopMiddleBlock;
816 
817   /// The unique ExitBlock of the scalar loop if one exists.  Note that
818   /// there can be multiple exiting edges reaching this block.
819   BasicBlock *LoopExitBlock;
820 
821   /// The vector loop body.
822   BasicBlock *LoopVectorBody;
823 
824   /// The scalar loop body.
825   BasicBlock *LoopScalarBody;
826 
827   /// A list of all bypass blocks. The first block is the entry of the loop.
828   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
829 
830   /// The new Induction variable which was added to the new block.
831   PHINode *Induction = nullptr;
832 
833   /// The induction variable of the old basic block.
834   PHINode *OldInduction = nullptr;
835 
836   /// Store instructions that were predicated.
837   SmallVector<Instruction *, 4> PredicatedInstructions;
838 
839   /// Trip count of the original loop.
840   Value *TripCount = nullptr;
841 
842   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
843   Value *VectorTripCount = nullptr;
844 
845   /// The legality analysis.
846   LoopVectorizationLegality *Legal;
847 
848   /// The profitablity analysis.
849   LoopVectorizationCostModel *Cost;
850 
851   // Record whether runtime checks are added.
852   bool AddedSafetyChecks = false;
853 
854   // Holds the end values for each induction variable. We save the end values
855   // so we can later fix-up the external users of the induction variables.
856   DenseMap<PHINode *, Value *> IVEndValues;
857 
858   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
859   // fixed up at the end of vector code generation.
860   SmallVector<PHINode *, 8> OrigPHIsToFix;
861 
862   /// BFI and PSI are used to check for profile guided size optimizations.
863   BlockFrequencyInfo *BFI;
864   ProfileSummaryInfo *PSI;
865 
866   // Whether this loop should be optimized for size based on profile guided size
867   // optimizatios.
868   bool OptForSizeBasedOnProfile;
869 
870   /// Structure to hold information about generated runtime checks, responsible
871   /// for cleaning the checks, if vectorization turns out unprofitable.
872   GeneratedRTChecks &RTChecks;
873 };
874 
875 class InnerLoopUnroller : public InnerLoopVectorizer {
876 public:
877   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
878                     LoopInfo *LI, DominatorTree *DT,
879                     const TargetLibraryInfo *TLI,
880                     const TargetTransformInfo *TTI, AssumptionCache *AC,
881                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
882                     LoopVectorizationLegality *LVL,
883                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
884                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
885       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
886                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
887                             BFI, PSI, Check) {}
888 
889 private:
890   Value *getBroadcastInstrs(Value *V) override;
891   Value *getStepVector(Value *Val, int StartIdx, Value *Step,
892                        Instruction::BinaryOps Opcode =
893                        Instruction::BinaryOpsEnd) override;
894   Value *reverseVector(Value *Vec) override;
895 };
896 
897 /// Encapsulate information regarding vectorization of a loop and its epilogue.
898 /// This information is meant to be updated and used across two stages of
899 /// epilogue vectorization.
900 struct EpilogueLoopVectorizationInfo {
901   ElementCount MainLoopVF = ElementCount::getFixed(0);
902   unsigned MainLoopUF = 0;
903   ElementCount EpilogueVF = ElementCount::getFixed(0);
904   unsigned EpilogueUF = 0;
905   BasicBlock *MainLoopIterationCountCheck = nullptr;
906   BasicBlock *EpilogueIterationCountCheck = nullptr;
907   BasicBlock *SCEVSafetyCheck = nullptr;
908   BasicBlock *MemSafetyCheck = nullptr;
909   Value *TripCount = nullptr;
910   Value *VectorTripCount = nullptr;
911 
912   EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF,
913                                 unsigned EUF)
914       : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF),
915         EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) {
916     assert(EUF == 1 &&
917            "A high UF for the epilogue loop is likely not beneficial.");
918   }
919 };
920 
921 /// An extension of the inner loop vectorizer that creates a skeleton for a
922 /// vectorized loop that has its epilogue (residual) also vectorized.
923 /// The idea is to run the vplan on a given loop twice, firstly to setup the
924 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
925 /// from the first step and vectorize the epilogue.  This is achieved by
926 /// deriving two concrete strategy classes from this base class and invoking
927 /// them in succession from the loop vectorizer planner.
928 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
929 public:
930   InnerLoopAndEpilogueVectorizer(
931       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
932       DominatorTree *DT, const TargetLibraryInfo *TLI,
933       const TargetTransformInfo *TTI, AssumptionCache *AC,
934       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
935       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
936       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
937       GeneratedRTChecks &Checks)
938       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
939                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
940                             Checks),
941         EPI(EPI) {}
942 
943   // Override this function to handle the more complex control flow around the
944   // three loops.
945   BasicBlock *createVectorizedLoopSkeleton() final override {
946     return createEpilogueVectorizedLoopSkeleton();
947   }
948 
949   /// The interface for creating a vectorized skeleton using one of two
950   /// different strategies, each corresponding to one execution of the vplan
951   /// as described above.
952   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
953 
954   /// Holds and updates state information required to vectorize the main loop
955   /// and its epilogue in two separate passes. This setup helps us avoid
956   /// regenerating and recomputing runtime safety checks. It also helps us to
957   /// shorten the iteration-count-check path length for the cases where the
958   /// iteration count of the loop is so small that the main vector loop is
959   /// completely skipped.
960   EpilogueLoopVectorizationInfo &EPI;
961 };
962 
963 /// A specialized derived class of inner loop vectorizer that performs
964 /// vectorization of *main* loops in the process of vectorizing loops and their
965 /// epilogues.
966 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
967 public:
968   EpilogueVectorizerMainLoop(
969       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
970       DominatorTree *DT, const TargetLibraryInfo *TLI,
971       const TargetTransformInfo *TTI, AssumptionCache *AC,
972       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
973       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
974       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
975       GeneratedRTChecks &Check)
976       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
977                                        EPI, LVL, CM, BFI, PSI, Check) {}
978   /// Implements the interface for creating a vectorized skeleton using the
979   /// *main loop* strategy (ie the first pass of vplan execution).
980   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
981 
982 protected:
983   /// Emits an iteration count bypass check once for the main loop (when \p
984   /// ForEpilogue is false) and once for the epilogue loop (when \p
985   /// ForEpilogue is true).
986   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
987                                              bool ForEpilogue);
988   void printDebugTracesAtStart() override;
989   void printDebugTracesAtEnd() override;
990 };
991 
992 // A specialized derived class of inner loop vectorizer that performs
993 // vectorization of *epilogue* loops in the process of vectorizing loops and
994 // their epilogues.
995 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
996 public:
997   EpilogueVectorizerEpilogueLoop(
998       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
999       DominatorTree *DT, const TargetLibraryInfo *TLI,
1000       const TargetTransformInfo *TTI, AssumptionCache *AC,
1001       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1002       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1003       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1004       GeneratedRTChecks &Checks)
1005       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1006                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1007   /// Implements the interface for creating a vectorized skeleton using the
1008   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1009   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1010 
1011 protected:
1012   /// Emits an iteration count bypass check after the main vector loop has
1013   /// finished to see if there are any iterations left to execute by either
1014   /// the vector epilogue or the scalar epilogue.
1015   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1016                                                       BasicBlock *Bypass,
1017                                                       BasicBlock *Insert);
1018   void printDebugTracesAtStart() override;
1019   void printDebugTracesAtEnd() override;
1020 };
1021 } // end namespace llvm
1022 
1023 /// Look for a meaningful debug location on the instruction or it's
1024 /// operands.
1025 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1026   if (!I)
1027     return I;
1028 
1029   DebugLoc Empty;
1030   if (I->getDebugLoc() != Empty)
1031     return I;
1032 
1033   for (Use &Op : I->operands()) {
1034     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1035       if (OpInst->getDebugLoc() != Empty)
1036         return OpInst;
1037   }
1038 
1039   return I;
1040 }
1041 
1042 void InnerLoopVectorizer::setDebugLocFromInst(
1043     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1044   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1045   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1046     const DILocation *DIL = Inst->getDebugLoc();
1047 
1048     // When a FSDiscriminator is enabled, we don't need to add the multiply
1049     // factors to the discriminators.
1050     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1051         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1052       // FIXME: For scalable vectors, assume vscale=1.
1053       auto NewDIL =
1054           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1055       if (NewDIL)
1056         B->SetCurrentDebugLocation(NewDIL.getValue());
1057       else
1058         LLVM_DEBUG(dbgs()
1059                    << "Failed to create new discriminator: "
1060                    << DIL->getFilename() << " Line: " << DIL->getLine());
1061     } else
1062       B->SetCurrentDebugLocation(DIL);
1063   } else
1064     B->SetCurrentDebugLocation(DebugLoc());
1065 }
1066 
1067 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1068 /// is passed, the message relates to that particular instruction.
1069 #ifndef NDEBUG
1070 static void debugVectorizationMessage(const StringRef Prefix,
1071                                       const StringRef DebugMsg,
1072                                       Instruction *I) {
1073   dbgs() << "LV: " << Prefix << DebugMsg;
1074   if (I != nullptr)
1075     dbgs() << " " << *I;
1076   else
1077     dbgs() << '.';
1078   dbgs() << '\n';
1079 }
1080 #endif
1081 
1082 /// Create an analysis remark that explains why vectorization failed
1083 ///
1084 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1085 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1086 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1087 /// the location of the remark.  \return the remark object that can be
1088 /// streamed to.
1089 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1090     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1091   Value *CodeRegion = TheLoop->getHeader();
1092   DebugLoc DL = TheLoop->getStartLoc();
1093 
1094   if (I) {
1095     CodeRegion = I->getParent();
1096     // If there is no debug location attached to the instruction, revert back to
1097     // using the loop's.
1098     if (I->getDebugLoc())
1099       DL = I->getDebugLoc();
1100   }
1101 
1102   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1103 }
1104 
1105 /// Return a value for Step multiplied by VF.
1106 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) {
1107   assert(isa<ConstantInt>(Step) && "Expected an integer step");
1108   Constant *StepVal = ConstantInt::get(
1109       Step->getType(),
1110       cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue());
1111   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1112 }
1113 
1114 namespace llvm {
1115 
1116 /// Return the runtime value for VF.
1117 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1118   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1119   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1120 }
1121 
1122 void reportVectorizationFailure(const StringRef DebugMsg,
1123                                 const StringRef OREMsg, const StringRef ORETag,
1124                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1125                                 Instruction *I) {
1126   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1127   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1128   ORE->emit(
1129       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1130       << "loop not vectorized: " << OREMsg);
1131 }
1132 
1133 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1134                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1135                              Instruction *I) {
1136   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1137   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1138   ORE->emit(
1139       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1140       << Msg);
1141 }
1142 
1143 } // end namespace llvm
1144 
1145 #ifndef NDEBUG
1146 /// \return string containing a file name and a line # for the given loop.
1147 static std::string getDebugLocString(const Loop *L) {
1148   std::string Result;
1149   if (L) {
1150     raw_string_ostream OS(Result);
1151     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1152       LoopDbgLoc.print(OS);
1153     else
1154       // Just print the module name.
1155       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1156     OS.flush();
1157   }
1158   return Result;
1159 }
1160 #endif
1161 
1162 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1163                                          const Instruction *Orig) {
1164   // If the loop was versioned with memchecks, add the corresponding no-alias
1165   // metadata.
1166   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1167     LVer->annotateInstWithNoAlias(To, Orig);
1168 }
1169 
1170 void InnerLoopVectorizer::addMetadata(Instruction *To,
1171                                       Instruction *From) {
1172   propagateMetadata(To, From);
1173   addNewMetadata(To, From);
1174 }
1175 
1176 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1177                                       Instruction *From) {
1178   for (Value *V : To) {
1179     if (Instruction *I = dyn_cast<Instruction>(V))
1180       addMetadata(I, From);
1181   }
1182 }
1183 
1184 namespace llvm {
1185 
1186 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1187 // lowered.
1188 enum ScalarEpilogueLowering {
1189 
1190   // The default: allowing scalar epilogues.
1191   CM_ScalarEpilogueAllowed,
1192 
1193   // Vectorization with OptForSize: don't allow epilogues.
1194   CM_ScalarEpilogueNotAllowedOptSize,
1195 
1196   // A special case of vectorisation with OptForSize: loops with a very small
1197   // trip count are considered for vectorization under OptForSize, thereby
1198   // making sure the cost of their loop body is dominant, free of runtime
1199   // guards and scalar iteration overheads.
1200   CM_ScalarEpilogueNotAllowedLowTripLoop,
1201 
1202   // Loop hint predicate indicating an epilogue is undesired.
1203   CM_ScalarEpilogueNotNeededUsePredicate,
1204 
1205   // Directive indicating we must either tail fold or not vectorize
1206   CM_ScalarEpilogueNotAllowedUsePredicate
1207 };
1208 
1209 /// ElementCountComparator creates a total ordering for ElementCount
1210 /// for the purposes of using it in a set structure.
1211 struct ElementCountComparator {
1212   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1213     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1214            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1215   }
1216 };
1217 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1218 
1219 /// LoopVectorizationCostModel - estimates the expected speedups due to
1220 /// vectorization.
1221 /// In many cases vectorization is not profitable. This can happen because of
1222 /// a number of reasons. In this class we mainly attempt to predict the
1223 /// expected speedup/slowdowns due to the supported instruction set. We use the
1224 /// TargetTransformInfo to query the different backends for the cost of
1225 /// different operations.
1226 class LoopVectorizationCostModel {
1227 public:
1228   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1229                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1230                              LoopVectorizationLegality *Legal,
1231                              const TargetTransformInfo &TTI,
1232                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1233                              AssumptionCache *AC,
1234                              OptimizationRemarkEmitter *ORE, const Function *F,
1235                              const LoopVectorizeHints *Hints,
1236                              InterleavedAccessInfo &IAI)
1237       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1238         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1239         Hints(Hints), InterleaveInfo(IAI) {}
1240 
1241   /// \return An upper bound for the vectorization factors (both fixed and
1242   /// scalable). If the factors are 0, vectorization and interleaving should be
1243   /// avoided up front.
1244   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1245 
1246   /// \return True if runtime checks are required for vectorization, and false
1247   /// otherwise.
1248   bool runtimeChecksRequired();
1249 
1250   /// \return The most profitable vectorization factor and the cost of that VF.
1251   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1252   /// then this vectorization factor will be selected if vectorization is
1253   /// possible.
1254   VectorizationFactor
1255   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1256 
1257   VectorizationFactor
1258   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1259                                     const LoopVectorizationPlanner &LVP);
1260 
1261   /// Setup cost-based decisions for user vectorization factor.
1262   /// \return true if the UserVF is a feasible VF to be chosen.
1263   bool selectUserVectorizationFactor(ElementCount UserVF) {
1264     collectUniformsAndScalars(UserVF);
1265     collectInstsToScalarize(UserVF);
1266     return expectedCost(UserVF).first.isValid();
1267   }
1268 
1269   /// \return The size (in bits) of the smallest and widest types in the code
1270   /// that needs to be vectorized. We ignore values that remain scalar such as
1271   /// 64 bit loop indices.
1272   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1273 
1274   /// \return The desired interleave count.
1275   /// If interleave count has been specified by metadata it will be returned.
1276   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1277   /// are the selected vectorization factor and the cost of the selected VF.
1278   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1279 
1280   /// Memory access instruction may be vectorized in more than one way.
1281   /// Form of instruction after vectorization depends on cost.
1282   /// This function takes cost-based decisions for Load/Store instructions
1283   /// and collects them in a map. This decisions map is used for building
1284   /// the lists of loop-uniform and loop-scalar instructions.
1285   /// The calculated cost is saved with widening decision in order to
1286   /// avoid redundant calculations.
1287   void setCostBasedWideningDecision(ElementCount VF);
1288 
1289   /// A struct that represents some properties of the register usage
1290   /// of a loop.
1291   struct RegisterUsage {
1292     /// Holds the number of loop invariant values that are used in the loop.
1293     /// The key is ClassID of target-provided register class.
1294     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1295     /// Holds the maximum number of concurrent live intervals in the loop.
1296     /// The key is ClassID of target-provided register class.
1297     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1298   };
1299 
1300   /// \return Returns information about the register usages of the loop for the
1301   /// given vectorization factors.
1302   SmallVector<RegisterUsage, 8>
1303   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1304 
1305   /// Collect values we want to ignore in the cost model.
1306   void collectValuesToIgnore();
1307 
1308   /// Collect all element types in the loop for which widening is needed.
1309   void collectElementTypesForWidening();
1310 
1311   /// Split reductions into those that happen in the loop, and those that happen
1312   /// outside. In loop reductions are collected into InLoopReductionChains.
1313   void collectInLoopReductions();
1314 
1315   /// Returns true if we should use strict in-order reductions for the given
1316   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1317   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1318   /// of FP operations.
1319   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1320     return !Hints->allowReordering() && RdxDesc.isOrdered();
1321   }
1322 
1323   /// \returns The smallest bitwidth each instruction can be represented with.
1324   /// The vector equivalents of these instructions should be truncated to this
1325   /// type.
1326   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1327     return MinBWs;
1328   }
1329 
1330   /// \returns True if it is more profitable to scalarize instruction \p I for
1331   /// vectorization factor \p VF.
1332   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1333     assert(VF.isVector() &&
1334            "Profitable to scalarize relevant only for VF > 1.");
1335 
1336     // Cost model is not run in the VPlan-native path - return conservative
1337     // result until this changes.
1338     if (EnableVPlanNativePath)
1339       return false;
1340 
1341     auto Scalars = InstsToScalarize.find(VF);
1342     assert(Scalars != InstsToScalarize.end() &&
1343            "VF not yet analyzed for scalarization profitability");
1344     return Scalars->second.find(I) != Scalars->second.end();
1345   }
1346 
1347   /// Returns true if \p I is known to be uniform after vectorization.
1348   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1349     if (VF.isScalar())
1350       return true;
1351 
1352     // Cost model is not run in the VPlan-native path - return conservative
1353     // result until this changes.
1354     if (EnableVPlanNativePath)
1355       return false;
1356 
1357     auto UniformsPerVF = Uniforms.find(VF);
1358     assert(UniformsPerVF != Uniforms.end() &&
1359            "VF not yet analyzed for uniformity");
1360     return UniformsPerVF->second.count(I);
1361   }
1362 
1363   /// Returns true if \p I is known to be scalar after vectorization.
1364   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1365     if (VF.isScalar())
1366       return true;
1367 
1368     // Cost model is not run in the VPlan-native path - return conservative
1369     // result until this changes.
1370     if (EnableVPlanNativePath)
1371       return false;
1372 
1373     auto ScalarsPerVF = Scalars.find(VF);
1374     assert(ScalarsPerVF != Scalars.end() &&
1375            "Scalar values are not calculated for VF");
1376     return ScalarsPerVF->second.count(I);
1377   }
1378 
1379   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1380   /// for vectorization factor \p VF.
1381   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1382     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1383            !isProfitableToScalarize(I, VF) &&
1384            !isScalarAfterVectorization(I, VF);
1385   }
1386 
1387   /// Decision that was taken during cost calculation for memory instruction.
1388   enum InstWidening {
1389     CM_Unknown,
1390     CM_Widen,         // For consecutive accesses with stride +1.
1391     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1392     CM_Interleave,
1393     CM_GatherScatter,
1394     CM_Scalarize
1395   };
1396 
1397   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1398   /// instruction \p I and vector width \p VF.
1399   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1400                            InstructionCost Cost) {
1401     assert(VF.isVector() && "Expected VF >=2");
1402     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1403   }
1404 
1405   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1406   /// interleaving group \p Grp and vector width \p VF.
1407   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1408                            ElementCount VF, InstWidening W,
1409                            InstructionCost Cost) {
1410     assert(VF.isVector() && "Expected VF >=2");
1411     /// Broadcast this decicion to all instructions inside the group.
1412     /// But the cost will be assigned to one instruction only.
1413     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1414       if (auto *I = Grp->getMember(i)) {
1415         if (Grp->getInsertPos() == I)
1416           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1417         else
1418           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1419       }
1420     }
1421   }
1422 
1423   /// Return the cost model decision for the given instruction \p I and vector
1424   /// width \p VF. Return CM_Unknown if this instruction did not pass
1425   /// through the cost modeling.
1426   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1427     assert(VF.isVector() && "Expected VF to be a vector VF");
1428     // Cost model is not run in the VPlan-native path - return conservative
1429     // result until this changes.
1430     if (EnableVPlanNativePath)
1431       return CM_GatherScatter;
1432 
1433     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1434     auto Itr = WideningDecisions.find(InstOnVF);
1435     if (Itr == WideningDecisions.end())
1436       return CM_Unknown;
1437     return Itr->second.first;
1438   }
1439 
1440   /// Return the vectorization cost for the given instruction \p I and vector
1441   /// width \p VF.
1442   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1443     assert(VF.isVector() && "Expected VF >=2");
1444     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1445     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1446            "The cost is not calculated");
1447     return WideningDecisions[InstOnVF].second;
1448   }
1449 
1450   /// Return True if instruction \p I is an optimizable truncate whose operand
1451   /// is an induction variable. Such a truncate will be removed by adding a new
1452   /// induction variable with the destination type.
1453   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1454     // If the instruction is not a truncate, return false.
1455     auto *Trunc = dyn_cast<TruncInst>(I);
1456     if (!Trunc)
1457       return false;
1458 
1459     // Get the source and destination types of the truncate.
1460     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1461     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1462 
1463     // If the truncate is free for the given types, return false. Replacing a
1464     // free truncate with an induction variable would add an induction variable
1465     // update instruction to each iteration of the loop. We exclude from this
1466     // check the primary induction variable since it will need an update
1467     // instruction regardless.
1468     Value *Op = Trunc->getOperand(0);
1469     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1470       return false;
1471 
1472     // If the truncated value is not an induction variable, return false.
1473     return Legal->isInductionPhi(Op);
1474   }
1475 
1476   /// Collects the instructions to scalarize for each predicated instruction in
1477   /// the loop.
1478   void collectInstsToScalarize(ElementCount VF);
1479 
1480   /// Collect Uniform and Scalar values for the given \p VF.
1481   /// The sets depend on CM decision for Load/Store instructions
1482   /// that may be vectorized as interleave, gather-scatter or scalarized.
1483   void collectUniformsAndScalars(ElementCount VF) {
1484     // Do the analysis once.
1485     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1486       return;
1487     setCostBasedWideningDecision(VF);
1488     collectLoopUniforms(VF);
1489     collectLoopScalars(VF);
1490   }
1491 
1492   /// Returns true if the target machine supports masked store operation
1493   /// for the given \p DataType and kind of access to \p Ptr.
1494   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1495     return Legal->isConsecutivePtr(Ptr) &&
1496            TTI.isLegalMaskedStore(DataType, Alignment);
1497   }
1498 
1499   /// Returns true if the target machine supports masked load operation
1500   /// for the given \p DataType and kind of access to \p Ptr.
1501   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1502     return Legal->isConsecutivePtr(Ptr) &&
1503            TTI.isLegalMaskedLoad(DataType, Alignment);
1504   }
1505 
1506   /// Returns true if the target machine can represent \p V as a masked gather
1507   /// or scatter operation.
1508   bool isLegalGatherOrScatter(Value *V) {
1509     bool LI = isa<LoadInst>(V);
1510     bool SI = isa<StoreInst>(V);
1511     if (!LI && !SI)
1512       return false;
1513     auto *Ty = getLoadStoreType(V);
1514     Align Align = getLoadStoreAlignment(V);
1515     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1516            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1517   }
1518 
1519   /// Returns true if the target machine supports all of the reduction
1520   /// variables found for the given VF.
1521   bool canVectorizeReductions(ElementCount VF) const {
1522     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1523       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1524       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1525     }));
1526   }
1527 
1528   /// Returns true if \p I is an instruction that will be scalarized with
1529   /// predication. Such instructions include conditional stores and
1530   /// instructions that may divide by zero.
1531   /// If a non-zero VF has been calculated, we check if I will be scalarized
1532   /// predication for that VF.
1533   bool isScalarWithPredication(Instruction *I) const;
1534 
1535   // Returns true if \p I is an instruction that will be predicated either
1536   // through scalar predication or masked load/store or masked gather/scatter.
1537   // Superset of instructions that return true for isScalarWithPredication.
1538   bool isPredicatedInst(Instruction *I) {
1539     if (!blockNeedsPredication(I->getParent()))
1540       return false;
1541     // Loads and stores that need some form of masked operation are predicated
1542     // instructions.
1543     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1544       return Legal->isMaskRequired(I);
1545     return isScalarWithPredication(I);
1546   }
1547 
1548   /// Returns true if \p I is a memory instruction with consecutive memory
1549   /// access that can be widened.
1550   bool
1551   memoryInstructionCanBeWidened(Instruction *I,
1552                                 ElementCount VF = ElementCount::getFixed(1));
1553 
1554   /// Returns true if \p I is a memory instruction in an interleaved-group
1555   /// of memory accesses that can be vectorized with wide vector loads/stores
1556   /// and shuffles.
1557   bool
1558   interleavedAccessCanBeWidened(Instruction *I,
1559                                 ElementCount VF = ElementCount::getFixed(1));
1560 
1561   /// Check if \p Instr belongs to any interleaved access group.
1562   bool isAccessInterleaved(Instruction *Instr) {
1563     return InterleaveInfo.isInterleaved(Instr);
1564   }
1565 
1566   /// Get the interleaved access group that \p Instr belongs to.
1567   const InterleaveGroup<Instruction> *
1568   getInterleavedAccessGroup(Instruction *Instr) {
1569     return InterleaveInfo.getInterleaveGroup(Instr);
1570   }
1571 
1572   /// Returns true if we're required to use a scalar epilogue for at least
1573   /// the final iteration of the original loop.
1574   bool requiresScalarEpilogue(ElementCount VF) const {
1575     if (!isScalarEpilogueAllowed())
1576       return false;
1577     // If we might exit from anywhere but the latch, must run the exiting
1578     // iteration in scalar form.
1579     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1580       return true;
1581     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1582   }
1583 
1584   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1585   /// loop hint annotation.
1586   bool isScalarEpilogueAllowed() const {
1587     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1588   }
1589 
1590   /// Returns true if all loop blocks should be masked to fold tail loop.
1591   bool foldTailByMasking() const { return FoldTailByMasking; }
1592 
1593   bool blockNeedsPredication(BasicBlock *BB) const {
1594     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1595   }
1596 
1597   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1598   /// nodes to the chain of instructions representing the reductions. Uses a
1599   /// MapVector to ensure deterministic iteration order.
1600   using ReductionChainMap =
1601       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1602 
1603   /// Return the chain of instructions representing an inloop reduction.
1604   const ReductionChainMap &getInLoopReductionChains() const {
1605     return InLoopReductionChains;
1606   }
1607 
1608   /// Returns true if the Phi is part of an inloop reduction.
1609   bool isInLoopReduction(PHINode *Phi) const {
1610     return InLoopReductionChains.count(Phi);
1611   }
1612 
1613   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1614   /// with factor VF.  Return the cost of the instruction, including
1615   /// scalarization overhead if it's needed.
1616   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1617 
1618   /// Estimate cost of a call instruction CI if it were vectorized with factor
1619   /// VF. Return the cost of the instruction, including scalarization overhead
1620   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1621   /// scalarized -
1622   /// i.e. either vector version isn't available, or is too expensive.
1623   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1624                                     bool &NeedToScalarize) const;
1625 
1626   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1627   /// that of B.
1628   bool isMoreProfitable(const VectorizationFactor &A,
1629                         const VectorizationFactor &B) const;
1630 
1631   /// Invalidates decisions already taken by the cost model.
1632   void invalidateCostModelingDecisions() {
1633     WideningDecisions.clear();
1634     Uniforms.clear();
1635     Scalars.clear();
1636   }
1637 
1638 private:
1639   unsigned NumPredStores = 0;
1640 
1641   /// \return An upper bound for the vectorization factors for both
1642   /// fixed and scalable vectorization, where the minimum-known number of
1643   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1644   /// disabled or unsupported, then the scalable part will be equal to
1645   /// ElementCount::getScalable(0).
1646   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1647                                            ElementCount UserVF);
1648 
1649   /// \return the maximized element count based on the targets vector
1650   /// registers and the loop trip-count, but limited to a maximum safe VF.
1651   /// This is a helper function of computeFeasibleMaxVF.
1652   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1653   /// issue that occurred on one of the buildbots which cannot be reproduced
1654   /// without having access to the properietary compiler (see comments on
1655   /// D98509). The issue is currently under investigation and this workaround
1656   /// will be removed as soon as possible.
1657   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1658                                        unsigned SmallestType,
1659                                        unsigned WidestType,
1660                                        const ElementCount &MaxSafeVF);
1661 
1662   /// \return the maximum legal scalable VF, based on the safe max number
1663   /// of elements.
1664   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1665 
1666   /// The vectorization cost is a combination of the cost itself and a boolean
1667   /// indicating whether any of the contributing operations will actually
1668   /// operate on vector values after type legalization in the backend. If this
1669   /// latter value is false, then all operations will be scalarized (i.e. no
1670   /// vectorization has actually taken place).
1671   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1672 
1673   /// Returns the expected execution cost. The unit of the cost does
1674   /// not matter because we use the 'cost' units to compare different
1675   /// vector widths. The cost that is returned is *not* normalized by
1676   /// the factor width. If \p Invalid is not nullptr, this function
1677   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1678   /// each instruction that has an Invalid cost for the given VF.
1679   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1680   VectorizationCostTy
1681   expectedCost(ElementCount VF,
1682                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1683 
1684   /// Returns the execution time cost of an instruction for a given vector
1685   /// width. Vector width of one means scalar.
1686   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1687 
1688   /// The cost-computation logic from getInstructionCost which provides
1689   /// the vector type as an output parameter.
1690   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1691                                      Type *&VectorTy);
1692 
1693   /// Return the cost of instructions in an inloop reduction pattern, if I is
1694   /// part of that pattern.
1695   Optional<InstructionCost>
1696   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1697                           TTI::TargetCostKind CostKind);
1698 
1699   /// Calculate vectorization cost of memory instruction \p I.
1700   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1701 
1702   /// The cost computation for scalarized memory instruction.
1703   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1704 
1705   /// The cost computation for interleaving group of memory instructions.
1706   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1707 
1708   /// The cost computation for Gather/Scatter instruction.
1709   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1710 
1711   /// The cost computation for widening instruction \p I with consecutive
1712   /// memory access.
1713   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1714 
1715   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1716   /// Load: scalar load + broadcast.
1717   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1718   /// element)
1719   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1720 
1721   /// Estimate the overhead of scalarizing an instruction. This is a
1722   /// convenience wrapper for the type-based getScalarizationOverhead API.
1723   InstructionCost getScalarizationOverhead(Instruction *I,
1724                                            ElementCount VF) const;
1725 
1726   /// Returns whether the instruction is a load or store and will be a emitted
1727   /// as a vector operation.
1728   bool isConsecutiveLoadOrStore(Instruction *I);
1729 
1730   /// Returns true if an artificially high cost for emulated masked memrefs
1731   /// should be used.
1732   bool useEmulatedMaskMemRefHack(Instruction *I);
1733 
1734   /// Map of scalar integer values to the smallest bitwidth they can be legally
1735   /// represented as. The vector equivalents of these values should be truncated
1736   /// to this type.
1737   MapVector<Instruction *, uint64_t> MinBWs;
1738 
1739   /// A type representing the costs for instructions if they were to be
1740   /// scalarized rather than vectorized. The entries are Instruction-Cost
1741   /// pairs.
1742   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1743 
1744   /// A set containing all BasicBlocks that are known to present after
1745   /// vectorization as a predicated block.
1746   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1747 
1748   /// Records whether it is allowed to have the original scalar loop execute at
1749   /// least once. This may be needed as a fallback loop in case runtime
1750   /// aliasing/dependence checks fail, or to handle the tail/remainder
1751   /// iterations when the trip count is unknown or doesn't divide by the VF,
1752   /// or as a peel-loop to handle gaps in interleave-groups.
1753   /// Under optsize and when the trip count is very small we don't allow any
1754   /// iterations to execute in the scalar loop.
1755   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1756 
1757   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1758   bool FoldTailByMasking = false;
1759 
1760   /// A map holding scalar costs for different vectorization factors. The
1761   /// presence of a cost for an instruction in the mapping indicates that the
1762   /// instruction will be scalarized when vectorizing with the associated
1763   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1764   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1765 
1766   /// Holds the instructions known to be uniform after vectorization.
1767   /// The data is collected per VF.
1768   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1769 
1770   /// Holds the instructions known to be scalar after vectorization.
1771   /// The data is collected per VF.
1772   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1773 
1774   /// Holds the instructions (address computations) that are forced to be
1775   /// scalarized.
1776   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1777 
1778   /// PHINodes of the reductions that should be expanded in-loop along with
1779   /// their associated chains of reduction operations, in program order from top
1780   /// (PHI) to bottom
1781   ReductionChainMap InLoopReductionChains;
1782 
1783   /// A Map of inloop reduction operations and their immediate chain operand.
1784   /// FIXME: This can be removed once reductions can be costed correctly in
1785   /// vplan. This was added to allow quick lookup to the inloop operations,
1786   /// without having to loop through InLoopReductionChains.
1787   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1788 
1789   /// Returns the expected difference in cost from scalarizing the expression
1790   /// feeding a predicated instruction \p PredInst. The instructions to
1791   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1792   /// non-negative return value implies the expression will be scalarized.
1793   /// Currently, only single-use chains are considered for scalarization.
1794   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1795                               ElementCount VF);
1796 
1797   /// Collect the instructions that are uniform after vectorization. An
1798   /// instruction is uniform if we represent it with a single scalar value in
1799   /// the vectorized loop corresponding to each vector iteration. Examples of
1800   /// uniform instructions include pointer operands of consecutive or
1801   /// interleaved memory accesses. Note that although uniformity implies an
1802   /// instruction will be scalar, the reverse is not true. In general, a
1803   /// scalarized instruction will be represented by VF scalar values in the
1804   /// vectorized loop, each corresponding to an iteration of the original
1805   /// scalar loop.
1806   void collectLoopUniforms(ElementCount VF);
1807 
1808   /// Collect the instructions that are scalar after vectorization. An
1809   /// instruction is scalar if it is known to be uniform or will be scalarized
1810   /// during vectorization. Non-uniform scalarized instructions will be
1811   /// represented by VF values in the vectorized loop, each corresponding to an
1812   /// iteration of the original scalar loop.
1813   void collectLoopScalars(ElementCount VF);
1814 
1815   /// Keeps cost model vectorization decision and cost for instructions.
1816   /// Right now it is used for memory instructions only.
1817   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1818                                 std::pair<InstWidening, InstructionCost>>;
1819 
1820   DecisionList WideningDecisions;
1821 
1822   /// Returns true if \p V is expected to be vectorized and it needs to be
1823   /// extracted.
1824   bool needsExtract(Value *V, ElementCount VF) const {
1825     Instruction *I = dyn_cast<Instruction>(V);
1826     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1827         TheLoop->isLoopInvariant(I))
1828       return false;
1829 
1830     // Assume we can vectorize V (and hence we need extraction) if the
1831     // scalars are not computed yet. This can happen, because it is called
1832     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1833     // the scalars are collected. That should be a safe assumption in most
1834     // cases, because we check if the operands have vectorizable types
1835     // beforehand in LoopVectorizationLegality.
1836     return Scalars.find(VF) == Scalars.end() ||
1837            !isScalarAfterVectorization(I, VF);
1838   };
1839 
1840   /// Returns a range containing only operands needing to be extracted.
1841   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1842                                                    ElementCount VF) const {
1843     return SmallVector<Value *, 4>(make_filter_range(
1844         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1845   }
1846 
1847   /// Determines if we have the infrastructure to vectorize loop \p L and its
1848   /// epilogue, assuming the main loop is vectorized by \p VF.
1849   bool isCandidateForEpilogueVectorization(const Loop &L,
1850                                            const ElementCount VF) const;
1851 
1852   /// Returns true if epilogue vectorization is considered profitable, and
1853   /// false otherwise.
1854   /// \p VF is the vectorization factor chosen for the original loop.
1855   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1856 
1857 public:
1858   /// The loop that we evaluate.
1859   Loop *TheLoop;
1860 
1861   /// Predicated scalar evolution analysis.
1862   PredicatedScalarEvolution &PSE;
1863 
1864   /// Loop Info analysis.
1865   LoopInfo *LI;
1866 
1867   /// Vectorization legality.
1868   LoopVectorizationLegality *Legal;
1869 
1870   /// Vector target information.
1871   const TargetTransformInfo &TTI;
1872 
1873   /// Target Library Info.
1874   const TargetLibraryInfo *TLI;
1875 
1876   /// Demanded bits analysis.
1877   DemandedBits *DB;
1878 
1879   /// Assumption cache.
1880   AssumptionCache *AC;
1881 
1882   /// Interface to emit optimization remarks.
1883   OptimizationRemarkEmitter *ORE;
1884 
1885   const Function *TheFunction;
1886 
1887   /// Loop Vectorize Hint.
1888   const LoopVectorizeHints *Hints;
1889 
1890   /// The interleave access information contains groups of interleaved accesses
1891   /// with the same stride and close to each other.
1892   InterleavedAccessInfo &InterleaveInfo;
1893 
1894   /// Values to ignore in the cost model.
1895   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1896 
1897   /// Values to ignore in the cost model when VF > 1.
1898   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1899 
1900   /// All element types found in the loop.
1901   SmallPtrSet<Type *, 16> ElementTypesInLoop;
1902 
1903   /// Profitable vector factors.
1904   SmallVector<VectorizationFactor, 8> ProfitableVFs;
1905 };
1906 } // end namespace llvm
1907 
1908 /// Helper struct to manage generating runtime checks for vectorization.
1909 ///
1910 /// The runtime checks are created up-front in temporary blocks to allow better
1911 /// estimating the cost and un-linked from the existing IR. After deciding to
1912 /// vectorize, the checks are moved back. If deciding not to vectorize, the
1913 /// temporary blocks are completely removed.
1914 class GeneratedRTChecks {
1915   /// Basic block which contains the generated SCEV checks, if any.
1916   BasicBlock *SCEVCheckBlock = nullptr;
1917 
1918   /// The value representing the result of the generated SCEV checks. If it is
1919   /// nullptr, either no SCEV checks have been generated or they have been used.
1920   Value *SCEVCheckCond = nullptr;
1921 
1922   /// Basic block which contains the generated memory runtime checks, if any.
1923   BasicBlock *MemCheckBlock = nullptr;
1924 
1925   /// The value representing the result of the generated memory runtime checks.
1926   /// If it is nullptr, either no memory runtime checks have been generated or
1927   /// they have been used.
1928   Instruction *MemRuntimeCheckCond = nullptr;
1929 
1930   DominatorTree *DT;
1931   LoopInfo *LI;
1932 
1933   SCEVExpander SCEVExp;
1934   SCEVExpander MemCheckExp;
1935 
1936 public:
1937   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
1938                     const DataLayout &DL)
1939       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
1940         MemCheckExp(SE, DL, "scev.check") {}
1941 
1942   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
1943   /// accurately estimate the cost of the runtime checks. The blocks are
1944   /// un-linked from the IR and is added back during vector code generation. If
1945   /// there is no vector code generation, the check blocks are removed
1946   /// completely.
1947   void Create(Loop *L, const LoopAccessInfo &LAI,
1948               const SCEVUnionPredicate &UnionPred) {
1949 
1950     BasicBlock *LoopHeader = L->getHeader();
1951     BasicBlock *Preheader = L->getLoopPreheader();
1952 
1953     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
1954     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
1955     // may be used by SCEVExpander. The blocks will be un-linked from their
1956     // predecessors and removed from LI & DT at the end of the function.
1957     if (!UnionPred.isAlwaysTrue()) {
1958       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
1959                                   nullptr, "vector.scevcheck");
1960 
1961       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
1962           &UnionPred, SCEVCheckBlock->getTerminator());
1963     }
1964 
1965     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
1966     if (RtPtrChecking.Need) {
1967       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
1968       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
1969                                  "vector.memcheck");
1970 
1971       std::tie(std::ignore, MemRuntimeCheckCond) =
1972           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
1973                            RtPtrChecking.getChecks(), MemCheckExp);
1974       assert(MemRuntimeCheckCond &&
1975              "no RT checks generated although RtPtrChecking "
1976              "claimed checks are required");
1977     }
1978 
1979     if (!MemCheckBlock && !SCEVCheckBlock)
1980       return;
1981 
1982     // Unhook the temporary block with the checks, update various places
1983     // accordingly.
1984     if (SCEVCheckBlock)
1985       SCEVCheckBlock->replaceAllUsesWith(Preheader);
1986     if (MemCheckBlock)
1987       MemCheckBlock->replaceAllUsesWith(Preheader);
1988 
1989     if (SCEVCheckBlock) {
1990       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1991       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
1992       Preheader->getTerminator()->eraseFromParent();
1993     }
1994     if (MemCheckBlock) {
1995       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
1996       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
1997       Preheader->getTerminator()->eraseFromParent();
1998     }
1999 
2000     DT->changeImmediateDominator(LoopHeader, Preheader);
2001     if (MemCheckBlock) {
2002       DT->eraseNode(MemCheckBlock);
2003       LI->removeBlock(MemCheckBlock);
2004     }
2005     if (SCEVCheckBlock) {
2006       DT->eraseNode(SCEVCheckBlock);
2007       LI->removeBlock(SCEVCheckBlock);
2008     }
2009   }
2010 
2011   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2012   /// unused.
2013   ~GeneratedRTChecks() {
2014     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2015     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2016     if (!SCEVCheckCond)
2017       SCEVCleaner.markResultUsed();
2018 
2019     if (!MemRuntimeCheckCond)
2020       MemCheckCleaner.markResultUsed();
2021 
2022     if (MemRuntimeCheckCond) {
2023       auto &SE = *MemCheckExp.getSE();
2024       // Memory runtime check generation creates compares that use expanded
2025       // values. Remove them before running the SCEVExpanderCleaners.
2026       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2027         if (MemCheckExp.isInsertedInstruction(&I))
2028           continue;
2029         SE.forgetValue(&I);
2030         SE.eraseValueFromMap(&I);
2031         I.eraseFromParent();
2032       }
2033     }
2034     MemCheckCleaner.cleanup();
2035     SCEVCleaner.cleanup();
2036 
2037     if (SCEVCheckCond)
2038       SCEVCheckBlock->eraseFromParent();
2039     if (MemRuntimeCheckCond)
2040       MemCheckBlock->eraseFromParent();
2041   }
2042 
2043   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2044   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2045   /// depending on the generated condition.
2046   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2047                              BasicBlock *LoopVectorPreHeader,
2048                              BasicBlock *LoopExitBlock) {
2049     if (!SCEVCheckCond)
2050       return nullptr;
2051     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2052       if (C->isZero())
2053         return nullptr;
2054 
2055     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2056 
2057     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2058     // Create new preheader for vector loop.
2059     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2060       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2061 
2062     SCEVCheckBlock->getTerminator()->eraseFromParent();
2063     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2064     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2065                                                 SCEVCheckBlock);
2066 
2067     DT->addNewBlock(SCEVCheckBlock, Pred);
2068     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2069 
2070     ReplaceInstWithInst(
2071         SCEVCheckBlock->getTerminator(),
2072         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2073     // Mark the check as used, to prevent it from being removed during cleanup.
2074     SCEVCheckCond = nullptr;
2075     return SCEVCheckBlock;
2076   }
2077 
2078   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2079   /// the branches to branch to the vector preheader or \p Bypass, depending on
2080   /// the generated condition.
2081   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2082                                    BasicBlock *LoopVectorPreHeader) {
2083     // Check if we generated code that checks in runtime if arrays overlap.
2084     if (!MemRuntimeCheckCond)
2085       return nullptr;
2086 
2087     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2088     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2089                                                 MemCheckBlock);
2090 
2091     DT->addNewBlock(MemCheckBlock, Pred);
2092     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2093     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2094 
2095     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2096       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2097 
2098     ReplaceInstWithInst(
2099         MemCheckBlock->getTerminator(),
2100         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2101     MemCheckBlock->getTerminator()->setDebugLoc(
2102         Pred->getTerminator()->getDebugLoc());
2103 
2104     // Mark the check as used, to prevent it from being removed during cleanup.
2105     MemRuntimeCheckCond = nullptr;
2106     return MemCheckBlock;
2107   }
2108 };
2109 
2110 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2111 // vectorization. The loop needs to be annotated with #pragma omp simd
2112 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2113 // vector length information is not provided, vectorization is not considered
2114 // explicit. Interleave hints are not allowed either. These limitations will be
2115 // relaxed in the future.
2116 // Please, note that we are currently forced to abuse the pragma 'clang
2117 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2118 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2119 // provides *explicit vectorization hints* (LV can bypass legal checks and
2120 // assume that vectorization is legal). However, both hints are implemented
2121 // using the same metadata (llvm.loop.vectorize, processed by
2122 // LoopVectorizeHints). This will be fixed in the future when the native IR
2123 // representation for pragma 'omp simd' is introduced.
2124 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2125                                    OptimizationRemarkEmitter *ORE) {
2126   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2127   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2128 
2129   // Only outer loops with an explicit vectorization hint are supported.
2130   // Unannotated outer loops are ignored.
2131   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2132     return false;
2133 
2134   Function *Fn = OuterLp->getHeader()->getParent();
2135   if (!Hints.allowVectorization(Fn, OuterLp,
2136                                 true /*VectorizeOnlyWhenForced*/)) {
2137     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2138     return false;
2139   }
2140 
2141   if (Hints.getInterleave() > 1) {
2142     // TODO: Interleave support is future work.
2143     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2144                          "outer loops.\n");
2145     Hints.emitRemarkWithHints();
2146     return false;
2147   }
2148 
2149   return true;
2150 }
2151 
2152 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2153                                   OptimizationRemarkEmitter *ORE,
2154                                   SmallVectorImpl<Loop *> &V) {
2155   // Collect inner loops and outer loops without irreducible control flow. For
2156   // now, only collect outer loops that have explicit vectorization hints. If we
2157   // are stress testing the VPlan H-CFG construction, we collect the outermost
2158   // loop of every loop nest.
2159   if (L.isInnermost() || VPlanBuildStressTest ||
2160       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2161     LoopBlocksRPO RPOT(&L);
2162     RPOT.perform(LI);
2163     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2164       V.push_back(&L);
2165       // TODO: Collect inner loops inside marked outer loops in case
2166       // vectorization fails for the outer loop. Do not invoke
2167       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2168       // already known to be reducible. We can use an inherited attribute for
2169       // that.
2170       return;
2171     }
2172   }
2173   for (Loop *InnerL : L)
2174     collectSupportedLoops(*InnerL, LI, ORE, V);
2175 }
2176 
2177 namespace {
2178 
2179 /// The LoopVectorize Pass.
2180 struct LoopVectorize : public FunctionPass {
2181   /// Pass identification, replacement for typeid
2182   static char ID;
2183 
2184   LoopVectorizePass Impl;
2185 
2186   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2187                          bool VectorizeOnlyWhenForced = false)
2188       : FunctionPass(ID),
2189         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2190     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2191   }
2192 
2193   bool runOnFunction(Function &F) override {
2194     if (skipFunction(F))
2195       return false;
2196 
2197     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2198     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2199     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2200     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2201     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2202     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2203     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2204     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2205     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2206     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2207     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2208     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2209     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2210 
2211     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2212         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2213 
2214     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2215                         GetLAA, *ORE, PSI).MadeAnyChange;
2216   }
2217 
2218   void getAnalysisUsage(AnalysisUsage &AU) const override {
2219     AU.addRequired<AssumptionCacheTracker>();
2220     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2221     AU.addRequired<DominatorTreeWrapperPass>();
2222     AU.addRequired<LoopInfoWrapperPass>();
2223     AU.addRequired<ScalarEvolutionWrapperPass>();
2224     AU.addRequired<TargetTransformInfoWrapperPass>();
2225     AU.addRequired<AAResultsWrapperPass>();
2226     AU.addRequired<LoopAccessLegacyAnalysis>();
2227     AU.addRequired<DemandedBitsWrapperPass>();
2228     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2229     AU.addRequired<InjectTLIMappingsLegacy>();
2230 
2231     // We currently do not preserve loopinfo/dominator analyses with outer loop
2232     // vectorization. Until this is addressed, mark these analyses as preserved
2233     // only for non-VPlan-native path.
2234     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2235     if (!EnableVPlanNativePath) {
2236       AU.addPreserved<LoopInfoWrapperPass>();
2237       AU.addPreserved<DominatorTreeWrapperPass>();
2238     }
2239 
2240     AU.addPreserved<BasicAAWrapperPass>();
2241     AU.addPreserved<GlobalsAAWrapperPass>();
2242     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2243   }
2244 };
2245 
2246 } // end anonymous namespace
2247 
2248 //===----------------------------------------------------------------------===//
2249 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2250 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2251 //===----------------------------------------------------------------------===//
2252 
2253 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2254   // We need to place the broadcast of invariant variables outside the loop,
2255   // but only if it's proven safe to do so. Else, broadcast will be inside
2256   // vector loop body.
2257   Instruction *Instr = dyn_cast<Instruction>(V);
2258   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2259                      (!Instr ||
2260                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2261   // Place the code for broadcasting invariant variables in the new preheader.
2262   IRBuilder<>::InsertPointGuard Guard(Builder);
2263   if (SafeToHoist)
2264     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2265 
2266   // Broadcast the scalar into all locations in the vector.
2267   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2268 
2269   return Shuf;
2270 }
2271 
2272 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2273     const InductionDescriptor &II, Value *Step, Value *Start,
2274     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2275     VPTransformState &State) {
2276   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2277          "Expected either an induction phi-node or a truncate of it!");
2278 
2279   // Construct the initial value of the vector IV in the vector loop preheader
2280   auto CurrIP = Builder.saveIP();
2281   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2282   if (isa<TruncInst>(EntryVal)) {
2283     assert(Start->getType()->isIntegerTy() &&
2284            "Truncation requires an integer type");
2285     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2286     Step = Builder.CreateTrunc(Step, TruncType);
2287     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2288   }
2289   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2290   Value *SteppedStart =
2291       getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2292 
2293   // We create vector phi nodes for both integer and floating-point induction
2294   // variables. Here, we determine the kind of arithmetic we will perform.
2295   Instruction::BinaryOps AddOp;
2296   Instruction::BinaryOps MulOp;
2297   if (Step->getType()->isIntegerTy()) {
2298     AddOp = Instruction::Add;
2299     MulOp = Instruction::Mul;
2300   } else {
2301     AddOp = II.getInductionOpcode();
2302     MulOp = Instruction::FMul;
2303   }
2304 
2305   // Multiply the vectorization factor by the step using integer or
2306   // floating-point arithmetic as appropriate.
2307   Type *StepType = Step->getType();
2308   if (Step->getType()->isFloatingPointTy())
2309     StepType = IntegerType::get(StepType->getContext(),
2310                                 StepType->getScalarSizeInBits());
2311   Value *RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2312   if (Step->getType()->isFloatingPointTy())
2313     RuntimeVF = Builder.CreateSIToFP(RuntimeVF, Step->getType());
2314   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2315 
2316   // Create a vector splat to use in the induction update.
2317   //
2318   // FIXME: If the step is non-constant, we create the vector splat with
2319   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2320   //        handle a constant vector splat.
2321   Value *SplatVF = isa<Constant>(Mul)
2322                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2323                        : Builder.CreateVectorSplat(VF, Mul);
2324   Builder.restoreIP(CurrIP);
2325 
2326   // We may need to add the step a number of times, depending on the unroll
2327   // factor. The last of those goes into the PHI.
2328   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2329                                     &*LoopVectorBody->getFirstInsertionPt());
2330   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2331   Instruction *LastInduction = VecInd;
2332   for (unsigned Part = 0; Part < UF; ++Part) {
2333     State.set(Def, LastInduction, Part);
2334 
2335     if (isa<TruncInst>(EntryVal))
2336       addMetadata(LastInduction, EntryVal);
2337     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2338                                           State, Part);
2339 
2340     LastInduction = cast<Instruction>(
2341         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2342     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2343   }
2344 
2345   // Move the last step to the end of the latch block. This ensures consistent
2346   // placement of all induction updates.
2347   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2348   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2349   auto *ICmp = cast<Instruction>(Br->getCondition());
2350   LastInduction->moveBefore(ICmp);
2351   LastInduction->setName("vec.ind.next");
2352 
2353   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2354   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2355 }
2356 
2357 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2358   return Cost->isScalarAfterVectorization(I, VF) ||
2359          Cost->isProfitableToScalarize(I, VF);
2360 }
2361 
2362 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2363   if (shouldScalarizeInstruction(IV))
2364     return true;
2365   auto isScalarInst = [&](User *U) -> bool {
2366     auto *I = cast<Instruction>(U);
2367     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2368   };
2369   return llvm::any_of(IV->users(), isScalarInst);
2370 }
2371 
2372 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2373     const InductionDescriptor &ID, const Instruction *EntryVal,
2374     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2375     unsigned Part, unsigned Lane) {
2376   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2377          "Expected either an induction phi-node or a truncate of it!");
2378 
2379   // This induction variable is not the phi from the original loop but the
2380   // newly-created IV based on the proof that casted Phi is equal to the
2381   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2382   // re-uses the same InductionDescriptor that original IV uses but we don't
2383   // have to do any recording in this case - that is done when original IV is
2384   // processed.
2385   if (isa<TruncInst>(EntryVal))
2386     return;
2387 
2388   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2389   if (Casts.empty())
2390     return;
2391   // Only the first Cast instruction in the Casts vector is of interest.
2392   // The rest of the Casts (if exist) have no uses outside the
2393   // induction update chain itself.
2394   if (Lane < UINT_MAX)
2395     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2396   else
2397     State.set(CastDef, VectorLoopVal, Part);
2398 }
2399 
2400 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2401                                                 TruncInst *Trunc, VPValue *Def,
2402                                                 VPValue *CastDef,
2403                                                 VPTransformState &State) {
2404   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2405          "Primary induction variable must have an integer type");
2406 
2407   auto II = Legal->getInductionVars().find(IV);
2408   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2409 
2410   auto ID = II->second;
2411   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2412 
2413   // The value from the original loop to which we are mapping the new induction
2414   // variable.
2415   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2416 
2417   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2418 
2419   // Generate code for the induction step. Note that induction steps are
2420   // required to be loop-invariant
2421   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2422     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2423            "Induction step should be loop invariant");
2424     if (PSE.getSE()->isSCEVable(IV->getType())) {
2425       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2426       return Exp.expandCodeFor(Step, Step->getType(),
2427                                LoopVectorPreHeader->getTerminator());
2428     }
2429     return cast<SCEVUnknown>(Step)->getValue();
2430   };
2431 
2432   // The scalar value to broadcast. This is derived from the canonical
2433   // induction variable. If a truncation type is given, truncate the canonical
2434   // induction variable and step. Otherwise, derive these values from the
2435   // induction descriptor.
2436   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2437     Value *ScalarIV = Induction;
2438     if (IV != OldInduction) {
2439       ScalarIV = IV->getType()->isIntegerTy()
2440                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2441                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2442                                           IV->getType());
2443       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2444       ScalarIV->setName("offset.idx");
2445     }
2446     if (Trunc) {
2447       auto *TruncType = cast<IntegerType>(Trunc->getType());
2448       assert(Step->getType()->isIntegerTy() &&
2449              "Truncation requires an integer step");
2450       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2451       Step = Builder.CreateTrunc(Step, TruncType);
2452     }
2453     return ScalarIV;
2454   };
2455 
2456   // Create the vector values from the scalar IV, in the absence of creating a
2457   // vector IV.
2458   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2459     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2460     for (unsigned Part = 0; Part < UF; ++Part) {
2461       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2462       Value *EntryPart =
2463           getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step,
2464                         ID.getInductionOpcode());
2465       State.set(Def, EntryPart, Part);
2466       if (Trunc)
2467         addMetadata(EntryPart, Trunc);
2468       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2469                                             State, Part);
2470     }
2471   };
2472 
2473   // Fast-math-flags propagate from the original induction instruction.
2474   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2475   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2476     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2477 
2478   // Now do the actual transformations, and start with creating the step value.
2479   Value *Step = CreateStepValue(ID.getStep());
2480   if (VF.isZero() || VF.isScalar()) {
2481     Value *ScalarIV = CreateScalarIV(Step);
2482     CreateSplatIV(ScalarIV, Step);
2483     return;
2484   }
2485 
2486   // Determine if we want a scalar version of the induction variable. This is
2487   // true if the induction variable itself is not widened, or if it has at
2488   // least one user in the loop that is not widened.
2489   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2490   if (!NeedsScalarIV) {
2491     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2492                                     State);
2493     return;
2494   }
2495 
2496   // Try to create a new independent vector induction variable. If we can't
2497   // create the phi node, we will splat the scalar induction variable in each
2498   // loop iteration.
2499   if (!shouldScalarizeInstruction(EntryVal)) {
2500     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2501                                     State);
2502     Value *ScalarIV = CreateScalarIV(Step);
2503     // Create scalar steps that can be used by instructions we will later
2504     // scalarize. Note that the addition of the scalar steps will not increase
2505     // the number of instructions in the loop in the common case prior to
2506     // InstCombine. We will be trading one vector extract for each scalar step.
2507     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2508     return;
2509   }
2510 
2511   // All IV users are scalar instructions, so only emit a scalar IV, not a
2512   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2513   // predicate used by the masked loads/stores.
2514   Value *ScalarIV = CreateScalarIV(Step);
2515   if (!Cost->isScalarEpilogueAllowed())
2516     CreateSplatIV(ScalarIV, Step);
2517   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2518 }
2519 
2520 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2521                                           Instruction::BinaryOps BinOp) {
2522   // Create and check the types.
2523   auto *ValVTy = cast<VectorType>(Val->getType());
2524   ElementCount VLen = ValVTy->getElementCount();
2525 
2526   Type *STy = Val->getType()->getScalarType();
2527   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2528          "Induction Step must be an integer or FP");
2529   assert(Step->getType() == STy && "Step has wrong type");
2530 
2531   SmallVector<Constant *, 8> Indices;
2532 
2533   // Create a vector of consecutive numbers from zero to VF.
2534   VectorType *InitVecValVTy = ValVTy;
2535   Type *InitVecValSTy = STy;
2536   if (STy->isFloatingPointTy()) {
2537     InitVecValSTy =
2538         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2539     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2540   }
2541   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2542 
2543   // Add on StartIdx
2544   Value *StartIdxSplat = Builder.CreateVectorSplat(
2545       VLen, ConstantInt::get(InitVecValSTy, StartIdx));
2546   InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2547 
2548   if (STy->isIntegerTy()) {
2549     Step = Builder.CreateVectorSplat(VLen, Step);
2550     assert(Step->getType() == Val->getType() && "Invalid step vec");
2551     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2552     // which can be found from the original scalar operations.
2553     Step = Builder.CreateMul(InitVec, Step);
2554     return Builder.CreateAdd(Val, Step, "induction");
2555   }
2556 
2557   // Floating point induction.
2558   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2559          "Binary Opcode should be specified for FP induction");
2560   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2561   Step = Builder.CreateVectorSplat(VLen, Step);
2562   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2563   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2564 }
2565 
2566 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2567                                            Instruction *EntryVal,
2568                                            const InductionDescriptor &ID,
2569                                            VPValue *Def, VPValue *CastDef,
2570                                            VPTransformState &State) {
2571   // We shouldn't have to build scalar steps if we aren't vectorizing.
2572   assert(VF.isVector() && "VF should be greater than one");
2573   // Get the value type and ensure it and the step have the same integer type.
2574   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2575   assert(ScalarIVTy == Step->getType() &&
2576          "Val and Step should have the same type");
2577 
2578   // We build scalar steps for both integer and floating-point induction
2579   // variables. Here, we determine the kind of arithmetic we will perform.
2580   Instruction::BinaryOps AddOp;
2581   Instruction::BinaryOps MulOp;
2582   if (ScalarIVTy->isIntegerTy()) {
2583     AddOp = Instruction::Add;
2584     MulOp = Instruction::Mul;
2585   } else {
2586     AddOp = ID.getInductionOpcode();
2587     MulOp = Instruction::FMul;
2588   }
2589 
2590   // Determine the number of scalars we need to generate for each unroll
2591   // iteration. If EntryVal is uniform, we only need to generate the first
2592   // lane. Otherwise, we generate all VF values.
2593   bool IsUniform =
2594       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2595   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2596   // Compute the scalar steps and save the results in State.
2597   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2598                                      ScalarIVTy->getScalarSizeInBits());
2599   Type *VecIVTy = nullptr;
2600   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2601   if (!IsUniform && VF.isScalable()) {
2602     VecIVTy = VectorType::get(ScalarIVTy, VF);
2603     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2604     SplatStep = Builder.CreateVectorSplat(VF, Step);
2605     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2606   }
2607 
2608   for (unsigned Part = 0; Part < UF; ++Part) {
2609     Value *StartIdx0 =
2610         createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF);
2611 
2612     if (!IsUniform && VF.isScalable()) {
2613       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2614       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2615       if (ScalarIVTy->isFloatingPointTy())
2616         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2617       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2618       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2619       State.set(Def, Add, Part);
2620       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2621                                             Part);
2622       // It's useful to record the lane values too for the known minimum number
2623       // of elements so we do those below. This improves the code quality when
2624       // trying to extract the first element, for example.
2625     }
2626 
2627     if (ScalarIVTy->isFloatingPointTy())
2628       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2629 
2630     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2631       Value *StartIdx = Builder.CreateBinOp(
2632           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2633       // The step returned by `createStepForVF` is a runtime-evaluated value
2634       // when VF is scalable. Otherwise, it should be folded into a Constant.
2635       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2636              "Expected StartIdx to be folded to a constant when VF is not "
2637              "scalable");
2638       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2639       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2640       State.set(Def, Add, VPIteration(Part, Lane));
2641       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2642                                             Part, Lane);
2643     }
2644   }
2645 }
2646 
2647 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2648                                                     const VPIteration &Instance,
2649                                                     VPTransformState &State) {
2650   Value *ScalarInst = State.get(Def, Instance);
2651   Value *VectorValue = State.get(Def, Instance.Part);
2652   VectorValue = Builder.CreateInsertElement(
2653       VectorValue, ScalarInst,
2654       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2655   State.set(Def, VectorValue, Instance.Part);
2656 }
2657 
2658 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2659   assert(Vec->getType()->isVectorTy() && "Invalid type");
2660   return Builder.CreateVectorReverse(Vec, "reverse");
2661 }
2662 
2663 // Return whether we allow using masked interleave-groups (for dealing with
2664 // strided loads/stores that reside in predicated blocks, or for dealing
2665 // with gaps).
2666 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2667   // If an override option has been passed in for interleaved accesses, use it.
2668   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2669     return EnableMaskedInterleavedMemAccesses;
2670 
2671   return TTI.enableMaskedInterleavedAccessVectorization();
2672 }
2673 
2674 // Try to vectorize the interleave group that \p Instr belongs to.
2675 //
2676 // E.g. Translate following interleaved load group (factor = 3):
2677 //   for (i = 0; i < N; i+=3) {
2678 //     R = Pic[i];             // Member of index 0
2679 //     G = Pic[i+1];           // Member of index 1
2680 //     B = Pic[i+2];           // Member of index 2
2681 //     ... // do something to R, G, B
2682 //   }
2683 // To:
2684 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2685 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2686 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2687 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2688 //
2689 // Or translate following interleaved store group (factor = 3):
2690 //   for (i = 0; i < N; i+=3) {
2691 //     ... do something to R, G, B
2692 //     Pic[i]   = R;           // Member of index 0
2693 //     Pic[i+1] = G;           // Member of index 1
2694 //     Pic[i+2] = B;           // Member of index 2
2695 //   }
2696 // To:
2697 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2698 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2699 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2700 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2701 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2702 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2703     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2704     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2705     VPValue *BlockInMask) {
2706   Instruction *Instr = Group->getInsertPos();
2707   const DataLayout &DL = Instr->getModule()->getDataLayout();
2708 
2709   // Prepare for the vector type of the interleaved load/store.
2710   Type *ScalarTy = getLoadStoreType(Instr);
2711   unsigned InterleaveFactor = Group->getFactor();
2712   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2713   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2714 
2715   // Prepare for the new pointers.
2716   SmallVector<Value *, 2> AddrParts;
2717   unsigned Index = Group->getIndex(Instr);
2718 
2719   // TODO: extend the masked interleaved-group support to reversed access.
2720   assert((!BlockInMask || !Group->isReverse()) &&
2721          "Reversed masked interleave-group not supported.");
2722 
2723   // If the group is reverse, adjust the index to refer to the last vector lane
2724   // instead of the first. We adjust the index from the first vector lane,
2725   // rather than directly getting the pointer for lane VF - 1, because the
2726   // pointer operand of the interleaved access is supposed to be uniform. For
2727   // uniform instructions, we're only required to generate a value for the
2728   // first vector lane in each unroll iteration.
2729   if (Group->isReverse())
2730     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2731 
2732   for (unsigned Part = 0; Part < UF; Part++) {
2733     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2734     setDebugLocFromInst(AddrPart);
2735 
2736     // Notice current instruction could be any index. Need to adjust the address
2737     // to the member of index 0.
2738     //
2739     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2740     //       b = A[i];       // Member of index 0
2741     // Current pointer is pointed to A[i+1], adjust it to A[i].
2742     //
2743     // E.g.  A[i+1] = a;     // Member of index 1
2744     //       A[i]   = b;     // Member of index 0
2745     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2746     // Current pointer is pointed to A[i+2], adjust it to A[i].
2747 
2748     bool InBounds = false;
2749     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2750       InBounds = gep->isInBounds();
2751     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2752     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2753 
2754     // Cast to the vector pointer type.
2755     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2756     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2757     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2758   }
2759 
2760   setDebugLocFromInst(Instr);
2761   Value *PoisonVec = PoisonValue::get(VecTy);
2762 
2763   Value *MaskForGaps = nullptr;
2764   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2765     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2766     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2767   }
2768 
2769   // Vectorize the interleaved load group.
2770   if (isa<LoadInst>(Instr)) {
2771     // For each unroll part, create a wide load for the group.
2772     SmallVector<Value *, 2> NewLoads;
2773     for (unsigned Part = 0; Part < UF; Part++) {
2774       Instruction *NewLoad;
2775       if (BlockInMask || MaskForGaps) {
2776         assert(useMaskedInterleavedAccesses(*TTI) &&
2777                "masked interleaved groups are not allowed.");
2778         Value *GroupMask = MaskForGaps;
2779         if (BlockInMask) {
2780           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2781           Value *ShuffledMask = Builder.CreateShuffleVector(
2782               BlockInMaskPart,
2783               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2784               "interleaved.mask");
2785           GroupMask = MaskForGaps
2786                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2787                                                 MaskForGaps)
2788                           : ShuffledMask;
2789         }
2790         NewLoad =
2791             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2792                                      GroupMask, PoisonVec, "wide.masked.vec");
2793       }
2794       else
2795         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2796                                             Group->getAlign(), "wide.vec");
2797       Group->addMetadata(NewLoad);
2798       NewLoads.push_back(NewLoad);
2799     }
2800 
2801     // For each member in the group, shuffle out the appropriate data from the
2802     // wide loads.
2803     unsigned J = 0;
2804     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2805       Instruction *Member = Group->getMember(I);
2806 
2807       // Skip the gaps in the group.
2808       if (!Member)
2809         continue;
2810 
2811       auto StrideMask =
2812           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2813       for (unsigned Part = 0; Part < UF; Part++) {
2814         Value *StridedVec = Builder.CreateShuffleVector(
2815             NewLoads[Part], StrideMask, "strided.vec");
2816 
2817         // If this member has different type, cast the result type.
2818         if (Member->getType() != ScalarTy) {
2819           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2820           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2821           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2822         }
2823 
2824         if (Group->isReverse())
2825           StridedVec = reverseVector(StridedVec);
2826 
2827         State.set(VPDefs[J], StridedVec, Part);
2828       }
2829       ++J;
2830     }
2831     return;
2832   }
2833 
2834   // The sub vector type for current instruction.
2835   auto *SubVT = VectorType::get(ScalarTy, VF);
2836 
2837   // Vectorize the interleaved store group.
2838   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2839   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2840          "masked interleaved groups are not allowed.");
2841   assert((!MaskForGaps || !VF.isScalable()) &&
2842          "masking gaps for scalable vectors is not yet supported.");
2843   for (unsigned Part = 0; Part < UF; Part++) {
2844     // Collect the stored vector from each member.
2845     SmallVector<Value *, 4> StoredVecs;
2846     for (unsigned i = 0; i < InterleaveFactor; i++) {
2847       assert((Group->getMember(i) || MaskForGaps) &&
2848              "Fail to get a member from an interleaved store group");
2849       Instruction *Member = Group->getMember(i);
2850 
2851       // Skip the gaps in the group.
2852       if (!Member) {
2853         Value *Undef = PoisonValue::get(SubVT);
2854         StoredVecs.push_back(Undef);
2855         continue;
2856       }
2857 
2858       Value *StoredVec = State.get(StoredValues[i], Part);
2859 
2860       if (Group->isReverse())
2861         StoredVec = reverseVector(StoredVec);
2862 
2863       // If this member has different type, cast it to a unified type.
2864 
2865       if (StoredVec->getType() != SubVT)
2866         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2867 
2868       StoredVecs.push_back(StoredVec);
2869     }
2870 
2871     // Concatenate all vectors into a wide vector.
2872     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2873 
2874     // Interleave the elements in the wide vector.
2875     Value *IVec = Builder.CreateShuffleVector(
2876         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2877         "interleaved.vec");
2878 
2879     Instruction *NewStoreInstr;
2880     if (BlockInMask || MaskForGaps) {
2881       Value *GroupMask = MaskForGaps;
2882       if (BlockInMask) {
2883         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2884         Value *ShuffledMask = Builder.CreateShuffleVector(
2885             BlockInMaskPart,
2886             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2887             "interleaved.mask");
2888         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2889                                                       ShuffledMask, MaskForGaps)
2890                                 : ShuffledMask;
2891       }
2892       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
2893                                                 Group->getAlign(), GroupMask);
2894     } else
2895       NewStoreInstr =
2896           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
2897 
2898     Group->addMetadata(NewStoreInstr);
2899   }
2900 }
2901 
2902 void InnerLoopVectorizer::vectorizeMemoryInstruction(
2903     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
2904     VPValue *StoredValue, VPValue *BlockInMask) {
2905   // Attempt to issue a wide load.
2906   LoadInst *LI = dyn_cast<LoadInst>(Instr);
2907   StoreInst *SI = dyn_cast<StoreInst>(Instr);
2908 
2909   assert((LI || SI) && "Invalid Load/Store instruction");
2910   assert((!SI || StoredValue) && "No stored value provided for widened store");
2911   assert((!LI || !StoredValue) && "Stored value provided for widened load");
2912 
2913   LoopVectorizationCostModel::InstWidening Decision =
2914       Cost->getWideningDecision(Instr, VF);
2915   assert((Decision == LoopVectorizationCostModel::CM_Widen ||
2916           Decision == LoopVectorizationCostModel::CM_Widen_Reverse ||
2917           Decision == LoopVectorizationCostModel::CM_GatherScatter) &&
2918          "CM decision is not to widen the memory instruction");
2919 
2920   Type *ScalarDataTy = getLoadStoreType(Instr);
2921 
2922   auto *DataTy = VectorType::get(ScalarDataTy, VF);
2923   const Align Alignment = getLoadStoreAlignment(Instr);
2924 
2925   // Determine if the pointer operand of the access is either consecutive or
2926   // reverse consecutive.
2927   bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2928   bool ConsecutiveStride =
2929       Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2930   bool CreateGatherScatter =
2931       (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2932 
2933   // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2934   // gather/scatter. Otherwise Decision should have been to Scalarize.
2935   assert((ConsecutiveStride || CreateGatherScatter) &&
2936          "The instruction should be scalarized");
2937   (void)ConsecutiveStride;
2938 
2939   VectorParts BlockInMaskParts(UF);
2940   bool isMaskRequired = BlockInMask;
2941   if (isMaskRequired)
2942     for (unsigned Part = 0; Part < UF; ++Part)
2943       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
2944 
2945   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2946     // Calculate the pointer for the specific unroll-part.
2947     GetElementPtrInst *PartPtr = nullptr;
2948 
2949     bool InBounds = false;
2950     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2951       InBounds = gep->isInBounds();
2952     if (Reverse) {
2953       // If the address is consecutive but reversed, then the
2954       // wide store needs to start at the last vector element.
2955       // RunTimeVF =  VScale * VF.getKnownMinValue()
2956       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
2957       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
2958       // NumElt = -Part * RunTimeVF
2959       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
2960       // LastLane = 1 - RunTimeVF
2961       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
2962       PartPtr =
2963           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
2964       PartPtr->setIsInBounds(InBounds);
2965       PartPtr = cast<GetElementPtrInst>(
2966           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
2967       PartPtr->setIsInBounds(InBounds);
2968       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2969         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
2970     } else {
2971       Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF);
2972       PartPtr = cast<GetElementPtrInst>(
2973           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
2974       PartPtr->setIsInBounds(InBounds);
2975     }
2976 
2977     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
2978     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2979   };
2980 
2981   // Handle Stores:
2982   if (SI) {
2983     setDebugLocFromInst(SI);
2984 
2985     for (unsigned Part = 0; Part < UF; ++Part) {
2986       Instruction *NewSI = nullptr;
2987       Value *StoredVal = State.get(StoredValue, Part);
2988       if (CreateGatherScatter) {
2989         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
2990         Value *VectorGep = State.get(Addr, Part);
2991         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2992                                             MaskPart);
2993       } else {
2994         if (Reverse) {
2995           // If we store to reverse consecutive memory locations, then we need
2996           // to reverse the order of elements in the stored value.
2997           StoredVal = reverseVector(StoredVal);
2998           // We don't want to update the value in the map as it might be used in
2999           // another expression. So don't call resetVectorValue(StoredVal).
3000         }
3001         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3002         if (isMaskRequired)
3003           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3004                                             BlockInMaskParts[Part]);
3005         else
3006           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3007       }
3008       addMetadata(NewSI, SI);
3009     }
3010     return;
3011   }
3012 
3013   // Handle loads.
3014   assert(LI && "Must have a load instruction");
3015   setDebugLocFromInst(LI);
3016   for (unsigned Part = 0; Part < UF; ++Part) {
3017     Value *NewLI;
3018     if (CreateGatherScatter) {
3019       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3020       Value *VectorGep = State.get(Addr, Part);
3021       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3022                                          nullptr, "wide.masked.gather");
3023       addMetadata(NewLI, LI);
3024     } else {
3025       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3026       if (isMaskRequired)
3027         NewLI = Builder.CreateMaskedLoad(
3028             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3029             PoisonValue::get(DataTy), "wide.masked.load");
3030       else
3031         NewLI =
3032             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3033 
3034       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3035       addMetadata(NewLI, LI);
3036       if (Reverse)
3037         NewLI = reverseVector(NewLI);
3038     }
3039 
3040     State.set(Def, NewLI, Part);
3041   }
3042 }
3043 
3044 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def,
3045                                                VPUser &User,
3046                                                const VPIteration &Instance,
3047                                                bool IfPredicateInstr,
3048                                                VPTransformState &State) {
3049   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3050 
3051   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3052   // the first lane and part.
3053   if (isa<NoAliasScopeDeclInst>(Instr))
3054     if (!Instance.isFirstIteration())
3055       return;
3056 
3057   setDebugLocFromInst(Instr);
3058 
3059   // Does this instruction return a value ?
3060   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3061 
3062   Instruction *Cloned = Instr->clone();
3063   if (!IsVoidRetTy)
3064     Cloned->setName(Instr->getName() + ".cloned");
3065 
3066   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3067                                Builder.GetInsertPoint());
3068   // Replace the operands of the cloned instructions with their scalar
3069   // equivalents in the new loop.
3070   for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) {
3071     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3072     auto InputInstance = Instance;
3073     if (!Operand || !OrigLoop->contains(Operand) ||
3074         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3075       InputInstance.Lane = VPLane::getFirstLane();
3076     auto *NewOp = State.get(User.getOperand(op), InputInstance);
3077     Cloned->setOperand(op, NewOp);
3078   }
3079   addNewMetadata(Cloned, Instr);
3080 
3081   // Place the cloned scalar in the new loop.
3082   Builder.Insert(Cloned);
3083 
3084   State.set(Def, Cloned, Instance);
3085 
3086   // If we just cloned a new assumption, add it the assumption cache.
3087   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3088     AC->registerAssumption(II);
3089 
3090   // End if-block.
3091   if (IfPredicateInstr)
3092     PredicatedInstructions.push_back(Cloned);
3093 }
3094 
3095 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3096                                                       Value *End, Value *Step,
3097                                                       Instruction *DL) {
3098   BasicBlock *Header = L->getHeader();
3099   BasicBlock *Latch = L->getLoopLatch();
3100   // As we're just creating this loop, it's possible no latch exists
3101   // yet. If so, use the header as this will be a single block loop.
3102   if (!Latch)
3103     Latch = Header;
3104 
3105   IRBuilder<> B(&*Header->getFirstInsertionPt());
3106   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3107   setDebugLocFromInst(OldInst, &B);
3108   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3109 
3110   B.SetInsertPoint(Latch->getTerminator());
3111   setDebugLocFromInst(OldInst, &B);
3112 
3113   // Create i+1 and fill the PHINode.
3114   //
3115   // If the tail is not folded, we know that End - Start >= Step (either
3116   // statically or through the minimum iteration checks). We also know that both
3117   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3118   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3119   // overflows and we can mark the induction increment as NUW.
3120   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3121                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3122   Induction->addIncoming(Start, L->getLoopPreheader());
3123   Induction->addIncoming(Next, Latch);
3124   // Create the compare.
3125   Value *ICmp = B.CreateICmpEQ(Next, End);
3126   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3127 
3128   // Now we have two terminators. Remove the old one from the block.
3129   Latch->getTerminator()->eraseFromParent();
3130 
3131   return Induction;
3132 }
3133 
3134 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3135   if (TripCount)
3136     return TripCount;
3137 
3138   assert(L && "Create Trip Count for null loop.");
3139   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3140   // Find the loop boundaries.
3141   ScalarEvolution *SE = PSE.getSE();
3142   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3143   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3144          "Invalid loop count");
3145 
3146   Type *IdxTy = Legal->getWidestInductionType();
3147   assert(IdxTy && "No type for induction");
3148 
3149   // The exit count might have the type of i64 while the phi is i32. This can
3150   // happen if we have an induction variable that is sign extended before the
3151   // compare. The only way that we get a backedge taken count is that the
3152   // induction variable was signed and as such will not overflow. In such a case
3153   // truncation is legal.
3154   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3155       IdxTy->getPrimitiveSizeInBits())
3156     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3157   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3158 
3159   // Get the total trip count from the count by adding 1.
3160   const SCEV *ExitCount = SE->getAddExpr(
3161       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3162 
3163   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3164 
3165   // Expand the trip count and place the new instructions in the preheader.
3166   // Notice that the pre-header does not change, only the loop body.
3167   SCEVExpander Exp(*SE, DL, "induction");
3168 
3169   // Count holds the overall loop count (N).
3170   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3171                                 L->getLoopPreheader()->getTerminator());
3172 
3173   if (TripCount->getType()->isPointerTy())
3174     TripCount =
3175         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3176                                     L->getLoopPreheader()->getTerminator());
3177 
3178   return TripCount;
3179 }
3180 
3181 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3182   if (VectorTripCount)
3183     return VectorTripCount;
3184 
3185   Value *TC = getOrCreateTripCount(L);
3186   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3187 
3188   Type *Ty = TC->getType();
3189   // This is where we can make the step a runtime constant.
3190   Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF);
3191 
3192   // If the tail is to be folded by masking, round the number of iterations N
3193   // up to a multiple of Step instead of rounding down. This is done by first
3194   // adding Step-1 and then rounding down. Note that it's ok if this addition
3195   // overflows: the vector induction variable will eventually wrap to zero given
3196   // that it starts at zero and its Step is a power of two; the loop will then
3197   // exit, with the last early-exit vector comparison also producing all-true.
3198   if (Cost->foldTailByMasking()) {
3199     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3200            "VF*UF must be a power of 2 when folding tail by masking");
3201     assert(!VF.isScalable() &&
3202            "Tail folding not yet supported for scalable vectors");
3203     TC = Builder.CreateAdd(
3204         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3205   }
3206 
3207   // Now we need to generate the expression for the part of the loop that the
3208   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3209   // iterations are not required for correctness, or N - Step, otherwise. Step
3210   // is equal to the vectorization factor (number of SIMD elements) times the
3211   // unroll factor (number of SIMD instructions).
3212   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3213 
3214   // There are cases where we *must* run at least one iteration in the remainder
3215   // loop.  See the cost model for when this can happen.  If the step evenly
3216   // divides the trip count, we set the remainder to be equal to the step. If
3217   // the step does not evenly divide the trip count, no adjustment is necessary
3218   // since there will already be scalar iterations. Note that the minimum
3219   // iterations check ensures that N >= Step.
3220   if (Cost->requiresScalarEpilogue(VF)) {
3221     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3222     R = Builder.CreateSelect(IsZero, Step, R);
3223   }
3224 
3225   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3226 
3227   return VectorTripCount;
3228 }
3229 
3230 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3231                                                    const DataLayout &DL) {
3232   // Verify that V is a vector type with same number of elements as DstVTy.
3233   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3234   unsigned VF = DstFVTy->getNumElements();
3235   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3236   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3237   Type *SrcElemTy = SrcVecTy->getElementType();
3238   Type *DstElemTy = DstFVTy->getElementType();
3239   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3240          "Vector elements must have same size");
3241 
3242   // Do a direct cast if element types are castable.
3243   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3244     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3245   }
3246   // V cannot be directly casted to desired vector type.
3247   // May happen when V is a floating point vector but DstVTy is a vector of
3248   // pointers or vice-versa. Handle this using a two-step bitcast using an
3249   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3250   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3251          "Only one type should be a pointer type");
3252   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3253          "Only one type should be a floating point type");
3254   Type *IntTy =
3255       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3256   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3257   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3258   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3259 }
3260 
3261 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3262                                                          BasicBlock *Bypass) {
3263   Value *Count = getOrCreateTripCount(L);
3264   // Reuse existing vector loop preheader for TC checks.
3265   // Note that new preheader block is generated for vector loop.
3266   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3267   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3268 
3269   // Generate code to check if the loop's trip count is less than VF * UF, or
3270   // equal to it in case a scalar epilogue is required; this implies that the
3271   // vector trip count is zero. This check also covers the case where adding one
3272   // to the backedge-taken count overflowed leading to an incorrect trip count
3273   // of zero. In this case we will also jump to the scalar loop.
3274   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3275                                             : ICmpInst::ICMP_ULT;
3276 
3277   // If tail is to be folded, vector loop takes care of all iterations.
3278   Value *CheckMinIters = Builder.getFalse();
3279   if (!Cost->foldTailByMasking()) {
3280     Value *Step =
3281         createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF);
3282     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3283   }
3284   // Create new preheader for vector loop.
3285   LoopVectorPreHeader =
3286       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3287                  "vector.ph");
3288 
3289   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3290                                DT->getNode(Bypass)->getIDom()) &&
3291          "TC check is expected to dominate Bypass");
3292 
3293   // Update dominator for Bypass & LoopExit (if needed).
3294   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3295   if (!Cost->requiresScalarEpilogue(VF))
3296     // If there is an epilogue which must run, there's no edge from the
3297     // middle block to exit blocks  and thus no need to update the immediate
3298     // dominator of the exit blocks.
3299     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3300 
3301   ReplaceInstWithInst(
3302       TCCheckBlock->getTerminator(),
3303       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3304   LoopBypassBlocks.push_back(TCCheckBlock);
3305 }
3306 
3307 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3308 
3309   BasicBlock *const SCEVCheckBlock =
3310       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3311   if (!SCEVCheckBlock)
3312     return nullptr;
3313 
3314   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3315            (OptForSizeBasedOnProfile &&
3316             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3317          "Cannot SCEV check stride or overflow when optimizing for size");
3318 
3319 
3320   // Update dominator only if this is first RT check.
3321   if (LoopBypassBlocks.empty()) {
3322     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3323     if (!Cost->requiresScalarEpilogue(VF))
3324       // If there is an epilogue which must run, there's no edge from the
3325       // middle block to exit blocks  and thus no need to update the immediate
3326       // dominator of the exit blocks.
3327       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3328   }
3329 
3330   LoopBypassBlocks.push_back(SCEVCheckBlock);
3331   AddedSafetyChecks = true;
3332   return SCEVCheckBlock;
3333 }
3334 
3335 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3336                                                       BasicBlock *Bypass) {
3337   // VPlan-native path does not do any analysis for runtime checks currently.
3338   if (EnableVPlanNativePath)
3339     return nullptr;
3340 
3341   BasicBlock *const MemCheckBlock =
3342       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3343 
3344   // Check if we generated code that checks in runtime if arrays overlap. We put
3345   // the checks into a separate block to make the more common case of few
3346   // elements faster.
3347   if (!MemCheckBlock)
3348     return nullptr;
3349 
3350   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3351     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3352            "Cannot emit memory checks when optimizing for size, unless forced "
3353            "to vectorize.");
3354     ORE->emit([&]() {
3355       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3356                                         L->getStartLoc(), L->getHeader())
3357              << "Code-size may be reduced by not forcing "
3358                 "vectorization, or by source-code modifications "
3359                 "eliminating the need for runtime checks "
3360                 "(e.g., adding 'restrict').";
3361     });
3362   }
3363 
3364   LoopBypassBlocks.push_back(MemCheckBlock);
3365 
3366   AddedSafetyChecks = true;
3367 
3368   // We currently don't use LoopVersioning for the actual loop cloning but we
3369   // still use it to add the noalias metadata.
3370   LVer = std::make_unique<LoopVersioning>(
3371       *Legal->getLAI(),
3372       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3373       DT, PSE.getSE());
3374   LVer->prepareNoAliasMetadata();
3375   return MemCheckBlock;
3376 }
3377 
3378 Value *InnerLoopVectorizer::emitTransformedIndex(
3379     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3380     const InductionDescriptor &ID) const {
3381 
3382   SCEVExpander Exp(*SE, DL, "induction");
3383   auto Step = ID.getStep();
3384   auto StartValue = ID.getStartValue();
3385   assert(Index->getType()->getScalarType() == Step->getType() &&
3386          "Index scalar type does not match StepValue type");
3387 
3388   // Note: the IR at this point is broken. We cannot use SE to create any new
3389   // SCEV and then expand it, hoping that SCEV's simplification will give us
3390   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3391   // lead to various SCEV crashes. So all we can do is to use builder and rely
3392   // on InstCombine for future simplifications. Here we handle some trivial
3393   // cases only.
3394   auto CreateAdd = [&B](Value *X, Value *Y) {
3395     assert(X->getType() == Y->getType() && "Types don't match!");
3396     if (auto *CX = dyn_cast<ConstantInt>(X))
3397       if (CX->isZero())
3398         return Y;
3399     if (auto *CY = dyn_cast<ConstantInt>(Y))
3400       if (CY->isZero())
3401         return X;
3402     return B.CreateAdd(X, Y);
3403   };
3404 
3405   // We allow X to be a vector type, in which case Y will potentially be
3406   // splatted into a vector with the same element count.
3407   auto CreateMul = [&B](Value *X, Value *Y) {
3408     assert(X->getType()->getScalarType() == Y->getType() &&
3409            "Types don't match!");
3410     if (auto *CX = dyn_cast<ConstantInt>(X))
3411       if (CX->isOne())
3412         return Y;
3413     if (auto *CY = dyn_cast<ConstantInt>(Y))
3414       if (CY->isOne())
3415         return X;
3416     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3417     if (XVTy && !isa<VectorType>(Y->getType()))
3418       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3419     return B.CreateMul(X, Y);
3420   };
3421 
3422   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3423   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3424   // the DomTree is not kept up-to-date for additional blocks generated in the
3425   // vector loop. By using the header as insertion point, we guarantee that the
3426   // expanded instructions dominate all their uses.
3427   auto GetInsertPoint = [this, &B]() {
3428     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3429     if (InsertBB != LoopVectorBody &&
3430         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3431       return LoopVectorBody->getTerminator();
3432     return &*B.GetInsertPoint();
3433   };
3434 
3435   switch (ID.getKind()) {
3436   case InductionDescriptor::IK_IntInduction: {
3437     assert(!isa<VectorType>(Index->getType()) &&
3438            "Vector indices not supported for integer inductions yet");
3439     assert(Index->getType() == StartValue->getType() &&
3440            "Index type does not match StartValue type");
3441     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3442       return B.CreateSub(StartValue, Index);
3443     auto *Offset = CreateMul(
3444         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3445     return CreateAdd(StartValue, Offset);
3446   }
3447   case InductionDescriptor::IK_PtrInduction: {
3448     assert(isa<SCEVConstant>(Step) &&
3449            "Expected constant step for pointer induction");
3450     return B.CreateGEP(
3451         ID.getElementType(), StartValue,
3452         CreateMul(Index,
3453                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3454                                     GetInsertPoint())));
3455   }
3456   case InductionDescriptor::IK_FpInduction: {
3457     assert(!isa<VectorType>(Index->getType()) &&
3458            "Vector indices not supported for FP inductions yet");
3459     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3460     auto InductionBinOp = ID.getInductionBinOp();
3461     assert(InductionBinOp &&
3462            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3463             InductionBinOp->getOpcode() == Instruction::FSub) &&
3464            "Original bin op should be defined for FP induction");
3465 
3466     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3467     Value *MulExp = B.CreateFMul(StepValue, Index);
3468     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3469                          "induction");
3470   }
3471   case InductionDescriptor::IK_NoInduction:
3472     return nullptr;
3473   }
3474   llvm_unreachable("invalid enum");
3475 }
3476 
3477 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3478   LoopScalarBody = OrigLoop->getHeader();
3479   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3480   assert(LoopVectorPreHeader && "Invalid loop structure");
3481   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3482   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3483          "multiple exit loop without required epilogue?");
3484 
3485   LoopMiddleBlock =
3486       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3487                  LI, nullptr, Twine(Prefix) + "middle.block");
3488   LoopScalarPreHeader =
3489       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3490                  nullptr, Twine(Prefix) + "scalar.ph");
3491 
3492   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3493 
3494   // Set up the middle block terminator.  Two cases:
3495   // 1) If we know that we must execute the scalar epilogue, emit an
3496   //    unconditional branch.
3497   // 2) Otherwise, we must have a single unique exit block (due to how we
3498   //    implement the multiple exit case).  In this case, set up a conditonal
3499   //    branch from the middle block to the loop scalar preheader, and the
3500   //    exit block.  completeLoopSkeleton will update the condition to use an
3501   //    iteration check, if required to decide whether to execute the remainder.
3502   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3503     BranchInst::Create(LoopScalarPreHeader) :
3504     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3505                        Builder.getTrue());
3506   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3507   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3508 
3509   // We intentionally don't let SplitBlock to update LoopInfo since
3510   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3511   // LoopVectorBody is explicitly added to the correct place few lines later.
3512   LoopVectorBody =
3513       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3514                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3515 
3516   // Update dominator for loop exit.
3517   if (!Cost->requiresScalarEpilogue(VF))
3518     // If there is an epilogue which must run, there's no edge from the
3519     // middle block to exit blocks  and thus no need to update the immediate
3520     // dominator of the exit blocks.
3521     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3522 
3523   // Create and register the new vector loop.
3524   Loop *Lp = LI->AllocateLoop();
3525   Loop *ParentLoop = OrigLoop->getParentLoop();
3526 
3527   // Insert the new loop into the loop nest and register the new basic blocks
3528   // before calling any utilities such as SCEV that require valid LoopInfo.
3529   if (ParentLoop) {
3530     ParentLoop->addChildLoop(Lp);
3531   } else {
3532     LI->addTopLevelLoop(Lp);
3533   }
3534   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3535   return Lp;
3536 }
3537 
3538 void InnerLoopVectorizer::createInductionResumeValues(
3539     Loop *L, Value *VectorTripCount,
3540     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3541   assert(VectorTripCount && L && "Expected valid arguments");
3542   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3543           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3544          "Inconsistent information about additional bypass.");
3545   // We are going to resume the execution of the scalar loop.
3546   // Go over all of the induction variables that we found and fix the
3547   // PHIs that are left in the scalar version of the loop.
3548   // The starting values of PHI nodes depend on the counter of the last
3549   // iteration in the vectorized loop.
3550   // If we come from a bypass edge then we need to start from the original
3551   // start value.
3552   for (auto &InductionEntry : Legal->getInductionVars()) {
3553     PHINode *OrigPhi = InductionEntry.first;
3554     InductionDescriptor II = InductionEntry.second;
3555 
3556     // Create phi nodes to merge from the  backedge-taken check block.
3557     PHINode *BCResumeVal =
3558         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3559                         LoopScalarPreHeader->getTerminator());
3560     // Copy original phi DL over to the new one.
3561     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3562     Value *&EndValue = IVEndValues[OrigPhi];
3563     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3564     if (OrigPhi == OldInduction) {
3565       // We know what the end value is.
3566       EndValue = VectorTripCount;
3567     } else {
3568       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3569 
3570       // Fast-math-flags propagate from the original induction instruction.
3571       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3572         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3573 
3574       Type *StepType = II.getStep()->getType();
3575       Instruction::CastOps CastOp =
3576           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3577       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3578       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3579       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3580       EndValue->setName("ind.end");
3581 
3582       // Compute the end value for the additional bypass (if applicable).
3583       if (AdditionalBypass.first) {
3584         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3585         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3586                                          StepType, true);
3587         CRD =
3588             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3589         EndValueFromAdditionalBypass =
3590             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3591         EndValueFromAdditionalBypass->setName("ind.end");
3592       }
3593     }
3594     // The new PHI merges the original incoming value, in case of a bypass,
3595     // or the value at the end of the vectorized loop.
3596     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3597 
3598     // Fix the scalar body counter (PHI node).
3599     // The old induction's phi node in the scalar body needs the truncated
3600     // value.
3601     for (BasicBlock *BB : LoopBypassBlocks)
3602       BCResumeVal->addIncoming(II.getStartValue(), BB);
3603 
3604     if (AdditionalBypass.first)
3605       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3606                                             EndValueFromAdditionalBypass);
3607 
3608     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3609   }
3610 }
3611 
3612 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3613                                                       MDNode *OrigLoopID) {
3614   assert(L && "Expected valid loop.");
3615 
3616   // The trip counts should be cached by now.
3617   Value *Count = getOrCreateTripCount(L);
3618   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3619 
3620   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3621 
3622   // Add a check in the middle block to see if we have completed
3623   // all of the iterations in the first vector loop.  Three cases:
3624   // 1) If we require a scalar epilogue, there is no conditional branch as
3625   //    we unconditionally branch to the scalar preheader.  Do nothing.
3626   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3627   //    Thus if tail is to be folded, we know we don't need to run the
3628   //    remainder and we can use the previous value for the condition (true).
3629   // 3) Otherwise, construct a runtime check.
3630   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3631     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3632                                         Count, VectorTripCount, "cmp.n",
3633                                         LoopMiddleBlock->getTerminator());
3634 
3635     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3636     // of the corresponding compare because they may have ended up with
3637     // different line numbers and we want to avoid awkward line stepping while
3638     // debugging. Eg. if the compare has got a line number inside the loop.
3639     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3640     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3641   }
3642 
3643   // Get ready to start creating new instructions into the vectorized body.
3644   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3645          "Inconsistent vector loop preheader");
3646   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3647 
3648   Optional<MDNode *> VectorizedLoopID =
3649       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3650                                       LLVMLoopVectorizeFollowupVectorized});
3651   if (VectorizedLoopID.hasValue()) {
3652     L->setLoopID(VectorizedLoopID.getValue());
3653 
3654     // Do not setAlreadyVectorized if loop attributes have been defined
3655     // explicitly.
3656     return LoopVectorPreHeader;
3657   }
3658 
3659   // Keep all loop hints from the original loop on the vector loop (we'll
3660   // replace the vectorizer-specific hints below).
3661   if (MDNode *LID = OrigLoop->getLoopID())
3662     L->setLoopID(LID);
3663 
3664   LoopVectorizeHints Hints(L, true, *ORE);
3665   Hints.setAlreadyVectorized();
3666 
3667 #ifdef EXPENSIVE_CHECKS
3668   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3669   LI->verify(*DT);
3670 #endif
3671 
3672   return LoopVectorPreHeader;
3673 }
3674 
3675 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3676   /*
3677    In this function we generate a new loop. The new loop will contain
3678    the vectorized instructions while the old loop will continue to run the
3679    scalar remainder.
3680 
3681        [ ] <-- loop iteration number check.
3682     /   |
3683    /    v
3684   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3685   |  /  |
3686   | /   v
3687   ||   [ ]     <-- vector pre header.
3688   |/    |
3689   |     v
3690   |    [  ] \
3691   |    [  ]_|   <-- vector loop.
3692   |     |
3693   |     v
3694   \   -[ ]   <--- middle-block.
3695    \/   |
3696    /\   v
3697    | ->[ ]     <--- new preheader.
3698    |    |
3699  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3700    |   [ ] \
3701    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3702     \   |
3703      \  v
3704       >[ ]     <-- exit block(s).
3705    ...
3706    */
3707 
3708   // Get the metadata of the original loop before it gets modified.
3709   MDNode *OrigLoopID = OrigLoop->getLoopID();
3710 
3711   // Workaround!  Compute the trip count of the original loop and cache it
3712   // before we start modifying the CFG.  This code has a systemic problem
3713   // wherein it tries to run analysis over partially constructed IR; this is
3714   // wrong, and not simply for SCEV.  The trip count of the original loop
3715   // simply happens to be prone to hitting this in practice.  In theory, we
3716   // can hit the same issue for any SCEV, or ValueTracking query done during
3717   // mutation.  See PR49900.
3718   getOrCreateTripCount(OrigLoop);
3719 
3720   // Create an empty vector loop, and prepare basic blocks for the runtime
3721   // checks.
3722   Loop *Lp = createVectorLoopSkeleton("");
3723 
3724   // Now, compare the new count to zero. If it is zero skip the vector loop and
3725   // jump to the scalar loop. This check also covers the case where the
3726   // backedge-taken count is uint##_max: adding one to it will overflow leading
3727   // to an incorrect trip count of zero. In this (rare) case we will also jump
3728   // to the scalar loop.
3729   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3730 
3731   // Generate the code to check any assumptions that we've made for SCEV
3732   // expressions.
3733   emitSCEVChecks(Lp, LoopScalarPreHeader);
3734 
3735   // Generate the code that checks in runtime if arrays overlap. We put the
3736   // checks into a separate block to make the more common case of few elements
3737   // faster.
3738   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3739 
3740   // Some loops have a single integer induction variable, while other loops
3741   // don't. One example is c++ iterators that often have multiple pointer
3742   // induction variables. In the code below we also support a case where we
3743   // don't have a single induction variable.
3744   //
3745   // We try to obtain an induction variable from the original loop as hard
3746   // as possible. However if we don't find one that:
3747   //   - is an integer
3748   //   - counts from zero, stepping by one
3749   //   - is the size of the widest induction variable type
3750   // then we create a new one.
3751   OldInduction = Legal->getPrimaryInduction();
3752   Type *IdxTy = Legal->getWidestInductionType();
3753   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3754   // The loop step is equal to the vectorization factor (num of SIMD elements)
3755   // times the unroll factor (num of SIMD instructions).
3756   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3757   Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF);
3758   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3759   Induction =
3760       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3761                               getDebugLocFromInstOrOperands(OldInduction));
3762 
3763   // Emit phis for the new starting index of the scalar loop.
3764   createInductionResumeValues(Lp, CountRoundDown);
3765 
3766   return completeLoopSkeleton(Lp, OrigLoopID);
3767 }
3768 
3769 // Fix up external users of the induction variable. At this point, we are
3770 // in LCSSA form, with all external PHIs that use the IV having one input value,
3771 // coming from the remainder loop. We need those PHIs to also have a correct
3772 // value for the IV when arriving directly from the middle block.
3773 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3774                                        const InductionDescriptor &II,
3775                                        Value *CountRoundDown, Value *EndValue,
3776                                        BasicBlock *MiddleBlock) {
3777   // There are two kinds of external IV usages - those that use the value
3778   // computed in the last iteration (the PHI) and those that use the penultimate
3779   // value (the value that feeds into the phi from the loop latch).
3780   // We allow both, but they, obviously, have different values.
3781 
3782   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3783 
3784   DenseMap<Value *, Value *> MissingVals;
3785 
3786   // An external user of the last iteration's value should see the value that
3787   // the remainder loop uses to initialize its own IV.
3788   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3789   for (User *U : PostInc->users()) {
3790     Instruction *UI = cast<Instruction>(U);
3791     if (!OrigLoop->contains(UI)) {
3792       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3793       MissingVals[UI] = EndValue;
3794     }
3795   }
3796 
3797   // An external user of the penultimate value need to see EndValue - Step.
3798   // The simplest way to get this is to recompute it from the constituent SCEVs,
3799   // that is Start + (Step * (CRD - 1)).
3800   for (User *U : OrigPhi->users()) {
3801     auto *UI = cast<Instruction>(U);
3802     if (!OrigLoop->contains(UI)) {
3803       const DataLayout &DL =
3804           OrigLoop->getHeader()->getModule()->getDataLayout();
3805       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3806 
3807       IRBuilder<> B(MiddleBlock->getTerminator());
3808 
3809       // Fast-math-flags propagate from the original induction instruction.
3810       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3811         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3812 
3813       Value *CountMinusOne = B.CreateSub(
3814           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3815       Value *CMO =
3816           !II.getStep()->getType()->isIntegerTy()
3817               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3818                              II.getStep()->getType())
3819               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3820       CMO->setName("cast.cmo");
3821       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3822       Escape->setName("ind.escape");
3823       MissingVals[UI] = Escape;
3824     }
3825   }
3826 
3827   for (auto &I : MissingVals) {
3828     PHINode *PHI = cast<PHINode>(I.first);
3829     // One corner case we have to handle is two IVs "chasing" each-other,
3830     // that is %IV2 = phi [...], [ %IV1, %latch ]
3831     // In this case, if IV1 has an external use, we need to avoid adding both
3832     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3833     // don't already have an incoming value for the middle block.
3834     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3835       PHI->addIncoming(I.second, MiddleBlock);
3836   }
3837 }
3838 
3839 namespace {
3840 
3841 struct CSEDenseMapInfo {
3842   static bool canHandle(const Instruction *I) {
3843     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3844            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3845   }
3846 
3847   static inline Instruction *getEmptyKey() {
3848     return DenseMapInfo<Instruction *>::getEmptyKey();
3849   }
3850 
3851   static inline Instruction *getTombstoneKey() {
3852     return DenseMapInfo<Instruction *>::getTombstoneKey();
3853   }
3854 
3855   static unsigned getHashValue(const Instruction *I) {
3856     assert(canHandle(I) && "Unknown instruction!");
3857     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3858                                                            I->value_op_end()));
3859   }
3860 
3861   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3862     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3863         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3864       return LHS == RHS;
3865     return LHS->isIdenticalTo(RHS);
3866   }
3867 };
3868 
3869 } // end anonymous namespace
3870 
3871 ///Perform cse of induction variable instructions.
3872 static void cse(BasicBlock *BB) {
3873   // Perform simple cse.
3874   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3875   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3876     Instruction *In = &*I++;
3877 
3878     if (!CSEDenseMapInfo::canHandle(In))
3879       continue;
3880 
3881     // Check if we can replace this instruction with any of the
3882     // visited instructions.
3883     if (Instruction *V = CSEMap.lookup(In)) {
3884       In->replaceAllUsesWith(V);
3885       In->eraseFromParent();
3886       continue;
3887     }
3888 
3889     CSEMap[In] = In;
3890   }
3891 }
3892 
3893 InstructionCost
3894 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3895                                               bool &NeedToScalarize) const {
3896   Function *F = CI->getCalledFunction();
3897   Type *ScalarRetTy = CI->getType();
3898   SmallVector<Type *, 4> Tys, ScalarTys;
3899   for (auto &ArgOp : CI->arg_operands())
3900     ScalarTys.push_back(ArgOp->getType());
3901 
3902   // Estimate cost of scalarized vector call. The source operands are assumed
3903   // to be vectors, so we need to extract individual elements from there,
3904   // execute VF scalar calls, and then gather the result into the vector return
3905   // value.
3906   InstructionCost ScalarCallCost =
3907       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
3908   if (VF.isScalar())
3909     return ScalarCallCost;
3910 
3911   // Compute corresponding vector type for return value and arguments.
3912   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3913   for (Type *ScalarTy : ScalarTys)
3914     Tys.push_back(ToVectorTy(ScalarTy, VF));
3915 
3916   // Compute costs of unpacking argument values for the scalar calls and
3917   // packing the return values to a vector.
3918   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
3919 
3920   InstructionCost Cost =
3921       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
3922 
3923   // If we can't emit a vector call for this function, then the currently found
3924   // cost is the cost we need to return.
3925   NeedToScalarize = true;
3926   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
3927   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
3928 
3929   if (!TLI || CI->isNoBuiltin() || !VecFunc)
3930     return Cost;
3931 
3932   // If the corresponding vector cost is cheaper, return its cost.
3933   InstructionCost VectorCallCost =
3934       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
3935   if (VectorCallCost < Cost) {
3936     NeedToScalarize = false;
3937     Cost = VectorCallCost;
3938   }
3939   return Cost;
3940 }
3941 
3942 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
3943   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
3944     return Elt;
3945   return VectorType::get(Elt, VF);
3946 }
3947 
3948 InstructionCost
3949 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
3950                                                    ElementCount VF) const {
3951   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3952   assert(ID && "Expected intrinsic call!");
3953   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
3954   FastMathFlags FMF;
3955   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3956     FMF = FPMO->getFastMathFlags();
3957 
3958   SmallVector<const Value *> Arguments(CI->args());
3959   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
3960   SmallVector<Type *> ParamTys;
3961   std::transform(FTy->param_begin(), FTy->param_end(),
3962                  std::back_inserter(ParamTys),
3963                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
3964 
3965   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
3966                                     dyn_cast<IntrinsicInst>(CI));
3967   return TTI.getIntrinsicInstrCost(CostAttrs,
3968                                    TargetTransformInfo::TCK_RecipThroughput);
3969 }
3970 
3971 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3972   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3973   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3974   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3975 }
3976 
3977 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3978   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
3979   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
3980   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3981 }
3982 
3983 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
3984   // For every instruction `I` in MinBWs, truncate the operands, create a
3985   // truncated version of `I` and reextend its result. InstCombine runs
3986   // later and will remove any ext/trunc pairs.
3987   SmallPtrSet<Value *, 4> Erased;
3988   for (const auto &KV : Cost->getMinimalBitwidths()) {
3989     // If the value wasn't vectorized, we must maintain the original scalar
3990     // type. The absence of the value from State indicates that it
3991     // wasn't vectorized.
3992     // FIXME: Should not rely on getVPValue at this point.
3993     VPValue *Def = State.Plan->getVPValue(KV.first, true);
3994     if (!State.hasAnyVectorValue(Def))
3995       continue;
3996     for (unsigned Part = 0; Part < UF; ++Part) {
3997       Value *I = State.get(Def, Part);
3998       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3999         continue;
4000       Type *OriginalTy = I->getType();
4001       Type *ScalarTruncatedTy =
4002           IntegerType::get(OriginalTy->getContext(), KV.second);
4003       auto *TruncatedTy = VectorType::get(
4004           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
4005       if (TruncatedTy == OriginalTy)
4006         continue;
4007 
4008       IRBuilder<> B(cast<Instruction>(I));
4009       auto ShrinkOperand = [&](Value *V) -> Value * {
4010         if (auto *ZI = dyn_cast<ZExtInst>(V))
4011           if (ZI->getSrcTy() == TruncatedTy)
4012             return ZI->getOperand(0);
4013         return B.CreateZExtOrTrunc(V, TruncatedTy);
4014       };
4015 
4016       // The actual instruction modification depends on the instruction type,
4017       // unfortunately.
4018       Value *NewI = nullptr;
4019       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4020         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4021                              ShrinkOperand(BO->getOperand(1)));
4022 
4023         // Any wrapping introduced by shrinking this operation shouldn't be
4024         // considered undefined behavior. So, we can't unconditionally copy
4025         // arithmetic wrapping flags to NewI.
4026         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4027       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4028         NewI =
4029             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4030                          ShrinkOperand(CI->getOperand(1)));
4031       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4032         NewI = B.CreateSelect(SI->getCondition(),
4033                               ShrinkOperand(SI->getTrueValue()),
4034                               ShrinkOperand(SI->getFalseValue()));
4035       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4036         switch (CI->getOpcode()) {
4037         default:
4038           llvm_unreachable("Unhandled cast!");
4039         case Instruction::Trunc:
4040           NewI = ShrinkOperand(CI->getOperand(0));
4041           break;
4042         case Instruction::SExt:
4043           NewI = B.CreateSExtOrTrunc(
4044               CI->getOperand(0),
4045               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4046           break;
4047         case Instruction::ZExt:
4048           NewI = B.CreateZExtOrTrunc(
4049               CI->getOperand(0),
4050               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4051           break;
4052         }
4053       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4054         auto Elements0 =
4055             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4056         auto *O0 = B.CreateZExtOrTrunc(
4057             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4058         auto Elements1 =
4059             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4060         auto *O1 = B.CreateZExtOrTrunc(
4061             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4062 
4063         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4064       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4065         // Don't do anything with the operands, just extend the result.
4066         continue;
4067       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4068         auto Elements =
4069             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4070         auto *O0 = B.CreateZExtOrTrunc(
4071             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4072         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4073         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4074       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4075         auto Elements =
4076             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4077         auto *O0 = B.CreateZExtOrTrunc(
4078             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4079         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4080       } else {
4081         // If we don't know what to do, be conservative and don't do anything.
4082         continue;
4083       }
4084 
4085       // Lastly, extend the result.
4086       NewI->takeName(cast<Instruction>(I));
4087       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4088       I->replaceAllUsesWith(Res);
4089       cast<Instruction>(I)->eraseFromParent();
4090       Erased.insert(I);
4091       State.reset(Def, Res, Part);
4092     }
4093   }
4094 
4095   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4096   for (const auto &KV : Cost->getMinimalBitwidths()) {
4097     // If the value wasn't vectorized, we must maintain the original scalar
4098     // type. The absence of the value from State indicates that it
4099     // wasn't vectorized.
4100     // FIXME: Should not rely on getVPValue at this point.
4101     VPValue *Def = State.Plan->getVPValue(KV.first, true);
4102     if (!State.hasAnyVectorValue(Def))
4103       continue;
4104     for (unsigned Part = 0; Part < UF; ++Part) {
4105       Value *I = State.get(Def, Part);
4106       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4107       if (Inst && Inst->use_empty()) {
4108         Value *NewI = Inst->getOperand(0);
4109         Inst->eraseFromParent();
4110         State.reset(Def, NewI, Part);
4111       }
4112     }
4113   }
4114 }
4115 
4116 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4117   // Insert truncates and extends for any truncated instructions as hints to
4118   // InstCombine.
4119   if (VF.isVector())
4120     truncateToMinimalBitwidths(State);
4121 
4122   // Fix widened non-induction PHIs by setting up the PHI operands.
4123   if (OrigPHIsToFix.size()) {
4124     assert(EnableVPlanNativePath &&
4125            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4126     fixNonInductionPHIs(State);
4127   }
4128 
4129   // At this point every instruction in the original loop is widened to a
4130   // vector form. Now we need to fix the recurrences in the loop. These PHI
4131   // nodes are currently empty because we did not want to introduce cycles.
4132   // This is the second stage of vectorizing recurrences.
4133   fixCrossIterationPHIs(State);
4134 
4135   // Forget the original basic block.
4136   PSE.getSE()->forgetLoop(OrigLoop);
4137 
4138   // If we inserted an edge from the middle block to the unique exit block,
4139   // update uses outside the loop (phis) to account for the newly inserted
4140   // edge.
4141   if (!Cost->requiresScalarEpilogue(VF)) {
4142     // Fix-up external users of the induction variables.
4143     for (auto &Entry : Legal->getInductionVars())
4144       fixupIVUsers(Entry.first, Entry.second,
4145                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4146                    IVEndValues[Entry.first], LoopMiddleBlock);
4147 
4148     fixLCSSAPHIs(State);
4149   }
4150 
4151   for (Instruction *PI : PredicatedInstructions)
4152     sinkScalarOperands(&*PI);
4153 
4154   // Remove redundant induction instructions.
4155   cse(LoopVectorBody);
4156 
4157   // Set/update profile weights for the vector and remainder loops as original
4158   // loop iterations are now distributed among them. Note that original loop
4159   // represented by LoopScalarBody becomes remainder loop after vectorization.
4160   //
4161   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4162   // end up getting slightly roughened result but that should be OK since
4163   // profile is not inherently precise anyway. Note also possible bypass of
4164   // vector code caused by legality checks is ignored, assigning all the weight
4165   // to the vector loop, optimistically.
4166   //
4167   // For scalable vectorization we can't know at compile time how many iterations
4168   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4169   // vscale of '1'.
4170   setProfileInfoAfterUnrolling(
4171       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4172       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4173 }
4174 
4175 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4176   // In order to support recurrences we need to be able to vectorize Phi nodes.
4177   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4178   // stage #2: We now need to fix the recurrences by adding incoming edges to
4179   // the currently empty PHI nodes. At this point every instruction in the
4180   // original loop is widened to a vector form so we can use them to construct
4181   // the incoming edges.
4182   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4183   for (VPRecipeBase &R : Header->phis()) {
4184     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4185       fixReduction(ReductionPhi, State);
4186     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4187       fixFirstOrderRecurrence(FOR, State);
4188   }
4189 }
4190 
4191 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4192                                                   VPTransformState &State) {
4193   // This is the second phase of vectorizing first-order recurrences. An
4194   // overview of the transformation is described below. Suppose we have the
4195   // following loop.
4196   //
4197   //   for (int i = 0; i < n; ++i)
4198   //     b[i] = a[i] - a[i - 1];
4199   //
4200   // There is a first-order recurrence on "a". For this loop, the shorthand
4201   // scalar IR looks like:
4202   //
4203   //   scalar.ph:
4204   //     s_init = a[-1]
4205   //     br scalar.body
4206   //
4207   //   scalar.body:
4208   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4209   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4210   //     s2 = a[i]
4211   //     b[i] = s2 - s1
4212   //     br cond, scalar.body, ...
4213   //
4214   // In this example, s1 is a recurrence because it's value depends on the
4215   // previous iteration. In the first phase of vectorization, we created a
4216   // vector phi v1 for s1. We now complete the vectorization and produce the
4217   // shorthand vector IR shown below (for VF = 4, UF = 1).
4218   //
4219   //   vector.ph:
4220   //     v_init = vector(..., ..., ..., a[-1])
4221   //     br vector.body
4222   //
4223   //   vector.body
4224   //     i = phi [0, vector.ph], [i+4, vector.body]
4225   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4226   //     v2 = a[i, i+1, i+2, i+3];
4227   //     v3 = vector(v1(3), v2(0, 1, 2))
4228   //     b[i, i+1, i+2, i+3] = v2 - v3
4229   //     br cond, vector.body, middle.block
4230   //
4231   //   middle.block:
4232   //     x = v2(3)
4233   //     br scalar.ph
4234   //
4235   //   scalar.ph:
4236   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4237   //     br scalar.body
4238   //
4239   // After execution completes the vector loop, we extract the next value of
4240   // the recurrence (x) to use as the initial value in the scalar loop.
4241 
4242   // Extract the last vector element in the middle block. This will be the
4243   // initial value for the recurrence when jumping to the scalar loop.
4244   VPValue *PreviousDef = PhiR->getBackedgeValue();
4245   Value *Incoming = State.get(PreviousDef, UF - 1);
4246   auto *ExtractForScalar = Incoming;
4247   auto *IdxTy = Builder.getInt32Ty();
4248   if (VF.isVector()) {
4249     auto *One = ConstantInt::get(IdxTy, 1);
4250     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4251     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4252     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4253     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4254                                                     "vector.recur.extract");
4255   }
4256   // Extract the second last element in the middle block if the
4257   // Phi is used outside the loop. We need to extract the phi itself
4258   // and not the last element (the phi update in the current iteration). This
4259   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4260   // when the scalar loop is not run at all.
4261   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4262   if (VF.isVector()) {
4263     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4264     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4265     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4266         Incoming, Idx, "vector.recur.extract.for.phi");
4267   } else if (UF > 1)
4268     // When loop is unrolled without vectorizing, initialize
4269     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4270     // of `Incoming`. This is analogous to the vectorized case above: extracting
4271     // the second last element when VF > 1.
4272     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4273 
4274   // Fix the initial value of the original recurrence in the scalar loop.
4275   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4276   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4277   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4278   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4279   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4280     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4281     Start->addIncoming(Incoming, BB);
4282   }
4283 
4284   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4285   Phi->setName("scalar.recur");
4286 
4287   // Finally, fix users of the recurrence outside the loop. The users will need
4288   // either the last value of the scalar recurrence or the last value of the
4289   // vector recurrence we extracted in the middle block. Since the loop is in
4290   // LCSSA form, we just need to find all the phi nodes for the original scalar
4291   // recurrence in the exit block, and then add an edge for the middle block.
4292   // Note that LCSSA does not imply single entry when the original scalar loop
4293   // had multiple exiting edges (as we always run the last iteration in the
4294   // scalar epilogue); in that case, there is no edge from middle to exit and
4295   // and thus no phis which needed updated.
4296   if (!Cost->requiresScalarEpilogue(VF))
4297     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4298       if (any_of(LCSSAPhi.incoming_values(),
4299                  [Phi](Value *V) { return V == Phi; }))
4300         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4301 }
4302 
4303 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4304                                        VPTransformState &State) {
4305   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4306   // Get it's reduction variable descriptor.
4307   assert(Legal->isReductionVariable(OrigPhi) &&
4308          "Unable to find the reduction variable");
4309   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4310 
4311   RecurKind RK = RdxDesc.getRecurrenceKind();
4312   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4313   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4314   setDebugLocFromInst(ReductionStartValue);
4315 
4316   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4317   // This is the vector-clone of the value that leaves the loop.
4318   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4319 
4320   // Wrap flags are in general invalid after vectorization, clear them.
4321   clearReductionWrapFlags(RdxDesc, State);
4322 
4323   // Before each round, move the insertion point right between
4324   // the PHIs and the values we are going to write.
4325   // This allows us to write both PHINodes and the extractelement
4326   // instructions.
4327   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4328 
4329   setDebugLocFromInst(LoopExitInst);
4330 
4331   Type *PhiTy = OrigPhi->getType();
4332   // If tail is folded by masking, the vector value to leave the loop should be
4333   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4334   // instead of the former. For an inloop reduction the reduction will already
4335   // be predicated, and does not need to be handled here.
4336   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4337     for (unsigned Part = 0; Part < UF; ++Part) {
4338       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4339       Value *Sel = nullptr;
4340       for (User *U : VecLoopExitInst->users()) {
4341         if (isa<SelectInst>(U)) {
4342           assert(!Sel && "Reduction exit feeding two selects");
4343           Sel = U;
4344         } else
4345           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4346       }
4347       assert(Sel && "Reduction exit feeds no select");
4348       State.reset(LoopExitInstDef, Sel, Part);
4349 
4350       // If the target can create a predicated operator for the reduction at no
4351       // extra cost in the loop (for example a predicated vadd), it can be
4352       // cheaper for the select to remain in the loop than be sunk out of it,
4353       // and so use the select value for the phi instead of the old
4354       // LoopExitValue.
4355       if (PreferPredicatedReductionSelect ||
4356           TTI->preferPredicatedReductionSelect(
4357               RdxDesc.getOpcode(), PhiTy,
4358               TargetTransformInfo::ReductionFlags())) {
4359         auto *VecRdxPhi =
4360             cast<PHINode>(State.get(PhiR->getVPSingleValue(), Part));
4361         VecRdxPhi->setIncomingValueForBlock(
4362             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4363       }
4364     }
4365   }
4366 
4367   // If the vector reduction can be performed in a smaller type, we truncate
4368   // then extend the loop exit value to enable InstCombine to evaluate the
4369   // entire expression in the smaller type.
4370   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4371     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4372     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4373     Builder.SetInsertPoint(
4374         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4375     VectorParts RdxParts(UF);
4376     for (unsigned Part = 0; Part < UF; ++Part) {
4377       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4378       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4379       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4380                                         : Builder.CreateZExt(Trunc, VecTy);
4381       for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4382            UI != RdxParts[Part]->user_end();)
4383         if (*UI != Trunc) {
4384           (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4385           RdxParts[Part] = Extnd;
4386         } else {
4387           ++UI;
4388         }
4389     }
4390     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4391     for (unsigned Part = 0; Part < UF; ++Part) {
4392       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4393       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4394     }
4395   }
4396 
4397   // Reduce all of the unrolled parts into a single vector.
4398   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4399   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4400 
4401   // The middle block terminator has already been assigned a DebugLoc here (the
4402   // OrigLoop's single latch terminator). We want the whole middle block to
4403   // appear to execute on this line because: (a) it is all compiler generated,
4404   // (b) these instructions are always executed after evaluating the latch
4405   // conditional branch, and (c) other passes may add new predecessors which
4406   // terminate on this line. This is the easiest way to ensure we don't
4407   // accidentally cause an extra step back into the loop while debugging.
4408   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4409   if (PhiR->isOrdered())
4410     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4411   else {
4412     // Floating-point operations should have some FMF to enable the reduction.
4413     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4414     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4415     for (unsigned Part = 1; Part < UF; ++Part) {
4416       Value *RdxPart = State.get(LoopExitInstDef, Part);
4417       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4418         ReducedPartRdx = Builder.CreateBinOp(
4419             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4420       } else {
4421         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4422       }
4423     }
4424   }
4425 
4426   // Create the reduction after the loop. Note that inloop reductions create the
4427   // target reduction in the loop using a Reduction recipe.
4428   if (VF.isVector() && !PhiR->isInLoop()) {
4429     ReducedPartRdx =
4430         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx);
4431     // If the reduction can be performed in a smaller type, we need to extend
4432     // the reduction to the wider type before we branch to the original loop.
4433     if (PhiTy != RdxDesc.getRecurrenceType())
4434       ReducedPartRdx = RdxDesc.isSigned()
4435                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4436                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4437   }
4438 
4439   // Create a phi node that merges control-flow from the backedge-taken check
4440   // block and the middle block.
4441   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4442                                         LoopScalarPreHeader->getTerminator());
4443   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4444     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4445   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4446 
4447   // Now, we need to fix the users of the reduction variable
4448   // inside and outside of the scalar remainder loop.
4449 
4450   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4451   // in the exit blocks.  See comment on analogous loop in
4452   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4453   if (!Cost->requiresScalarEpilogue(VF))
4454     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4455       if (any_of(LCSSAPhi.incoming_values(),
4456                  [LoopExitInst](Value *V) { return V == LoopExitInst; }))
4457         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4458 
4459   // Fix the scalar loop reduction variable with the incoming reduction sum
4460   // from the vector body and from the backedge value.
4461   int IncomingEdgeBlockIdx =
4462       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4463   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4464   // Pick the other block.
4465   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4466   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4467   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4468 }
4469 
4470 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4471                                                   VPTransformState &State) {
4472   RecurKind RK = RdxDesc.getRecurrenceKind();
4473   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4474     return;
4475 
4476   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4477   assert(LoopExitInstr && "null loop exit instruction");
4478   SmallVector<Instruction *, 8> Worklist;
4479   SmallPtrSet<Instruction *, 8> Visited;
4480   Worklist.push_back(LoopExitInstr);
4481   Visited.insert(LoopExitInstr);
4482 
4483   while (!Worklist.empty()) {
4484     Instruction *Cur = Worklist.pop_back_val();
4485     if (isa<OverflowingBinaryOperator>(Cur))
4486       for (unsigned Part = 0; Part < UF; ++Part) {
4487         // FIXME: Should not rely on getVPValue at this point.
4488         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4489         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4490       }
4491 
4492     for (User *U : Cur->users()) {
4493       Instruction *UI = cast<Instruction>(U);
4494       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4495           Visited.insert(UI).second)
4496         Worklist.push_back(UI);
4497     }
4498   }
4499 }
4500 
4501 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4502   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4503     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4504       // Some phis were already hand updated by the reduction and recurrence
4505       // code above, leave them alone.
4506       continue;
4507 
4508     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4509     // Non-instruction incoming values will have only one value.
4510 
4511     VPLane Lane = VPLane::getFirstLane();
4512     if (isa<Instruction>(IncomingValue) &&
4513         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4514                                            VF))
4515       Lane = VPLane::getLastLaneForVF(VF);
4516 
4517     // Can be a loop invariant incoming value or the last scalar value to be
4518     // extracted from the vectorized loop.
4519     // FIXME: Should not rely on getVPValue at this point.
4520     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4521     Value *lastIncomingValue =
4522         OrigLoop->isLoopInvariant(IncomingValue)
4523             ? IncomingValue
4524             : State.get(State.Plan->getVPValue(IncomingValue, true),
4525                         VPIteration(UF - 1, Lane));
4526     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4527   }
4528 }
4529 
4530 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4531   // The basic block and loop containing the predicated instruction.
4532   auto *PredBB = PredInst->getParent();
4533   auto *VectorLoop = LI->getLoopFor(PredBB);
4534 
4535   // Initialize a worklist with the operands of the predicated instruction.
4536   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4537 
4538   // Holds instructions that we need to analyze again. An instruction may be
4539   // reanalyzed if we don't yet know if we can sink it or not.
4540   SmallVector<Instruction *, 8> InstsToReanalyze;
4541 
4542   // Returns true if a given use occurs in the predicated block. Phi nodes use
4543   // their operands in their corresponding predecessor blocks.
4544   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4545     auto *I = cast<Instruction>(U.getUser());
4546     BasicBlock *BB = I->getParent();
4547     if (auto *Phi = dyn_cast<PHINode>(I))
4548       BB = Phi->getIncomingBlock(
4549           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4550     return BB == PredBB;
4551   };
4552 
4553   // Iteratively sink the scalarized operands of the predicated instruction
4554   // into the block we created for it. When an instruction is sunk, it's
4555   // operands are then added to the worklist. The algorithm ends after one pass
4556   // through the worklist doesn't sink a single instruction.
4557   bool Changed;
4558   do {
4559     // Add the instructions that need to be reanalyzed to the worklist, and
4560     // reset the changed indicator.
4561     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4562     InstsToReanalyze.clear();
4563     Changed = false;
4564 
4565     while (!Worklist.empty()) {
4566       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4567 
4568       // We can't sink an instruction if it is a phi node, is not in the loop,
4569       // or may have side effects.
4570       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4571           I->mayHaveSideEffects())
4572         continue;
4573 
4574       // If the instruction is already in PredBB, check if we can sink its
4575       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4576       // sinking the scalar instruction I, hence it appears in PredBB; but it
4577       // may have failed to sink I's operands (recursively), which we try
4578       // (again) here.
4579       if (I->getParent() == PredBB) {
4580         Worklist.insert(I->op_begin(), I->op_end());
4581         continue;
4582       }
4583 
4584       // It's legal to sink the instruction if all its uses occur in the
4585       // predicated block. Otherwise, there's nothing to do yet, and we may
4586       // need to reanalyze the instruction.
4587       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4588         InstsToReanalyze.push_back(I);
4589         continue;
4590       }
4591 
4592       // Move the instruction to the beginning of the predicated block, and add
4593       // it's operands to the worklist.
4594       I->moveBefore(&*PredBB->getFirstInsertionPt());
4595       Worklist.insert(I->op_begin(), I->op_end());
4596 
4597       // The sinking may have enabled other instructions to be sunk, so we will
4598       // need to iterate.
4599       Changed = true;
4600     }
4601   } while (Changed);
4602 }
4603 
4604 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4605   for (PHINode *OrigPhi : OrigPHIsToFix) {
4606     VPWidenPHIRecipe *VPPhi =
4607         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4608     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4609     // Make sure the builder has a valid insert point.
4610     Builder.SetInsertPoint(NewPhi);
4611     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4612       VPValue *Inc = VPPhi->getIncomingValue(i);
4613       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4614       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4615     }
4616   }
4617 }
4618 
4619 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4620   return Cost->useOrderedReductions(RdxDesc);
4621 }
4622 
4623 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef,
4624                                    VPUser &Operands, unsigned UF,
4625                                    ElementCount VF, bool IsPtrLoopInvariant,
4626                                    SmallBitVector &IsIndexLoopInvariant,
4627                                    VPTransformState &State) {
4628   // Construct a vector GEP by widening the operands of the scalar GEP as
4629   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4630   // results in a vector of pointers when at least one operand of the GEP
4631   // is vector-typed. Thus, to keep the representation compact, we only use
4632   // vector-typed operands for loop-varying values.
4633 
4634   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4635     // If we are vectorizing, but the GEP has only loop-invariant operands,
4636     // the GEP we build (by only using vector-typed operands for
4637     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4638     // produce a vector of pointers, we need to either arbitrarily pick an
4639     // operand to broadcast, or broadcast a clone of the original GEP.
4640     // Here, we broadcast a clone of the original.
4641     //
4642     // TODO: If at some point we decide to scalarize instructions having
4643     //       loop-invariant operands, this special case will no longer be
4644     //       required. We would add the scalarization decision to
4645     //       collectLoopScalars() and teach getVectorValue() to broadcast
4646     //       the lane-zero scalar value.
4647     auto *Clone = Builder.Insert(GEP->clone());
4648     for (unsigned Part = 0; Part < UF; ++Part) {
4649       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4650       State.set(VPDef, EntryPart, Part);
4651       addMetadata(EntryPart, GEP);
4652     }
4653   } else {
4654     // If the GEP has at least one loop-varying operand, we are sure to
4655     // produce a vector of pointers. But if we are only unrolling, we want
4656     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4657     // produce with the code below will be scalar (if VF == 1) or vector
4658     // (otherwise). Note that for the unroll-only case, we still maintain
4659     // values in the vector mapping with initVector, as we do for other
4660     // instructions.
4661     for (unsigned Part = 0; Part < UF; ++Part) {
4662       // The pointer operand of the new GEP. If it's loop-invariant, we
4663       // won't broadcast it.
4664       auto *Ptr = IsPtrLoopInvariant
4665                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4666                       : State.get(Operands.getOperand(0), Part);
4667 
4668       // Collect all the indices for the new GEP. If any index is
4669       // loop-invariant, we won't broadcast it.
4670       SmallVector<Value *, 4> Indices;
4671       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4672         VPValue *Operand = Operands.getOperand(I);
4673         if (IsIndexLoopInvariant[I - 1])
4674           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4675         else
4676           Indices.push_back(State.get(Operand, Part));
4677       }
4678 
4679       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4680       // but it should be a vector, otherwise.
4681       auto *NewGEP =
4682           GEP->isInBounds()
4683               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4684                                           Indices)
4685               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4686       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4687              "NewGEP is not a pointer vector");
4688       State.set(VPDef, NewGEP, Part);
4689       addMetadata(NewGEP, GEP);
4690     }
4691   }
4692 }
4693 
4694 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4695                                               VPWidenPHIRecipe *PhiR,
4696                                               VPTransformState &State) {
4697   PHINode *P = cast<PHINode>(PN);
4698   if (EnableVPlanNativePath) {
4699     // Currently we enter here in the VPlan-native path for non-induction
4700     // PHIs where all control flow is uniform. We simply widen these PHIs.
4701     // Create a vector phi with no operands - the vector phi operands will be
4702     // set at the end of vector code generation.
4703     Type *VecTy = (State.VF.isScalar())
4704                       ? PN->getType()
4705                       : VectorType::get(PN->getType(), State.VF);
4706     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4707     State.set(PhiR, VecPhi, 0);
4708     OrigPHIsToFix.push_back(P);
4709 
4710     return;
4711   }
4712 
4713   assert(PN->getParent() == OrigLoop->getHeader() &&
4714          "Non-header phis should have been handled elsewhere");
4715 
4716   // In order to support recurrences we need to be able to vectorize Phi nodes.
4717   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4718   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4719   // this value when we vectorize all of the instructions that use the PHI.
4720 
4721   assert(!Legal->isReductionVariable(P) &&
4722          "reductions should be handled elsewhere");
4723 
4724   setDebugLocFromInst(P);
4725 
4726   // This PHINode must be an induction variable.
4727   // Make sure that we know about it.
4728   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4729 
4730   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4731   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4732 
4733   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4734   // which can be found from the original scalar operations.
4735   switch (II.getKind()) {
4736   case InductionDescriptor::IK_NoInduction:
4737     llvm_unreachable("Unknown induction");
4738   case InductionDescriptor::IK_IntInduction:
4739   case InductionDescriptor::IK_FpInduction:
4740     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4741   case InductionDescriptor::IK_PtrInduction: {
4742     // Handle the pointer induction variable case.
4743     assert(P->getType()->isPointerTy() && "Unexpected type.");
4744 
4745     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4746       // This is the normalized GEP that starts counting at zero.
4747       Value *PtrInd =
4748           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4749       // Determine the number of scalars we need to generate for each unroll
4750       // iteration. If the instruction is uniform, we only need to generate the
4751       // first lane. Otherwise, we generate all VF values.
4752       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4753       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4754 
4755       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4756       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4757       if (NeedsVectorIndex) {
4758         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4759         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4760         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4761       }
4762 
4763       for (unsigned Part = 0; Part < UF; ++Part) {
4764         Value *PartStart = createStepForVF(
4765             Builder, ConstantInt::get(PtrInd->getType(), Part), VF);
4766 
4767         if (NeedsVectorIndex) {
4768           // Here we cache the whole vector, which means we can support the
4769           // extraction of any lane. However, in some cases the extractelement
4770           // instruction that is generated for scalar uses of this vector (e.g.
4771           // a load instruction) is not folded away. Therefore we still
4772           // calculate values for the first n lanes to avoid redundant moves
4773           // (when extracting the 0th element) and to produce scalar code (i.e.
4774           // additional add/gep instructions instead of expensive extractelement
4775           // instructions) when extracting higher-order elements.
4776           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4777           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4778           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4779           Value *SclrGep =
4780               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4781           SclrGep->setName("next.gep");
4782           State.set(PhiR, SclrGep, Part);
4783         }
4784 
4785         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4786           Value *Idx = Builder.CreateAdd(
4787               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4788           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4789           Value *SclrGep =
4790               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4791           SclrGep->setName("next.gep");
4792           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4793         }
4794       }
4795       return;
4796     }
4797     assert(isa<SCEVConstant>(II.getStep()) &&
4798            "Induction step not a SCEV constant!");
4799     Type *PhiType = II.getStep()->getType();
4800 
4801     // Build a pointer phi
4802     Value *ScalarStartValue = II.getStartValue();
4803     Type *ScStValueType = ScalarStartValue->getType();
4804     PHINode *NewPointerPhi =
4805         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4806     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4807 
4808     // A pointer induction, performed by using a gep
4809     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4810     Instruction *InductionLoc = LoopLatch->getTerminator();
4811     const SCEV *ScalarStep = II.getStep();
4812     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4813     Value *ScalarStepValue =
4814         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4815     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4816     Value *NumUnrolledElems =
4817         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4818     Value *InductionGEP = GetElementPtrInst::Create(
4819         II.getElementType(), NewPointerPhi,
4820         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4821         InductionLoc);
4822     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4823 
4824     // Create UF many actual address geps that use the pointer
4825     // phi as base and a vectorized version of the step value
4826     // (<step*0, ..., step*N>) as offset.
4827     for (unsigned Part = 0; Part < State.UF; ++Part) {
4828       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4829       Value *StartOffsetScalar =
4830           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4831       Value *StartOffset =
4832           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4833       // Create a vector of consecutive numbers from zero to VF.
4834       StartOffset =
4835           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4836 
4837       Value *GEP = Builder.CreateGEP(
4838           II.getElementType(), NewPointerPhi,
4839           Builder.CreateMul(
4840               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4841               "vector.gep"));
4842       State.set(PhiR, GEP, Part);
4843     }
4844   }
4845   }
4846 }
4847 
4848 /// A helper function for checking whether an integer division-related
4849 /// instruction may divide by zero (in which case it must be predicated if
4850 /// executed conditionally in the scalar code).
4851 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4852 /// Non-zero divisors that are non compile-time constants will not be
4853 /// converted into multiplication, so we will still end up scalarizing
4854 /// the division, but can do so w/o predication.
4855 static bool mayDivideByZero(Instruction &I) {
4856   assert((I.getOpcode() == Instruction::UDiv ||
4857           I.getOpcode() == Instruction::SDiv ||
4858           I.getOpcode() == Instruction::URem ||
4859           I.getOpcode() == Instruction::SRem) &&
4860          "Unexpected instruction");
4861   Value *Divisor = I.getOperand(1);
4862   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4863   return !CInt || CInt->isZero();
4864 }
4865 
4866 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def,
4867                                            VPUser &User,
4868                                            VPTransformState &State) {
4869   switch (I.getOpcode()) {
4870   case Instruction::Call:
4871   case Instruction::Br:
4872   case Instruction::PHI:
4873   case Instruction::GetElementPtr:
4874   case Instruction::Select:
4875     llvm_unreachable("This instruction is handled by a different recipe.");
4876   case Instruction::UDiv:
4877   case Instruction::SDiv:
4878   case Instruction::SRem:
4879   case Instruction::URem:
4880   case Instruction::Add:
4881   case Instruction::FAdd:
4882   case Instruction::Sub:
4883   case Instruction::FSub:
4884   case Instruction::FNeg:
4885   case Instruction::Mul:
4886   case Instruction::FMul:
4887   case Instruction::FDiv:
4888   case Instruction::FRem:
4889   case Instruction::Shl:
4890   case Instruction::LShr:
4891   case Instruction::AShr:
4892   case Instruction::And:
4893   case Instruction::Or:
4894   case Instruction::Xor: {
4895     // Just widen unops and binops.
4896     setDebugLocFromInst(&I);
4897 
4898     for (unsigned Part = 0; Part < UF; ++Part) {
4899       SmallVector<Value *, 2> Ops;
4900       for (VPValue *VPOp : User.operands())
4901         Ops.push_back(State.get(VPOp, Part));
4902 
4903       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
4904 
4905       if (auto *VecOp = dyn_cast<Instruction>(V))
4906         VecOp->copyIRFlags(&I);
4907 
4908       // Use this vector value for all users of the original instruction.
4909       State.set(Def, V, Part);
4910       addMetadata(V, &I);
4911     }
4912 
4913     break;
4914   }
4915   case Instruction::ICmp:
4916   case Instruction::FCmp: {
4917     // Widen compares. Generate vector compares.
4918     bool FCmp = (I.getOpcode() == Instruction::FCmp);
4919     auto *Cmp = cast<CmpInst>(&I);
4920     setDebugLocFromInst(Cmp);
4921     for (unsigned Part = 0; Part < UF; ++Part) {
4922       Value *A = State.get(User.getOperand(0), Part);
4923       Value *B = State.get(User.getOperand(1), Part);
4924       Value *C = nullptr;
4925       if (FCmp) {
4926         // Propagate fast math flags.
4927         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4928         Builder.setFastMathFlags(Cmp->getFastMathFlags());
4929         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4930       } else {
4931         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4932       }
4933       State.set(Def, C, Part);
4934       addMetadata(C, &I);
4935     }
4936 
4937     break;
4938   }
4939 
4940   case Instruction::ZExt:
4941   case Instruction::SExt:
4942   case Instruction::FPToUI:
4943   case Instruction::FPToSI:
4944   case Instruction::FPExt:
4945   case Instruction::PtrToInt:
4946   case Instruction::IntToPtr:
4947   case Instruction::SIToFP:
4948   case Instruction::UIToFP:
4949   case Instruction::Trunc:
4950   case Instruction::FPTrunc:
4951   case Instruction::BitCast: {
4952     auto *CI = cast<CastInst>(&I);
4953     setDebugLocFromInst(CI);
4954 
4955     /// Vectorize casts.
4956     Type *DestTy =
4957         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
4958 
4959     for (unsigned Part = 0; Part < UF; ++Part) {
4960       Value *A = State.get(User.getOperand(0), Part);
4961       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4962       State.set(Def, Cast, Part);
4963       addMetadata(Cast, &I);
4964     }
4965     break;
4966   }
4967   default:
4968     // This instruction is not vectorized by simple widening.
4969     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4970     llvm_unreachable("Unhandled instruction!");
4971   } // end of switch.
4972 }
4973 
4974 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
4975                                                VPUser &ArgOperands,
4976                                                VPTransformState &State) {
4977   assert(!isa<DbgInfoIntrinsic>(I) &&
4978          "DbgInfoIntrinsic should have been dropped during VPlan construction");
4979   setDebugLocFromInst(&I);
4980 
4981   Module *M = I.getParent()->getParent()->getParent();
4982   auto *CI = cast<CallInst>(&I);
4983 
4984   SmallVector<Type *, 4> Tys;
4985   for (Value *ArgOperand : CI->arg_operands())
4986     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
4987 
4988   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4989 
4990   // The flag shows whether we use Intrinsic or a usual Call for vectorized
4991   // version of the instruction.
4992   // Is it beneficial to perform intrinsic call compared to lib call?
4993   bool NeedToScalarize = false;
4994   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
4995   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
4996   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
4997   assert((UseVectorIntrinsic || !NeedToScalarize) &&
4998          "Instruction should be scalarized elsewhere.");
4999   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
5000          "Either the intrinsic cost or vector call cost must be valid");
5001 
5002   for (unsigned Part = 0; Part < UF; ++Part) {
5003     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
5004     SmallVector<Value *, 4> Args;
5005     for (auto &I : enumerate(ArgOperands.operands())) {
5006       // Some intrinsics have a scalar argument - don't replace it with a
5007       // vector.
5008       Value *Arg;
5009       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5010         Arg = State.get(I.value(), Part);
5011       else {
5012         Arg = State.get(I.value(), VPIteration(0, 0));
5013         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5014           TysForDecl.push_back(Arg->getType());
5015       }
5016       Args.push_back(Arg);
5017     }
5018 
5019     Function *VectorF;
5020     if (UseVectorIntrinsic) {
5021       // Use vector version of the intrinsic.
5022       if (VF.isVector())
5023         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5024       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5025       assert(VectorF && "Can't retrieve vector intrinsic.");
5026     } else {
5027       // Use vector version of the function call.
5028       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5029 #ifndef NDEBUG
5030       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5031              "Can't create vector function.");
5032 #endif
5033         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5034     }
5035       SmallVector<OperandBundleDef, 1> OpBundles;
5036       CI->getOperandBundlesAsDefs(OpBundles);
5037       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5038 
5039       if (isa<FPMathOperator>(V))
5040         V->copyFastMathFlags(CI);
5041 
5042       State.set(Def, V, Part);
5043       addMetadata(V, &I);
5044   }
5045 }
5046 
5047 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5048                                                  VPUser &Operands,
5049                                                  bool InvariantCond,
5050                                                  VPTransformState &State) {
5051   setDebugLocFromInst(&I);
5052 
5053   // The condition can be loop invariant  but still defined inside the
5054   // loop. This means that we can't just use the original 'cond' value.
5055   // We have to take the 'vectorized' value and pick the first lane.
5056   // Instcombine will make this a no-op.
5057   auto *InvarCond = InvariantCond
5058                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5059                         : nullptr;
5060 
5061   for (unsigned Part = 0; Part < UF; ++Part) {
5062     Value *Cond =
5063         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5064     Value *Op0 = State.get(Operands.getOperand(1), Part);
5065     Value *Op1 = State.get(Operands.getOperand(2), Part);
5066     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5067     State.set(VPDef, Sel, Part);
5068     addMetadata(Sel, &I);
5069   }
5070 }
5071 
5072 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5073   // We should not collect Scalars more than once per VF. Right now, this
5074   // function is called from collectUniformsAndScalars(), which already does
5075   // this check. Collecting Scalars for VF=1 does not make any sense.
5076   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5077          "This function should not be visited twice for the same VF");
5078 
5079   SmallSetVector<Instruction *, 8> Worklist;
5080 
5081   // These sets are used to seed the analysis with pointers used by memory
5082   // accesses that will remain scalar.
5083   SmallSetVector<Instruction *, 8> ScalarPtrs;
5084   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5085   auto *Latch = TheLoop->getLoopLatch();
5086 
5087   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5088   // The pointer operands of loads and stores will be scalar as long as the
5089   // memory access is not a gather or scatter operation. The value operand of a
5090   // store will remain scalar if the store is scalarized.
5091   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5092     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5093     assert(WideningDecision != CM_Unknown &&
5094            "Widening decision should be ready at this moment");
5095     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5096       if (Ptr == Store->getValueOperand())
5097         return WideningDecision == CM_Scalarize;
5098     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5099            "Ptr is neither a value or pointer operand");
5100     return WideningDecision != CM_GatherScatter;
5101   };
5102 
5103   // A helper that returns true if the given value is a bitcast or
5104   // getelementptr instruction contained in the loop.
5105   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5106     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5107             isa<GetElementPtrInst>(V)) &&
5108            !TheLoop->isLoopInvariant(V);
5109   };
5110 
5111   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5112     if (!isa<PHINode>(Ptr) ||
5113         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5114       return false;
5115     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5116     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5117       return false;
5118     return isScalarUse(MemAccess, Ptr);
5119   };
5120 
5121   // A helper that evaluates a memory access's use of a pointer. If the
5122   // pointer is actually the pointer induction of a loop, it is being
5123   // inserted into Worklist. If the use will be a scalar use, and the
5124   // pointer is only used by memory accesses, we place the pointer in
5125   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5126   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5127     if (isScalarPtrInduction(MemAccess, Ptr)) {
5128       Worklist.insert(cast<Instruction>(Ptr));
5129       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5130                         << "\n");
5131 
5132       Instruction *Update = cast<Instruction>(
5133           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5134       ScalarPtrs.insert(Update);
5135       return;
5136     }
5137     // We only care about bitcast and getelementptr instructions contained in
5138     // the loop.
5139     if (!isLoopVaryingBitCastOrGEP(Ptr))
5140       return;
5141 
5142     // If the pointer has already been identified as scalar (e.g., if it was
5143     // also identified as uniform), there's nothing to do.
5144     auto *I = cast<Instruction>(Ptr);
5145     if (Worklist.count(I))
5146       return;
5147 
5148     // If the use of the pointer will be a scalar use, and all users of the
5149     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5150     // place the pointer in PossibleNonScalarPtrs.
5151     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5152           return isa<LoadInst>(U) || isa<StoreInst>(U);
5153         }))
5154       ScalarPtrs.insert(I);
5155     else
5156       PossibleNonScalarPtrs.insert(I);
5157   };
5158 
5159   // We seed the scalars analysis with three classes of instructions: (1)
5160   // instructions marked uniform-after-vectorization and (2) bitcast,
5161   // getelementptr and (pointer) phi instructions used by memory accesses
5162   // requiring a scalar use.
5163   //
5164   // (1) Add to the worklist all instructions that have been identified as
5165   // uniform-after-vectorization.
5166   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5167 
5168   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5169   // memory accesses requiring a scalar use. The pointer operands of loads and
5170   // stores will be scalar as long as the memory accesses is not a gather or
5171   // scatter operation. The value operand of a store will remain scalar if the
5172   // store is scalarized.
5173   for (auto *BB : TheLoop->blocks())
5174     for (auto &I : *BB) {
5175       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5176         evaluatePtrUse(Load, Load->getPointerOperand());
5177       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5178         evaluatePtrUse(Store, Store->getPointerOperand());
5179         evaluatePtrUse(Store, Store->getValueOperand());
5180       }
5181     }
5182   for (auto *I : ScalarPtrs)
5183     if (!PossibleNonScalarPtrs.count(I)) {
5184       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5185       Worklist.insert(I);
5186     }
5187 
5188   // Insert the forced scalars.
5189   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5190   // induction variable when the PHI user is scalarized.
5191   auto ForcedScalar = ForcedScalars.find(VF);
5192   if (ForcedScalar != ForcedScalars.end())
5193     for (auto *I : ForcedScalar->second)
5194       Worklist.insert(I);
5195 
5196   // Expand the worklist by looking through any bitcasts and getelementptr
5197   // instructions we've already identified as scalar. This is similar to the
5198   // expansion step in collectLoopUniforms(); however, here we're only
5199   // expanding to include additional bitcasts and getelementptr instructions.
5200   unsigned Idx = 0;
5201   while (Idx != Worklist.size()) {
5202     Instruction *Dst = Worklist[Idx++];
5203     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5204       continue;
5205     auto *Src = cast<Instruction>(Dst->getOperand(0));
5206     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5207           auto *J = cast<Instruction>(U);
5208           return !TheLoop->contains(J) || Worklist.count(J) ||
5209                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5210                   isScalarUse(J, Src));
5211         })) {
5212       Worklist.insert(Src);
5213       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5214     }
5215   }
5216 
5217   // An induction variable will remain scalar if all users of the induction
5218   // variable and induction variable update remain scalar.
5219   for (auto &Induction : Legal->getInductionVars()) {
5220     auto *Ind = Induction.first;
5221     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5222 
5223     // If tail-folding is applied, the primary induction variable will be used
5224     // to feed a vector compare.
5225     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5226       continue;
5227 
5228     // Determine if all users of the induction variable are scalar after
5229     // vectorization.
5230     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5231       auto *I = cast<Instruction>(U);
5232       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5233     });
5234     if (!ScalarInd)
5235       continue;
5236 
5237     // Determine if all users of the induction variable update instruction are
5238     // scalar after vectorization.
5239     auto ScalarIndUpdate =
5240         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5241           auto *I = cast<Instruction>(U);
5242           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5243         });
5244     if (!ScalarIndUpdate)
5245       continue;
5246 
5247     // The induction variable and its update instruction will remain scalar.
5248     Worklist.insert(Ind);
5249     Worklist.insert(IndUpdate);
5250     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5251     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5252                       << "\n");
5253   }
5254 
5255   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5256 }
5257 
5258 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5259   if (!blockNeedsPredication(I->getParent()))
5260     return false;
5261   switch(I->getOpcode()) {
5262   default:
5263     break;
5264   case Instruction::Load:
5265   case Instruction::Store: {
5266     if (!Legal->isMaskRequired(I))
5267       return false;
5268     auto *Ptr = getLoadStorePointerOperand(I);
5269     auto *Ty = getLoadStoreType(I);
5270     const Align Alignment = getLoadStoreAlignment(I);
5271     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5272                                 TTI.isLegalMaskedGather(Ty, Alignment))
5273                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5274                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5275   }
5276   case Instruction::UDiv:
5277   case Instruction::SDiv:
5278   case Instruction::SRem:
5279   case Instruction::URem:
5280     return mayDivideByZero(*I);
5281   }
5282   return false;
5283 }
5284 
5285 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5286     Instruction *I, ElementCount VF) {
5287   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5288   assert(getWideningDecision(I, VF) == CM_Unknown &&
5289          "Decision should not be set yet.");
5290   auto *Group = getInterleavedAccessGroup(I);
5291   assert(Group && "Must have a group.");
5292 
5293   // If the instruction's allocated size doesn't equal it's type size, it
5294   // requires padding and will be scalarized.
5295   auto &DL = I->getModule()->getDataLayout();
5296   auto *ScalarTy = getLoadStoreType(I);
5297   if (hasIrregularType(ScalarTy, DL))
5298     return false;
5299 
5300   // Check if masking is required.
5301   // A Group may need masking for one of two reasons: it resides in a block that
5302   // needs predication, or it was decided to use masking to deal with gaps
5303   // (either a gap at the end of a load-access that may result in a speculative
5304   // load, or any gaps in a store-access).
5305   bool PredicatedAccessRequiresMasking =
5306       Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I);
5307   bool LoadAccessWithGapsRequiresEpilogMasking =
5308       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
5309       !isScalarEpilogueAllowed();
5310   bool StoreAccessWithGapsRequiresMasking =
5311       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
5312   if (!PredicatedAccessRequiresMasking &&
5313       !LoadAccessWithGapsRequiresEpilogMasking &&
5314       !StoreAccessWithGapsRequiresMasking)
5315     return true;
5316 
5317   // If masked interleaving is required, we expect that the user/target had
5318   // enabled it, because otherwise it either wouldn't have been created or
5319   // it should have been invalidated by the CostModel.
5320   assert(useMaskedInterleavedAccesses(TTI) &&
5321          "Masked interleave-groups for predicated accesses are not enabled.");
5322 
5323   auto *Ty = getLoadStoreType(I);
5324   const Align Alignment = getLoadStoreAlignment(I);
5325   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5326                           : TTI.isLegalMaskedStore(Ty, Alignment);
5327 }
5328 
5329 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5330     Instruction *I, ElementCount VF) {
5331   // Get and ensure we have a valid memory instruction.
5332   LoadInst *LI = dyn_cast<LoadInst>(I);
5333   StoreInst *SI = dyn_cast<StoreInst>(I);
5334   assert((LI || SI) && "Invalid memory instruction");
5335 
5336   auto *Ptr = getLoadStorePointerOperand(I);
5337 
5338   // In order to be widened, the pointer should be consecutive, first of all.
5339   if (!Legal->isConsecutivePtr(Ptr))
5340     return false;
5341 
5342   // If the instruction is a store located in a predicated block, it will be
5343   // scalarized.
5344   if (isScalarWithPredication(I))
5345     return false;
5346 
5347   // If the instruction's allocated size doesn't equal it's type size, it
5348   // requires padding and will be scalarized.
5349   auto &DL = I->getModule()->getDataLayout();
5350   auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5351   if (hasIrregularType(ScalarTy, DL))
5352     return false;
5353 
5354   return true;
5355 }
5356 
5357 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5358   // We should not collect Uniforms more than once per VF. Right now,
5359   // this function is called from collectUniformsAndScalars(), which
5360   // already does this check. Collecting Uniforms for VF=1 does not make any
5361   // sense.
5362 
5363   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5364          "This function should not be visited twice for the same VF");
5365 
5366   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5367   // not analyze again.  Uniforms.count(VF) will return 1.
5368   Uniforms[VF].clear();
5369 
5370   // We now know that the loop is vectorizable!
5371   // Collect instructions inside the loop that will remain uniform after
5372   // vectorization.
5373 
5374   // Global values, params and instructions outside of current loop are out of
5375   // scope.
5376   auto isOutOfScope = [&](Value *V) -> bool {
5377     Instruction *I = dyn_cast<Instruction>(V);
5378     return (!I || !TheLoop->contains(I));
5379   };
5380 
5381   SetVector<Instruction *> Worklist;
5382   BasicBlock *Latch = TheLoop->getLoopLatch();
5383 
5384   // Instructions that are scalar with predication must not be considered
5385   // uniform after vectorization, because that would create an erroneous
5386   // replicating region where only a single instance out of VF should be formed.
5387   // TODO: optimize such seldom cases if found important, see PR40816.
5388   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5389     if (isOutOfScope(I)) {
5390       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5391                         << *I << "\n");
5392       return;
5393     }
5394     if (isScalarWithPredication(I)) {
5395       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5396                         << *I << "\n");
5397       return;
5398     }
5399     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5400     Worklist.insert(I);
5401   };
5402 
5403   // Start with the conditional branch. If the branch condition is an
5404   // instruction contained in the loop that is only used by the branch, it is
5405   // uniform.
5406   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5407   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5408     addToWorklistIfAllowed(Cmp);
5409 
5410   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5411     InstWidening WideningDecision = getWideningDecision(I, VF);
5412     assert(WideningDecision != CM_Unknown &&
5413            "Widening decision should be ready at this moment");
5414 
5415     // A uniform memory op is itself uniform.  We exclude uniform stores
5416     // here as they demand the last lane, not the first one.
5417     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5418       assert(WideningDecision == CM_Scalarize);
5419       return true;
5420     }
5421 
5422     return (WideningDecision == CM_Widen ||
5423             WideningDecision == CM_Widen_Reverse ||
5424             WideningDecision == CM_Interleave);
5425   };
5426 
5427 
5428   // Returns true if Ptr is the pointer operand of a memory access instruction
5429   // I, and I is known to not require scalarization.
5430   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5431     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5432   };
5433 
5434   // Holds a list of values which are known to have at least one uniform use.
5435   // Note that there may be other uses which aren't uniform.  A "uniform use"
5436   // here is something which only demands lane 0 of the unrolled iterations;
5437   // it does not imply that all lanes produce the same value (e.g. this is not
5438   // the usual meaning of uniform)
5439   SetVector<Value *> HasUniformUse;
5440 
5441   // Scan the loop for instructions which are either a) known to have only
5442   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5443   for (auto *BB : TheLoop->blocks())
5444     for (auto &I : *BB) {
5445       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5446         switch (II->getIntrinsicID()) {
5447         case Intrinsic::sideeffect:
5448         case Intrinsic::experimental_noalias_scope_decl:
5449         case Intrinsic::assume:
5450         case Intrinsic::lifetime_start:
5451         case Intrinsic::lifetime_end:
5452           if (TheLoop->hasLoopInvariantOperands(&I))
5453             addToWorklistIfAllowed(&I);
5454           break;
5455         default:
5456           break;
5457         }
5458       }
5459 
5460       // ExtractValue instructions must be uniform, because the operands are
5461       // known to be loop-invariant.
5462       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5463         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5464                "Expected aggregate value to be loop invariant");
5465         addToWorklistIfAllowed(EVI);
5466         continue;
5467       }
5468 
5469       // If there's no pointer operand, there's nothing to do.
5470       auto *Ptr = getLoadStorePointerOperand(&I);
5471       if (!Ptr)
5472         continue;
5473 
5474       // A uniform memory op is itself uniform.  We exclude uniform stores
5475       // here as they demand the last lane, not the first one.
5476       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5477         addToWorklistIfAllowed(&I);
5478 
5479       if (isUniformDecision(&I, VF)) {
5480         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5481         HasUniformUse.insert(Ptr);
5482       }
5483     }
5484 
5485   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5486   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5487   // disallows uses outside the loop as well.
5488   for (auto *V : HasUniformUse) {
5489     if (isOutOfScope(V))
5490       continue;
5491     auto *I = cast<Instruction>(V);
5492     auto UsersAreMemAccesses =
5493       llvm::all_of(I->users(), [&](User *U) -> bool {
5494         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5495       });
5496     if (UsersAreMemAccesses)
5497       addToWorklistIfAllowed(I);
5498   }
5499 
5500   // Expand Worklist in topological order: whenever a new instruction
5501   // is added , its users should be already inside Worklist.  It ensures
5502   // a uniform instruction will only be used by uniform instructions.
5503   unsigned idx = 0;
5504   while (idx != Worklist.size()) {
5505     Instruction *I = Worklist[idx++];
5506 
5507     for (auto OV : I->operand_values()) {
5508       // isOutOfScope operands cannot be uniform instructions.
5509       if (isOutOfScope(OV))
5510         continue;
5511       // First order recurrence Phi's should typically be considered
5512       // non-uniform.
5513       auto *OP = dyn_cast<PHINode>(OV);
5514       if (OP && Legal->isFirstOrderRecurrence(OP))
5515         continue;
5516       // If all the users of the operand are uniform, then add the
5517       // operand into the uniform worklist.
5518       auto *OI = cast<Instruction>(OV);
5519       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5520             auto *J = cast<Instruction>(U);
5521             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5522           }))
5523         addToWorklistIfAllowed(OI);
5524     }
5525   }
5526 
5527   // For an instruction to be added into Worklist above, all its users inside
5528   // the loop should also be in Worklist. However, this condition cannot be
5529   // true for phi nodes that form a cyclic dependence. We must process phi
5530   // nodes separately. An induction variable will remain uniform if all users
5531   // of the induction variable and induction variable update remain uniform.
5532   // The code below handles both pointer and non-pointer induction variables.
5533   for (auto &Induction : Legal->getInductionVars()) {
5534     auto *Ind = Induction.first;
5535     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5536 
5537     // Determine if all users of the induction variable are uniform after
5538     // vectorization.
5539     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5540       auto *I = cast<Instruction>(U);
5541       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5542              isVectorizedMemAccessUse(I, Ind);
5543     });
5544     if (!UniformInd)
5545       continue;
5546 
5547     // Determine if all users of the induction variable update instruction are
5548     // uniform after vectorization.
5549     auto UniformIndUpdate =
5550         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5551           auto *I = cast<Instruction>(U);
5552           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5553                  isVectorizedMemAccessUse(I, IndUpdate);
5554         });
5555     if (!UniformIndUpdate)
5556       continue;
5557 
5558     // The induction variable and its update instruction will remain uniform.
5559     addToWorklistIfAllowed(Ind);
5560     addToWorklistIfAllowed(IndUpdate);
5561   }
5562 
5563   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5564 }
5565 
5566 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5567   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5568 
5569   if (Legal->getRuntimePointerChecking()->Need) {
5570     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5571         "runtime pointer checks needed. Enable vectorization of this "
5572         "loop with '#pragma clang loop vectorize(enable)' when "
5573         "compiling with -Os/-Oz",
5574         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5575     return true;
5576   }
5577 
5578   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5579     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5580         "runtime SCEV checks needed. Enable vectorization of this "
5581         "loop with '#pragma clang loop vectorize(enable)' when "
5582         "compiling with -Os/-Oz",
5583         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5584     return true;
5585   }
5586 
5587   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5588   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5589     reportVectorizationFailure("Runtime stride check for small trip count",
5590         "runtime stride == 1 checks needed. Enable vectorization of "
5591         "this loop without such check by compiling with -Os/-Oz",
5592         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5593     return true;
5594   }
5595 
5596   return false;
5597 }
5598 
5599 ElementCount
5600 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5601   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5602     return ElementCount::getScalable(0);
5603 
5604   if (Hints->isScalableVectorizationDisabled()) {
5605     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5606                             "ScalableVectorizationDisabled", ORE, TheLoop);
5607     return ElementCount::getScalable(0);
5608   }
5609 
5610   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5611 
5612   auto MaxScalableVF = ElementCount::getScalable(
5613       std::numeric_limits<ElementCount::ScalarTy>::max());
5614 
5615   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5616   // FIXME: While for scalable vectors this is currently sufficient, this should
5617   // be replaced by a more detailed mechanism that filters out specific VFs,
5618   // instead of invalidating vectorization for a whole set of VFs based on the
5619   // MaxVF.
5620 
5621   // Disable scalable vectorization if the loop contains unsupported reductions.
5622   if (!canVectorizeReductions(MaxScalableVF)) {
5623     reportVectorizationInfo(
5624         "Scalable vectorization not supported for the reduction "
5625         "operations found in this loop.",
5626         "ScalableVFUnfeasible", ORE, TheLoop);
5627     return ElementCount::getScalable(0);
5628   }
5629 
5630   // Disable scalable vectorization if the loop contains any instructions
5631   // with element types not supported for scalable vectors.
5632   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5633         return !Ty->isVoidTy() &&
5634                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5635       })) {
5636     reportVectorizationInfo("Scalable vectorization is not supported "
5637                             "for all element types found in this loop.",
5638                             "ScalableVFUnfeasible", ORE, TheLoop);
5639     return ElementCount::getScalable(0);
5640   }
5641 
5642   if (Legal->isSafeForAnyVectorWidth())
5643     return MaxScalableVF;
5644 
5645   // Limit MaxScalableVF by the maximum safe dependence distance.
5646   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5647   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5648     unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange)
5649                              .getVScaleRangeArgs()
5650                              .second;
5651     if (VScaleMax > 0)
5652       MaxVScale = VScaleMax;
5653   }
5654   MaxScalableVF = ElementCount::getScalable(
5655       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5656   if (!MaxScalableVF)
5657     reportVectorizationInfo(
5658         "Max legal vector width too small, scalable vectorization "
5659         "unfeasible.",
5660         "ScalableVFUnfeasible", ORE, TheLoop);
5661 
5662   return MaxScalableVF;
5663 }
5664 
5665 FixedScalableVFPair
5666 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5667                                                  ElementCount UserVF) {
5668   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5669   unsigned SmallestType, WidestType;
5670   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5671 
5672   // Get the maximum safe dependence distance in bits computed by LAA.
5673   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5674   // the memory accesses that is most restrictive (involved in the smallest
5675   // dependence distance).
5676   unsigned MaxSafeElements =
5677       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5678 
5679   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5680   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5681 
5682   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5683                     << ".\n");
5684   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5685                     << ".\n");
5686 
5687   // First analyze the UserVF, fall back if the UserVF should be ignored.
5688   if (UserVF) {
5689     auto MaxSafeUserVF =
5690         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5691 
5692     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5693       // If `VF=vscale x N` is safe, then so is `VF=N`
5694       if (UserVF.isScalable())
5695         return FixedScalableVFPair(
5696             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5697       else
5698         return UserVF;
5699     }
5700 
5701     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5702 
5703     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5704     // is better to ignore the hint and let the compiler choose a suitable VF.
5705     if (!UserVF.isScalable()) {
5706       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5707                         << " is unsafe, clamping to max safe VF="
5708                         << MaxSafeFixedVF << ".\n");
5709       ORE->emit([&]() {
5710         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5711                                           TheLoop->getStartLoc(),
5712                                           TheLoop->getHeader())
5713                << "User-specified vectorization factor "
5714                << ore::NV("UserVectorizationFactor", UserVF)
5715                << " is unsafe, clamping to maximum safe vectorization factor "
5716                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5717       });
5718       return MaxSafeFixedVF;
5719     }
5720 
5721     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5722       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5723                         << " is ignored because scalable vectors are not "
5724                            "available.\n");
5725       ORE->emit([&]() {
5726         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5727                                           TheLoop->getStartLoc(),
5728                                           TheLoop->getHeader())
5729                << "User-specified vectorization factor "
5730                << ore::NV("UserVectorizationFactor", UserVF)
5731                << " is ignored because the target does not support scalable "
5732                   "vectors. The compiler will pick a more suitable value.";
5733       });
5734     } else {
5735       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5736                         << " is unsafe. Ignoring scalable UserVF.\n");
5737       ORE->emit([&]() {
5738         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5739                                           TheLoop->getStartLoc(),
5740                                           TheLoop->getHeader())
5741                << "User-specified vectorization factor "
5742                << ore::NV("UserVectorizationFactor", UserVF)
5743                << " is unsafe. Ignoring the hint to let the compiler pick a "
5744                   "more suitable value.";
5745       });
5746     }
5747   }
5748 
5749   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5750                     << " / " << WidestType << " bits.\n");
5751 
5752   FixedScalableVFPair Result(ElementCount::getFixed(1),
5753                              ElementCount::getScalable(0));
5754   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5755                                            WidestType, MaxSafeFixedVF))
5756     Result.FixedVF = MaxVF;
5757 
5758   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5759                                            WidestType, MaxSafeScalableVF))
5760     if (MaxVF.isScalable()) {
5761       Result.ScalableVF = MaxVF;
5762       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5763                         << "\n");
5764     }
5765 
5766   return Result;
5767 }
5768 
5769 FixedScalableVFPair
5770 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5771   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5772     // TODO: It may by useful to do since it's still likely to be dynamically
5773     // uniform if the target can skip.
5774     reportVectorizationFailure(
5775         "Not inserting runtime ptr check for divergent target",
5776         "runtime pointer checks needed. Not enabled for divergent target",
5777         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5778     return FixedScalableVFPair::getNone();
5779   }
5780 
5781   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5782   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5783   if (TC == 1) {
5784     reportVectorizationFailure("Single iteration (non) loop",
5785         "loop trip count is one, irrelevant for vectorization",
5786         "SingleIterationLoop", ORE, TheLoop);
5787     return FixedScalableVFPair::getNone();
5788   }
5789 
5790   switch (ScalarEpilogueStatus) {
5791   case CM_ScalarEpilogueAllowed:
5792     return computeFeasibleMaxVF(TC, UserVF);
5793   case CM_ScalarEpilogueNotAllowedUsePredicate:
5794     LLVM_FALLTHROUGH;
5795   case CM_ScalarEpilogueNotNeededUsePredicate:
5796     LLVM_DEBUG(
5797         dbgs() << "LV: vector predicate hint/switch found.\n"
5798                << "LV: Not allowing scalar epilogue, creating predicated "
5799                << "vector loop.\n");
5800     break;
5801   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5802     // fallthrough as a special case of OptForSize
5803   case CM_ScalarEpilogueNotAllowedOptSize:
5804     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5805       LLVM_DEBUG(
5806           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5807     else
5808       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5809                         << "count.\n");
5810 
5811     // Bail if runtime checks are required, which are not good when optimising
5812     // for size.
5813     if (runtimeChecksRequired())
5814       return FixedScalableVFPair::getNone();
5815 
5816     break;
5817   }
5818 
5819   // The only loops we can vectorize without a scalar epilogue, are loops with
5820   // a bottom-test and a single exiting block. We'd have to handle the fact
5821   // that not every instruction executes on the last iteration.  This will
5822   // require a lane mask which varies through the vector loop body.  (TODO)
5823   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5824     // If there was a tail-folding hint/switch, but we can't fold the tail by
5825     // masking, fallback to a vectorization with a scalar epilogue.
5826     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5827       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5828                            "scalar epilogue instead.\n");
5829       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5830       return computeFeasibleMaxVF(TC, UserVF);
5831     }
5832     return FixedScalableVFPair::getNone();
5833   }
5834 
5835   // Now try the tail folding
5836 
5837   // Invalidate interleave groups that require an epilogue if we can't mask
5838   // the interleave-group.
5839   if (!useMaskedInterleavedAccesses(TTI)) {
5840     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5841            "No decisions should have been taken at this point");
5842     // Note: There is no need to invalidate any cost modeling decisions here, as
5843     // non where taken so far.
5844     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5845   }
5846 
5847   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5848   // Avoid tail folding if the trip count is known to be a multiple of any VF
5849   // we chose.
5850   // FIXME: The condition below pessimises the case for fixed-width vectors,
5851   // when scalable VFs are also candidates for vectorization.
5852   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5853     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5854     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5855            "MaxFixedVF must be a power of 2");
5856     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5857                                    : MaxFixedVF.getFixedValue();
5858     ScalarEvolution *SE = PSE.getSE();
5859     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5860     const SCEV *ExitCount = SE->getAddExpr(
5861         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5862     const SCEV *Rem = SE->getURemExpr(
5863         SE->applyLoopGuards(ExitCount, TheLoop),
5864         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5865     if (Rem->isZero()) {
5866       // Accept MaxFixedVF if we do not have a tail.
5867       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5868       return MaxFactors;
5869     }
5870   }
5871 
5872   // For scalable vectors, don't use tail folding as this is currently not yet
5873   // supported. The code is likely to have ended up here if the tripcount is
5874   // low, in which case it makes sense not to use scalable vectors.
5875   if (MaxFactors.ScalableVF.isVector())
5876     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5877 
5878   // If we don't know the precise trip count, or if the trip count that we
5879   // found modulo the vectorization factor is not zero, try to fold the tail
5880   // by masking.
5881   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
5882   if (Legal->prepareToFoldTailByMasking()) {
5883     FoldTailByMasking = true;
5884     return MaxFactors;
5885   }
5886 
5887   // If there was a tail-folding hint/switch, but we can't fold the tail by
5888   // masking, fallback to a vectorization with a scalar epilogue.
5889   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5890     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5891                          "scalar epilogue instead.\n");
5892     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5893     return MaxFactors;
5894   }
5895 
5896   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
5897     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
5898     return FixedScalableVFPair::getNone();
5899   }
5900 
5901   if (TC == 0) {
5902     reportVectorizationFailure(
5903         "Unable to calculate the loop count due to complex control flow",
5904         "unable to calculate the loop count due to complex control flow",
5905         "UnknownLoopCountComplexCFG", ORE, TheLoop);
5906     return FixedScalableVFPair::getNone();
5907   }
5908 
5909   reportVectorizationFailure(
5910       "Cannot optimize for size and vectorize at the same time.",
5911       "cannot optimize for size and vectorize at the same time. "
5912       "Enable vectorization of this loop with '#pragma clang loop "
5913       "vectorize(enable)' when compiling with -Os/-Oz",
5914       "NoTailLoopWithOptForSize", ORE, TheLoop);
5915   return FixedScalableVFPair::getNone();
5916 }
5917 
5918 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
5919     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
5920     const ElementCount &MaxSafeVF) {
5921   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
5922   TypeSize WidestRegister = TTI.getRegisterBitWidth(
5923       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
5924                            : TargetTransformInfo::RGK_FixedWidthVector);
5925 
5926   // Convenience function to return the minimum of two ElementCounts.
5927   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
5928     assert((LHS.isScalable() == RHS.isScalable()) &&
5929            "Scalable flags must match");
5930     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
5931   };
5932 
5933   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
5934   // Note that both WidestRegister and WidestType may not be a powers of 2.
5935   auto MaxVectorElementCount = ElementCount::get(
5936       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
5937       ComputeScalableMaxVF);
5938   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
5939   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
5940                     << (MaxVectorElementCount * WidestType) << " bits.\n");
5941 
5942   if (!MaxVectorElementCount) {
5943     LLVM_DEBUG(dbgs() << "LV: The target has no "
5944                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
5945                       << " vector registers.\n");
5946     return ElementCount::getFixed(1);
5947   }
5948 
5949   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
5950   if (ConstTripCount &&
5951       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
5952       isPowerOf2_32(ConstTripCount)) {
5953     // We need to clamp the VF to be the ConstTripCount. There is no point in
5954     // choosing a higher viable VF as done in the loop below. If
5955     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
5956     // the TC is less than or equal to the known number of lanes.
5957     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
5958                       << ConstTripCount << "\n");
5959     return TripCountEC;
5960   }
5961 
5962   ElementCount MaxVF = MaxVectorElementCount;
5963   if (TTI.shouldMaximizeVectorBandwidth() ||
5964       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
5965     auto MaxVectorElementCountMaxBW = ElementCount::get(
5966         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
5967         ComputeScalableMaxVF);
5968     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
5969 
5970     // Collect all viable vectorization factors larger than the default MaxVF
5971     // (i.e. MaxVectorElementCount).
5972     SmallVector<ElementCount, 8> VFs;
5973     for (ElementCount VS = MaxVectorElementCount * 2;
5974          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
5975       VFs.push_back(VS);
5976 
5977     // For each VF calculate its register usage.
5978     auto RUs = calculateRegisterUsage(VFs);
5979 
5980     // Select the largest VF which doesn't require more registers than existing
5981     // ones.
5982     for (int i = RUs.size() - 1; i >= 0; --i) {
5983       bool Selected = true;
5984       for (auto &pair : RUs[i].MaxLocalUsers) {
5985         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
5986         if (pair.second > TargetNumRegisters)
5987           Selected = false;
5988       }
5989       if (Selected) {
5990         MaxVF = VFs[i];
5991         break;
5992       }
5993     }
5994     if (ElementCount MinVF =
5995             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
5996       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
5997         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5998                           << ") with target's minimum: " << MinVF << '\n');
5999         MaxVF = MinVF;
6000       }
6001     }
6002   }
6003   return MaxVF;
6004 }
6005 
6006 bool LoopVectorizationCostModel::isMoreProfitable(
6007     const VectorizationFactor &A, const VectorizationFactor &B) const {
6008   InstructionCost CostA = A.Cost;
6009   InstructionCost CostB = B.Cost;
6010 
6011   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
6012 
6013   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
6014       MaxTripCount) {
6015     // If we are folding the tail and the trip count is a known (possibly small)
6016     // constant, the trip count will be rounded up to an integer number of
6017     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6018     // which we compare directly. When not folding the tail, the total cost will
6019     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6020     // approximated with the per-lane cost below instead of using the tripcount
6021     // as here.
6022     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6023     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6024     return RTCostA < RTCostB;
6025   }
6026 
6027   // When set to preferred, for now assume vscale may be larger than 1, so
6028   // that scalable vectorization is slightly favorable over fixed-width
6029   // vectorization.
6030   if (Hints->isScalableVectorizationPreferred())
6031     if (A.Width.isScalable() && !B.Width.isScalable())
6032       return (CostA * B.Width.getKnownMinValue()) <=
6033              (CostB * A.Width.getKnownMinValue());
6034 
6035   // To avoid the need for FP division:
6036   //      (CostA / A.Width) < (CostB / B.Width)
6037   // <=>  (CostA * B.Width) < (CostB * A.Width)
6038   return (CostA * B.Width.getKnownMinValue()) <
6039          (CostB * A.Width.getKnownMinValue());
6040 }
6041 
6042 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6043     const ElementCountSet &VFCandidates) {
6044   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6045   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6046   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6047   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6048          "Expected Scalar VF to be a candidate");
6049 
6050   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6051   VectorizationFactor ChosenFactor = ScalarCost;
6052 
6053   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6054   if (ForceVectorization && VFCandidates.size() > 1) {
6055     // Ignore scalar width, because the user explicitly wants vectorization.
6056     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6057     // evaluation.
6058     ChosenFactor.Cost = InstructionCost::getMax();
6059   }
6060 
6061   SmallVector<InstructionVFPair> InvalidCosts;
6062   for (const auto &i : VFCandidates) {
6063     // The cost for scalar VF=1 is already calculated, so ignore it.
6064     if (i.isScalar())
6065       continue;
6066 
6067     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6068     VectorizationFactor Candidate(i, C.first);
6069     LLVM_DEBUG(
6070         dbgs() << "LV: Vector loop of width " << i << " costs: "
6071                << (Candidate.Cost / Candidate.Width.getKnownMinValue())
6072                << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
6073                << ".\n");
6074 
6075     if (!C.second && !ForceVectorization) {
6076       LLVM_DEBUG(
6077           dbgs() << "LV: Not considering vector loop of width " << i
6078                  << " because it will not generate any vector instructions.\n");
6079       continue;
6080     }
6081 
6082     // If profitable add it to ProfitableVF list.
6083     if (isMoreProfitable(Candidate, ScalarCost))
6084       ProfitableVFs.push_back(Candidate);
6085 
6086     if (isMoreProfitable(Candidate, ChosenFactor))
6087       ChosenFactor = Candidate;
6088   }
6089 
6090   // Emit a report of VFs with invalid costs in the loop.
6091   if (!InvalidCosts.empty()) {
6092     // Group the remarks per instruction, keeping the instruction order from
6093     // InvalidCosts.
6094     std::map<Instruction *, unsigned> Numbering;
6095     unsigned I = 0;
6096     for (auto &Pair : InvalidCosts)
6097       if (!Numbering.count(Pair.first))
6098         Numbering[Pair.first] = I++;
6099 
6100     // Sort the list, first on instruction(number) then on VF.
6101     llvm::sort(InvalidCosts,
6102                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6103                  if (Numbering[A.first] != Numbering[B.first])
6104                    return Numbering[A.first] < Numbering[B.first];
6105                  ElementCountComparator ECC;
6106                  return ECC(A.second, B.second);
6107                });
6108 
6109     // For a list of ordered instruction-vf pairs:
6110     //   [(load, vf1), (load, vf2), (store, vf1)]
6111     // Group the instructions together to emit separate remarks for:
6112     //   load  (vf1, vf2)
6113     //   store (vf1)
6114     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6115     auto Subset = ArrayRef<InstructionVFPair>();
6116     do {
6117       if (Subset.empty())
6118         Subset = Tail.take_front(1);
6119 
6120       Instruction *I = Subset.front().first;
6121 
6122       // If the next instruction is different, or if there are no other pairs,
6123       // emit a remark for the collated subset. e.g.
6124       //   [(load, vf1), (load, vf2))]
6125       // to emit:
6126       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6127       if (Subset == Tail || Tail[Subset.size()].first != I) {
6128         std::string OutString;
6129         raw_string_ostream OS(OutString);
6130         assert(!Subset.empty() && "Unexpected empty range");
6131         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6132         for (auto &Pair : Subset)
6133           OS << (Pair.second == Subset.front().second ? "" : ", ")
6134              << Pair.second;
6135         OS << "):";
6136         if (auto *CI = dyn_cast<CallInst>(I))
6137           OS << " call to " << CI->getCalledFunction()->getName();
6138         else
6139           OS << " " << I->getOpcodeName();
6140         OS.flush();
6141         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6142         Tail = Tail.drop_front(Subset.size());
6143         Subset = {};
6144       } else
6145         // Grow the subset by one element
6146         Subset = Tail.take_front(Subset.size() + 1);
6147     } while (!Tail.empty());
6148   }
6149 
6150   if (!EnableCondStoresVectorization && NumPredStores) {
6151     reportVectorizationFailure("There are conditional stores.",
6152         "store that is conditionally executed prevents vectorization",
6153         "ConditionalStore", ORE, TheLoop);
6154     ChosenFactor = ScalarCost;
6155   }
6156 
6157   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6158                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6159              << "LV: Vectorization seems to be not beneficial, "
6160              << "but was forced by a user.\n");
6161   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6162   return ChosenFactor;
6163 }
6164 
6165 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6166     const Loop &L, ElementCount VF) const {
6167   // Cross iteration phis such as reductions need special handling and are
6168   // currently unsupported.
6169   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6170         return Legal->isFirstOrderRecurrence(&Phi) ||
6171                Legal->isReductionVariable(&Phi);
6172       }))
6173     return false;
6174 
6175   // Phis with uses outside of the loop require special handling and are
6176   // currently unsupported.
6177   for (auto &Entry : Legal->getInductionVars()) {
6178     // Look for uses of the value of the induction at the last iteration.
6179     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6180     for (User *U : PostInc->users())
6181       if (!L.contains(cast<Instruction>(U)))
6182         return false;
6183     // Look for uses of penultimate value of the induction.
6184     for (User *U : Entry.first->users())
6185       if (!L.contains(cast<Instruction>(U)))
6186         return false;
6187   }
6188 
6189   // Induction variables that are widened require special handling that is
6190   // currently not supported.
6191   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6192         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6193                  this->isProfitableToScalarize(Entry.first, VF));
6194       }))
6195     return false;
6196 
6197   // Epilogue vectorization code has not been auditted to ensure it handles
6198   // non-latch exits properly.  It may be fine, but it needs auditted and
6199   // tested.
6200   if (L.getExitingBlock() != L.getLoopLatch())
6201     return false;
6202 
6203   return true;
6204 }
6205 
6206 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6207     const ElementCount VF) const {
6208   // FIXME: We need a much better cost-model to take different parameters such
6209   // as register pressure, code size increase and cost of extra branches into
6210   // account. For now we apply a very crude heuristic and only consider loops
6211   // with vectorization factors larger than a certain value.
6212   // We also consider epilogue vectorization unprofitable for targets that don't
6213   // consider interleaving beneficial (eg. MVE).
6214   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6215     return false;
6216   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6217     return true;
6218   return false;
6219 }
6220 
6221 VectorizationFactor
6222 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6223     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6224   VectorizationFactor Result = VectorizationFactor::Disabled();
6225   if (!EnableEpilogueVectorization) {
6226     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6227     return Result;
6228   }
6229 
6230   if (!isScalarEpilogueAllowed()) {
6231     LLVM_DEBUG(
6232         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6233                   "allowed.\n";);
6234     return Result;
6235   }
6236 
6237   // FIXME: This can be fixed for scalable vectors later, because at this stage
6238   // the LoopVectorizer will only consider vectorizing a loop with scalable
6239   // vectors when the loop has a hint to enable vectorization for a given VF.
6240   if (MainLoopVF.isScalable()) {
6241     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not "
6242                          "yet supported.\n");
6243     return Result;
6244   }
6245 
6246   // Not really a cost consideration, but check for unsupported cases here to
6247   // simplify the logic.
6248   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6249     LLVM_DEBUG(
6250         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6251                   "not a supported candidate.\n";);
6252     return Result;
6253   }
6254 
6255   if (EpilogueVectorizationForceVF > 1) {
6256     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6257     if (LVP.hasPlanWithVFs(
6258             {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)}))
6259       return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0};
6260     else {
6261       LLVM_DEBUG(
6262           dbgs()
6263               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6264       return Result;
6265     }
6266   }
6267 
6268   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6269       TheLoop->getHeader()->getParent()->hasMinSize()) {
6270     LLVM_DEBUG(
6271         dbgs()
6272             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6273     return Result;
6274   }
6275 
6276   if (!isEpilogueVectorizationProfitable(MainLoopVF))
6277     return Result;
6278 
6279   for (auto &NextVF : ProfitableVFs)
6280     if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) &&
6281         (Result.Width.getFixedValue() == 1 ||
6282          isMoreProfitable(NextVF, Result)) &&
6283         LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width}))
6284       Result = NextVF;
6285 
6286   if (Result != VectorizationFactor::Disabled())
6287     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6288                       << Result.Width.getFixedValue() << "\n";);
6289   return Result;
6290 }
6291 
6292 std::pair<unsigned, unsigned>
6293 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6294   unsigned MinWidth = -1U;
6295   unsigned MaxWidth = 8;
6296   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6297   for (Type *T : ElementTypesInLoop) {
6298     MinWidth = std::min<unsigned>(
6299         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6300     MaxWidth = std::max<unsigned>(
6301         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6302   }
6303   return {MinWidth, MaxWidth};
6304 }
6305 
6306 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6307   ElementTypesInLoop.clear();
6308   // For each block.
6309   for (BasicBlock *BB : TheLoop->blocks()) {
6310     // For each instruction in the loop.
6311     for (Instruction &I : BB->instructionsWithoutDebug()) {
6312       Type *T = I.getType();
6313 
6314       // Skip ignored values.
6315       if (ValuesToIgnore.count(&I))
6316         continue;
6317 
6318       // Only examine Loads, Stores and PHINodes.
6319       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6320         continue;
6321 
6322       // Examine PHI nodes that are reduction variables. Update the type to
6323       // account for the recurrence type.
6324       if (auto *PN = dyn_cast<PHINode>(&I)) {
6325         if (!Legal->isReductionVariable(PN))
6326           continue;
6327         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6328         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6329             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6330                                       RdxDesc.getRecurrenceType(),
6331                                       TargetTransformInfo::ReductionFlags()))
6332           continue;
6333         T = RdxDesc.getRecurrenceType();
6334       }
6335 
6336       // Examine the stored values.
6337       if (auto *ST = dyn_cast<StoreInst>(&I))
6338         T = ST->getValueOperand()->getType();
6339 
6340       // Ignore loaded pointer types and stored pointer types that are not
6341       // vectorizable.
6342       //
6343       // FIXME: The check here attempts to predict whether a load or store will
6344       //        be vectorized. We only know this for certain after a VF has
6345       //        been selected. Here, we assume that if an access can be
6346       //        vectorized, it will be. We should also look at extending this
6347       //        optimization to non-pointer types.
6348       //
6349       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6350           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6351         continue;
6352 
6353       ElementTypesInLoop.insert(T);
6354     }
6355   }
6356 }
6357 
6358 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6359                                                            unsigned LoopCost) {
6360   // -- The interleave heuristics --
6361   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6362   // There are many micro-architectural considerations that we can't predict
6363   // at this level. For example, frontend pressure (on decode or fetch) due to
6364   // code size, or the number and capabilities of the execution ports.
6365   //
6366   // We use the following heuristics to select the interleave count:
6367   // 1. If the code has reductions, then we interleave to break the cross
6368   // iteration dependency.
6369   // 2. If the loop is really small, then we interleave to reduce the loop
6370   // overhead.
6371   // 3. We don't interleave if we think that we will spill registers to memory
6372   // due to the increased register pressure.
6373 
6374   if (!isScalarEpilogueAllowed())
6375     return 1;
6376 
6377   // We used the distance for the interleave count.
6378   if (Legal->getMaxSafeDepDistBytes() != -1U)
6379     return 1;
6380 
6381   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6382   const bool HasReductions = !Legal->getReductionVars().empty();
6383   // Do not interleave loops with a relatively small known or estimated trip
6384   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6385   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6386   // because with the above conditions interleaving can expose ILP and break
6387   // cross iteration dependences for reductions.
6388   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6389       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6390     return 1;
6391 
6392   RegisterUsage R = calculateRegisterUsage({VF})[0];
6393   // We divide by these constants so assume that we have at least one
6394   // instruction that uses at least one register.
6395   for (auto& pair : R.MaxLocalUsers) {
6396     pair.second = std::max(pair.second, 1U);
6397   }
6398 
6399   // We calculate the interleave count using the following formula.
6400   // Subtract the number of loop invariants from the number of available
6401   // registers. These registers are used by all of the interleaved instances.
6402   // Next, divide the remaining registers by the number of registers that is
6403   // required by the loop, in order to estimate how many parallel instances
6404   // fit without causing spills. All of this is rounded down if necessary to be
6405   // a power of two. We want power of two interleave count to simplify any
6406   // addressing operations or alignment considerations.
6407   // We also want power of two interleave counts to ensure that the induction
6408   // variable of the vector loop wraps to zero, when tail is folded by masking;
6409   // this currently happens when OptForSize, in which case IC is set to 1 above.
6410   unsigned IC = UINT_MAX;
6411 
6412   for (auto& pair : R.MaxLocalUsers) {
6413     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6414     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6415                       << " registers of "
6416                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6417     if (VF.isScalar()) {
6418       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6419         TargetNumRegisters = ForceTargetNumScalarRegs;
6420     } else {
6421       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6422         TargetNumRegisters = ForceTargetNumVectorRegs;
6423     }
6424     unsigned MaxLocalUsers = pair.second;
6425     unsigned LoopInvariantRegs = 0;
6426     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6427       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6428 
6429     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6430     // Don't count the induction variable as interleaved.
6431     if (EnableIndVarRegisterHeur) {
6432       TmpIC =
6433           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6434                         std::max(1U, (MaxLocalUsers - 1)));
6435     }
6436 
6437     IC = std::min(IC, TmpIC);
6438   }
6439 
6440   // Clamp the interleave ranges to reasonable counts.
6441   unsigned MaxInterleaveCount =
6442       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6443 
6444   // Check if the user has overridden the max.
6445   if (VF.isScalar()) {
6446     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6447       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6448   } else {
6449     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6450       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6451   }
6452 
6453   // If trip count is known or estimated compile time constant, limit the
6454   // interleave count to be less than the trip count divided by VF, provided it
6455   // is at least 1.
6456   //
6457   // For scalable vectors we can't know if interleaving is beneficial. It may
6458   // not be beneficial for small loops if none of the lanes in the second vector
6459   // iterations is enabled. However, for larger loops, there is likely to be a
6460   // similar benefit as for fixed-width vectors. For now, we choose to leave
6461   // the InterleaveCount as if vscale is '1', although if some information about
6462   // the vector is known (e.g. min vector size), we can make a better decision.
6463   if (BestKnownTC) {
6464     MaxInterleaveCount =
6465         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6466     // Make sure MaxInterleaveCount is greater than 0.
6467     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6468   }
6469 
6470   assert(MaxInterleaveCount > 0 &&
6471          "Maximum interleave count must be greater than 0");
6472 
6473   // Clamp the calculated IC to be between the 1 and the max interleave count
6474   // that the target and trip count allows.
6475   if (IC > MaxInterleaveCount)
6476     IC = MaxInterleaveCount;
6477   else
6478     // Make sure IC is greater than 0.
6479     IC = std::max(1u, IC);
6480 
6481   assert(IC > 0 && "Interleave count must be greater than 0.");
6482 
6483   // If we did not calculate the cost for VF (because the user selected the VF)
6484   // then we calculate the cost of VF here.
6485   if (LoopCost == 0) {
6486     InstructionCost C = expectedCost(VF).first;
6487     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6488     LoopCost = *C.getValue();
6489   }
6490 
6491   assert(LoopCost && "Non-zero loop cost expected");
6492 
6493   // Interleave if we vectorized this loop and there is a reduction that could
6494   // benefit from interleaving.
6495   if (VF.isVector() && HasReductions) {
6496     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6497     return IC;
6498   }
6499 
6500   // Note that if we've already vectorized the loop we will have done the
6501   // runtime check and so interleaving won't require further checks.
6502   bool InterleavingRequiresRuntimePointerCheck =
6503       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6504 
6505   // We want to interleave small loops in order to reduce the loop overhead and
6506   // potentially expose ILP opportunities.
6507   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6508                     << "LV: IC is " << IC << '\n'
6509                     << "LV: VF is " << VF << '\n');
6510   const bool AggressivelyInterleaveReductions =
6511       TTI.enableAggressiveInterleaving(HasReductions);
6512   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6513     // We assume that the cost overhead is 1 and we use the cost model
6514     // to estimate the cost of the loop and interleave until the cost of the
6515     // loop overhead is about 5% of the cost of the loop.
6516     unsigned SmallIC =
6517         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6518 
6519     // Interleave until store/load ports (estimated by max interleave count) are
6520     // saturated.
6521     unsigned NumStores = Legal->getNumStores();
6522     unsigned NumLoads = Legal->getNumLoads();
6523     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6524     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6525 
6526     // If we have a scalar reduction (vector reductions are already dealt with
6527     // by this point), we can increase the critical path length if the loop
6528     // we're interleaving is inside another loop. For tree-wise reductions
6529     // set the limit to 2, and for ordered reductions it's best to disable
6530     // interleaving entirely.
6531     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6532       bool HasOrderedReductions =
6533           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6534             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6535             return RdxDesc.isOrdered();
6536           });
6537       if (HasOrderedReductions) {
6538         LLVM_DEBUG(
6539             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6540         return 1;
6541       }
6542 
6543       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6544       SmallIC = std::min(SmallIC, F);
6545       StoresIC = std::min(StoresIC, F);
6546       LoadsIC = std::min(LoadsIC, F);
6547     }
6548 
6549     if (EnableLoadStoreRuntimeInterleave &&
6550         std::max(StoresIC, LoadsIC) > SmallIC) {
6551       LLVM_DEBUG(
6552           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6553       return std::max(StoresIC, LoadsIC);
6554     }
6555 
6556     // If there are scalar reductions and TTI has enabled aggressive
6557     // interleaving for reductions, we will interleave to expose ILP.
6558     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6559         AggressivelyInterleaveReductions) {
6560       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6561       // Interleave no less than SmallIC but not as aggressive as the normal IC
6562       // to satisfy the rare situation when resources are too limited.
6563       return std::max(IC / 2, SmallIC);
6564     } else {
6565       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6566       return SmallIC;
6567     }
6568   }
6569 
6570   // Interleave if this is a large loop (small loops are already dealt with by
6571   // this point) that could benefit from interleaving.
6572   if (AggressivelyInterleaveReductions) {
6573     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6574     return IC;
6575   }
6576 
6577   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6578   return 1;
6579 }
6580 
6581 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6582 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6583   // This function calculates the register usage by measuring the highest number
6584   // of values that are alive at a single location. Obviously, this is a very
6585   // rough estimation. We scan the loop in a topological order in order and
6586   // assign a number to each instruction. We use RPO to ensure that defs are
6587   // met before their users. We assume that each instruction that has in-loop
6588   // users starts an interval. We record every time that an in-loop value is
6589   // used, so we have a list of the first and last occurrences of each
6590   // instruction. Next, we transpose this data structure into a multi map that
6591   // holds the list of intervals that *end* at a specific location. This multi
6592   // map allows us to perform a linear search. We scan the instructions linearly
6593   // and record each time that a new interval starts, by placing it in a set.
6594   // If we find this value in the multi-map then we remove it from the set.
6595   // The max register usage is the maximum size of the set.
6596   // We also search for instructions that are defined outside the loop, but are
6597   // used inside the loop. We need this number separately from the max-interval
6598   // usage number because when we unroll, loop-invariant values do not take
6599   // more register.
6600   LoopBlocksDFS DFS(TheLoop);
6601   DFS.perform(LI);
6602 
6603   RegisterUsage RU;
6604 
6605   // Each 'key' in the map opens a new interval. The values
6606   // of the map are the index of the 'last seen' usage of the
6607   // instruction that is the key.
6608   using IntervalMap = DenseMap<Instruction *, unsigned>;
6609 
6610   // Maps instruction to its index.
6611   SmallVector<Instruction *, 64> IdxToInstr;
6612   // Marks the end of each interval.
6613   IntervalMap EndPoint;
6614   // Saves the list of instruction indices that are used in the loop.
6615   SmallPtrSet<Instruction *, 8> Ends;
6616   // Saves the list of values that are used in the loop but are
6617   // defined outside the loop, such as arguments and constants.
6618   SmallPtrSet<Value *, 8> LoopInvariants;
6619 
6620   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6621     for (Instruction &I : BB->instructionsWithoutDebug()) {
6622       IdxToInstr.push_back(&I);
6623 
6624       // Save the end location of each USE.
6625       for (Value *U : I.operands()) {
6626         auto *Instr = dyn_cast<Instruction>(U);
6627 
6628         // Ignore non-instruction values such as arguments, constants, etc.
6629         if (!Instr)
6630           continue;
6631 
6632         // If this instruction is outside the loop then record it and continue.
6633         if (!TheLoop->contains(Instr)) {
6634           LoopInvariants.insert(Instr);
6635           continue;
6636         }
6637 
6638         // Overwrite previous end points.
6639         EndPoint[Instr] = IdxToInstr.size();
6640         Ends.insert(Instr);
6641       }
6642     }
6643   }
6644 
6645   // Saves the list of intervals that end with the index in 'key'.
6646   using InstrList = SmallVector<Instruction *, 2>;
6647   DenseMap<unsigned, InstrList> TransposeEnds;
6648 
6649   // Transpose the EndPoints to a list of values that end at each index.
6650   for (auto &Interval : EndPoint)
6651     TransposeEnds[Interval.second].push_back(Interval.first);
6652 
6653   SmallPtrSet<Instruction *, 8> OpenIntervals;
6654   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6655   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6656 
6657   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6658 
6659   // A lambda that gets the register usage for the given type and VF.
6660   const auto &TTICapture = TTI;
6661   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6662     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6663       return 0;
6664     InstructionCost::CostType RegUsage =
6665         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6666     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6667            "Nonsensical values for register usage.");
6668     return RegUsage;
6669   };
6670 
6671   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6672     Instruction *I = IdxToInstr[i];
6673 
6674     // Remove all of the instructions that end at this location.
6675     InstrList &List = TransposeEnds[i];
6676     for (Instruction *ToRemove : List)
6677       OpenIntervals.erase(ToRemove);
6678 
6679     // Ignore instructions that are never used within the loop.
6680     if (!Ends.count(I))
6681       continue;
6682 
6683     // Skip ignored values.
6684     if (ValuesToIgnore.count(I))
6685       continue;
6686 
6687     // For each VF find the maximum usage of registers.
6688     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6689       // Count the number of live intervals.
6690       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6691 
6692       if (VFs[j].isScalar()) {
6693         for (auto Inst : OpenIntervals) {
6694           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6695           if (RegUsage.find(ClassID) == RegUsage.end())
6696             RegUsage[ClassID] = 1;
6697           else
6698             RegUsage[ClassID] += 1;
6699         }
6700       } else {
6701         collectUniformsAndScalars(VFs[j]);
6702         for (auto Inst : OpenIntervals) {
6703           // Skip ignored values for VF > 1.
6704           if (VecValuesToIgnore.count(Inst))
6705             continue;
6706           if (isScalarAfterVectorization(Inst, VFs[j])) {
6707             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6708             if (RegUsage.find(ClassID) == RegUsage.end())
6709               RegUsage[ClassID] = 1;
6710             else
6711               RegUsage[ClassID] += 1;
6712           } else {
6713             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6714             if (RegUsage.find(ClassID) == RegUsage.end())
6715               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6716             else
6717               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6718           }
6719         }
6720       }
6721 
6722       for (auto& pair : RegUsage) {
6723         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6724           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6725         else
6726           MaxUsages[j][pair.first] = pair.second;
6727       }
6728     }
6729 
6730     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6731                       << OpenIntervals.size() << '\n');
6732 
6733     // Add the current instruction to the list of open intervals.
6734     OpenIntervals.insert(I);
6735   }
6736 
6737   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6738     SmallMapVector<unsigned, unsigned, 4> Invariant;
6739 
6740     for (auto Inst : LoopInvariants) {
6741       unsigned Usage =
6742           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6743       unsigned ClassID =
6744           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6745       if (Invariant.find(ClassID) == Invariant.end())
6746         Invariant[ClassID] = Usage;
6747       else
6748         Invariant[ClassID] += Usage;
6749     }
6750 
6751     LLVM_DEBUG({
6752       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6753       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6754              << " item\n";
6755       for (const auto &pair : MaxUsages[i]) {
6756         dbgs() << "LV(REG): RegisterClass: "
6757                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6758                << " registers\n";
6759       }
6760       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6761              << " item\n";
6762       for (const auto &pair : Invariant) {
6763         dbgs() << "LV(REG): RegisterClass: "
6764                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6765                << " registers\n";
6766       }
6767     });
6768 
6769     RU.LoopInvariantRegs = Invariant;
6770     RU.MaxLocalUsers = MaxUsages[i];
6771     RUs[i] = RU;
6772   }
6773 
6774   return RUs;
6775 }
6776 
6777 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6778   // TODO: Cost model for emulated masked load/store is completely
6779   // broken. This hack guides the cost model to use an artificially
6780   // high enough value to practically disable vectorization with such
6781   // operations, except where previously deployed legality hack allowed
6782   // using very low cost values. This is to avoid regressions coming simply
6783   // from moving "masked load/store" check from legality to cost model.
6784   // Masked Load/Gather emulation was previously never allowed.
6785   // Limited number of Masked Store/Scatter emulation was allowed.
6786   assert(isPredicatedInst(I) &&
6787          "Expecting a scalar emulated instruction");
6788   return isa<LoadInst>(I) ||
6789          (isa<StoreInst>(I) &&
6790           NumPredStores > NumberOfStoresToPredicate);
6791 }
6792 
6793 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6794   // If we aren't vectorizing the loop, or if we've already collected the
6795   // instructions to scalarize, there's nothing to do. Collection may already
6796   // have occurred if we have a user-selected VF and are now computing the
6797   // expected cost for interleaving.
6798   if (VF.isScalar() || VF.isZero() ||
6799       InstsToScalarize.find(VF) != InstsToScalarize.end())
6800     return;
6801 
6802   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6803   // not profitable to scalarize any instructions, the presence of VF in the
6804   // map will indicate that we've analyzed it already.
6805   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6806 
6807   // Find all the instructions that are scalar with predication in the loop and
6808   // determine if it would be better to not if-convert the blocks they are in.
6809   // If so, we also record the instructions to scalarize.
6810   for (BasicBlock *BB : TheLoop->blocks()) {
6811     if (!blockNeedsPredication(BB))
6812       continue;
6813     for (Instruction &I : *BB)
6814       if (isScalarWithPredication(&I)) {
6815         ScalarCostsTy ScalarCosts;
6816         // Do not apply discount if scalable, because that would lead to
6817         // invalid scalarization costs.
6818         // Do not apply discount logic if hacked cost is needed
6819         // for emulated masked memrefs.
6820         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6821             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6822           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6823         // Remember that BB will remain after vectorization.
6824         PredicatedBBsAfterVectorization.insert(BB);
6825       }
6826   }
6827 }
6828 
6829 int LoopVectorizationCostModel::computePredInstDiscount(
6830     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6831   assert(!isUniformAfterVectorization(PredInst, VF) &&
6832          "Instruction marked uniform-after-vectorization will be predicated");
6833 
6834   // Initialize the discount to zero, meaning that the scalar version and the
6835   // vector version cost the same.
6836   InstructionCost Discount = 0;
6837 
6838   // Holds instructions to analyze. The instructions we visit are mapped in
6839   // ScalarCosts. Those instructions are the ones that would be scalarized if
6840   // we find that the scalar version costs less.
6841   SmallVector<Instruction *, 8> Worklist;
6842 
6843   // Returns true if the given instruction can be scalarized.
6844   auto canBeScalarized = [&](Instruction *I) -> bool {
6845     // We only attempt to scalarize instructions forming a single-use chain
6846     // from the original predicated block that would otherwise be vectorized.
6847     // Although not strictly necessary, we give up on instructions we know will
6848     // already be scalar to avoid traversing chains that are unlikely to be
6849     // beneficial.
6850     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6851         isScalarAfterVectorization(I, VF))
6852       return false;
6853 
6854     // If the instruction is scalar with predication, it will be analyzed
6855     // separately. We ignore it within the context of PredInst.
6856     if (isScalarWithPredication(I))
6857       return false;
6858 
6859     // If any of the instruction's operands are uniform after vectorization,
6860     // the instruction cannot be scalarized. This prevents, for example, a
6861     // masked load from being scalarized.
6862     //
6863     // We assume we will only emit a value for lane zero of an instruction
6864     // marked uniform after vectorization, rather than VF identical values.
6865     // Thus, if we scalarize an instruction that uses a uniform, we would
6866     // create uses of values corresponding to the lanes we aren't emitting code
6867     // for. This behavior can be changed by allowing getScalarValue to clone
6868     // the lane zero values for uniforms rather than asserting.
6869     for (Use &U : I->operands())
6870       if (auto *J = dyn_cast<Instruction>(U.get()))
6871         if (isUniformAfterVectorization(J, VF))
6872           return false;
6873 
6874     // Otherwise, we can scalarize the instruction.
6875     return true;
6876   };
6877 
6878   // Compute the expected cost discount from scalarizing the entire expression
6879   // feeding the predicated instruction. We currently only consider expressions
6880   // that are single-use instruction chains.
6881   Worklist.push_back(PredInst);
6882   while (!Worklist.empty()) {
6883     Instruction *I = Worklist.pop_back_val();
6884 
6885     // If we've already analyzed the instruction, there's nothing to do.
6886     if (ScalarCosts.find(I) != ScalarCosts.end())
6887       continue;
6888 
6889     // Compute the cost of the vector instruction. Note that this cost already
6890     // includes the scalarization overhead of the predicated instruction.
6891     InstructionCost VectorCost = getInstructionCost(I, VF).first;
6892 
6893     // Compute the cost of the scalarized instruction. This cost is the cost of
6894     // the instruction as if it wasn't if-converted and instead remained in the
6895     // predicated block. We will scale this cost by block probability after
6896     // computing the scalarization overhead.
6897     InstructionCost ScalarCost =
6898         VF.getFixedValue() *
6899         getInstructionCost(I, ElementCount::getFixed(1)).first;
6900 
6901     // Compute the scalarization overhead of needed insertelement instructions
6902     // and phi nodes.
6903     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6904       ScalarCost += TTI.getScalarizationOverhead(
6905           cast<VectorType>(ToVectorTy(I->getType(), VF)),
6906           APInt::getAllOnes(VF.getFixedValue()), true, false);
6907       ScalarCost +=
6908           VF.getFixedValue() *
6909           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
6910     }
6911 
6912     // Compute the scalarization overhead of needed extractelement
6913     // instructions. For each of the instruction's operands, if the operand can
6914     // be scalarized, add it to the worklist; otherwise, account for the
6915     // overhead.
6916     for (Use &U : I->operands())
6917       if (auto *J = dyn_cast<Instruction>(U.get())) {
6918         assert(VectorType::isValidElementType(J->getType()) &&
6919                "Instruction has non-scalar type");
6920         if (canBeScalarized(J))
6921           Worklist.push_back(J);
6922         else if (needsExtract(J, VF)) {
6923           ScalarCost += TTI.getScalarizationOverhead(
6924               cast<VectorType>(ToVectorTy(J->getType(), VF)),
6925               APInt::getAllOnes(VF.getFixedValue()), false, true);
6926         }
6927       }
6928 
6929     // Scale the total scalar cost by block probability.
6930     ScalarCost /= getReciprocalPredBlockProb();
6931 
6932     // Compute the discount. A non-negative discount means the vector version
6933     // of the instruction costs more, and scalarizing would be beneficial.
6934     Discount += VectorCost - ScalarCost;
6935     ScalarCosts[I] = ScalarCost;
6936   }
6937 
6938   return *Discount.getValue();
6939 }
6940 
6941 LoopVectorizationCostModel::VectorizationCostTy
6942 LoopVectorizationCostModel::expectedCost(
6943     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
6944   VectorizationCostTy Cost;
6945 
6946   // For each block.
6947   for (BasicBlock *BB : TheLoop->blocks()) {
6948     VectorizationCostTy BlockCost;
6949 
6950     // For each instruction in the old loop.
6951     for (Instruction &I : BB->instructionsWithoutDebug()) {
6952       // Skip ignored values.
6953       if (ValuesToIgnore.count(&I) ||
6954           (VF.isVector() && VecValuesToIgnore.count(&I)))
6955         continue;
6956 
6957       VectorizationCostTy C = getInstructionCost(&I, VF);
6958 
6959       // Check if we should override the cost.
6960       if (C.first.isValid() &&
6961           ForceTargetInstructionCost.getNumOccurrences() > 0)
6962         C.first = InstructionCost(ForceTargetInstructionCost);
6963 
6964       // Keep a list of instructions with invalid costs.
6965       if (Invalid && !C.first.isValid())
6966         Invalid->emplace_back(&I, VF);
6967 
6968       BlockCost.first += C.first;
6969       BlockCost.second |= C.second;
6970       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
6971                         << " for VF " << VF << " For instruction: " << I
6972                         << '\n');
6973     }
6974 
6975     // If we are vectorizing a predicated block, it will have been
6976     // if-converted. This means that the block's instructions (aside from
6977     // stores and instructions that may divide by zero) will now be
6978     // unconditionally executed. For the scalar case, we may not always execute
6979     // the predicated block, if it is an if-else block. Thus, scale the block's
6980     // cost by the probability of executing it. blockNeedsPredication from
6981     // Legal is used so as to not include all blocks in tail folded loops.
6982     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
6983       BlockCost.first /= getReciprocalPredBlockProb();
6984 
6985     Cost.first += BlockCost.first;
6986     Cost.second |= BlockCost.second;
6987   }
6988 
6989   return Cost;
6990 }
6991 
6992 /// Gets Address Access SCEV after verifying that the access pattern
6993 /// is loop invariant except the induction variable dependence.
6994 ///
6995 /// This SCEV can be sent to the Target in order to estimate the address
6996 /// calculation cost.
6997 static const SCEV *getAddressAccessSCEV(
6998               Value *Ptr,
6999               LoopVectorizationLegality *Legal,
7000               PredicatedScalarEvolution &PSE,
7001               const Loop *TheLoop) {
7002 
7003   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
7004   if (!Gep)
7005     return nullptr;
7006 
7007   // We are looking for a gep with all loop invariant indices except for one
7008   // which should be an induction variable.
7009   auto SE = PSE.getSE();
7010   unsigned NumOperands = Gep->getNumOperands();
7011   for (unsigned i = 1; i < NumOperands; ++i) {
7012     Value *Opd = Gep->getOperand(i);
7013     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
7014         !Legal->isInductionVariable(Opd))
7015       return nullptr;
7016   }
7017 
7018   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
7019   return PSE.getSCEV(Ptr);
7020 }
7021 
7022 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
7023   return Legal->hasStride(I->getOperand(0)) ||
7024          Legal->hasStride(I->getOperand(1));
7025 }
7026 
7027 InstructionCost
7028 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
7029                                                         ElementCount VF) {
7030   assert(VF.isVector() &&
7031          "Scalarization cost of instruction implies vectorization.");
7032   if (VF.isScalable())
7033     return InstructionCost::getInvalid();
7034 
7035   Type *ValTy = getLoadStoreType(I);
7036   auto SE = PSE.getSE();
7037 
7038   unsigned AS = getLoadStoreAddressSpace(I);
7039   Value *Ptr = getLoadStorePointerOperand(I);
7040   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7041 
7042   // Figure out whether the access is strided and get the stride value
7043   // if it's known in compile time
7044   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
7045 
7046   // Get the cost of the scalar memory instruction and address computation.
7047   InstructionCost Cost =
7048       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7049 
7050   // Don't pass *I here, since it is scalar but will actually be part of a
7051   // vectorized loop where the user of it is a vectorized instruction.
7052   const Align Alignment = getLoadStoreAlignment(I);
7053   Cost += VF.getKnownMinValue() *
7054           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7055                               AS, TTI::TCK_RecipThroughput);
7056 
7057   // Get the overhead of the extractelement and insertelement instructions
7058   // we might create due to scalarization.
7059   Cost += getScalarizationOverhead(I, VF);
7060 
7061   // If we have a predicated load/store, it will need extra i1 extracts and
7062   // conditional branches, but may not be executed for each vector lane. Scale
7063   // the cost by the probability of executing the predicated block.
7064   if (isPredicatedInst(I)) {
7065     Cost /= getReciprocalPredBlockProb();
7066 
7067     // Add the cost of an i1 extract and a branch
7068     auto *Vec_i1Ty =
7069         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7070     Cost += TTI.getScalarizationOverhead(
7071         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
7072         /*Insert=*/false, /*Extract=*/true);
7073     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7074 
7075     if (useEmulatedMaskMemRefHack(I))
7076       // Artificially setting to a high enough value to practically disable
7077       // vectorization with such operations.
7078       Cost = 3000000;
7079   }
7080 
7081   return Cost;
7082 }
7083 
7084 InstructionCost
7085 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7086                                                     ElementCount VF) {
7087   Type *ValTy = getLoadStoreType(I);
7088   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7089   Value *Ptr = getLoadStorePointerOperand(I);
7090   unsigned AS = getLoadStoreAddressSpace(I);
7091   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
7092   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7093 
7094   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7095          "Stride should be 1 or -1 for consecutive memory access");
7096   const Align Alignment = getLoadStoreAlignment(I);
7097   InstructionCost Cost = 0;
7098   if (Legal->isMaskRequired(I))
7099     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7100                                       CostKind);
7101   else
7102     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7103                                 CostKind, I);
7104 
7105   bool Reverse = ConsecutiveStride < 0;
7106   if (Reverse)
7107     Cost +=
7108         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7109   return Cost;
7110 }
7111 
7112 InstructionCost
7113 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7114                                                 ElementCount VF) {
7115   assert(Legal->isUniformMemOp(*I));
7116 
7117   Type *ValTy = getLoadStoreType(I);
7118   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7119   const Align Alignment = getLoadStoreAlignment(I);
7120   unsigned AS = getLoadStoreAddressSpace(I);
7121   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7122   if (isa<LoadInst>(I)) {
7123     return TTI.getAddressComputationCost(ValTy) +
7124            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7125                                CostKind) +
7126            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7127   }
7128   StoreInst *SI = cast<StoreInst>(I);
7129 
7130   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7131   return TTI.getAddressComputationCost(ValTy) +
7132          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7133                              CostKind) +
7134          (isLoopInvariantStoreValue
7135               ? 0
7136               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7137                                        VF.getKnownMinValue() - 1));
7138 }
7139 
7140 InstructionCost
7141 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7142                                                  ElementCount VF) {
7143   Type *ValTy = getLoadStoreType(I);
7144   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7145   const Align Alignment = getLoadStoreAlignment(I);
7146   const Value *Ptr = getLoadStorePointerOperand(I);
7147 
7148   return TTI.getAddressComputationCost(VectorTy) +
7149          TTI.getGatherScatterOpCost(
7150              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7151              TargetTransformInfo::TCK_RecipThroughput, I);
7152 }
7153 
7154 InstructionCost
7155 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7156                                                    ElementCount VF) {
7157   // TODO: Once we have support for interleaving with scalable vectors
7158   // we can calculate the cost properly here.
7159   if (VF.isScalable())
7160     return InstructionCost::getInvalid();
7161 
7162   Type *ValTy = getLoadStoreType(I);
7163   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7164   unsigned AS = getLoadStoreAddressSpace(I);
7165 
7166   auto Group = getInterleavedAccessGroup(I);
7167   assert(Group && "Fail to get an interleaved access group.");
7168 
7169   unsigned InterleaveFactor = Group->getFactor();
7170   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7171 
7172   // Holds the indices of existing members in the interleaved group.
7173   SmallVector<unsigned, 4> Indices;
7174   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
7175     if (Group->getMember(IF))
7176       Indices.push_back(IF);
7177 
7178   // Calculate the cost of the whole interleaved group.
7179   bool UseMaskForGaps =
7180       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
7181       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
7182   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7183       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7184       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7185 
7186   if (Group->isReverse()) {
7187     // TODO: Add support for reversed masked interleaved access.
7188     assert(!Legal->isMaskRequired(I) &&
7189            "Reverse masked interleaved access not supported.");
7190     Cost +=
7191         Group->getNumMembers() *
7192         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7193   }
7194   return Cost;
7195 }
7196 
7197 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7198     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7199   using namespace llvm::PatternMatch;
7200   // Early exit for no inloop reductions
7201   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7202     return None;
7203   auto *VectorTy = cast<VectorType>(Ty);
7204 
7205   // We are looking for a pattern of, and finding the minimal acceptable cost:
7206   //  reduce(mul(ext(A), ext(B))) or
7207   //  reduce(mul(A, B)) or
7208   //  reduce(ext(A)) or
7209   //  reduce(A).
7210   // The basic idea is that we walk down the tree to do that, finding the root
7211   // reduction instruction in InLoopReductionImmediateChains. From there we find
7212   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7213   // of the components. If the reduction cost is lower then we return it for the
7214   // reduction instruction and 0 for the other instructions in the pattern. If
7215   // it is not we return an invalid cost specifying the orignal cost method
7216   // should be used.
7217   Instruction *RetI = I;
7218   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7219     if (!RetI->hasOneUser())
7220       return None;
7221     RetI = RetI->user_back();
7222   }
7223   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7224       RetI->user_back()->getOpcode() == Instruction::Add) {
7225     if (!RetI->hasOneUser())
7226       return None;
7227     RetI = RetI->user_back();
7228   }
7229 
7230   // Test if the found instruction is a reduction, and if not return an invalid
7231   // cost specifying the parent to use the original cost modelling.
7232   if (!InLoopReductionImmediateChains.count(RetI))
7233     return None;
7234 
7235   // Find the reduction this chain is a part of and calculate the basic cost of
7236   // the reduction on its own.
7237   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7238   Instruction *ReductionPhi = LastChain;
7239   while (!isa<PHINode>(ReductionPhi))
7240     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7241 
7242   const RecurrenceDescriptor &RdxDesc =
7243       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7244 
7245   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7246       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7247 
7248   // If we're using ordered reductions then we can just return the base cost
7249   // here, since getArithmeticReductionCost calculates the full ordered
7250   // reduction cost when FP reassociation is not allowed.
7251   if (useOrderedReductions(RdxDesc))
7252     return BaseCost;
7253 
7254   // Get the operand that was not the reduction chain and match it to one of the
7255   // patterns, returning the better cost if it is found.
7256   Instruction *RedOp = RetI->getOperand(1) == LastChain
7257                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7258                            : dyn_cast<Instruction>(RetI->getOperand(1));
7259 
7260   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7261 
7262   Instruction *Op0, *Op1;
7263   if (RedOp &&
7264       match(RedOp,
7265             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7266       match(Op0, m_ZExtOrSExt(m_Value())) &&
7267       Op0->getOpcode() == Op1->getOpcode() &&
7268       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7269       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7270       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7271 
7272     // Matched reduce(ext(mul(ext(A), ext(B)))
7273     // Note that the extend opcodes need to all match, or if A==B they will have
7274     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7275     // which is equally fine.
7276     bool IsUnsigned = isa<ZExtInst>(Op0);
7277     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7278     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7279 
7280     InstructionCost ExtCost =
7281         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7282                              TTI::CastContextHint::None, CostKind, Op0);
7283     InstructionCost MulCost =
7284         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7285     InstructionCost Ext2Cost =
7286         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7287                              TTI::CastContextHint::None, CostKind, RedOp);
7288 
7289     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7290         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7291         CostKind);
7292 
7293     if (RedCost.isValid() &&
7294         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7295       return I == RetI ? RedCost : 0;
7296   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7297              !TheLoop->isLoopInvariant(RedOp)) {
7298     // Matched reduce(ext(A))
7299     bool IsUnsigned = isa<ZExtInst>(RedOp);
7300     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7301     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7302         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7303         CostKind);
7304 
7305     InstructionCost ExtCost =
7306         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7307                              TTI::CastContextHint::None, CostKind, RedOp);
7308     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7309       return I == RetI ? RedCost : 0;
7310   } else if (RedOp &&
7311              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7312     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7313         Op0->getOpcode() == Op1->getOpcode() &&
7314         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7315         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7316       bool IsUnsigned = isa<ZExtInst>(Op0);
7317       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7318       // Matched reduce(mul(ext, ext))
7319       InstructionCost ExtCost =
7320           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7321                                TTI::CastContextHint::None, CostKind, Op0);
7322       InstructionCost MulCost =
7323           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7324 
7325       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7326           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7327           CostKind);
7328 
7329       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7330         return I == RetI ? RedCost : 0;
7331     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7332       // Matched reduce(mul())
7333       InstructionCost MulCost =
7334           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7335 
7336       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7337           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7338           CostKind);
7339 
7340       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7341         return I == RetI ? RedCost : 0;
7342     }
7343   }
7344 
7345   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7346 }
7347 
7348 InstructionCost
7349 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7350                                                      ElementCount VF) {
7351   // Calculate scalar cost only. Vectorization cost should be ready at this
7352   // moment.
7353   if (VF.isScalar()) {
7354     Type *ValTy = getLoadStoreType(I);
7355     const Align Alignment = getLoadStoreAlignment(I);
7356     unsigned AS = getLoadStoreAddressSpace(I);
7357 
7358     return TTI.getAddressComputationCost(ValTy) +
7359            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7360                                TTI::TCK_RecipThroughput, I);
7361   }
7362   return getWideningCost(I, VF);
7363 }
7364 
7365 LoopVectorizationCostModel::VectorizationCostTy
7366 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7367                                                ElementCount VF) {
7368   // If we know that this instruction will remain uniform, check the cost of
7369   // the scalar version.
7370   if (isUniformAfterVectorization(I, VF))
7371     VF = ElementCount::getFixed(1);
7372 
7373   if (VF.isVector() && isProfitableToScalarize(I, VF))
7374     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7375 
7376   // Forced scalars do not have any scalarization overhead.
7377   auto ForcedScalar = ForcedScalars.find(VF);
7378   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7379     auto InstSet = ForcedScalar->second;
7380     if (InstSet.count(I))
7381       return VectorizationCostTy(
7382           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7383            VF.getKnownMinValue()),
7384           false);
7385   }
7386 
7387   Type *VectorTy;
7388   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7389 
7390   bool TypeNotScalarized =
7391       VF.isVector() && VectorTy->isVectorTy() &&
7392       TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue();
7393   return VectorizationCostTy(C, TypeNotScalarized);
7394 }
7395 
7396 InstructionCost
7397 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7398                                                      ElementCount VF) const {
7399 
7400   // There is no mechanism yet to create a scalable scalarization loop,
7401   // so this is currently Invalid.
7402   if (VF.isScalable())
7403     return InstructionCost::getInvalid();
7404 
7405   if (VF.isScalar())
7406     return 0;
7407 
7408   InstructionCost Cost = 0;
7409   Type *RetTy = ToVectorTy(I->getType(), VF);
7410   if (!RetTy->isVoidTy() &&
7411       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7412     Cost += TTI.getScalarizationOverhead(
7413         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7414         false);
7415 
7416   // Some targets keep addresses scalar.
7417   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7418     return Cost;
7419 
7420   // Some targets support efficient element stores.
7421   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7422     return Cost;
7423 
7424   // Collect operands to consider.
7425   CallInst *CI = dyn_cast<CallInst>(I);
7426   Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands();
7427 
7428   // Skip operands that do not require extraction/scalarization and do not incur
7429   // any overhead.
7430   SmallVector<Type *> Tys;
7431   for (auto *V : filterExtractingOperands(Ops, VF))
7432     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7433   return Cost + TTI.getOperandsScalarizationOverhead(
7434                     filterExtractingOperands(Ops, VF), Tys);
7435 }
7436 
7437 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7438   if (VF.isScalar())
7439     return;
7440   NumPredStores = 0;
7441   for (BasicBlock *BB : TheLoop->blocks()) {
7442     // For each instruction in the old loop.
7443     for (Instruction &I : *BB) {
7444       Value *Ptr =  getLoadStorePointerOperand(&I);
7445       if (!Ptr)
7446         continue;
7447 
7448       // TODO: We should generate better code and update the cost model for
7449       // predicated uniform stores. Today they are treated as any other
7450       // predicated store (see added test cases in
7451       // invariant-store-vectorization.ll).
7452       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7453         NumPredStores++;
7454 
7455       if (Legal->isUniformMemOp(I)) {
7456         // TODO: Avoid replicating loads and stores instead of
7457         // relying on instcombine to remove them.
7458         // Load: Scalar load + broadcast
7459         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7460         InstructionCost Cost;
7461         if (isa<StoreInst>(&I) && VF.isScalable() &&
7462             isLegalGatherOrScatter(&I)) {
7463           Cost = getGatherScatterCost(&I, VF);
7464           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7465         } else {
7466           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7467                  "Cannot yet scalarize uniform stores");
7468           Cost = getUniformMemOpCost(&I, VF);
7469           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7470         }
7471         continue;
7472       }
7473 
7474       // We assume that widening is the best solution when possible.
7475       if (memoryInstructionCanBeWidened(&I, VF)) {
7476         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7477         int ConsecutiveStride =
7478                Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
7479         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7480                "Expected consecutive stride.");
7481         InstWidening Decision =
7482             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7483         setWideningDecision(&I, VF, Decision, Cost);
7484         continue;
7485       }
7486 
7487       // Choose between Interleaving, Gather/Scatter or Scalarization.
7488       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7489       unsigned NumAccesses = 1;
7490       if (isAccessInterleaved(&I)) {
7491         auto Group = getInterleavedAccessGroup(&I);
7492         assert(Group && "Fail to get an interleaved access group.");
7493 
7494         // Make one decision for the whole group.
7495         if (getWideningDecision(&I, VF) != CM_Unknown)
7496           continue;
7497 
7498         NumAccesses = Group->getNumMembers();
7499         if (interleavedAccessCanBeWidened(&I, VF))
7500           InterleaveCost = getInterleaveGroupCost(&I, VF);
7501       }
7502 
7503       InstructionCost GatherScatterCost =
7504           isLegalGatherOrScatter(&I)
7505               ? getGatherScatterCost(&I, VF) * NumAccesses
7506               : InstructionCost::getInvalid();
7507 
7508       InstructionCost ScalarizationCost =
7509           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7510 
7511       // Choose better solution for the current VF,
7512       // write down this decision and use it during vectorization.
7513       InstructionCost Cost;
7514       InstWidening Decision;
7515       if (InterleaveCost <= GatherScatterCost &&
7516           InterleaveCost < ScalarizationCost) {
7517         Decision = CM_Interleave;
7518         Cost = InterleaveCost;
7519       } else if (GatherScatterCost < ScalarizationCost) {
7520         Decision = CM_GatherScatter;
7521         Cost = GatherScatterCost;
7522       } else {
7523         Decision = CM_Scalarize;
7524         Cost = ScalarizationCost;
7525       }
7526       // If the instructions belongs to an interleave group, the whole group
7527       // receives the same decision. The whole group receives the cost, but
7528       // the cost will actually be assigned to one instruction.
7529       if (auto Group = getInterleavedAccessGroup(&I))
7530         setWideningDecision(Group, VF, Decision, Cost);
7531       else
7532         setWideningDecision(&I, VF, Decision, Cost);
7533     }
7534   }
7535 
7536   // Make sure that any load of address and any other address computation
7537   // remains scalar unless there is gather/scatter support. This avoids
7538   // inevitable extracts into address registers, and also has the benefit of
7539   // activating LSR more, since that pass can't optimize vectorized
7540   // addresses.
7541   if (TTI.prefersVectorizedAddressing())
7542     return;
7543 
7544   // Start with all scalar pointer uses.
7545   SmallPtrSet<Instruction *, 8> AddrDefs;
7546   for (BasicBlock *BB : TheLoop->blocks())
7547     for (Instruction &I : *BB) {
7548       Instruction *PtrDef =
7549         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7550       if (PtrDef && TheLoop->contains(PtrDef) &&
7551           getWideningDecision(&I, VF) != CM_GatherScatter)
7552         AddrDefs.insert(PtrDef);
7553     }
7554 
7555   // Add all instructions used to generate the addresses.
7556   SmallVector<Instruction *, 4> Worklist;
7557   append_range(Worklist, AddrDefs);
7558   while (!Worklist.empty()) {
7559     Instruction *I = Worklist.pop_back_val();
7560     for (auto &Op : I->operands())
7561       if (auto *InstOp = dyn_cast<Instruction>(Op))
7562         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7563             AddrDefs.insert(InstOp).second)
7564           Worklist.push_back(InstOp);
7565   }
7566 
7567   for (auto *I : AddrDefs) {
7568     if (isa<LoadInst>(I)) {
7569       // Setting the desired widening decision should ideally be handled in
7570       // by cost functions, but since this involves the task of finding out
7571       // if the loaded register is involved in an address computation, it is
7572       // instead changed here when we know this is the case.
7573       InstWidening Decision = getWideningDecision(I, VF);
7574       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7575         // Scalarize a widened load of address.
7576         setWideningDecision(
7577             I, VF, CM_Scalarize,
7578             (VF.getKnownMinValue() *
7579              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7580       else if (auto Group = getInterleavedAccessGroup(I)) {
7581         // Scalarize an interleave group of address loads.
7582         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7583           if (Instruction *Member = Group->getMember(I))
7584             setWideningDecision(
7585                 Member, VF, CM_Scalarize,
7586                 (VF.getKnownMinValue() *
7587                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7588         }
7589       }
7590     } else
7591       // Make sure I gets scalarized and a cost estimate without
7592       // scalarization overhead.
7593       ForcedScalars[VF].insert(I);
7594   }
7595 }
7596 
7597 InstructionCost
7598 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7599                                                Type *&VectorTy) {
7600   Type *RetTy = I->getType();
7601   if (canTruncateToMinimalBitwidth(I, VF))
7602     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7603   auto SE = PSE.getSE();
7604   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7605 
7606   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7607                                                 ElementCount VF) -> bool {
7608     if (VF.isScalar())
7609       return true;
7610 
7611     auto Scalarized = InstsToScalarize.find(VF);
7612     assert(Scalarized != InstsToScalarize.end() &&
7613            "VF not yet analyzed for scalarization profitability");
7614     return !Scalarized->second.count(I) &&
7615            llvm::all_of(I->users(), [&](User *U) {
7616              auto *UI = cast<Instruction>(U);
7617              return !Scalarized->second.count(UI);
7618            });
7619   };
7620   (void) hasSingleCopyAfterVectorization;
7621 
7622   if (isScalarAfterVectorization(I, VF)) {
7623     // With the exception of GEPs and PHIs, after scalarization there should
7624     // only be one copy of the instruction generated in the loop. This is
7625     // because the VF is either 1, or any instructions that need scalarizing
7626     // have already been dealt with by the the time we get here. As a result,
7627     // it means we don't have to multiply the instruction cost by VF.
7628     assert(I->getOpcode() == Instruction::GetElementPtr ||
7629            I->getOpcode() == Instruction::PHI ||
7630            (I->getOpcode() == Instruction::BitCast &&
7631             I->getType()->isPointerTy()) ||
7632            hasSingleCopyAfterVectorization(I, VF));
7633     VectorTy = RetTy;
7634   } else
7635     VectorTy = ToVectorTy(RetTy, VF);
7636 
7637   // TODO: We need to estimate the cost of intrinsic calls.
7638   switch (I->getOpcode()) {
7639   case Instruction::GetElementPtr:
7640     // We mark this instruction as zero-cost because the cost of GEPs in
7641     // vectorized code depends on whether the corresponding memory instruction
7642     // is scalarized or not. Therefore, we handle GEPs with the memory
7643     // instruction cost.
7644     return 0;
7645   case Instruction::Br: {
7646     // In cases of scalarized and predicated instructions, there will be VF
7647     // predicated blocks in the vectorized loop. Each branch around these
7648     // blocks requires also an extract of its vector compare i1 element.
7649     bool ScalarPredicatedBB = false;
7650     BranchInst *BI = cast<BranchInst>(I);
7651     if (VF.isVector() && BI->isConditional() &&
7652         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7653          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7654       ScalarPredicatedBB = true;
7655 
7656     if (ScalarPredicatedBB) {
7657       // Not possible to scalarize scalable vector with predicated instructions.
7658       if (VF.isScalable())
7659         return InstructionCost::getInvalid();
7660       // Return cost for branches around scalarized and predicated blocks.
7661       auto *Vec_i1Ty =
7662           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7663       return (
7664           TTI.getScalarizationOverhead(
7665               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7666           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7667     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7668       // The back-edge branch will remain, as will all scalar branches.
7669       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7670     else
7671       // This branch will be eliminated by if-conversion.
7672       return 0;
7673     // Note: We currently assume zero cost for an unconditional branch inside
7674     // a predicated block since it will become a fall-through, although we
7675     // may decide in the future to call TTI for all branches.
7676   }
7677   case Instruction::PHI: {
7678     auto *Phi = cast<PHINode>(I);
7679 
7680     // First-order recurrences are replaced by vector shuffles inside the loop.
7681     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7682     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7683       return TTI.getShuffleCost(
7684           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7685           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7686 
7687     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7688     // converted into select instructions. We require N - 1 selects per phi
7689     // node, where N is the number of incoming values.
7690     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7691       return (Phi->getNumIncomingValues() - 1) *
7692              TTI.getCmpSelInstrCost(
7693                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7694                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7695                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7696 
7697     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7698   }
7699   case Instruction::UDiv:
7700   case Instruction::SDiv:
7701   case Instruction::URem:
7702   case Instruction::SRem:
7703     // If we have a predicated instruction, it may not be executed for each
7704     // vector lane. Get the scalarization cost and scale this amount by the
7705     // probability of executing the predicated block. If the instruction is not
7706     // predicated, we fall through to the next case.
7707     if (VF.isVector() && isScalarWithPredication(I)) {
7708       InstructionCost Cost = 0;
7709 
7710       // These instructions have a non-void type, so account for the phi nodes
7711       // that we will create. This cost is likely to be zero. The phi node
7712       // cost, if any, should be scaled by the block probability because it
7713       // models a copy at the end of each predicated block.
7714       Cost += VF.getKnownMinValue() *
7715               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7716 
7717       // The cost of the non-predicated instruction.
7718       Cost += VF.getKnownMinValue() *
7719               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7720 
7721       // The cost of insertelement and extractelement instructions needed for
7722       // scalarization.
7723       Cost += getScalarizationOverhead(I, VF);
7724 
7725       // Scale the cost by the probability of executing the predicated blocks.
7726       // This assumes the predicated block for each vector lane is equally
7727       // likely.
7728       return Cost / getReciprocalPredBlockProb();
7729     }
7730     LLVM_FALLTHROUGH;
7731   case Instruction::Add:
7732   case Instruction::FAdd:
7733   case Instruction::Sub:
7734   case Instruction::FSub:
7735   case Instruction::Mul:
7736   case Instruction::FMul:
7737   case Instruction::FDiv:
7738   case Instruction::FRem:
7739   case Instruction::Shl:
7740   case Instruction::LShr:
7741   case Instruction::AShr:
7742   case Instruction::And:
7743   case Instruction::Or:
7744   case Instruction::Xor: {
7745     // Since we will replace the stride by 1 the multiplication should go away.
7746     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7747       return 0;
7748 
7749     // Detect reduction patterns
7750     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7751       return *RedCost;
7752 
7753     // Certain instructions can be cheaper to vectorize if they have a constant
7754     // second vector operand. One example of this are shifts on x86.
7755     Value *Op2 = I->getOperand(1);
7756     TargetTransformInfo::OperandValueProperties Op2VP;
7757     TargetTransformInfo::OperandValueKind Op2VK =
7758         TTI.getOperandInfo(Op2, Op2VP);
7759     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7760       Op2VK = TargetTransformInfo::OK_UniformValue;
7761 
7762     SmallVector<const Value *, 4> Operands(I->operand_values());
7763     return TTI.getArithmeticInstrCost(
7764         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7765         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7766   }
7767   case Instruction::FNeg: {
7768     return TTI.getArithmeticInstrCost(
7769         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7770         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7771         TargetTransformInfo::OP_None, I->getOperand(0), I);
7772   }
7773   case Instruction::Select: {
7774     SelectInst *SI = cast<SelectInst>(I);
7775     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7776     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7777 
7778     const Value *Op0, *Op1;
7779     using namespace llvm::PatternMatch;
7780     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7781                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7782       // select x, y, false --> x & y
7783       // select x, true, y --> x | y
7784       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7785       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7786       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7787       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7788       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7789               Op1->getType()->getScalarSizeInBits() == 1);
7790 
7791       SmallVector<const Value *, 2> Operands{Op0, Op1};
7792       return TTI.getArithmeticInstrCost(
7793           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7794           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7795     }
7796 
7797     Type *CondTy = SI->getCondition()->getType();
7798     if (!ScalarCond)
7799       CondTy = VectorType::get(CondTy, VF);
7800     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7801                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7802   }
7803   case Instruction::ICmp:
7804   case Instruction::FCmp: {
7805     Type *ValTy = I->getOperand(0)->getType();
7806     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7807     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7808       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7809     VectorTy = ToVectorTy(ValTy, VF);
7810     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7811                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7812   }
7813   case Instruction::Store:
7814   case Instruction::Load: {
7815     ElementCount Width = VF;
7816     if (Width.isVector()) {
7817       InstWidening Decision = getWideningDecision(I, Width);
7818       assert(Decision != CM_Unknown &&
7819              "CM decision should be taken at this point");
7820       if (Decision == CM_Scalarize)
7821         Width = ElementCount::getFixed(1);
7822     }
7823     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7824     return getMemoryInstructionCost(I, VF);
7825   }
7826   case Instruction::BitCast:
7827     if (I->getType()->isPointerTy())
7828       return 0;
7829     LLVM_FALLTHROUGH;
7830   case Instruction::ZExt:
7831   case Instruction::SExt:
7832   case Instruction::FPToUI:
7833   case Instruction::FPToSI:
7834   case Instruction::FPExt:
7835   case Instruction::PtrToInt:
7836   case Instruction::IntToPtr:
7837   case Instruction::SIToFP:
7838   case Instruction::UIToFP:
7839   case Instruction::Trunc:
7840   case Instruction::FPTrunc: {
7841     // Computes the CastContextHint from a Load/Store instruction.
7842     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
7843       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
7844              "Expected a load or a store!");
7845 
7846       if (VF.isScalar() || !TheLoop->contains(I))
7847         return TTI::CastContextHint::Normal;
7848 
7849       switch (getWideningDecision(I, VF)) {
7850       case LoopVectorizationCostModel::CM_GatherScatter:
7851         return TTI::CastContextHint::GatherScatter;
7852       case LoopVectorizationCostModel::CM_Interleave:
7853         return TTI::CastContextHint::Interleave;
7854       case LoopVectorizationCostModel::CM_Scalarize:
7855       case LoopVectorizationCostModel::CM_Widen:
7856         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
7857                                         : TTI::CastContextHint::Normal;
7858       case LoopVectorizationCostModel::CM_Widen_Reverse:
7859         return TTI::CastContextHint::Reversed;
7860       case LoopVectorizationCostModel::CM_Unknown:
7861         llvm_unreachable("Instr did not go through cost modelling?");
7862       }
7863 
7864       llvm_unreachable("Unhandled case!");
7865     };
7866 
7867     unsigned Opcode = I->getOpcode();
7868     TTI::CastContextHint CCH = TTI::CastContextHint::None;
7869     // For Trunc, the context is the only user, which must be a StoreInst.
7870     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
7871       if (I->hasOneUse())
7872         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
7873           CCH = ComputeCCH(Store);
7874     }
7875     // For Z/Sext, the context is the operand, which must be a LoadInst.
7876     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
7877              Opcode == Instruction::FPExt) {
7878       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
7879         CCH = ComputeCCH(Load);
7880     }
7881 
7882     // We optimize the truncation of induction variables having constant
7883     // integer steps. The cost of these truncations is the same as the scalar
7884     // operation.
7885     if (isOptimizableIVTruncate(I, VF)) {
7886       auto *Trunc = cast<TruncInst>(I);
7887       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7888                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
7889     }
7890 
7891     // Detect reduction patterns
7892     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7893       return *RedCost;
7894 
7895     Type *SrcScalarTy = I->getOperand(0)->getType();
7896     Type *SrcVecTy =
7897         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7898     if (canTruncateToMinimalBitwidth(I, VF)) {
7899       // This cast is going to be shrunk. This may remove the cast or it might
7900       // turn it into slightly different cast. For example, if MinBW == 16,
7901       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7902       //
7903       // Calculate the modified src and dest types.
7904       Type *MinVecTy = VectorTy;
7905       if (Opcode == Instruction::Trunc) {
7906         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7907         VectorTy =
7908             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7909       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
7910         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7911         VectorTy =
7912             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7913       }
7914     }
7915 
7916     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
7917   }
7918   case Instruction::Call: {
7919     bool NeedToScalarize;
7920     CallInst *CI = cast<CallInst>(I);
7921     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
7922     if (getVectorIntrinsicIDForCall(CI, TLI)) {
7923       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
7924       return std::min(CallCost, IntrinsicCost);
7925     }
7926     return CallCost;
7927   }
7928   case Instruction::ExtractValue:
7929     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
7930   case Instruction::Alloca:
7931     // We cannot easily widen alloca to a scalable alloca, as
7932     // the result would need to be a vector of pointers.
7933     if (VF.isScalable())
7934       return InstructionCost::getInvalid();
7935     LLVM_FALLTHROUGH;
7936   default:
7937     // This opcode is unknown. Assume that it is the same as 'mul'.
7938     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7939   } // end of switch.
7940 }
7941 
7942 char LoopVectorize::ID = 0;
7943 
7944 static const char lv_name[] = "Loop Vectorization";
7945 
7946 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
7947 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7948 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
7949 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7950 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
7951 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7952 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
7953 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7954 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7955 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7956 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
7957 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7958 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7959 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
7960 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
7961 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
7962 
7963 namespace llvm {
7964 
7965 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
7966 
7967 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
7968                               bool VectorizeOnlyWhenForced) {
7969   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
7970 }
7971 
7972 } // end namespace llvm
7973 
7974 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7975   // Check if the pointer operand of a load or store instruction is
7976   // consecutive.
7977   if (auto *Ptr = getLoadStorePointerOperand(Inst))
7978     return Legal->isConsecutivePtr(Ptr);
7979   return false;
7980 }
7981 
7982 void LoopVectorizationCostModel::collectValuesToIgnore() {
7983   // Ignore ephemeral values.
7984   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7985 
7986   // Ignore type-promoting instructions we identified during reduction
7987   // detection.
7988   for (auto &Reduction : Legal->getReductionVars()) {
7989     RecurrenceDescriptor &RedDes = Reduction.second;
7990     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7991     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7992   }
7993   // Ignore type-casting instructions we identified during induction
7994   // detection.
7995   for (auto &Induction : Legal->getInductionVars()) {
7996     InductionDescriptor &IndDes = Induction.second;
7997     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7998     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7999   }
8000 }
8001 
8002 void LoopVectorizationCostModel::collectInLoopReductions() {
8003   for (auto &Reduction : Legal->getReductionVars()) {
8004     PHINode *Phi = Reduction.first;
8005     RecurrenceDescriptor &RdxDesc = Reduction.second;
8006 
8007     // We don't collect reductions that are type promoted (yet).
8008     if (RdxDesc.getRecurrenceType() != Phi->getType())
8009       continue;
8010 
8011     // If the target would prefer this reduction to happen "in-loop", then we
8012     // want to record it as such.
8013     unsigned Opcode = RdxDesc.getOpcode();
8014     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
8015         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
8016                                    TargetTransformInfo::ReductionFlags()))
8017       continue;
8018 
8019     // Check that we can correctly put the reductions into the loop, by
8020     // finding the chain of operations that leads from the phi to the loop
8021     // exit value.
8022     SmallVector<Instruction *, 4> ReductionOperations =
8023         RdxDesc.getReductionOpChain(Phi, TheLoop);
8024     bool InLoop = !ReductionOperations.empty();
8025     if (InLoop) {
8026       InLoopReductionChains[Phi] = ReductionOperations;
8027       // Add the elements to InLoopReductionImmediateChains for cost modelling.
8028       Instruction *LastChain = Phi;
8029       for (auto *I : ReductionOperations) {
8030         InLoopReductionImmediateChains[I] = LastChain;
8031         LastChain = I;
8032       }
8033     }
8034     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
8035                       << " reduction for phi: " << *Phi << "\n");
8036   }
8037 }
8038 
8039 // TODO: we could return a pair of values that specify the max VF and
8040 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
8041 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
8042 // doesn't have a cost model that can choose which plan to execute if
8043 // more than one is generated.
8044 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
8045                                  LoopVectorizationCostModel &CM) {
8046   unsigned WidestType;
8047   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
8048   return WidestVectorRegBits / WidestType;
8049 }
8050 
8051 VectorizationFactor
8052 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
8053   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8054   ElementCount VF = UserVF;
8055   // Outer loop handling: They may require CFG and instruction level
8056   // transformations before even evaluating whether vectorization is profitable.
8057   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8058   // the vectorization pipeline.
8059   if (!OrigLoop->isInnermost()) {
8060     // If the user doesn't provide a vectorization factor, determine a
8061     // reasonable one.
8062     if (UserVF.isZero()) {
8063       VF = ElementCount::getFixed(determineVPlanVF(
8064           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8065               .getFixedSize(),
8066           CM));
8067       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8068 
8069       // Make sure we have a VF > 1 for stress testing.
8070       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8071         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8072                           << "overriding computed VF.\n");
8073         VF = ElementCount::getFixed(4);
8074       }
8075     }
8076     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8077     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8078            "VF needs to be a power of two");
8079     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8080                       << "VF " << VF << " to build VPlans.\n");
8081     buildVPlans(VF, VF);
8082 
8083     // For VPlan build stress testing, we bail out after VPlan construction.
8084     if (VPlanBuildStressTest)
8085       return VectorizationFactor::Disabled();
8086 
8087     return {VF, 0 /*Cost*/};
8088   }
8089 
8090   LLVM_DEBUG(
8091       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8092                 "VPlan-native path.\n");
8093   return VectorizationFactor::Disabled();
8094 }
8095 
8096 Optional<VectorizationFactor>
8097 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8098   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8099   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8100   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8101     return None;
8102 
8103   // Invalidate interleave groups if all blocks of loop will be predicated.
8104   if (CM.blockNeedsPredication(OrigLoop->getHeader()) &&
8105       !useMaskedInterleavedAccesses(*TTI)) {
8106     LLVM_DEBUG(
8107         dbgs()
8108         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8109            "which requires masked-interleaved support.\n");
8110     if (CM.InterleaveInfo.invalidateGroups())
8111       // Invalidating interleave groups also requires invalidating all decisions
8112       // based on them, which includes widening decisions and uniform and scalar
8113       // values.
8114       CM.invalidateCostModelingDecisions();
8115   }
8116 
8117   ElementCount MaxUserVF =
8118       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8119   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8120   if (!UserVF.isZero() && UserVFIsLegal) {
8121     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8122            "VF needs to be a power of two");
8123     // Collect the instructions (and their associated costs) that will be more
8124     // profitable to scalarize.
8125     if (CM.selectUserVectorizationFactor(UserVF)) {
8126       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8127       CM.collectInLoopReductions();
8128       buildVPlansWithVPRecipes(UserVF, UserVF);
8129       LLVM_DEBUG(printPlans(dbgs()));
8130       return {{UserVF, 0}};
8131     } else
8132       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8133                               "InvalidCost", ORE, OrigLoop);
8134   }
8135 
8136   // Populate the set of Vectorization Factor Candidates.
8137   ElementCountSet VFCandidates;
8138   for (auto VF = ElementCount::getFixed(1);
8139        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8140     VFCandidates.insert(VF);
8141   for (auto VF = ElementCount::getScalable(1);
8142        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8143     VFCandidates.insert(VF);
8144 
8145   for (const auto &VF : VFCandidates) {
8146     // Collect Uniform and Scalar instructions after vectorization with VF.
8147     CM.collectUniformsAndScalars(VF);
8148 
8149     // Collect the instructions (and their associated costs) that will be more
8150     // profitable to scalarize.
8151     if (VF.isVector())
8152       CM.collectInstsToScalarize(VF);
8153   }
8154 
8155   CM.collectInLoopReductions();
8156   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8157   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8158 
8159   LLVM_DEBUG(printPlans(dbgs()));
8160   if (!MaxFactors.hasVector())
8161     return VectorizationFactor::Disabled();
8162 
8163   // Select the optimal vectorization factor.
8164   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8165 
8166   // Check if it is profitable to vectorize with runtime checks.
8167   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8168   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8169     bool PragmaThresholdReached =
8170         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8171     bool ThresholdReached =
8172         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8173     if ((ThresholdReached && !Hints.allowReordering()) ||
8174         PragmaThresholdReached) {
8175       ORE->emit([&]() {
8176         return OptimizationRemarkAnalysisAliasing(
8177                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8178                    OrigLoop->getHeader())
8179                << "loop not vectorized: cannot prove it is safe to reorder "
8180                   "memory operations";
8181       });
8182       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8183       Hints.emitRemarkWithHints();
8184       return VectorizationFactor::Disabled();
8185     }
8186   }
8187   return SelectedVF;
8188 }
8189 
8190 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) {
8191   LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
8192                     << '\n');
8193   BestVF = VF;
8194   BestUF = UF;
8195 
8196   erase_if(VPlans, [VF](const VPlanPtr &Plan) {
8197     return !Plan->hasVF(VF);
8198   });
8199   assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
8200 }
8201 
8202 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
8203                                            DominatorTree *DT) {
8204   // Perform the actual loop transformation.
8205 
8206   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8207   assert(BestVF.hasValue() && "Vectorization Factor is missing");
8208   assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
8209 
8210   VPTransformState State{
8211       *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()};
8212   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8213   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8214   State.CanonicalIV = ILV.Induction;
8215 
8216   ILV.printDebugTracesAtStart();
8217 
8218   //===------------------------------------------------===//
8219   //
8220   // Notice: any optimization or new instruction that go
8221   // into the code below should also be implemented in
8222   // the cost-model.
8223   //
8224   //===------------------------------------------------===//
8225 
8226   // 2. Copy and widen instructions from the old loop into the new loop.
8227   VPlans.front()->execute(&State);
8228 
8229   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8230   //    predication, updating analyses.
8231   ILV.fixVectorizedLoop(State);
8232 
8233   ILV.printDebugTracesAtEnd();
8234 }
8235 
8236 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8237 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8238   for (const auto &Plan : VPlans)
8239     if (PrintVPlansInDotFormat)
8240       Plan->printDOT(O);
8241     else
8242       Plan->print(O);
8243 }
8244 #endif
8245 
8246 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8247     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8248 
8249   // We create new control-flow for the vectorized loop, so the original exit
8250   // conditions will be dead after vectorization if it's only used by the
8251   // terminator
8252   SmallVector<BasicBlock*> ExitingBlocks;
8253   OrigLoop->getExitingBlocks(ExitingBlocks);
8254   for (auto *BB : ExitingBlocks) {
8255     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8256     if (!Cmp || !Cmp->hasOneUse())
8257       continue;
8258 
8259     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8260     if (!DeadInstructions.insert(Cmp).second)
8261       continue;
8262 
8263     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8264     // TODO: can recurse through operands in general
8265     for (Value *Op : Cmp->operands()) {
8266       if (isa<TruncInst>(Op) && Op->hasOneUse())
8267           DeadInstructions.insert(cast<Instruction>(Op));
8268     }
8269   }
8270 
8271   // We create new "steps" for induction variable updates to which the original
8272   // induction variables map. An original update instruction will be dead if
8273   // all its users except the induction variable are dead.
8274   auto *Latch = OrigLoop->getLoopLatch();
8275   for (auto &Induction : Legal->getInductionVars()) {
8276     PHINode *Ind = Induction.first;
8277     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8278 
8279     // If the tail is to be folded by masking, the primary induction variable,
8280     // if exists, isn't dead: it will be used for masking. Don't kill it.
8281     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8282       continue;
8283 
8284     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8285           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8286         }))
8287       DeadInstructions.insert(IndUpdate);
8288 
8289     // We record as "Dead" also the type-casting instructions we had identified
8290     // during induction analysis. We don't need any handling for them in the
8291     // vectorized loop because we have proven that, under a proper runtime
8292     // test guarding the vectorized loop, the value of the phi, and the casted
8293     // value of the phi, are the same. The last instruction in this casting chain
8294     // will get its scalar/vector/widened def from the scalar/vector/widened def
8295     // of the respective phi node. Any other casts in the induction def-use chain
8296     // have no other uses outside the phi update chain, and will be ignored.
8297     InductionDescriptor &IndDes = Induction.second;
8298     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8299     DeadInstructions.insert(Casts.begin(), Casts.end());
8300   }
8301 }
8302 
8303 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8304 
8305 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8306 
8307 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
8308                                         Instruction::BinaryOps BinOp) {
8309   // When unrolling and the VF is 1, we only need to add a simple scalar.
8310   Type *Ty = Val->getType();
8311   assert(!Ty->isVectorTy() && "Val must be a scalar");
8312 
8313   if (Ty->isFloatingPointTy()) {
8314     Constant *C = ConstantFP::get(Ty, (double)StartIdx);
8315 
8316     // Floating-point operations inherit FMF via the builder's flags.
8317     Value *MulOp = Builder.CreateFMul(C, Step);
8318     return Builder.CreateBinOp(BinOp, Val, MulOp);
8319   }
8320   Constant *C = ConstantInt::get(Ty, StartIdx);
8321   return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
8322 }
8323 
8324 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8325   SmallVector<Metadata *, 4> MDs;
8326   // Reserve first location for self reference to the LoopID metadata node.
8327   MDs.push_back(nullptr);
8328   bool IsUnrollMetadata = false;
8329   MDNode *LoopID = L->getLoopID();
8330   if (LoopID) {
8331     // First find existing loop unrolling disable metadata.
8332     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8333       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8334       if (MD) {
8335         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8336         IsUnrollMetadata =
8337             S && S->getString().startswith("llvm.loop.unroll.disable");
8338       }
8339       MDs.push_back(LoopID->getOperand(i));
8340     }
8341   }
8342 
8343   if (!IsUnrollMetadata) {
8344     // Add runtime unroll disable metadata.
8345     LLVMContext &Context = L->getHeader()->getContext();
8346     SmallVector<Metadata *, 1> DisableOperands;
8347     DisableOperands.push_back(
8348         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8349     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8350     MDs.push_back(DisableNode);
8351     MDNode *NewLoopID = MDNode::get(Context, MDs);
8352     // Set operand 0 to refer to the loop id itself.
8353     NewLoopID->replaceOperandWith(0, NewLoopID);
8354     L->setLoopID(NewLoopID);
8355   }
8356 }
8357 
8358 //===--------------------------------------------------------------------===//
8359 // EpilogueVectorizerMainLoop
8360 //===--------------------------------------------------------------------===//
8361 
8362 /// This function is partially responsible for generating the control flow
8363 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8364 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8365   MDNode *OrigLoopID = OrigLoop->getLoopID();
8366   Loop *Lp = createVectorLoopSkeleton("");
8367 
8368   // Generate the code to check the minimum iteration count of the vector
8369   // epilogue (see below).
8370   EPI.EpilogueIterationCountCheck =
8371       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8372   EPI.EpilogueIterationCountCheck->setName("iter.check");
8373 
8374   // Generate the code to check any assumptions that we've made for SCEV
8375   // expressions.
8376   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8377 
8378   // Generate the code that checks at runtime if arrays overlap. We put the
8379   // checks into a separate block to make the more common case of few elements
8380   // faster.
8381   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8382 
8383   // Generate the iteration count check for the main loop, *after* the check
8384   // for the epilogue loop, so that the path-length is shorter for the case
8385   // that goes directly through the vector epilogue. The longer-path length for
8386   // the main loop is compensated for, by the gain from vectorizing the larger
8387   // trip count. Note: the branch will get updated later on when we vectorize
8388   // the epilogue.
8389   EPI.MainLoopIterationCountCheck =
8390       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8391 
8392   // Generate the induction variable.
8393   OldInduction = Legal->getPrimaryInduction();
8394   Type *IdxTy = Legal->getWidestInductionType();
8395   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8396   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8397   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8398   EPI.VectorTripCount = CountRoundDown;
8399   Induction =
8400       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8401                               getDebugLocFromInstOrOperands(OldInduction));
8402 
8403   // Skip induction resume value creation here because they will be created in
8404   // the second pass. If we created them here, they wouldn't be used anyway,
8405   // because the vplan in the second pass still contains the inductions from the
8406   // original loop.
8407 
8408   return completeLoopSkeleton(Lp, OrigLoopID);
8409 }
8410 
8411 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8412   LLVM_DEBUG({
8413     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8414            << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue()
8415            << ", Main Loop UF:" << EPI.MainLoopUF
8416            << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8417            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8418   });
8419 }
8420 
8421 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8422   DEBUG_WITH_TYPE(VerboseDebug, {
8423     dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n";
8424   });
8425 }
8426 
8427 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8428     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8429   assert(L && "Expected valid Loop.");
8430   assert(Bypass && "Expected valid bypass basic block.");
8431   unsigned VFactor =
8432       ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue();
8433   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8434   Value *Count = getOrCreateTripCount(L);
8435   // Reuse existing vector loop preheader for TC checks.
8436   // Note that new preheader block is generated for vector loop.
8437   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8438   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8439 
8440   // Generate code to check if the loop's trip count is less than VF * UF of the
8441   // main vector loop.
8442   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8443       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8444 
8445   Value *CheckMinIters = Builder.CreateICmp(
8446       P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor),
8447       "min.iters.check");
8448 
8449   if (!ForEpilogue)
8450     TCCheckBlock->setName("vector.main.loop.iter.check");
8451 
8452   // Create new preheader for vector loop.
8453   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8454                                    DT, LI, nullptr, "vector.ph");
8455 
8456   if (ForEpilogue) {
8457     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8458                                  DT->getNode(Bypass)->getIDom()) &&
8459            "TC check is expected to dominate Bypass");
8460 
8461     // Update dominator for Bypass & LoopExit.
8462     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8463     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8464       // For loops with multiple exits, there's no edge from the middle block
8465       // to exit blocks (as the epilogue must run) and thus no need to update
8466       // the immediate dominator of the exit blocks.
8467       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8468 
8469     LoopBypassBlocks.push_back(TCCheckBlock);
8470 
8471     // Save the trip count so we don't have to regenerate it in the
8472     // vec.epilog.iter.check. This is safe to do because the trip count
8473     // generated here dominates the vector epilog iter check.
8474     EPI.TripCount = Count;
8475   }
8476 
8477   ReplaceInstWithInst(
8478       TCCheckBlock->getTerminator(),
8479       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8480 
8481   return TCCheckBlock;
8482 }
8483 
8484 //===--------------------------------------------------------------------===//
8485 // EpilogueVectorizerEpilogueLoop
8486 //===--------------------------------------------------------------------===//
8487 
8488 /// This function is partially responsible for generating the control flow
8489 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8490 BasicBlock *
8491 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8492   MDNode *OrigLoopID = OrigLoop->getLoopID();
8493   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8494 
8495   // Now, compare the remaining count and if there aren't enough iterations to
8496   // execute the vectorized epilogue skip to the scalar part.
8497   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8498   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8499   LoopVectorPreHeader =
8500       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8501                  LI, nullptr, "vec.epilog.ph");
8502   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8503                                           VecEpilogueIterationCountCheck);
8504 
8505   // Adjust the control flow taking the state info from the main loop
8506   // vectorization into account.
8507   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8508          "expected this to be saved from the previous pass.");
8509   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8510       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8511 
8512   DT->changeImmediateDominator(LoopVectorPreHeader,
8513                                EPI.MainLoopIterationCountCheck);
8514 
8515   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8516       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8517 
8518   if (EPI.SCEVSafetyCheck)
8519     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8520         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8521   if (EPI.MemSafetyCheck)
8522     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8523         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8524 
8525   DT->changeImmediateDominator(
8526       VecEpilogueIterationCountCheck,
8527       VecEpilogueIterationCountCheck->getSinglePredecessor());
8528 
8529   DT->changeImmediateDominator(LoopScalarPreHeader,
8530                                EPI.EpilogueIterationCountCheck);
8531   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8532     // If there is an epilogue which must run, there's no edge from the
8533     // middle block to exit blocks  and thus no need to update the immediate
8534     // dominator of the exit blocks.
8535     DT->changeImmediateDominator(LoopExitBlock,
8536                                  EPI.EpilogueIterationCountCheck);
8537 
8538   // Keep track of bypass blocks, as they feed start values to the induction
8539   // phis in the scalar loop preheader.
8540   if (EPI.SCEVSafetyCheck)
8541     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8542   if (EPI.MemSafetyCheck)
8543     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8544   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8545 
8546   // Generate a resume induction for the vector epilogue and put it in the
8547   // vector epilogue preheader
8548   Type *IdxTy = Legal->getWidestInductionType();
8549   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8550                                          LoopVectorPreHeader->getFirstNonPHI());
8551   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8552   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8553                            EPI.MainLoopIterationCountCheck);
8554 
8555   // Generate the induction variable.
8556   OldInduction = Legal->getPrimaryInduction();
8557   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8558   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8559   Value *StartIdx = EPResumeVal;
8560   Induction =
8561       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8562                               getDebugLocFromInstOrOperands(OldInduction));
8563 
8564   // Generate induction resume values. These variables save the new starting
8565   // indexes for the scalar loop. They are used to test if there are any tail
8566   // iterations left once the vector loop has completed.
8567   // Note that when the vectorized epilogue is skipped due to iteration count
8568   // check, then the resume value for the induction variable comes from
8569   // the trip count of the main vector loop, hence passing the AdditionalBypass
8570   // argument.
8571   createInductionResumeValues(Lp, CountRoundDown,
8572                               {VecEpilogueIterationCountCheck,
8573                                EPI.VectorTripCount} /* AdditionalBypass */);
8574 
8575   AddRuntimeUnrollDisableMetaData(Lp);
8576   return completeLoopSkeleton(Lp, OrigLoopID);
8577 }
8578 
8579 BasicBlock *
8580 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8581     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8582 
8583   assert(EPI.TripCount &&
8584          "Expected trip count to have been safed in the first pass.");
8585   assert(
8586       (!isa<Instruction>(EPI.TripCount) ||
8587        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8588       "saved trip count does not dominate insertion point.");
8589   Value *TC = EPI.TripCount;
8590   IRBuilder<> Builder(Insert->getTerminator());
8591   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8592 
8593   // Generate code to check if the loop's trip count is less than VF * UF of the
8594   // vector epilogue loop.
8595   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8596       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8597 
8598   Value *CheckMinIters = Builder.CreateICmp(
8599       P, Count,
8600       ConstantInt::get(Count->getType(),
8601                        EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF),
8602       "min.epilog.iters.check");
8603 
8604   ReplaceInstWithInst(
8605       Insert->getTerminator(),
8606       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8607 
8608   LoopBypassBlocks.push_back(Insert);
8609   return Insert;
8610 }
8611 
8612 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8613   LLVM_DEBUG({
8614     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8615            << "Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue()
8616            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8617   });
8618 }
8619 
8620 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8621   DEBUG_WITH_TYPE(VerboseDebug, {
8622     dbgs() << "final fn:\n" << *Induction->getFunction() << "\n";
8623   });
8624 }
8625 
8626 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8627     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8628   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8629   bool PredicateAtRangeStart = Predicate(Range.Start);
8630 
8631   for (ElementCount TmpVF = Range.Start * 2;
8632        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8633     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8634       Range.End = TmpVF;
8635       break;
8636     }
8637 
8638   return PredicateAtRangeStart;
8639 }
8640 
8641 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8642 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8643 /// of VF's starting at a given VF and extending it as much as possible. Each
8644 /// vectorization decision can potentially shorten this sub-range during
8645 /// buildVPlan().
8646 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8647                                            ElementCount MaxVF) {
8648   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8649   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8650     VFRange SubRange = {VF, MaxVFPlusOne};
8651     VPlans.push_back(buildVPlan(SubRange));
8652     VF = SubRange.End;
8653   }
8654 }
8655 
8656 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8657                                          VPlanPtr &Plan) {
8658   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8659 
8660   // Look for cached value.
8661   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8662   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8663   if (ECEntryIt != EdgeMaskCache.end())
8664     return ECEntryIt->second;
8665 
8666   VPValue *SrcMask = createBlockInMask(Src, Plan);
8667 
8668   // The terminator has to be a branch inst!
8669   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8670   assert(BI && "Unexpected terminator found");
8671 
8672   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8673     return EdgeMaskCache[Edge] = SrcMask;
8674 
8675   // If source is an exiting block, we know the exit edge is dynamically dead
8676   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8677   // adding uses of an otherwise potentially dead instruction.
8678   if (OrigLoop->isLoopExiting(Src))
8679     return EdgeMaskCache[Edge] = SrcMask;
8680 
8681   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8682   assert(EdgeMask && "No Edge Mask found for condition");
8683 
8684   if (BI->getSuccessor(0) != Dst)
8685     EdgeMask = Builder.createNot(EdgeMask);
8686 
8687   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8688     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8689     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8690     // The select version does not introduce new UB if SrcMask is false and
8691     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8692     VPValue *False = Plan->getOrAddVPValue(
8693         ConstantInt::getFalse(BI->getCondition()->getType()));
8694     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8695   }
8696 
8697   return EdgeMaskCache[Edge] = EdgeMask;
8698 }
8699 
8700 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8701   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8702 
8703   // Look for cached value.
8704   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8705   if (BCEntryIt != BlockMaskCache.end())
8706     return BCEntryIt->second;
8707 
8708   // All-one mask is modelled as no-mask following the convention for masked
8709   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8710   VPValue *BlockMask = nullptr;
8711 
8712   if (OrigLoop->getHeader() == BB) {
8713     if (!CM.blockNeedsPredication(BB))
8714       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8715 
8716     // Create the block in mask as the first non-phi instruction in the block.
8717     VPBuilder::InsertPointGuard Guard(Builder);
8718     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8719     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8720 
8721     // Introduce the early-exit compare IV <= BTC to form header block mask.
8722     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8723     // Start by constructing the desired canonical IV.
8724     VPValue *IV = nullptr;
8725     if (Legal->getPrimaryInduction())
8726       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8727     else {
8728       auto IVRecipe = new VPWidenCanonicalIVRecipe();
8729       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8730       IV = IVRecipe->getVPSingleValue();
8731     }
8732     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8733     bool TailFolded = !CM.isScalarEpilogueAllowed();
8734 
8735     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8736       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8737       // as a second argument, we only pass the IV here and extract the
8738       // tripcount from the transform state where codegen of the VP instructions
8739       // happen.
8740       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8741     } else {
8742       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8743     }
8744     return BlockMaskCache[BB] = BlockMask;
8745   }
8746 
8747   // This is the block mask. We OR all incoming edges.
8748   for (auto *Predecessor : predecessors(BB)) {
8749     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8750     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8751       return BlockMaskCache[BB] = EdgeMask;
8752 
8753     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8754       BlockMask = EdgeMask;
8755       continue;
8756     }
8757 
8758     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8759   }
8760 
8761   return BlockMaskCache[BB] = BlockMask;
8762 }
8763 
8764 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8765                                                 ArrayRef<VPValue *> Operands,
8766                                                 VFRange &Range,
8767                                                 VPlanPtr &Plan) {
8768   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8769          "Must be called with either a load or store");
8770 
8771   auto willWiden = [&](ElementCount VF) -> bool {
8772     if (VF.isScalar())
8773       return false;
8774     LoopVectorizationCostModel::InstWidening Decision =
8775         CM.getWideningDecision(I, VF);
8776     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8777            "CM decision should be taken at this point.");
8778     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8779       return true;
8780     if (CM.isScalarAfterVectorization(I, VF) ||
8781         CM.isProfitableToScalarize(I, VF))
8782       return false;
8783     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8784   };
8785 
8786   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8787     return nullptr;
8788 
8789   VPValue *Mask = nullptr;
8790   if (Legal->isMaskRequired(I))
8791     Mask = createBlockInMask(I->getParent(), Plan);
8792 
8793   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8794     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask);
8795 
8796   StoreInst *Store = cast<StoreInst>(I);
8797   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8798                                             Mask);
8799 }
8800 
8801 VPWidenIntOrFpInductionRecipe *
8802 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8803                                            ArrayRef<VPValue *> Operands) const {
8804   // Check if this is an integer or fp induction. If so, build the recipe that
8805   // produces its scalar and vector values.
8806   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8807   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8808       II.getKind() == InductionDescriptor::IK_FpInduction) {
8809     assert(II.getStartValue() ==
8810            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8811     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8812     return new VPWidenIntOrFpInductionRecipe(
8813         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8814   }
8815 
8816   return nullptr;
8817 }
8818 
8819 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
8820     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
8821     VPlan &Plan) const {
8822   // Optimize the special case where the source is a constant integer
8823   // induction variable. Notice that we can only optimize the 'trunc' case
8824   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
8825   // (c) other casts depend on pointer size.
8826 
8827   // Determine whether \p K is a truncation based on an induction variable that
8828   // can be optimized.
8829   auto isOptimizableIVTruncate =
8830       [&](Instruction *K) -> std::function<bool(ElementCount)> {
8831     return [=](ElementCount VF) -> bool {
8832       return CM.isOptimizableIVTruncate(K, VF);
8833     };
8834   };
8835 
8836   if (LoopVectorizationPlanner::getDecisionAndClampRange(
8837           isOptimizableIVTruncate(I), Range)) {
8838 
8839     InductionDescriptor II =
8840         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
8841     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
8842     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
8843                                              Start, nullptr, I);
8844   }
8845   return nullptr;
8846 }
8847 
8848 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
8849                                                 ArrayRef<VPValue *> Operands,
8850                                                 VPlanPtr &Plan) {
8851   // If all incoming values are equal, the incoming VPValue can be used directly
8852   // instead of creating a new VPBlendRecipe.
8853   VPValue *FirstIncoming = Operands[0];
8854   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
8855         return FirstIncoming == Inc;
8856       })) {
8857     return Operands[0];
8858   }
8859 
8860   // We know that all PHIs in non-header blocks are converted into selects, so
8861   // we don't have to worry about the insertion order and we can just use the
8862   // builder. At this point we generate the predication tree. There may be
8863   // duplications since this is a simple recursive scan, but future
8864   // optimizations will clean it up.
8865   SmallVector<VPValue *, 2> OperandsWithMask;
8866   unsigned NumIncoming = Phi->getNumIncomingValues();
8867 
8868   for (unsigned In = 0; In < NumIncoming; In++) {
8869     VPValue *EdgeMask =
8870       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
8871     assert((EdgeMask || NumIncoming == 1) &&
8872            "Multiple predecessors with one having a full mask");
8873     OperandsWithMask.push_back(Operands[In]);
8874     if (EdgeMask)
8875       OperandsWithMask.push_back(EdgeMask);
8876   }
8877   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
8878 }
8879 
8880 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
8881                                                    ArrayRef<VPValue *> Operands,
8882                                                    VFRange &Range) const {
8883 
8884   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8885       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
8886       Range);
8887 
8888   if (IsPredicated)
8889     return nullptr;
8890 
8891   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8892   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
8893              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
8894              ID == Intrinsic::pseudoprobe ||
8895              ID == Intrinsic::experimental_noalias_scope_decl))
8896     return nullptr;
8897 
8898   auto willWiden = [&](ElementCount VF) -> bool {
8899     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
8900     // The following case may be scalarized depending on the VF.
8901     // The flag shows whether we use Intrinsic or a usual Call for vectorized
8902     // version of the instruction.
8903     // Is it beneficial to perform intrinsic call compared to lib call?
8904     bool NeedToScalarize = false;
8905     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
8906     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
8907     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
8908     return UseVectorIntrinsic || !NeedToScalarize;
8909   };
8910 
8911   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8912     return nullptr;
8913 
8914   ArrayRef<VPValue *> Ops = Operands.take_front(CI->getNumArgOperands());
8915   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
8916 }
8917 
8918 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
8919   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
8920          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
8921   // Instruction should be widened, unless it is scalar after vectorization,
8922   // scalarization is profitable or it is predicated.
8923   auto WillScalarize = [this, I](ElementCount VF) -> bool {
8924     return CM.isScalarAfterVectorization(I, VF) ||
8925            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
8926   };
8927   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
8928                                                              Range);
8929 }
8930 
8931 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
8932                                            ArrayRef<VPValue *> Operands) const {
8933   auto IsVectorizableOpcode = [](unsigned Opcode) {
8934     switch (Opcode) {
8935     case Instruction::Add:
8936     case Instruction::And:
8937     case Instruction::AShr:
8938     case Instruction::BitCast:
8939     case Instruction::FAdd:
8940     case Instruction::FCmp:
8941     case Instruction::FDiv:
8942     case Instruction::FMul:
8943     case Instruction::FNeg:
8944     case Instruction::FPExt:
8945     case Instruction::FPToSI:
8946     case Instruction::FPToUI:
8947     case Instruction::FPTrunc:
8948     case Instruction::FRem:
8949     case Instruction::FSub:
8950     case Instruction::ICmp:
8951     case Instruction::IntToPtr:
8952     case Instruction::LShr:
8953     case Instruction::Mul:
8954     case Instruction::Or:
8955     case Instruction::PtrToInt:
8956     case Instruction::SDiv:
8957     case Instruction::Select:
8958     case Instruction::SExt:
8959     case Instruction::Shl:
8960     case Instruction::SIToFP:
8961     case Instruction::SRem:
8962     case Instruction::Sub:
8963     case Instruction::Trunc:
8964     case Instruction::UDiv:
8965     case Instruction::UIToFP:
8966     case Instruction::URem:
8967     case Instruction::Xor:
8968     case Instruction::ZExt:
8969       return true;
8970     }
8971     return false;
8972   };
8973 
8974   if (!IsVectorizableOpcode(I->getOpcode()))
8975     return nullptr;
8976 
8977   // Success: widen this instruction.
8978   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
8979 }
8980 
8981 void VPRecipeBuilder::fixHeaderPhis() {
8982   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
8983   for (VPWidenPHIRecipe *R : PhisToFix) {
8984     auto *PN = cast<PHINode>(R->getUnderlyingValue());
8985     VPRecipeBase *IncR =
8986         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
8987     R->addOperand(IncR->getVPSingleValue());
8988   }
8989 }
8990 
8991 VPBasicBlock *VPRecipeBuilder::handleReplication(
8992     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
8993     VPlanPtr &Plan) {
8994   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
8995       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
8996       Range);
8997 
8998   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
8999       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
9000 
9001   // Even if the instruction is not marked as uniform, there are certain
9002   // intrinsic calls that can be effectively treated as such, so we check for
9003   // them here. Conservatively, we only do this for scalable vectors, since
9004   // for fixed-width VFs we can always fall back on full scalarization.
9005   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
9006     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
9007     case Intrinsic::assume:
9008     case Intrinsic::lifetime_start:
9009     case Intrinsic::lifetime_end:
9010       // For scalable vectors if one of the operands is variant then we still
9011       // want to mark as uniform, which will generate one instruction for just
9012       // the first lane of the vector. We can't scalarize the call in the same
9013       // way as for fixed-width vectors because we don't know how many lanes
9014       // there are.
9015       //
9016       // The reasons for doing it this way for scalable vectors are:
9017       //   1. For the assume intrinsic generating the instruction for the first
9018       //      lane is still be better than not generating any at all. For
9019       //      example, the input may be a splat across all lanes.
9020       //   2. For the lifetime start/end intrinsics the pointer operand only
9021       //      does anything useful when the input comes from a stack object,
9022       //      which suggests it should always be uniform. For non-stack objects
9023       //      the effect is to poison the object, which still allows us to
9024       //      remove the call.
9025       IsUniform = true;
9026       break;
9027     default:
9028       break;
9029     }
9030   }
9031 
9032   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
9033                                        IsUniform, IsPredicated);
9034   setRecipe(I, Recipe);
9035   Plan->addVPValue(I, Recipe);
9036 
9037   // Find if I uses a predicated instruction. If so, it will use its scalar
9038   // value. Avoid hoisting the insert-element which packs the scalar value into
9039   // a vector value, as that happens iff all users use the vector value.
9040   for (VPValue *Op : Recipe->operands()) {
9041     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
9042     if (!PredR)
9043       continue;
9044     auto *RepR =
9045         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
9046     assert(RepR->isPredicated() &&
9047            "expected Replicate recipe to be predicated");
9048     RepR->setAlsoPack(false);
9049   }
9050 
9051   // Finalize the recipe for Instr, first if it is not predicated.
9052   if (!IsPredicated) {
9053     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
9054     VPBB->appendRecipe(Recipe);
9055     return VPBB;
9056   }
9057   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
9058   assert(VPBB->getSuccessors().empty() &&
9059          "VPBB has successors when handling predicated replication.");
9060   // Record predicated instructions for above packing optimizations.
9061   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
9062   VPBlockUtils::insertBlockAfter(Region, VPBB);
9063   auto *RegSucc = new VPBasicBlock();
9064   VPBlockUtils::insertBlockAfter(RegSucc, Region);
9065   return RegSucc;
9066 }
9067 
9068 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
9069                                                       VPRecipeBase *PredRecipe,
9070                                                       VPlanPtr &Plan) {
9071   // Instructions marked for predication are replicated and placed under an
9072   // if-then construct to prevent side-effects.
9073 
9074   // Generate recipes to compute the block mask for this region.
9075   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
9076 
9077   // Build the triangular if-then region.
9078   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
9079   assert(Instr->getParent() && "Predicated instruction not in any basic block");
9080   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
9081   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
9082   auto *PHIRecipe = Instr->getType()->isVoidTy()
9083                         ? nullptr
9084                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9085   if (PHIRecipe) {
9086     Plan->removeVPValueFor(Instr);
9087     Plan->addVPValue(Instr, PHIRecipe);
9088   }
9089   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9090   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9091   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9092 
9093   // Note: first set Entry as region entry and then connect successors starting
9094   // from it in order, to propagate the "parent" of each VPBasicBlock.
9095   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9096   VPBlockUtils::connectBlocks(Pred, Exit);
9097 
9098   return Region;
9099 }
9100 
9101 VPRecipeOrVPValueTy
9102 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9103                                         ArrayRef<VPValue *> Operands,
9104                                         VFRange &Range, VPlanPtr &Plan) {
9105   // First, check for specific widening recipes that deal with calls, memory
9106   // operations, inductions and Phi nodes.
9107   if (auto *CI = dyn_cast<CallInst>(Instr))
9108     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9109 
9110   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9111     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9112 
9113   VPRecipeBase *Recipe;
9114   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9115     if (Phi->getParent() != OrigLoop->getHeader())
9116       return tryToBlend(Phi, Operands, Plan);
9117     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9118       return toVPRecipeResult(Recipe);
9119 
9120     VPWidenPHIRecipe *PhiRecipe = nullptr;
9121     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9122       VPValue *StartV = Operands[0];
9123       if (Legal->isReductionVariable(Phi)) {
9124         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9125         assert(RdxDesc.getRecurrenceStartValue() ==
9126                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9127         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9128                                              CM.isInLoopReduction(Phi),
9129                                              CM.useOrderedReductions(RdxDesc));
9130       } else {
9131         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9132       }
9133 
9134       // Record the incoming value from the backedge, so we can add the incoming
9135       // value from the backedge after all recipes have been created.
9136       recordRecipeOf(cast<Instruction>(
9137           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9138       PhisToFix.push_back(PhiRecipe);
9139     } else {
9140       // TODO: record start and backedge value for remaining pointer induction
9141       // phis.
9142       assert(Phi->getType()->isPointerTy() &&
9143              "only pointer phis should be handled here");
9144       PhiRecipe = new VPWidenPHIRecipe(Phi);
9145     }
9146 
9147     return toVPRecipeResult(PhiRecipe);
9148   }
9149 
9150   if (isa<TruncInst>(Instr) &&
9151       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9152                                                Range, *Plan)))
9153     return toVPRecipeResult(Recipe);
9154 
9155   if (!shouldWiden(Instr, Range))
9156     return nullptr;
9157 
9158   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9159     return toVPRecipeResult(new VPWidenGEPRecipe(
9160         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9161 
9162   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9163     bool InvariantCond =
9164         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9165     return toVPRecipeResult(new VPWidenSelectRecipe(
9166         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9167   }
9168 
9169   return toVPRecipeResult(tryToWiden(Instr, Operands));
9170 }
9171 
9172 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9173                                                         ElementCount MaxVF) {
9174   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9175 
9176   // Collect instructions from the original loop that will become trivially dead
9177   // in the vectorized loop. We don't need to vectorize these instructions. For
9178   // example, original induction update instructions can become dead because we
9179   // separately emit induction "steps" when generating code for the new loop.
9180   // Similarly, we create a new latch condition when setting up the structure
9181   // of the new loop, so the old one can become dead.
9182   SmallPtrSet<Instruction *, 4> DeadInstructions;
9183   collectTriviallyDeadInstructions(DeadInstructions);
9184 
9185   // Add assume instructions we need to drop to DeadInstructions, to prevent
9186   // them from being added to the VPlan.
9187   // TODO: We only need to drop assumes in blocks that get flattend. If the
9188   // control flow is preserved, we should keep them.
9189   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9190   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9191 
9192   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9193   // Dead instructions do not need sinking. Remove them from SinkAfter.
9194   for (Instruction *I : DeadInstructions)
9195     SinkAfter.erase(I);
9196 
9197   // Cannot sink instructions after dead instructions (there won't be any
9198   // recipes for them). Instead, find the first non-dead previous instruction.
9199   for (auto &P : Legal->getSinkAfter()) {
9200     Instruction *SinkTarget = P.second;
9201     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9202     (void)FirstInst;
9203     while (DeadInstructions.contains(SinkTarget)) {
9204       assert(
9205           SinkTarget != FirstInst &&
9206           "Must find a live instruction (at least the one feeding the "
9207           "first-order recurrence PHI) before reaching beginning of the block");
9208       SinkTarget = SinkTarget->getPrevNode();
9209       assert(SinkTarget != P.first &&
9210              "sink source equals target, no sinking required");
9211     }
9212     P.second = SinkTarget;
9213   }
9214 
9215   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9216   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9217     VFRange SubRange = {VF, MaxVFPlusOne};
9218     VPlans.push_back(
9219         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9220     VF = SubRange.End;
9221   }
9222 }
9223 
9224 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9225     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9226     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9227 
9228   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9229 
9230   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9231 
9232   // ---------------------------------------------------------------------------
9233   // Pre-construction: record ingredients whose recipes we'll need to further
9234   // process after constructing the initial VPlan.
9235   // ---------------------------------------------------------------------------
9236 
9237   // Mark instructions we'll need to sink later and their targets as
9238   // ingredients whose recipe we'll need to record.
9239   for (auto &Entry : SinkAfter) {
9240     RecipeBuilder.recordRecipeOf(Entry.first);
9241     RecipeBuilder.recordRecipeOf(Entry.second);
9242   }
9243   for (auto &Reduction : CM.getInLoopReductionChains()) {
9244     PHINode *Phi = Reduction.first;
9245     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9246     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9247 
9248     RecipeBuilder.recordRecipeOf(Phi);
9249     for (auto &R : ReductionOperations) {
9250       RecipeBuilder.recordRecipeOf(R);
9251       // For min/max reducitons, where we have a pair of icmp/select, we also
9252       // need to record the ICmp recipe, so it can be removed later.
9253       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9254         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9255     }
9256   }
9257 
9258   // For each interleave group which is relevant for this (possibly trimmed)
9259   // Range, add it to the set of groups to be later applied to the VPlan and add
9260   // placeholders for its members' Recipes which we'll be replacing with a
9261   // single VPInterleaveRecipe.
9262   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9263     auto applyIG = [IG, this](ElementCount VF) -> bool {
9264       return (VF.isVector() && // Query is illegal for VF == 1
9265               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9266                   LoopVectorizationCostModel::CM_Interleave);
9267     };
9268     if (!getDecisionAndClampRange(applyIG, Range))
9269       continue;
9270     InterleaveGroups.insert(IG);
9271     for (unsigned i = 0; i < IG->getFactor(); i++)
9272       if (Instruction *Member = IG->getMember(i))
9273         RecipeBuilder.recordRecipeOf(Member);
9274   };
9275 
9276   // ---------------------------------------------------------------------------
9277   // Build initial VPlan: Scan the body of the loop in a topological order to
9278   // visit each basic block after having visited its predecessor basic blocks.
9279   // ---------------------------------------------------------------------------
9280 
9281   // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
9282   auto Plan = std::make_unique<VPlan>();
9283   VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
9284   Plan->setEntry(VPBB);
9285 
9286   // Scan the body of the loop in a topological order to visit each basic block
9287   // after having visited its predecessor basic blocks.
9288   LoopBlocksDFS DFS(OrigLoop);
9289   DFS.perform(LI);
9290 
9291   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9292     // Relevant instructions from basic block BB will be grouped into VPRecipe
9293     // ingredients and fill a new VPBasicBlock.
9294     unsigned VPBBsForBB = 0;
9295     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9296     VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9297     VPBB = FirstVPBBForBB;
9298     Builder.setInsertPoint(VPBB);
9299 
9300     // Introduce each ingredient into VPlan.
9301     // TODO: Model and preserve debug instrinsics in VPlan.
9302     for (Instruction &I : BB->instructionsWithoutDebug()) {
9303       Instruction *Instr = &I;
9304 
9305       // First filter out irrelevant instructions, to ensure no recipes are
9306       // built for them.
9307       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9308         continue;
9309 
9310       SmallVector<VPValue *, 4> Operands;
9311       auto *Phi = dyn_cast<PHINode>(Instr);
9312       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9313         Operands.push_back(Plan->getOrAddVPValue(
9314             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9315       } else {
9316         auto OpRange = Plan->mapToVPValues(Instr->operands());
9317         Operands = {OpRange.begin(), OpRange.end()};
9318       }
9319       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9320               Instr, Operands, Range, Plan)) {
9321         // If Instr can be simplified to an existing VPValue, use it.
9322         if (RecipeOrValue.is<VPValue *>()) {
9323           auto *VPV = RecipeOrValue.get<VPValue *>();
9324           Plan->addVPValue(Instr, VPV);
9325           // If the re-used value is a recipe, register the recipe for the
9326           // instruction, in case the recipe for Instr needs to be recorded.
9327           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9328             RecipeBuilder.setRecipe(Instr, R);
9329           continue;
9330         }
9331         // Otherwise, add the new recipe.
9332         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9333         for (auto *Def : Recipe->definedValues()) {
9334           auto *UV = Def->getUnderlyingValue();
9335           Plan->addVPValue(UV, Def);
9336         }
9337 
9338         RecipeBuilder.setRecipe(Instr, Recipe);
9339         VPBB->appendRecipe(Recipe);
9340         continue;
9341       }
9342 
9343       // Otherwise, if all widening options failed, Instruction is to be
9344       // replicated. This may create a successor for VPBB.
9345       VPBasicBlock *NextVPBB =
9346           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9347       if (NextVPBB != VPBB) {
9348         VPBB = NextVPBB;
9349         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9350                                     : "");
9351       }
9352     }
9353   }
9354 
9355   RecipeBuilder.fixHeaderPhis();
9356 
9357   // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
9358   // may also be empty, such as the last one VPBB, reflecting original
9359   // basic-blocks with no recipes.
9360   VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
9361   assert(PreEntry->empty() && "Expecting empty pre-entry block.");
9362   VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
9363   VPBlockUtils::disconnectBlocks(PreEntry, Entry);
9364   delete PreEntry;
9365 
9366   // ---------------------------------------------------------------------------
9367   // Transform initial VPlan: Apply previously taken decisions, in order, to
9368   // bring the VPlan to its final state.
9369   // ---------------------------------------------------------------------------
9370 
9371   // Apply Sink-After legal constraints.
9372   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9373     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9374     if (Region && Region->isReplicator()) {
9375       assert(Region->getNumSuccessors() == 1 &&
9376              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9377       assert(R->getParent()->size() == 1 &&
9378              "A recipe in an original replicator region must be the only "
9379              "recipe in its block");
9380       return Region;
9381     }
9382     return nullptr;
9383   };
9384   for (auto &Entry : SinkAfter) {
9385     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9386     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9387 
9388     auto *TargetRegion = GetReplicateRegion(Target);
9389     auto *SinkRegion = GetReplicateRegion(Sink);
9390     if (!SinkRegion) {
9391       // If the sink source is not a replicate region, sink the recipe directly.
9392       if (TargetRegion) {
9393         // The target is in a replication region, make sure to move Sink to
9394         // the block after it, not into the replication region itself.
9395         VPBasicBlock *NextBlock =
9396             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9397         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9398       } else
9399         Sink->moveAfter(Target);
9400       continue;
9401     }
9402 
9403     // The sink source is in a replicate region. Unhook the region from the CFG.
9404     auto *SinkPred = SinkRegion->getSinglePredecessor();
9405     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9406     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9407     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9408     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9409 
9410     if (TargetRegion) {
9411       // The target recipe is also in a replicate region, move the sink region
9412       // after the target region.
9413       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9414       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9415       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9416       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9417     } else {
9418       // The sink source is in a replicate region, we need to move the whole
9419       // replicate region, which should only contain a single recipe in the
9420       // main block.
9421       auto *SplitBlock =
9422           Target->getParent()->splitAt(std::next(Target->getIterator()));
9423 
9424       auto *SplitPred = SplitBlock->getSinglePredecessor();
9425 
9426       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9427       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9428       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9429       if (VPBB == SplitPred)
9430         VPBB = SplitBlock;
9431     }
9432   }
9433 
9434   // Adjust the recipes for any inloop reductions.
9435   adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start);
9436 
9437   // Introduce a recipe to combine the incoming and previous values of a
9438   // first-order recurrence.
9439   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9440     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9441     if (!RecurPhi)
9442       continue;
9443 
9444     auto *RecurSplice = cast<VPInstruction>(
9445         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9446                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9447 
9448     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9449     if (auto *Region = GetReplicateRegion(PrevRecipe)) {
9450       VPBasicBlock *Succ = cast<VPBasicBlock>(Region->getSingleSuccessor());
9451       RecurSplice->moveBefore(*Succ, Succ->getFirstNonPhi());
9452     } else
9453       RecurSplice->moveAfter(PrevRecipe);
9454     RecurPhi->replaceAllUsesWith(RecurSplice);
9455     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9456     // all users.
9457     RecurSplice->setOperand(0, RecurPhi);
9458   }
9459 
9460   // Interleave memory: for each Interleave Group we marked earlier as relevant
9461   // for this VPlan, replace the Recipes widening its memory instructions with a
9462   // single VPInterleaveRecipe at its insertion point.
9463   for (auto IG : InterleaveGroups) {
9464     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9465         RecipeBuilder.getRecipe(IG->getInsertPos()));
9466     SmallVector<VPValue *, 4> StoredValues;
9467     for (unsigned i = 0; i < IG->getFactor(); ++i)
9468       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9469         auto *StoreR =
9470             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9471         StoredValues.push_back(StoreR->getStoredValue());
9472       }
9473 
9474     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9475                                         Recipe->getMask());
9476     VPIG->insertBefore(Recipe);
9477     unsigned J = 0;
9478     for (unsigned i = 0; i < IG->getFactor(); ++i)
9479       if (Instruction *Member = IG->getMember(i)) {
9480         if (!Member->getType()->isVoidTy()) {
9481           VPValue *OriginalV = Plan->getVPValue(Member);
9482           Plan->removeVPValueFor(Member);
9483           Plan->addVPValue(Member, VPIG->getVPValue(J));
9484           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9485           J++;
9486         }
9487         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9488       }
9489   }
9490 
9491   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9492   // in ways that accessing values using original IR values is incorrect.
9493   Plan->disableValue2VPValue();
9494 
9495   VPlanTransforms::sinkScalarOperands(*Plan);
9496   VPlanTransforms::mergeReplicateRegions(*Plan);
9497 
9498   std::string PlanName;
9499   raw_string_ostream RSO(PlanName);
9500   ElementCount VF = Range.Start;
9501   Plan->addVF(VF);
9502   RSO << "Initial VPlan for VF={" << VF;
9503   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9504     Plan->addVF(VF);
9505     RSO << "," << VF;
9506   }
9507   RSO << "},UF>=1";
9508   RSO.flush();
9509   Plan->setName(PlanName);
9510 
9511   return Plan;
9512 }
9513 
9514 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9515   // Outer loop handling: They may require CFG and instruction level
9516   // transformations before even evaluating whether vectorization is profitable.
9517   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9518   // the vectorization pipeline.
9519   assert(!OrigLoop->isInnermost());
9520   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9521 
9522   // Create new empty VPlan
9523   auto Plan = std::make_unique<VPlan>();
9524 
9525   // Build hierarchical CFG
9526   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9527   HCFGBuilder.buildHierarchicalCFG();
9528 
9529   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9530        VF *= 2)
9531     Plan->addVF(VF);
9532 
9533   if (EnableVPlanPredication) {
9534     VPlanPredicator VPP(*Plan);
9535     VPP.predicate();
9536 
9537     // Avoid running transformation to recipes until masked code generation in
9538     // VPlan-native path is in place.
9539     return Plan;
9540   }
9541 
9542   SmallPtrSet<Instruction *, 1> DeadInstructions;
9543   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9544                                              Legal->getInductionVars(),
9545                                              DeadInstructions, *PSE.getSE());
9546   return Plan;
9547 }
9548 
9549 // Adjust the recipes for reductions. For in-loop reductions the chain of
9550 // instructions leading from the loop exit instr to the phi need to be converted
9551 // to reductions, with one operand being vector and the other being the scalar
9552 // reduction chain. For other reductions, a select is introduced between the phi
9553 // and live-out recipes when folding the tail.
9554 void LoopVectorizationPlanner::adjustRecipesForReductions(
9555     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9556     ElementCount MinVF) {
9557   for (auto &Reduction : CM.getInLoopReductionChains()) {
9558     PHINode *Phi = Reduction.first;
9559     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9560     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9561 
9562     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9563       continue;
9564 
9565     // ReductionOperations are orders top-down from the phi's use to the
9566     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9567     // which of the two operands will remain scalar and which will be reduced.
9568     // For minmax the chain will be the select instructions.
9569     Instruction *Chain = Phi;
9570     for (Instruction *R : ReductionOperations) {
9571       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9572       RecurKind Kind = RdxDesc.getRecurrenceKind();
9573 
9574       VPValue *ChainOp = Plan->getVPValue(Chain);
9575       unsigned FirstOpId;
9576       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9577         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9578                "Expected to replace a VPWidenSelectSC");
9579         FirstOpId = 1;
9580       } else {
9581         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe)) &&
9582                "Expected to replace a VPWidenSC");
9583         FirstOpId = 0;
9584       }
9585       unsigned VecOpId =
9586           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9587       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9588 
9589       auto *CondOp = CM.foldTailByMasking()
9590                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9591                          : nullptr;
9592       VPReductionRecipe *RedRecipe = new VPReductionRecipe(
9593           &RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9594       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9595       Plan->removeVPValueFor(R);
9596       Plan->addVPValue(R, RedRecipe);
9597       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9598       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9599       WidenRecipe->eraseFromParent();
9600 
9601       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9602         VPRecipeBase *CompareRecipe =
9603             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9604         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9605                "Expected to replace a VPWidenSC");
9606         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9607                "Expected no remaining users");
9608         CompareRecipe->eraseFromParent();
9609       }
9610       Chain = R;
9611     }
9612   }
9613 
9614   // If tail is folded by masking, introduce selects between the phi
9615   // and the live-out instruction of each reduction, at the end of the latch.
9616   if (CM.foldTailByMasking()) {
9617     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9618       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9619       if (!PhiR || PhiR->isInLoop())
9620         continue;
9621       Builder.setInsertPoint(LatchVPBB);
9622       VPValue *Cond =
9623           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9624       VPValue *Red = PhiR->getBackedgeValue();
9625       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9626     }
9627   }
9628 }
9629 
9630 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9631 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9632                                VPSlotTracker &SlotTracker) const {
9633   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9634   IG->getInsertPos()->printAsOperand(O, false);
9635   O << ", ";
9636   getAddr()->printAsOperand(O, SlotTracker);
9637   VPValue *Mask = getMask();
9638   if (Mask) {
9639     O << ", ";
9640     Mask->printAsOperand(O, SlotTracker);
9641   }
9642 
9643   unsigned OpIdx = 0;
9644   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9645     if (!IG->getMember(i))
9646       continue;
9647     if (getNumStoreOperands() > 0) {
9648       O << "\n" << Indent << "  store ";
9649       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9650       O << " to index " << i;
9651     } else {
9652       O << "\n" << Indent << "  ";
9653       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9654       O << " = load from index " << i;
9655     }
9656     ++OpIdx;
9657   }
9658 }
9659 #endif
9660 
9661 void VPWidenCallRecipe::execute(VPTransformState &State) {
9662   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9663                                   *this, State);
9664 }
9665 
9666 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9667   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9668                                     this, *this, InvariantCond, State);
9669 }
9670 
9671 void VPWidenRecipe::execute(VPTransformState &State) {
9672   State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State);
9673 }
9674 
9675 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9676   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9677                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9678                       IsIndexLoopInvariant, State);
9679 }
9680 
9681 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9682   assert(!State.Instance && "Int or FP induction being replicated.");
9683   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9684                                    getTruncInst(), getVPValue(0),
9685                                    getCastValue(), State);
9686 }
9687 
9688 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9689   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9690                                  State);
9691 }
9692 
9693 void VPBlendRecipe::execute(VPTransformState &State) {
9694   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9695   // We know that all PHIs in non-header blocks are converted into
9696   // selects, so we don't have to worry about the insertion order and we
9697   // can just use the builder.
9698   // At this point we generate the predication tree. There may be
9699   // duplications since this is a simple recursive scan, but future
9700   // optimizations will clean it up.
9701 
9702   unsigned NumIncoming = getNumIncomingValues();
9703 
9704   // Generate a sequence of selects of the form:
9705   // SELECT(Mask3, In3,
9706   //        SELECT(Mask2, In2,
9707   //               SELECT(Mask1, In1,
9708   //                      In0)))
9709   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9710   // are essentially undef are taken from In0.
9711   InnerLoopVectorizer::VectorParts Entry(State.UF);
9712   for (unsigned In = 0; In < NumIncoming; ++In) {
9713     for (unsigned Part = 0; Part < State.UF; ++Part) {
9714       // We might have single edge PHIs (blocks) - use an identity
9715       // 'select' for the first PHI operand.
9716       Value *In0 = State.get(getIncomingValue(In), Part);
9717       if (In == 0)
9718         Entry[Part] = In0; // Initialize with the first incoming value.
9719       else {
9720         // Select between the current value and the previous incoming edge
9721         // based on the incoming mask.
9722         Value *Cond = State.get(getMask(In), Part);
9723         Entry[Part] =
9724             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9725       }
9726     }
9727   }
9728   for (unsigned Part = 0; Part < State.UF; ++Part)
9729     State.set(this, Entry[Part], Part);
9730 }
9731 
9732 void VPInterleaveRecipe::execute(VPTransformState &State) {
9733   assert(!State.Instance && "Interleave group being replicated.");
9734   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9735                                       getStoredValues(), getMask());
9736 }
9737 
9738 void VPReductionRecipe::execute(VPTransformState &State) {
9739   assert(!State.Instance && "Reduction being replicated.");
9740   Value *PrevInChain = State.get(getChainOp(), 0);
9741   for (unsigned Part = 0; Part < State.UF; ++Part) {
9742     RecurKind Kind = RdxDesc->getRecurrenceKind();
9743     bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9744     Value *NewVecOp = State.get(getVecOp(), Part);
9745     if (VPValue *Cond = getCondOp()) {
9746       Value *NewCond = State.get(Cond, Part);
9747       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9748       Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
9749           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9750       Constant *IdenVec =
9751           ConstantVector::getSplat(VecTy->getElementCount(), Iden);
9752       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9753       NewVecOp = Select;
9754     }
9755     Value *NewRed;
9756     Value *NextInChain;
9757     if (IsOrdered) {
9758       if (State.VF.isVector())
9759         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9760                                         PrevInChain);
9761       else
9762         NewRed = State.Builder.CreateBinOp(
9763             (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(),
9764             PrevInChain, NewVecOp);
9765       PrevInChain = NewRed;
9766     } else {
9767       PrevInChain = State.get(getChainOp(), Part);
9768       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
9769     }
9770     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9771       NextInChain =
9772           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
9773                          NewRed, PrevInChain);
9774     } else if (IsOrdered)
9775       NextInChain = NewRed;
9776     else {
9777       NextInChain = State.Builder.CreateBinOp(
9778           (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed,
9779           PrevInChain);
9780     }
9781     State.set(this, NextInChain, Part);
9782   }
9783 }
9784 
9785 void VPReplicateRecipe::execute(VPTransformState &State) {
9786   if (State.Instance) { // Generate a single instance.
9787     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
9788     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9789                                     *State.Instance, IsPredicated, State);
9790     // Insert scalar instance packing it into a vector.
9791     if (AlsoPack && State.VF.isVector()) {
9792       // If we're constructing lane 0, initialize to start from poison.
9793       if (State.Instance->Lane.isFirstLane()) {
9794         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
9795         Value *Poison = PoisonValue::get(
9796             VectorType::get(getUnderlyingValue()->getType(), State.VF));
9797         State.set(this, Poison, State.Instance->Part);
9798       }
9799       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
9800     }
9801     return;
9802   }
9803 
9804   // Generate scalar instances for all VF lanes of all UF parts, unless the
9805   // instruction is uniform inwhich case generate only the first lane for each
9806   // of the UF parts.
9807   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
9808   assert((!State.VF.isScalable() || IsUniform) &&
9809          "Can't scalarize a scalable vector");
9810   for (unsigned Part = 0; Part < State.UF; ++Part)
9811     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
9812       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this,
9813                                       VPIteration(Part, Lane), IsPredicated,
9814                                       State);
9815 }
9816 
9817 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
9818   assert(State.Instance && "Branch on Mask works only on single instance.");
9819 
9820   unsigned Part = State.Instance->Part;
9821   unsigned Lane = State.Instance->Lane.getKnownLane();
9822 
9823   Value *ConditionBit = nullptr;
9824   VPValue *BlockInMask = getMask();
9825   if (BlockInMask) {
9826     ConditionBit = State.get(BlockInMask, Part);
9827     if (ConditionBit->getType()->isVectorTy())
9828       ConditionBit = State.Builder.CreateExtractElement(
9829           ConditionBit, State.Builder.getInt32(Lane));
9830   } else // Block in mask is all-one.
9831     ConditionBit = State.Builder.getTrue();
9832 
9833   // Replace the temporary unreachable terminator with a new conditional branch,
9834   // whose two destinations will be set later when they are created.
9835   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
9836   assert(isa<UnreachableInst>(CurrentTerminator) &&
9837          "Expected to replace unreachable terminator with conditional branch.");
9838   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
9839   CondBr->setSuccessor(0, nullptr);
9840   ReplaceInstWithInst(CurrentTerminator, CondBr);
9841 }
9842 
9843 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
9844   assert(State.Instance && "Predicated instruction PHI works per instance.");
9845   Instruction *ScalarPredInst =
9846       cast<Instruction>(State.get(getOperand(0), *State.Instance));
9847   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
9848   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
9849   assert(PredicatingBB && "Predicated block has no single predecessor.");
9850   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
9851          "operand must be VPReplicateRecipe");
9852 
9853   // By current pack/unpack logic we need to generate only a single phi node: if
9854   // a vector value for the predicated instruction exists at this point it means
9855   // the instruction has vector users only, and a phi for the vector value is
9856   // needed. In this case the recipe of the predicated instruction is marked to
9857   // also do that packing, thereby "hoisting" the insert-element sequence.
9858   // Otherwise, a phi node for the scalar value is needed.
9859   unsigned Part = State.Instance->Part;
9860   if (State.hasVectorValue(getOperand(0), Part)) {
9861     Value *VectorValue = State.get(getOperand(0), Part);
9862     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
9863     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
9864     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
9865     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
9866     if (State.hasVectorValue(this, Part))
9867       State.reset(this, VPhi, Part);
9868     else
9869       State.set(this, VPhi, Part);
9870     // NOTE: Currently we need to update the value of the operand, so the next
9871     // predicated iteration inserts its generated value in the correct vector.
9872     State.reset(getOperand(0), VPhi, Part);
9873   } else {
9874     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
9875     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
9876     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
9877                      PredicatingBB);
9878     Phi->addIncoming(ScalarPredInst, PredicatedBB);
9879     if (State.hasScalarValue(this, *State.Instance))
9880       State.reset(this, Phi, *State.Instance);
9881     else
9882       State.set(this, Phi, *State.Instance);
9883     // NOTE: Currently we need to update the value of the operand, so the next
9884     // predicated iteration inserts its generated value in the correct vector.
9885     State.reset(getOperand(0), Phi, *State.Instance);
9886   }
9887 }
9888 
9889 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
9890   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
9891   State.ILV->vectorizeMemoryInstruction(
9892       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
9893       StoredValue, getMask());
9894 }
9895 
9896 // Determine how to lower the scalar epilogue, which depends on 1) optimising
9897 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
9898 // predication, and 4) a TTI hook that analyses whether the loop is suitable
9899 // for predication.
9900 static ScalarEpilogueLowering getScalarEpilogueLowering(
9901     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
9902     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
9903     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
9904     LoopVectorizationLegality &LVL) {
9905   // 1) OptSize takes precedence over all other options, i.e. if this is set,
9906   // don't look at hints or options, and don't request a scalar epilogue.
9907   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
9908   // LoopAccessInfo (due to code dependency and not being able to reliably get
9909   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
9910   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
9911   // versioning when the vectorization is forced, unlike hasOptSize. So revert
9912   // back to the old way and vectorize with versioning when forced. See D81345.)
9913   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
9914                                                       PGSOQueryType::IRPass) &&
9915                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
9916     return CM_ScalarEpilogueNotAllowedOptSize;
9917 
9918   // 2) If set, obey the directives
9919   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
9920     switch (PreferPredicateOverEpilogue) {
9921     case PreferPredicateTy::ScalarEpilogue:
9922       return CM_ScalarEpilogueAllowed;
9923     case PreferPredicateTy::PredicateElseScalarEpilogue:
9924       return CM_ScalarEpilogueNotNeededUsePredicate;
9925     case PreferPredicateTy::PredicateOrDontVectorize:
9926       return CM_ScalarEpilogueNotAllowedUsePredicate;
9927     };
9928   }
9929 
9930   // 3) If set, obey the hints
9931   switch (Hints.getPredicate()) {
9932   case LoopVectorizeHints::FK_Enabled:
9933     return CM_ScalarEpilogueNotNeededUsePredicate;
9934   case LoopVectorizeHints::FK_Disabled:
9935     return CM_ScalarEpilogueAllowed;
9936   };
9937 
9938   // 4) if the TTI hook indicates this is profitable, request predication.
9939   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
9940                                        LVL.getLAI()))
9941     return CM_ScalarEpilogueNotNeededUsePredicate;
9942 
9943   return CM_ScalarEpilogueAllowed;
9944 }
9945 
9946 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
9947   // If Values have been set for this Def return the one relevant for \p Part.
9948   if (hasVectorValue(Def, Part))
9949     return Data.PerPartOutput[Def][Part];
9950 
9951   if (!hasScalarValue(Def, {Part, 0})) {
9952     Value *IRV = Def->getLiveInIRValue();
9953     Value *B = ILV->getBroadcastInstrs(IRV);
9954     set(Def, B, Part);
9955     return B;
9956   }
9957 
9958   Value *ScalarValue = get(Def, {Part, 0});
9959   // If we aren't vectorizing, we can just copy the scalar map values over
9960   // to the vector map.
9961   if (VF.isScalar()) {
9962     set(Def, ScalarValue, Part);
9963     return ScalarValue;
9964   }
9965 
9966   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
9967   bool IsUniform = RepR && RepR->isUniform();
9968 
9969   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
9970   // Check if there is a scalar value for the selected lane.
9971   if (!hasScalarValue(Def, {Part, LastLane})) {
9972     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
9973     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
9974            "unexpected recipe found to be invariant");
9975     IsUniform = true;
9976     LastLane = 0;
9977   }
9978 
9979   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
9980   // Set the insert point after the last scalarized instruction or after the
9981   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
9982   // will directly follow the scalar definitions.
9983   auto OldIP = Builder.saveIP();
9984   auto NewIP =
9985       isa<PHINode>(LastInst)
9986           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
9987           : std::next(BasicBlock::iterator(LastInst));
9988   Builder.SetInsertPoint(&*NewIP);
9989 
9990   // However, if we are vectorizing, we need to construct the vector values.
9991   // If the value is known to be uniform after vectorization, we can just
9992   // broadcast the scalar value corresponding to lane zero for each unroll
9993   // iteration. Otherwise, we construct the vector values using
9994   // insertelement instructions. Since the resulting vectors are stored in
9995   // State, we will only generate the insertelements once.
9996   Value *VectorValue = nullptr;
9997   if (IsUniform) {
9998     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
9999     set(Def, VectorValue, Part);
10000   } else {
10001     // Initialize packing with insertelements to start from undef.
10002     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10003     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10004     set(Def, Undef, Part);
10005     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10006       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10007     VectorValue = get(Def, Part);
10008   }
10009   Builder.restoreIP(OldIP);
10010   return VectorValue;
10011 }
10012 
10013 // Process the loop in the VPlan-native vectorization path. This path builds
10014 // VPlan upfront in the vectorization pipeline, which allows to apply
10015 // VPlan-to-VPlan transformations from the very beginning without modifying the
10016 // input LLVM IR.
10017 static bool processLoopInVPlanNativePath(
10018     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10019     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10020     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10021     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10022     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10023     LoopVectorizationRequirements &Requirements) {
10024 
10025   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10026     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10027     return false;
10028   }
10029   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10030   Function *F = L->getHeader()->getParent();
10031   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10032 
10033   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10034       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10035 
10036   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10037                                 &Hints, IAI);
10038   // Use the planner for outer loop vectorization.
10039   // TODO: CM is not used at this point inside the planner. Turn CM into an
10040   // optional argument if we don't need it in the future.
10041   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10042                                Requirements, ORE);
10043 
10044   // Get user vectorization factor.
10045   ElementCount UserVF = Hints.getWidth();
10046 
10047   CM.collectElementTypesForWidening();
10048 
10049   // Plan how to best vectorize, return the best VF and its cost.
10050   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10051 
10052   // If we are stress testing VPlan builds, do not attempt to generate vector
10053   // code. Masked vector code generation support will follow soon.
10054   // Also, do not attempt to vectorize if no vector code will be produced.
10055   if (VPlanBuildStressTest || EnableVPlanPredication ||
10056       VectorizationFactor::Disabled() == VF)
10057     return false;
10058 
10059   LVP.setBestPlan(VF.Width, 1);
10060 
10061   {
10062     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10063                              F->getParent()->getDataLayout());
10064     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10065                            &CM, BFI, PSI, Checks);
10066     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10067                       << L->getHeader()->getParent()->getName() << "\"\n");
10068     LVP.executePlan(LB, DT);
10069   }
10070 
10071   // Mark the loop as already vectorized to avoid vectorizing again.
10072   Hints.setAlreadyVectorized();
10073   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10074   return true;
10075 }
10076 
10077 // Emit a remark if there are stores to floats that required a floating point
10078 // extension. If the vectorized loop was generated with floating point there
10079 // will be a performance penalty from the conversion overhead and the change in
10080 // the vector width.
10081 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10082   SmallVector<Instruction *, 4> Worklist;
10083   for (BasicBlock *BB : L->getBlocks()) {
10084     for (Instruction &Inst : *BB) {
10085       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10086         if (S->getValueOperand()->getType()->isFloatTy())
10087           Worklist.push_back(S);
10088       }
10089     }
10090   }
10091 
10092   // Traverse the floating point stores upwards searching, for floating point
10093   // conversions.
10094   SmallPtrSet<const Instruction *, 4> Visited;
10095   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10096   while (!Worklist.empty()) {
10097     auto *I = Worklist.pop_back_val();
10098     if (!L->contains(I))
10099       continue;
10100     if (!Visited.insert(I).second)
10101       continue;
10102 
10103     // Emit a remark if the floating point store required a floating
10104     // point conversion.
10105     // TODO: More work could be done to identify the root cause such as a
10106     // constant or a function return type and point the user to it.
10107     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10108       ORE->emit([&]() {
10109         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10110                                           I->getDebugLoc(), L->getHeader())
10111                << "floating point conversion changes vector width. "
10112                << "Mixed floating point precision requires an up/down "
10113                << "cast that will negatively impact performance.";
10114       });
10115 
10116     for (Use &Op : I->operands())
10117       if (auto *OpI = dyn_cast<Instruction>(Op))
10118         Worklist.push_back(OpI);
10119   }
10120 }
10121 
10122 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10123     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10124                                !EnableLoopInterleaving),
10125       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10126                               !EnableLoopVectorization) {}
10127 
10128 bool LoopVectorizePass::processLoop(Loop *L) {
10129   assert((EnableVPlanNativePath || L->isInnermost()) &&
10130          "VPlan-native path is not enabled. Only process inner loops.");
10131 
10132 #ifndef NDEBUG
10133   const std::string DebugLocStr = getDebugLocString(L);
10134 #endif /* NDEBUG */
10135 
10136   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10137                     << L->getHeader()->getParent()->getName() << "\" from "
10138                     << DebugLocStr << "\n");
10139 
10140   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10141 
10142   LLVM_DEBUG(
10143       dbgs() << "LV: Loop hints:"
10144              << " force="
10145              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10146                      ? "disabled"
10147                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10148                             ? "enabled"
10149                             : "?"))
10150              << " width=" << Hints.getWidth()
10151              << " interleave=" << Hints.getInterleave() << "\n");
10152 
10153   // Function containing loop
10154   Function *F = L->getHeader()->getParent();
10155 
10156   // Looking at the diagnostic output is the only way to determine if a loop
10157   // was vectorized (other than looking at the IR or machine code), so it
10158   // is important to generate an optimization remark for each loop. Most of
10159   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10160   // generated as OptimizationRemark and OptimizationRemarkMissed are
10161   // less verbose reporting vectorized loops and unvectorized loops that may
10162   // benefit from vectorization, respectively.
10163 
10164   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10165     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10166     return false;
10167   }
10168 
10169   PredicatedScalarEvolution PSE(*SE, *L);
10170 
10171   // Check if it is legal to vectorize the loop.
10172   LoopVectorizationRequirements Requirements;
10173   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10174                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10175   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10176     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10177     Hints.emitRemarkWithHints();
10178     return false;
10179   }
10180 
10181   // Check the function attributes and profiles to find out if this function
10182   // should be optimized for size.
10183   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10184       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10185 
10186   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10187   // here. They may require CFG and instruction level transformations before
10188   // even evaluating whether vectorization is profitable. Since we cannot modify
10189   // the incoming IR, we need to build VPlan upfront in the vectorization
10190   // pipeline.
10191   if (!L->isInnermost())
10192     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10193                                         ORE, BFI, PSI, Hints, Requirements);
10194 
10195   assert(L->isInnermost() && "Inner loop expected.");
10196 
10197   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10198   // count by optimizing for size, to minimize overheads.
10199   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10200   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10201     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10202                       << "This loop is worth vectorizing only if no scalar "
10203                       << "iteration overheads are incurred.");
10204     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10205       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10206     else {
10207       LLVM_DEBUG(dbgs() << "\n");
10208       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10209     }
10210   }
10211 
10212   // Check the function attributes to see if implicit floats are allowed.
10213   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10214   // an integer loop and the vector instructions selected are purely integer
10215   // vector instructions?
10216   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10217     reportVectorizationFailure(
10218         "Can't vectorize when the NoImplicitFloat attribute is used",
10219         "loop not vectorized due to NoImplicitFloat attribute",
10220         "NoImplicitFloat", ORE, L);
10221     Hints.emitRemarkWithHints();
10222     return false;
10223   }
10224 
10225   // Check if the target supports potentially unsafe FP vectorization.
10226   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10227   // for the target we're vectorizing for, to make sure none of the
10228   // additional fp-math flags can help.
10229   if (Hints.isPotentiallyUnsafe() &&
10230       TTI->isFPVectorizationPotentiallyUnsafe()) {
10231     reportVectorizationFailure(
10232         "Potentially unsafe FP op prevents vectorization",
10233         "loop not vectorized due to unsafe FP support.",
10234         "UnsafeFP", ORE, L);
10235     Hints.emitRemarkWithHints();
10236     return false;
10237   }
10238 
10239   bool AllowOrderedReductions;
10240   // If the flag is set, use that instead and override the TTI behaviour.
10241   if (ForceOrderedReductions.getNumOccurrences() > 0)
10242     AllowOrderedReductions = ForceOrderedReductions;
10243   else
10244     AllowOrderedReductions = TTI->enableOrderedReductions();
10245   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10246     ORE->emit([&]() {
10247       auto *ExactFPMathInst = Requirements.getExactFPInst();
10248       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10249                                                  ExactFPMathInst->getDebugLoc(),
10250                                                  ExactFPMathInst->getParent())
10251              << "loop not vectorized: cannot prove it is safe to reorder "
10252                 "floating-point operations";
10253     });
10254     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10255                          "reorder floating-point operations\n");
10256     Hints.emitRemarkWithHints();
10257     return false;
10258   }
10259 
10260   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10261   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10262 
10263   // If an override option has been passed in for interleaved accesses, use it.
10264   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10265     UseInterleaved = EnableInterleavedMemAccesses;
10266 
10267   // Analyze interleaved memory accesses.
10268   if (UseInterleaved) {
10269     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10270   }
10271 
10272   // Use the cost model.
10273   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10274                                 F, &Hints, IAI);
10275   CM.collectValuesToIgnore();
10276   CM.collectElementTypesForWidening();
10277 
10278   // Use the planner for vectorization.
10279   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10280                                Requirements, ORE);
10281 
10282   // Get user vectorization factor and interleave count.
10283   ElementCount UserVF = Hints.getWidth();
10284   unsigned UserIC = Hints.getInterleave();
10285 
10286   // Plan how to best vectorize, return the best VF and its cost.
10287   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10288 
10289   VectorizationFactor VF = VectorizationFactor::Disabled();
10290   unsigned IC = 1;
10291 
10292   if (MaybeVF) {
10293     VF = *MaybeVF;
10294     // Select the interleave count.
10295     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10296   }
10297 
10298   // Identify the diagnostic messages that should be produced.
10299   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10300   bool VectorizeLoop = true, InterleaveLoop = true;
10301   if (VF.Width.isScalar()) {
10302     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10303     VecDiagMsg = std::make_pair(
10304         "VectorizationNotBeneficial",
10305         "the cost-model indicates that vectorization is not beneficial");
10306     VectorizeLoop = false;
10307   }
10308 
10309   if (!MaybeVF && UserIC > 1) {
10310     // Tell the user interleaving was avoided up-front, despite being explicitly
10311     // requested.
10312     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10313                          "interleaving should be avoided up front\n");
10314     IntDiagMsg = std::make_pair(
10315         "InterleavingAvoided",
10316         "Ignoring UserIC, because interleaving was avoided up front");
10317     InterleaveLoop = false;
10318   } else if (IC == 1 && UserIC <= 1) {
10319     // Tell the user interleaving is not beneficial.
10320     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10321     IntDiagMsg = std::make_pair(
10322         "InterleavingNotBeneficial",
10323         "the cost-model indicates that interleaving is not beneficial");
10324     InterleaveLoop = false;
10325     if (UserIC == 1) {
10326       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10327       IntDiagMsg.second +=
10328           " and is explicitly disabled or interleave count is set to 1";
10329     }
10330   } else if (IC > 1 && UserIC == 1) {
10331     // Tell the user interleaving is beneficial, but it explicitly disabled.
10332     LLVM_DEBUG(
10333         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10334     IntDiagMsg = std::make_pair(
10335         "InterleavingBeneficialButDisabled",
10336         "the cost-model indicates that interleaving is beneficial "
10337         "but is explicitly disabled or interleave count is set to 1");
10338     InterleaveLoop = false;
10339   }
10340 
10341   // Override IC if user provided an interleave count.
10342   IC = UserIC > 0 ? UserIC : IC;
10343 
10344   // Emit diagnostic messages, if any.
10345   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10346   if (!VectorizeLoop && !InterleaveLoop) {
10347     // Do not vectorize or interleaving the loop.
10348     ORE->emit([&]() {
10349       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10350                                       L->getStartLoc(), L->getHeader())
10351              << VecDiagMsg.second;
10352     });
10353     ORE->emit([&]() {
10354       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10355                                       L->getStartLoc(), L->getHeader())
10356              << IntDiagMsg.second;
10357     });
10358     return false;
10359   } else if (!VectorizeLoop && InterleaveLoop) {
10360     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10361     ORE->emit([&]() {
10362       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10363                                         L->getStartLoc(), L->getHeader())
10364              << VecDiagMsg.second;
10365     });
10366   } else if (VectorizeLoop && !InterleaveLoop) {
10367     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10368                       << ") in " << DebugLocStr << '\n');
10369     ORE->emit([&]() {
10370       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10371                                         L->getStartLoc(), L->getHeader())
10372              << IntDiagMsg.second;
10373     });
10374   } else if (VectorizeLoop && InterleaveLoop) {
10375     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10376                       << ") in " << DebugLocStr << '\n');
10377     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10378   }
10379 
10380   bool DisableRuntimeUnroll = false;
10381   MDNode *OrigLoopID = L->getLoopID();
10382   {
10383     // Optimistically generate runtime checks. Drop them if they turn out to not
10384     // be profitable. Limit the scope of Checks, so the cleanup happens
10385     // immediately after vector codegeneration is done.
10386     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10387                              F->getParent()->getDataLayout());
10388     if (!VF.Width.isScalar() || IC > 1)
10389       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10390     LVP.setBestPlan(VF.Width, IC);
10391 
10392     using namespace ore;
10393     if (!VectorizeLoop) {
10394       assert(IC > 1 && "interleave count should not be 1 or 0");
10395       // If we decided that it is not legal to vectorize the loop, then
10396       // interleave it.
10397       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10398                                  &CM, BFI, PSI, Checks);
10399       LVP.executePlan(Unroller, DT);
10400 
10401       ORE->emit([&]() {
10402         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10403                                   L->getHeader())
10404                << "interleaved loop (interleaved count: "
10405                << NV("InterleaveCount", IC) << ")";
10406       });
10407     } else {
10408       // If we decided that it is *legal* to vectorize the loop, then do it.
10409 
10410       // Consider vectorizing the epilogue too if it's profitable.
10411       VectorizationFactor EpilogueVF =
10412           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10413       if (EpilogueVF.Width.isVector()) {
10414 
10415         // The first pass vectorizes the main loop and creates a scalar epilogue
10416         // to be vectorized by executing the plan (potentially with a different
10417         // factor) again shortly afterwards.
10418         EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC,
10419                                           EpilogueVF.Width.getKnownMinValue(),
10420                                           1);
10421         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10422                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10423 
10424         LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF);
10425         LVP.executePlan(MainILV, DT);
10426         ++LoopsVectorized;
10427 
10428         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10429         formLCSSARecursively(*L, *DT, LI, SE);
10430 
10431         // Second pass vectorizes the epilogue and adjusts the control flow
10432         // edges from the first pass.
10433         LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF);
10434         EPI.MainLoopVF = EPI.EpilogueVF;
10435         EPI.MainLoopUF = EPI.EpilogueUF;
10436         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10437                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10438                                                  Checks);
10439         LVP.executePlan(EpilogILV, DT);
10440         ++LoopsEpilogueVectorized;
10441 
10442         if (!MainILV.areSafetyChecksAdded())
10443           DisableRuntimeUnroll = true;
10444       } else {
10445         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10446                                &LVL, &CM, BFI, PSI, Checks);
10447         LVP.executePlan(LB, DT);
10448         ++LoopsVectorized;
10449 
10450         // Add metadata to disable runtime unrolling a scalar loop when there
10451         // are no runtime checks about strides and memory. A scalar loop that is
10452         // rarely used is not worth unrolling.
10453         if (!LB.areSafetyChecksAdded())
10454           DisableRuntimeUnroll = true;
10455       }
10456       // Report the vectorization decision.
10457       ORE->emit([&]() {
10458         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10459                                   L->getHeader())
10460                << "vectorized loop (vectorization width: "
10461                << NV("VectorizationFactor", VF.Width)
10462                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10463       });
10464     }
10465 
10466     if (ORE->allowExtraAnalysis(LV_NAME))
10467       checkMixedPrecision(L, ORE);
10468   }
10469 
10470   Optional<MDNode *> RemainderLoopID =
10471       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10472                                       LLVMLoopVectorizeFollowupEpilogue});
10473   if (RemainderLoopID.hasValue()) {
10474     L->setLoopID(RemainderLoopID.getValue());
10475   } else {
10476     if (DisableRuntimeUnroll)
10477       AddRuntimeUnrollDisableMetaData(L);
10478 
10479     // Mark the loop as already vectorized to avoid vectorizing again.
10480     Hints.setAlreadyVectorized();
10481   }
10482 
10483   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10484   return true;
10485 }
10486 
10487 LoopVectorizeResult LoopVectorizePass::runImpl(
10488     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10489     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10490     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10491     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10492     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10493   SE = &SE_;
10494   LI = &LI_;
10495   TTI = &TTI_;
10496   DT = &DT_;
10497   BFI = &BFI_;
10498   TLI = TLI_;
10499   AA = &AA_;
10500   AC = &AC_;
10501   GetLAA = &GetLAA_;
10502   DB = &DB_;
10503   ORE = &ORE_;
10504   PSI = PSI_;
10505 
10506   // Don't attempt if
10507   // 1. the target claims to have no vector registers, and
10508   // 2. interleaving won't help ILP.
10509   //
10510   // The second condition is necessary because, even if the target has no
10511   // vector registers, loop vectorization may still enable scalar
10512   // interleaving.
10513   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10514       TTI->getMaxInterleaveFactor(1) < 2)
10515     return LoopVectorizeResult(false, false);
10516 
10517   bool Changed = false, CFGChanged = false;
10518 
10519   // The vectorizer requires loops to be in simplified form.
10520   // Since simplification may add new inner loops, it has to run before the
10521   // legality and profitability checks. This means running the loop vectorizer
10522   // will simplify all loops, regardless of whether anything end up being
10523   // vectorized.
10524   for (auto &L : *LI)
10525     Changed |= CFGChanged |=
10526         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10527 
10528   // Build up a worklist of inner-loops to vectorize. This is necessary as
10529   // the act of vectorizing or partially unrolling a loop creates new loops
10530   // and can invalidate iterators across the loops.
10531   SmallVector<Loop *, 8> Worklist;
10532 
10533   for (Loop *L : *LI)
10534     collectSupportedLoops(*L, LI, ORE, Worklist);
10535 
10536   LoopsAnalyzed += Worklist.size();
10537 
10538   // Now walk the identified inner loops.
10539   while (!Worklist.empty()) {
10540     Loop *L = Worklist.pop_back_val();
10541 
10542     // For the inner loops we actually process, form LCSSA to simplify the
10543     // transform.
10544     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10545 
10546     Changed |= CFGChanged |= processLoop(L);
10547   }
10548 
10549   // Process each loop nest in the function.
10550   return LoopVectorizeResult(Changed, CFGChanged);
10551 }
10552 
10553 PreservedAnalyses LoopVectorizePass::run(Function &F,
10554                                          FunctionAnalysisManager &AM) {
10555     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10556     auto &LI = AM.getResult<LoopAnalysis>(F);
10557     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10558     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10559     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10560     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10561     auto &AA = AM.getResult<AAManager>(F);
10562     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10563     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10564     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10565 
10566     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10567     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10568         [&](Loop &L) -> const LoopAccessInfo & {
10569       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,  SE,
10570                                         TLI, TTI, nullptr, nullptr};
10571       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10572     };
10573     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10574     ProfileSummaryInfo *PSI =
10575         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10576     LoopVectorizeResult Result =
10577         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10578     if (!Result.MadeAnyChange)
10579       return PreservedAnalyses::all();
10580     PreservedAnalyses PA;
10581 
10582     // We currently do not preserve loopinfo/dominator analyses with outer loop
10583     // vectorization. Until this is addressed, mark these analyses as preserved
10584     // only for non-VPlan-native path.
10585     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10586     if (!EnableVPlanNativePath) {
10587       PA.preserve<LoopAnalysis>();
10588       PA.preserve<DominatorTreeAnalysis>();
10589     }
10590     if (!Result.MadeCFGChange)
10591       PA.preserveSet<CFGAnalyses>();
10592     return PA;
10593 }
10594