1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallPtrSet.h" 73 #include "llvm/ADT/SmallVector.h" 74 #include "llvm/ADT/Statistic.h" 75 #include "llvm/ADT/StringRef.h" 76 #include "llvm/ADT/Twine.h" 77 #include "llvm/ADT/iterator_range.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/BasicAliasAnalysis.h" 80 #include "llvm/Analysis/BlockFrequencyInfo.h" 81 #include "llvm/Analysis/CFG.h" 82 #include "llvm/Analysis/CodeMetrics.h" 83 #include "llvm/Analysis/DemandedBits.h" 84 #include "llvm/Analysis/GlobalsModRef.h" 85 #include "llvm/Analysis/LoopAccessAnalysis.h" 86 #include "llvm/Analysis/LoopAnalysisManager.h" 87 #include "llvm/Analysis/LoopInfo.h" 88 #include "llvm/Analysis/LoopIterator.h" 89 #include "llvm/Analysis/MemorySSA.h" 90 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 91 #include "llvm/Analysis/ProfileSummaryInfo.h" 92 #include "llvm/Analysis/ScalarEvolution.h" 93 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 94 #include "llvm/Analysis/TargetLibraryInfo.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/Analysis/VectorUtils.h" 97 #include "llvm/IR/Attributes.h" 98 #include "llvm/IR/BasicBlock.h" 99 #include "llvm/IR/CFG.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/DataLayout.h" 103 #include "llvm/IR/DebugInfoMetadata.h" 104 #include "llvm/IR/DebugLoc.h" 105 #include "llvm/IR/DerivedTypes.h" 106 #include "llvm/IR/DiagnosticInfo.h" 107 #include "llvm/IR/Dominators.h" 108 #include "llvm/IR/Function.h" 109 #include "llvm/IR/IRBuilder.h" 110 #include "llvm/IR/InstrTypes.h" 111 #include "llvm/IR/Instruction.h" 112 #include "llvm/IR/Instructions.h" 113 #include "llvm/IR/IntrinsicInst.h" 114 #include "llvm/IR/Intrinsics.h" 115 #include "llvm/IR/LLVMContext.h" 116 #include "llvm/IR/Metadata.h" 117 #include "llvm/IR/Module.h" 118 #include "llvm/IR/Operator.h" 119 #include "llvm/IR/Type.h" 120 #include "llvm/IR/Use.h" 121 #include "llvm/IR/User.h" 122 #include "llvm/IR/Value.h" 123 #include "llvm/IR/ValueHandle.h" 124 #include "llvm/IR/Verifier.h" 125 #include "llvm/InitializePasses.h" 126 #include "llvm/Pass.h" 127 #include "llvm/Support/Casting.h" 128 #include "llvm/Support/CommandLine.h" 129 #include "llvm/Support/Compiler.h" 130 #include "llvm/Support/Debug.h" 131 #include "llvm/Support/ErrorHandling.h" 132 #include "llvm/Support/InstructionCost.h" 133 #include "llvm/Support/MathExtras.h" 134 #include "llvm/Support/raw_ostream.h" 135 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 136 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 137 #include "llvm/Transforms/Utils/LoopSimplify.h" 138 #include "llvm/Transforms/Utils/LoopUtils.h" 139 #include "llvm/Transforms/Utils/LoopVersioning.h" 140 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 141 #include "llvm/Transforms/Utils/SizeOpts.h" 142 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 143 #include <algorithm> 144 #include <cassert> 145 #include <cstdint> 146 #include <cstdlib> 147 #include <functional> 148 #include <iterator> 149 #include <limits> 150 #include <memory> 151 #include <string> 152 #include <tuple> 153 #include <utility> 154 155 using namespace llvm; 156 157 #define LV_NAME "loop-vectorize" 158 #define DEBUG_TYPE LV_NAME 159 160 #ifndef NDEBUG 161 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 162 #endif 163 164 /// @{ 165 /// Metadata attribute names 166 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 167 const char LLVMLoopVectorizeFollowupVectorized[] = 168 "llvm.loop.vectorize.followup_vectorized"; 169 const char LLVMLoopVectorizeFollowupEpilogue[] = 170 "llvm.loop.vectorize.followup_epilogue"; 171 /// @} 172 173 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 174 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 175 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 176 177 static cl::opt<bool> EnableEpilogueVectorization( 178 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 179 cl::desc("Enable vectorization of epilogue loops.")); 180 181 static cl::opt<unsigned> EpilogueVectorizationForceVF( 182 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 183 cl::desc("When epilogue vectorization is enabled, and a value greater than " 184 "1 is specified, forces the given VF for all applicable epilogue " 185 "loops.")); 186 187 static cl::opt<unsigned> EpilogueVectorizationMinVF( 188 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 189 cl::desc("Only loops with vectorization factor equal to or larger than " 190 "the specified value are considered for epilogue vectorization.")); 191 192 /// Loops with a known constant trip count below this number are vectorized only 193 /// if no scalar iteration overheads are incurred. 194 static cl::opt<unsigned> TinyTripCountVectorThreshold( 195 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 196 cl::desc("Loops with a constant trip count that is smaller than this " 197 "value are vectorized only if no scalar iteration overheads " 198 "are incurred.")); 199 200 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 201 // that predication is preferred, and this lists all options. I.e., the 202 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 203 // and predicate the instructions accordingly. If tail-folding fails, there are 204 // different fallback strategies depending on these values: 205 namespace PreferPredicateTy { 206 enum Option { 207 ScalarEpilogue = 0, 208 PredicateElseScalarEpilogue, 209 PredicateOrDontVectorize 210 }; 211 } // namespace PreferPredicateTy 212 213 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 214 "prefer-predicate-over-epilogue", 215 cl::init(PreferPredicateTy::ScalarEpilogue), 216 cl::Hidden, 217 cl::desc("Tail-folding and predication preferences over creating a scalar " 218 "epilogue loop."), 219 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 220 "scalar-epilogue", 221 "Don't tail-predicate loops, create scalar epilogue"), 222 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 223 "predicate-else-scalar-epilogue", 224 "prefer tail-folding, create scalar epilogue if tail " 225 "folding fails."), 226 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 227 "predicate-dont-vectorize", 228 "prefers tail-folding, don't attempt vectorization if " 229 "tail-folding fails."))); 230 231 static cl::opt<bool> MaximizeBandwidth( 232 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 233 cl::desc("Maximize bandwidth when selecting vectorization factor which " 234 "will be determined by the smallest type in loop.")); 235 236 static cl::opt<bool> EnableInterleavedMemAccesses( 237 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 238 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 239 240 /// An interleave-group may need masking if it resides in a block that needs 241 /// predication, or in order to mask away gaps. 242 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 243 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 244 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 245 246 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 247 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 248 cl::desc("We don't interleave loops with a estimated constant trip count " 249 "below this number")); 250 251 static cl::opt<unsigned> ForceTargetNumScalarRegs( 252 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 253 cl::desc("A flag that overrides the target's number of scalar registers.")); 254 255 static cl::opt<unsigned> ForceTargetNumVectorRegs( 256 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 257 cl::desc("A flag that overrides the target's number of vector registers.")); 258 259 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 260 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 261 cl::desc("A flag that overrides the target's max interleave factor for " 262 "scalar loops.")); 263 264 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 265 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 266 cl::desc("A flag that overrides the target's max interleave factor for " 267 "vectorized loops.")); 268 269 static cl::opt<unsigned> ForceTargetInstructionCost( 270 "force-target-instruction-cost", cl::init(0), cl::Hidden, 271 cl::desc("A flag that overrides the target's expected cost for " 272 "an instruction to a single constant value. Mostly " 273 "useful for getting consistent testing.")); 274 275 static cl::opt<bool> ForceTargetSupportsScalableVectors( 276 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 277 cl::desc( 278 "Pretend that scalable vectors are supported, even if the target does " 279 "not support them. This flag should only be used for testing.")); 280 281 static cl::opt<unsigned> SmallLoopCost( 282 "small-loop-cost", cl::init(20), cl::Hidden, 283 cl::desc( 284 "The cost of a loop that is considered 'small' by the interleaver.")); 285 286 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 287 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 288 cl::desc("Enable the use of the block frequency analysis to access PGO " 289 "heuristics minimizing code growth in cold regions and being more " 290 "aggressive in hot regions.")); 291 292 // Runtime interleave loops for load/store throughput. 293 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 294 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 295 cl::desc( 296 "Enable runtime interleaving until load/store ports are saturated")); 297 298 /// Interleave small loops with scalar reductions. 299 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 300 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 301 cl::desc("Enable interleaving for loops with small iteration counts that " 302 "contain scalar reductions to expose ILP.")); 303 304 /// The number of stores in a loop that are allowed to need predication. 305 static cl::opt<unsigned> NumberOfStoresToPredicate( 306 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 307 cl::desc("Max number of stores to be predicated behind an if.")); 308 309 static cl::opt<bool> EnableIndVarRegisterHeur( 310 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 311 cl::desc("Count the induction variable only once when interleaving")); 312 313 static cl::opt<bool> EnableCondStoresVectorization( 314 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 315 cl::desc("Enable if predication of stores during vectorization.")); 316 317 static cl::opt<unsigned> MaxNestedScalarReductionIC( 318 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 319 cl::desc("The maximum interleave count to use when interleaving a scalar " 320 "reduction in a nested loop.")); 321 322 static cl::opt<bool> 323 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 324 cl::Hidden, 325 cl::desc("Prefer in-loop vector reductions, " 326 "overriding the targets preference.")); 327 328 static cl::opt<bool> PreferPredicatedReductionSelect( 329 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 330 cl::desc( 331 "Prefer predicating a reduction operation over an after loop select.")); 332 333 cl::opt<bool> EnableVPlanNativePath( 334 "enable-vplan-native-path", cl::init(false), cl::Hidden, 335 cl::desc("Enable VPlan-native vectorization path with " 336 "support for outer loop vectorization.")); 337 338 // FIXME: Remove this switch once we have divergence analysis. Currently we 339 // assume divergent non-backedge branches when this switch is true. 340 cl::opt<bool> EnableVPlanPredication( 341 "enable-vplan-predication", cl::init(false), cl::Hidden, 342 cl::desc("Enable VPlan-native vectorization path predicator with " 343 "support for outer loop vectorization.")); 344 345 // This flag enables the stress testing of the VPlan H-CFG construction in the 346 // VPlan-native vectorization path. It must be used in conjuction with 347 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 348 // verification of the H-CFGs built. 349 static cl::opt<bool> VPlanBuildStressTest( 350 "vplan-build-stress-test", cl::init(false), cl::Hidden, 351 cl::desc( 352 "Build VPlan for every supported loop nest in the function and bail " 353 "out right after the build (stress test the VPlan H-CFG construction " 354 "in the VPlan-native vectorization path).")); 355 356 cl::opt<bool> llvm::EnableLoopInterleaving( 357 "interleave-loops", cl::init(true), cl::Hidden, 358 cl::desc("Enable loop interleaving in Loop vectorization passes")); 359 cl::opt<bool> llvm::EnableLoopVectorization( 360 "vectorize-loops", cl::init(true), cl::Hidden, 361 cl::desc("Run the Loop vectorization passes")); 362 363 /// A helper function that returns the type of loaded or stored value. 364 static Type *getMemInstValueType(Value *I) { 365 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 366 "Expected Load or Store instruction"); 367 if (auto *LI = dyn_cast<LoadInst>(I)) 368 return LI->getType(); 369 return cast<StoreInst>(I)->getValueOperand()->getType(); 370 } 371 372 /// A helper function that returns true if the given type is irregular. The 373 /// type is irregular if its allocated size doesn't equal the store size of an 374 /// element of the corresponding vector type at the given vectorization factor. 375 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) { 376 // Determine if an array of VF elements of type Ty is "bitcast compatible" 377 // with a <VF x Ty> vector. 378 if (VF.isVector()) { 379 auto *VectorTy = VectorType::get(Ty, VF); 380 return TypeSize::get(VF.getKnownMinValue() * 381 DL.getTypeAllocSize(Ty).getFixedValue(), 382 VF.isScalable()) != DL.getTypeStoreSize(VectorTy); 383 } 384 385 // If the vectorization factor is one, we just check if an array of type Ty 386 // requires padding between elements. 387 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 388 } 389 390 /// A helper function that returns the reciprocal of the block probability of 391 /// predicated blocks. If we return X, we are assuming the predicated block 392 /// will execute once for every X iterations of the loop header. 393 /// 394 /// TODO: We should use actual block probability here, if available. Currently, 395 /// we always assume predicated blocks have a 50% chance of executing. 396 static unsigned getReciprocalPredBlockProb() { return 2; } 397 398 /// A helper function that returns an integer or floating-point constant with 399 /// value C. 400 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 401 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 402 : ConstantFP::get(Ty, C); 403 } 404 405 /// Returns "best known" trip count for the specified loop \p L as defined by 406 /// the following procedure: 407 /// 1) Returns exact trip count if it is known. 408 /// 2) Returns expected trip count according to profile data if any. 409 /// 3) Returns upper bound estimate if it is known. 410 /// 4) Returns None if all of the above failed. 411 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 412 // Check if exact trip count is known. 413 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 414 return ExpectedTC; 415 416 // Check if there is an expected trip count available from profile data. 417 if (LoopVectorizeWithBlockFrequency) 418 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 419 return EstimatedTC; 420 421 // Check if upper bound estimate is known. 422 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 423 return ExpectedTC; 424 425 return None; 426 } 427 428 // Forward declare GeneratedRTChecks. 429 class GeneratedRTChecks; 430 431 namespace llvm { 432 433 /// InnerLoopVectorizer vectorizes loops which contain only one basic 434 /// block to a specified vectorization factor (VF). 435 /// This class performs the widening of scalars into vectors, or multiple 436 /// scalars. This class also implements the following features: 437 /// * It inserts an epilogue loop for handling loops that don't have iteration 438 /// counts that are known to be a multiple of the vectorization factor. 439 /// * It handles the code generation for reduction variables. 440 /// * Scalarization (implementation using scalars) of un-vectorizable 441 /// instructions. 442 /// InnerLoopVectorizer does not perform any vectorization-legality 443 /// checks, and relies on the caller to check for the different legality 444 /// aspects. The InnerLoopVectorizer relies on the 445 /// LoopVectorizationLegality class to provide information about the induction 446 /// and reduction variables that were found to a given vectorization factor. 447 class InnerLoopVectorizer { 448 public: 449 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 450 LoopInfo *LI, DominatorTree *DT, 451 const TargetLibraryInfo *TLI, 452 const TargetTransformInfo *TTI, AssumptionCache *AC, 453 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 454 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 455 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 456 ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) 457 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 458 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 459 Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), 460 PSI(PSI), RTChecks(RTChecks) { 461 // Query this against the original loop and save it here because the profile 462 // of the original loop header may change as the transformation happens. 463 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 464 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 465 } 466 467 virtual ~InnerLoopVectorizer() = default; 468 469 /// Create a new empty loop that will contain vectorized instructions later 470 /// on, while the old loop will be used as the scalar remainder. Control flow 471 /// is generated around the vectorized (and scalar epilogue) loops consisting 472 /// of various checks and bypasses. Return the pre-header block of the new 473 /// loop. 474 /// In the case of epilogue vectorization, this function is overriden to 475 /// handle the more complex control flow around the loops. 476 virtual BasicBlock *createVectorizedLoopSkeleton(); 477 478 /// Widen a single instruction within the innermost loop. 479 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 480 VPTransformState &State); 481 482 /// Widen a single call instruction within the innermost loop. 483 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 484 VPTransformState &State); 485 486 /// Widen a single select instruction within the innermost loop. 487 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 488 bool InvariantCond, VPTransformState &State); 489 490 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 491 void fixVectorizedLoop(VPTransformState &State); 492 493 // Return true if any runtime check is added. 494 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 495 496 /// A type for vectorized values in the new loop. Each value from the 497 /// original loop, when vectorized, is represented by UF vector values in the 498 /// new unrolled loop, where UF is the unroll factor. 499 using VectorParts = SmallVector<Value *, 2>; 500 501 /// Vectorize a single GetElementPtrInst based on information gathered and 502 /// decisions taken during planning. 503 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 504 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 505 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 506 507 /// Vectorize a single PHINode in a block. This method handles the induction 508 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 509 /// arbitrary length vectors. 510 void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc, 511 VPValue *StartV, VPValue *Def, 512 VPTransformState &State); 513 514 /// A helper function to scalarize a single Instruction in the innermost loop. 515 /// Generates a sequence of scalar instances for each lane between \p MinLane 516 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 517 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 518 /// Instr's operands. 519 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 520 const VPIteration &Instance, bool IfPredicateInstr, 521 VPTransformState &State); 522 523 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 524 /// is provided, the integer induction variable will first be truncated to 525 /// the corresponding type. 526 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 527 VPValue *Def, VPValue *CastDef, 528 VPTransformState &State); 529 530 /// Construct the vector value of a scalarized value \p V one lane at a time. 531 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 532 VPTransformState &State); 533 534 /// Try to vectorize interleaved access group \p Group with the base address 535 /// given in \p Addr, optionally masking the vector operations if \p 536 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 537 /// values in the vectorized loop. 538 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 539 ArrayRef<VPValue *> VPDefs, 540 VPTransformState &State, VPValue *Addr, 541 ArrayRef<VPValue *> StoredValues, 542 VPValue *BlockInMask = nullptr); 543 544 /// Vectorize Load and Store instructions with the base address given in \p 545 /// Addr, optionally masking the vector operations if \p BlockInMask is 546 /// non-null. Use \p State to translate given VPValues to IR values in the 547 /// vectorized loop. 548 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 549 VPValue *Def, VPValue *Addr, 550 VPValue *StoredValue, VPValue *BlockInMask); 551 552 /// Set the debug location in the builder using the debug location in 553 /// the instruction. 554 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 555 556 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 557 void fixNonInductionPHIs(VPTransformState &State); 558 559 /// Create a broadcast instruction. This method generates a broadcast 560 /// instruction (shuffle) for loop invariant values and for the induction 561 /// value. If this is the induction variable then we extend it to N, N+1, ... 562 /// this is needed because each iteration in the loop corresponds to a SIMD 563 /// element. 564 virtual Value *getBroadcastInstrs(Value *V); 565 566 protected: 567 friend class LoopVectorizationPlanner; 568 569 /// A small list of PHINodes. 570 using PhiVector = SmallVector<PHINode *, 4>; 571 572 /// A type for scalarized values in the new loop. Each value from the 573 /// original loop, when scalarized, is represented by UF x VF scalar values 574 /// in the new unrolled loop, where UF is the unroll factor and VF is the 575 /// vectorization factor. 576 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 577 578 /// Set up the values of the IVs correctly when exiting the vector loop. 579 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 580 Value *CountRoundDown, Value *EndValue, 581 BasicBlock *MiddleBlock); 582 583 /// Create a new induction variable inside L. 584 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 585 Value *Step, Instruction *DL); 586 587 /// Handle all cross-iteration phis in the header. 588 void fixCrossIterationPHIs(VPTransformState &State); 589 590 /// Fix a first-order recurrence. This is the second phase of vectorizing 591 /// this phi node. 592 void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State); 593 594 /// Fix a reduction cross-iteration phi. This is the second phase of 595 /// vectorizing this phi node. 596 void fixReduction(PHINode *Phi, VPTransformState &State); 597 598 /// Clear NSW/NUW flags from reduction instructions if necessary. 599 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc, 600 VPTransformState &State); 601 602 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 603 /// means we need to add the appropriate incoming value from the middle 604 /// block as exiting edges from the scalar epilogue loop (if present) are 605 /// already in place, and we exit the vector loop exclusively to the middle 606 /// block. 607 void fixLCSSAPHIs(VPTransformState &State); 608 609 /// Iteratively sink the scalarized operands of a predicated instruction into 610 /// the block that was created for it. 611 void sinkScalarOperands(Instruction *PredInst); 612 613 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 614 /// represented as. 615 void truncateToMinimalBitwidths(VPTransformState &State); 616 617 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 618 /// to each vector element of Val. The sequence starts at StartIndex. 619 /// \p Opcode is relevant for FP induction variable. 620 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 621 Instruction::BinaryOps Opcode = 622 Instruction::BinaryOpsEnd); 623 624 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 625 /// variable on which to base the steps, \p Step is the size of the step, and 626 /// \p EntryVal is the value from the original loop that maps to the steps. 627 /// Note that \p EntryVal doesn't have to be an induction variable - it 628 /// can also be a truncate instruction. 629 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 630 const InductionDescriptor &ID, VPValue *Def, 631 VPValue *CastDef, VPTransformState &State); 632 633 /// Create a vector induction phi node based on an existing scalar one. \p 634 /// EntryVal is the value from the original loop that maps to the vector phi 635 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 636 /// truncate instruction, instead of widening the original IV, we widen a 637 /// version of the IV truncated to \p EntryVal's type. 638 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 639 Value *Step, Value *Start, 640 Instruction *EntryVal, VPValue *Def, 641 VPValue *CastDef, 642 VPTransformState &State); 643 644 /// Returns true if an instruction \p I should be scalarized instead of 645 /// vectorized for the chosen vectorization factor. 646 bool shouldScalarizeInstruction(Instruction *I) const; 647 648 /// Returns true if we should generate a scalar version of \p IV. 649 bool needsScalarInduction(Instruction *IV) const; 650 651 /// If there is a cast involved in the induction variable \p ID, which should 652 /// be ignored in the vectorized loop body, this function records the 653 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 654 /// cast. We had already proved that the casted Phi is equal to the uncasted 655 /// Phi in the vectorized loop (under a runtime guard), and therefore 656 /// there is no need to vectorize the cast - the same value can be used in the 657 /// vector loop for both the Phi and the cast. 658 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 659 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 660 /// 661 /// \p EntryVal is the value from the original loop that maps to the vector 662 /// phi node and is used to distinguish what is the IV currently being 663 /// processed - original one (if \p EntryVal is a phi corresponding to the 664 /// original IV) or the "newly-created" one based on the proof mentioned above 665 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 666 /// latter case \p EntryVal is a TruncInst and we must not record anything for 667 /// that IV, but it's error-prone to expect callers of this routine to care 668 /// about that, hence this explicit parameter. 669 void recordVectorLoopValueForInductionCast( 670 const InductionDescriptor &ID, const Instruction *EntryVal, 671 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 672 unsigned Part, unsigned Lane = UINT_MAX); 673 674 /// Generate a shuffle sequence that will reverse the vector Vec. 675 virtual Value *reverseVector(Value *Vec); 676 677 /// Returns (and creates if needed) the original loop trip count. 678 Value *getOrCreateTripCount(Loop *NewLoop); 679 680 /// Returns (and creates if needed) the trip count of the widened loop. 681 Value *getOrCreateVectorTripCount(Loop *NewLoop); 682 683 /// Returns a bitcasted value to the requested vector type. 684 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 685 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 686 const DataLayout &DL); 687 688 /// Emit a bypass check to see if the vector trip count is zero, including if 689 /// it overflows. 690 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 691 692 /// Emit a bypass check to see if all of the SCEV assumptions we've 693 /// had to make are correct. Returns the block containing the checks or 694 /// nullptr if no checks have been added. 695 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass); 696 697 /// Emit bypass checks to check any memory assumptions we may have made. 698 /// Returns the block containing the checks or nullptr if no checks have been 699 /// added. 700 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 701 702 /// Compute the transformed value of Index at offset StartValue using step 703 /// StepValue. 704 /// For integer induction, returns StartValue + Index * StepValue. 705 /// For pointer induction, returns StartValue[Index * StepValue]. 706 /// FIXME: The newly created binary instructions should contain nsw/nuw 707 /// flags, which can be found from the original scalar operations. 708 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 709 const DataLayout &DL, 710 const InductionDescriptor &ID) const; 711 712 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 713 /// vector loop preheader, middle block and scalar preheader. Also 714 /// allocate a loop object for the new vector loop and return it. 715 Loop *createVectorLoopSkeleton(StringRef Prefix); 716 717 /// Create new phi nodes for the induction variables to resume iteration count 718 /// in the scalar epilogue, from where the vectorized loop left off (given by 719 /// \p VectorTripCount). 720 /// In cases where the loop skeleton is more complicated (eg. epilogue 721 /// vectorization) and the resume values can come from an additional bypass 722 /// block, the \p AdditionalBypass pair provides information about the bypass 723 /// block and the end value on the edge from bypass to this loop. 724 void createInductionResumeValues( 725 Loop *L, Value *VectorTripCount, 726 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 727 728 /// Complete the loop skeleton by adding debug MDs, creating appropriate 729 /// conditional branches in the middle block, preparing the builder and 730 /// running the verifier. Take in the vector loop \p L as argument, and return 731 /// the preheader of the completed vector loop. 732 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 733 734 /// Add additional metadata to \p To that was not present on \p Orig. 735 /// 736 /// Currently this is used to add the noalias annotations based on the 737 /// inserted memchecks. Use this for instructions that are *cloned* into the 738 /// vector loop. 739 void addNewMetadata(Instruction *To, const Instruction *Orig); 740 741 /// Add metadata from one instruction to another. 742 /// 743 /// This includes both the original MDs from \p From and additional ones (\see 744 /// addNewMetadata). Use this for *newly created* instructions in the vector 745 /// loop. 746 void addMetadata(Instruction *To, Instruction *From); 747 748 /// Similar to the previous function but it adds the metadata to a 749 /// vector of instructions. 750 void addMetadata(ArrayRef<Value *> To, Instruction *From); 751 752 /// Allow subclasses to override and print debug traces before/after vplan 753 /// execution, when trace information is requested. 754 virtual void printDebugTracesAtStart(){}; 755 virtual void printDebugTracesAtEnd(){}; 756 757 /// The original loop. 758 Loop *OrigLoop; 759 760 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 761 /// dynamic knowledge to simplify SCEV expressions and converts them to a 762 /// more usable form. 763 PredicatedScalarEvolution &PSE; 764 765 /// Loop Info. 766 LoopInfo *LI; 767 768 /// Dominator Tree. 769 DominatorTree *DT; 770 771 /// Alias Analysis. 772 AAResults *AA; 773 774 /// Target Library Info. 775 const TargetLibraryInfo *TLI; 776 777 /// Target Transform Info. 778 const TargetTransformInfo *TTI; 779 780 /// Assumption Cache. 781 AssumptionCache *AC; 782 783 /// Interface to emit optimization remarks. 784 OptimizationRemarkEmitter *ORE; 785 786 /// LoopVersioning. It's only set up (non-null) if memchecks were 787 /// used. 788 /// 789 /// This is currently only used to add no-alias metadata based on the 790 /// memchecks. The actually versioning is performed manually. 791 std::unique_ptr<LoopVersioning> LVer; 792 793 /// The vectorization SIMD factor to use. Each vector will have this many 794 /// vector elements. 795 ElementCount VF; 796 797 /// The vectorization unroll factor to use. Each scalar is vectorized to this 798 /// many different vector instructions. 799 unsigned UF; 800 801 /// The builder that we use 802 IRBuilder<> Builder; 803 804 // --- Vectorization state --- 805 806 /// The vector-loop preheader. 807 BasicBlock *LoopVectorPreHeader; 808 809 /// The scalar-loop preheader. 810 BasicBlock *LoopScalarPreHeader; 811 812 /// Middle Block between the vector and the scalar. 813 BasicBlock *LoopMiddleBlock; 814 815 /// The (unique) ExitBlock of the scalar loop. Note that 816 /// there can be multiple exiting edges reaching this block. 817 BasicBlock *LoopExitBlock; 818 819 /// The vector loop body. 820 BasicBlock *LoopVectorBody; 821 822 /// The scalar loop body. 823 BasicBlock *LoopScalarBody; 824 825 /// A list of all bypass blocks. The first block is the entry of the loop. 826 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 827 828 /// The new Induction variable which was added to the new block. 829 PHINode *Induction = nullptr; 830 831 /// The induction variable of the old basic block. 832 PHINode *OldInduction = nullptr; 833 834 /// Store instructions that were predicated. 835 SmallVector<Instruction *, 4> PredicatedInstructions; 836 837 /// Trip count of the original loop. 838 Value *TripCount = nullptr; 839 840 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 841 Value *VectorTripCount = nullptr; 842 843 /// The legality analysis. 844 LoopVectorizationLegality *Legal; 845 846 /// The profitablity analysis. 847 LoopVectorizationCostModel *Cost; 848 849 // Record whether runtime checks are added. 850 bool AddedSafetyChecks = false; 851 852 // Holds the end values for each induction variable. We save the end values 853 // so we can later fix-up the external users of the induction variables. 854 DenseMap<PHINode *, Value *> IVEndValues; 855 856 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 857 // fixed up at the end of vector code generation. 858 SmallVector<PHINode *, 8> OrigPHIsToFix; 859 860 /// BFI and PSI are used to check for profile guided size optimizations. 861 BlockFrequencyInfo *BFI; 862 ProfileSummaryInfo *PSI; 863 864 // Whether this loop should be optimized for size based on profile guided size 865 // optimizatios. 866 bool OptForSizeBasedOnProfile; 867 868 /// Structure to hold information about generated runtime checks, responsible 869 /// for cleaning the checks, if vectorization turns out unprofitable. 870 GeneratedRTChecks &RTChecks; 871 }; 872 873 class InnerLoopUnroller : public InnerLoopVectorizer { 874 public: 875 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 876 LoopInfo *LI, DominatorTree *DT, 877 const TargetLibraryInfo *TLI, 878 const TargetTransformInfo *TTI, AssumptionCache *AC, 879 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 880 LoopVectorizationLegality *LVL, 881 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 882 ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) 883 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 884 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 885 BFI, PSI, Check) {} 886 887 private: 888 Value *getBroadcastInstrs(Value *V) override; 889 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 890 Instruction::BinaryOps Opcode = 891 Instruction::BinaryOpsEnd) override; 892 Value *reverseVector(Value *Vec) override; 893 }; 894 895 /// Encapsulate information regarding vectorization of a loop and its epilogue. 896 /// This information is meant to be updated and used across two stages of 897 /// epilogue vectorization. 898 struct EpilogueLoopVectorizationInfo { 899 ElementCount MainLoopVF = ElementCount::getFixed(0); 900 unsigned MainLoopUF = 0; 901 ElementCount EpilogueVF = ElementCount::getFixed(0); 902 unsigned EpilogueUF = 0; 903 BasicBlock *MainLoopIterationCountCheck = nullptr; 904 BasicBlock *EpilogueIterationCountCheck = nullptr; 905 BasicBlock *SCEVSafetyCheck = nullptr; 906 BasicBlock *MemSafetyCheck = nullptr; 907 Value *TripCount = nullptr; 908 Value *VectorTripCount = nullptr; 909 910 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 911 unsigned EUF) 912 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 913 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 914 assert(EUF == 1 && 915 "A high UF for the epilogue loop is likely not beneficial."); 916 } 917 }; 918 919 /// An extension of the inner loop vectorizer that creates a skeleton for a 920 /// vectorized loop that has its epilogue (residual) also vectorized. 921 /// The idea is to run the vplan on a given loop twice, firstly to setup the 922 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 923 /// from the first step and vectorize the epilogue. This is achieved by 924 /// deriving two concrete strategy classes from this base class and invoking 925 /// them in succession from the loop vectorizer planner. 926 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 927 public: 928 InnerLoopAndEpilogueVectorizer( 929 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 930 DominatorTree *DT, const TargetLibraryInfo *TLI, 931 const TargetTransformInfo *TTI, AssumptionCache *AC, 932 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 933 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 934 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 935 GeneratedRTChecks &Checks) 936 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 937 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI, 938 Checks), 939 EPI(EPI) {} 940 941 // Override this function to handle the more complex control flow around the 942 // three loops. 943 BasicBlock *createVectorizedLoopSkeleton() final override { 944 return createEpilogueVectorizedLoopSkeleton(); 945 } 946 947 /// The interface for creating a vectorized skeleton using one of two 948 /// different strategies, each corresponding to one execution of the vplan 949 /// as described above. 950 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 951 952 /// Holds and updates state information required to vectorize the main loop 953 /// and its epilogue in two separate passes. This setup helps us avoid 954 /// regenerating and recomputing runtime safety checks. It also helps us to 955 /// shorten the iteration-count-check path length for the cases where the 956 /// iteration count of the loop is so small that the main vector loop is 957 /// completely skipped. 958 EpilogueLoopVectorizationInfo &EPI; 959 }; 960 961 /// A specialized derived class of inner loop vectorizer that performs 962 /// vectorization of *main* loops in the process of vectorizing loops and their 963 /// epilogues. 964 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 965 public: 966 EpilogueVectorizerMainLoop( 967 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 968 DominatorTree *DT, const TargetLibraryInfo *TLI, 969 const TargetTransformInfo *TTI, AssumptionCache *AC, 970 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 971 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 972 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 973 GeneratedRTChecks &Check) 974 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 975 EPI, LVL, CM, BFI, PSI, Check) {} 976 /// Implements the interface for creating a vectorized skeleton using the 977 /// *main loop* strategy (ie the first pass of vplan execution). 978 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 979 980 protected: 981 /// Emits an iteration count bypass check once for the main loop (when \p 982 /// ForEpilogue is false) and once for the epilogue loop (when \p 983 /// ForEpilogue is true). 984 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 985 bool ForEpilogue); 986 void printDebugTracesAtStart() override; 987 void printDebugTracesAtEnd() override; 988 }; 989 990 // A specialized derived class of inner loop vectorizer that performs 991 // vectorization of *epilogue* loops in the process of vectorizing loops and 992 // their epilogues. 993 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 994 public: 995 EpilogueVectorizerEpilogueLoop( 996 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 997 DominatorTree *DT, const TargetLibraryInfo *TLI, 998 const TargetTransformInfo *TTI, AssumptionCache *AC, 999 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1000 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1001 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 1002 GeneratedRTChecks &Checks) 1003 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1004 EPI, LVL, CM, BFI, PSI, Checks) {} 1005 /// Implements the interface for creating a vectorized skeleton using the 1006 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1007 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1008 1009 protected: 1010 /// Emits an iteration count bypass check after the main vector loop has 1011 /// finished to see if there are any iterations left to execute by either 1012 /// the vector epilogue or the scalar epilogue. 1013 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1014 BasicBlock *Bypass, 1015 BasicBlock *Insert); 1016 void printDebugTracesAtStart() override; 1017 void printDebugTracesAtEnd() override; 1018 }; 1019 } // end namespace llvm 1020 1021 /// Look for a meaningful debug location on the instruction or it's 1022 /// operands. 1023 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1024 if (!I) 1025 return I; 1026 1027 DebugLoc Empty; 1028 if (I->getDebugLoc() != Empty) 1029 return I; 1030 1031 for (Use &Op : I->operands()) { 1032 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1033 if (OpInst->getDebugLoc() != Empty) 1034 return OpInst; 1035 } 1036 1037 return I; 1038 } 1039 1040 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 1041 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 1042 const DILocation *DIL = Inst->getDebugLoc(); 1043 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1044 !isa<DbgInfoIntrinsic>(Inst)) { 1045 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1046 auto NewDIL = 1047 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1048 if (NewDIL) 1049 B.SetCurrentDebugLocation(NewDIL.getValue()); 1050 else 1051 LLVM_DEBUG(dbgs() 1052 << "Failed to create new discriminator: " 1053 << DIL->getFilename() << " Line: " << DIL->getLine()); 1054 } 1055 else 1056 B.SetCurrentDebugLocation(DIL); 1057 } else 1058 B.SetCurrentDebugLocation(DebugLoc()); 1059 } 1060 1061 /// Write a record \p DebugMsg about vectorization failure to the debug 1062 /// output stream. If \p I is passed, it is an instruction that prevents 1063 /// vectorization. 1064 #ifndef NDEBUG 1065 static void debugVectorizationFailure(const StringRef DebugMsg, 1066 Instruction *I) { 1067 dbgs() << "LV: Not vectorizing: " << DebugMsg; 1068 if (I != nullptr) 1069 dbgs() << " " << *I; 1070 else 1071 dbgs() << '.'; 1072 dbgs() << '\n'; 1073 } 1074 #endif 1075 1076 /// Create an analysis remark that explains why vectorization failed 1077 /// 1078 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1079 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1080 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1081 /// the location of the remark. \return the remark object that can be 1082 /// streamed to. 1083 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1084 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1085 Value *CodeRegion = TheLoop->getHeader(); 1086 DebugLoc DL = TheLoop->getStartLoc(); 1087 1088 if (I) { 1089 CodeRegion = I->getParent(); 1090 // If there is no debug location attached to the instruction, revert back to 1091 // using the loop's. 1092 if (I->getDebugLoc()) 1093 DL = I->getDebugLoc(); 1094 } 1095 1096 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 1097 R << "loop not vectorized: "; 1098 return R; 1099 } 1100 1101 /// Return a value for Step multiplied by VF. 1102 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1103 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1104 Constant *StepVal = ConstantInt::get( 1105 Step->getType(), 1106 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1107 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1108 } 1109 1110 namespace llvm { 1111 1112 /// Return the runtime value for VF. 1113 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) { 1114 Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); 1115 return VF.isScalable() ? B.CreateVScale(EC) : EC; 1116 } 1117 1118 void reportVectorizationFailure(const StringRef DebugMsg, 1119 const StringRef OREMsg, const StringRef ORETag, 1120 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 1121 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 1122 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1123 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 1124 ORETag, TheLoop, I) << OREMsg); 1125 } 1126 1127 } // end namespace llvm 1128 1129 #ifndef NDEBUG 1130 /// \return string containing a file name and a line # for the given loop. 1131 static std::string getDebugLocString(const Loop *L) { 1132 std::string Result; 1133 if (L) { 1134 raw_string_ostream OS(Result); 1135 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1136 LoopDbgLoc.print(OS); 1137 else 1138 // Just print the module name. 1139 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1140 OS.flush(); 1141 } 1142 return Result; 1143 } 1144 #endif 1145 1146 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1147 const Instruction *Orig) { 1148 // If the loop was versioned with memchecks, add the corresponding no-alias 1149 // metadata. 1150 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1151 LVer->annotateInstWithNoAlias(To, Orig); 1152 } 1153 1154 void InnerLoopVectorizer::addMetadata(Instruction *To, 1155 Instruction *From) { 1156 propagateMetadata(To, From); 1157 addNewMetadata(To, From); 1158 } 1159 1160 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1161 Instruction *From) { 1162 for (Value *V : To) { 1163 if (Instruction *I = dyn_cast<Instruction>(V)) 1164 addMetadata(I, From); 1165 } 1166 } 1167 1168 namespace llvm { 1169 1170 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1171 // lowered. 1172 enum ScalarEpilogueLowering { 1173 1174 // The default: allowing scalar epilogues. 1175 CM_ScalarEpilogueAllowed, 1176 1177 // Vectorization with OptForSize: don't allow epilogues. 1178 CM_ScalarEpilogueNotAllowedOptSize, 1179 1180 // A special case of vectorisation with OptForSize: loops with a very small 1181 // trip count are considered for vectorization under OptForSize, thereby 1182 // making sure the cost of their loop body is dominant, free of runtime 1183 // guards and scalar iteration overheads. 1184 CM_ScalarEpilogueNotAllowedLowTripLoop, 1185 1186 // Loop hint predicate indicating an epilogue is undesired. 1187 CM_ScalarEpilogueNotNeededUsePredicate, 1188 1189 // Directive indicating we must either tail fold or not vectorize 1190 CM_ScalarEpilogueNotAllowedUsePredicate 1191 }; 1192 1193 /// LoopVectorizationCostModel - estimates the expected speedups due to 1194 /// vectorization. 1195 /// In many cases vectorization is not profitable. This can happen because of 1196 /// a number of reasons. In this class we mainly attempt to predict the 1197 /// expected speedup/slowdowns due to the supported instruction set. We use the 1198 /// TargetTransformInfo to query the different backends for the cost of 1199 /// different operations. 1200 class LoopVectorizationCostModel { 1201 public: 1202 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1203 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1204 LoopVectorizationLegality *Legal, 1205 const TargetTransformInfo &TTI, 1206 const TargetLibraryInfo *TLI, DemandedBits *DB, 1207 AssumptionCache *AC, 1208 OptimizationRemarkEmitter *ORE, const Function *F, 1209 const LoopVectorizeHints *Hints, 1210 InterleavedAccessInfo &IAI) 1211 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1212 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1213 Hints(Hints), InterleaveInfo(IAI) {} 1214 1215 /// \return An upper bound for the vectorization factor, or None if 1216 /// vectorization and interleaving should be avoided up front. 1217 Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC); 1218 1219 /// \return True if runtime checks are required for vectorization, and false 1220 /// otherwise. 1221 bool runtimeChecksRequired(); 1222 1223 /// \return The most profitable vectorization factor and the cost of that VF. 1224 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1225 /// then this vectorization factor will be selected if vectorization is 1226 /// possible. 1227 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1228 VectorizationFactor 1229 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1230 const LoopVectorizationPlanner &LVP); 1231 1232 /// Setup cost-based decisions for user vectorization factor. 1233 void selectUserVectorizationFactor(ElementCount UserVF) { 1234 collectUniformsAndScalars(UserVF); 1235 collectInstsToScalarize(UserVF); 1236 } 1237 1238 /// \return The size (in bits) of the smallest and widest types in the code 1239 /// that needs to be vectorized. We ignore values that remain scalar such as 1240 /// 64 bit loop indices. 1241 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1242 1243 /// \return The desired interleave count. 1244 /// If interleave count has been specified by metadata it will be returned. 1245 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1246 /// are the selected vectorization factor and the cost of the selected VF. 1247 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1248 1249 /// Memory access instruction may be vectorized in more than one way. 1250 /// Form of instruction after vectorization depends on cost. 1251 /// This function takes cost-based decisions for Load/Store instructions 1252 /// and collects them in a map. This decisions map is used for building 1253 /// the lists of loop-uniform and loop-scalar instructions. 1254 /// The calculated cost is saved with widening decision in order to 1255 /// avoid redundant calculations. 1256 void setCostBasedWideningDecision(ElementCount VF); 1257 1258 /// A struct that represents some properties of the register usage 1259 /// of a loop. 1260 struct RegisterUsage { 1261 /// Holds the number of loop invariant values that are used in the loop. 1262 /// The key is ClassID of target-provided register class. 1263 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1264 /// Holds the maximum number of concurrent live intervals in the loop. 1265 /// The key is ClassID of target-provided register class. 1266 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1267 }; 1268 1269 /// \return Returns information about the register usages of the loop for the 1270 /// given vectorization factors. 1271 SmallVector<RegisterUsage, 8> 1272 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1273 1274 /// Collect values we want to ignore in the cost model. 1275 void collectValuesToIgnore(); 1276 1277 /// Split reductions into those that happen in the loop, and those that happen 1278 /// outside. In loop reductions are collected into InLoopReductionChains. 1279 void collectInLoopReductions(); 1280 1281 /// \returns The smallest bitwidth each instruction can be represented with. 1282 /// The vector equivalents of these instructions should be truncated to this 1283 /// type. 1284 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1285 return MinBWs; 1286 } 1287 1288 /// \returns True if it is more profitable to scalarize instruction \p I for 1289 /// vectorization factor \p VF. 1290 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1291 assert(VF.isVector() && 1292 "Profitable to scalarize relevant only for VF > 1."); 1293 1294 // Cost model is not run in the VPlan-native path - return conservative 1295 // result until this changes. 1296 if (EnableVPlanNativePath) 1297 return false; 1298 1299 auto Scalars = InstsToScalarize.find(VF); 1300 assert(Scalars != InstsToScalarize.end() && 1301 "VF not yet analyzed for scalarization profitability"); 1302 return Scalars->second.find(I) != Scalars->second.end(); 1303 } 1304 1305 /// Returns true if \p I is known to be uniform after vectorization. 1306 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1307 if (VF.isScalar()) 1308 return true; 1309 1310 // Cost model is not run in the VPlan-native path - return conservative 1311 // result until this changes. 1312 if (EnableVPlanNativePath) 1313 return false; 1314 1315 auto UniformsPerVF = Uniforms.find(VF); 1316 assert(UniformsPerVF != Uniforms.end() && 1317 "VF not yet analyzed for uniformity"); 1318 return UniformsPerVF->second.count(I); 1319 } 1320 1321 /// Returns true if \p I is known to be scalar after vectorization. 1322 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1323 if (VF.isScalar()) 1324 return true; 1325 1326 // Cost model is not run in the VPlan-native path - return conservative 1327 // result until this changes. 1328 if (EnableVPlanNativePath) 1329 return false; 1330 1331 auto ScalarsPerVF = Scalars.find(VF); 1332 assert(ScalarsPerVF != Scalars.end() && 1333 "Scalar values are not calculated for VF"); 1334 return ScalarsPerVF->second.count(I); 1335 } 1336 1337 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1338 /// for vectorization factor \p VF. 1339 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1340 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1341 !isProfitableToScalarize(I, VF) && 1342 !isScalarAfterVectorization(I, VF); 1343 } 1344 1345 /// Decision that was taken during cost calculation for memory instruction. 1346 enum InstWidening { 1347 CM_Unknown, 1348 CM_Widen, // For consecutive accesses with stride +1. 1349 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1350 CM_Interleave, 1351 CM_GatherScatter, 1352 CM_Scalarize 1353 }; 1354 1355 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1356 /// instruction \p I and vector width \p VF. 1357 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1358 InstructionCost Cost) { 1359 assert(VF.isVector() && "Expected VF >=2"); 1360 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1361 } 1362 1363 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1364 /// interleaving group \p Grp and vector width \p VF. 1365 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1366 ElementCount VF, InstWidening W, 1367 InstructionCost Cost) { 1368 assert(VF.isVector() && "Expected VF >=2"); 1369 /// Broadcast this decicion to all instructions inside the group. 1370 /// But the cost will be assigned to one instruction only. 1371 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1372 if (auto *I = Grp->getMember(i)) { 1373 if (Grp->getInsertPos() == I) 1374 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1375 else 1376 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1377 } 1378 } 1379 } 1380 1381 /// Return the cost model decision for the given instruction \p I and vector 1382 /// width \p VF. Return CM_Unknown if this instruction did not pass 1383 /// through the cost modeling. 1384 InstWidening getWideningDecision(Instruction *I, ElementCount VF) { 1385 assert(VF.isVector() && "Expected VF to be a vector VF"); 1386 // Cost model is not run in the VPlan-native path - return conservative 1387 // result until this changes. 1388 if (EnableVPlanNativePath) 1389 return CM_GatherScatter; 1390 1391 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1392 auto Itr = WideningDecisions.find(InstOnVF); 1393 if (Itr == WideningDecisions.end()) 1394 return CM_Unknown; 1395 return Itr->second.first; 1396 } 1397 1398 /// Return the vectorization cost for the given instruction \p I and vector 1399 /// width \p VF. 1400 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1401 assert(VF.isVector() && "Expected VF >=2"); 1402 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1403 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1404 "The cost is not calculated"); 1405 return WideningDecisions[InstOnVF].second; 1406 } 1407 1408 /// Return True if instruction \p I is an optimizable truncate whose operand 1409 /// is an induction variable. Such a truncate will be removed by adding a new 1410 /// induction variable with the destination type. 1411 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1412 // If the instruction is not a truncate, return false. 1413 auto *Trunc = dyn_cast<TruncInst>(I); 1414 if (!Trunc) 1415 return false; 1416 1417 // Get the source and destination types of the truncate. 1418 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1419 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1420 1421 // If the truncate is free for the given types, return false. Replacing a 1422 // free truncate with an induction variable would add an induction variable 1423 // update instruction to each iteration of the loop. We exclude from this 1424 // check the primary induction variable since it will need an update 1425 // instruction regardless. 1426 Value *Op = Trunc->getOperand(0); 1427 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1428 return false; 1429 1430 // If the truncated value is not an induction variable, return false. 1431 return Legal->isInductionPhi(Op); 1432 } 1433 1434 /// Collects the instructions to scalarize for each predicated instruction in 1435 /// the loop. 1436 void collectInstsToScalarize(ElementCount VF); 1437 1438 /// Collect Uniform and Scalar values for the given \p VF. 1439 /// The sets depend on CM decision for Load/Store instructions 1440 /// that may be vectorized as interleave, gather-scatter or scalarized. 1441 void collectUniformsAndScalars(ElementCount VF) { 1442 // Do the analysis once. 1443 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1444 return; 1445 setCostBasedWideningDecision(VF); 1446 collectLoopUniforms(VF); 1447 collectLoopScalars(VF); 1448 } 1449 1450 /// Returns true if the target machine supports masked store operation 1451 /// for the given \p DataType and kind of access to \p Ptr. 1452 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1453 return Legal->isConsecutivePtr(Ptr) && 1454 TTI.isLegalMaskedStore(DataType, Alignment); 1455 } 1456 1457 /// Returns true if the target machine supports masked load operation 1458 /// for the given \p DataType and kind of access to \p Ptr. 1459 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1460 return Legal->isConsecutivePtr(Ptr) && 1461 TTI.isLegalMaskedLoad(DataType, Alignment); 1462 } 1463 1464 /// Returns true if the target machine supports masked scatter operation 1465 /// for the given \p DataType. 1466 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1467 return TTI.isLegalMaskedScatter(DataType, Alignment); 1468 } 1469 1470 /// Returns true if the target machine supports masked gather operation 1471 /// for the given \p DataType. 1472 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1473 return TTI.isLegalMaskedGather(DataType, Alignment); 1474 } 1475 1476 /// Returns true if the target machine can represent \p V as a masked gather 1477 /// or scatter operation. 1478 bool isLegalGatherOrScatter(Value *V) { 1479 bool LI = isa<LoadInst>(V); 1480 bool SI = isa<StoreInst>(V); 1481 if (!LI && !SI) 1482 return false; 1483 auto *Ty = getMemInstValueType(V); 1484 Align Align = getLoadStoreAlignment(V); 1485 return (LI && isLegalMaskedGather(Ty, Align)) || 1486 (SI && isLegalMaskedScatter(Ty, Align)); 1487 } 1488 1489 /// Returns true if the target machine supports all of the reduction 1490 /// variables found for the given VF. 1491 bool canVectorizeReductions(ElementCount VF) { 1492 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1493 RecurrenceDescriptor RdxDesc = Reduction.second; 1494 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1495 })); 1496 } 1497 1498 /// Returns true if \p I is an instruction that will be scalarized with 1499 /// predication. Such instructions include conditional stores and 1500 /// instructions that may divide by zero. 1501 /// If a non-zero VF has been calculated, we check if I will be scalarized 1502 /// predication for that VF. 1503 bool isScalarWithPredication(Instruction *I, 1504 ElementCount VF = ElementCount::getFixed(1)); 1505 1506 // Returns true if \p I is an instruction that will be predicated either 1507 // through scalar predication or masked load/store or masked gather/scatter. 1508 // Superset of instructions that return true for isScalarWithPredication. 1509 bool isPredicatedInst(Instruction *I) { 1510 if (!blockNeedsPredication(I->getParent())) 1511 return false; 1512 // Loads and stores that need some form of masked operation are predicated 1513 // instructions. 1514 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1515 return Legal->isMaskRequired(I); 1516 return isScalarWithPredication(I); 1517 } 1518 1519 /// Returns true if \p I is a memory instruction with consecutive memory 1520 /// access that can be widened. 1521 bool 1522 memoryInstructionCanBeWidened(Instruction *I, 1523 ElementCount VF = ElementCount::getFixed(1)); 1524 1525 /// Returns true if \p I is a memory instruction in an interleaved-group 1526 /// of memory accesses that can be vectorized with wide vector loads/stores 1527 /// and shuffles. 1528 bool 1529 interleavedAccessCanBeWidened(Instruction *I, 1530 ElementCount VF = ElementCount::getFixed(1)); 1531 1532 /// Check if \p Instr belongs to any interleaved access group. 1533 bool isAccessInterleaved(Instruction *Instr) { 1534 return InterleaveInfo.isInterleaved(Instr); 1535 } 1536 1537 /// Get the interleaved access group that \p Instr belongs to. 1538 const InterleaveGroup<Instruction> * 1539 getInterleavedAccessGroup(Instruction *Instr) { 1540 return InterleaveInfo.getInterleaveGroup(Instr); 1541 } 1542 1543 /// Returns true if we're required to use a scalar epilogue for at least 1544 /// the final iteration of the original loop. 1545 bool requiresScalarEpilogue() const { 1546 if (!isScalarEpilogueAllowed()) 1547 return false; 1548 // If we might exit from anywhere but the latch, must run the exiting 1549 // iteration in scalar form. 1550 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1551 return true; 1552 return InterleaveInfo.requiresScalarEpilogue(); 1553 } 1554 1555 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1556 /// loop hint annotation. 1557 bool isScalarEpilogueAllowed() const { 1558 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1559 } 1560 1561 /// Returns true if all loop blocks should be masked to fold tail loop. 1562 bool foldTailByMasking() const { return FoldTailByMasking; } 1563 1564 bool blockNeedsPredication(BasicBlock *BB) { 1565 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1566 } 1567 1568 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1569 /// nodes to the chain of instructions representing the reductions. Uses a 1570 /// MapVector to ensure deterministic iteration order. 1571 using ReductionChainMap = 1572 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1573 1574 /// Return the chain of instructions representing an inloop reduction. 1575 const ReductionChainMap &getInLoopReductionChains() const { 1576 return InLoopReductionChains; 1577 } 1578 1579 /// Returns true if the Phi is part of an inloop reduction. 1580 bool isInLoopReduction(PHINode *Phi) const { 1581 return InLoopReductionChains.count(Phi); 1582 } 1583 1584 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1585 /// with factor VF. Return the cost of the instruction, including 1586 /// scalarization overhead if it's needed. 1587 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF); 1588 1589 /// Estimate cost of a call instruction CI if it were vectorized with factor 1590 /// VF. Return the cost of the instruction, including scalarization overhead 1591 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1592 /// scalarized - 1593 /// i.e. either vector version isn't available, or is too expensive. 1594 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1595 bool &NeedToScalarize); 1596 1597 /// Invalidates decisions already taken by the cost model. 1598 void invalidateCostModelingDecisions() { 1599 WideningDecisions.clear(); 1600 Uniforms.clear(); 1601 Scalars.clear(); 1602 } 1603 1604 private: 1605 unsigned NumPredStores = 0; 1606 1607 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1608 /// than zero. One is returned if vectorization should best be avoided due 1609 /// to cost. 1610 ElementCount computeFeasibleMaxVF(unsigned ConstTripCount, 1611 ElementCount UserVF); 1612 1613 /// The vectorization cost is a combination of the cost itself and a boolean 1614 /// indicating whether any of the contributing operations will actually 1615 /// operate on 1616 /// vector values after type legalization in the backend. If this latter value 1617 /// is 1618 /// false, then all operations will be scalarized (i.e. no vectorization has 1619 /// actually taken place). 1620 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1621 1622 /// Returns the expected execution cost. The unit of the cost does 1623 /// not matter because we use the 'cost' units to compare different 1624 /// vector widths. The cost that is returned is *not* normalized by 1625 /// the factor width. 1626 VectorizationCostTy expectedCost(ElementCount VF); 1627 1628 /// Returns the execution time cost of an instruction for a given vector 1629 /// width. Vector width of one means scalar. 1630 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1631 1632 /// The cost-computation logic from getInstructionCost which provides 1633 /// the vector type as an output parameter. 1634 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1635 Type *&VectorTy); 1636 1637 /// Return the cost of instructions in an inloop reduction pattern, if I is 1638 /// part of that pattern. 1639 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1640 Type *VectorTy, 1641 TTI::TargetCostKind CostKind); 1642 1643 /// Calculate vectorization cost of memory instruction \p I. 1644 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1645 1646 /// The cost computation for scalarized memory instruction. 1647 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1648 1649 /// The cost computation for interleaving group of memory instructions. 1650 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1651 1652 /// The cost computation for Gather/Scatter instruction. 1653 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1654 1655 /// The cost computation for widening instruction \p I with consecutive 1656 /// memory access. 1657 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1658 1659 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1660 /// Load: scalar load + broadcast. 1661 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1662 /// element) 1663 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1664 1665 /// Estimate the overhead of scalarizing an instruction. This is a 1666 /// convenience wrapper for the type-based getScalarizationOverhead API. 1667 InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF); 1668 1669 /// Returns whether the instruction is a load or store and will be a emitted 1670 /// as a vector operation. 1671 bool isConsecutiveLoadOrStore(Instruction *I); 1672 1673 /// Returns true if an artificially high cost for emulated masked memrefs 1674 /// should be used. 1675 bool useEmulatedMaskMemRefHack(Instruction *I); 1676 1677 /// Map of scalar integer values to the smallest bitwidth they can be legally 1678 /// represented as. The vector equivalents of these values should be truncated 1679 /// to this type. 1680 MapVector<Instruction *, uint64_t> MinBWs; 1681 1682 /// A type representing the costs for instructions if they were to be 1683 /// scalarized rather than vectorized. The entries are Instruction-Cost 1684 /// pairs. 1685 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1686 1687 /// A set containing all BasicBlocks that are known to present after 1688 /// vectorization as a predicated block. 1689 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1690 1691 /// Records whether it is allowed to have the original scalar loop execute at 1692 /// least once. This may be needed as a fallback loop in case runtime 1693 /// aliasing/dependence checks fail, or to handle the tail/remainder 1694 /// iterations when the trip count is unknown or doesn't divide by the VF, 1695 /// or as a peel-loop to handle gaps in interleave-groups. 1696 /// Under optsize and when the trip count is very small we don't allow any 1697 /// iterations to execute in the scalar loop. 1698 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1699 1700 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1701 bool FoldTailByMasking = false; 1702 1703 /// A map holding scalar costs for different vectorization factors. The 1704 /// presence of a cost for an instruction in the mapping indicates that the 1705 /// instruction will be scalarized when vectorizing with the associated 1706 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1707 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1708 1709 /// Holds the instructions known to be uniform after vectorization. 1710 /// The data is collected per VF. 1711 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1712 1713 /// Holds the instructions known to be scalar after vectorization. 1714 /// The data is collected per VF. 1715 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1716 1717 /// Holds the instructions (address computations) that are forced to be 1718 /// scalarized. 1719 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1720 1721 /// PHINodes of the reductions that should be expanded in-loop along with 1722 /// their associated chains of reduction operations, in program order from top 1723 /// (PHI) to bottom 1724 ReductionChainMap InLoopReductionChains; 1725 1726 /// A Map of inloop reduction operations and their immediate chain operand. 1727 /// FIXME: This can be removed once reductions can be costed correctly in 1728 /// vplan. This was added to allow quick lookup to the inloop operations, 1729 /// without having to loop through InLoopReductionChains. 1730 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1731 1732 /// Returns the expected difference in cost from scalarizing the expression 1733 /// feeding a predicated instruction \p PredInst. The instructions to 1734 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1735 /// non-negative return value implies the expression will be scalarized. 1736 /// Currently, only single-use chains are considered for scalarization. 1737 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1738 ElementCount VF); 1739 1740 /// Collect the instructions that are uniform after vectorization. An 1741 /// instruction is uniform if we represent it with a single scalar value in 1742 /// the vectorized loop corresponding to each vector iteration. Examples of 1743 /// uniform instructions include pointer operands of consecutive or 1744 /// interleaved memory accesses. Note that although uniformity implies an 1745 /// instruction will be scalar, the reverse is not true. In general, a 1746 /// scalarized instruction will be represented by VF scalar values in the 1747 /// vectorized loop, each corresponding to an iteration of the original 1748 /// scalar loop. 1749 void collectLoopUniforms(ElementCount VF); 1750 1751 /// Collect the instructions that are scalar after vectorization. An 1752 /// instruction is scalar if it is known to be uniform or will be scalarized 1753 /// during vectorization. Non-uniform scalarized instructions will be 1754 /// represented by VF values in the vectorized loop, each corresponding to an 1755 /// iteration of the original scalar loop. 1756 void collectLoopScalars(ElementCount VF); 1757 1758 /// Keeps cost model vectorization decision and cost for instructions. 1759 /// Right now it is used for memory instructions only. 1760 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1761 std::pair<InstWidening, InstructionCost>>; 1762 1763 DecisionList WideningDecisions; 1764 1765 /// Returns true if \p V is expected to be vectorized and it needs to be 1766 /// extracted. 1767 bool needsExtract(Value *V, ElementCount VF) const { 1768 Instruction *I = dyn_cast<Instruction>(V); 1769 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1770 TheLoop->isLoopInvariant(I)) 1771 return false; 1772 1773 // Assume we can vectorize V (and hence we need extraction) if the 1774 // scalars are not computed yet. This can happen, because it is called 1775 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1776 // the scalars are collected. That should be a safe assumption in most 1777 // cases, because we check if the operands have vectorizable types 1778 // beforehand in LoopVectorizationLegality. 1779 return Scalars.find(VF) == Scalars.end() || 1780 !isScalarAfterVectorization(I, VF); 1781 }; 1782 1783 /// Returns a range containing only operands needing to be extracted. 1784 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1785 ElementCount VF) { 1786 return SmallVector<Value *, 4>(make_filter_range( 1787 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1788 } 1789 1790 /// Determines if we have the infrastructure to vectorize loop \p L and its 1791 /// epilogue, assuming the main loop is vectorized by \p VF. 1792 bool isCandidateForEpilogueVectorization(const Loop &L, 1793 const ElementCount VF) const; 1794 1795 /// Returns true if epilogue vectorization is considered profitable, and 1796 /// false otherwise. 1797 /// \p VF is the vectorization factor chosen for the original loop. 1798 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1799 1800 public: 1801 /// The loop that we evaluate. 1802 Loop *TheLoop; 1803 1804 /// Predicated scalar evolution analysis. 1805 PredicatedScalarEvolution &PSE; 1806 1807 /// Loop Info analysis. 1808 LoopInfo *LI; 1809 1810 /// Vectorization legality. 1811 LoopVectorizationLegality *Legal; 1812 1813 /// Vector target information. 1814 const TargetTransformInfo &TTI; 1815 1816 /// Target Library Info. 1817 const TargetLibraryInfo *TLI; 1818 1819 /// Demanded bits analysis. 1820 DemandedBits *DB; 1821 1822 /// Assumption cache. 1823 AssumptionCache *AC; 1824 1825 /// Interface to emit optimization remarks. 1826 OptimizationRemarkEmitter *ORE; 1827 1828 const Function *TheFunction; 1829 1830 /// Loop Vectorize Hint. 1831 const LoopVectorizeHints *Hints; 1832 1833 /// The interleave access information contains groups of interleaved accesses 1834 /// with the same stride and close to each other. 1835 InterleavedAccessInfo &InterleaveInfo; 1836 1837 /// Values to ignore in the cost model. 1838 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1839 1840 /// Values to ignore in the cost model when VF > 1. 1841 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1842 1843 /// Profitable vector factors. 1844 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1845 }; 1846 } // end namespace llvm 1847 1848 /// Helper struct to manage generating runtime checks for vectorization. 1849 /// 1850 /// The runtime checks are created up-front in temporary blocks to allow better 1851 /// estimating the cost and un-linked from the existing IR. After deciding to 1852 /// vectorize, the checks are moved back. If deciding not to vectorize, the 1853 /// temporary blocks are completely removed. 1854 class GeneratedRTChecks { 1855 /// Basic block which contains the generated SCEV checks, if any. 1856 BasicBlock *SCEVCheckBlock = nullptr; 1857 1858 /// The value representing the result of the generated SCEV checks. If it is 1859 /// nullptr, either no SCEV checks have been generated or they have been used. 1860 Value *SCEVCheckCond = nullptr; 1861 1862 /// Basic block which contains the generated memory runtime checks, if any. 1863 BasicBlock *MemCheckBlock = nullptr; 1864 1865 /// The value representing the result of the generated memory runtime checks. 1866 /// If it is nullptr, either no memory runtime checks have been generated or 1867 /// they have been used. 1868 Instruction *MemRuntimeCheckCond = nullptr; 1869 1870 DominatorTree *DT; 1871 LoopInfo *LI; 1872 1873 SCEVExpander SCEVExp; 1874 SCEVExpander MemCheckExp; 1875 1876 public: 1877 GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, 1878 const DataLayout &DL) 1879 : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"), 1880 MemCheckExp(SE, DL, "scev.check") {} 1881 1882 /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can 1883 /// accurately estimate the cost of the runtime checks. The blocks are 1884 /// un-linked from the IR and is added back during vector code generation. If 1885 /// there is no vector code generation, the check blocks are removed 1886 /// completely. 1887 void Create(Loop *L, const LoopAccessInfo &LAI, 1888 const SCEVUnionPredicate &UnionPred) { 1889 1890 BasicBlock *LoopHeader = L->getHeader(); 1891 BasicBlock *Preheader = L->getLoopPreheader(); 1892 1893 // Use SplitBlock to create blocks for SCEV & memory runtime checks to 1894 // ensure the blocks are properly added to LoopInfo & DominatorTree. Those 1895 // may be used by SCEVExpander. The blocks will be un-linked from their 1896 // predecessors and removed from LI & DT at the end of the function. 1897 if (!UnionPred.isAlwaysTrue()) { 1898 SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, 1899 nullptr, "vector.scevcheck"); 1900 1901 SCEVCheckCond = SCEVExp.expandCodeForPredicate( 1902 &UnionPred, SCEVCheckBlock->getTerminator()); 1903 } 1904 1905 const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); 1906 if (RtPtrChecking.Need) { 1907 auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; 1908 MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, 1909 "vector.memcheck"); 1910 1911 std::tie(std::ignore, MemRuntimeCheckCond) = 1912 addRuntimeChecks(MemCheckBlock->getTerminator(), L, 1913 RtPtrChecking.getChecks(), MemCheckExp); 1914 assert(MemRuntimeCheckCond && 1915 "no RT checks generated although RtPtrChecking " 1916 "claimed checks are required"); 1917 } 1918 1919 if (!MemCheckBlock && !SCEVCheckBlock) 1920 return; 1921 1922 // Unhook the temporary block with the checks, update various places 1923 // accordingly. 1924 if (SCEVCheckBlock) 1925 SCEVCheckBlock->replaceAllUsesWith(Preheader); 1926 if (MemCheckBlock) 1927 MemCheckBlock->replaceAllUsesWith(Preheader); 1928 1929 if (SCEVCheckBlock) { 1930 SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1931 new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); 1932 Preheader->getTerminator()->eraseFromParent(); 1933 } 1934 if (MemCheckBlock) { 1935 MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); 1936 new UnreachableInst(Preheader->getContext(), MemCheckBlock); 1937 Preheader->getTerminator()->eraseFromParent(); 1938 } 1939 1940 DT->changeImmediateDominator(LoopHeader, Preheader); 1941 if (MemCheckBlock) { 1942 DT->eraseNode(MemCheckBlock); 1943 LI->removeBlock(MemCheckBlock); 1944 } 1945 if (SCEVCheckBlock) { 1946 DT->eraseNode(SCEVCheckBlock); 1947 LI->removeBlock(SCEVCheckBlock); 1948 } 1949 } 1950 1951 /// Remove the created SCEV & memory runtime check blocks & instructions, if 1952 /// unused. 1953 ~GeneratedRTChecks() { 1954 SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT); 1955 SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT); 1956 if (!SCEVCheckCond) 1957 SCEVCleaner.markResultUsed(); 1958 1959 if (!MemRuntimeCheckCond) 1960 MemCheckCleaner.markResultUsed(); 1961 1962 if (MemRuntimeCheckCond) { 1963 auto &SE = *MemCheckExp.getSE(); 1964 // Memory runtime check generation creates compares that use expanded 1965 // values. Remove them before running the SCEVExpanderCleaners. 1966 for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { 1967 if (MemCheckExp.isInsertedInstruction(&I)) 1968 continue; 1969 SE.forgetValue(&I); 1970 SE.eraseValueFromMap(&I); 1971 I.eraseFromParent(); 1972 } 1973 } 1974 MemCheckCleaner.cleanup(); 1975 SCEVCleaner.cleanup(); 1976 1977 if (SCEVCheckCond) 1978 SCEVCheckBlock->eraseFromParent(); 1979 if (MemRuntimeCheckCond) 1980 MemCheckBlock->eraseFromParent(); 1981 } 1982 1983 /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and 1984 /// adjusts the branches to branch to the vector preheader or \p Bypass, 1985 /// depending on the generated condition. 1986 BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass, 1987 BasicBlock *LoopVectorPreHeader, 1988 BasicBlock *LoopExitBlock) { 1989 if (!SCEVCheckCond) 1990 return nullptr; 1991 if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond)) 1992 if (C->isZero()) 1993 return nullptr; 1994 1995 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 1996 1997 BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); 1998 // Create new preheader for vector loop. 1999 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2000 PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); 2001 2002 SCEVCheckBlock->getTerminator()->eraseFromParent(); 2003 SCEVCheckBlock->moveBefore(LoopVectorPreHeader); 2004 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2005 SCEVCheckBlock); 2006 2007 DT->addNewBlock(SCEVCheckBlock, Pred); 2008 DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); 2009 2010 ReplaceInstWithInst( 2011 SCEVCheckBlock->getTerminator(), 2012 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond)); 2013 // Mark the check as used, to prevent it from being removed during cleanup. 2014 SCEVCheckCond = nullptr; 2015 return SCEVCheckBlock; 2016 } 2017 2018 /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts 2019 /// the branches to branch to the vector preheader or \p Bypass, depending on 2020 /// the generated condition. 2021 BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass, 2022 BasicBlock *LoopVectorPreHeader) { 2023 // Check if we generated code that checks in runtime if arrays overlap. 2024 if (!MemRuntimeCheckCond) 2025 return nullptr; 2026 2027 auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); 2028 Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, 2029 MemCheckBlock); 2030 2031 DT->addNewBlock(MemCheckBlock, Pred); 2032 DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); 2033 MemCheckBlock->moveBefore(LoopVectorPreHeader); 2034 2035 if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) 2036 PL->addBasicBlockToLoop(MemCheckBlock, *LI); 2037 2038 ReplaceInstWithInst( 2039 MemCheckBlock->getTerminator(), 2040 BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); 2041 MemCheckBlock->getTerminator()->setDebugLoc( 2042 Pred->getTerminator()->getDebugLoc()); 2043 2044 // Mark the check as used, to prevent it from being removed during cleanup. 2045 MemRuntimeCheckCond = nullptr; 2046 return MemCheckBlock; 2047 } 2048 }; 2049 2050 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 2051 // vectorization. The loop needs to be annotated with #pragma omp simd 2052 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 2053 // vector length information is not provided, vectorization is not considered 2054 // explicit. Interleave hints are not allowed either. These limitations will be 2055 // relaxed in the future. 2056 // Please, note that we are currently forced to abuse the pragma 'clang 2057 // vectorize' semantics. This pragma provides *auto-vectorization hints* 2058 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 2059 // provides *explicit vectorization hints* (LV can bypass legal checks and 2060 // assume that vectorization is legal). However, both hints are implemented 2061 // using the same metadata (llvm.loop.vectorize, processed by 2062 // LoopVectorizeHints). This will be fixed in the future when the native IR 2063 // representation for pragma 'omp simd' is introduced. 2064 static bool isExplicitVecOuterLoop(Loop *OuterLp, 2065 OptimizationRemarkEmitter *ORE) { 2066 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 2067 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 2068 2069 // Only outer loops with an explicit vectorization hint are supported. 2070 // Unannotated outer loops are ignored. 2071 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 2072 return false; 2073 2074 Function *Fn = OuterLp->getHeader()->getParent(); 2075 if (!Hints.allowVectorization(Fn, OuterLp, 2076 true /*VectorizeOnlyWhenForced*/)) { 2077 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 2078 return false; 2079 } 2080 2081 if (Hints.getInterleave() > 1) { 2082 // TODO: Interleave support is future work. 2083 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 2084 "outer loops.\n"); 2085 Hints.emitRemarkWithHints(); 2086 return false; 2087 } 2088 2089 return true; 2090 } 2091 2092 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 2093 OptimizationRemarkEmitter *ORE, 2094 SmallVectorImpl<Loop *> &V) { 2095 // Collect inner loops and outer loops without irreducible control flow. For 2096 // now, only collect outer loops that have explicit vectorization hints. If we 2097 // are stress testing the VPlan H-CFG construction, we collect the outermost 2098 // loop of every loop nest. 2099 if (L.isInnermost() || VPlanBuildStressTest || 2100 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 2101 LoopBlocksRPO RPOT(&L); 2102 RPOT.perform(LI); 2103 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 2104 V.push_back(&L); 2105 // TODO: Collect inner loops inside marked outer loops in case 2106 // vectorization fails for the outer loop. Do not invoke 2107 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 2108 // already known to be reducible. We can use an inherited attribute for 2109 // that. 2110 return; 2111 } 2112 } 2113 for (Loop *InnerL : L) 2114 collectSupportedLoops(*InnerL, LI, ORE, V); 2115 } 2116 2117 namespace { 2118 2119 /// The LoopVectorize Pass. 2120 struct LoopVectorize : public FunctionPass { 2121 /// Pass identification, replacement for typeid 2122 static char ID; 2123 2124 LoopVectorizePass Impl; 2125 2126 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 2127 bool VectorizeOnlyWhenForced = false) 2128 : FunctionPass(ID), 2129 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 2130 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 2131 } 2132 2133 bool runOnFunction(Function &F) override { 2134 if (skipFunction(F)) 2135 return false; 2136 2137 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2138 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2139 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 2140 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2141 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 2142 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2143 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 2144 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2145 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 2146 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 2147 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 2148 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 2149 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 2150 2151 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 2152 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 2153 2154 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 2155 GetLAA, *ORE, PSI).MadeAnyChange; 2156 } 2157 2158 void getAnalysisUsage(AnalysisUsage &AU) const override { 2159 AU.addRequired<AssumptionCacheTracker>(); 2160 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 2161 AU.addRequired<DominatorTreeWrapperPass>(); 2162 AU.addRequired<LoopInfoWrapperPass>(); 2163 AU.addRequired<ScalarEvolutionWrapperPass>(); 2164 AU.addRequired<TargetTransformInfoWrapperPass>(); 2165 AU.addRequired<AAResultsWrapperPass>(); 2166 AU.addRequired<LoopAccessLegacyAnalysis>(); 2167 AU.addRequired<DemandedBitsWrapperPass>(); 2168 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2169 AU.addRequired<InjectTLIMappingsLegacy>(); 2170 2171 // We currently do not preserve loopinfo/dominator analyses with outer loop 2172 // vectorization. Until this is addressed, mark these analyses as preserved 2173 // only for non-VPlan-native path. 2174 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2175 if (!EnableVPlanNativePath) { 2176 AU.addPreserved<LoopInfoWrapperPass>(); 2177 AU.addPreserved<DominatorTreeWrapperPass>(); 2178 } 2179 2180 AU.addPreserved<BasicAAWrapperPass>(); 2181 AU.addPreserved<GlobalsAAWrapperPass>(); 2182 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2183 } 2184 }; 2185 2186 } // end anonymous namespace 2187 2188 //===----------------------------------------------------------------------===// 2189 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2190 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2191 //===----------------------------------------------------------------------===// 2192 2193 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2194 // We need to place the broadcast of invariant variables outside the loop, 2195 // but only if it's proven safe to do so. Else, broadcast will be inside 2196 // vector loop body. 2197 Instruction *Instr = dyn_cast<Instruction>(V); 2198 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2199 (!Instr || 2200 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2201 // Place the code for broadcasting invariant variables in the new preheader. 2202 IRBuilder<>::InsertPointGuard Guard(Builder); 2203 if (SafeToHoist) 2204 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2205 2206 // Broadcast the scalar into all locations in the vector. 2207 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2208 2209 return Shuf; 2210 } 2211 2212 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2213 const InductionDescriptor &II, Value *Step, Value *Start, 2214 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2215 VPTransformState &State) { 2216 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2217 "Expected either an induction phi-node or a truncate of it!"); 2218 2219 // Construct the initial value of the vector IV in the vector loop preheader 2220 auto CurrIP = Builder.saveIP(); 2221 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2222 if (isa<TruncInst>(EntryVal)) { 2223 assert(Start->getType()->isIntegerTy() && 2224 "Truncation requires an integer type"); 2225 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2226 Step = Builder.CreateTrunc(Step, TruncType); 2227 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2228 } 2229 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2230 Value *SteppedStart = 2231 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2232 2233 // We create vector phi nodes for both integer and floating-point induction 2234 // variables. Here, we determine the kind of arithmetic we will perform. 2235 Instruction::BinaryOps AddOp; 2236 Instruction::BinaryOps MulOp; 2237 if (Step->getType()->isIntegerTy()) { 2238 AddOp = Instruction::Add; 2239 MulOp = Instruction::Mul; 2240 } else { 2241 AddOp = II.getInductionOpcode(); 2242 MulOp = Instruction::FMul; 2243 } 2244 2245 // Multiply the vectorization factor by the step using integer or 2246 // floating-point arithmetic as appropriate. 2247 Value *ConstVF = 2248 getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue()); 2249 Value *Mul = Builder.CreateBinOp(MulOp, Step, ConstVF); 2250 2251 // Create a vector splat to use in the induction update. 2252 // 2253 // FIXME: If the step is non-constant, we create the vector splat with 2254 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2255 // handle a constant vector splat. 2256 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2257 Value *SplatVF = isa<Constant>(Mul) 2258 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2259 : Builder.CreateVectorSplat(VF, Mul); 2260 Builder.restoreIP(CurrIP); 2261 2262 // We may need to add the step a number of times, depending on the unroll 2263 // factor. The last of those goes into the PHI. 2264 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2265 &*LoopVectorBody->getFirstInsertionPt()); 2266 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2267 Instruction *LastInduction = VecInd; 2268 for (unsigned Part = 0; Part < UF; ++Part) { 2269 State.set(Def, LastInduction, Part); 2270 2271 if (isa<TruncInst>(EntryVal)) 2272 addMetadata(LastInduction, EntryVal); 2273 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2274 State, Part); 2275 2276 LastInduction = cast<Instruction>( 2277 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); 2278 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2279 } 2280 2281 // Move the last step to the end of the latch block. This ensures consistent 2282 // placement of all induction updates. 2283 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2284 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2285 auto *ICmp = cast<Instruction>(Br->getCondition()); 2286 LastInduction->moveBefore(ICmp); 2287 LastInduction->setName("vec.ind.next"); 2288 2289 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2290 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2291 } 2292 2293 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2294 return Cost->isScalarAfterVectorization(I, VF) || 2295 Cost->isProfitableToScalarize(I, VF); 2296 } 2297 2298 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2299 if (shouldScalarizeInstruction(IV)) 2300 return true; 2301 auto isScalarInst = [&](User *U) -> bool { 2302 auto *I = cast<Instruction>(U); 2303 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2304 }; 2305 return llvm::any_of(IV->users(), isScalarInst); 2306 } 2307 2308 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2309 const InductionDescriptor &ID, const Instruction *EntryVal, 2310 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2311 unsigned Part, unsigned Lane) { 2312 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2313 "Expected either an induction phi-node or a truncate of it!"); 2314 2315 // This induction variable is not the phi from the original loop but the 2316 // newly-created IV based on the proof that casted Phi is equal to the 2317 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2318 // re-uses the same InductionDescriptor that original IV uses but we don't 2319 // have to do any recording in this case - that is done when original IV is 2320 // processed. 2321 if (isa<TruncInst>(EntryVal)) 2322 return; 2323 2324 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2325 if (Casts.empty()) 2326 return; 2327 // Only the first Cast instruction in the Casts vector is of interest. 2328 // The rest of the Casts (if exist) have no uses outside the 2329 // induction update chain itself. 2330 if (Lane < UINT_MAX) 2331 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2332 else 2333 State.set(CastDef, VectorLoopVal, Part); 2334 } 2335 2336 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2337 TruncInst *Trunc, VPValue *Def, 2338 VPValue *CastDef, 2339 VPTransformState &State) { 2340 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2341 "Primary induction variable must have an integer type"); 2342 2343 auto II = Legal->getInductionVars().find(IV); 2344 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2345 2346 auto ID = II->second; 2347 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2348 2349 // The value from the original loop to which we are mapping the new induction 2350 // variable. 2351 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2352 2353 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2354 2355 // Generate code for the induction step. Note that induction steps are 2356 // required to be loop-invariant 2357 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2358 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2359 "Induction step should be loop invariant"); 2360 if (PSE.getSE()->isSCEVable(IV->getType())) { 2361 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2362 return Exp.expandCodeFor(Step, Step->getType(), 2363 LoopVectorPreHeader->getTerminator()); 2364 } 2365 return cast<SCEVUnknown>(Step)->getValue(); 2366 }; 2367 2368 // The scalar value to broadcast. This is derived from the canonical 2369 // induction variable. If a truncation type is given, truncate the canonical 2370 // induction variable and step. Otherwise, derive these values from the 2371 // induction descriptor. 2372 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2373 Value *ScalarIV = Induction; 2374 if (IV != OldInduction) { 2375 ScalarIV = IV->getType()->isIntegerTy() 2376 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2377 : Builder.CreateCast(Instruction::SIToFP, Induction, 2378 IV->getType()); 2379 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2380 ScalarIV->setName("offset.idx"); 2381 } 2382 if (Trunc) { 2383 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2384 assert(Step->getType()->isIntegerTy() && 2385 "Truncation requires an integer step"); 2386 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2387 Step = Builder.CreateTrunc(Step, TruncType); 2388 } 2389 return ScalarIV; 2390 }; 2391 2392 // Create the vector values from the scalar IV, in the absence of creating a 2393 // vector IV. 2394 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2395 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2396 for (unsigned Part = 0; Part < UF; ++Part) { 2397 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2398 Value *EntryPart = 2399 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2400 ID.getInductionOpcode()); 2401 State.set(Def, EntryPart, Part); 2402 if (Trunc) 2403 addMetadata(EntryPart, Trunc); 2404 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2405 State, Part); 2406 } 2407 }; 2408 2409 // Fast-math-flags propagate from the original induction instruction. 2410 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2411 if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) 2412 Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); 2413 2414 // Now do the actual transformations, and start with creating the step value. 2415 Value *Step = CreateStepValue(ID.getStep()); 2416 if (VF.isZero() || VF.isScalar()) { 2417 Value *ScalarIV = CreateScalarIV(Step); 2418 CreateSplatIV(ScalarIV, Step); 2419 return; 2420 } 2421 2422 // Determine if we want a scalar version of the induction variable. This is 2423 // true if the induction variable itself is not widened, or if it has at 2424 // least one user in the loop that is not widened. 2425 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2426 if (!NeedsScalarIV) { 2427 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2428 State); 2429 return; 2430 } 2431 2432 // Try to create a new independent vector induction variable. If we can't 2433 // create the phi node, we will splat the scalar induction variable in each 2434 // loop iteration. 2435 if (!shouldScalarizeInstruction(EntryVal)) { 2436 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2437 State); 2438 Value *ScalarIV = CreateScalarIV(Step); 2439 // Create scalar steps that can be used by instructions we will later 2440 // scalarize. Note that the addition of the scalar steps will not increase 2441 // the number of instructions in the loop in the common case prior to 2442 // InstCombine. We will be trading one vector extract for each scalar step. 2443 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2444 return; 2445 } 2446 2447 // All IV users are scalar instructions, so only emit a scalar IV, not a 2448 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2449 // predicate used by the masked loads/stores. 2450 Value *ScalarIV = CreateScalarIV(Step); 2451 if (!Cost->isScalarEpilogueAllowed()) 2452 CreateSplatIV(ScalarIV, Step); 2453 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2454 } 2455 2456 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2457 Instruction::BinaryOps BinOp) { 2458 // Create and check the types. 2459 auto *ValVTy = cast<FixedVectorType>(Val->getType()); 2460 int VLen = ValVTy->getNumElements(); 2461 2462 Type *STy = Val->getType()->getScalarType(); 2463 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2464 "Induction Step must be an integer or FP"); 2465 assert(Step->getType() == STy && "Step has wrong type"); 2466 2467 SmallVector<Constant *, 8> Indices; 2468 2469 if (STy->isIntegerTy()) { 2470 // Create a vector of consecutive numbers from zero to VF. 2471 for (int i = 0; i < VLen; ++i) 2472 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2473 2474 // Add the consecutive indices to the vector value. 2475 Constant *Cv = ConstantVector::get(Indices); 2476 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2477 Step = Builder.CreateVectorSplat(VLen, Step); 2478 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2479 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2480 // which can be found from the original scalar operations. 2481 Step = Builder.CreateMul(Cv, Step); 2482 return Builder.CreateAdd(Val, Step, "induction"); 2483 } 2484 2485 // Floating point induction. 2486 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2487 "Binary Opcode should be specified for FP induction"); 2488 // Create a vector of consecutive numbers from zero to VF. 2489 for (int i = 0; i < VLen; ++i) 2490 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2491 2492 // Add the consecutive indices to the vector value. 2493 // Floating-point operations inherit FMF via the builder's flags. 2494 Constant *Cv = ConstantVector::get(Indices); 2495 Step = Builder.CreateVectorSplat(VLen, Step); 2496 Value *MulOp = Builder.CreateFMul(Cv, Step); 2497 return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2498 } 2499 2500 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2501 Instruction *EntryVal, 2502 const InductionDescriptor &ID, 2503 VPValue *Def, VPValue *CastDef, 2504 VPTransformState &State) { 2505 // We shouldn't have to build scalar steps if we aren't vectorizing. 2506 assert(VF.isVector() && "VF should be greater than one"); 2507 // Get the value type and ensure it and the step have the same integer type. 2508 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2509 assert(ScalarIVTy == Step->getType() && 2510 "Val and Step should have the same type"); 2511 2512 // We build scalar steps for both integer and floating-point induction 2513 // variables. Here, we determine the kind of arithmetic we will perform. 2514 Instruction::BinaryOps AddOp; 2515 Instruction::BinaryOps MulOp; 2516 if (ScalarIVTy->isIntegerTy()) { 2517 AddOp = Instruction::Add; 2518 MulOp = Instruction::Mul; 2519 } else { 2520 AddOp = ID.getInductionOpcode(); 2521 MulOp = Instruction::FMul; 2522 } 2523 2524 // Determine the number of scalars we need to generate for each unroll 2525 // iteration. If EntryVal is uniform, we only need to generate the first 2526 // lane. Otherwise, we generate all VF values. 2527 unsigned Lanes = 2528 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) 2529 ? 1 2530 : VF.getKnownMinValue(); 2531 assert((!VF.isScalable() || Lanes == 1) && 2532 "Should never scalarize a scalable vector"); 2533 // Compute the scalar steps and save the results in State. 2534 for (unsigned Part = 0; Part < UF; ++Part) { 2535 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2536 auto *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2537 ScalarIVTy->getScalarSizeInBits()); 2538 Value *StartIdx = 2539 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2540 if (ScalarIVTy->isFloatingPointTy()) 2541 StartIdx = Builder.CreateSIToFP(StartIdx, ScalarIVTy); 2542 StartIdx = Builder.CreateBinOp( 2543 AddOp, StartIdx, getSignedIntOrFpConstant(ScalarIVTy, Lane)); 2544 // The step returned by `createStepForVF` is a runtime-evaluated value 2545 // when VF is scalable. Otherwise, it should be folded into a Constant. 2546 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2547 "Expected StartIdx to be folded to a constant when VF is not " 2548 "scalable"); 2549 auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); 2550 auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); 2551 State.set(Def, Add, VPIteration(Part, Lane)); 2552 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2553 Part, Lane); 2554 } 2555 } 2556 } 2557 2558 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2559 const VPIteration &Instance, 2560 VPTransformState &State) { 2561 Value *ScalarInst = State.get(Def, Instance); 2562 Value *VectorValue = State.get(Def, Instance.Part); 2563 VectorValue = Builder.CreateInsertElement( 2564 VectorValue, ScalarInst, 2565 Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); 2566 State.set(Def, VectorValue, Instance.Part); 2567 } 2568 2569 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2570 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2571 assert(!VF.isScalable() && "Cannot reverse scalable vectors"); 2572 SmallVector<int, 8> ShuffleMask; 2573 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 2574 ShuffleMask.push_back(VF.getKnownMinValue() - i - 1); 2575 2576 return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse"); 2577 } 2578 2579 // Return whether we allow using masked interleave-groups (for dealing with 2580 // strided loads/stores that reside in predicated blocks, or for dealing 2581 // with gaps). 2582 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2583 // If an override option has been passed in for interleaved accesses, use it. 2584 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2585 return EnableMaskedInterleavedMemAccesses; 2586 2587 return TTI.enableMaskedInterleavedAccessVectorization(); 2588 } 2589 2590 // Try to vectorize the interleave group that \p Instr belongs to. 2591 // 2592 // E.g. Translate following interleaved load group (factor = 3): 2593 // for (i = 0; i < N; i+=3) { 2594 // R = Pic[i]; // Member of index 0 2595 // G = Pic[i+1]; // Member of index 1 2596 // B = Pic[i+2]; // Member of index 2 2597 // ... // do something to R, G, B 2598 // } 2599 // To: 2600 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2601 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2602 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2603 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2604 // 2605 // Or translate following interleaved store group (factor = 3): 2606 // for (i = 0; i < N; i+=3) { 2607 // ... do something to R, G, B 2608 // Pic[i] = R; // Member of index 0 2609 // Pic[i+1] = G; // Member of index 1 2610 // Pic[i+2] = B; // Member of index 2 2611 // } 2612 // To: 2613 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2614 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2615 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2616 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2617 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2618 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2619 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2620 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2621 VPValue *BlockInMask) { 2622 Instruction *Instr = Group->getInsertPos(); 2623 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2624 2625 // Prepare for the vector type of the interleaved load/store. 2626 Type *ScalarTy = getMemInstValueType(Instr); 2627 unsigned InterleaveFactor = Group->getFactor(); 2628 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2629 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2630 2631 // Prepare for the new pointers. 2632 SmallVector<Value *, 2> AddrParts; 2633 unsigned Index = Group->getIndex(Instr); 2634 2635 // TODO: extend the masked interleaved-group support to reversed access. 2636 assert((!BlockInMask || !Group->isReverse()) && 2637 "Reversed masked interleave-group not supported."); 2638 2639 // If the group is reverse, adjust the index to refer to the last vector lane 2640 // instead of the first. We adjust the index from the first vector lane, 2641 // rather than directly getting the pointer for lane VF - 1, because the 2642 // pointer operand of the interleaved access is supposed to be uniform. For 2643 // uniform instructions, we're only required to generate a value for the 2644 // first vector lane in each unroll iteration. 2645 assert(!VF.isScalable() && 2646 "scalable vector reverse operation is not implemented"); 2647 if (Group->isReverse()) 2648 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2649 2650 for (unsigned Part = 0; Part < UF; Part++) { 2651 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2652 setDebugLocFromInst(Builder, AddrPart); 2653 2654 // Notice current instruction could be any index. Need to adjust the address 2655 // to the member of index 0. 2656 // 2657 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2658 // b = A[i]; // Member of index 0 2659 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2660 // 2661 // E.g. A[i+1] = a; // Member of index 1 2662 // A[i] = b; // Member of index 0 2663 // A[i+2] = c; // Member of index 2 (Current instruction) 2664 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2665 2666 bool InBounds = false; 2667 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2668 InBounds = gep->isInBounds(); 2669 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2670 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2671 2672 // Cast to the vector pointer type. 2673 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2674 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2675 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2676 } 2677 2678 setDebugLocFromInst(Builder, Instr); 2679 Value *PoisonVec = PoisonValue::get(VecTy); 2680 2681 Value *MaskForGaps = nullptr; 2682 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2683 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2684 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2685 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2686 } 2687 2688 // Vectorize the interleaved load group. 2689 if (isa<LoadInst>(Instr)) { 2690 // For each unroll part, create a wide load for the group. 2691 SmallVector<Value *, 2> NewLoads; 2692 for (unsigned Part = 0; Part < UF; Part++) { 2693 Instruction *NewLoad; 2694 if (BlockInMask || MaskForGaps) { 2695 assert(useMaskedInterleavedAccesses(*TTI) && 2696 "masked interleaved groups are not allowed."); 2697 Value *GroupMask = MaskForGaps; 2698 if (BlockInMask) { 2699 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2700 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2701 Value *ShuffledMask = Builder.CreateShuffleVector( 2702 BlockInMaskPart, 2703 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2704 "interleaved.mask"); 2705 GroupMask = MaskForGaps 2706 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2707 MaskForGaps) 2708 : ShuffledMask; 2709 } 2710 NewLoad = 2711 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2712 GroupMask, PoisonVec, "wide.masked.vec"); 2713 } 2714 else 2715 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2716 Group->getAlign(), "wide.vec"); 2717 Group->addMetadata(NewLoad); 2718 NewLoads.push_back(NewLoad); 2719 } 2720 2721 // For each member in the group, shuffle out the appropriate data from the 2722 // wide loads. 2723 unsigned J = 0; 2724 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2725 Instruction *Member = Group->getMember(I); 2726 2727 // Skip the gaps in the group. 2728 if (!Member) 2729 continue; 2730 2731 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2732 auto StrideMask = 2733 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2734 for (unsigned Part = 0; Part < UF; Part++) { 2735 Value *StridedVec = Builder.CreateShuffleVector( 2736 NewLoads[Part], StrideMask, "strided.vec"); 2737 2738 // If this member has different type, cast the result type. 2739 if (Member->getType() != ScalarTy) { 2740 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2741 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2742 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2743 } 2744 2745 if (Group->isReverse()) 2746 StridedVec = reverseVector(StridedVec); 2747 2748 State.set(VPDefs[J], StridedVec, Part); 2749 } 2750 ++J; 2751 } 2752 return; 2753 } 2754 2755 // The sub vector type for current instruction. 2756 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2757 auto *SubVT = VectorType::get(ScalarTy, VF); 2758 2759 // Vectorize the interleaved store group. 2760 for (unsigned Part = 0; Part < UF; Part++) { 2761 // Collect the stored vector from each member. 2762 SmallVector<Value *, 4> StoredVecs; 2763 for (unsigned i = 0; i < InterleaveFactor; i++) { 2764 // Interleaved store group doesn't allow a gap, so each index has a member 2765 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2766 2767 Value *StoredVec = State.get(StoredValues[i], Part); 2768 2769 if (Group->isReverse()) 2770 StoredVec = reverseVector(StoredVec); 2771 2772 // If this member has different type, cast it to a unified type. 2773 2774 if (StoredVec->getType() != SubVT) 2775 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2776 2777 StoredVecs.push_back(StoredVec); 2778 } 2779 2780 // Concatenate all vectors into a wide vector. 2781 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2782 2783 // Interleave the elements in the wide vector. 2784 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2785 Value *IVec = Builder.CreateShuffleVector( 2786 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2787 "interleaved.vec"); 2788 2789 Instruction *NewStoreInstr; 2790 if (BlockInMask) { 2791 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2792 Value *ShuffledMask = Builder.CreateShuffleVector( 2793 BlockInMaskPart, 2794 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2795 "interleaved.mask"); 2796 NewStoreInstr = Builder.CreateMaskedStore( 2797 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2798 } 2799 else 2800 NewStoreInstr = 2801 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2802 2803 Group->addMetadata(NewStoreInstr); 2804 } 2805 } 2806 2807 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2808 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2809 VPValue *StoredValue, VPValue *BlockInMask) { 2810 // Attempt to issue a wide load. 2811 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2812 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2813 2814 assert((LI || SI) && "Invalid Load/Store instruction"); 2815 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2816 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2817 2818 LoopVectorizationCostModel::InstWidening Decision = 2819 Cost->getWideningDecision(Instr, VF); 2820 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2821 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2822 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2823 "CM decision is not to widen the memory instruction"); 2824 2825 Type *ScalarDataTy = getMemInstValueType(Instr); 2826 2827 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2828 const Align Alignment = getLoadStoreAlignment(Instr); 2829 2830 // Determine if the pointer operand of the access is either consecutive or 2831 // reverse consecutive. 2832 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2833 bool ConsecutiveStride = 2834 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2835 bool CreateGatherScatter = 2836 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2837 2838 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2839 // gather/scatter. Otherwise Decision should have been to Scalarize. 2840 assert((ConsecutiveStride || CreateGatherScatter) && 2841 "The instruction should be scalarized"); 2842 (void)ConsecutiveStride; 2843 2844 VectorParts BlockInMaskParts(UF); 2845 bool isMaskRequired = BlockInMask; 2846 if (isMaskRequired) 2847 for (unsigned Part = 0; Part < UF; ++Part) 2848 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2849 2850 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2851 // Calculate the pointer for the specific unroll-part. 2852 GetElementPtrInst *PartPtr = nullptr; 2853 2854 bool InBounds = false; 2855 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2856 InBounds = gep->isInBounds(); 2857 2858 if (Reverse) { 2859 assert(!VF.isScalable() && 2860 "Reversing vectors is not yet supported for scalable vectors."); 2861 2862 // If the address is consecutive but reversed, then the 2863 // wide store needs to start at the last vector element. 2864 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2865 ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue()))); 2866 PartPtr->setIsInBounds(InBounds); 2867 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2868 ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue()))); 2869 PartPtr->setIsInBounds(InBounds); 2870 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2871 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2872 } else { 2873 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2874 PartPtr = cast<GetElementPtrInst>( 2875 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2876 PartPtr->setIsInBounds(InBounds); 2877 } 2878 2879 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2880 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2881 }; 2882 2883 // Handle Stores: 2884 if (SI) { 2885 setDebugLocFromInst(Builder, SI); 2886 2887 for (unsigned Part = 0; Part < UF; ++Part) { 2888 Instruction *NewSI = nullptr; 2889 Value *StoredVal = State.get(StoredValue, Part); 2890 if (CreateGatherScatter) { 2891 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2892 Value *VectorGep = State.get(Addr, Part); 2893 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2894 MaskPart); 2895 } else { 2896 if (Reverse) { 2897 // If we store to reverse consecutive memory locations, then we need 2898 // to reverse the order of elements in the stored value. 2899 StoredVal = reverseVector(StoredVal); 2900 // We don't want to update the value in the map as it might be used in 2901 // another expression. So don't call resetVectorValue(StoredVal). 2902 } 2903 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2904 if (isMaskRequired) 2905 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2906 BlockInMaskParts[Part]); 2907 else 2908 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2909 } 2910 addMetadata(NewSI, SI); 2911 } 2912 return; 2913 } 2914 2915 // Handle loads. 2916 assert(LI && "Must have a load instruction"); 2917 setDebugLocFromInst(Builder, LI); 2918 for (unsigned Part = 0; Part < UF; ++Part) { 2919 Value *NewLI; 2920 if (CreateGatherScatter) { 2921 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2922 Value *VectorGep = State.get(Addr, Part); 2923 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2924 nullptr, "wide.masked.gather"); 2925 addMetadata(NewLI, LI); 2926 } else { 2927 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2928 if (isMaskRequired) 2929 NewLI = Builder.CreateMaskedLoad( 2930 VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy), 2931 "wide.masked.load"); 2932 else 2933 NewLI = 2934 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2935 2936 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2937 addMetadata(NewLI, LI); 2938 if (Reverse) 2939 NewLI = reverseVector(NewLI); 2940 } 2941 2942 State.set(Def, NewLI, Part); 2943 } 2944 } 2945 2946 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 2947 VPUser &User, 2948 const VPIteration &Instance, 2949 bool IfPredicateInstr, 2950 VPTransformState &State) { 2951 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2952 2953 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2954 // the first lane and part. 2955 if (isa<NoAliasScopeDeclInst>(Instr)) 2956 if (!Instance.isFirstIteration()) 2957 return; 2958 2959 setDebugLocFromInst(Builder, Instr); 2960 2961 // Does this instruction return a value ? 2962 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2963 2964 Instruction *Cloned = Instr->clone(); 2965 if (!IsVoidRetTy) 2966 Cloned->setName(Instr->getName() + ".cloned"); 2967 2968 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2969 Builder.GetInsertPoint()); 2970 // Replace the operands of the cloned instructions with their scalar 2971 // equivalents in the new loop. 2972 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2973 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 2974 auto InputInstance = Instance; 2975 if (!Operand || !OrigLoop->contains(Operand) || 2976 (Cost->isUniformAfterVectorization(Operand, State.VF))) 2977 InputInstance.Lane = VPLane::getFirstLane(); 2978 auto *NewOp = State.get(User.getOperand(op), InputInstance); 2979 Cloned->setOperand(op, NewOp); 2980 } 2981 addNewMetadata(Cloned, Instr); 2982 2983 // Place the cloned scalar in the new loop. 2984 Builder.Insert(Cloned); 2985 2986 State.set(Def, Cloned, Instance); 2987 2988 // If we just cloned a new assumption, add it the assumption cache. 2989 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2990 if (II->getIntrinsicID() == Intrinsic::assume) 2991 AC->registerAssumption(II); 2992 2993 // End if-block. 2994 if (IfPredicateInstr) 2995 PredicatedInstructions.push_back(Cloned); 2996 } 2997 2998 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2999 Value *End, Value *Step, 3000 Instruction *DL) { 3001 BasicBlock *Header = L->getHeader(); 3002 BasicBlock *Latch = L->getLoopLatch(); 3003 // As we're just creating this loop, it's possible no latch exists 3004 // yet. If so, use the header as this will be a single block loop. 3005 if (!Latch) 3006 Latch = Header; 3007 3008 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 3009 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 3010 setDebugLocFromInst(Builder, OldInst); 3011 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 3012 3013 Builder.SetInsertPoint(Latch->getTerminator()); 3014 setDebugLocFromInst(Builder, OldInst); 3015 3016 // Create i+1 and fill the PHINode. 3017 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 3018 Induction->addIncoming(Start, L->getLoopPreheader()); 3019 Induction->addIncoming(Next, Latch); 3020 // Create the compare. 3021 Value *ICmp = Builder.CreateICmpEQ(Next, End); 3022 Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 3023 3024 // Now we have two terminators. Remove the old one from the block. 3025 Latch->getTerminator()->eraseFromParent(); 3026 3027 return Induction; 3028 } 3029 3030 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3031 if (TripCount) 3032 return TripCount; 3033 3034 assert(L && "Create Trip Count for null loop."); 3035 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3036 // Find the loop boundaries. 3037 ScalarEvolution *SE = PSE.getSE(); 3038 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3039 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3040 "Invalid loop count"); 3041 3042 Type *IdxTy = Legal->getWidestInductionType(); 3043 assert(IdxTy && "No type for induction"); 3044 3045 // The exit count might have the type of i64 while the phi is i32. This can 3046 // happen if we have an induction variable that is sign extended before the 3047 // compare. The only way that we get a backedge taken count is that the 3048 // induction variable was signed and as such will not overflow. In such a case 3049 // truncation is legal. 3050 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3051 IdxTy->getPrimitiveSizeInBits()) 3052 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3053 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3054 3055 // Get the total trip count from the count by adding 1. 3056 const SCEV *ExitCount = SE->getAddExpr( 3057 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3058 3059 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3060 3061 // Expand the trip count and place the new instructions in the preheader. 3062 // Notice that the pre-header does not change, only the loop body. 3063 SCEVExpander Exp(*SE, DL, "induction"); 3064 3065 // Count holds the overall loop count (N). 3066 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3067 L->getLoopPreheader()->getTerminator()); 3068 3069 if (TripCount->getType()->isPointerTy()) 3070 TripCount = 3071 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3072 L->getLoopPreheader()->getTerminator()); 3073 3074 return TripCount; 3075 } 3076 3077 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3078 if (VectorTripCount) 3079 return VectorTripCount; 3080 3081 Value *TC = getOrCreateTripCount(L); 3082 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3083 3084 Type *Ty = TC->getType(); 3085 // This is where we can make the step a runtime constant. 3086 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3087 3088 // If the tail is to be folded by masking, round the number of iterations N 3089 // up to a multiple of Step instead of rounding down. This is done by first 3090 // adding Step-1 and then rounding down. Note that it's ok if this addition 3091 // overflows: the vector induction variable will eventually wrap to zero given 3092 // that it starts at zero and its Step is a power of two; the loop will then 3093 // exit, with the last early-exit vector comparison also producing all-true. 3094 if (Cost->foldTailByMasking()) { 3095 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3096 "VF*UF must be a power of 2 when folding tail by masking"); 3097 assert(!VF.isScalable() && 3098 "Tail folding not yet supported for scalable vectors"); 3099 TC = Builder.CreateAdd( 3100 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3101 } 3102 3103 // Now we need to generate the expression for the part of the loop that the 3104 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3105 // iterations are not required for correctness, or N - Step, otherwise. Step 3106 // is equal to the vectorization factor (number of SIMD elements) times the 3107 // unroll factor (number of SIMD instructions). 3108 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3109 3110 // There are two cases where we need to ensure (at least) the last iteration 3111 // runs in the scalar remainder loop. Thus, if the step evenly divides 3112 // the trip count, we set the remainder to be equal to the step. If the step 3113 // does not evenly divide the trip count, no adjustment is necessary since 3114 // there will already be scalar iterations. Note that the minimum iterations 3115 // check ensures that N >= Step. The cases are: 3116 // 1) If there is a non-reversed interleaved group that may speculatively 3117 // access memory out-of-bounds. 3118 // 2) If any instruction may follow a conditionally taken exit. That is, if 3119 // the loop contains multiple exiting blocks, or a single exiting block 3120 // which is not the latch. 3121 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 3122 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3123 R = Builder.CreateSelect(IsZero, Step, R); 3124 } 3125 3126 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3127 3128 return VectorTripCount; 3129 } 3130 3131 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3132 const DataLayout &DL) { 3133 // Verify that V is a vector type with same number of elements as DstVTy. 3134 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3135 unsigned VF = DstFVTy->getNumElements(); 3136 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3137 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3138 Type *SrcElemTy = SrcVecTy->getElementType(); 3139 Type *DstElemTy = DstFVTy->getElementType(); 3140 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3141 "Vector elements must have same size"); 3142 3143 // Do a direct cast if element types are castable. 3144 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3145 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3146 } 3147 // V cannot be directly casted to desired vector type. 3148 // May happen when V is a floating point vector but DstVTy is a vector of 3149 // pointers or vice-versa. Handle this using a two-step bitcast using an 3150 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3151 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3152 "Only one type should be a pointer type"); 3153 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3154 "Only one type should be a floating point type"); 3155 Type *IntTy = 3156 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3157 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3158 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3159 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3160 } 3161 3162 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3163 BasicBlock *Bypass) { 3164 Value *Count = getOrCreateTripCount(L); 3165 // Reuse existing vector loop preheader for TC checks. 3166 // Note that new preheader block is generated for vector loop. 3167 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3168 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3169 3170 // Generate code to check if the loop's trip count is less than VF * UF, or 3171 // equal to it in case a scalar epilogue is required; this implies that the 3172 // vector trip count is zero. This check also covers the case where adding one 3173 // to the backedge-taken count overflowed leading to an incorrect trip count 3174 // of zero. In this case we will also jump to the scalar loop. 3175 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3176 : ICmpInst::ICMP_ULT; 3177 3178 // If tail is to be folded, vector loop takes care of all iterations. 3179 Value *CheckMinIters = Builder.getFalse(); 3180 if (!Cost->foldTailByMasking()) { 3181 Value *Step = 3182 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3183 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3184 } 3185 // Create new preheader for vector loop. 3186 LoopVectorPreHeader = 3187 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3188 "vector.ph"); 3189 3190 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3191 DT->getNode(Bypass)->getIDom()) && 3192 "TC check is expected to dominate Bypass"); 3193 3194 // Update dominator for Bypass & LoopExit. 3195 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3196 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3197 3198 ReplaceInstWithInst( 3199 TCCheckBlock->getTerminator(), 3200 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3201 LoopBypassBlocks.push_back(TCCheckBlock); 3202 } 3203 3204 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3205 3206 BasicBlock *const SCEVCheckBlock = 3207 RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock); 3208 if (!SCEVCheckBlock) 3209 return nullptr; 3210 3211 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3212 (OptForSizeBasedOnProfile && 3213 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3214 "Cannot SCEV check stride or overflow when optimizing for size"); 3215 3216 3217 // Update dominator only if this is first RT check. 3218 if (LoopBypassBlocks.empty()) { 3219 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3220 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3221 } 3222 3223 LoopBypassBlocks.push_back(SCEVCheckBlock); 3224 AddedSafetyChecks = true; 3225 return SCEVCheckBlock; 3226 } 3227 3228 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, 3229 BasicBlock *Bypass) { 3230 // VPlan-native path does not do any analysis for runtime checks currently. 3231 if (EnableVPlanNativePath) 3232 return nullptr; 3233 3234 BasicBlock *const MemCheckBlock = 3235 RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader); 3236 3237 // Check if we generated code that checks in runtime if arrays overlap. We put 3238 // the checks into a separate block to make the more common case of few 3239 // elements faster. 3240 if (!MemCheckBlock) 3241 return nullptr; 3242 3243 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3244 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3245 "Cannot emit memory checks when optimizing for size, unless forced " 3246 "to vectorize."); 3247 ORE->emit([&]() { 3248 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3249 L->getStartLoc(), L->getHeader()) 3250 << "Code-size may be reduced by not forcing " 3251 "vectorization, or by source-code modifications " 3252 "eliminating the need for runtime checks " 3253 "(e.g., adding 'restrict')."; 3254 }); 3255 } 3256 3257 LoopBypassBlocks.push_back(MemCheckBlock); 3258 3259 AddedSafetyChecks = true; 3260 3261 // We currently don't use LoopVersioning for the actual loop cloning but we 3262 // still use it to add the noalias metadata. 3263 LVer = std::make_unique<LoopVersioning>( 3264 *Legal->getLAI(), 3265 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3266 DT, PSE.getSE()); 3267 LVer->prepareNoAliasMetadata(); 3268 return MemCheckBlock; 3269 } 3270 3271 Value *InnerLoopVectorizer::emitTransformedIndex( 3272 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3273 const InductionDescriptor &ID) const { 3274 3275 SCEVExpander Exp(*SE, DL, "induction"); 3276 auto Step = ID.getStep(); 3277 auto StartValue = ID.getStartValue(); 3278 assert(Index->getType() == Step->getType() && 3279 "Index type does not match StepValue type"); 3280 3281 // Note: the IR at this point is broken. We cannot use SE to create any new 3282 // SCEV and then expand it, hoping that SCEV's simplification will give us 3283 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3284 // lead to various SCEV crashes. So all we can do is to use builder and rely 3285 // on InstCombine for future simplifications. Here we handle some trivial 3286 // cases only. 3287 auto CreateAdd = [&B](Value *X, Value *Y) { 3288 assert(X->getType() == Y->getType() && "Types don't match!"); 3289 if (auto *CX = dyn_cast<ConstantInt>(X)) 3290 if (CX->isZero()) 3291 return Y; 3292 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3293 if (CY->isZero()) 3294 return X; 3295 return B.CreateAdd(X, Y); 3296 }; 3297 3298 auto CreateMul = [&B](Value *X, Value *Y) { 3299 assert(X->getType() == Y->getType() && "Types don't match!"); 3300 if (auto *CX = dyn_cast<ConstantInt>(X)) 3301 if (CX->isOne()) 3302 return Y; 3303 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3304 if (CY->isOne()) 3305 return X; 3306 return B.CreateMul(X, Y); 3307 }; 3308 3309 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3310 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3311 // the DomTree is not kept up-to-date for additional blocks generated in the 3312 // vector loop. By using the header as insertion point, we guarantee that the 3313 // expanded instructions dominate all their uses. 3314 auto GetInsertPoint = [this, &B]() { 3315 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3316 if (InsertBB != LoopVectorBody && 3317 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3318 return LoopVectorBody->getTerminator(); 3319 return &*B.GetInsertPoint(); 3320 }; 3321 3322 switch (ID.getKind()) { 3323 case InductionDescriptor::IK_IntInduction: { 3324 assert(Index->getType() == StartValue->getType() && 3325 "Index type does not match StartValue type"); 3326 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3327 return B.CreateSub(StartValue, Index); 3328 auto *Offset = CreateMul( 3329 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3330 return CreateAdd(StartValue, Offset); 3331 } 3332 case InductionDescriptor::IK_PtrInduction: { 3333 assert(isa<SCEVConstant>(Step) && 3334 "Expected constant step for pointer induction"); 3335 return B.CreateGEP( 3336 StartValue->getType()->getPointerElementType(), StartValue, 3337 CreateMul(Index, 3338 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3339 } 3340 case InductionDescriptor::IK_FpInduction: { 3341 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3342 auto InductionBinOp = ID.getInductionBinOp(); 3343 assert(InductionBinOp && 3344 (InductionBinOp->getOpcode() == Instruction::FAdd || 3345 InductionBinOp->getOpcode() == Instruction::FSub) && 3346 "Original bin op should be defined for FP induction"); 3347 3348 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3349 Value *MulExp = B.CreateFMul(StepValue, Index); 3350 return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3351 "induction"); 3352 } 3353 case InductionDescriptor::IK_NoInduction: 3354 return nullptr; 3355 } 3356 llvm_unreachable("invalid enum"); 3357 } 3358 3359 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3360 LoopScalarBody = OrigLoop->getHeader(); 3361 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3362 LoopExitBlock = OrigLoop->getUniqueExitBlock(); 3363 assert(LoopExitBlock && "Must have an exit block"); 3364 assert(LoopVectorPreHeader && "Invalid loop structure"); 3365 3366 LoopMiddleBlock = 3367 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3368 LI, nullptr, Twine(Prefix) + "middle.block"); 3369 LoopScalarPreHeader = 3370 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3371 nullptr, Twine(Prefix) + "scalar.ph"); 3372 3373 // Set up branch from middle block to the exit and scalar preheader blocks. 3374 // completeLoopSkeleton will update the condition to use an iteration check, 3375 // if required to decide whether to execute the remainder. 3376 BranchInst *BrInst = 3377 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue()); 3378 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3379 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3380 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3381 3382 // We intentionally don't let SplitBlock to update LoopInfo since 3383 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3384 // LoopVectorBody is explicitly added to the correct place few lines later. 3385 LoopVectorBody = 3386 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3387 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3388 3389 // Update dominator for loop exit. 3390 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3391 3392 // Create and register the new vector loop. 3393 Loop *Lp = LI->AllocateLoop(); 3394 Loop *ParentLoop = OrigLoop->getParentLoop(); 3395 3396 // Insert the new loop into the loop nest and register the new basic blocks 3397 // before calling any utilities such as SCEV that require valid LoopInfo. 3398 if (ParentLoop) { 3399 ParentLoop->addChildLoop(Lp); 3400 } else { 3401 LI->addTopLevelLoop(Lp); 3402 } 3403 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3404 return Lp; 3405 } 3406 3407 void InnerLoopVectorizer::createInductionResumeValues( 3408 Loop *L, Value *VectorTripCount, 3409 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3410 assert(VectorTripCount && L && "Expected valid arguments"); 3411 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3412 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3413 "Inconsistent information about additional bypass."); 3414 // We are going to resume the execution of the scalar loop. 3415 // Go over all of the induction variables that we found and fix the 3416 // PHIs that are left in the scalar version of the loop. 3417 // The starting values of PHI nodes depend on the counter of the last 3418 // iteration in the vectorized loop. 3419 // If we come from a bypass edge then we need to start from the original 3420 // start value. 3421 for (auto &InductionEntry : Legal->getInductionVars()) { 3422 PHINode *OrigPhi = InductionEntry.first; 3423 InductionDescriptor II = InductionEntry.second; 3424 3425 // Create phi nodes to merge from the backedge-taken check block. 3426 PHINode *BCResumeVal = 3427 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3428 LoopScalarPreHeader->getTerminator()); 3429 // Copy original phi DL over to the new one. 3430 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3431 Value *&EndValue = IVEndValues[OrigPhi]; 3432 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3433 if (OrigPhi == OldInduction) { 3434 // We know what the end value is. 3435 EndValue = VectorTripCount; 3436 } else { 3437 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3438 3439 // Fast-math-flags propagate from the original induction instruction. 3440 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3441 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3442 3443 Type *StepType = II.getStep()->getType(); 3444 Instruction::CastOps CastOp = 3445 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3446 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3447 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3448 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3449 EndValue->setName("ind.end"); 3450 3451 // Compute the end value for the additional bypass (if applicable). 3452 if (AdditionalBypass.first) { 3453 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3454 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3455 StepType, true); 3456 CRD = 3457 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3458 EndValueFromAdditionalBypass = 3459 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3460 EndValueFromAdditionalBypass->setName("ind.end"); 3461 } 3462 } 3463 // The new PHI merges the original incoming value, in case of a bypass, 3464 // or the value at the end of the vectorized loop. 3465 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3466 3467 // Fix the scalar body counter (PHI node). 3468 // The old induction's phi node in the scalar body needs the truncated 3469 // value. 3470 for (BasicBlock *BB : LoopBypassBlocks) 3471 BCResumeVal->addIncoming(II.getStartValue(), BB); 3472 3473 if (AdditionalBypass.first) 3474 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3475 EndValueFromAdditionalBypass); 3476 3477 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3478 } 3479 } 3480 3481 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3482 MDNode *OrigLoopID) { 3483 assert(L && "Expected valid loop."); 3484 3485 // The trip counts should be cached by now. 3486 Value *Count = getOrCreateTripCount(L); 3487 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3488 3489 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3490 3491 // Add a check in the middle block to see if we have completed 3492 // all of the iterations in the first vector loop. 3493 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3494 // If tail is to be folded, we know we don't need to run the remainder. 3495 if (!Cost->foldTailByMasking()) { 3496 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3497 Count, VectorTripCount, "cmp.n", 3498 LoopMiddleBlock->getTerminator()); 3499 3500 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3501 // of the corresponding compare because they may have ended up with 3502 // different line numbers and we want to avoid awkward line stepping while 3503 // debugging. Eg. if the compare has got a line number inside the loop. 3504 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3505 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3506 } 3507 3508 // Get ready to start creating new instructions into the vectorized body. 3509 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3510 "Inconsistent vector loop preheader"); 3511 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3512 3513 Optional<MDNode *> VectorizedLoopID = 3514 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3515 LLVMLoopVectorizeFollowupVectorized}); 3516 if (VectorizedLoopID.hasValue()) { 3517 L->setLoopID(VectorizedLoopID.getValue()); 3518 3519 // Do not setAlreadyVectorized if loop attributes have been defined 3520 // explicitly. 3521 return LoopVectorPreHeader; 3522 } 3523 3524 // Keep all loop hints from the original loop on the vector loop (we'll 3525 // replace the vectorizer-specific hints below). 3526 if (MDNode *LID = OrigLoop->getLoopID()) 3527 L->setLoopID(LID); 3528 3529 LoopVectorizeHints Hints(L, true, *ORE); 3530 Hints.setAlreadyVectorized(); 3531 3532 #ifdef EXPENSIVE_CHECKS 3533 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3534 LI->verify(*DT); 3535 #endif 3536 3537 return LoopVectorPreHeader; 3538 } 3539 3540 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3541 /* 3542 In this function we generate a new loop. The new loop will contain 3543 the vectorized instructions while the old loop will continue to run the 3544 scalar remainder. 3545 3546 [ ] <-- loop iteration number check. 3547 / | 3548 / v 3549 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3550 | / | 3551 | / v 3552 || [ ] <-- vector pre header. 3553 |/ | 3554 | v 3555 | [ ] \ 3556 | [ ]_| <-- vector loop. 3557 | | 3558 | v 3559 | -[ ] <--- middle-block. 3560 | / | 3561 | / v 3562 -|- >[ ] <--- new preheader. 3563 | | 3564 | v 3565 | [ ] \ 3566 | [ ]_| <-- old scalar loop to handle remainder. 3567 \ | 3568 \ v 3569 >[ ] <-- exit block. 3570 ... 3571 */ 3572 3573 // Get the metadata of the original loop before it gets modified. 3574 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3575 3576 // Create an empty vector loop, and prepare basic blocks for the runtime 3577 // checks. 3578 Loop *Lp = createVectorLoopSkeleton(""); 3579 3580 // Now, compare the new count to zero. If it is zero skip the vector loop and 3581 // jump to the scalar loop. This check also covers the case where the 3582 // backedge-taken count is uint##_max: adding one to it will overflow leading 3583 // to an incorrect trip count of zero. In this (rare) case we will also jump 3584 // to the scalar loop. 3585 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3586 3587 // Generate the code to check any assumptions that we've made for SCEV 3588 // expressions. 3589 emitSCEVChecks(Lp, LoopScalarPreHeader); 3590 3591 // Generate the code that checks in runtime if arrays overlap. We put the 3592 // checks into a separate block to make the more common case of few elements 3593 // faster. 3594 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3595 3596 // Some loops have a single integer induction variable, while other loops 3597 // don't. One example is c++ iterators that often have multiple pointer 3598 // induction variables. In the code below we also support a case where we 3599 // don't have a single induction variable. 3600 // 3601 // We try to obtain an induction variable from the original loop as hard 3602 // as possible. However if we don't find one that: 3603 // - is an integer 3604 // - counts from zero, stepping by one 3605 // - is the size of the widest induction variable type 3606 // then we create a new one. 3607 OldInduction = Legal->getPrimaryInduction(); 3608 Type *IdxTy = Legal->getWidestInductionType(); 3609 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3610 // The loop step is equal to the vectorization factor (num of SIMD elements) 3611 // times the unroll factor (num of SIMD instructions). 3612 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3613 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3614 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3615 Induction = 3616 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3617 getDebugLocFromInstOrOperands(OldInduction)); 3618 3619 // Emit phis for the new starting index of the scalar loop. 3620 createInductionResumeValues(Lp, CountRoundDown); 3621 3622 return completeLoopSkeleton(Lp, OrigLoopID); 3623 } 3624 3625 // Fix up external users of the induction variable. At this point, we are 3626 // in LCSSA form, with all external PHIs that use the IV having one input value, 3627 // coming from the remainder loop. We need those PHIs to also have a correct 3628 // value for the IV when arriving directly from the middle block. 3629 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3630 const InductionDescriptor &II, 3631 Value *CountRoundDown, Value *EndValue, 3632 BasicBlock *MiddleBlock) { 3633 // There are two kinds of external IV usages - those that use the value 3634 // computed in the last iteration (the PHI) and those that use the penultimate 3635 // value (the value that feeds into the phi from the loop latch). 3636 // We allow both, but they, obviously, have different values. 3637 3638 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3639 3640 DenseMap<Value *, Value *> MissingVals; 3641 3642 // An external user of the last iteration's value should see the value that 3643 // the remainder loop uses to initialize its own IV. 3644 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3645 for (User *U : PostInc->users()) { 3646 Instruction *UI = cast<Instruction>(U); 3647 if (!OrigLoop->contains(UI)) { 3648 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3649 MissingVals[UI] = EndValue; 3650 } 3651 } 3652 3653 // An external user of the penultimate value need to see EndValue - Step. 3654 // The simplest way to get this is to recompute it from the constituent SCEVs, 3655 // that is Start + (Step * (CRD - 1)). 3656 for (User *U : OrigPhi->users()) { 3657 auto *UI = cast<Instruction>(U); 3658 if (!OrigLoop->contains(UI)) { 3659 const DataLayout &DL = 3660 OrigLoop->getHeader()->getModule()->getDataLayout(); 3661 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3662 3663 IRBuilder<> B(MiddleBlock->getTerminator()); 3664 3665 // Fast-math-flags propagate from the original induction instruction. 3666 if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) 3667 B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); 3668 3669 Value *CountMinusOne = B.CreateSub( 3670 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3671 Value *CMO = 3672 !II.getStep()->getType()->isIntegerTy() 3673 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3674 II.getStep()->getType()) 3675 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3676 CMO->setName("cast.cmo"); 3677 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3678 Escape->setName("ind.escape"); 3679 MissingVals[UI] = Escape; 3680 } 3681 } 3682 3683 for (auto &I : MissingVals) { 3684 PHINode *PHI = cast<PHINode>(I.first); 3685 // One corner case we have to handle is two IVs "chasing" each-other, 3686 // that is %IV2 = phi [...], [ %IV1, %latch ] 3687 // In this case, if IV1 has an external use, we need to avoid adding both 3688 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3689 // don't already have an incoming value for the middle block. 3690 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3691 PHI->addIncoming(I.second, MiddleBlock); 3692 } 3693 } 3694 3695 namespace { 3696 3697 struct CSEDenseMapInfo { 3698 static bool canHandle(const Instruction *I) { 3699 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3700 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3701 } 3702 3703 static inline Instruction *getEmptyKey() { 3704 return DenseMapInfo<Instruction *>::getEmptyKey(); 3705 } 3706 3707 static inline Instruction *getTombstoneKey() { 3708 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3709 } 3710 3711 static unsigned getHashValue(const Instruction *I) { 3712 assert(canHandle(I) && "Unknown instruction!"); 3713 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3714 I->value_op_end())); 3715 } 3716 3717 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3718 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3719 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3720 return LHS == RHS; 3721 return LHS->isIdenticalTo(RHS); 3722 } 3723 }; 3724 3725 } // end anonymous namespace 3726 3727 ///Perform cse of induction variable instructions. 3728 static void cse(BasicBlock *BB) { 3729 // Perform simple cse. 3730 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3731 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3732 Instruction *In = &*I++; 3733 3734 if (!CSEDenseMapInfo::canHandle(In)) 3735 continue; 3736 3737 // Check if we can replace this instruction with any of the 3738 // visited instructions. 3739 if (Instruction *V = CSEMap.lookup(In)) { 3740 In->replaceAllUsesWith(V); 3741 In->eraseFromParent(); 3742 continue; 3743 } 3744 3745 CSEMap[In] = In; 3746 } 3747 } 3748 3749 InstructionCost 3750 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3751 bool &NeedToScalarize) { 3752 Function *F = CI->getCalledFunction(); 3753 Type *ScalarRetTy = CI->getType(); 3754 SmallVector<Type *, 4> Tys, ScalarTys; 3755 for (auto &ArgOp : CI->arg_operands()) 3756 ScalarTys.push_back(ArgOp->getType()); 3757 3758 // Estimate cost of scalarized vector call. The source operands are assumed 3759 // to be vectors, so we need to extract individual elements from there, 3760 // execute VF scalar calls, and then gather the result into the vector return 3761 // value. 3762 InstructionCost ScalarCallCost = 3763 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3764 if (VF.isScalar()) 3765 return ScalarCallCost; 3766 3767 // Compute corresponding vector type for return value and arguments. 3768 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3769 for (Type *ScalarTy : ScalarTys) 3770 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3771 3772 // Compute costs of unpacking argument values for the scalar calls and 3773 // packing the return values to a vector. 3774 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3775 3776 InstructionCost Cost = 3777 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3778 3779 // If we can't emit a vector call for this function, then the currently found 3780 // cost is the cost we need to return. 3781 NeedToScalarize = true; 3782 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3783 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3784 3785 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3786 return Cost; 3787 3788 // If the corresponding vector cost is cheaper, return its cost. 3789 InstructionCost VectorCallCost = 3790 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3791 if (VectorCallCost < Cost) { 3792 NeedToScalarize = false; 3793 Cost = VectorCallCost; 3794 } 3795 return Cost; 3796 } 3797 3798 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { 3799 if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) 3800 return Elt; 3801 return VectorType::get(Elt, VF); 3802 } 3803 3804 InstructionCost 3805 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3806 ElementCount VF) { 3807 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3808 assert(ID && "Expected intrinsic call!"); 3809 Type *RetTy = MaybeVectorizeType(CI->getType(), VF); 3810 FastMathFlags FMF; 3811 if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) 3812 FMF = FPMO->getFastMathFlags(); 3813 3814 SmallVector<const Value *> Arguments(CI->arg_begin(), CI->arg_end()); 3815 FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); 3816 SmallVector<Type *> ParamTys; 3817 std::transform(FTy->param_begin(), FTy->param_end(), 3818 std::back_inserter(ParamTys), 3819 [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); 3820 3821 IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, 3822 dyn_cast<IntrinsicInst>(CI)); 3823 return TTI.getIntrinsicInstrCost(CostAttrs, 3824 TargetTransformInfo::TCK_RecipThroughput); 3825 } 3826 3827 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3828 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3829 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3830 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3831 } 3832 3833 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3834 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3835 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3836 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3837 } 3838 3839 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { 3840 // For every instruction `I` in MinBWs, truncate the operands, create a 3841 // truncated version of `I` and reextend its result. InstCombine runs 3842 // later and will remove any ext/trunc pairs. 3843 SmallPtrSet<Value *, 4> Erased; 3844 for (const auto &KV : Cost->getMinimalBitwidths()) { 3845 // If the value wasn't vectorized, we must maintain the original scalar 3846 // type. The absence of the value from State indicates that it 3847 // wasn't vectorized. 3848 VPValue *Def = State.Plan->getVPValue(KV.first); 3849 if (!State.hasAnyVectorValue(Def)) 3850 continue; 3851 for (unsigned Part = 0; Part < UF; ++Part) { 3852 Value *I = State.get(Def, Part); 3853 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3854 continue; 3855 Type *OriginalTy = I->getType(); 3856 Type *ScalarTruncatedTy = 3857 IntegerType::get(OriginalTy->getContext(), KV.second); 3858 auto *TruncatedTy = FixedVectorType::get( 3859 ScalarTruncatedTy, 3860 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3861 if (TruncatedTy == OriginalTy) 3862 continue; 3863 3864 IRBuilder<> B(cast<Instruction>(I)); 3865 auto ShrinkOperand = [&](Value *V) -> Value * { 3866 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3867 if (ZI->getSrcTy() == TruncatedTy) 3868 return ZI->getOperand(0); 3869 return B.CreateZExtOrTrunc(V, TruncatedTy); 3870 }; 3871 3872 // The actual instruction modification depends on the instruction type, 3873 // unfortunately. 3874 Value *NewI = nullptr; 3875 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3876 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3877 ShrinkOperand(BO->getOperand(1))); 3878 3879 // Any wrapping introduced by shrinking this operation shouldn't be 3880 // considered undefined behavior. So, we can't unconditionally copy 3881 // arithmetic wrapping flags to NewI. 3882 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3883 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3884 NewI = 3885 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3886 ShrinkOperand(CI->getOperand(1))); 3887 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3888 NewI = B.CreateSelect(SI->getCondition(), 3889 ShrinkOperand(SI->getTrueValue()), 3890 ShrinkOperand(SI->getFalseValue())); 3891 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3892 switch (CI->getOpcode()) { 3893 default: 3894 llvm_unreachable("Unhandled cast!"); 3895 case Instruction::Trunc: 3896 NewI = ShrinkOperand(CI->getOperand(0)); 3897 break; 3898 case Instruction::SExt: 3899 NewI = B.CreateSExtOrTrunc( 3900 CI->getOperand(0), 3901 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3902 break; 3903 case Instruction::ZExt: 3904 NewI = B.CreateZExtOrTrunc( 3905 CI->getOperand(0), 3906 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3907 break; 3908 } 3909 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3910 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3911 ->getNumElements(); 3912 auto *O0 = B.CreateZExtOrTrunc( 3913 SI->getOperand(0), 3914 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3915 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3916 ->getNumElements(); 3917 auto *O1 = B.CreateZExtOrTrunc( 3918 SI->getOperand(1), 3919 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3920 3921 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3922 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3923 // Don't do anything with the operands, just extend the result. 3924 continue; 3925 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3926 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3927 ->getNumElements(); 3928 auto *O0 = B.CreateZExtOrTrunc( 3929 IE->getOperand(0), 3930 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3931 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3932 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3933 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3934 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3935 ->getNumElements(); 3936 auto *O0 = B.CreateZExtOrTrunc( 3937 EE->getOperand(0), 3938 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3939 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3940 } else { 3941 // If we don't know what to do, be conservative and don't do anything. 3942 continue; 3943 } 3944 3945 // Lastly, extend the result. 3946 NewI->takeName(cast<Instruction>(I)); 3947 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3948 I->replaceAllUsesWith(Res); 3949 cast<Instruction>(I)->eraseFromParent(); 3950 Erased.insert(I); 3951 State.reset(Def, Res, Part); 3952 } 3953 } 3954 3955 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3956 for (const auto &KV : Cost->getMinimalBitwidths()) { 3957 // If the value wasn't vectorized, we must maintain the original scalar 3958 // type. The absence of the value from State indicates that it 3959 // wasn't vectorized. 3960 VPValue *Def = State.Plan->getVPValue(KV.first); 3961 if (!State.hasAnyVectorValue(Def)) 3962 continue; 3963 for (unsigned Part = 0; Part < UF; ++Part) { 3964 Value *I = State.get(Def, Part); 3965 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3966 if (Inst && Inst->use_empty()) { 3967 Value *NewI = Inst->getOperand(0); 3968 Inst->eraseFromParent(); 3969 State.reset(Def, NewI, Part); 3970 } 3971 } 3972 } 3973 } 3974 3975 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3976 // Insert truncates and extends for any truncated instructions as hints to 3977 // InstCombine. 3978 if (VF.isVector()) 3979 truncateToMinimalBitwidths(State); 3980 3981 // Fix widened non-induction PHIs by setting up the PHI operands. 3982 if (OrigPHIsToFix.size()) { 3983 assert(EnableVPlanNativePath && 3984 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3985 fixNonInductionPHIs(State); 3986 } 3987 3988 // At this point every instruction in the original loop is widened to a 3989 // vector form. Now we need to fix the recurrences in the loop. These PHI 3990 // nodes are currently empty because we did not want to introduce cycles. 3991 // This is the second stage of vectorizing recurrences. 3992 fixCrossIterationPHIs(State); 3993 3994 // Forget the original basic block. 3995 PSE.getSE()->forgetLoop(OrigLoop); 3996 3997 // Fix-up external users of the induction variables. 3998 for (auto &Entry : Legal->getInductionVars()) 3999 fixupIVUsers(Entry.first, Entry.second, 4000 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 4001 IVEndValues[Entry.first], LoopMiddleBlock); 4002 4003 fixLCSSAPHIs(State); 4004 for (Instruction *PI : PredicatedInstructions) 4005 sinkScalarOperands(&*PI); 4006 4007 // Remove redundant induction instructions. 4008 cse(LoopVectorBody); 4009 4010 // Set/update profile weights for the vector and remainder loops as original 4011 // loop iterations are now distributed among them. Note that original loop 4012 // represented by LoopScalarBody becomes remainder loop after vectorization. 4013 // 4014 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4015 // end up getting slightly roughened result but that should be OK since 4016 // profile is not inherently precise anyway. Note also possible bypass of 4017 // vector code caused by legality checks is ignored, assigning all the weight 4018 // to the vector loop, optimistically. 4019 // 4020 // For scalable vectorization we can't know at compile time how many iterations 4021 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4022 // vscale of '1'. 4023 setProfileInfoAfterUnrolling( 4024 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4025 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4026 } 4027 4028 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4029 // In order to support recurrences we need to be able to vectorize Phi nodes. 4030 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4031 // stage #2: We now need to fix the recurrences by adding incoming edges to 4032 // the currently empty PHI nodes. At this point every instruction in the 4033 // original loop is widened to a vector form so we can use them to construct 4034 // the incoming edges. 4035 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 4036 // Handle first-order recurrences and reductions that need to be fixed. 4037 if (Legal->isFirstOrderRecurrence(&Phi)) 4038 fixFirstOrderRecurrence(&Phi, State); 4039 else if (Legal->isReductionVariable(&Phi)) 4040 fixReduction(&Phi, State); 4041 } 4042 } 4043 4044 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi, 4045 VPTransformState &State) { 4046 // This is the second phase of vectorizing first-order recurrences. An 4047 // overview of the transformation is described below. Suppose we have the 4048 // following loop. 4049 // 4050 // for (int i = 0; i < n; ++i) 4051 // b[i] = a[i] - a[i - 1]; 4052 // 4053 // There is a first-order recurrence on "a". For this loop, the shorthand 4054 // scalar IR looks like: 4055 // 4056 // scalar.ph: 4057 // s_init = a[-1] 4058 // br scalar.body 4059 // 4060 // scalar.body: 4061 // i = phi [0, scalar.ph], [i+1, scalar.body] 4062 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4063 // s2 = a[i] 4064 // b[i] = s2 - s1 4065 // br cond, scalar.body, ... 4066 // 4067 // In this example, s1 is a recurrence because it's value depends on the 4068 // previous iteration. In the first phase of vectorization, we created a 4069 // temporary value for s1. We now complete the vectorization and produce the 4070 // shorthand vector IR shown below (for VF = 4, UF = 1). 4071 // 4072 // vector.ph: 4073 // v_init = vector(..., ..., ..., a[-1]) 4074 // br vector.body 4075 // 4076 // vector.body 4077 // i = phi [0, vector.ph], [i+4, vector.body] 4078 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4079 // v2 = a[i, i+1, i+2, i+3]; 4080 // v3 = vector(v1(3), v2(0, 1, 2)) 4081 // b[i, i+1, i+2, i+3] = v2 - v3 4082 // br cond, vector.body, middle.block 4083 // 4084 // middle.block: 4085 // x = v2(3) 4086 // br scalar.ph 4087 // 4088 // scalar.ph: 4089 // s_init = phi [x, middle.block], [a[-1], otherwise] 4090 // br scalar.body 4091 // 4092 // After execution completes the vector loop, we extract the next value of 4093 // the recurrence (x) to use as the initial value in the scalar loop. 4094 4095 // Get the original loop preheader and single loop latch. 4096 auto *Preheader = OrigLoop->getLoopPreheader(); 4097 auto *Latch = OrigLoop->getLoopLatch(); 4098 4099 // Get the initial and previous values of the scalar recurrence. 4100 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4101 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4102 4103 // Create a vector from the initial value. 4104 auto *VectorInit = ScalarInit; 4105 if (VF.isVector()) { 4106 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4107 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4108 VectorInit = Builder.CreateInsertElement( 4109 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4110 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 4111 } 4112 4113 VPValue *PhiDef = State.Plan->getVPValue(Phi); 4114 VPValue *PreviousDef = State.Plan->getVPValue(Previous); 4115 // We constructed a temporary phi node in the first phase of vectorization. 4116 // This phi node will eventually be deleted. 4117 Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0))); 4118 4119 // Create a phi node for the new recurrence. The current value will either be 4120 // the initial value inserted into a vector or loop-varying vector value. 4121 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4122 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4123 4124 // Get the vectorized previous value of the last part UF - 1. It appears last 4125 // among all unrolled iterations, due to the order of their construction. 4126 Value *PreviousLastPart = State.get(PreviousDef, UF - 1); 4127 4128 // Find and set the insertion point after the previous value if it is an 4129 // instruction. 4130 BasicBlock::iterator InsertPt; 4131 // Note that the previous value may have been constant-folded so it is not 4132 // guaranteed to be an instruction in the vector loop. 4133 // FIXME: Loop invariant values do not form recurrences. We should deal with 4134 // them earlier. 4135 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4136 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4137 else { 4138 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4139 if (isa<PHINode>(PreviousLastPart)) 4140 // If the previous value is a phi node, we should insert after all the phi 4141 // nodes in the block containing the PHI to avoid breaking basic block 4142 // verification. Note that the basic block may be different to 4143 // LoopVectorBody, in case we predicate the loop. 4144 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4145 else 4146 InsertPt = ++PreviousInst->getIterator(); 4147 } 4148 Builder.SetInsertPoint(&*InsertPt); 4149 4150 // We will construct a vector for the recurrence by combining the values for 4151 // the current and previous iterations. This is the required shuffle mask. 4152 assert(!VF.isScalable()); 4153 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 4154 ShuffleMask[0] = VF.getKnownMinValue() - 1; 4155 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 4156 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 4157 4158 // The vector from which to take the initial value for the current iteration 4159 // (actual or unrolled). Initially, this is the vector phi node. 4160 Value *Incoming = VecPhi; 4161 4162 // Shuffle the current and previous vector and update the vector parts. 4163 for (unsigned Part = 0; Part < UF; ++Part) { 4164 Value *PreviousPart = State.get(PreviousDef, Part); 4165 Value *PhiPart = State.get(PhiDef, Part); 4166 auto *Shuffle = 4167 VF.isVector() 4168 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 4169 : Incoming; 4170 PhiPart->replaceAllUsesWith(Shuffle); 4171 cast<Instruction>(PhiPart)->eraseFromParent(); 4172 State.reset(PhiDef, Shuffle, Part); 4173 Incoming = PreviousPart; 4174 } 4175 4176 // Fix the latch value of the new recurrence in the vector loop. 4177 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4178 4179 // Extract the last vector element in the middle block. This will be the 4180 // initial value for the recurrence when jumping to the scalar loop. 4181 auto *ExtractForScalar = Incoming; 4182 if (VF.isVector()) { 4183 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4184 ExtractForScalar = Builder.CreateExtractElement( 4185 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 4186 "vector.recur.extract"); 4187 } 4188 // Extract the second last element in the middle block if the 4189 // Phi is used outside the loop. We need to extract the phi itself 4190 // and not the last element (the phi update in the current iteration). This 4191 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4192 // when the scalar loop is not run at all. 4193 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4194 if (VF.isVector()) 4195 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4196 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 4197 "vector.recur.extract.for.phi"); 4198 // When loop is unrolled without vectorizing, initialize 4199 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4200 // `Incoming`. This is analogous to the vectorized case above: extracting the 4201 // second last element when VF > 1. 4202 else if (UF > 1) 4203 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4204 4205 // Fix the initial value of the original recurrence in the scalar loop. 4206 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4207 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4208 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4209 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4210 Start->addIncoming(Incoming, BB); 4211 } 4212 4213 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4214 Phi->setName("scalar.recur"); 4215 4216 // Finally, fix users of the recurrence outside the loop. The users will need 4217 // either the last value of the scalar recurrence or the last value of the 4218 // vector recurrence we extracted in the middle block. Since the loop is in 4219 // LCSSA form, we just need to find all the phi nodes for the original scalar 4220 // recurrence in the exit block, and then add an edge for the middle block. 4221 // Note that LCSSA does not imply single entry when the original scalar loop 4222 // had multiple exiting edges (as we always run the last iteration in the 4223 // scalar epilogue); in that case, the exiting path through middle will be 4224 // dynamically dead and the value picked for the phi doesn't matter. 4225 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4226 if (any_of(LCSSAPhi.incoming_values(), 4227 [Phi](Value *V) { return V == Phi; })) 4228 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4229 } 4230 4231 void InnerLoopVectorizer::fixReduction(PHINode *Phi, VPTransformState &State) { 4232 // Get it's reduction variable descriptor. 4233 assert(Legal->isReductionVariable(Phi) && 4234 "Unable to find the reduction variable"); 4235 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4236 4237 RecurKind RK = RdxDesc.getRecurrenceKind(); 4238 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4239 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4240 setDebugLocFromInst(Builder, ReductionStartValue); 4241 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 4242 4243 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4244 // This is the vector-clone of the value that leaves the loop. 4245 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4246 4247 // Wrap flags are in general invalid after vectorization, clear them. 4248 clearReductionWrapFlags(RdxDesc, State); 4249 4250 // Fix the vector-loop phi. 4251 4252 // Reductions do not have to start at zero. They can start with 4253 // any loop invariant values. 4254 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4255 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4256 4257 for (unsigned Part = 0; Part < UF; ++Part) { 4258 Value *VecRdxPhi = State.get(State.Plan->getVPValue(Phi), Part); 4259 Value *Val = State.get(State.Plan->getVPValue(LoopVal), Part); 4260 cast<PHINode>(VecRdxPhi) 4261 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4262 } 4263 4264 // Before each round, move the insertion point right between 4265 // the PHIs and the values we are going to write. 4266 // This allows us to write both PHINodes and the extractelement 4267 // instructions. 4268 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4269 4270 setDebugLocFromInst(Builder, LoopExitInst); 4271 4272 // If tail is folded by masking, the vector value to leave the loop should be 4273 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4274 // instead of the former. For an inloop reduction the reduction will already 4275 // be predicated, and does not need to be handled here. 4276 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4277 for (unsigned Part = 0; Part < UF; ++Part) { 4278 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4279 Value *Sel = nullptr; 4280 for (User *U : VecLoopExitInst->users()) { 4281 if (isa<SelectInst>(U)) { 4282 assert(!Sel && "Reduction exit feeding two selects"); 4283 Sel = U; 4284 } else 4285 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4286 } 4287 assert(Sel && "Reduction exit feeds no select"); 4288 State.reset(LoopExitInstDef, Sel, Part); 4289 4290 // If the target can create a predicated operator for the reduction at no 4291 // extra cost in the loop (for example a predicated vadd), it can be 4292 // cheaper for the select to remain in the loop than be sunk out of it, 4293 // and so use the select value for the phi instead of the old 4294 // LoopExitValue. 4295 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4296 if (PreferPredicatedReductionSelect || 4297 TTI->preferPredicatedReductionSelect( 4298 RdxDesc.getOpcode(), Phi->getType(), 4299 TargetTransformInfo::ReductionFlags())) { 4300 auto *VecRdxPhi = 4301 cast<PHINode>(State.get(State.Plan->getVPValue(Phi), Part)); 4302 VecRdxPhi->setIncomingValueForBlock( 4303 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4304 } 4305 } 4306 } 4307 4308 // If the vector reduction can be performed in a smaller type, we truncate 4309 // then extend the loop exit value to enable InstCombine to evaluate the 4310 // entire expression in the smaller type. 4311 if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) { 4312 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4313 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4314 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4315 Builder.SetInsertPoint( 4316 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4317 VectorParts RdxParts(UF); 4318 for (unsigned Part = 0; Part < UF; ++Part) { 4319 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4320 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4321 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4322 : Builder.CreateZExt(Trunc, VecTy); 4323 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4324 UI != RdxParts[Part]->user_end();) 4325 if (*UI != Trunc) { 4326 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4327 RdxParts[Part] = Extnd; 4328 } else { 4329 ++UI; 4330 } 4331 } 4332 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4333 for (unsigned Part = 0; Part < UF; ++Part) { 4334 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4335 State.reset(LoopExitInstDef, RdxParts[Part], Part); 4336 } 4337 } 4338 4339 // Reduce all of the unrolled parts into a single vector. 4340 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4341 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4342 4343 // The middle block terminator has already been assigned a DebugLoc here (the 4344 // OrigLoop's single latch terminator). We want the whole middle block to 4345 // appear to execute on this line because: (a) it is all compiler generated, 4346 // (b) these instructions are always executed after evaluating the latch 4347 // conditional branch, and (c) other passes may add new predecessors which 4348 // terminate on this line. This is the easiest way to ensure we don't 4349 // accidentally cause an extra step back into the loop while debugging. 4350 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4351 { 4352 // Floating-point operations should have some FMF to enable the reduction. 4353 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4354 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4355 for (unsigned Part = 1; Part < UF; ++Part) { 4356 Value *RdxPart = State.get(LoopExitInstDef, Part); 4357 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4358 ReducedPartRdx = Builder.CreateBinOp( 4359 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4360 } else { 4361 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4362 } 4363 } 4364 } 4365 4366 // Create the reduction after the loop. Note that inloop reductions create the 4367 // target reduction in the loop using a Reduction recipe. 4368 if (VF.isVector() && !IsInLoopReductionPhi) { 4369 ReducedPartRdx = 4370 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4371 // If the reduction can be performed in a smaller type, we need to extend 4372 // the reduction to the wider type before we branch to the original loop. 4373 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4374 ReducedPartRdx = 4375 RdxDesc.isSigned() 4376 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4377 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4378 } 4379 4380 // Create a phi node that merges control-flow from the backedge-taken check 4381 // block and the middle block. 4382 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4383 LoopScalarPreHeader->getTerminator()); 4384 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4385 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4386 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4387 4388 // Now, we need to fix the users of the reduction variable 4389 // inside and outside of the scalar remainder loop. 4390 4391 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4392 // in the exit blocks. See comment on analogous loop in 4393 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4394 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4395 if (any_of(LCSSAPhi.incoming_values(), 4396 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4397 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4398 4399 // Fix the scalar loop reduction variable with the incoming reduction sum 4400 // from the vector body and from the backedge value. 4401 int IncomingEdgeBlockIdx = 4402 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4403 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4404 // Pick the other block. 4405 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4406 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4407 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4408 } 4409 4410 void InnerLoopVectorizer::clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc, 4411 VPTransformState &State) { 4412 RecurKind RK = RdxDesc.getRecurrenceKind(); 4413 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4414 return; 4415 4416 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4417 assert(LoopExitInstr && "null loop exit instruction"); 4418 SmallVector<Instruction *, 8> Worklist; 4419 SmallPtrSet<Instruction *, 8> Visited; 4420 Worklist.push_back(LoopExitInstr); 4421 Visited.insert(LoopExitInstr); 4422 4423 while (!Worklist.empty()) { 4424 Instruction *Cur = Worklist.pop_back_val(); 4425 if (isa<OverflowingBinaryOperator>(Cur)) 4426 for (unsigned Part = 0; Part < UF; ++Part) { 4427 Value *V = State.get(State.Plan->getVPValue(Cur), Part); 4428 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4429 } 4430 4431 for (User *U : Cur->users()) { 4432 Instruction *UI = cast<Instruction>(U); 4433 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4434 Visited.insert(UI).second) 4435 Worklist.push_back(UI); 4436 } 4437 } 4438 } 4439 4440 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4441 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4442 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4443 // Some phis were already hand updated by the reduction and recurrence 4444 // code above, leave them alone. 4445 continue; 4446 4447 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4448 // Non-instruction incoming values will have only one value. 4449 4450 VPLane Lane = VPLane::getFirstLane(); 4451 if (isa<Instruction>(IncomingValue) && 4452 !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue), 4453 VF)) 4454 Lane = VPLane::getLastLaneForVF(VF); 4455 4456 // Can be a loop invariant incoming value or the last scalar value to be 4457 // extracted from the vectorized loop. 4458 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4459 Value *lastIncomingValue = 4460 OrigLoop->isLoopInvariant(IncomingValue) 4461 ? IncomingValue 4462 : State.get(State.Plan->getVPValue(IncomingValue), 4463 VPIteration(UF - 1, Lane)); 4464 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4465 } 4466 } 4467 4468 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4469 // The basic block and loop containing the predicated instruction. 4470 auto *PredBB = PredInst->getParent(); 4471 auto *VectorLoop = LI->getLoopFor(PredBB); 4472 4473 // Initialize a worklist with the operands of the predicated instruction. 4474 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4475 4476 // Holds instructions that we need to analyze again. An instruction may be 4477 // reanalyzed if we don't yet know if we can sink it or not. 4478 SmallVector<Instruction *, 8> InstsToReanalyze; 4479 4480 // Returns true if a given use occurs in the predicated block. Phi nodes use 4481 // their operands in their corresponding predecessor blocks. 4482 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4483 auto *I = cast<Instruction>(U.getUser()); 4484 BasicBlock *BB = I->getParent(); 4485 if (auto *Phi = dyn_cast<PHINode>(I)) 4486 BB = Phi->getIncomingBlock( 4487 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4488 return BB == PredBB; 4489 }; 4490 4491 // Iteratively sink the scalarized operands of the predicated instruction 4492 // into the block we created for it. When an instruction is sunk, it's 4493 // operands are then added to the worklist. The algorithm ends after one pass 4494 // through the worklist doesn't sink a single instruction. 4495 bool Changed; 4496 do { 4497 // Add the instructions that need to be reanalyzed to the worklist, and 4498 // reset the changed indicator. 4499 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4500 InstsToReanalyze.clear(); 4501 Changed = false; 4502 4503 while (!Worklist.empty()) { 4504 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4505 4506 // We can't sink an instruction if it is a phi node, is already in the 4507 // predicated block, is not in the loop, or may have side effects. 4508 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4509 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4510 continue; 4511 4512 // It's legal to sink the instruction if all its uses occur in the 4513 // predicated block. Otherwise, there's nothing to do yet, and we may 4514 // need to reanalyze the instruction. 4515 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4516 InstsToReanalyze.push_back(I); 4517 continue; 4518 } 4519 4520 // Move the instruction to the beginning of the predicated block, and add 4521 // it's operands to the worklist. 4522 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4523 Worklist.insert(I->op_begin(), I->op_end()); 4524 4525 // The sinking may have enabled other instructions to be sunk, so we will 4526 // need to iterate. 4527 Changed = true; 4528 } 4529 } while (Changed); 4530 } 4531 4532 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4533 for (PHINode *OrigPhi : OrigPHIsToFix) { 4534 VPWidenPHIRecipe *VPPhi = 4535 cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi)); 4536 PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); 4537 // Make sure the builder has a valid insert point. 4538 Builder.SetInsertPoint(NewPhi); 4539 for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { 4540 VPValue *Inc = VPPhi->getIncomingValue(i); 4541 VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); 4542 NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); 4543 } 4544 } 4545 } 4546 4547 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4548 VPUser &Operands, unsigned UF, 4549 ElementCount VF, bool IsPtrLoopInvariant, 4550 SmallBitVector &IsIndexLoopInvariant, 4551 VPTransformState &State) { 4552 // Construct a vector GEP by widening the operands of the scalar GEP as 4553 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4554 // results in a vector of pointers when at least one operand of the GEP 4555 // is vector-typed. Thus, to keep the representation compact, we only use 4556 // vector-typed operands for loop-varying values. 4557 4558 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4559 // If we are vectorizing, but the GEP has only loop-invariant operands, 4560 // the GEP we build (by only using vector-typed operands for 4561 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4562 // produce a vector of pointers, we need to either arbitrarily pick an 4563 // operand to broadcast, or broadcast a clone of the original GEP. 4564 // Here, we broadcast a clone of the original. 4565 // 4566 // TODO: If at some point we decide to scalarize instructions having 4567 // loop-invariant operands, this special case will no longer be 4568 // required. We would add the scalarization decision to 4569 // collectLoopScalars() and teach getVectorValue() to broadcast 4570 // the lane-zero scalar value. 4571 auto *Clone = Builder.Insert(GEP->clone()); 4572 for (unsigned Part = 0; Part < UF; ++Part) { 4573 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4574 State.set(VPDef, EntryPart, Part); 4575 addMetadata(EntryPart, GEP); 4576 } 4577 } else { 4578 // If the GEP has at least one loop-varying operand, we are sure to 4579 // produce a vector of pointers. But if we are only unrolling, we want 4580 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4581 // produce with the code below will be scalar (if VF == 1) or vector 4582 // (otherwise). Note that for the unroll-only case, we still maintain 4583 // values in the vector mapping with initVector, as we do for other 4584 // instructions. 4585 for (unsigned Part = 0; Part < UF; ++Part) { 4586 // The pointer operand of the new GEP. If it's loop-invariant, we 4587 // won't broadcast it. 4588 auto *Ptr = IsPtrLoopInvariant 4589 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4590 : State.get(Operands.getOperand(0), Part); 4591 4592 // Collect all the indices for the new GEP. If any index is 4593 // loop-invariant, we won't broadcast it. 4594 SmallVector<Value *, 4> Indices; 4595 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4596 VPValue *Operand = Operands.getOperand(I); 4597 if (IsIndexLoopInvariant[I - 1]) 4598 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4599 else 4600 Indices.push_back(State.get(Operand, Part)); 4601 } 4602 4603 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4604 // but it should be a vector, otherwise. 4605 auto *NewGEP = 4606 GEP->isInBounds() 4607 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4608 Indices) 4609 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4610 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4611 "NewGEP is not a pointer vector"); 4612 State.set(VPDef, NewGEP, Part); 4613 addMetadata(NewGEP, GEP); 4614 } 4615 } 4616 } 4617 4618 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4619 RecurrenceDescriptor *RdxDesc, 4620 VPValue *StartVPV, VPValue *Def, 4621 VPTransformState &State) { 4622 PHINode *P = cast<PHINode>(PN); 4623 if (EnableVPlanNativePath) { 4624 // Currently we enter here in the VPlan-native path for non-induction 4625 // PHIs where all control flow is uniform. We simply widen these PHIs. 4626 // Create a vector phi with no operands - the vector phi operands will be 4627 // set at the end of vector code generation. 4628 Type *VecTy = (State.VF.isScalar()) 4629 ? PN->getType() 4630 : VectorType::get(PN->getType(), State.VF); 4631 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4632 State.set(Def, VecPhi, 0); 4633 OrigPHIsToFix.push_back(P); 4634 4635 return; 4636 } 4637 4638 assert(PN->getParent() == OrigLoop->getHeader() && 4639 "Non-header phis should have been handled elsewhere"); 4640 4641 Value *StartV = StartVPV ? StartVPV->getLiveInIRValue() : nullptr; 4642 // In order to support recurrences we need to be able to vectorize Phi nodes. 4643 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4644 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4645 // this value when we vectorize all of the instructions that use the PHI. 4646 if (RdxDesc || Legal->isFirstOrderRecurrence(P)) { 4647 Value *Iden = nullptr; 4648 bool ScalarPHI = 4649 (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4650 Type *VecTy = 4651 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 4652 4653 if (RdxDesc) { 4654 assert(Legal->isReductionVariable(P) && StartV && 4655 "RdxDesc should only be set for reduction variables; in that case " 4656 "a StartV is also required"); 4657 RecurKind RK = RdxDesc->getRecurrenceKind(); 4658 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 4659 // MinMax reduction have the start value as their identify. 4660 if (ScalarPHI) { 4661 Iden = StartV; 4662 } else { 4663 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4664 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4665 StartV = Iden = 4666 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 4667 } 4668 } else { 4669 Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity( 4670 RK, VecTy->getScalarType()); 4671 Iden = IdenC; 4672 4673 if (!ScalarPHI) { 4674 Iden = ConstantVector::getSplat(State.VF, IdenC); 4675 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4676 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4677 Constant *Zero = Builder.getInt32(0); 4678 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 4679 } 4680 } 4681 } 4682 4683 for (unsigned Part = 0; Part < State.UF; ++Part) { 4684 // This is phase one of vectorizing PHIs. 4685 Value *EntryPart = PHINode::Create( 4686 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4687 State.set(Def, EntryPart, Part); 4688 if (StartV) { 4689 // Make sure to add the reduction start value only to the 4690 // first unroll part. 4691 Value *StartVal = (Part == 0) ? StartV : Iden; 4692 cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader); 4693 } 4694 } 4695 return; 4696 } 4697 4698 assert(!Legal->isReductionVariable(P) && 4699 "reductions should be handled above"); 4700 4701 setDebugLocFromInst(Builder, P); 4702 4703 // This PHINode must be an induction variable. 4704 // Make sure that we know about it. 4705 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4706 4707 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4708 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4709 4710 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4711 // which can be found from the original scalar operations. 4712 switch (II.getKind()) { 4713 case InductionDescriptor::IK_NoInduction: 4714 llvm_unreachable("Unknown induction"); 4715 case InductionDescriptor::IK_IntInduction: 4716 case InductionDescriptor::IK_FpInduction: 4717 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4718 case InductionDescriptor::IK_PtrInduction: { 4719 // Handle the pointer induction variable case. 4720 assert(P->getType()->isPointerTy() && "Unexpected type."); 4721 4722 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4723 // This is the normalized GEP that starts counting at zero. 4724 Value *PtrInd = 4725 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4726 // Determine the number of scalars we need to generate for each unroll 4727 // iteration. If the instruction is uniform, we only need to generate the 4728 // first lane. Otherwise, we generate all VF values. 4729 unsigned Lanes = Cost->isUniformAfterVectorization(P, State.VF) 4730 ? 1 4731 : State.VF.getKnownMinValue(); 4732 for (unsigned Part = 0; Part < UF; ++Part) { 4733 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4734 Constant *Idx = ConstantInt::get( 4735 PtrInd->getType(), Lane + Part * State.VF.getKnownMinValue()); 4736 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4737 Value *SclrGep = 4738 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4739 SclrGep->setName("next.gep"); 4740 State.set(Def, SclrGep, VPIteration(Part, Lane)); 4741 } 4742 } 4743 return; 4744 } 4745 assert(isa<SCEVConstant>(II.getStep()) && 4746 "Induction step not a SCEV constant!"); 4747 Type *PhiType = II.getStep()->getType(); 4748 4749 // Build a pointer phi 4750 Value *ScalarStartValue = II.getStartValue(); 4751 Type *ScStValueType = ScalarStartValue->getType(); 4752 PHINode *NewPointerPhi = 4753 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4754 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4755 4756 // A pointer induction, performed by using a gep 4757 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4758 Instruction *InductionLoc = LoopLatch->getTerminator(); 4759 const SCEV *ScalarStep = II.getStep(); 4760 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4761 Value *ScalarStepValue = 4762 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4763 Value *InductionGEP = GetElementPtrInst::Create( 4764 ScStValueType->getPointerElementType(), NewPointerPhi, 4765 Builder.CreateMul( 4766 ScalarStepValue, 4767 ConstantInt::get(PhiType, State.VF.getKnownMinValue() * State.UF)), 4768 "ptr.ind", InductionLoc); 4769 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4770 4771 // Create UF many actual address geps that use the pointer 4772 // phi as base and a vectorized version of the step value 4773 // (<step*0, ..., step*N>) as offset. 4774 for (unsigned Part = 0; Part < State.UF; ++Part) { 4775 SmallVector<Constant *, 8> Indices; 4776 // Create a vector of consecutive numbers from zero to VF. 4777 for (unsigned i = 0; i < State.VF.getKnownMinValue(); ++i) 4778 Indices.push_back( 4779 ConstantInt::get(PhiType, i + Part * State.VF.getKnownMinValue())); 4780 Constant *StartOffset = ConstantVector::get(Indices); 4781 4782 Value *GEP = Builder.CreateGEP( 4783 ScStValueType->getPointerElementType(), NewPointerPhi, 4784 Builder.CreateMul(StartOffset, 4785 Builder.CreateVectorSplat( 4786 State.VF.getKnownMinValue(), ScalarStepValue), 4787 "vector.gep")); 4788 State.set(Def, GEP, Part); 4789 } 4790 } 4791 } 4792 } 4793 4794 /// A helper function for checking whether an integer division-related 4795 /// instruction may divide by zero (in which case it must be predicated if 4796 /// executed conditionally in the scalar code). 4797 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4798 /// Non-zero divisors that are non compile-time constants will not be 4799 /// converted into multiplication, so we will still end up scalarizing 4800 /// the division, but can do so w/o predication. 4801 static bool mayDivideByZero(Instruction &I) { 4802 assert((I.getOpcode() == Instruction::UDiv || 4803 I.getOpcode() == Instruction::SDiv || 4804 I.getOpcode() == Instruction::URem || 4805 I.getOpcode() == Instruction::SRem) && 4806 "Unexpected instruction"); 4807 Value *Divisor = I.getOperand(1); 4808 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4809 return !CInt || CInt->isZero(); 4810 } 4811 4812 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4813 VPUser &User, 4814 VPTransformState &State) { 4815 switch (I.getOpcode()) { 4816 case Instruction::Call: 4817 case Instruction::Br: 4818 case Instruction::PHI: 4819 case Instruction::GetElementPtr: 4820 case Instruction::Select: 4821 llvm_unreachable("This instruction is handled by a different recipe."); 4822 case Instruction::UDiv: 4823 case Instruction::SDiv: 4824 case Instruction::SRem: 4825 case Instruction::URem: 4826 case Instruction::Add: 4827 case Instruction::FAdd: 4828 case Instruction::Sub: 4829 case Instruction::FSub: 4830 case Instruction::FNeg: 4831 case Instruction::Mul: 4832 case Instruction::FMul: 4833 case Instruction::FDiv: 4834 case Instruction::FRem: 4835 case Instruction::Shl: 4836 case Instruction::LShr: 4837 case Instruction::AShr: 4838 case Instruction::And: 4839 case Instruction::Or: 4840 case Instruction::Xor: { 4841 // Just widen unops and binops. 4842 setDebugLocFromInst(Builder, &I); 4843 4844 for (unsigned Part = 0; Part < UF; ++Part) { 4845 SmallVector<Value *, 2> Ops; 4846 for (VPValue *VPOp : User.operands()) 4847 Ops.push_back(State.get(VPOp, Part)); 4848 4849 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4850 4851 if (auto *VecOp = dyn_cast<Instruction>(V)) 4852 VecOp->copyIRFlags(&I); 4853 4854 // Use this vector value for all users of the original instruction. 4855 State.set(Def, V, Part); 4856 addMetadata(V, &I); 4857 } 4858 4859 break; 4860 } 4861 case Instruction::ICmp: 4862 case Instruction::FCmp: { 4863 // Widen compares. Generate vector compares. 4864 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4865 auto *Cmp = cast<CmpInst>(&I); 4866 setDebugLocFromInst(Builder, Cmp); 4867 for (unsigned Part = 0; Part < UF; ++Part) { 4868 Value *A = State.get(User.getOperand(0), Part); 4869 Value *B = State.get(User.getOperand(1), Part); 4870 Value *C = nullptr; 4871 if (FCmp) { 4872 // Propagate fast math flags. 4873 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4874 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4875 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4876 } else { 4877 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4878 } 4879 State.set(Def, C, Part); 4880 addMetadata(C, &I); 4881 } 4882 4883 break; 4884 } 4885 4886 case Instruction::ZExt: 4887 case Instruction::SExt: 4888 case Instruction::FPToUI: 4889 case Instruction::FPToSI: 4890 case Instruction::FPExt: 4891 case Instruction::PtrToInt: 4892 case Instruction::IntToPtr: 4893 case Instruction::SIToFP: 4894 case Instruction::UIToFP: 4895 case Instruction::Trunc: 4896 case Instruction::FPTrunc: 4897 case Instruction::BitCast: { 4898 auto *CI = cast<CastInst>(&I); 4899 setDebugLocFromInst(Builder, CI); 4900 4901 /// Vectorize casts. 4902 Type *DestTy = 4903 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4904 4905 for (unsigned Part = 0; Part < UF; ++Part) { 4906 Value *A = State.get(User.getOperand(0), Part); 4907 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4908 State.set(Def, Cast, Part); 4909 addMetadata(Cast, &I); 4910 } 4911 break; 4912 } 4913 default: 4914 // This instruction is not vectorized by simple widening. 4915 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4916 llvm_unreachable("Unhandled instruction!"); 4917 } // end of switch. 4918 } 4919 4920 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4921 VPUser &ArgOperands, 4922 VPTransformState &State) { 4923 assert(!isa<DbgInfoIntrinsic>(I) && 4924 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4925 setDebugLocFromInst(Builder, &I); 4926 4927 Module *M = I.getParent()->getParent()->getParent(); 4928 auto *CI = cast<CallInst>(&I); 4929 4930 SmallVector<Type *, 4> Tys; 4931 for (Value *ArgOperand : CI->arg_operands()) 4932 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4933 4934 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4935 4936 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4937 // version of the instruction. 4938 // Is it beneficial to perform intrinsic call compared to lib call? 4939 bool NeedToScalarize = false; 4940 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4941 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4942 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4943 assert((UseVectorIntrinsic || !NeedToScalarize) && 4944 "Instruction should be scalarized elsewhere."); 4945 assert(IntrinsicCost.isValid() && CallCost.isValid() && 4946 "Cannot have invalid costs while widening"); 4947 4948 for (unsigned Part = 0; Part < UF; ++Part) { 4949 SmallVector<Value *, 4> Args; 4950 for (auto &I : enumerate(ArgOperands.operands())) { 4951 // Some intrinsics have a scalar argument - don't replace it with a 4952 // vector. 4953 Value *Arg; 4954 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4955 Arg = State.get(I.value(), Part); 4956 else 4957 Arg = State.get(I.value(), VPIteration(0, 0)); 4958 Args.push_back(Arg); 4959 } 4960 4961 Function *VectorF; 4962 if (UseVectorIntrinsic) { 4963 // Use vector version of the intrinsic. 4964 Type *TysForDecl[] = {CI->getType()}; 4965 if (VF.isVector()) 4966 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4967 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4968 assert(VectorF && "Can't retrieve vector intrinsic."); 4969 } else { 4970 // Use vector version of the function call. 4971 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4972 #ifndef NDEBUG 4973 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4974 "Can't create vector function."); 4975 #endif 4976 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4977 } 4978 SmallVector<OperandBundleDef, 1> OpBundles; 4979 CI->getOperandBundlesAsDefs(OpBundles); 4980 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4981 4982 if (isa<FPMathOperator>(V)) 4983 V->copyFastMathFlags(CI); 4984 4985 State.set(Def, V, Part); 4986 addMetadata(V, &I); 4987 } 4988 } 4989 4990 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 4991 VPUser &Operands, 4992 bool InvariantCond, 4993 VPTransformState &State) { 4994 setDebugLocFromInst(Builder, &I); 4995 4996 // The condition can be loop invariant but still defined inside the 4997 // loop. This means that we can't just use the original 'cond' value. 4998 // We have to take the 'vectorized' value and pick the first lane. 4999 // Instcombine will make this a no-op. 5000 auto *InvarCond = InvariantCond 5001 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5002 : nullptr; 5003 5004 for (unsigned Part = 0; Part < UF; ++Part) { 5005 Value *Cond = 5006 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5007 Value *Op0 = State.get(Operands.getOperand(1), Part); 5008 Value *Op1 = State.get(Operands.getOperand(2), Part); 5009 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5010 State.set(VPDef, Sel, Part); 5011 addMetadata(Sel, &I); 5012 } 5013 } 5014 5015 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5016 // We should not collect Scalars more than once per VF. Right now, this 5017 // function is called from collectUniformsAndScalars(), which already does 5018 // this check. Collecting Scalars for VF=1 does not make any sense. 5019 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5020 "This function should not be visited twice for the same VF"); 5021 5022 SmallSetVector<Instruction *, 8> Worklist; 5023 5024 // These sets are used to seed the analysis with pointers used by memory 5025 // accesses that will remain scalar. 5026 SmallSetVector<Instruction *, 8> ScalarPtrs; 5027 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5028 auto *Latch = TheLoop->getLoopLatch(); 5029 5030 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5031 // The pointer operands of loads and stores will be scalar as long as the 5032 // memory access is not a gather or scatter operation. The value operand of a 5033 // store will remain scalar if the store is scalarized. 5034 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5035 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5036 assert(WideningDecision != CM_Unknown && 5037 "Widening decision should be ready at this moment"); 5038 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5039 if (Ptr == Store->getValueOperand()) 5040 return WideningDecision == CM_Scalarize; 5041 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5042 "Ptr is neither a value or pointer operand"); 5043 return WideningDecision != CM_GatherScatter; 5044 }; 5045 5046 // A helper that returns true if the given value is a bitcast or 5047 // getelementptr instruction contained in the loop. 5048 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5049 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5050 isa<GetElementPtrInst>(V)) && 5051 !TheLoop->isLoopInvariant(V); 5052 }; 5053 5054 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5055 if (!isa<PHINode>(Ptr) || 5056 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5057 return false; 5058 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5059 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5060 return false; 5061 return isScalarUse(MemAccess, Ptr); 5062 }; 5063 5064 // A helper that evaluates a memory access's use of a pointer. If the 5065 // pointer is actually the pointer induction of a loop, it is being 5066 // inserted into Worklist. If the use will be a scalar use, and the 5067 // pointer is only used by memory accesses, we place the pointer in 5068 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5069 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5070 if (isScalarPtrInduction(MemAccess, Ptr)) { 5071 Worklist.insert(cast<Instruction>(Ptr)); 5072 Instruction *Update = cast<Instruction>( 5073 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5074 Worklist.insert(Update); 5075 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5076 << "\n"); 5077 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 5078 << "\n"); 5079 return; 5080 } 5081 // We only care about bitcast and getelementptr instructions contained in 5082 // the loop. 5083 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5084 return; 5085 5086 // If the pointer has already been identified as scalar (e.g., if it was 5087 // also identified as uniform), there's nothing to do. 5088 auto *I = cast<Instruction>(Ptr); 5089 if (Worklist.count(I)) 5090 return; 5091 5092 // If the use of the pointer will be a scalar use, and all users of the 5093 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5094 // place the pointer in PossibleNonScalarPtrs. 5095 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5096 return isa<LoadInst>(U) || isa<StoreInst>(U); 5097 })) 5098 ScalarPtrs.insert(I); 5099 else 5100 PossibleNonScalarPtrs.insert(I); 5101 }; 5102 5103 // We seed the scalars analysis with three classes of instructions: (1) 5104 // instructions marked uniform-after-vectorization and (2) bitcast, 5105 // getelementptr and (pointer) phi instructions used by memory accesses 5106 // requiring a scalar use. 5107 // 5108 // (1) Add to the worklist all instructions that have been identified as 5109 // uniform-after-vectorization. 5110 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5111 5112 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5113 // memory accesses requiring a scalar use. The pointer operands of loads and 5114 // stores will be scalar as long as the memory accesses is not a gather or 5115 // scatter operation. The value operand of a store will remain scalar if the 5116 // store is scalarized. 5117 for (auto *BB : TheLoop->blocks()) 5118 for (auto &I : *BB) { 5119 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5120 evaluatePtrUse(Load, Load->getPointerOperand()); 5121 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5122 evaluatePtrUse(Store, Store->getPointerOperand()); 5123 evaluatePtrUse(Store, Store->getValueOperand()); 5124 } 5125 } 5126 for (auto *I : ScalarPtrs) 5127 if (!PossibleNonScalarPtrs.count(I)) { 5128 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5129 Worklist.insert(I); 5130 } 5131 5132 // Insert the forced scalars. 5133 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5134 // induction variable when the PHI user is scalarized. 5135 auto ForcedScalar = ForcedScalars.find(VF); 5136 if (ForcedScalar != ForcedScalars.end()) 5137 for (auto *I : ForcedScalar->second) 5138 Worklist.insert(I); 5139 5140 // Expand the worklist by looking through any bitcasts and getelementptr 5141 // instructions we've already identified as scalar. This is similar to the 5142 // expansion step in collectLoopUniforms(); however, here we're only 5143 // expanding to include additional bitcasts and getelementptr instructions. 5144 unsigned Idx = 0; 5145 while (Idx != Worklist.size()) { 5146 Instruction *Dst = Worklist[Idx++]; 5147 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5148 continue; 5149 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5150 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5151 auto *J = cast<Instruction>(U); 5152 return !TheLoop->contains(J) || Worklist.count(J) || 5153 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5154 isScalarUse(J, Src)); 5155 })) { 5156 Worklist.insert(Src); 5157 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5158 } 5159 } 5160 5161 // An induction variable will remain scalar if all users of the induction 5162 // variable and induction variable update remain scalar. 5163 for (auto &Induction : Legal->getInductionVars()) { 5164 auto *Ind = Induction.first; 5165 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5166 5167 // If tail-folding is applied, the primary induction variable will be used 5168 // to feed a vector compare. 5169 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5170 continue; 5171 5172 // Determine if all users of the induction variable are scalar after 5173 // vectorization. 5174 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5175 auto *I = cast<Instruction>(U); 5176 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5177 }); 5178 if (!ScalarInd) 5179 continue; 5180 5181 // Determine if all users of the induction variable update instruction are 5182 // scalar after vectorization. 5183 auto ScalarIndUpdate = 5184 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5185 auto *I = cast<Instruction>(U); 5186 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5187 }); 5188 if (!ScalarIndUpdate) 5189 continue; 5190 5191 // The induction variable and its update instruction will remain scalar. 5192 Worklist.insert(Ind); 5193 Worklist.insert(IndUpdate); 5194 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5195 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5196 << "\n"); 5197 } 5198 5199 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5200 } 5201 5202 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, 5203 ElementCount VF) { 5204 if (!blockNeedsPredication(I->getParent())) 5205 return false; 5206 switch(I->getOpcode()) { 5207 default: 5208 break; 5209 case Instruction::Load: 5210 case Instruction::Store: { 5211 if (!Legal->isMaskRequired(I)) 5212 return false; 5213 auto *Ptr = getLoadStorePointerOperand(I); 5214 auto *Ty = getMemInstValueType(I); 5215 // We have already decided how to vectorize this instruction, get that 5216 // result. 5217 if (VF.isVector()) { 5218 InstWidening WideningDecision = getWideningDecision(I, VF); 5219 assert(WideningDecision != CM_Unknown && 5220 "Widening decision should be ready at this moment"); 5221 return WideningDecision == CM_Scalarize; 5222 } 5223 const Align Alignment = getLoadStoreAlignment(I); 5224 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5225 isLegalMaskedGather(Ty, Alignment)) 5226 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5227 isLegalMaskedScatter(Ty, Alignment)); 5228 } 5229 case Instruction::UDiv: 5230 case Instruction::SDiv: 5231 case Instruction::SRem: 5232 case Instruction::URem: 5233 return mayDivideByZero(*I); 5234 } 5235 return false; 5236 } 5237 5238 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5239 Instruction *I, ElementCount VF) { 5240 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5241 assert(getWideningDecision(I, VF) == CM_Unknown && 5242 "Decision should not be set yet."); 5243 auto *Group = getInterleavedAccessGroup(I); 5244 assert(Group && "Must have a group."); 5245 5246 // If the instruction's allocated size doesn't equal it's type size, it 5247 // requires padding and will be scalarized. 5248 auto &DL = I->getModule()->getDataLayout(); 5249 auto *ScalarTy = getMemInstValueType(I); 5250 if (hasIrregularType(ScalarTy, DL, VF)) 5251 return false; 5252 5253 // Check if masking is required. 5254 // A Group may need masking for one of two reasons: it resides in a block that 5255 // needs predication, or it was decided to use masking to deal with gaps. 5256 bool PredicatedAccessRequiresMasking = 5257 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5258 bool AccessWithGapsRequiresMasking = 5259 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5260 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5261 return true; 5262 5263 // If masked interleaving is required, we expect that the user/target had 5264 // enabled it, because otherwise it either wouldn't have been created or 5265 // it should have been invalidated by the CostModel. 5266 assert(useMaskedInterleavedAccesses(TTI) && 5267 "Masked interleave-groups for predicated accesses are not enabled."); 5268 5269 auto *Ty = getMemInstValueType(I); 5270 const Align Alignment = getLoadStoreAlignment(I); 5271 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5272 : TTI.isLegalMaskedStore(Ty, Alignment); 5273 } 5274 5275 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5276 Instruction *I, ElementCount VF) { 5277 // Get and ensure we have a valid memory instruction. 5278 LoadInst *LI = dyn_cast<LoadInst>(I); 5279 StoreInst *SI = dyn_cast<StoreInst>(I); 5280 assert((LI || SI) && "Invalid memory instruction"); 5281 5282 auto *Ptr = getLoadStorePointerOperand(I); 5283 5284 // In order to be widened, the pointer should be consecutive, first of all. 5285 if (!Legal->isConsecutivePtr(Ptr)) 5286 return false; 5287 5288 // If the instruction is a store located in a predicated block, it will be 5289 // scalarized. 5290 if (isScalarWithPredication(I)) 5291 return false; 5292 5293 // If the instruction's allocated size doesn't equal it's type size, it 5294 // requires padding and will be scalarized. 5295 auto &DL = I->getModule()->getDataLayout(); 5296 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5297 if (hasIrregularType(ScalarTy, DL, VF)) 5298 return false; 5299 5300 return true; 5301 } 5302 5303 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5304 // We should not collect Uniforms more than once per VF. Right now, 5305 // this function is called from collectUniformsAndScalars(), which 5306 // already does this check. Collecting Uniforms for VF=1 does not make any 5307 // sense. 5308 5309 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5310 "This function should not be visited twice for the same VF"); 5311 5312 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5313 // not analyze again. Uniforms.count(VF) will return 1. 5314 Uniforms[VF].clear(); 5315 5316 // We now know that the loop is vectorizable! 5317 // Collect instructions inside the loop that will remain uniform after 5318 // vectorization. 5319 5320 // Global values, params and instructions outside of current loop are out of 5321 // scope. 5322 auto isOutOfScope = [&](Value *V) -> bool { 5323 Instruction *I = dyn_cast<Instruction>(V); 5324 return (!I || !TheLoop->contains(I)); 5325 }; 5326 5327 SetVector<Instruction *> Worklist; 5328 BasicBlock *Latch = TheLoop->getLoopLatch(); 5329 5330 // Instructions that are scalar with predication must not be considered 5331 // uniform after vectorization, because that would create an erroneous 5332 // replicating region where only a single instance out of VF should be formed. 5333 // TODO: optimize such seldom cases if found important, see PR40816. 5334 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5335 if (isOutOfScope(I)) { 5336 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5337 << *I << "\n"); 5338 return; 5339 } 5340 if (isScalarWithPredication(I, VF)) { 5341 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5342 << *I << "\n"); 5343 return; 5344 } 5345 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5346 Worklist.insert(I); 5347 }; 5348 5349 // Start with the conditional branch. If the branch condition is an 5350 // instruction contained in the loop that is only used by the branch, it is 5351 // uniform. 5352 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5353 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5354 addToWorklistIfAllowed(Cmp); 5355 5356 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5357 InstWidening WideningDecision = getWideningDecision(I, VF); 5358 assert(WideningDecision != CM_Unknown && 5359 "Widening decision should be ready at this moment"); 5360 5361 // A uniform memory op is itself uniform. We exclude uniform stores 5362 // here as they demand the last lane, not the first one. 5363 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5364 assert(WideningDecision == CM_Scalarize); 5365 return true; 5366 } 5367 5368 return (WideningDecision == CM_Widen || 5369 WideningDecision == CM_Widen_Reverse || 5370 WideningDecision == CM_Interleave); 5371 }; 5372 5373 5374 // Returns true if Ptr is the pointer operand of a memory access instruction 5375 // I, and I is known to not require scalarization. 5376 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5377 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5378 }; 5379 5380 // Holds a list of values which are known to have at least one uniform use. 5381 // Note that there may be other uses which aren't uniform. A "uniform use" 5382 // here is something which only demands lane 0 of the unrolled iterations; 5383 // it does not imply that all lanes produce the same value (e.g. this is not 5384 // the usual meaning of uniform) 5385 SmallPtrSet<Value *, 8> HasUniformUse; 5386 5387 // Scan the loop for instructions which are either a) known to have only 5388 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5389 for (auto *BB : TheLoop->blocks()) 5390 for (auto &I : *BB) { 5391 // If there's no pointer operand, there's nothing to do. 5392 auto *Ptr = getLoadStorePointerOperand(&I); 5393 if (!Ptr) 5394 continue; 5395 5396 // A uniform memory op is itself uniform. We exclude uniform stores 5397 // here as they demand the last lane, not the first one. 5398 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5399 addToWorklistIfAllowed(&I); 5400 5401 if (isUniformDecision(&I, VF)) { 5402 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5403 HasUniformUse.insert(Ptr); 5404 } 5405 } 5406 5407 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5408 // demanding) users. Since loops are assumed to be in LCSSA form, this 5409 // disallows uses outside the loop as well. 5410 for (auto *V : HasUniformUse) { 5411 if (isOutOfScope(V)) 5412 continue; 5413 auto *I = cast<Instruction>(V); 5414 auto UsersAreMemAccesses = 5415 llvm::all_of(I->users(), [&](User *U) -> bool { 5416 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5417 }); 5418 if (UsersAreMemAccesses) 5419 addToWorklistIfAllowed(I); 5420 } 5421 5422 // Expand Worklist in topological order: whenever a new instruction 5423 // is added , its users should be already inside Worklist. It ensures 5424 // a uniform instruction will only be used by uniform instructions. 5425 unsigned idx = 0; 5426 while (idx != Worklist.size()) { 5427 Instruction *I = Worklist[idx++]; 5428 5429 for (auto OV : I->operand_values()) { 5430 // isOutOfScope operands cannot be uniform instructions. 5431 if (isOutOfScope(OV)) 5432 continue; 5433 // First order recurrence Phi's should typically be considered 5434 // non-uniform. 5435 auto *OP = dyn_cast<PHINode>(OV); 5436 if (OP && Legal->isFirstOrderRecurrence(OP)) 5437 continue; 5438 // If all the users of the operand are uniform, then add the 5439 // operand into the uniform worklist. 5440 auto *OI = cast<Instruction>(OV); 5441 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5442 auto *J = cast<Instruction>(U); 5443 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5444 })) 5445 addToWorklistIfAllowed(OI); 5446 } 5447 } 5448 5449 // For an instruction to be added into Worklist above, all its users inside 5450 // the loop should also be in Worklist. However, this condition cannot be 5451 // true for phi nodes that form a cyclic dependence. We must process phi 5452 // nodes separately. An induction variable will remain uniform if all users 5453 // of the induction variable and induction variable update remain uniform. 5454 // The code below handles both pointer and non-pointer induction variables. 5455 for (auto &Induction : Legal->getInductionVars()) { 5456 auto *Ind = Induction.first; 5457 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5458 5459 // Determine if all users of the induction variable are uniform after 5460 // vectorization. 5461 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5462 auto *I = cast<Instruction>(U); 5463 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5464 isVectorizedMemAccessUse(I, Ind); 5465 }); 5466 if (!UniformInd) 5467 continue; 5468 5469 // Determine if all users of the induction variable update instruction are 5470 // uniform after vectorization. 5471 auto UniformIndUpdate = 5472 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5473 auto *I = cast<Instruction>(U); 5474 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5475 isVectorizedMemAccessUse(I, IndUpdate); 5476 }); 5477 if (!UniformIndUpdate) 5478 continue; 5479 5480 // The induction variable and its update instruction will remain uniform. 5481 addToWorklistIfAllowed(Ind); 5482 addToWorklistIfAllowed(IndUpdate); 5483 } 5484 5485 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5486 } 5487 5488 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5489 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5490 5491 if (Legal->getRuntimePointerChecking()->Need) { 5492 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5493 "runtime pointer checks needed. Enable vectorization of this " 5494 "loop with '#pragma clang loop vectorize(enable)' when " 5495 "compiling with -Os/-Oz", 5496 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5497 return true; 5498 } 5499 5500 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5501 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5502 "runtime SCEV checks needed. Enable vectorization of this " 5503 "loop with '#pragma clang loop vectorize(enable)' when " 5504 "compiling with -Os/-Oz", 5505 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5506 return true; 5507 } 5508 5509 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5510 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5511 reportVectorizationFailure("Runtime stride check for small trip count", 5512 "runtime stride == 1 checks needed. Enable vectorization of " 5513 "this loop without such check by compiling with -Os/-Oz", 5514 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5515 return true; 5516 } 5517 5518 return false; 5519 } 5520 5521 Optional<ElementCount> 5522 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5523 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5524 // TODO: It may by useful to do since it's still likely to be dynamically 5525 // uniform if the target can skip. 5526 reportVectorizationFailure( 5527 "Not inserting runtime ptr check for divergent target", 5528 "runtime pointer checks needed. Not enabled for divergent target", 5529 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5530 return None; 5531 } 5532 5533 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5534 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5535 if (TC == 1) { 5536 reportVectorizationFailure("Single iteration (non) loop", 5537 "loop trip count is one, irrelevant for vectorization", 5538 "SingleIterationLoop", ORE, TheLoop); 5539 return None; 5540 } 5541 5542 switch (ScalarEpilogueStatus) { 5543 case CM_ScalarEpilogueAllowed: 5544 return computeFeasibleMaxVF(TC, UserVF); 5545 case CM_ScalarEpilogueNotAllowedUsePredicate: 5546 LLVM_FALLTHROUGH; 5547 case CM_ScalarEpilogueNotNeededUsePredicate: 5548 LLVM_DEBUG( 5549 dbgs() << "LV: vector predicate hint/switch found.\n" 5550 << "LV: Not allowing scalar epilogue, creating predicated " 5551 << "vector loop.\n"); 5552 break; 5553 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5554 // fallthrough as a special case of OptForSize 5555 case CM_ScalarEpilogueNotAllowedOptSize: 5556 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5557 LLVM_DEBUG( 5558 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5559 else 5560 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5561 << "count.\n"); 5562 5563 // Bail if runtime checks are required, which are not good when optimising 5564 // for size. 5565 if (runtimeChecksRequired()) 5566 return None; 5567 5568 break; 5569 } 5570 5571 // The only loops we can vectorize without a scalar epilogue, are loops with 5572 // a bottom-test and a single exiting block. We'd have to handle the fact 5573 // that not every instruction executes on the last iteration. This will 5574 // require a lane mask which varies through the vector loop body. (TODO) 5575 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5576 // If there was a tail-folding hint/switch, but we can't fold the tail by 5577 // masking, fallback to a vectorization with a scalar epilogue. 5578 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5579 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5580 "scalar epilogue instead.\n"); 5581 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5582 return computeFeasibleMaxVF(TC, UserVF); 5583 } 5584 return None; 5585 } 5586 5587 // Now try the tail folding 5588 5589 // Invalidate interleave groups that require an epilogue if we can't mask 5590 // the interleave-group. 5591 if (!useMaskedInterleavedAccesses(TTI)) { 5592 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5593 "No decisions should have been taken at this point"); 5594 // Note: There is no need to invalidate any cost modeling decisions here, as 5595 // non where taken so far. 5596 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5597 } 5598 5599 ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF); 5600 assert(!MaxVF.isScalable() && 5601 "Scalable vectors do not yet support tail folding"); 5602 assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) && 5603 "MaxVF must be a power of 2"); 5604 unsigned MaxVFtimesIC = 5605 UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue(); 5606 // Avoid tail folding if the trip count is known to be a multiple of any VF we 5607 // chose. 5608 ScalarEvolution *SE = PSE.getSE(); 5609 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5610 const SCEV *ExitCount = SE->getAddExpr( 5611 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5612 const SCEV *Rem = SE->getURemExpr( 5613 SE->applyLoopGuards(ExitCount, TheLoop), 5614 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5615 if (Rem->isZero()) { 5616 // Accept MaxVF if we do not have a tail. 5617 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5618 return MaxVF; 5619 } 5620 5621 // If we don't know the precise trip count, or if the trip count that we 5622 // found modulo the vectorization factor is not zero, try to fold the tail 5623 // by masking. 5624 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5625 if (Legal->prepareToFoldTailByMasking()) { 5626 FoldTailByMasking = true; 5627 return MaxVF; 5628 } 5629 5630 // If there was a tail-folding hint/switch, but we can't fold the tail by 5631 // masking, fallback to a vectorization with a scalar epilogue. 5632 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5633 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5634 "scalar epilogue instead.\n"); 5635 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5636 return MaxVF; 5637 } 5638 5639 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5640 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5641 return None; 5642 } 5643 5644 if (TC == 0) { 5645 reportVectorizationFailure( 5646 "Unable to calculate the loop count due to complex control flow", 5647 "unable to calculate the loop count due to complex control flow", 5648 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5649 return None; 5650 } 5651 5652 reportVectorizationFailure( 5653 "Cannot optimize for size and vectorize at the same time.", 5654 "cannot optimize for size and vectorize at the same time. " 5655 "Enable vectorization of this loop with '#pragma clang loop " 5656 "vectorize(enable)' when compiling with -Os/-Oz", 5657 "NoTailLoopWithOptForSize", ORE, TheLoop); 5658 return None; 5659 } 5660 5661 ElementCount 5662 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5663 ElementCount UserVF) { 5664 bool IgnoreScalableUserVF = UserVF.isScalable() && 5665 !TTI.supportsScalableVectors() && 5666 !ForceTargetSupportsScalableVectors; 5667 if (IgnoreScalableUserVF) { 5668 LLVM_DEBUG( 5669 dbgs() << "LV: Ignoring VF=" << UserVF 5670 << " because target does not support scalable vectors.\n"); 5671 ORE->emit([&]() { 5672 return OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreScalableUserVF", 5673 TheLoop->getStartLoc(), 5674 TheLoop->getHeader()) 5675 << "Ignoring VF=" << ore::NV("UserVF", UserVF) 5676 << " because target does not support scalable vectors."; 5677 }); 5678 } 5679 5680 // Beyond this point two scenarios are handled. If UserVF isn't specified 5681 // then a suitable VF is chosen. If UserVF is specified and there are 5682 // dependencies, check if it's legal. However, if a UserVF is specified and 5683 // there are no dependencies, then there's nothing to do. 5684 if (UserVF.isNonZero() && !IgnoreScalableUserVF) { 5685 if (!canVectorizeReductions(UserVF)) { 5686 reportVectorizationFailure( 5687 "LV: Scalable vectorization not supported for the reduction " 5688 "operations found in this loop. Using fixed-width " 5689 "vectorization instead.", 5690 "Scalable vectorization not supported for the reduction operations " 5691 "found in this loop. Using fixed-width vectorization instead.", 5692 "ScalableVFUnfeasible", ORE, TheLoop); 5693 return computeFeasibleMaxVF( 5694 ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue())); 5695 } 5696 5697 if (Legal->isSafeForAnyVectorWidth()) 5698 return UserVF; 5699 } 5700 5701 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5702 unsigned SmallestType, WidestType; 5703 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5704 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5705 5706 // Get the maximum safe dependence distance in bits computed by LAA. 5707 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5708 // the memory accesses that is most restrictive (involved in the smallest 5709 // dependence distance). 5710 unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits(); 5711 5712 // If the user vectorization factor is legally unsafe, clamp it to a safe 5713 // value. Otherwise, return as is. 5714 if (UserVF.isNonZero() && !IgnoreScalableUserVF) { 5715 unsigned MaxSafeElements = 5716 PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType); 5717 ElementCount MaxSafeVF = ElementCount::getFixed(MaxSafeElements); 5718 5719 if (UserVF.isScalable()) { 5720 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5721 5722 // Scale VF by vscale before checking if it's safe. 5723 MaxSafeVF = ElementCount::getScalable( 5724 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5725 5726 if (MaxSafeVF.isZero()) { 5727 // The dependence distance is too small to use scalable vectors, 5728 // fallback on fixed. 5729 LLVM_DEBUG( 5730 dbgs() 5731 << "LV: Max legal vector width too small, scalable vectorization " 5732 "unfeasible. Using fixed-width vectorization instead.\n"); 5733 ORE->emit([&]() { 5734 return OptimizationRemarkAnalysis(DEBUG_TYPE, "ScalableVFUnfeasible", 5735 TheLoop->getStartLoc(), 5736 TheLoop->getHeader()) 5737 << "Max legal vector width too small, scalable vectorization " 5738 << "unfeasible. Using fixed-width vectorization instead."; 5739 }); 5740 return computeFeasibleMaxVF( 5741 ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue())); 5742 } 5743 } 5744 5745 LLVM_DEBUG(dbgs() << "LV: The max safe VF is: " << MaxSafeVF << ".\n"); 5746 5747 if (ElementCount::isKnownLE(UserVF, MaxSafeVF)) 5748 return UserVF; 5749 5750 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5751 << " is unsafe, clamping to max safe VF=" << MaxSafeVF 5752 << ".\n"); 5753 ORE->emit([&]() { 5754 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5755 TheLoop->getStartLoc(), 5756 TheLoop->getHeader()) 5757 << "User-specified vectorization factor " 5758 << ore::NV("UserVectorizationFactor", UserVF) 5759 << " is unsafe, clamping to maximum safe vectorization factor " 5760 << ore::NV("VectorizationFactor", MaxSafeVF); 5761 }); 5762 return MaxSafeVF; 5763 } 5764 5765 WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits); 5766 5767 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5768 // Note that both WidestRegister and WidestType may not be a powers of 2. 5769 auto MaxVectorSize = 5770 ElementCount::getFixed(PowerOf2Floor(WidestRegister / WidestType)); 5771 5772 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5773 << " / " << WidestType << " bits.\n"); 5774 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5775 << WidestRegister << " bits.\n"); 5776 5777 assert(MaxVectorSize.getFixedValue() <= WidestRegister && 5778 "Did not expect to pack so many elements" 5779 " into one vector!"); 5780 if (MaxVectorSize.getFixedValue() == 0) { 5781 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5782 return ElementCount::getFixed(1); 5783 } else if (ConstTripCount && ConstTripCount < MaxVectorSize.getFixedValue() && 5784 isPowerOf2_32(ConstTripCount)) { 5785 // We need to clamp the VF to be the ConstTripCount. There is no point in 5786 // choosing a higher viable VF as done in the loop below. 5787 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5788 << ConstTripCount << "\n"); 5789 return ElementCount::getFixed(ConstTripCount); 5790 } 5791 5792 ElementCount MaxVF = MaxVectorSize; 5793 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5794 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5795 // Collect all viable vectorization factors larger than the default MaxVF 5796 // (i.e. MaxVectorSize). 5797 SmallVector<ElementCount, 8> VFs; 5798 auto MaxVectorSizeMaxBW = 5799 ElementCount::getFixed(WidestRegister / SmallestType); 5800 for (ElementCount VS = MaxVectorSize * 2; 5801 ElementCount::isKnownLE(VS, MaxVectorSizeMaxBW); VS *= 2) 5802 VFs.push_back(VS); 5803 5804 // For each VF calculate its register usage. 5805 auto RUs = calculateRegisterUsage(VFs); 5806 5807 // Select the largest VF which doesn't require more registers than existing 5808 // ones. 5809 for (int i = RUs.size() - 1; i >= 0; --i) { 5810 bool Selected = true; 5811 for (auto &pair : RUs[i].MaxLocalUsers) { 5812 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5813 if (pair.second > TargetNumRegisters) 5814 Selected = false; 5815 } 5816 if (Selected) { 5817 MaxVF = VFs[i]; 5818 break; 5819 } 5820 } 5821 if (ElementCount MinVF = 5822 TTI.getMinimumVF(SmallestType, /*IsScalable=*/false)) { 5823 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5824 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5825 << ") with target's minimum: " << MinVF << '\n'); 5826 MaxVF = MinVF; 5827 } 5828 } 5829 } 5830 return MaxVF; 5831 } 5832 5833 VectorizationFactor 5834 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 5835 // FIXME: This can be fixed for scalable vectors later, because at this stage 5836 // the LoopVectorizer will only consider vectorizing a loop with scalable 5837 // vectors when the loop has a hint to enable vectorization for a given VF. 5838 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 5839 5840 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5841 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5842 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5843 5844 auto Width = ElementCount::getFixed(1); 5845 const float ScalarCost = *ExpectedCost.getValue(); 5846 float Cost = ScalarCost; 5847 5848 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5849 if (ForceVectorization && MaxVF.isVector()) { 5850 // Ignore scalar width, because the user explicitly wants vectorization. 5851 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5852 // evaluation. 5853 Cost = std::numeric_limits<float>::max(); 5854 } 5855 5856 for (auto i = ElementCount::getFixed(2); ElementCount::isKnownLE(i, MaxVF); 5857 i *= 2) { 5858 // Notice that the vector loop needs to be executed less times, so 5859 // we need to divide the cost of the vector loops by the width of 5860 // the vector elements. 5861 VectorizationCostTy C = expectedCost(i); 5862 assert(C.first.isValid() && "Unexpected invalid cost for vector loop"); 5863 float VectorCost = *C.first.getValue() / (float)i.getFixedValue(); 5864 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5865 << " costs: " << (int)VectorCost << ".\n"); 5866 if (!C.second && !ForceVectorization) { 5867 LLVM_DEBUG( 5868 dbgs() << "LV: Not considering vector loop of width " << i 5869 << " because it will not generate any vector instructions.\n"); 5870 continue; 5871 } 5872 5873 // If profitable add it to ProfitableVF list. 5874 if (VectorCost < ScalarCost) { 5875 ProfitableVFs.push_back(VectorizationFactor( 5876 {i, (unsigned)VectorCost})); 5877 } 5878 5879 if (VectorCost < Cost) { 5880 Cost = VectorCost; 5881 Width = i; 5882 } 5883 } 5884 5885 if (!EnableCondStoresVectorization && NumPredStores) { 5886 reportVectorizationFailure("There are conditional stores.", 5887 "store that is conditionally executed prevents vectorization", 5888 "ConditionalStore", ORE, TheLoop); 5889 Width = ElementCount::getFixed(1); 5890 Cost = ScalarCost; 5891 } 5892 5893 LLVM_DEBUG(if (ForceVectorization && !Width.isScalar() && Cost >= ScalarCost) dbgs() 5894 << "LV: Vectorization seems to be not beneficial, " 5895 << "but was forced by a user.\n"); 5896 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5897 VectorizationFactor Factor = {Width, 5898 (unsigned)(Width.getKnownMinValue() * Cost)}; 5899 return Factor; 5900 } 5901 5902 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5903 const Loop &L, ElementCount VF) const { 5904 // Cross iteration phis such as reductions need special handling and are 5905 // currently unsupported. 5906 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 5907 return Legal->isFirstOrderRecurrence(&Phi) || 5908 Legal->isReductionVariable(&Phi); 5909 })) 5910 return false; 5911 5912 // Phis with uses outside of the loop require special handling and are 5913 // currently unsupported. 5914 for (auto &Entry : Legal->getInductionVars()) { 5915 // Look for uses of the value of the induction at the last iteration. 5916 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5917 for (User *U : PostInc->users()) 5918 if (!L.contains(cast<Instruction>(U))) 5919 return false; 5920 // Look for uses of penultimate value of the induction. 5921 for (User *U : Entry.first->users()) 5922 if (!L.contains(cast<Instruction>(U))) 5923 return false; 5924 } 5925 5926 // Induction variables that are widened require special handling that is 5927 // currently not supported. 5928 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5929 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5930 this->isProfitableToScalarize(Entry.first, VF)); 5931 })) 5932 return false; 5933 5934 return true; 5935 } 5936 5937 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5938 const ElementCount VF) const { 5939 // FIXME: We need a much better cost-model to take different parameters such 5940 // as register pressure, code size increase and cost of extra branches into 5941 // account. For now we apply a very crude heuristic and only consider loops 5942 // with vectorization factors larger than a certain value. 5943 // We also consider epilogue vectorization unprofitable for targets that don't 5944 // consider interleaving beneficial (eg. MVE). 5945 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5946 return false; 5947 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 5948 return true; 5949 return false; 5950 } 5951 5952 VectorizationFactor 5953 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5954 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5955 VectorizationFactor Result = VectorizationFactor::Disabled(); 5956 if (!EnableEpilogueVectorization) { 5957 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5958 return Result; 5959 } 5960 5961 if (!isScalarEpilogueAllowed()) { 5962 LLVM_DEBUG( 5963 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5964 "allowed.\n";); 5965 return Result; 5966 } 5967 5968 // FIXME: This can be fixed for scalable vectors later, because at this stage 5969 // the LoopVectorizer will only consider vectorizing a loop with scalable 5970 // vectors when the loop has a hint to enable vectorization for a given VF. 5971 if (MainLoopVF.isScalable()) { 5972 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 5973 "yet supported.\n"); 5974 return Result; 5975 } 5976 5977 // Not really a cost consideration, but check for unsupported cases here to 5978 // simplify the logic. 5979 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5980 LLVM_DEBUG( 5981 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5982 "not a supported candidate.\n";); 5983 return Result; 5984 } 5985 5986 if (EpilogueVectorizationForceVF > 1) { 5987 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 5988 if (LVP.hasPlanWithVFs( 5989 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 5990 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 5991 else { 5992 LLVM_DEBUG( 5993 dbgs() 5994 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 5995 return Result; 5996 } 5997 } 5998 5999 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6000 TheLoop->getHeader()->getParent()->hasMinSize()) { 6001 LLVM_DEBUG( 6002 dbgs() 6003 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6004 return Result; 6005 } 6006 6007 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6008 return Result; 6009 6010 for (auto &NextVF : ProfitableVFs) 6011 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6012 (Result.Width.getFixedValue() == 1 || NextVF.Cost < Result.Cost) && 6013 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6014 Result = NextVF; 6015 6016 if (Result != VectorizationFactor::Disabled()) 6017 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6018 << Result.Width.getFixedValue() << "\n";); 6019 return Result; 6020 } 6021 6022 std::pair<unsigned, unsigned> 6023 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6024 unsigned MinWidth = -1U; 6025 unsigned MaxWidth = 8; 6026 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6027 6028 // For each block. 6029 for (BasicBlock *BB : TheLoop->blocks()) { 6030 // For each instruction in the loop. 6031 for (Instruction &I : BB->instructionsWithoutDebug()) { 6032 Type *T = I.getType(); 6033 6034 // Skip ignored values. 6035 if (ValuesToIgnore.count(&I)) 6036 continue; 6037 6038 // Only examine Loads, Stores and PHINodes. 6039 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6040 continue; 6041 6042 // Examine PHI nodes that are reduction variables. Update the type to 6043 // account for the recurrence type. 6044 if (auto *PN = dyn_cast<PHINode>(&I)) { 6045 if (!Legal->isReductionVariable(PN)) 6046 continue; 6047 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 6048 if (PreferInLoopReductions || 6049 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6050 RdxDesc.getRecurrenceType(), 6051 TargetTransformInfo::ReductionFlags())) 6052 continue; 6053 T = RdxDesc.getRecurrenceType(); 6054 } 6055 6056 // Examine the stored values. 6057 if (auto *ST = dyn_cast<StoreInst>(&I)) 6058 T = ST->getValueOperand()->getType(); 6059 6060 // Ignore loaded pointer types and stored pointer types that are not 6061 // vectorizable. 6062 // 6063 // FIXME: The check here attempts to predict whether a load or store will 6064 // be vectorized. We only know this for certain after a VF has 6065 // been selected. Here, we assume that if an access can be 6066 // vectorized, it will be. We should also look at extending this 6067 // optimization to non-pointer types. 6068 // 6069 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6070 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6071 continue; 6072 6073 MinWidth = std::min(MinWidth, 6074 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6075 MaxWidth = std::max(MaxWidth, 6076 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6077 } 6078 } 6079 6080 return {MinWidth, MaxWidth}; 6081 } 6082 6083 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6084 unsigned LoopCost) { 6085 // -- The interleave heuristics -- 6086 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6087 // There are many micro-architectural considerations that we can't predict 6088 // at this level. For example, frontend pressure (on decode or fetch) due to 6089 // code size, or the number and capabilities of the execution ports. 6090 // 6091 // We use the following heuristics to select the interleave count: 6092 // 1. If the code has reductions, then we interleave to break the cross 6093 // iteration dependency. 6094 // 2. If the loop is really small, then we interleave to reduce the loop 6095 // overhead. 6096 // 3. We don't interleave if we think that we will spill registers to memory 6097 // due to the increased register pressure. 6098 6099 if (!isScalarEpilogueAllowed()) 6100 return 1; 6101 6102 // We used the distance for the interleave count. 6103 if (Legal->getMaxSafeDepDistBytes() != -1U) 6104 return 1; 6105 6106 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6107 const bool HasReductions = !Legal->getReductionVars().empty(); 6108 // Do not interleave loops with a relatively small known or estimated trip 6109 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6110 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6111 // because with the above conditions interleaving can expose ILP and break 6112 // cross iteration dependences for reductions. 6113 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6114 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6115 return 1; 6116 6117 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6118 // We divide by these constants so assume that we have at least one 6119 // instruction that uses at least one register. 6120 for (auto& pair : R.MaxLocalUsers) { 6121 pair.second = std::max(pair.second, 1U); 6122 } 6123 6124 // We calculate the interleave count using the following formula. 6125 // Subtract the number of loop invariants from the number of available 6126 // registers. These registers are used by all of the interleaved instances. 6127 // Next, divide the remaining registers by the number of registers that is 6128 // required by the loop, in order to estimate how many parallel instances 6129 // fit without causing spills. All of this is rounded down if necessary to be 6130 // a power of two. We want power of two interleave count to simplify any 6131 // addressing operations or alignment considerations. 6132 // We also want power of two interleave counts to ensure that the induction 6133 // variable of the vector loop wraps to zero, when tail is folded by masking; 6134 // this currently happens when OptForSize, in which case IC is set to 1 above. 6135 unsigned IC = UINT_MAX; 6136 6137 for (auto& pair : R.MaxLocalUsers) { 6138 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6139 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6140 << " registers of " 6141 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6142 if (VF.isScalar()) { 6143 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6144 TargetNumRegisters = ForceTargetNumScalarRegs; 6145 } else { 6146 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6147 TargetNumRegisters = ForceTargetNumVectorRegs; 6148 } 6149 unsigned MaxLocalUsers = pair.second; 6150 unsigned LoopInvariantRegs = 0; 6151 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6152 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6153 6154 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6155 // Don't count the induction variable as interleaved. 6156 if (EnableIndVarRegisterHeur) { 6157 TmpIC = 6158 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6159 std::max(1U, (MaxLocalUsers - 1))); 6160 } 6161 6162 IC = std::min(IC, TmpIC); 6163 } 6164 6165 // Clamp the interleave ranges to reasonable counts. 6166 unsigned MaxInterleaveCount = 6167 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6168 6169 // Check if the user has overridden the max. 6170 if (VF.isScalar()) { 6171 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6172 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6173 } else { 6174 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6175 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6176 } 6177 6178 // If trip count is known or estimated compile time constant, limit the 6179 // interleave count to be less than the trip count divided by VF, provided it 6180 // is at least 1. 6181 // 6182 // For scalable vectors we can't know if interleaving is beneficial. It may 6183 // not be beneficial for small loops if none of the lanes in the second vector 6184 // iterations is enabled. However, for larger loops, there is likely to be a 6185 // similar benefit as for fixed-width vectors. For now, we choose to leave 6186 // the InterleaveCount as if vscale is '1', although if some information about 6187 // the vector is known (e.g. min vector size), we can make a better decision. 6188 if (BestKnownTC) { 6189 MaxInterleaveCount = 6190 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6191 // Make sure MaxInterleaveCount is greater than 0. 6192 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6193 } 6194 6195 assert(MaxInterleaveCount > 0 && 6196 "Maximum interleave count must be greater than 0"); 6197 6198 // Clamp the calculated IC to be between the 1 and the max interleave count 6199 // that the target and trip count allows. 6200 if (IC > MaxInterleaveCount) 6201 IC = MaxInterleaveCount; 6202 else 6203 // Make sure IC is greater than 0. 6204 IC = std::max(1u, IC); 6205 6206 assert(IC > 0 && "Interleave count must be greater than 0."); 6207 6208 // If we did not calculate the cost for VF (because the user selected the VF) 6209 // then we calculate the cost of VF here. 6210 if (LoopCost == 0) { 6211 assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); 6212 LoopCost = *expectedCost(VF).first.getValue(); 6213 } 6214 6215 assert(LoopCost && "Non-zero loop cost expected"); 6216 6217 // Interleave if we vectorized this loop and there is a reduction that could 6218 // benefit from interleaving. 6219 if (VF.isVector() && HasReductions) { 6220 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6221 return IC; 6222 } 6223 6224 // Note that if we've already vectorized the loop we will have done the 6225 // runtime check and so interleaving won't require further checks. 6226 bool InterleavingRequiresRuntimePointerCheck = 6227 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6228 6229 // We want to interleave small loops in order to reduce the loop overhead and 6230 // potentially expose ILP opportunities. 6231 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6232 << "LV: IC is " << IC << '\n' 6233 << "LV: VF is " << VF << '\n'); 6234 const bool AggressivelyInterleaveReductions = 6235 TTI.enableAggressiveInterleaving(HasReductions); 6236 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6237 // We assume that the cost overhead is 1 and we use the cost model 6238 // to estimate the cost of the loop and interleave until the cost of the 6239 // loop overhead is about 5% of the cost of the loop. 6240 unsigned SmallIC = 6241 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6242 6243 // Interleave until store/load ports (estimated by max interleave count) are 6244 // saturated. 6245 unsigned NumStores = Legal->getNumStores(); 6246 unsigned NumLoads = Legal->getNumLoads(); 6247 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6248 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6249 6250 // If we have a scalar reduction (vector reductions are already dealt with 6251 // by this point), we can increase the critical path length if the loop 6252 // we're interleaving is inside another loop. Limit, by default to 2, so the 6253 // critical path only gets increased by one reduction operation. 6254 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6255 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6256 SmallIC = std::min(SmallIC, F); 6257 StoresIC = std::min(StoresIC, F); 6258 LoadsIC = std::min(LoadsIC, F); 6259 } 6260 6261 if (EnableLoadStoreRuntimeInterleave && 6262 std::max(StoresIC, LoadsIC) > SmallIC) { 6263 LLVM_DEBUG( 6264 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6265 return std::max(StoresIC, LoadsIC); 6266 } 6267 6268 // If there are scalar reductions and TTI has enabled aggressive 6269 // interleaving for reductions, we will interleave to expose ILP. 6270 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6271 AggressivelyInterleaveReductions) { 6272 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6273 // Interleave no less than SmallIC but not as aggressive as the normal IC 6274 // to satisfy the rare situation when resources are too limited. 6275 return std::max(IC / 2, SmallIC); 6276 } else { 6277 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6278 return SmallIC; 6279 } 6280 } 6281 6282 // Interleave if this is a large loop (small loops are already dealt with by 6283 // this point) that could benefit from interleaving. 6284 if (AggressivelyInterleaveReductions) { 6285 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6286 return IC; 6287 } 6288 6289 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6290 return 1; 6291 } 6292 6293 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6294 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6295 // This function calculates the register usage by measuring the highest number 6296 // of values that are alive at a single location. Obviously, this is a very 6297 // rough estimation. We scan the loop in a topological order in order and 6298 // assign a number to each instruction. We use RPO to ensure that defs are 6299 // met before their users. We assume that each instruction that has in-loop 6300 // users starts an interval. We record every time that an in-loop value is 6301 // used, so we have a list of the first and last occurrences of each 6302 // instruction. Next, we transpose this data structure into a multi map that 6303 // holds the list of intervals that *end* at a specific location. This multi 6304 // map allows us to perform a linear search. We scan the instructions linearly 6305 // and record each time that a new interval starts, by placing it in a set. 6306 // If we find this value in the multi-map then we remove it from the set. 6307 // The max register usage is the maximum size of the set. 6308 // We also search for instructions that are defined outside the loop, but are 6309 // used inside the loop. We need this number separately from the max-interval 6310 // usage number because when we unroll, loop-invariant values do not take 6311 // more register. 6312 LoopBlocksDFS DFS(TheLoop); 6313 DFS.perform(LI); 6314 6315 RegisterUsage RU; 6316 6317 // Each 'key' in the map opens a new interval. The values 6318 // of the map are the index of the 'last seen' usage of the 6319 // instruction that is the key. 6320 using IntervalMap = DenseMap<Instruction *, unsigned>; 6321 6322 // Maps instruction to its index. 6323 SmallVector<Instruction *, 64> IdxToInstr; 6324 // Marks the end of each interval. 6325 IntervalMap EndPoint; 6326 // Saves the list of instruction indices that are used in the loop. 6327 SmallPtrSet<Instruction *, 8> Ends; 6328 // Saves the list of values that are used in the loop but are 6329 // defined outside the loop, such as arguments and constants. 6330 SmallPtrSet<Value *, 8> LoopInvariants; 6331 6332 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6333 for (Instruction &I : BB->instructionsWithoutDebug()) { 6334 IdxToInstr.push_back(&I); 6335 6336 // Save the end location of each USE. 6337 for (Value *U : I.operands()) { 6338 auto *Instr = dyn_cast<Instruction>(U); 6339 6340 // Ignore non-instruction values such as arguments, constants, etc. 6341 if (!Instr) 6342 continue; 6343 6344 // If this instruction is outside the loop then record it and continue. 6345 if (!TheLoop->contains(Instr)) { 6346 LoopInvariants.insert(Instr); 6347 continue; 6348 } 6349 6350 // Overwrite previous end points. 6351 EndPoint[Instr] = IdxToInstr.size(); 6352 Ends.insert(Instr); 6353 } 6354 } 6355 } 6356 6357 // Saves the list of intervals that end with the index in 'key'. 6358 using InstrList = SmallVector<Instruction *, 2>; 6359 DenseMap<unsigned, InstrList> TransposeEnds; 6360 6361 // Transpose the EndPoints to a list of values that end at each index. 6362 for (auto &Interval : EndPoint) 6363 TransposeEnds[Interval.second].push_back(Interval.first); 6364 6365 SmallPtrSet<Instruction *, 8> OpenIntervals; 6366 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6367 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6368 6369 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6370 6371 // A lambda that gets the register usage for the given type and VF. 6372 const auto &TTICapture = TTI; 6373 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6374 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6375 return 0U; 6376 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 6377 }; 6378 6379 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6380 Instruction *I = IdxToInstr[i]; 6381 6382 // Remove all of the instructions that end at this location. 6383 InstrList &List = TransposeEnds[i]; 6384 for (Instruction *ToRemove : List) 6385 OpenIntervals.erase(ToRemove); 6386 6387 // Ignore instructions that are never used within the loop. 6388 if (!Ends.count(I)) 6389 continue; 6390 6391 // Skip ignored values. 6392 if (ValuesToIgnore.count(I)) 6393 continue; 6394 6395 // For each VF find the maximum usage of registers. 6396 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6397 // Count the number of live intervals. 6398 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6399 6400 if (VFs[j].isScalar()) { 6401 for (auto Inst : OpenIntervals) { 6402 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6403 if (RegUsage.find(ClassID) == RegUsage.end()) 6404 RegUsage[ClassID] = 1; 6405 else 6406 RegUsage[ClassID] += 1; 6407 } 6408 } else { 6409 collectUniformsAndScalars(VFs[j]); 6410 for (auto Inst : OpenIntervals) { 6411 // Skip ignored values for VF > 1. 6412 if (VecValuesToIgnore.count(Inst)) 6413 continue; 6414 if (isScalarAfterVectorization(Inst, VFs[j])) { 6415 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6416 if (RegUsage.find(ClassID) == RegUsage.end()) 6417 RegUsage[ClassID] = 1; 6418 else 6419 RegUsage[ClassID] += 1; 6420 } else { 6421 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6422 if (RegUsage.find(ClassID) == RegUsage.end()) 6423 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6424 else 6425 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6426 } 6427 } 6428 } 6429 6430 for (auto& pair : RegUsage) { 6431 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6432 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6433 else 6434 MaxUsages[j][pair.first] = pair.second; 6435 } 6436 } 6437 6438 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6439 << OpenIntervals.size() << '\n'); 6440 6441 // Add the current instruction to the list of open intervals. 6442 OpenIntervals.insert(I); 6443 } 6444 6445 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6446 SmallMapVector<unsigned, unsigned, 4> Invariant; 6447 6448 for (auto Inst : LoopInvariants) { 6449 unsigned Usage = 6450 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6451 unsigned ClassID = 6452 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6453 if (Invariant.find(ClassID) == Invariant.end()) 6454 Invariant[ClassID] = Usage; 6455 else 6456 Invariant[ClassID] += Usage; 6457 } 6458 6459 LLVM_DEBUG({ 6460 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6461 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6462 << " item\n"; 6463 for (const auto &pair : MaxUsages[i]) { 6464 dbgs() << "LV(REG): RegisterClass: " 6465 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6466 << " registers\n"; 6467 } 6468 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6469 << " item\n"; 6470 for (const auto &pair : Invariant) { 6471 dbgs() << "LV(REG): RegisterClass: " 6472 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6473 << " registers\n"; 6474 } 6475 }); 6476 6477 RU.LoopInvariantRegs = Invariant; 6478 RU.MaxLocalUsers = MaxUsages[i]; 6479 RUs[i] = RU; 6480 } 6481 6482 return RUs; 6483 } 6484 6485 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6486 // TODO: Cost model for emulated masked load/store is completely 6487 // broken. This hack guides the cost model to use an artificially 6488 // high enough value to practically disable vectorization with such 6489 // operations, except where previously deployed legality hack allowed 6490 // using very low cost values. This is to avoid regressions coming simply 6491 // from moving "masked load/store" check from legality to cost model. 6492 // Masked Load/Gather emulation was previously never allowed. 6493 // Limited number of Masked Store/Scatter emulation was allowed. 6494 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 6495 return isa<LoadInst>(I) || 6496 (isa<StoreInst>(I) && 6497 NumPredStores > NumberOfStoresToPredicate); 6498 } 6499 6500 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6501 // If we aren't vectorizing the loop, or if we've already collected the 6502 // instructions to scalarize, there's nothing to do. Collection may already 6503 // have occurred if we have a user-selected VF and are now computing the 6504 // expected cost for interleaving. 6505 if (VF.isScalar() || VF.isZero() || 6506 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6507 return; 6508 6509 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6510 // not profitable to scalarize any instructions, the presence of VF in the 6511 // map will indicate that we've analyzed it already. 6512 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6513 6514 // Find all the instructions that are scalar with predication in the loop and 6515 // determine if it would be better to not if-convert the blocks they are in. 6516 // If so, we also record the instructions to scalarize. 6517 for (BasicBlock *BB : TheLoop->blocks()) { 6518 if (!blockNeedsPredication(BB)) 6519 continue; 6520 for (Instruction &I : *BB) 6521 if (isScalarWithPredication(&I)) { 6522 ScalarCostsTy ScalarCosts; 6523 // Do not apply discount logic if hacked cost is needed 6524 // for emulated masked memrefs. 6525 if (!useEmulatedMaskMemRefHack(&I) && 6526 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6527 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6528 // Remember that BB will remain after vectorization. 6529 PredicatedBBsAfterVectorization.insert(BB); 6530 } 6531 } 6532 } 6533 6534 int LoopVectorizationCostModel::computePredInstDiscount( 6535 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6536 assert(!isUniformAfterVectorization(PredInst, VF) && 6537 "Instruction marked uniform-after-vectorization will be predicated"); 6538 6539 // Initialize the discount to zero, meaning that the scalar version and the 6540 // vector version cost the same. 6541 InstructionCost Discount = 0; 6542 6543 // Holds instructions to analyze. The instructions we visit are mapped in 6544 // ScalarCosts. Those instructions are the ones that would be scalarized if 6545 // we find that the scalar version costs less. 6546 SmallVector<Instruction *, 8> Worklist; 6547 6548 // Returns true if the given instruction can be scalarized. 6549 auto canBeScalarized = [&](Instruction *I) -> bool { 6550 // We only attempt to scalarize instructions forming a single-use chain 6551 // from the original predicated block that would otherwise be vectorized. 6552 // Although not strictly necessary, we give up on instructions we know will 6553 // already be scalar to avoid traversing chains that are unlikely to be 6554 // beneficial. 6555 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6556 isScalarAfterVectorization(I, VF)) 6557 return false; 6558 6559 // If the instruction is scalar with predication, it will be analyzed 6560 // separately. We ignore it within the context of PredInst. 6561 if (isScalarWithPredication(I)) 6562 return false; 6563 6564 // If any of the instruction's operands are uniform after vectorization, 6565 // the instruction cannot be scalarized. This prevents, for example, a 6566 // masked load from being scalarized. 6567 // 6568 // We assume we will only emit a value for lane zero of an instruction 6569 // marked uniform after vectorization, rather than VF identical values. 6570 // Thus, if we scalarize an instruction that uses a uniform, we would 6571 // create uses of values corresponding to the lanes we aren't emitting code 6572 // for. This behavior can be changed by allowing getScalarValue to clone 6573 // the lane zero values for uniforms rather than asserting. 6574 for (Use &U : I->operands()) 6575 if (auto *J = dyn_cast<Instruction>(U.get())) 6576 if (isUniformAfterVectorization(J, VF)) 6577 return false; 6578 6579 // Otherwise, we can scalarize the instruction. 6580 return true; 6581 }; 6582 6583 // Compute the expected cost discount from scalarizing the entire expression 6584 // feeding the predicated instruction. We currently only consider expressions 6585 // that are single-use instruction chains. 6586 Worklist.push_back(PredInst); 6587 while (!Worklist.empty()) { 6588 Instruction *I = Worklist.pop_back_val(); 6589 6590 // If we've already analyzed the instruction, there's nothing to do. 6591 if (ScalarCosts.find(I) != ScalarCosts.end()) 6592 continue; 6593 6594 // Compute the cost of the vector instruction. Note that this cost already 6595 // includes the scalarization overhead of the predicated instruction. 6596 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6597 6598 // Compute the cost of the scalarized instruction. This cost is the cost of 6599 // the instruction as if it wasn't if-converted and instead remained in the 6600 // predicated block. We will scale this cost by block probability after 6601 // computing the scalarization overhead. 6602 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6603 InstructionCost ScalarCost = 6604 VF.getKnownMinValue() * 6605 getInstructionCost(I, ElementCount::getFixed(1)).first; 6606 6607 // Compute the scalarization overhead of needed insertelement instructions 6608 // and phi nodes. 6609 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6610 ScalarCost += TTI.getScalarizationOverhead( 6611 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6612 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6613 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6614 ScalarCost += 6615 VF.getKnownMinValue() * 6616 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6617 } 6618 6619 // Compute the scalarization overhead of needed extractelement 6620 // instructions. For each of the instruction's operands, if the operand can 6621 // be scalarized, add it to the worklist; otherwise, account for the 6622 // overhead. 6623 for (Use &U : I->operands()) 6624 if (auto *J = dyn_cast<Instruction>(U.get())) { 6625 assert(VectorType::isValidElementType(J->getType()) && 6626 "Instruction has non-scalar type"); 6627 if (canBeScalarized(J)) 6628 Worklist.push_back(J); 6629 else if (needsExtract(J, VF)) { 6630 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6631 ScalarCost += TTI.getScalarizationOverhead( 6632 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6633 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6634 } 6635 } 6636 6637 // Scale the total scalar cost by block probability. 6638 ScalarCost /= getReciprocalPredBlockProb(); 6639 6640 // Compute the discount. A non-negative discount means the vector version 6641 // of the instruction costs more, and scalarizing would be beneficial. 6642 Discount += VectorCost - ScalarCost; 6643 ScalarCosts[I] = ScalarCost; 6644 } 6645 6646 return *Discount.getValue(); 6647 } 6648 6649 LoopVectorizationCostModel::VectorizationCostTy 6650 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6651 VectorizationCostTy Cost; 6652 6653 // For each block. 6654 for (BasicBlock *BB : TheLoop->blocks()) { 6655 VectorizationCostTy BlockCost; 6656 6657 // For each instruction in the old loop. 6658 for (Instruction &I : BB->instructionsWithoutDebug()) { 6659 // Skip ignored values. 6660 if (ValuesToIgnore.count(&I) || 6661 (VF.isVector() && VecValuesToIgnore.count(&I))) 6662 continue; 6663 6664 VectorizationCostTy C = getInstructionCost(&I, VF); 6665 6666 // Check if we should override the cost. 6667 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6668 C.first = InstructionCost(ForceTargetInstructionCost); 6669 6670 BlockCost.first += C.first; 6671 BlockCost.second |= C.second; 6672 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6673 << " for VF " << VF << " For instruction: " << I 6674 << '\n'); 6675 } 6676 6677 // If we are vectorizing a predicated block, it will have been 6678 // if-converted. This means that the block's instructions (aside from 6679 // stores and instructions that may divide by zero) will now be 6680 // unconditionally executed. For the scalar case, we may not always execute 6681 // the predicated block, if it is an if-else block. Thus, scale the block's 6682 // cost by the probability of executing it. blockNeedsPredication from 6683 // Legal is used so as to not include all blocks in tail folded loops. 6684 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6685 BlockCost.first /= getReciprocalPredBlockProb(); 6686 6687 Cost.first += BlockCost.first; 6688 Cost.second |= BlockCost.second; 6689 } 6690 6691 return Cost; 6692 } 6693 6694 /// Gets Address Access SCEV after verifying that the access pattern 6695 /// is loop invariant except the induction variable dependence. 6696 /// 6697 /// This SCEV can be sent to the Target in order to estimate the address 6698 /// calculation cost. 6699 static const SCEV *getAddressAccessSCEV( 6700 Value *Ptr, 6701 LoopVectorizationLegality *Legal, 6702 PredicatedScalarEvolution &PSE, 6703 const Loop *TheLoop) { 6704 6705 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6706 if (!Gep) 6707 return nullptr; 6708 6709 // We are looking for a gep with all loop invariant indices except for one 6710 // which should be an induction variable. 6711 auto SE = PSE.getSE(); 6712 unsigned NumOperands = Gep->getNumOperands(); 6713 for (unsigned i = 1; i < NumOperands; ++i) { 6714 Value *Opd = Gep->getOperand(i); 6715 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6716 !Legal->isInductionVariable(Opd)) 6717 return nullptr; 6718 } 6719 6720 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6721 return PSE.getSCEV(Ptr); 6722 } 6723 6724 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6725 return Legal->hasStride(I->getOperand(0)) || 6726 Legal->hasStride(I->getOperand(1)); 6727 } 6728 6729 InstructionCost 6730 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6731 ElementCount VF) { 6732 assert(VF.isVector() && 6733 "Scalarization cost of instruction implies vectorization."); 6734 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6735 Type *ValTy = getMemInstValueType(I); 6736 auto SE = PSE.getSE(); 6737 6738 unsigned AS = getLoadStoreAddressSpace(I); 6739 Value *Ptr = getLoadStorePointerOperand(I); 6740 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6741 6742 // Figure out whether the access is strided and get the stride value 6743 // if it's known in compile time 6744 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6745 6746 // Get the cost of the scalar memory instruction and address computation. 6747 InstructionCost Cost = 6748 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6749 6750 // Don't pass *I here, since it is scalar but will actually be part of a 6751 // vectorized loop where the user of it is a vectorized instruction. 6752 const Align Alignment = getLoadStoreAlignment(I); 6753 Cost += VF.getKnownMinValue() * 6754 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6755 AS, TTI::TCK_RecipThroughput); 6756 6757 // Get the overhead of the extractelement and insertelement instructions 6758 // we might create due to scalarization. 6759 Cost += getScalarizationOverhead(I, VF); 6760 6761 // If we have a predicated store, it may not be executed for each vector 6762 // lane. Scale the cost by the probability of executing the predicated 6763 // block. 6764 if (isPredicatedInst(I)) { 6765 Cost /= getReciprocalPredBlockProb(); 6766 6767 if (useEmulatedMaskMemRefHack(I)) 6768 // Artificially setting to a high enough value to practically disable 6769 // vectorization with such operations. 6770 Cost = 3000000; 6771 } 6772 6773 return Cost; 6774 } 6775 6776 InstructionCost 6777 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6778 ElementCount VF) { 6779 Type *ValTy = getMemInstValueType(I); 6780 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6781 Value *Ptr = getLoadStorePointerOperand(I); 6782 unsigned AS = getLoadStoreAddressSpace(I); 6783 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6784 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6785 6786 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6787 "Stride should be 1 or -1 for consecutive memory access"); 6788 const Align Alignment = getLoadStoreAlignment(I); 6789 InstructionCost Cost = 0; 6790 if (Legal->isMaskRequired(I)) 6791 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6792 CostKind); 6793 else 6794 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6795 CostKind, I); 6796 6797 bool Reverse = ConsecutiveStride < 0; 6798 if (Reverse) 6799 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6800 return Cost; 6801 } 6802 6803 InstructionCost 6804 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6805 ElementCount VF) { 6806 assert(Legal->isUniformMemOp(*I)); 6807 6808 Type *ValTy = getMemInstValueType(I); 6809 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6810 const Align Alignment = getLoadStoreAlignment(I); 6811 unsigned AS = getLoadStoreAddressSpace(I); 6812 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6813 if (isa<LoadInst>(I)) { 6814 return TTI.getAddressComputationCost(ValTy) + 6815 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6816 CostKind) + 6817 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6818 } 6819 StoreInst *SI = cast<StoreInst>(I); 6820 6821 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6822 return TTI.getAddressComputationCost(ValTy) + 6823 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6824 CostKind) + 6825 (isLoopInvariantStoreValue 6826 ? 0 6827 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6828 VF.getKnownMinValue() - 1)); 6829 } 6830 6831 InstructionCost 6832 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6833 ElementCount VF) { 6834 Type *ValTy = getMemInstValueType(I); 6835 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6836 const Align Alignment = getLoadStoreAlignment(I); 6837 const Value *Ptr = getLoadStorePointerOperand(I); 6838 6839 return TTI.getAddressComputationCost(VectorTy) + 6840 TTI.getGatherScatterOpCost( 6841 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6842 TargetTransformInfo::TCK_RecipThroughput, I); 6843 } 6844 6845 InstructionCost 6846 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6847 ElementCount VF) { 6848 // TODO: Once we have support for interleaving with scalable vectors 6849 // we can calculate the cost properly here. 6850 if (VF.isScalable()) 6851 return InstructionCost::getInvalid(); 6852 6853 Type *ValTy = getMemInstValueType(I); 6854 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6855 unsigned AS = getLoadStoreAddressSpace(I); 6856 6857 auto Group = getInterleavedAccessGroup(I); 6858 assert(Group && "Fail to get an interleaved access group."); 6859 6860 unsigned InterleaveFactor = Group->getFactor(); 6861 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6862 6863 // Holds the indices of existing members in an interleaved load group. 6864 // An interleaved store group doesn't need this as it doesn't allow gaps. 6865 SmallVector<unsigned, 4> Indices; 6866 if (isa<LoadInst>(I)) { 6867 for (unsigned i = 0; i < InterleaveFactor; i++) 6868 if (Group->getMember(i)) 6869 Indices.push_back(i); 6870 } 6871 6872 // Calculate the cost of the whole interleaved group. 6873 bool UseMaskForGaps = 6874 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6875 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6876 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6877 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6878 6879 if (Group->isReverse()) { 6880 // TODO: Add support for reversed masked interleaved access. 6881 assert(!Legal->isMaskRequired(I) && 6882 "Reverse masked interleaved access not supported."); 6883 Cost += Group->getNumMembers() * 6884 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6885 } 6886 return Cost; 6887 } 6888 6889 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 6890 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6891 // Early exit for no inloop reductions 6892 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6893 return InstructionCost::getInvalid(); 6894 auto *VectorTy = cast<VectorType>(Ty); 6895 6896 // We are looking for a pattern of, and finding the minimal acceptable cost: 6897 // reduce(mul(ext(A), ext(B))) or 6898 // reduce(mul(A, B)) or 6899 // reduce(ext(A)) or 6900 // reduce(A). 6901 // The basic idea is that we walk down the tree to do that, finding the root 6902 // reduction instruction in InLoopReductionImmediateChains. From there we find 6903 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6904 // of the components. If the reduction cost is lower then we return it for the 6905 // reduction instruction and 0 for the other instructions in the pattern. If 6906 // it is not we return an invalid cost specifying the orignal cost method 6907 // should be used. 6908 Instruction *RetI = I; 6909 if ((RetI->getOpcode() == Instruction::SExt || 6910 RetI->getOpcode() == Instruction::ZExt)) { 6911 if (!RetI->hasOneUser()) 6912 return InstructionCost::getInvalid(); 6913 RetI = RetI->user_back(); 6914 } 6915 if (RetI->getOpcode() == Instruction::Mul && 6916 RetI->user_back()->getOpcode() == Instruction::Add) { 6917 if (!RetI->hasOneUser()) 6918 return InstructionCost::getInvalid(); 6919 RetI = RetI->user_back(); 6920 } 6921 6922 // Test if the found instruction is a reduction, and if not return an invalid 6923 // cost specifying the parent to use the original cost modelling. 6924 if (!InLoopReductionImmediateChains.count(RetI)) 6925 return InstructionCost::getInvalid(); 6926 6927 // Find the reduction this chain is a part of and calculate the basic cost of 6928 // the reduction on its own. 6929 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6930 Instruction *ReductionPhi = LastChain; 6931 while (!isa<PHINode>(ReductionPhi)) 6932 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6933 6934 RecurrenceDescriptor RdxDesc = 6935 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 6936 unsigned BaseCost = TTI.getArithmeticReductionCost(RdxDesc.getOpcode(), 6937 VectorTy, false, CostKind); 6938 6939 // Get the operand that was not the reduction chain and match it to one of the 6940 // patterns, returning the better cost if it is found. 6941 Instruction *RedOp = RetI->getOperand(1) == LastChain 6942 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6943 : dyn_cast<Instruction>(RetI->getOperand(1)); 6944 6945 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6946 6947 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 6948 !TheLoop->isLoopInvariant(RedOp)) { 6949 bool IsUnsigned = isa<ZExtInst>(RedOp); 6950 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6951 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6952 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6953 CostKind); 6954 6955 unsigned ExtCost = 6956 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6957 TTI::CastContextHint::None, CostKind, RedOp); 6958 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6959 return I == RetI ? *RedCost.getValue() : 0; 6960 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 6961 Instruction *Mul = RedOp; 6962 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 6963 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 6964 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 6965 Op0->getOpcode() == Op1->getOpcode() && 6966 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6967 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6968 bool IsUnsigned = isa<ZExtInst>(Op0); 6969 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6970 // reduce(mul(ext, ext)) 6971 unsigned ExtCost = 6972 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 6973 TTI::CastContextHint::None, CostKind, Op0); 6974 InstructionCost MulCost = 6975 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 6976 6977 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6978 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6979 CostKind); 6980 6981 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 6982 return I == RetI ? *RedCost.getValue() : 0; 6983 } else { 6984 InstructionCost MulCost = 6985 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 6986 6987 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6988 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 6989 CostKind); 6990 6991 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 6992 return I == RetI ? *RedCost.getValue() : 0; 6993 } 6994 } 6995 6996 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 6997 } 6998 6999 InstructionCost 7000 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7001 ElementCount VF) { 7002 // Calculate scalar cost only. Vectorization cost should be ready at this 7003 // moment. 7004 if (VF.isScalar()) { 7005 Type *ValTy = getMemInstValueType(I); 7006 const Align Alignment = getLoadStoreAlignment(I); 7007 unsigned AS = getLoadStoreAddressSpace(I); 7008 7009 return TTI.getAddressComputationCost(ValTy) + 7010 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7011 TTI::TCK_RecipThroughput, I); 7012 } 7013 return getWideningCost(I, VF); 7014 } 7015 7016 LoopVectorizationCostModel::VectorizationCostTy 7017 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7018 ElementCount VF) { 7019 // If we know that this instruction will remain uniform, check the cost of 7020 // the scalar version. 7021 if (isUniformAfterVectorization(I, VF)) 7022 VF = ElementCount::getFixed(1); 7023 7024 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7025 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7026 7027 // Forced scalars do not have any scalarization overhead. 7028 auto ForcedScalar = ForcedScalars.find(VF); 7029 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7030 auto InstSet = ForcedScalar->second; 7031 if (InstSet.count(I)) 7032 return VectorizationCostTy( 7033 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7034 VF.getKnownMinValue()), 7035 false); 7036 } 7037 7038 Type *VectorTy; 7039 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7040 7041 bool TypeNotScalarized = 7042 VF.isVector() && VectorTy->isVectorTy() && 7043 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7044 return VectorizationCostTy(C, TypeNotScalarized); 7045 } 7046 7047 InstructionCost 7048 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7049 ElementCount VF) { 7050 7051 if (VF.isScalable()) 7052 return InstructionCost::getInvalid(); 7053 7054 if (VF.isScalar()) 7055 return 0; 7056 7057 InstructionCost Cost = 0; 7058 Type *RetTy = ToVectorTy(I->getType(), VF); 7059 if (!RetTy->isVoidTy() && 7060 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7061 Cost += TTI.getScalarizationOverhead( 7062 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 7063 true, false); 7064 7065 // Some targets keep addresses scalar. 7066 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7067 return Cost; 7068 7069 // Some targets support efficient element stores. 7070 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7071 return Cost; 7072 7073 // Collect operands to consider. 7074 CallInst *CI = dyn_cast<CallInst>(I); 7075 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7076 7077 // Skip operands that do not require extraction/scalarization and do not incur 7078 // any overhead. 7079 SmallVector<Type *> Tys; 7080 for (auto *V : filterExtractingOperands(Ops, VF)) 7081 Tys.push_back(MaybeVectorizeType(V->getType(), VF)); 7082 return Cost + TTI.getOperandsScalarizationOverhead( 7083 filterExtractingOperands(Ops, VF), Tys); 7084 } 7085 7086 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7087 if (VF.isScalar()) 7088 return; 7089 NumPredStores = 0; 7090 for (BasicBlock *BB : TheLoop->blocks()) { 7091 // For each instruction in the old loop. 7092 for (Instruction &I : *BB) { 7093 Value *Ptr = getLoadStorePointerOperand(&I); 7094 if (!Ptr) 7095 continue; 7096 7097 // TODO: We should generate better code and update the cost model for 7098 // predicated uniform stores. Today they are treated as any other 7099 // predicated store (see added test cases in 7100 // invariant-store-vectorization.ll). 7101 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7102 NumPredStores++; 7103 7104 if (Legal->isUniformMemOp(I)) { 7105 // TODO: Avoid replicating loads and stores instead of 7106 // relying on instcombine to remove them. 7107 // Load: Scalar load + broadcast 7108 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7109 InstructionCost Cost = getUniformMemOpCost(&I, VF); 7110 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7111 continue; 7112 } 7113 7114 // We assume that widening is the best solution when possible. 7115 if (memoryInstructionCanBeWidened(&I, VF)) { 7116 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7117 int ConsecutiveStride = 7118 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7119 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7120 "Expected consecutive stride."); 7121 InstWidening Decision = 7122 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7123 setWideningDecision(&I, VF, Decision, Cost); 7124 continue; 7125 } 7126 7127 // Choose between Interleaving, Gather/Scatter or Scalarization. 7128 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7129 unsigned NumAccesses = 1; 7130 if (isAccessInterleaved(&I)) { 7131 auto Group = getInterleavedAccessGroup(&I); 7132 assert(Group && "Fail to get an interleaved access group."); 7133 7134 // Make one decision for the whole group. 7135 if (getWideningDecision(&I, VF) != CM_Unknown) 7136 continue; 7137 7138 NumAccesses = Group->getNumMembers(); 7139 if (interleavedAccessCanBeWidened(&I, VF)) 7140 InterleaveCost = getInterleaveGroupCost(&I, VF); 7141 } 7142 7143 InstructionCost GatherScatterCost = 7144 isLegalGatherOrScatter(&I) 7145 ? getGatherScatterCost(&I, VF) * NumAccesses 7146 : InstructionCost::getInvalid(); 7147 7148 InstructionCost ScalarizationCost = 7149 !VF.isScalable() ? getMemInstScalarizationCost(&I, VF) * NumAccesses 7150 : InstructionCost::getInvalid(); 7151 7152 // Choose better solution for the current VF, 7153 // write down this decision and use it during vectorization. 7154 InstructionCost Cost; 7155 InstWidening Decision; 7156 if (InterleaveCost <= GatherScatterCost && 7157 InterleaveCost < ScalarizationCost) { 7158 Decision = CM_Interleave; 7159 Cost = InterleaveCost; 7160 } else if (GatherScatterCost < ScalarizationCost) { 7161 Decision = CM_GatherScatter; 7162 Cost = GatherScatterCost; 7163 } else { 7164 assert(!VF.isScalable() && 7165 "We cannot yet scalarise for scalable vectors"); 7166 Decision = CM_Scalarize; 7167 Cost = ScalarizationCost; 7168 } 7169 // If the instructions belongs to an interleave group, the whole group 7170 // receives the same decision. The whole group receives the cost, but 7171 // the cost will actually be assigned to one instruction. 7172 if (auto Group = getInterleavedAccessGroup(&I)) 7173 setWideningDecision(Group, VF, Decision, Cost); 7174 else 7175 setWideningDecision(&I, VF, Decision, Cost); 7176 } 7177 } 7178 7179 // Make sure that any load of address and any other address computation 7180 // remains scalar unless there is gather/scatter support. This avoids 7181 // inevitable extracts into address registers, and also has the benefit of 7182 // activating LSR more, since that pass can't optimize vectorized 7183 // addresses. 7184 if (TTI.prefersVectorizedAddressing()) 7185 return; 7186 7187 // Start with all scalar pointer uses. 7188 SmallPtrSet<Instruction *, 8> AddrDefs; 7189 for (BasicBlock *BB : TheLoop->blocks()) 7190 for (Instruction &I : *BB) { 7191 Instruction *PtrDef = 7192 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7193 if (PtrDef && TheLoop->contains(PtrDef) && 7194 getWideningDecision(&I, VF) != CM_GatherScatter) 7195 AddrDefs.insert(PtrDef); 7196 } 7197 7198 // Add all instructions used to generate the addresses. 7199 SmallVector<Instruction *, 4> Worklist; 7200 append_range(Worklist, AddrDefs); 7201 while (!Worklist.empty()) { 7202 Instruction *I = Worklist.pop_back_val(); 7203 for (auto &Op : I->operands()) 7204 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7205 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7206 AddrDefs.insert(InstOp).second) 7207 Worklist.push_back(InstOp); 7208 } 7209 7210 for (auto *I : AddrDefs) { 7211 if (isa<LoadInst>(I)) { 7212 // Setting the desired widening decision should ideally be handled in 7213 // by cost functions, but since this involves the task of finding out 7214 // if the loaded register is involved in an address computation, it is 7215 // instead changed here when we know this is the case. 7216 InstWidening Decision = getWideningDecision(I, VF); 7217 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7218 // Scalarize a widened load of address. 7219 setWideningDecision( 7220 I, VF, CM_Scalarize, 7221 (VF.getKnownMinValue() * 7222 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7223 else if (auto Group = getInterleavedAccessGroup(I)) { 7224 // Scalarize an interleave group of address loads. 7225 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7226 if (Instruction *Member = Group->getMember(I)) 7227 setWideningDecision( 7228 Member, VF, CM_Scalarize, 7229 (VF.getKnownMinValue() * 7230 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7231 } 7232 } 7233 } else 7234 // Make sure I gets scalarized and a cost estimate without 7235 // scalarization overhead. 7236 ForcedScalars[VF].insert(I); 7237 } 7238 } 7239 7240 InstructionCost 7241 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7242 Type *&VectorTy) { 7243 Type *RetTy = I->getType(); 7244 if (canTruncateToMinimalBitwidth(I, VF)) 7245 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7246 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7247 auto SE = PSE.getSE(); 7248 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7249 7250 // TODO: We need to estimate the cost of intrinsic calls. 7251 switch (I->getOpcode()) { 7252 case Instruction::GetElementPtr: 7253 // We mark this instruction as zero-cost because the cost of GEPs in 7254 // vectorized code depends on whether the corresponding memory instruction 7255 // is scalarized or not. Therefore, we handle GEPs with the memory 7256 // instruction cost. 7257 return 0; 7258 case Instruction::Br: { 7259 // In cases of scalarized and predicated instructions, there will be VF 7260 // predicated blocks in the vectorized loop. Each branch around these 7261 // blocks requires also an extract of its vector compare i1 element. 7262 bool ScalarPredicatedBB = false; 7263 BranchInst *BI = cast<BranchInst>(I); 7264 if (VF.isVector() && BI->isConditional() && 7265 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7266 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7267 ScalarPredicatedBB = true; 7268 7269 if (ScalarPredicatedBB) { 7270 // Return cost for branches around scalarized and predicated blocks. 7271 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7272 auto *Vec_i1Ty = 7273 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7274 return (TTI.getScalarizationOverhead( 7275 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7276 false, true) + 7277 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7278 VF.getKnownMinValue())); 7279 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7280 // The back-edge branch will remain, as will all scalar branches. 7281 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7282 else 7283 // This branch will be eliminated by if-conversion. 7284 return 0; 7285 // Note: We currently assume zero cost for an unconditional branch inside 7286 // a predicated block since it will become a fall-through, although we 7287 // may decide in the future to call TTI for all branches. 7288 } 7289 case Instruction::PHI: { 7290 auto *Phi = cast<PHINode>(I); 7291 7292 // First-order recurrences are replaced by vector shuffles inside the loop. 7293 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7294 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7295 return TTI.getShuffleCost( 7296 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7297 VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7298 7299 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7300 // converted into select instructions. We require N - 1 selects per phi 7301 // node, where N is the number of incoming values. 7302 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7303 return (Phi->getNumIncomingValues() - 1) * 7304 TTI.getCmpSelInstrCost( 7305 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7306 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7307 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7308 7309 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7310 } 7311 case Instruction::UDiv: 7312 case Instruction::SDiv: 7313 case Instruction::URem: 7314 case Instruction::SRem: 7315 // If we have a predicated instruction, it may not be executed for each 7316 // vector lane. Get the scalarization cost and scale this amount by the 7317 // probability of executing the predicated block. If the instruction is not 7318 // predicated, we fall through to the next case. 7319 if (VF.isVector() && isScalarWithPredication(I)) { 7320 InstructionCost Cost = 0; 7321 7322 // These instructions have a non-void type, so account for the phi nodes 7323 // that we will create. This cost is likely to be zero. The phi node 7324 // cost, if any, should be scaled by the block probability because it 7325 // models a copy at the end of each predicated block. 7326 Cost += VF.getKnownMinValue() * 7327 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7328 7329 // The cost of the non-predicated instruction. 7330 Cost += VF.getKnownMinValue() * 7331 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7332 7333 // The cost of insertelement and extractelement instructions needed for 7334 // scalarization. 7335 Cost += getScalarizationOverhead(I, VF); 7336 7337 // Scale the cost by the probability of executing the predicated blocks. 7338 // This assumes the predicated block for each vector lane is equally 7339 // likely. 7340 return Cost / getReciprocalPredBlockProb(); 7341 } 7342 LLVM_FALLTHROUGH; 7343 case Instruction::Add: 7344 case Instruction::FAdd: 7345 case Instruction::Sub: 7346 case Instruction::FSub: 7347 case Instruction::Mul: 7348 case Instruction::FMul: 7349 case Instruction::FDiv: 7350 case Instruction::FRem: 7351 case Instruction::Shl: 7352 case Instruction::LShr: 7353 case Instruction::AShr: 7354 case Instruction::And: 7355 case Instruction::Or: 7356 case Instruction::Xor: { 7357 // Since we will replace the stride by 1 the multiplication should go away. 7358 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7359 return 0; 7360 7361 // Detect reduction patterns 7362 InstructionCost RedCost; 7363 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7364 .isValid()) 7365 return RedCost; 7366 7367 // Certain instructions can be cheaper to vectorize if they have a constant 7368 // second vector operand. One example of this are shifts on x86. 7369 Value *Op2 = I->getOperand(1); 7370 TargetTransformInfo::OperandValueProperties Op2VP; 7371 TargetTransformInfo::OperandValueKind Op2VK = 7372 TTI.getOperandInfo(Op2, Op2VP); 7373 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7374 Op2VK = TargetTransformInfo::OK_UniformValue; 7375 7376 SmallVector<const Value *, 4> Operands(I->operand_values()); 7377 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7378 return N * TTI.getArithmeticInstrCost( 7379 I->getOpcode(), VectorTy, CostKind, 7380 TargetTransformInfo::OK_AnyValue, 7381 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7382 } 7383 case Instruction::FNeg: { 7384 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 7385 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7386 return N * TTI.getArithmeticInstrCost( 7387 I->getOpcode(), VectorTy, CostKind, 7388 TargetTransformInfo::OK_AnyValue, 7389 TargetTransformInfo::OK_AnyValue, 7390 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 7391 I->getOperand(0), I); 7392 } 7393 case Instruction::Select: { 7394 SelectInst *SI = cast<SelectInst>(I); 7395 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7396 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7397 Type *CondTy = SI->getCondition()->getType(); 7398 if (!ScalarCond) 7399 CondTy = VectorType::get(CondTy, VF); 7400 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7401 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7402 } 7403 case Instruction::ICmp: 7404 case Instruction::FCmp: { 7405 Type *ValTy = I->getOperand(0)->getType(); 7406 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7407 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7408 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7409 VectorTy = ToVectorTy(ValTy, VF); 7410 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7411 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7412 } 7413 case Instruction::Store: 7414 case Instruction::Load: { 7415 ElementCount Width = VF; 7416 if (Width.isVector()) { 7417 InstWidening Decision = getWideningDecision(I, Width); 7418 assert(Decision != CM_Unknown && 7419 "CM decision should be taken at this point"); 7420 if (Decision == CM_Scalarize) 7421 Width = ElementCount::getFixed(1); 7422 } 7423 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7424 return getMemoryInstructionCost(I, VF); 7425 } 7426 case Instruction::ZExt: 7427 case Instruction::SExt: 7428 case Instruction::FPToUI: 7429 case Instruction::FPToSI: 7430 case Instruction::FPExt: 7431 case Instruction::PtrToInt: 7432 case Instruction::IntToPtr: 7433 case Instruction::SIToFP: 7434 case Instruction::UIToFP: 7435 case Instruction::Trunc: 7436 case Instruction::FPTrunc: 7437 case Instruction::BitCast: { 7438 // Computes the CastContextHint from a Load/Store instruction. 7439 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7440 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7441 "Expected a load or a store!"); 7442 7443 if (VF.isScalar() || !TheLoop->contains(I)) 7444 return TTI::CastContextHint::Normal; 7445 7446 switch (getWideningDecision(I, VF)) { 7447 case LoopVectorizationCostModel::CM_GatherScatter: 7448 return TTI::CastContextHint::GatherScatter; 7449 case LoopVectorizationCostModel::CM_Interleave: 7450 return TTI::CastContextHint::Interleave; 7451 case LoopVectorizationCostModel::CM_Scalarize: 7452 case LoopVectorizationCostModel::CM_Widen: 7453 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7454 : TTI::CastContextHint::Normal; 7455 case LoopVectorizationCostModel::CM_Widen_Reverse: 7456 return TTI::CastContextHint::Reversed; 7457 case LoopVectorizationCostModel::CM_Unknown: 7458 llvm_unreachable("Instr did not go through cost modelling?"); 7459 } 7460 7461 llvm_unreachable("Unhandled case!"); 7462 }; 7463 7464 unsigned Opcode = I->getOpcode(); 7465 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7466 // For Trunc, the context is the only user, which must be a StoreInst. 7467 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7468 if (I->hasOneUse()) 7469 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7470 CCH = ComputeCCH(Store); 7471 } 7472 // For Z/Sext, the context is the operand, which must be a LoadInst. 7473 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7474 Opcode == Instruction::FPExt) { 7475 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7476 CCH = ComputeCCH(Load); 7477 } 7478 7479 // We optimize the truncation of induction variables having constant 7480 // integer steps. The cost of these truncations is the same as the scalar 7481 // operation. 7482 if (isOptimizableIVTruncate(I, VF)) { 7483 auto *Trunc = cast<TruncInst>(I); 7484 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7485 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7486 } 7487 7488 // Detect reduction patterns 7489 InstructionCost RedCost; 7490 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7491 .isValid()) 7492 return RedCost; 7493 7494 Type *SrcScalarTy = I->getOperand(0)->getType(); 7495 Type *SrcVecTy = 7496 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7497 if (canTruncateToMinimalBitwidth(I, VF)) { 7498 // This cast is going to be shrunk. This may remove the cast or it might 7499 // turn it into slightly different cast. For example, if MinBW == 16, 7500 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7501 // 7502 // Calculate the modified src and dest types. 7503 Type *MinVecTy = VectorTy; 7504 if (Opcode == Instruction::Trunc) { 7505 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7506 VectorTy = 7507 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7508 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7509 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7510 VectorTy = 7511 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7512 } 7513 } 7514 7515 unsigned N; 7516 if (isScalarAfterVectorization(I, VF)) { 7517 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 7518 N = VF.getKnownMinValue(); 7519 } else 7520 N = 1; 7521 return N * 7522 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7523 } 7524 case Instruction::Call: { 7525 bool NeedToScalarize; 7526 CallInst *CI = cast<CallInst>(I); 7527 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7528 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7529 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7530 return std::min(CallCost, IntrinsicCost); 7531 } 7532 return CallCost; 7533 } 7534 case Instruction::ExtractValue: 7535 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7536 default: 7537 // The cost of executing VF copies of the scalar instruction. This opcode 7538 // is unknown. Assume that it is the same as 'mul'. 7539 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 7540 Instruction::Mul, VectorTy, CostKind) + 7541 getScalarizationOverhead(I, VF); 7542 } // end of switch. 7543 } 7544 7545 char LoopVectorize::ID = 0; 7546 7547 static const char lv_name[] = "Loop Vectorization"; 7548 7549 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7550 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7551 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7552 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7553 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7554 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7555 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7556 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7557 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7558 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7559 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7560 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7561 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7562 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7563 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7564 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7565 7566 namespace llvm { 7567 7568 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7569 7570 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7571 bool VectorizeOnlyWhenForced) { 7572 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7573 } 7574 7575 } // end namespace llvm 7576 7577 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7578 // Check if the pointer operand of a load or store instruction is 7579 // consecutive. 7580 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7581 return Legal->isConsecutivePtr(Ptr); 7582 return false; 7583 } 7584 7585 void LoopVectorizationCostModel::collectValuesToIgnore() { 7586 // Ignore ephemeral values. 7587 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7588 7589 // Ignore type-promoting instructions we identified during reduction 7590 // detection. 7591 for (auto &Reduction : Legal->getReductionVars()) { 7592 RecurrenceDescriptor &RedDes = Reduction.second; 7593 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7594 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7595 } 7596 // Ignore type-casting instructions we identified during induction 7597 // detection. 7598 for (auto &Induction : Legal->getInductionVars()) { 7599 InductionDescriptor &IndDes = Induction.second; 7600 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7601 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7602 } 7603 } 7604 7605 void LoopVectorizationCostModel::collectInLoopReductions() { 7606 for (auto &Reduction : Legal->getReductionVars()) { 7607 PHINode *Phi = Reduction.first; 7608 RecurrenceDescriptor &RdxDesc = Reduction.second; 7609 7610 // We don't collect reductions that are type promoted (yet). 7611 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7612 continue; 7613 7614 // If the target would prefer this reduction to happen "in-loop", then we 7615 // want to record it as such. 7616 unsigned Opcode = RdxDesc.getOpcode(); 7617 if (!PreferInLoopReductions && 7618 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7619 TargetTransformInfo::ReductionFlags())) 7620 continue; 7621 7622 // Check that we can correctly put the reductions into the loop, by 7623 // finding the chain of operations that leads from the phi to the loop 7624 // exit value. 7625 SmallVector<Instruction *, 4> ReductionOperations = 7626 RdxDesc.getReductionOpChain(Phi, TheLoop); 7627 bool InLoop = !ReductionOperations.empty(); 7628 if (InLoop) { 7629 InLoopReductionChains[Phi] = ReductionOperations; 7630 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7631 Instruction *LastChain = Phi; 7632 for (auto *I : ReductionOperations) { 7633 InLoopReductionImmediateChains[I] = LastChain; 7634 LastChain = I; 7635 } 7636 } 7637 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7638 << " reduction for phi: " << *Phi << "\n"); 7639 } 7640 } 7641 7642 // TODO: we could return a pair of values that specify the max VF and 7643 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7644 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7645 // doesn't have a cost model that can choose which plan to execute if 7646 // more than one is generated. 7647 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7648 LoopVectorizationCostModel &CM) { 7649 unsigned WidestType; 7650 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7651 return WidestVectorRegBits / WidestType; 7652 } 7653 7654 VectorizationFactor 7655 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7656 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7657 ElementCount VF = UserVF; 7658 // Outer loop handling: They may require CFG and instruction level 7659 // transformations before even evaluating whether vectorization is profitable. 7660 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7661 // the vectorization pipeline. 7662 if (!OrigLoop->isInnermost()) { 7663 // If the user doesn't provide a vectorization factor, determine a 7664 // reasonable one. 7665 if (UserVF.isZero()) { 7666 VF = ElementCount::getFixed( 7667 determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM)); 7668 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7669 7670 // Make sure we have a VF > 1 for stress testing. 7671 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7672 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7673 << "overriding computed VF.\n"); 7674 VF = ElementCount::getFixed(4); 7675 } 7676 } 7677 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7678 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7679 "VF needs to be a power of two"); 7680 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7681 << "VF " << VF << " to build VPlans.\n"); 7682 buildVPlans(VF, VF); 7683 7684 // For VPlan build stress testing, we bail out after VPlan construction. 7685 if (VPlanBuildStressTest) 7686 return VectorizationFactor::Disabled(); 7687 7688 return {VF, 0 /*Cost*/}; 7689 } 7690 7691 LLVM_DEBUG( 7692 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7693 "VPlan-native path.\n"); 7694 return VectorizationFactor::Disabled(); 7695 } 7696 7697 Optional<VectorizationFactor> 7698 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7699 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7700 Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 7701 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 7702 return None; 7703 7704 // Invalidate interleave groups if all blocks of loop will be predicated. 7705 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7706 !useMaskedInterleavedAccesses(*TTI)) { 7707 LLVM_DEBUG( 7708 dbgs() 7709 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7710 "which requires masked-interleaved support.\n"); 7711 if (CM.InterleaveInfo.invalidateGroups()) 7712 // Invalidating interleave groups also requires invalidating all decisions 7713 // based on them, which includes widening decisions and uniform and scalar 7714 // values. 7715 CM.invalidateCostModelingDecisions(); 7716 } 7717 7718 ElementCount MaxVF = MaybeMaxVF.getValue(); 7719 assert(MaxVF.isNonZero() && "MaxVF is zero."); 7720 7721 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxVF); 7722 if (!UserVF.isZero() && 7723 (UserVFIsLegal || (UserVF.isScalable() && MaxVF.isScalable()))) { 7724 // FIXME: MaxVF is temporarily used inplace of UserVF for illegal scalable 7725 // VFs here, this should be reverted to only use legal UserVFs once the 7726 // loop below supports scalable VFs. 7727 ElementCount VF = UserVFIsLegal ? UserVF : MaxVF; 7728 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max") 7729 << " VF " << VF << ".\n"); 7730 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7731 "VF needs to be a power of two"); 7732 // Collect the instructions (and their associated costs) that will be more 7733 // profitable to scalarize. 7734 CM.selectUserVectorizationFactor(VF); 7735 CM.collectInLoopReductions(); 7736 buildVPlansWithVPRecipes(VF, VF); 7737 LLVM_DEBUG(printPlans(dbgs())); 7738 return {{VF, 0}}; 7739 } 7740 7741 assert(!MaxVF.isScalable() && 7742 "Scalable vectors not yet supported beyond this point"); 7743 7744 for (ElementCount VF = ElementCount::getFixed(1); 7745 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7746 // Collect Uniform and Scalar instructions after vectorization with VF. 7747 CM.collectUniformsAndScalars(VF); 7748 7749 // Collect the instructions (and their associated costs) that will be more 7750 // profitable to scalarize. 7751 if (VF.isVector()) 7752 CM.collectInstsToScalarize(VF); 7753 } 7754 7755 CM.collectInLoopReductions(); 7756 7757 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 7758 LLVM_DEBUG(printPlans(dbgs())); 7759 if (MaxVF.isScalar()) 7760 return VectorizationFactor::Disabled(); 7761 7762 // Select the optimal vectorization factor. 7763 return CM.selectVectorizationFactor(MaxVF); 7764 } 7765 7766 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7767 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7768 << '\n'); 7769 BestVF = VF; 7770 BestUF = UF; 7771 7772 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7773 return !Plan->hasVF(VF); 7774 }); 7775 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7776 } 7777 7778 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7779 DominatorTree *DT) { 7780 // Perform the actual loop transformation. 7781 7782 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7783 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7784 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7785 7786 VPTransformState State{ 7787 *BestVF, BestUF, LI, DT, ILV.Builder, &ILV, VPlans.front().get()}; 7788 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7789 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7790 State.CanonicalIV = ILV.Induction; 7791 7792 ILV.printDebugTracesAtStart(); 7793 7794 //===------------------------------------------------===// 7795 // 7796 // Notice: any optimization or new instruction that go 7797 // into the code below should also be implemented in 7798 // the cost-model. 7799 // 7800 //===------------------------------------------------===// 7801 7802 // 2. Copy and widen instructions from the old loop into the new loop. 7803 VPlans.front()->execute(&State); 7804 7805 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7806 // predication, updating analyses. 7807 ILV.fixVectorizedLoop(State); 7808 7809 ILV.printDebugTracesAtEnd(); 7810 } 7811 7812 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7813 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7814 7815 // We create new control-flow for the vectorized loop, so the original exit 7816 // conditions will be dead after vectorization if it's only used by the 7817 // terminator 7818 SmallVector<BasicBlock*> ExitingBlocks; 7819 OrigLoop->getExitingBlocks(ExitingBlocks); 7820 for (auto *BB : ExitingBlocks) { 7821 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7822 if (!Cmp || !Cmp->hasOneUse()) 7823 continue; 7824 7825 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7826 if (!DeadInstructions.insert(Cmp).second) 7827 continue; 7828 7829 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7830 // TODO: can recurse through operands in general 7831 for (Value *Op : Cmp->operands()) { 7832 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7833 DeadInstructions.insert(cast<Instruction>(Op)); 7834 } 7835 } 7836 7837 // We create new "steps" for induction variable updates to which the original 7838 // induction variables map. An original update instruction will be dead if 7839 // all its users except the induction variable are dead. 7840 auto *Latch = OrigLoop->getLoopLatch(); 7841 for (auto &Induction : Legal->getInductionVars()) { 7842 PHINode *Ind = Induction.first; 7843 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7844 7845 // If the tail is to be folded by masking, the primary induction variable, 7846 // if exists, isn't dead: it will be used for masking. Don't kill it. 7847 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7848 continue; 7849 7850 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7851 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7852 })) 7853 DeadInstructions.insert(IndUpdate); 7854 7855 // We record as "Dead" also the type-casting instructions we had identified 7856 // during induction analysis. We don't need any handling for them in the 7857 // vectorized loop because we have proven that, under a proper runtime 7858 // test guarding the vectorized loop, the value of the phi, and the casted 7859 // value of the phi, are the same. The last instruction in this casting chain 7860 // will get its scalar/vector/widened def from the scalar/vector/widened def 7861 // of the respective phi node. Any other casts in the induction def-use chain 7862 // have no other uses outside the phi update chain, and will be ignored. 7863 InductionDescriptor &IndDes = Induction.second; 7864 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7865 DeadInstructions.insert(Casts.begin(), Casts.end()); 7866 } 7867 } 7868 7869 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7870 7871 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7872 7873 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7874 Instruction::BinaryOps BinOp) { 7875 // When unrolling and the VF is 1, we only need to add a simple scalar. 7876 Type *Ty = Val->getType(); 7877 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7878 7879 if (Ty->isFloatingPointTy()) { 7880 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7881 7882 // Floating-point operations inherit FMF via the builder's flags. 7883 Value *MulOp = Builder.CreateFMul(C, Step); 7884 return Builder.CreateBinOp(BinOp, Val, MulOp); 7885 } 7886 Constant *C = ConstantInt::get(Ty, StartIdx); 7887 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7888 } 7889 7890 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7891 SmallVector<Metadata *, 4> MDs; 7892 // Reserve first location for self reference to the LoopID metadata node. 7893 MDs.push_back(nullptr); 7894 bool IsUnrollMetadata = false; 7895 MDNode *LoopID = L->getLoopID(); 7896 if (LoopID) { 7897 // First find existing loop unrolling disable metadata. 7898 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7899 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7900 if (MD) { 7901 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7902 IsUnrollMetadata = 7903 S && S->getString().startswith("llvm.loop.unroll.disable"); 7904 } 7905 MDs.push_back(LoopID->getOperand(i)); 7906 } 7907 } 7908 7909 if (!IsUnrollMetadata) { 7910 // Add runtime unroll disable metadata. 7911 LLVMContext &Context = L->getHeader()->getContext(); 7912 SmallVector<Metadata *, 1> DisableOperands; 7913 DisableOperands.push_back( 7914 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7915 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7916 MDs.push_back(DisableNode); 7917 MDNode *NewLoopID = MDNode::get(Context, MDs); 7918 // Set operand 0 to refer to the loop id itself. 7919 NewLoopID->replaceOperandWith(0, NewLoopID); 7920 L->setLoopID(NewLoopID); 7921 } 7922 } 7923 7924 //===--------------------------------------------------------------------===// 7925 // EpilogueVectorizerMainLoop 7926 //===--------------------------------------------------------------------===// 7927 7928 /// This function is partially responsible for generating the control flow 7929 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7930 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7931 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7932 Loop *Lp = createVectorLoopSkeleton(""); 7933 7934 // Generate the code to check the minimum iteration count of the vector 7935 // epilogue (see below). 7936 EPI.EpilogueIterationCountCheck = 7937 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 7938 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7939 7940 // Generate the code to check any assumptions that we've made for SCEV 7941 // expressions. 7942 EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader); 7943 7944 // Generate the code that checks at runtime if arrays overlap. We put the 7945 // checks into a separate block to make the more common case of few elements 7946 // faster. 7947 EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 7948 7949 // Generate the iteration count check for the main loop, *after* the check 7950 // for the epilogue loop, so that the path-length is shorter for the case 7951 // that goes directly through the vector epilogue. The longer-path length for 7952 // the main loop is compensated for, by the gain from vectorizing the larger 7953 // trip count. Note: the branch will get updated later on when we vectorize 7954 // the epilogue. 7955 EPI.MainLoopIterationCountCheck = 7956 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 7957 7958 // Generate the induction variable. 7959 OldInduction = Legal->getPrimaryInduction(); 7960 Type *IdxTy = Legal->getWidestInductionType(); 7961 Value *StartIdx = ConstantInt::get(IdxTy, 0); 7962 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 7963 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 7964 EPI.VectorTripCount = CountRoundDown; 7965 Induction = 7966 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 7967 getDebugLocFromInstOrOperands(OldInduction)); 7968 7969 // Skip induction resume value creation here because they will be created in 7970 // the second pass. If we created them here, they wouldn't be used anyway, 7971 // because the vplan in the second pass still contains the inductions from the 7972 // original loop. 7973 7974 return completeLoopSkeleton(Lp, OrigLoopID); 7975 } 7976 7977 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 7978 LLVM_DEBUG({ 7979 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 7980 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 7981 << ", Main Loop UF:" << EPI.MainLoopUF 7982 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 7983 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 7984 }); 7985 } 7986 7987 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 7988 DEBUG_WITH_TYPE(VerboseDebug, { 7989 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 7990 }); 7991 } 7992 7993 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 7994 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 7995 assert(L && "Expected valid Loop."); 7996 assert(Bypass && "Expected valid bypass basic block."); 7997 unsigned VFactor = 7998 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 7999 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8000 Value *Count = getOrCreateTripCount(L); 8001 // Reuse existing vector loop preheader for TC checks. 8002 // Note that new preheader block is generated for vector loop. 8003 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8004 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8005 8006 // Generate code to check if the loop's trip count is less than VF * UF of the 8007 // main vector loop. 8008 auto P = 8009 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8010 8011 Value *CheckMinIters = Builder.CreateICmp( 8012 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8013 "min.iters.check"); 8014 8015 if (!ForEpilogue) 8016 TCCheckBlock->setName("vector.main.loop.iter.check"); 8017 8018 // Create new preheader for vector loop. 8019 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8020 DT, LI, nullptr, "vector.ph"); 8021 8022 if (ForEpilogue) { 8023 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8024 DT->getNode(Bypass)->getIDom()) && 8025 "TC check is expected to dominate Bypass"); 8026 8027 // Update dominator for Bypass & LoopExit. 8028 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8029 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8030 8031 LoopBypassBlocks.push_back(TCCheckBlock); 8032 8033 // Save the trip count so we don't have to regenerate it in the 8034 // vec.epilog.iter.check. This is safe to do because the trip count 8035 // generated here dominates the vector epilog iter check. 8036 EPI.TripCount = Count; 8037 } 8038 8039 ReplaceInstWithInst( 8040 TCCheckBlock->getTerminator(), 8041 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8042 8043 return TCCheckBlock; 8044 } 8045 8046 //===--------------------------------------------------------------------===// 8047 // EpilogueVectorizerEpilogueLoop 8048 //===--------------------------------------------------------------------===// 8049 8050 /// This function is partially responsible for generating the control flow 8051 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8052 BasicBlock * 8053 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8054 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8055 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8056 8057 // Now, compare the remaining count and if there aren't enough iterations to 8058 // execute the vectorized epilogue skip to the scalar part. 8059 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8060 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8061 LoopVectorPreHeader = 8062 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8063 LI, nullptr, "vec.epilog.ph"); 8064 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8065 VecEpilogueIterationCountCheck); 8066 8067 // Adjust the control flow taking the state info from the main loop 8068 // vectorization into account. 8069 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8070 "expected this to be saved from the previous pass."); 8071 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8072 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8073 8074 DT->changeImmediateDominator(LoopVectorPreHeader, 8075 EPI.MainLoopIterationCountCheck); 8076 8077 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8078 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8079 8080 if (EPI.SCEVSafetyCheck) 8081 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8082 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8083 if (EPI.MemSafetyCheck) 8084 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8085 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8086 8087 DT->changeImmediateDominator( 8088 VecEpilogueIterationCountCheck, 8089 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8090 8091 DT->changeImmediateDominator(LoopScalarPreHeader, 8092 EPI.EpilogueIterationCountCheck); 8093 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 8094 8095 // Keep track of bypass blocks, as they feed start values to the induction 8096 // phis in the scalar loop preheader. 8097 if (EPI.SCEVSafetyCheck) 8098 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8099 if (EPI.MemSafetyCheck) 8100 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8101 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8102 8103 // Generate a resume induction for the vector epilogue and put it in the 8104 // vector epilogue preheader 8105 Type *IdxTy = Legal->getWidestInductionType(); 8106 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8107 LoopVectorPreHeader->getFirstNonPHI()); 8108 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8109 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8110 EPI.MainLoopIterationCountCheck); 8111 8112 // Generate the induction variable. 8113 OldInduction = Legal->getPrimaryInduction(); 8114 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8115 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8116 Value *StartIdx = EPResumeVal; 8117 Induction = 8118 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8119 getDebugLocFromInstOrOperands(OldInduction)); 8120 8121 // Generate induction resume values. These variables save the new starting 8122 // indexes for the scalar loop. They are used to test if there are any tail 8123 // iterations left once the vector loop has completed. 8124 // Note that when the vectorized epilogue is skipped due to iteration count 8125 // check, then the resume value for the induction variable comes from 8126 // the trip count of the main vector loop, hence passing the AdditionalBypass 8127 // argument. 8128 createInductionResumeValues(Lp, CountRoundDown, 8129 {VecEpilogueIterationCountCheck, 8130 EPI.VectorTripCount} /* AdditionalBypass */); 8131 8132 AddRuntimeUnrollDisableMetaData(Lp); 8133 return completeLoopSkeleton(Lp, OrigLoopID); 8134 } 8135 8136 BasicBlock * 8137 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8138 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8139 8140 assert(EPI.TripCount && 8141 "Expected trip count to have been safed in the first pass."); 8142 assert( 8143 (!isa<Instruction>(EPI.TripCount) || 8144 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8145 "saved trip count does not dominate insertion point."); 8146 Value *TC = EPI.TripCount; 8147 IRBuilder<> Builder(Insert->getTerminator()); 8148 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8149 8150 // Generate code to check if the loop's trip count is less than VF * UF of the 8151 // vector epilogue loop. 8152 auto P = 8153 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8154 8155 Value *CheckMinIters = Builder.CreateICmp( 8156 P, Count, 8157 ConstantInt::get(Count->getType(), 8158 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8159 "min.epilog.iters.check"); 8160 8161 ReplaceInstWithInst( 8162 Insert->getTerminator(), 8163 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8164 8165 LoopBypassBlocks.push_back(Insert); 8166 return Insert; 8167 } 8168 8169 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8170 LLVM_DEBUG({ 8171 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8172 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8173 << ", Main Loop UF:" << EPI.MainLoopUF 8174 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8175 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8176 }); 8177 } 8178 8179 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8180 DEBUG_WITH_TYPE(VerboseDebug, { 8181 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8182 }); 8183 } 8184 8185 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8186 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8187 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8188 bool PredicateAtRangeStart = Predicate(Range.Start); 8189 8190 for (ElementCount TmpVF = Range.Start * 2; 8191 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8192 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8193 Range.End = TmpVF; 8194 break; 8195 } 8196 8197 return PredicateAtRangeStart; 8198 } 8199 8200 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8201 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8202 /// of VF's starting at a given VF and extending it as much as possible. Each 8203 /// vectorization decision can potentially shorten this sub-range during 8204 /// buildVPlan(). 8205 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8206 ElementCount MaxVF) { 8207 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8208 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8209 VFRange SubRange = {VF, MaxVFPlusOne}; 8210 VPlans.push_back(buildVPlan(SubRange)); 8211 VF = SubRange.End; 8212 } 8213 } 8214 8215 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8216 VPlanPtr &Plan) { 8217 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8218 8219 // Look for cached value. 8220 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8221 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8222 if (ECEntryIt != EdgeMaskCache.end()) 8223 return ECEntryIt->second; 8224 8225 VPValue *SrcMask = createBlockInMask(Src, Plan); 8226 8227 // The terminator has to be a branch inst! 8228 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8229 assert(BI && "Unexpected terminator found"); 8230 8231 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8232 return EdgeMaskCache[Edge] = SrcMask; 8233 8234 // If source is an exiting block, we know the exit edge is dynamically dead 8235 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8236 // adding uses of an otherwise potentially dead instruction. 8237 if (OrigLoop->isLoopExiting(Src)) 8238 return EdgeMaskCache[Edge] = SrcMask; 8239 8240 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8241 assert(EdgeMask && "No Edge Mask found for condition"); 8242 8243 if (BI->getSuccessor(0) != Dst) 8244 EdgeMask = Builder.createNot(EdgeMask); 8245 8246 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8247 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8248 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8249 // The select version does not introduce new UB if SrcMask is false and 8250 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8251 VPValue *False = Plan->getOrAddVPValue( 8252 ConstantInt::getFalse(BI->getCondition()->getType())); 8253 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8254 } 8255 8256 return EdgeMaskCache[Edge] = EdgeMask; 8257 } 8258 8259 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8260 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8261 8262 // Look for cached value. 8263 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8264 if (BCEntryIt != BlockMaskCache.end()) 8265 return BCEntryIt->second; 8266 8267 // All-one mask is modelled as no-mask following the convention for masked 8268 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8269 VPValue *BlockMask = nullptr; 8270 8271 if (OrigLoop->getHeader() == BB) { 8272 if (!CM.blockNeedsPredication(BB)) 8273 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8274 8275 // Create the block in mask as the first non-phi instruction in the block. 8276 VPBuilder::InsertPointGuard Guard(Builder); 8277 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8278 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8279 8280 // Introduce the early-exit compare IV <= BTC to form header block mask. 8281 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8282 // Start by constructing the desired canonical IV. 8283 VPValue *IV = nullptr; 8284 if (Legal->getPrimaryInduction()) 8285 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8286 else { 8287 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8288 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8289 IV = IVRecipe->getVPValue(); 8290 } 8291 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8292 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8293 8294 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8295 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8296 // as a second argument, we only pass the IV here and extract the 8297 // tripcount from the transform state where codegen of the VP instructions 8298 // happen. 8299 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8300 } else { 8301 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8302 } 8303 return BlockMaskCache[BB] = BlockMask; 8304 } 8305 8306 // This is the block mask. We OR all incoming edges. 8307 for (auto *Predecessor : predecessors(BB)) { 8308 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8309 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8310 return BlockMaskCache[BB] = EdgeMask; 8311 8312 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8313 BlockMask = EdgeMask; 8314 continue; 8315 } 8316 8317 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8318 } 8319 8320 return BlockMaskCache[BB] = BlockMask; 8321 } 8322 8323 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 8324 VPlanPtr &Plan) { 8325 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8326 "Must be called with either a load or store"); 8327 8328 auto willWiden = [&](ElementCount VF) -> bool { 8329 if (VF.isScalar()) 8330 return false; 8331 LoopVectorizationCostModel::InstWidening Decision = 8332 CM.getWideningDecision(I, VF); 8333 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8334 "CM decision should be taken at this point."); 8335 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8336 return true; 8337 if (CM.isScalarAfterVectorization(I, VF) || 8338 CM.isProfitableToScalarize(I, VF)) 8339 return false; 8340 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8341 }; 8342 8343 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8344 return nullptr; 8345 8346 VPValue *Mask = nullptr; 8347 if (Legal->isMaskRequired(I)) 8348 Mask = createBlockInMask(I->getParent(), Plan); 8349 8350 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 8351 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8352 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 8353 8354 StoreInst *Store = cast<StoreInst>(I); 8355 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 8356 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 8357 } 8358 8359 VPWidenIntOrFpInductionRecipe * 8360 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, VPlan &Plan) const { 8361 // Check if this is an integer or fp induction. If so, build the recipe that 8362 // produces its scalar and vector values. 8363 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8364 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8365 II.getKind() == InductionDescriptor::IK_FpInduction) { 8366 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8367 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8368 return new VPWidenIntOrFpInductionRecipe( 8369 Phi, Start, Casts.empty() ? nullptr : Casts.front()); 8370 } 8371 8372 return nullptr; 8373 } 8374 8375 VPWidenIntOrFpInductionRecipe * 8376 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, VFRange &Range, 8377 VPlan &Plan) const { 8378 // Optimize the special case where the source is a constant integer 8379 // induction variable. Notice that we can only optimize the 'trunc' case 8380 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8381 // (c) other casts depend on pointer size. 8382 8383 // Determine whether \p K is a truncation based on an induction variable that 8384 // can be optimized. 8385 auto isOptimizableIVTruncate = 8386 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8387 return [=](ElementCount VF) -> bool { 8388 return CM.isOptimizableIVTruncate(K, VF); 8389 }; 8390 }; 8391 8392 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8393 isOptimizableIVTruncate(I), Range)) { 8394 8395 InductionDescriptor II = 8396 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8397 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8398 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8399 Start, nullptr, I); 8400 } 8401 return nullptr; 8402 } 8403 8404 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 8405 // If all incoming values are equal, the incoming VPValue can be used directly 8406 // instead of creating a new VPBlendRecipe. 8407 Value *FirstIncoming = Phi->getIncomingValue(0); 8408 if (all_of(Phi->incoming_values(), [FirstIncoming](const Value *Inc) { 8409 return FirstIncoming == Inc; 8410 })) { 8411 return Plan->getOrAddVPValue(Phi->getIncomingValue(0)); 8412 } 8413 8414 // We know that all PHIs in non-header blocks are converted into selects, so 8415 // we don't have to worry about the insertion order and we can just use the 8416 // builder. At this point we generate the predication tree. There may be 8417 // duplications since this is a simple recursive scan, but future 8418 // optimizations will clean it up. 8419 SmallVector<VPValue *, 2> Operands; 8420 unsigned NumIncoming = Phi->getNumIncomingValues(); 8421 8422 for (unsigned In = 0; In < NumIncoming; In++) { 8423 VPValue *EdgeMask = 8424 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8425 assert((EdgeMask || NumIncoming == 1) && 8426 "Multiple predecessors with one having a full mask"); 8427 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 8428 if (EdgeMask) 8429 Operands.push_back(EdgeMask); 8430 } 8431 return toVPRecipeResult(new VPBlendRecipe(Phi, Operands)); 8432 } 8433 8434 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 8435 VPlan &Plan) const { 8436 8437 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8438 [this, CI](ElementCount VF) { 8439 return CM.isScalarWithPredication(CI, VF); 8440 }, 8441 Range); 8442 8443 if (IsPredicated) 8444 return nullptr; 8445 8446 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8447 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8448 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8449 ID == Intrinsic::pseudoprobe || 8450 ID == Intrinsic::experimental_noalias_scope_decl)) 8451 return nullptr; 8452 8453 auto willWiden = [&](ElementCount VF) -> bool { 8454 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8455 // The following case may be scalarized depending on the VF. 8456 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8457 // version of the instruction. 8458 // Is it beneficial to perform intrinsic call compared to lib call? 8459 bool NeedToScalarize = false; 8460 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8461 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8462 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8463 assert(IntrinsicCost.isValid() && CallCost.isValid() && 8464 "Cannot have invalid costs while widening"); 8465 return UseVectorIntrinsic || !NeedToScalarize; 8466 }; 8467 8468 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8469 return nullptr; 8470 8471 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 8472 } 8473 8474 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8475 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8476 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8477 // Instruction should be widened, unless it is scalar after vectorization, 8478 // scalarization is profitable or it is predicated. 8479 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8480 return CM.isScalarAfterVectorization(I, VF) || 8481 CM.isProfitableToScalarize(I, VF) || 8482 CM.isScalarWithPredication(I, VF); 8483 }; 8484 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8485 Range); 8486 } 8487 8488 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 8489 auto IsVectorizableOpcode = [](unsigned Opcode) { 8490 switch (Opcode) { 8491 case Instruction::Add: 8492 case Instruction::And: 8493 case Instruction::AShr: 8494 case Instruction::BitCast: 8495 case Instruction::FAdd: 8496 case Instruction::FCmp: 8497 case Instruction::FDiv: 8498 case Instruction::FMul: 8499 case Instruction::FNeg: 8500 case Instruction::FPExt: 8501 case Instruction::FPToSI: 8502 case Instruction::FPToUI: 8503 case Instruction::FPTrunc: 8504 case Instruction::FRem: 8505 case Instruction::FSub: 8506 case Instruction::ICmp: 8507 case Instruction::IntToPtr: 8508 case Instruction::LShr: 8509 case Instruction::Mul: 8510 case Instruction::Or: 8511 case Instruction::PtrToInt: 8512 case Instruction::SDiv: 8513 case Instruction::Select: 8514 case Instruction::SExt: 8515 case Instruction::Shl: 8516 case Instruction::SIToFP: 8517 case Instruction::SRem: 8518 case Instruction::Sub: 8519 case Instruction::Trunc: 8520 case Instruction::UDiv: 8521 case Instruction::UIToFP: 8522 case Instruction::URem: 8523 case Instruction::Xor: 8524 case Instruction::ZExt: 8525 return true; 8526 } 8527 return false; 8528 }; 8529 8530 if (!IsVectorizableOpcode(I->getOpcode())) 8531 return nullptr; 8532 8533 // Success: widen this instruction. 8534 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 8535 } 8536 8537 VPBasicBlock *VPRecipeBuilder::handleReplication( 8538 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8539 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 8540 VPlanPtr &Plan) { 8541 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8542 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8543 Range); 8544 8545 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8546 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 8547 Range); 8548 8549 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8550 IsUniform, IsPredicated); 8551 setRecipe(I, Recipe); 8552 Plan->addVPValue(I, Recipe); 8553 8554 // Find if I uses a predicated instruction. If so, it will use its scalar 8555 // value. Avoid hoisting the insert-element which packs the scalar value into 8556 // a vector value, as that happens iff all users use the vector value. 8557 for (auto &Op : I->operands()) 8558 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8559 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8560 PredInst2Recipe[PredInst]->setAlsoPack(false); 8561 8562 // Finalize the recipe for Instr, first if it is not predicated. 8563 if (!IsPredicated) { 8564 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8565 VPBB->appendRecipe(Recipe); 8566 return VPBB; 8567 } 8568 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8569 assert(VPBB->getSuccessors().empty() && 8570 "VPBB has successors when handling predicated replication."); 8571 // Record predicated instructions for above packing optimizations. 8572 PredInst2Recipe[I] = Recipe; 8573 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8574 VPBlockUtils::insertBlockAfter(Region, VPBB); 8575 auto *RegSucc = new VPBasicBlock(); 8576 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8577 return RegSucc; 8578 } 8579 8580 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8581 VPRecipeBase *PredRecipe, 8582 VPlanPtr &Plan) { 8583 // Instructions marked for predication are replicated and placed under an 8584 // if-then construct to prevent side-effects. 8585 8586 // Generate recipes to compute the block mask for this region. 8587 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8588 8589 // Build the triangular if-then region. 8590 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8591 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8592 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8593 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8594 auto *PHIRecipe = Instr->getType()->isVoidTy() 8595 ? nullptr 8596 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8597 if (PHIRecipe) { 8598 Plan->removeVPValueFor(Instr); 8599 Plan->addVPValue(Instr, PHIRecipe); 8600 } 8601 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8602 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8603 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8604 8605 // Note: first set Entry as region entry and then connect successors starting 8606 // from it in order, to propagate the "parent" of each VPBasicBlock. 8607 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8608 VPBlockUtils::connectBlocks(Pred, Exit); 8609 8610 return Region; 8611 } 8612 8613 VPRecipeOrVPValueTy VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8614 VFRange &Range, 8615 VPlanPtr &Plan) { 8616 // First, check for specific widening recipes that deal with calls, memory 8617 // operations, inductions and Phi nodes. 8618 if (auto *CI = dyn_cast<CallInst>(Instr)) 8619 return toVPRecipeResult(tryToWidenCall(CI, Range, *Plan)); 8620 8621 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8622 return toVPRecipeResult(tryToWidenMemory(Instr, Range, Plan)); 8623 8624 VPRecipeBase *Recipe; 8625 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8626 if (Phi->getParent() != OrigLoop->getHeader()) 8627 return tryToBlend(Phi, Plan); 8628 if ((Recipe = tryToOptimizeInductionPHI(Phi, *Plan))) 8629 return toVPRecipeResult(Recipe); 8630 8631 if (Legal->isReductionVariable(Phi)) { 8632 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8633 VPValue *StartV = 8634 Plan->getOrAddVPValue(RdxDesc.getRecurrenceStartValue()); 8635 return toVPRecipeResult(new VPWidenPHIRecipe(Phi, RdxDesc, *StartV)); 8636 } 8637 8638 return toVPRecipeResult(new VPWidenPHIRecipe(Phi)); 8639 } 8640 8641 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate( 8642 cast<TruncInst>(Instr), Range, *Plan))) 8643 return toVPRecipeResult(Recipe); 8644 8645 if (!shouldWiden(Instr, Range)) 8646 return nullptr; 8647 8648 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8649 return toVPRecipeResult(new VPWidenGEPRecipe( 8650 GEP, Plan->mapToVPValues(GEP->operands()), OrigLoop)); 8651 8652 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8653 bool InvariantCond = 8654 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8655 return toVPRecipeResult(new VPWidenSelectRecipe( 8656 *SI, Plan->mapToVPValues(SI->operands()), InvariantCond)); 8657 } 8658 8659 return toVPRecipeResult(tryToWiden(Instr, *Plan)); 8660 } 8661 8662 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8663 ElementCount MaxVF) { 8664 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8665 8666 // Collect instructions from the original loop that will become trivially dead 8667 // in the vectorized loop. We don't need to vectorize these instructions. For 8668 // example, original induction update instructions can become dead because we 8669 // separately emit induction "steps" when generating code for the new loop. 8670 // Similarly, we create a new latch condition when setting up the structure 8671 // of the new loop, so the old one can become dead. 8672 SmallPtrSet<Instruction *, 4> DeadInstructions; 8673 collectTriviallyDeadInstructions(DeadInstructions); 8674 8675 // Add assume instructions we need to drop to DeadInstructions, to prevent 8676 // them from being added to the VPlan. 8677 // TODO: We only need to drop assumes in blocks that get flattend. If the 8678 // control flow is preserved, we should keep them. 8679 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8680 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8681 8682 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8683 // Dead instructions do not need sinking. Remove them from SinkAfter. 8684 for (Instruction *I : DeadInstructions) 8685 SinkAfter.erase(I); 8686 8687 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8688 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8689 VFRange SubRange = {VF, MaxVFPlusOne}; 8690 VPlans.push_back( 8691 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8692 VF = SubRange.End; 8693 } 8694 } 8695 8696 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8697 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8698 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 8699 8700 // Hold a mapping from predicated instructions to their recipes, in order to 8701 // fix their AlsoPack behavior if a user is determined to replicate and use a 8702 // scalar instead of vector value. 8703 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8704 8705 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8706 8707 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8708 8709 // --------------------------------------------------------------------------- 8710 // Pre-construction: record ingredients whose recipes we'll need to further 8711 // process after constructing the initial VPlan. 8712 // --------------------------------------------------------------------------- 8713 8714 // Mark instructions we'll need to sink later and their targets as 8715 // ingredients whose recipe we'll need to record. 8716 for (auto &Entry : SinkAfter) { 8717 RecipeBuilder.recordRecipeOf(Entry.first); 8718 RecipeBuilder.recordRecipeOf(Entry.second); 8719 } 8720 for (auto &Reduction : CM.getInLoopReductionChains()) { 8721 PHINode *Phi = Reduction.first; 8722 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 8723 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8724 8725 RecipeBuilder.recordRecipeOf(Phi); 8726 for (auto &R : ReductionOperations) { 8727 RecipeBuilder.recordRecipeOf(R); 8728 // For min/max reducitons, where we have a pair of icmp/select, we also 8729 // need to record the ICmp recipe, so it can be removed later. 8730 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8731 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8732 } 8733 } 8734 8735 // For each interleave group which is relevant for this (possibly trimmed) 8736 // Range, add it to the set of groups to be later applied to the VPlan and add 8737 // placeholders for its members' Recipes which we'll be replacing with a 8738 // single VPInterleaveRecipe. 8739 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8740 auto applyIG = [IG, this](ElementCount VF) -> bool { 8741 return (VF.isVector() && // Query is illegal for VF == 1 8742 CM.getWideningDecision(IG->getInsertPos(), VF) == 8743 LoopVectorizationCostModel::CM_Interleave); 8744 }; 8745 if (!getDecisionAndClampRange(applyIG, Range)) 8746 continue; 8747 InterleaveGroups.insert(IG); 8748 for (unsigned i = 0; i < IG->getFactor(); i++) 8749 if (Instruction *Member = IG->getMember(i)) 8750 RecipeBuilder.recordRecipeOf(Member); 8751 }; 8752 8753 // --------------------------------------------------------------------------- 8754 // Build initial VPlan: Scan the body of the loop in a topological order to 8755 // visit each basic block after having visited its predecessor basic blocks. 8756 // --------------------------------------------------------------------------- 8757 8758 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8759 auto Plan = std::make_unique<VPlan>(); 8760 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8761 Plan->setEntry(VPBB); 8762 8763 // Scan the body of the loop in a topological order to visit each basic block 8764 // after having visited its predecessor basic blocks. 8765 LoopBlocksDFS DFS(OrigLoop); 8766 DFS.perform(LI); 8767 8768 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8769 // Relevant instructions from basic block BB will be grouped into VPRecipe 8770 // ingredients and fill a new VPBasicBlock. 8771 unsigned VPBBsForBB = 0; 8772 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8773 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 8774 VPBB = FirstVPBBForBB; 8775 Builder.setInsertPoint(VPBB); 8776 8777 // Introduce each ingredient into VPlan. 8778 // TODO: Model and preserve debug instrinsics in VPlan. 8779 for (Instruction &I : BB->instructionsWithoutDebug()) { 8780 Instruction *Instr = &I; 8781 8782 // First filter out irrelevant instructions, to ensure no recipes are 8783 // built for them. 8784 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8785 continue; 8786 8787 if (auto RecipeOrValue = 8788 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 8789 // If Instr can be simplified to an existing VPValue, use it. 8790 if (RecipeOrValue.is<VPValue *>()) { 8791 Plan->addVPValue(Instr, RecipeOrValue.get<VPValue *>()); 8792 continue; 8793 } 8794 // Otherwise, add the new recipe. 8795 VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); 8796 for (auto *Def : Recipe->definedValues()) { 8797 auto *UV = Def->getUnderlyingValue(); 8798 Plan->addVPValue(UV, Def); 8799 } 8800 8801 RecipeBuilder.setRecipe(Instr, Recipe); 8802 VPBB->appendRecipe(Recipe); 8803 continue; 8804 } 8805 8806 // Otherwise, if all widening options failed, Instruction is to be 8807 // replicated. This may create a successor for VPBB. 8808 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 8809 Instr, Range, VPBB, PredInst2Recipe, Plan); 8810 if (NextVPBB != VPBB) { 8811 VPBB = NextVPBB; 8812 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8813 : ""); 8814 } 8815 } 8816 } 8817 8818 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8819 // may also be empty, such as the last one VPBB, reflecting original 8820 // basic-blocks with no recipes. 8821 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8822 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8823 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8824 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 8825 delete PreEntry; 8826 8827 // --------------------------------------------------------------------------- 8828 // Transform initial VPlan: Apply previously taken decisions, in order, to 8829 // bring the VPlan to its final state. 8830 // --------------------------------------------------------------------------- 8831 8832 // Apply Sink-After legal constraints. 8833 for (auto &Entry : SinkAfter) { 8834 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8835 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8836 // If the target is in a replication region, make sure to move Sink to the 8837 // block after it, not into the replication region itself. 8838 if (auto *Region = 8839 dyn_cast_or_null<VPRegionBlock>(Target->getParent()->getParent())) { 8840 if (Region->isReplicator()) { 8841 assert(Region->getNumSuccessors() == 1 && "Expected SESE region!"); 8842 VPBasicBlock *NextBlock = 8843 cast<VPBasicBlock>(Region->getSuccessors().front()); 8844 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8845 continue; 8846 } 8847 } 8848 Sink->moveAfter(Target); 8849 } 8850 8851 // Interleave memory: for each Interleave Group we marked earlier as relevant 8852 // for this VPlan, replace the Recipes widening its memory instructions with a 8853 // single VPInterleaveRecipe at its insertion point. 8854 for (auto IG : InterleaveGroups) { 8855 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 8856 RecipeBuilder.getRecipe(IG->getInsertPos())); 8857 SmallVector<VPValue *, 4> StoredValues; 8858 for (unsigned i = 0; i < IG->getFactor(); ++i) 8859 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 8860 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 8861 8862 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 8863 Recipe->getMask()); 8864 VPIG->insertBefore(Recipe); 8865 unsigned J = 0; 8866 for (unsigned i = 0; i < IG->getFactor(); ++i) 8867 if (Instruction *Member = IG->getMember(i)) { 8868 if (!Member->getType()->isVoidTy()) { 8869 VPValue *OriginalV = Plan->getVPValue(Member); 8870 Plan->removeVPValueFor(Member); 8871 Plan->addVPValue(Member, VPIG->getVPValue(J)); 8872 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 8873 J++; 8874 } 8875 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 8876 } 8877 } 8878 8879 // Adjust the recipes for any inloop reductions. 8880 if (Range.Start.isVector()) 8881 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 8882 8883 // Finally, if tail is folded by masking, introduce selects between the phi 8884 // and the live-out instruction of each reduction, at the end of the latch. 8885 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 8886 Builder.setInsertPoint(VPBB); 8887 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 8888 for (auto &Reduction : Legal->getReductionVars()) { 8889 if (CM.isInLoopReduction(Reduction.first)) 8890 continue; 8891 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 8892 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 8893 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 8894 } 8895 } 8896 8897 std::string PlanName; 8898 raw_string_ostream RSO(PlanName); 8899 ElementCount VF = Range.Start; 8900 Plan->addVF(VF); 8901 RSO << "Initial VPlan for VF={" << VF; 8902 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 8903 Plan->addVF(VF); 8904 RSO << "," << VF; 8905 } 8906 RSO << "},UF>=1"; 8907 RSO.flush(); 8908 Plan->setName(PlanName); 8909 8910 return Plan; 8911 } 8912 8913 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 8914 // Outer loop handling: They may require CFG and instruction level 8915 // transformations before even evaluating whether vectorization is profitable. 8916 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8917 // the vectorization pipeline. 8918 assert(!OrigLoop->isInnermost()); 8919 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8920 8921 // Create new empty VPlan 8922 auto Plan = std::make_unique<VPlan>(); 8923 8924 // Build hierarchical CFG 8925 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 8926 HCFGBuilder.buildHierarchicalCFG(); 8927 8928 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 8929 VF *= 2) 8930 Plan->addVF(VF); 8931 8932 if (EnableVPlanPredication) { 8933 VPlanPredicator VPP(*Plan); 8934 VPP.predicate(); 8935 8936 // Avoid running transformation to recipes until masked code generation in 8937 // VPlan-native path is in place. 8938 return Plan; 8939 } 8940 8941 SmallPtrSet<Instruction *, 1> DeadInstructions; 8942 VPlanTransforms::VPInstructionsToVPRecipes( 8943 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 8944 return Plan; 8945 } 8946 8947 // Adjust the recipes for any inloop reductions. The chain of instructions 8948 // leading from the loop exit instr to the phi need to be converted to 8949 // reductions, with one operand being vector and the other being the scalar 8950 // reduction chain. 8951 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 8952 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 8953 for (auto &Reduction : CM.getInLoopReductionChains()) { 8954 PHINode *Phi = Reduction.first; 8955 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8956 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8957 8958 // ReductionOperations are orders top-down from the phi's use to the 8959 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 8960 // which of the two operands will remain scalar and which will be reduced. 8961 // For minmax the chain will be the select instructions. 8962 Instruction *Chain = Phi; 8963 for (Instruction *R : ReductionOperations) { 8964 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 8965 RecurKind Kind = RdxDesc.getRecurrenceKind(); 8966 8967 VPValue *ChainOp = Plan->getVPValue(Chain); 8968 unsigned FirstOpId; 8969 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 8970 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 8971 "Expected to replace a VPWidenSelectSC"); 8972 FirstOpId = 1; 8973 } else { 8974 assert(isa<VPWidenRecipe>(WidenRecipe) && 8975 "Expected to replace a VPWidenSC"); 8976 FirstOpId = 0; 8977 } 8978 unsigned VecOpId = 8979 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 8980 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 8981 8982 auto *CondOp = CM.foldTailByMasking() 8983 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 8984 : nullptr; 8985 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 8986 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 8987 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 8988 Plan->removeVPValueFor(R); 8989 Plan->addVPValue(R, RedRecipe); 8990 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 8991 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 8992 WidenRecipe->eraseFromParent(); 8993 8994 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 8995 VPRecipeBase *CompareRecipe = 8996 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 8997 assert(isa<VPWidenRecipe>(CompareRecipe) && 8998 "Expected to replace a VPWidenSC"); 8999 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9000 "Expected no remaining users"); 9001 CompareRecipe->eraseFromParent(); 9002 } 9003 Chain = R; 9004 } 9005 } 9006 } 9007 9008 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9009 VPSlotTracker &SlotTracker) const { 9010 O << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9011 IG->getInsertPos()->printAsOperand(O, false); 9012 O << ", "; 9013 getAddr()->printAsOperand(O, SlotTracker); 9014 VPValue *Mask = getMask(); 9015 if (Mask) { 9016 O << ", "; 9017 Mask->printAsOperand(O, SlotTracker); 9018 } 9019 for (unsigned i = 0; i < IG->getFactor(); ++i) 9020 if (Instruction *I = IG->getMember(i)) 9021 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 9022 } 9023 9024 void VPWidenCallRecipe::execute(VPTransformState &State) { 9025 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9026 *this, State); 9027 } 9028 9029 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9030 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9031 this, *this, InvariantCond, State); 9032 } 9033 9034 void VPWidenRecipe::execute(VPTransformState &State) { 9035 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9036 } 9037 9038 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9039 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9040 *this, State.UF, State.VF, IsPtrLoopInvariant, 9041 IsIndexLoopInvariant, State); 9042 } 9043 9044 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9045 assert(!State.Instance && "Int or FP induction being replicated."); 9046 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9047 getTruncInst(), getVPValue(0), 9048 getCastValue(), State); 9049 } 9050 9051 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9052 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc, 9053 getStartValue(), this, State); 9054 } 9055 9056 void VPBlendRecipe::execute(VPTransformState &State) { 9057 State.ILV->setDebugLocFromInst(State.Builder, Phi); 9058 // We know that all PHIs in non-header blocks are converted into 9059 // selects, so we don't have to worry about the insertion order and we 9060 // can just use the builder. 9061 // At this point we generate the predication tree. There may be 9062 // duplications since this is a simple recursive scan, but future 9063 // optimizations will clean it up. 9064 9065 unsigned NumIncoming = getNumIncomingValues(); 9066 9067 // Generate a sequence of selects of the form: 9068 // SELECT(Mask3, In3, 9069 // SELECT(Mask2, In2, 9070 // SELECT(Mask1, In1, 9071 // In0))) 9072 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9073 // are essentially undef are taken from In0. 9074 InnerLoopVectorizer::VectorParts Entry(State.UF); 9075 for (unsigned In = 0; In < NumIncoming; ++In) { 9076 for (unsigned Part = 0; Part < State.UF; ++Part) { 9077 // We might have single edge PHIs (blocks) - use an identity 9078 // 'select' for the first PHI operand. 9079 Value *In0 = State.get(getIncomingValue(In), Part); 9080 if (In == 0) 9081 Entry[Part] = In0; // Initialize with the first incoming value. 9082 else { 9083 // Select between the current value and the previous incoming edge 9084 // based on the incoming mask. 9085 Value *Cond = State.get(getMask(In), Part); 9086 Entry[Part] = 9087 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9088 } 9089 } 9090 } 9091 for (unsigned Part = 0; Part < State.UF; ++Part) 9092 State.set(this, Entry[Part], Part); 9093 } 9094 9095 void VPInterleaveRecipe::execute(VPTransformState &State) { 9096 assert(!State.Instance && "Interleave group being replicated."); 9097 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9098 getStoredValues(), getMask()); 9099 } 9100 9101 void VPReductionRecipe::execute(VPTransformState &State) { 9102 assert(!State.Instance && "Reduction being replicated."); 9103 for (unsigned Part = 0; Part < State.UF; ++Part) { 9104 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9105 Value *NewVecOp = State.get(getVecOp(), Part); 9106 if (VPValue *Cond = getCondOp()) { 9107 Value *NewCond = State.get(Cond, Part); 9108 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9109 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9110 Kind, VecTy->getElementType()); 9111 Constant *IdenVec = 9112 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9113 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9114 NewVecOp = Select; 9115 } 9116 Value *NewRed = 9117 createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9118 Value *PrevInChain = State.get(getChainOp(), Part); 9119 Value *NextInChain; 9120 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9121 NextInChain = 9122 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9123 NewRed, PrevInChain); 9124 } else { 9125 NextInChain = State.Builder.CreateBinOp( 9126 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9127 PrevInChain); 9128 } 9129 State.set(this, NextInChain, Part); 9130 } 9131 } 9132 9133 void VPReplicateRecipe::execute(VPTransformState &State) { 9134 if (State.Instance) { // Generate a single instance. 9135 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9136 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9137 *State.Instance, IsPredicated, State); 9138 // Insert scalar instance packing it into a vector. 9139 if (AlsoPack && State.VF.isVector()) { 9140 // If we're constructing lane 0, initialize to start from poison. 9141 if (State.Instance->Lane.isFirstLane()) { 9142 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9143 Value *Poison = PoisonValue::get( 9144 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9145 State.set(this, Poison, State.Instance->Part); 9146 } 9147 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9148 } 9149 return; 9150 } 9151 9152 // Generate scalar instances for all VF lanes of all UF parts, unless the 9153 // instruction is uniform inwhich case generate only the first lane for each 9154 // of the UF parts. 9155 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9156 assert((!State.VF.isScalable() || IsUniform) && 9157 "Can't scalarize a scalable vector"); 9158 for (unsigned Part = 0; Part < State.UF; ++Part) 9159 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9160 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9161 VPIteration(Part, Lane), IsPredicated, 9162 State); 9163 } 9164 9165 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9166 assert(State.Instance && "Branch on Mask works only on single instance."); 9167 9168 unsigned Part = State.Instance->Part; 9169 unsigned Lane = State.Instance->Lane.getKnownLane(); 9170 9171 Value *ConditionBit = nullptr; 9172 VPValue *BlockInMask = getMask(); 9173 if (BlockInMask) { 9174 ConditionBit = State.get(BlockInMask, Part); 9175 if (ConditionBit->getType()->isVectorTy()) 9176 ConditionBit = State.Builder.CreateExtractElement( 9177 ConditionBit, State.Builder.getInt32(Lane)); 9178 } else // Block in mask is all-one. 9179 ConditionBit = State.Builder.getTrue(); 9180 9181 // Replace the temporary unreachable terminator with a new conditional branch, 9182 // whose two destinations will be set later when they are created. 9183 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9184 assert(isa<UnreachableInst>(CurrentTerminator) && 9185 "Expected to replace unreachable terminator with conditional branch."); 9186 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9187 CondBr->setSuccessor(0, nullptr); 9188 ReplaceInstWithInst(CurrentTerminator, CondBr); 9189 } 9190 9191 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9192 assert(State.Instance && "Predicated instruction PHI works per instance."); 9193 Instruction *ScalarPredInst = 9194 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9195 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9196 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9197 assert(PredicatingBB && "Predicated block has no single predecessor."); 9198 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9199 "operand must be VPReplicateRecipe"); 9200 9201 // By current pack/unpack logic we need to generate only a single phi node: if 9202 // a vector value for the predicated instruction exists at this point it means 9203 // the instruction has vector users only, and a phi for the vector value is 9204 // needed. In this case the recipe of the predicated instruction is marked to 9205 // also do that packing, thereby "hoisting" the insert-element sequence. 9206 // Otherwise, a phi node for the scalar value is needed. 9207 unsigned Part = State.Instance->Part; 9208 if (State.hasVectorValue(getOperand(0), Part)) { 9209 Value *VectorValue = State.get(getOperand(0), Part); 9210 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9211 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9212 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9213 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9214 if (State.hasVectorValue(this, Part)) 9215 State.reset(this, VPhi, Part); 9216 else 9217 State.set(this, VPhi, Part); 9218 // NOTE: Currently we need to update the value of the operand, so the next 9219 // predicated iteration inserts its generated value in the correct vector. 9220 State.reset(getOperand(0), VPhi, Part); 9221 } else { 9222 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9223 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9224 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9225 PredicatingBB); 9226 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9227 if (State.hasScalarValue(this, *State.Instance)) 9228 State.reset(this, Phi, *State.Instance); 9229 else 9230 State.set(this, Phi, *State.Instance); 9231 // NOTE: Currently we need to update the value of the operand, so the next 9232 // predicated iteration inserts its generated value in the correct vector. 9233 State.reset(getOperand(0), Phi, *State.Instance); 9234 } 9235 } 9236 9237 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9238 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9239 State.ILV->vectorizeMemoryInstruction(&Ingredient, State, 9240 StoredValue ? nullptr : getVPValue(), 9241 getAddr(), StoredValue, getMask()); 9242 } 9243 9244 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9245 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9246 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9247 // for predication. 9248 static ScalarEpilogueLowering getScalarEpilogueLowering( 9249 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9250 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9251 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9252 LoopVectorizationLegality &LVL) { 9253 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9254 // don't look at hints or options, and don't request a scalar epilogue. 9255 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9256 // LoopAccessInfo (due to code dependency and not being able to reliably get 9257 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9258 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9259 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9260 // back to the old way and vectorize with versioning when forced. See D81345.) 9261 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9262 PGSOQueryType::IRPass) && 9263 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9264 return CM_ScalarEpilogueNotAllowedOptSize; 9265 9266 // 2) If set, obey the directives 9267 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9268 switch (PreferPredicateOverEpilogue) { 9269 case PreferPredicateTy::ScalarEpilogue: 9270 return CM_ScalarEpilogueAllowed; 9271 case PreferPredicateTy::PredicateElseScalarEpilogue: 9272 return CM_ScalarEpilogueNotNeededUsePredicate; 9273 case PreferPredicateTy::PredicateOrDontVectorize: 9274 return CM_ScalarEpilogueNotAllowedUsePredicate; 9275 }; 9276 } 9277 9278 // 3) If set, obey the hints 9279 switch (Hints.getPredicate()) { 9280 case LoopVectorizeHints::FK_Enabled: 9281 return CM_ScalarEpilogueNotNeededUsePredicate; 9282 case LoopVectorizeHints::FK_Disabled: 9283 return CM_ScalarEpilogueAllowed; 9284 }; 9285 9286 // 4) if the TTI hook indicates this is profitable, request predication. 9287 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9288 LVL.getLAI())) 9289 return CM_ScalarEpilogueNotNeededUsePredicate; 9290 9291 return CM_ScalarEpilogueAllowed; 9292 } 9293 9294 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9295 // If Values have been set for this Def return the one relevant for \p Part. 9296 if (hasVectorValue(Def, Part)) 9297 return Data.PerPartOutput[Def][Part]; 9298 9299 if (!hasScalarValue(Def, {Part, 0})) { 9300 Value *IRV = Def->getLiveInIRValue(); 9301 Value *B = ILV->getBroadcastInstrs(IRV); 9302 set(Def, B, Part); 9303 return B; 9304 } 9305 9306 Value *ScalarValue = get(Def, {Part, 0}); 9307 // If we aren't vectorizing, we can just copy the scalar map values over 9308 // to the vector map. 9309 if (VF.isScalar()) { 9310 set(Def, ScalarValue, Part); 9311 return ScalarValue; 9312 } 9313 9314 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9315 bool IsUniform = RepR && RepR->isUniform(); 9316 9317 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9318 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9319 9320 // Set the insert point after the last scalarized instruction. This 9321 // ensures the insertelement sequence will directly follow the scalar 9322 // definitions. 9323 auto OldIP = Builder.saveIP(); 9324 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 9325 Builder.SetInsertPoint(&*NewIP); 9326 9327 // However, if we are vectorizing, we need to construct the vector values. 9328 // If the value is known to be uniform after vectorization, we can just 9329 // broadcast the scalar value corresponding to lane zero for each unroll 9330 // iteration. Otherwise, we construct the vector values using 9331 // insertelement instructions. Since the resulting vectors are stored in 9332 // State, we will only generate the insertelements once. 9333 Value *VectorValue = nullptr; 9334 if (IsUniform) { 9335 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9336 set(Def, VectorValue, Part); 9337 } else { 9338 // Initialize packing with insertelements to start from undef. 9339 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9340 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9341 set(Def, Undef, Part); 9342 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9343 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9344 VectorValue = get(Def, Part); 9345 } 9346 Builder.restoreIP(OldIP); 9347 return VectorValue; 9348 } 9349 9350 // Process the loop in the VPlan-native vectorization path. This path builds 9351 // VPlan upfront in the vectorization pipeline, which allows to apply 9352 // VPlan-to-VPlan transformations from the very beginning without modifying the 9353 // input LLVM IR. 9354 static bool processLoopInVPlanNativePath( 9355 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9356 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9357 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9358 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9359 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 9360 9361 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9362 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9363 return false; 9364 } 9365 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9366 Function *F = L->getHeader()->getParent(); 9367 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9368 9369 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9370 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9371 9372 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9373 &Hints, IAI); 9374 // Use the planner for outer loop vectorization. 9375 // TODO: CM is not used at this point inside the planner. Turn CM into an 9376 // optional argument if we don't need it in the future. 9377 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 9378 9379 // Get user vectorization factor. 9380 ElementCount UserVF = Hints.getWidth(); 9381 9382 // Plan how to best vectorize, return the best VF and its cost. 9383 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9384 9385 // If we are stress testing VPlan builds, do not attempt to generate vector 9386 // code. Masked vector code generation support will follow soon. 9387 // Also, do not attempt to vectorize if no vector code will be produced. 9388 if (VPlanBuildStressTest || EnableVPlanPredication || 9389 VectorizationFactor::Disabled() == VF) 9390 return false; 9391 9392 LVP.setBestPlan(VF.Width, 1); 9393 9394 { 9395 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 9396 F->getParent()->getDataLayout()); 9397 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9398 &CM, BFI, PSI, Checks); 9399 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9400 << L->getHeader()->getParent()->getName() << "\"\n"); 9401 LVP.executePlan(LB, DT); 9402 } 9403 9404 // Mark the loop as already vectorized to avoid vectorizing again. 9405 Hints.setAlreadyVectorized(); 9406 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9407 return true; 9408 } 9409 9410 // Emit a remark if there are stores to floats that required a floating point 9411 // extension. If the vectorized loop was generated with floating point there 9412 // will be a performance penalty from the conversion overhead and the change in 9413 // the vector width. 9414 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9415 SmallVector<Instruction *, 4> Worklist; 9416 for (BasicBlock *BB : L->getBlocks()) { 9417 for (Instruction &Inst : *BB) { 9418 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9419 if (S->getValueOperand()->getType()->isFloatTy()) 9420 Worklist.push_back(S); 9421 } 9422 } 9423 } 9424 9425 // Traverse the floating point stores upwards searching, for floating point 9426 // conversions. 9427 SmallPtrSet<const Instruction *, 4> Visited; 9428 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9429 while (!Worklist.empty()) { 9430 auto *I = Worklist.pop_back_val(); 9431 if (!L->contains(I)) 9432 continue; 9433 if (!Visited.insert(I).second) 9434 continue; 9435 9436 // Emit a remark if the floating point store required a floating 9437 // point conversion. 9438 // TODO: More work could be done to identify the root cause such as a 9439 // constant or a function return type and point the user to it. 9440 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9441 ORE->emit([&]() { 9442 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9443 I->getDebugLoc(), L->getHeader()) 9444 << "floating point conversion changes vector width. " 9445 << "Mixed floating point precision requires an up/down " 9446 << "cast that will negatively impact performance."; 9447 }); 9448 9449 for (Use &Op : I->operands()) 9450 if (auto *OpI = dyn_cast<Instruction>(Op)) 9451 Worklist.push_back(OpI); 9452 } 9453 } 9454 9455 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9456 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9457 !EnableLoopInterleaving), 9458 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9459 !EnableLoopVectorization) {} 9460 9461 bool LoopVectorizePass::processLoop(Loop *L) { 9462 assert((EnableVPlanNativePath || L->isInnermost()) && 9463 "VPlan-native path is not enabled. Only process inner loops."); 9464 9465 #ifndef NDEBUG 9466 const std::string DebugLocStr = getDebugLocString(L); 9467 #endif /* NDEBUG */ 9468 9469 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9470 << L->getHeader()->getParent()->getName() << "\" from " 9471 << DebugLocStr << "\n"); 9472 9473 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9474 9475 LLVM_DEBUG( 9476 dbgs() << "LV: Loop hints:" 9477 << " force=" 9478 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9479 ? "disabled" 9480 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9481 ? "enabled" 9482 : "?")) 9483 << " width=" << Hints.getWidth() 9484 << " unroll=" << Hints.getInterleave() << "\n"); 9485 9486 // Function containing loop 9487 Function *F = L->getHeader()->getParent(); 9488 9489 // Looking at the diagnostic output is the only way to determine if a loop 9490 // was vectorized (other than looking at the IR or machine code), so it 9491 // is important to generate an optimization remark for each loop. Most of 9492 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9493 // generated as OptimizationRemark and OptimizationRemarkMissed are 9494 // less verbose reporting vectorized loops and unvectorized loops that may 9495 // benefit from vectorization, respectively. 9496 9497 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9498 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9499 return false; 9500 } 9501 9502 PredicatedScalarEvolution PSE(*SE, *L); 9503 9504 // Check if it is legal to vectorize the loop. 9505 LoopVectorizationRequirements Requirements(*ORE); 9506 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9507 &Requirements, &Hints, DB, AC, BFI, PSI); 9508 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9509 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9510 Hints.emitRemarkWithHints(); 9511 return false; 9512 } 9513 9514 // Check the function attributes and profiles to find out if this function 9515 // should be optimized for size. 9516 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9517 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9518 9519 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9520 // here. They may require CFG and instruction level transformations before 9521 // even evaluating whether vectorization is profitable. Since we cannot modify 9522 // the incoming IR, we need to build VPlan upfront in the vectorization 9523 // pipeline. 9524 if (!L->isInnermost()) 9525 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9526 ORE, BFI, PSI, Hints); 9527 9528 assert(L->isInnermost() && "Inner loop expected."); 9529 9530 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9531 // count by optimizing for size, to minimize overheads. 9532 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9533 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9534 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9535 << "This loop is worth vectorizing only if no scalar " 9536 << "iteration overheads are incurred."); 9537 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9538 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 9539 else { 9540 LLVM_DEBUG(dbgs() << "\n"); 9541 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 9542 } 9543 } 9544 9545 // Check the function attributes to see if implicit floats are allowed. 9546 // FIXME: This check doesn't seem possibly correct -- what if the loop is 9547 // an integer loop and the vector instructions selected are purely integer 9548 // vector instructions? 9549 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 9550 reportVectorizationFailure( 9551 "Can't vectorize when the NoImplicitFloat attribute is used", 9552 "loop not vectorized due to NoImplicitFloat attribute", 9553 "NoImplicitFloat", ORE, L); 9554 Hints.emitRemarkWithHints(); 9555 return false; 9556 } 9557 9558 // Check if the target supports potentially unsafe FP vectorization. 9559 // FIXME: Add a check for the type of safety issue (denormal, signaling) 9560 // for the target we're vectorizing for, to make sure none of the 9561 // additional fp-math flags can help. 9562 if (Hints.isPotentiallyUnsafe() && 9563 TTI->isFPVectorizationPotentiallyUnsafe()) { 9564 reportVectorizationFailure( 9565 "Potentially unsafe FP op prevents vectorization", 9566 "loop not vectorized due to unsafe FP support.", 9567 "UnsafeFP", ORE, L); 9568 Hints.emitRemarkWithHints(); 9569 return false; 9570 } 9571 9572 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 9573 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 9574 9575 // If an override option has been passed in for interleaved accesses, use it. 9576 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 9577 UseInterleaved = EnableInterleavedMemAccesses; 9578 9579 // Analyze interleaved memory accesses. 9580 if (UseInterleaved) { 9581 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 9582 } 9583 9584 // Use the cost model. 9585 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 9586 F, &Hints, IAI); 9587 CM.collectValuesToIgnore(); 9588 9589 // Use the planner for vectorization. 9590 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 9591 9592 // Get user vectorization factor and interleave count. 9593 ElementCount UserVF = Hints.getWidth(); 9594 unsigned UserIC = Hints.getInterleave(); 9595 9596 // Plan how to best vectorize, return the best VF and its cost. 9597 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 9598 9599 VectorizationFactor VF = VectorizationFactor::Disabled(); 9600 unsigned IC = 1; 9601 9602 if (MaybeVF) { 9603 VF = *MaybeVF; 9604 // Select the interleave count. 9605 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 9606 } 9607 9608 // Identify the diagnostic messages that should be produced. 9609 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 9610 bool VectorizeLoop = true, InterleaveLoop = true; 9611 if (Requirements.doesNotMeet(F, L, Hints)) { 9612 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 9613 "requirements.\n"); 9614 Hints.emitRemarkWithHints(); 9615 return false; 9616 } 9617 9618 if (VF.Width.isScalar()) { 9619 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 9620 VecDiagMsg = std::make_pair( 9621 "VectorizationNotBeneficial", 9622 "the cost-model indicates that vectorization is not beneficial"); 9623 VectorizeLoop = false; 9624 } 9625 9626 if (!MaybeVF && UserIC > 1) { 9627 // Tell the user interleaving was avoided up-front, despite being explicitly 9628 // requested. 9629 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 9630 "interleaving should be avoided up front\n"); 9631 IntDiagMsg = std::make_pair( 9632 "InterleavingAvoided", 9633 "Ignoring UserIC, because interleaving was avoided up front"); 9634 InterleaveLoop = false; 9635 } else if (IC == 1 && UserIC <= 1) { 9636 // Tell the user interleaving is not beneficial. 9637 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 9638 IntDiagMsg = std::make_pair( 9639 "InterleavingNotBeneficial", 9640 "the cost-model indicates that interleaving is not beneficial"); 9641 InterleaveLoop = false; 9642 if (UserIC == 1) { 9643 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 9644 IntDiagMsg.second += 9645 " and is explicitly disabled or interleave count is set to 1"; 9646 } 9647 } else if (IC > 1 && UserIC == 1) { 9648 // Tell the user interleaving is beneficial, but it explicitly disabled. 9649 LLVM_DEBUG( 9650 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 9651 IntDiagMsg = std::make_pair( 9652 "InterleavingBeneficialButDisabled", 9653 "the cost-model indicates that interleaving is beneficial " 9654 "but is explicitly disabled or interleave count is set to 1"); 9655 InterleaveLoop = false; 9656 } 9657 9658 // Override IC if user provided an interleave count. 9659 IC = UserIC > 0 ? UserIC : IC; 9660 9661 // Emit diagnostic messages, if any. 9662 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 9663 if (!VectorizeLoop && !InterleaveLoop) { 9664 // Do not vectorize or interleaving the loop. 9665 ORE->emit([&]() { 9666 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 9667 L->getStartLoc(), L->getHeader()) 9668 << VecDiagMsg.second; 9669 }); 9670 ORE->emit([&]() { 9671 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 9672 L->getStartLoc(), L->getHeader()) 9673 << IntDiagMsg.second; 9674 }); 9675 return false; 9676 } else if (!VectorizeLoop && InterleaveLoop) { 9677 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9678 ORE->emit([&]() { 9679 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 9680 L->getStartLoc(), L->getHeader()) 9681 << VecDiagMsg.second; 9682 }); 9683 } else if (VectorizeLoop && !InterleaveLoop) { 9684 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9685 << ") in " << DebugLocStr << '\n'); 9686 ORE->emit([&]() { 9687 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 9688 L->getStartLoc(), L->getHeader()) 9689 << IntDiagMsg.second; 9690 }); 9691 } else if (VectorizeLoop && InterleaveLoop) { 9692 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9693 << ") in " << DebugLocStr << '\n'); 9694 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9695 } 9696 9697 bool DisableRuntimeUnroll = false; 9698 MDNode *OrigLoopID = L->getLoopID(); 9699 { 9700 // Optimistically generate runtime checks. Drop them if they turn out to not 9701 // be profitable. Limit the scope of Checks, so the cleanup happens 9702 // immediately after vector codegeneration is done. 9703 GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, 9704 F->getParent()->getDataLayout()); 9705 if (!VF.Width.isScalar() || IC > 1) 9706 Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate()); 9707 LVP.setBestPlan(VF.Width, IC); 9708 9709 using namespace ore; 9710 if (!VectorizeLoop) { 9711 assert(IC > 1 && "interleave count should not be 1 or 0"); 9712 // If we decided that it is not legal to vectorize the loop, then 9713 // interleave it. 9714 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, 9715 &CM, BFI, PSI, Checks); 9716 LVP.executePlan(Unroller, DT); 9717 9718 ORE->emit([&]() { 9719 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 9720 L->getHeader()) 9721 << "interleaved loop (interleaved count: " 9722 << NV("InterleaveCount", IC) << ")"; 9723 }); 9724 } else { 9725 // If we decided that it is *legal* to vectorize the loop, then do it. 9726 9727 // Consider vectorizing the epilogue too if it's profitable. 9728 VectorizationFactor EpilogueVF = 9729 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 9730 if (EpilogueVF.Width.isVector()) { 9731 9732 // The first pass vectorizes the main loop and creates a scalar epilogue 9733 // to be vectorized by executing the plan (potentially with a different 9734 // factor) again shortly afterwards. 9735 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 9736 EpilogueVF.Width.getKnownMinValue(), 9737 1); 9738 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, 9739 EPI, &LVL, &CM, BFI, PSI, Checks); 9740 9741 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 9742 LVP.executePlan(MainILV, DT); 9743 ++LoopsVectorized; 9744 9745 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9746 formLCSSARecursively(*L, *DT, LI, SE); 9747 9748 // Second pass vectorizes the epilogue and adjusts the control flow 9749 // edges from the first pass. 9750 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 9751 EPI.MainLoopVF = EPI.EpilogueVF; 9752 EPI.MainLoopUF = EPI.EpilogueUF; 9753 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 9754 ORE, EPI, &LVL, &CM, BFI, PSI, 9755 Checks); 9756 LVP.executePlan(EpilogILV, DT); 9757 ++LoopsEpilogueVectorized; 9758 9759 if (!MainILV.areSafetyChecksAdded()) 9760 DisableRuntimeUnroll = true; 9761 } else { 9762 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 9763 &LVL, &CM, BFI, PSI, Checks); 9764 LVP.executePlan(LB, DT); 9765 ++LoopsVectorized; 9766 9767 // Add metadata to disable runtime unrolling a scalar loop when there 9768 // are no runtime checks about strides and memory. A scalar loop that is 9769 // rarely used is not worth unrolling. 9770 if (!LB.areSafetyChecksAdded()) 9771 DisableRuntimeUnroll = true; 9772 } 9773 // Report the vectorization decision. 9774 ORE->emit([&]() { 9775 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 9776 L->getHeader()) 9777 << "vectorized loop (vectorization width: " 9778 << NV("VectorizationFactor", VF.Width) 9779 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 9780 }); 9781 } 9782 9783 if (ORE->allowExtraAnalysis(LV_NAME)) 9784 checkMixedPrecision(L, ORE); 9785 } 9786 9787 Optional<MDNode *> RemainderLoopID = 9788 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 9789 LLVMLoopVectorizeFollowupEpilogue}); 9790 if (RemainderLoopID.hasValue()) { 9791 L->setLoopID(RemainderLoopID.getValue()); 9792 } else { 9793 if (DisableRuntimeUnroll) 9794 AddRuntimeUnrollDisableMetaData(L); 9795 9796 // Mark the loop as already vectorized to avoid vectorizing again. 9797 Hints.setAlreadyVectorized(); 9798 } 9799 9800 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9801 return true; 9802 } 9803 9804 LoopVectorizeResult LoopVectorizePass::runImpl( 9805 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 9806 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 9807 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 9808 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 9809 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 9810 SE = &SE_; 9811 LI = &LI_; 9812 TTI = &TTI_; 9813 DT = &DT_; 9814 BFI = &BFI_; 9815 TLI = TLI_; 9816 AA = &AA_; 9817 AC = &AC_; 9818 GetLAA = &GetLAA_; 9819 DB = &DB_; 9820 ORE = &ORE_; 9821 PSI = PSI_; 9822 9823 // Don't attempt if 9824 // 1. the target claims to have no vector registers, and 9825 // 2. interleaving won't help ILP. 9826 // 9827 // The second condition is necessary because, even if the target has no 9828 // vector registers, loop vectorization may still enable scalar 9829 // interleaving. 9830 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 9831 TTI->getMaxInterleaveFactor(1) < 2) 9832 return LoopVectorizeResult(false, false); 9833 9834 bool Changed = false, CFGChanged = false; 9835 9836 // The vectorizer requires loops to be in simplified form. 9837 // Since simplification may add new inner loops, it has to run before the 9838 // legality and profitability checks. This means running the loop vectorizer 9839 // will simplify all loops, regardless of whether anything end up being 9840 // vectorized. 9841 for (auto &L : *LI) 9842 Changed |= CFGChanged |= 9843 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9844 9845 // Build up a worklist of inner-loops to vectorize. This is necessary as 9846 // the act of vectorizing or partially unrolling a loop creates new loops 9847 // and can invalidate iterators across the loops. 9848 SmallVector<Loop *, 8> Worklist; 9849 9850 for (Loop *L : *LI) 9851 collectSupportedLoops(*L, LI, ORE, Worklist); 9852 9853 LoopsAnalyzed += Worklist.size(); 9854 9855 // Now walk the identified inner loops. 9856 while (!Worklist.empty()) { 9857 Loop *L = Worklist.pop_back_val(); 9858 9859 // For the inner loops we actually process, form LCSSA to simplify the 9860 // transform. 9861 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 9862 9863 Changed |= CFGChanged |= processLoop(L); 9864 } 9865 9866 // Process each loop nest in the function. 9867 return LoopVectorizeResult(Changed, CFGChanged); 9868 } 9869 9870 PreservedAnalyses LoopVectorizePass::run(Function &F, 9871 FunctionAnalysisManager &AM) { 9872 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 9873 auto &LI = AM.getResult<LoopAnalysis>(F); 9874 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 9875 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 9876 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 9877 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 9878 auto &AA = AM.getResult<AAManager>(F); 9879 auto &AC = AM.getResult<AssumptionAnalysis>(F); 9880 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 9881 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9882 MemorySSA *MSSA = EnableMSSALoopDependency 9883 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 9884 : nullptr; 9885 9886 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 9887 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 9888 [&](Loop &L) -> const LoopAccessInfo & { 9889 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 9890 TLI, TTI, nullptr, MSSA}; 9891 return LAM.getResult<LoopAccessAnalysis>(L, AR); 9892 }; 9893 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 9894 ProfileSummaryInfo *PSI = 9895 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 9896 LoopVectorizeResult Result = 9897 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 9898 if (!Result.MadeAnyChange) 9899 return PreservedAnalyses::all(); 9900 PreservedAnalyses PA; 9901 9902 // We currently do not preserve loopinfo/dominator analyses with outer loop 9903 // vectorization. Until this is addressed, mark these analyses as preserved 9904 // only for non-VPlan-native path. 9905 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 9906 if (!EnableVPlanNativePath) { 9907 PA.preserve<LoopAnalysis>(); 9908 PA.preserve<DominatorTreeAnalysis>(); 9909 } 9910 PA.preserve<BasicAA>(); 9911 PA.preserve<GlobalsAA>(); 9912 if (!Result.MadeCFGChange) 9913 PA.preserveSet<CFGAnalyses>(); 9914 return PA; 9915 } 9916