1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
10 // and generates target-independent LLVM-IR.
11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
12 // of instructions in order to estimate the profitability of vectorization.
13 //
14 // The loop vectorizer combines consecutive loop iterations into a single
15 // 'wide' iteration. After this transformation the index is incremented
16 // by the SIMD vector width, and not by one.
17 //
18 // This pass has three parts:
19 // 1. The main loop pass that drives the different parts.
20 // 2. LoopVectorizationLegality - A unit that checks for the legality
21 //    of the vectorization.
22 // 3. InnerLoopVectorizer - A unit that performs the actual
23 //    widening of instructions.
24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
25 //    of vectorization. It decides on the optimal vector width, which
26 //    can be one, if vectorization is not profitable.
27 //
28 // There is a development effort going on to migrate loop vectorizer to the
29 // VPlan infrastructure and to introduce outer loop vectorization support (see
30 // docs/Proposal/VectorizationPlan.rst and
31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
32 // purpose, we temporarily introduced the VPlan-native vectorization path: an
33 // alternative vectorization path that is natively implemented on top of the
34 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
35 //
36 //===----------------------------------------------------------------------===//
37 //
38 // The reduction-variable vectorization is based on the paper:
39 //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
40 //
41 // Variable uniformity checks are inspired by:
42 //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
43 //
44 // The interleaved access vectorization is based on the paper:
45 //  Dorit Nuzman, Ira Rosen and Ayal Zaks.  Auto-Vectorization of Interleaved
46 //  Data for SIMD
47 //
48 // Other ideas/concepts are from:
49 //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
50 //
51 //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
52 //  Vectorizing Compilers.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
57 #include "LoopVectorizationPlanner.h"
58 #include "VPRecipeBuilder.h"
59 #include "VPlan.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "VPlanPredicator.h"
62 #include "VPlanTransforms.h"
63 #include "llvm/ADT/APInt.h"
64 #include "llvm/ADT/ArrayRef.h"
65 #include "llvm/ADT/DenseMap.h"
66 #include "llvm/ADT/DenseMapInfo.h"
67 #include "llvm/ADT/Hashing.h"
68 #include "llvm/ADT/MapVector.h"
69 #include "llvm/ADT/None.h"
70 #include "llvm/ADT/Optional.h"
71 #include "llvm/ADT/STLExtras.h"
72 #include "llvm/ADT/SmallPtrSet.h"
73 #include "llvm/ADT/SmallSet.h"
74 #include "llvm/ADT/SmallVector.h"
75 #include "llvm/ADT/Statistic.h"
76 #include "llvm/ADT/StringRef.h"
77 #include "llvm/ADT/Twine.h"
78 #include "llvm/ADT/iterator_range.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/BasicAliasAnalysis.h"
81 #include "llvm/Analysis/BlockFrequencyInfo.h"
82 #include "llvm/Analysis/CFG.h"
83 #include "llvm/Analysis/CodeMetrics.h"
84 #include "llvm/Analysis/DemandedBits.h"
85 #include "llvm/Analysis/GlobalsModRef.h"
86 #include "llvm/Analysis/LoopAccessAnalysis.h"
87 #include "llvm/Analysis/LoopAnalysisManager.h"
88 #include "llvm/Analysis/LoopInfo.h"
89 #include "llvm/Analysis/LoopIterator.h"
90 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
91 #include "llvm/Analysis/ProfileSummaryInfo.h"
92 #include "llvm/Analysis/ScalarEvolution.h"
93 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
94 #include "llvm/Analysis/TargetLibraryInfo.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/Analysis/VectorUtils.h"
97 #include "llvm/IR/Attributes.h"
98 #include "llvm/IR/BasicBlock.h"
99 #include "llvm/IR/CFG.h"
100 #include "llvm/IR/Constant.h"
101 #include "llvm/IR/Constants.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/DebugInfoMetadata.h"
104 #include "llvm/IR/DebugLoc.h"
105 #include "llvm/IR/DerivedTypes.h"
106 #include "llvm/IR/DiagnosticInfo.h"
107 #include "llvm/IR/Dominators.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/IR/IRBuilder.h"
110 #include "llvm/IR/InstrTypes.h"
111 #include "llvm/IR/Instruction.h"
112 #include "llvm/IR/Instructions.h"
113 #include "llvm/IR/IntrinsicInst.h"
114 #include "llvm/IR/Intrinsics.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/IR/Module.h"
118 #include "llvm/IR/Operator.h"
119 #include "llvm/IR/PatternMatch.h"
120 #include "llvm/IR/Type.h"
121 #include "llvm/IR/Use.h"
122 #include "llvm/IR/User.h"
123 #include "llvm/IR/Value.h"
124 #include "llvm/IR/ValueHandle.h"
125 #include "llvm/IR/Verifier.h"
126 #include "llvm/InitializePasses.h"
127 #include "llvm/Pass.h"
128 #include "llvm/Support/Casting.h"
129 #include "llvm/Support/CommandLine.h"
130 #include "llvm/Support/Compiler.h"
131 #include "llvm/Support/Debug.h"
132 #include "llvm/Support/ErrorHandling.h"
133 #include "llvm/Support/InstructionCost.h"
134 #include "llvm/Support/MathExtras.h"
135 #include "llvm/Support/raw_ostream.h"
136 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
137 #include "llvm/Transforms/Utils/InjectTLIMappings.h"
138 #include "llvm/Transforms/Utils/LoopSimplify.h"
139 #include "llvm/Transforms/Utils/LoopUtils.h"
140 #include "llvm/Transforms/Utils/LoopVersioning.h"
141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
142 #include "llvm/Transforms/Utils/SizeOpts.h"
143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
144 #include <algorithm>
145 #include <cassert>
146 #include <cstdint>
147 #include <cstdlib>
148 #include <functional>
149 #include <iterator>
150 #include <limits>
151 #include <memory>
152 #include <string>
153 #include <tuple>
154 #include <utility>
155 
156 using namespace llvm;
157 
158 #define LV_NAME "loop-vectorize"
159 #define DEBUG_TYPE LV_NAME
160 
161 #ifndef NDEBUG
162 const char VerboseDebug[] = DEBUG_TYPE "-verbose";
163 #endif
164 
165 /// @{
166 /// Metadata attribute names
167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
168 const char LLVMLoopVectorizeFollowupVectorized[] =
169     "llvm.loop.vectorize.followup_vectorized";
170 const char LLVMLoopVectorizeFollowupEpilogue[] =
171     "llvm.loop.vectorize.followup_epilogue";
172 /// @}
173 
174 STATISTIC(LoopsVectorized, "Number of loops vectorized");
175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
177 
178 static cl::opt<bool> EnableEpilogueVectorization(
179     "enable-epilogue-vectorization", cl::init(true), cl::Hidden,
180     cl::desc("Enable vectorization of epilogue loops."));
181 
182 static cl::opt<unsigned> EpilogueVectorizationForceVF(
183     "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
184     cl::desc("When epilogue vectorization is enabled, and a value greater than "
185              "1 is specified, forces the given VF for all applicable epilogue "
186              "loops."));
187 
188 static cl::opt<unsigned> EpilogueVectorizationMinVF(
189     "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
190     cl::desc("Only loops with vectorization factor equal to or larger than "
191              "the specified value are considered for epilogue vectorization."));
192 
193 /// Loops with a known constant trip count below this number are vectorized only
194 /// if no scalar iteration overheads are incurred.
195 static cl::opt<unsigned> TinyTripCountVectorThreshold(
196     "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
197     cl::desc("Loops with a constant trip count that is smaller than this "
198              "value are vectorized only if no scalar iteration overheads "
199              "are incurred."));
200 
201 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
202     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
203     cl::desc("The maximum allowed number of runtime memory checks with a "
204              "vectorize(enable) pragma."));
205 
206 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
207 // that predication is preferred, and this lists all options. I.e., the
208 // vectorizer will try to fold the tail-loop (epilogue) into the vector body
209 // and predicate the instructions accordingly. If tail-folding fails, there are
210 // different fallback strategies depending on these values:
211 namespace PreferPredicateTy {
212   enum Option {
213     ScalarEpilogue = 0,
214     PredicateElseScalarEpilogue,
215     PredicateOrDontVectorize
216   };
217 } // namespace PreferPredicateTy
218 
219 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
220     "prefer-predicate-over-epilogue",
221     cl::init(PreferPredicateTy::ScalarEpilogue),
222     cl::Hidden,
223     cl::desc("Tail-folding and predication preferences over creating a scalar "
224              "epilogue loop."),
225     cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
226                          "scalar-epilogue",
227                          "Don't tail-predicate loops, create scalar epilogue"),
228               clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
229                          "predicate-else-scalar-epilogue",
230                          "prefer tail-folding, create scalar epilogue if tail "
231                          "folding fails."),
232               clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
233                          "predicate-dont-vectorize",
234                          "prefers tail-folding, don't attempt vectorization if "
235                          "tail-folding fails.")));
236 
237 static cl::opt<bool> MaximizeBandwidth(
238     "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
239     cl::desc("Maximize bandwidth when selecting vectorization factor which "
240              "will be determined by the smallest type in loop."));
241 
242 static cl::opt<bool> EnableInterleavedMemAccesses(
243     "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
244     cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
245 
246 /// An interleave-group may need masking if it resides in a block that needs
247 /// predication, or in order to mask away gaps.
248 static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
249     "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
250     cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
251 
252 static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
253     "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
254     cl::desc("We don't interleave loops with a estimated constant trip count "
255              "below this number"));
256 
257 static cl::opt<unsigned> ForceTargetNumScalarRegs(
258     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
259     cl::desc("A flag that overrides the target's number of scalar registers."));
260 
261 static cl::opt<unsigned> ForceTargetNumVectorRegs(
262     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
263     cl::desc("A flag that overrides the target's number of vector registers."));
264 
265 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
266     "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
267     cl::desc("A flag that overrides the target's max interleave factor for "
268              "scalar loops."));
269 
270 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
271     "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
272     cl::desc("A flag that overrides the target's max interleave factor for "
273              "vectorized loops."));
274 
275 static cl::opt<unsigned> ForceTargetInstructionCost(
276     "force-target-instruction-cost", cl::init(0), cl::Hidden,
277     cl::desc("A flag that overrides the target's expected cost for "
278              "an instruction to a single constant value. Mostly "
279              "useful for getting consistent testing."));
280 
281 static cl::opt<bool> ForceTargetSupportsScalableVectors(
282     "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
283     cl::desc(
284         "Pretend that scalable vectors are supported, even if the target does "
285         "not support them. This flag should only be used for testing."));
286 
287 static cl::opt<unsigned> SmallLoopCost(
288     "small-loop-cost", cl::init(20), cl::Hidden,
289     cl::desc(
290         "The cost of a loop that is considered 'small' by the interleaver."));
291 
292 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
293     "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
294     cl::desc("Enable the use of the block frequency analysis to access PGO "
295              "heuristics minimizing code growth in cold regions and being more "
296              "aggressive in hot regions."));
297 
298 // Runtime interleave loops for load/store throughput.
299 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
300     "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
301     cl::desc(
302         "Enable runtime interleaving until load/store ports are saturated"));
303 
304 /// Interleave small loops with scalar reductions.
305 static cl::opt<bool> InterleaveSmallLoopScalarReduction(
306     "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
307     cl::desc("Enable interleaving for loops with small iteration counts that "
308              "contain scalar reductions to expose ILP."));
309 
310 /// The number of stores in a loop that are allowed to need predication.
311 static cl::opt<unsigned> NumberOfStoresToPredicate(
312     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
313     cl::desc("Max number of stores to be predicated behind an if."));
314 
315 static cl::opt<bool> EnableIndVarRegisterHeur(
316     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
317     cl::desc("Count the induction variable only once when interleaving"));
318 
319 static cl::opt<bool> EnableCondStoresVectorization(
320     "enable-cond-stores-vec", cl::init(true), cl::Hidden,
321     cl::desc("Enable if predication of stores during vectorization."));
322 
323 static cl::opt<unsigned> MaxNestedScalarReductionIC(
324     "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
325     cl::desc("The maximum interleave count to use when interleaving a scalar "
326              "reduction in a nested loop."));
327 
328 static cl::opt<bool>
329     PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
330                            cl::Hidden,
331                            cl::desc("Prefer in-loop vector reductions, "
332                                     "overriding the targets preference."));
333 
334 static cl::opt<bool> ForceOrderedReductions(
335     "force-ordered-reductions", cl::init(false), cl::Hidden,
336     cl::desc("Enable the vectorisation of loops with in-order (strict) "
337              "FP reductions"));
338 
339 static cl::opt<bool> PreferPredicatedReductionSelect(
340     "prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
341     cl::desc(
342         "Prefer predicating a reduction operation over an after loop select."));
343 
344 cl::opt<bool> EnableVPlanNativePath(
345     "enable-vplan-native-path", cl::init(false), cl::Hidden,
346     cl::desc("Enable VPlan-native vectorization path with "
347              "support for outer loop vectorization."));
348 
349 // FIXME: Remove this switch once we have divergence analysis. Currently we
350 // assume divergent non-backedge branches when this switch is true.
351 cl::opt<bool> EnableVPlanPredication(
352     "enable-vplan-predication", cl::init(false), cl::Hidden,
353     cl::desc("Enable VPlan-native vectorization path predicator with "
354              "support for outer loop vectorization."));
355 
356 // This flag enables the stress testing of the VPlan H-CFG construction in the
357 // VPlan-native vectorization path. It must be used in conjuction with
358 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
359 // verification of the H-CFGs built.
360 static cl::opt<bool> VPlanBuildStressTest(
361     "vplan-build-stress-test", cl::init(false), cl::Hidden,
362     cl::desc(
363         "Build VPlan for every supported loop nest in the function and bail "
364         "out right after the build (stress test the VPlan H-CFG construction "
365         "in the VPlan-native vectorization path)."));
366 
367 cl::opt<bool> llvm::EnableLoopInterleaving(
368     "interleave-loops", cl::init(true), cl::Hidden,
369     cl::desc("Enable loop interleaving in Loop vectorization passes"));
370 cl::opt<bool> llvm::EnableLoopVectorization(
371     "vectorize-loops", cl::init(true), cl::Hidden,
372     cl::desc("Run the Loop vectorization passes"));
373 
374 cl::opt<bool> PrintVPlansInDotFormat(
375     "vplan-print-in-dot-format", cl::init(false), cl::Hidden,
376     cl::desc("Use dot format instead of plain text when dumping VPlans"));
377 
378 /// A helper function that returns true if the given type is irregular. The
379 /// type is irregular if its allocated size doesn't equal the store size of an
380 /// element of the corresponding vector type.
381 static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
382   // Determine if an array of N elements of type Ty is "bitcast compatible"
383   // with a <N x Ty> vector.
384   // This is only true if there is no padding between the array elements.
385   return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
386 }
387 
388 /// A helper function that returns the reciprocal of the block probability of
389 /// predicated blocks. If we return X, we are assuming the predicated block
390 /// will execute once for every X iterations of the loop header.
391 ///
392 /// TODO: We should use actual block probability here, if available. Currently,
393 ///       we always assume predicated blocks have a 50% chance of executing.
394 static unsigned getReciprocalPredBlockProb() { return 2; }
395 
396 /// A helper function that returns an integer or floating-point constant with
397 /// value C.
398 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
399   return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
400                            : ConstantFP::get(Ty, C);
401 }
402 
403 /// Returns "best known" trip count for the specified loop \p L as defined by
404 /// the following procedure:
405 ///   1) Returns exact trip count if it is known.
406 ///   2) Returns expected trip count according to profile data if any.
407 ///   3) Returns upper bound estimate if it is known.
408 ///   4) Returns None if all of the above failed.
409 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
410   // Check if exact trip count is known.
411   if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
412     return ExpectedTC;
413 
414   // Check if there is an expected trip count available from profile data.
415   if (LoopVectorizeWithBlockFrequency)
416     if (auto EstimatedTC = getLoopEstimatedTripCount(L))
417       return EstimatedTC;
418 
419   // Check if upper bound estimate is known.
420   if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
421     return ExpectedTC;
422 
423   return None;
424 }
425 
426 // Forward declare GeneratedRTChecks.
427 class GeneratedRTChecks;
428 
429 namespace llvm {
430 
431 /// InnerLoopVectorizer vectorizes loops which contain only one basic
432 /// block to a specified vectorization factor (VF).
433 /// This class performs the widening of scalars into vectors, or multiple
434 /// scalars. This class also implements the following features:
435 /// * It inserts an epilogue loop for handling loops that don't have iteration
436 ///   counts that are known to be a multiple of the vectorization factor.
437 /// * It handles the code generation for reduction variables.
438 /// * Scalarization (implementation using scalars) of un-vectorizable
439 ///   instructions.
440 /// InnerLoopVectorizer does not perform any vectorization-legality
441 /// checks, and relies on the caller to check for the different legality
442 /// aspects. The InnerLoopVectorizer relies on the
443 /// LoopVectorizationLegality class to provide information about the induction
444 /// and reduction variables that were found to a given vectorization factor.
445 class InnerLoopVectorizer {
446 public:
447   InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
448                       LoopInfo *LI, DominatorTree *DT,
449                       const TargetLibraryInfo *TLI,
450                       const TargetTransformInfo *TTI, AssumptionCache *AC,
451                       OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
452                       unsigned UnrollFactor, LoopVectorizationLegality *LVL,
453                       LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
454                       ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
455       : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
456         AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
457         Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
458         PSI(PSI), RTChecks(RTChecks) {
459     // Query this against the original loop and save it here because the profile
460     // of the original loop header may change as the transformation happens.
461     OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
462         OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
463   }
464 
465   virtual ~InnerLoopVectorizer() = default;
466 
467   /// Create a new empty loop that will contain vectorized instructions later
468   /// on, while the old loop will be used as the scalar remainder. Control flow
469   /// is generated around the vectorized (and scalar epilogue) loops consisting
470   /// of various checks and bypasses. Return the pre-header block of the new
471   /// loop.
472   /// In the case of epilogue vectorization, this function is overriden to
473   /// handle the more complex control flow around the loops.
474   virtual BasicBlock *createVectorizedLoopSkeleton();
475 
476   /// Widen a single instruction within the innermost loop.
477   void widenInstruction(Instruction &I, VPWidenRecipe *WidenRec,
478                         VPTransformState &State);
479 
480   /// Widen a single call instruction within the innermost loop.
481   void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
482                             VPTransformState &State);
483 
484   /// Widen a single select instruction within the innermost loop.
485   void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands,
486                               bool InvariantCond, VPTransformState &State);
487 
488   /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
489   void fixVectorizedLoop(VPTransformState &State);
490 
491   // Return true if any runtime check is added.
492   bool areSafetyChecksAdded() { return AddedSafetyChecks; }
493 
494   /// A type for vectorized values in the new loop. Each value from the
495   /// original loop, when vectorized, is represented by UF vector values in the
496   /// new unrolled loop, where UF is the unroll factor.
497   using VectorParts = SmallVector<Value *, 2>;
498 
499   /// Vectorize a single GetElementPtrInst based on information gathered and
500   /// decisions taken during planning.
501   void widenGEP(GetElementPtrInst *GEP, VPWidenGEPRecipe *WidenGEPRec,
502                 VPUser &Indices, unsigned UF, ElementCount VF,
503                 bool IsPtrLoopInvariant, SmallBitVector &IsIndexLoopInvariant,
504                 VPTransformState &State);
505 
506   /// Vectorize a single first-order recurrence or pointer induction PHINode in
507   /// a block. This method handles the induction variable canonicalization. It
508   /// supports both VF = 1 for unrolled loops and arbitrary length vectors.
509   void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
510                            VPTransformState &State);
511 
512   /// A helper function to scalarize a single Instruction in the innermost loop.
513   /// Generates a sequence of scalar instances for each lane between \p MinLane
514   /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
515   /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
516   /// Instr's operands.
517   void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
518                             const VPIteration &Instance, bool IfPredicateInstr,
519                             VPTransformState &State);
520 
521   /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
522   /// is provided, the integer induction variable will first be truncated to
523   /// the corresponding type.
524   void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
525                              VPValue *Def, VPValue *CastDef,
526                              VPTransformState &State);
527 
528   /// Construct the vector value of a scalarized value \p V one lane at a time.
529   void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
530                                  VPTransformState &State);
531 
532   /// Try to vectorize interleaved access group \p Group with the base address
533   /// given in \p Addr, optionally masking the vector operations if \p
534   /// BlockInMask is non-null. Use \p State to translate given VPValues to IR
535   /// values in the vectorized loop.
536   void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
537                                 ArrayRef<VPValue *> VPDefs,
538                                 VPTransformState &State, VPValue *Addr,
539                                 ArrayRef<VPValue *> StoredValues,
540                                 VPValue *BlockInMask = nullptr);
541 
542   /// Vectorize Load and Store instructions with the base address given in \p
543   /// Addr, optionally masking the vector operations if \p BlockInMask is
544   /// non-null. Use \p State to translate given VPValues to IR values in the
545   /// vectorized loop.
546   void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
547                                   VPValue *Def, VPValue *Addr,
548                                   VPValue *StoredValue, VPValue *BlockInMask,
549                                   bool ConsecutiveStride, bool Reverse);
550 
551   /// Set the debug location in the builder \p Ptr using the debug location in
552   /// \p V. If \p Ptr is None then it uses the class member's Builder.
553   void setDebugLocFromInst(const Value *V,
554                            Optional<IRBuilder<> *> CustomBuilder = None);
555 
556   /// Fix the non-induction PHIs in the OrigPHIsToFix vector.
557   void fixNonInductionPHIs(VPTransformState &State);
558 
559   /// Returns true if the reordering of FP operations is not allowed, but we are
560   /// able to vectorize with strict in-order reductions for the given RdxDesc.
561   bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
562 
563   /// Create a broadcast instruction. This method generates a broadcast
564   /// instruction (shuffle) for loop invariant values and for the induction
565   /// value. If this is the induction variable then we extend it to N, N+1, ...
566   /// this is needed because each iteration in the loop corresponds to a SIMD
567   /// element.
568   virtual Value *getBroadcastInstrs(Value *V);
569 
570 protected:
571   friend class LoopVectorizationPlanner;
572 
573   /// A small list of PHINodes.
574   using PhiVector = SmallVector<PHINode *, 4>;
575 
576   /// A type for scalarized values in the new loop. Each value from the
577   /// original loop, when scalarized, is represented by UF x VF scalar values
578   /// in the new unrolled loop, where UF is the unroll factor and VF is the
579   /// vectorization factor.
580   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
581 
582   /// Set up the values of the IVs correctly when exiting the vector loop.
583   void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
584                     Value *CountRoundDown, Value *EndValue,
585                     BasicBlock *MiddleBlock);
586 
587   /// Create a new induction variable inside L.
588   PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
589                                    Value *Step, Instruction *DL);
590 
591   /// Handle all cross-iteration phis in the header.
592   void fixCrossIterationPHIs(VPTransformState &State);
593 
594   /// Create the exit value of first order recurrences in the middle block and
595   /// update their users.
596   void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
597 
598   /// Create code for the loop exit value of the reduction.
599   void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
600 
601   /// Clear NSW/NUW flags from reduction instructions if necessary.
602   void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
603                                VPTransformState &State);
604 
605   /// Fixup the LCSSA phi nodes in the unique exit block.  This simply
606   /// means we need to add the appropriate incoming value from the middle
607   /// block as exiting edges from the scalar epilogue loop (if present) are
608   /// already in place, and we exit the vector loop exclusively to the middle
609   /// block.
610   void fixLCSSAPHIs(VPTransformState &State);
611 
612   /// Iteratively sink the scalarized operands of a predicated instruction into
613   /// the block that was created for it.
614   void sinkScalarOperands(Instruction *PredInst);
615 
616   /// Shrinks vector element sizes to the smallest bitwidth they can be legally
617   /// represented as.
618   void truncateToMinimalBitwidths(VPTransformState &State);
619 
620   /// This function adds
621   /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
622   /// to each vector element of Val. The sequence starts at StartIndex.
623   /// \p Opcode is relevant for FP induction variable.
624   virtual Value *
625   getStepVector(Value *Val, Value *StartIdx, Value *Step,
626                 Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd);
627 
628   /// Compute scalar induction steps. \p ScalarIV is the scalar induction
629   /// variable on which to base the steps, \p Step is the size of the step, and
630   /// \p EntryVal is the value from the original loop that maps to the steps.
631   /// Note that \p EntryVal doesn't have to be an induction variable - it
632   /// can also be a truncate instruction.
633   void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
634                         const InductionDescriptor &ID, VPValue *Def,
635                         VPValue *CastDef, VPTransformState &State);
636 
637   /// Create a vector induction phi node based on an existing scalar one. \p
638   /// EntryVal is the value from the original loop that maps to the vector phi
639   /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
640   /// truncate instruction, instead of widening the original IV, we widen a
641   /// version of the IV truncated to \p EntryVal's type.
642   void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
643                                        Value *Step, Value *Start,
644                                        Instruction *EntryVal, VPValue *Def,
645                                        VPValue *CastDef,
646                                        VPTransformState &State);
647 
648   /// Returns true if an instruction \p I should be scalarized instead of
649   /// vectorized for the chosen vectorization factor.
650   bool shouldScalarizeInstruction(Instruction *I) const;
651 
652   /// Returns true if we should generate a scalar version of \p IV.
653   bool needsScalarInduction(Instruction *IV) const;
654 
655   /// If there is a cast involved in the induction variable \p ID, which should
656   /// be ignored in the vectorized loop body, this function records the
657   /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
658   /// cast. We had already proved that the casted Phi is equal to the uncasted
659   /// Phi in the vectorized loop (under a runtime guard), and therefore
660   /// there is no need to vectorize the cast - the same value can be used in the
661   /// vector loop for both the Phi and the cast.
662   /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
663   /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
664   ///
665   /// \p EntryVal is the value from the original loop that maps to the vector
666   /// phi node and is used to distinguish what is the IV currently being
667   /// processed - original one (if \p EntryVal is a phi corresponding to the
668   /// original IV) or the "newly-created" one based on the proof mentioned above
669   /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
670   /// latter case \p EntryVal is a TruncInst and we must not record anything for
671   /// that IV, but it's error-prone to expect callers of this routine to care
672   /// about that, hence this explicit parameter.
673   void recordVectorLoopValueForInductionCast(
674       const InductionDescriptor &ID, const Instruction *EntryVal,
675       Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
676       unsigned Part, unsigned Lane = UINT_MAX);
677 
678   /// Generate a shuffle sequence that will reverse the vector Vec.
679   virtual Value *reverseVector(Value *Vec);
680 
681   /// Returns (and creates if needed) the original loop trip count.
682   Value *getOrCreateTripCount(Loop *NewLoop);
683 
684   /// Returns (and creates if needed) the trip count of the widened loop.
685   Value *getOrCreateVectorTripCount(Loop *NewLoop);
686 
687   /// Returns a bitcasted value to the requested vector type.
688   /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
689   Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
690                                 const DataLayout &DL);
691 
692   /// Emit a bypass check to see if the vector trip count is zero, including if
693   /// it overflows.
694   void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
695 
696   /// Emit a bypass check to see if all of the SCEV assumptions we've
697   /// had to make are correct. Returns the block containing the checks or
698   /// nullptr if no checks have been added.
699   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
700 
701   /// Emit bypass checks to check any memory assumptions we may have made.
702   /// Returns the block containing the checks or nullptr if no checks have been
703   /// added.
704   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
705 
706   /// Compute the transformed value of Index at offset StartValue using step
707   /// StepValue.
708   /// For integer induction, returns StartValue + Index * StepValue.
709   /// For pointer induction, returns StartValue[Index * StepValue].
710   /// FIXME: The newly created binary instructions should contain nsw/nuw
711   /// flags, which can be found from the original scalar operations.
712   Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
713                               const DataLayout &DL,
714                               const InductionDescriptor &ID) const;
715 
716   /// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
717   /// vector loop preheader, middle block and scalar preheader. Also
718   /// allocate a loop object for the new vector loop and return it.
719   Loop *createVectorLoopSkeleton(StringRef Prefix);
720 
721   /// Create new phi nodes for the induction variables to resume iteration count
722   /// in the scalar epilogue, from where the vectorized loop left off (given by
723   /// \p VectorTripCount).
724   /// In cases where the loop skeleton is more complicated (eg. epilogue
725   /// vectorization) and the resume values can come from an additional bypass
726   /// block, the \p AdditionalBypass pair provides information about the bypass
727   /// block and the end value on the edge from bypass to this loop.
728   void createInductionResumeValues(
729       Loop *L, Value *VectorTripCount,
730       std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
731 
732   /// Complete the loop skeleton by adding debug MDs, creating appropriate
733   /// conditional branches in the middle block, preparing the builder and
734   /// running the verifier. Take in the vector loop \p L as argument, and return
735   /// the preheader of the completed vector loop.
736   BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
737 
738   /// Add additional metadata to \p To that was not present on \p Orig.
739   ///
740   /// Currently this is used to add the noalias annotations based on the
741   /// inserted memchecks.  Use this for instructions that are *cloned* into the
742   /// vector loop.
743   void addNewMetadata(Instruction *To, const Instruction *Orig);
744 
745   /// Add metadata from one instruction to another.
746   ///
747   /// This includes both the original MDs from \p From and additional ones (\see
748   /// addNewMetadata).  Use this for *newly created* instructions in the vector
749   /// loop.
750   void addMetadata(Instruction *To, Instruction *From);
751 
752   /// Similar to the previous function but it adds the metadata to a
753   /// vector of instructions.
754   void addMetadata(ArrayRef<Value *> To, Instruction *From);
755 
756   /// Collect poison-generating recipes that may generate a poison value that is
757   /// used after vectorization, even when their operands are not poison. Those
758   /// recipes meet the following conditions:
759   ///  * Contribute to the address computation of a recipe generating a widen
760   ///    memory load/store (VPWidenMemoryInstructionRecipe or
761   ///    VPInterleaveRecipe).
762   ///  * Such a widen memory load/store has at least one underlying Instruction
763   ///    that is in a basic block that needs predication and after vectorization
764   ///    the generated instruction won't be predicated.
765   void collectPoisonGeneratingRecipes(VPTransformState &State);
766 
767   /// Allow subclasses to override and print debug traces before/after vplan
768   /// execution, when trace information is requested.
769   virtual void printDebugTracesAtStart(){};
770   virtual void printDebugTracesAtEnd(){};
771 
772   /// The original loop.
773   Loop *OrigLoop;
774 
775   /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
776   /// dynamic knowledge to simplify SCEV expressions and converts them to a
777   /// more usable form.
778   PredicatedScalarEvolution &PSE;
779 
780   /// Loop Info.
781   LoopInfo *LI;
782 
783   /// Dominator Tree.
784   DominatorTree *DT;
785 
786   /// Alias Analysis.
787   AAResults *AA;
788 
789   /// Target Library Info.
790   const TargetLibraryInfo *TLI;
791 
792   /// Target Transform Info.
793   const TargetTransformInfo *TTI;
794 
795   /// Assumption Cache.
796   AssumptionCache *AC;
797 
798   /// Interface to emit optimization remarks.
799   OptimizationRemarkEmitter *ORE;
800 
801   /// LoopVersioning.  It's only set up (non-null) if memchecks were
802   /// used.
803   ///
804   /// This is currently only used to add no-alias metadata based on the
805   /// memchecks.  The actually versioning is performed manually.
806   std::unique_ptr<LoopVersioning> LVer;
807 
808   /// The vectorization SIMD factor to use. Each vector will have this many
809   /// vector elements.
810   ElementCount VF;
811 
812   /// The vectorization unroll factor to use. Each scalar is vectorized to this
813   /// many different vector instructions.
814   unsigned UF;
815 
816   /// The builder that we use
817   IRBuilder<> Builder;
818 
819   // --- Vectorization state ---
820 
821   /// The vector-loop preheader.
822   BasicBlock *LoopVectorPreHeader;
823 
824   /// The scalar-loop preheader.
825   BasicBlock *LoopScalarPreHeader;
826 
827   /// Middle Block between the vector and the scalar.
828   BasicBlock *LoopMiddleBlock;
829 
830   /// The unique ExitBlock of the scalar loop if one exists.  Note that
831   /// there can be multiple exiting edges reaching this block.
832   BasicBlock *LoopExitBlock;
833 
834   /// The vector loop body.
835   BasicBlock *LoopVectorBody;
836 
837   /// The scalar loop body.
838   BasicBlock *LoopScalarBody;
839 
840   /// A list of all bypass blocks. The first block is the entry of the loop.
841   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
842 
843   /// The new Induction variable which was added to the new block.
844   PHINode *Induction = nullptr;
845 
846   /// The induction variable of the old basic block.
847   PHINode *OldInduction = nullptr;
848 
849   /// Store instructions that were predicated.
850   SmallVector<Instruction *, 4> PredicatedInstructions;
851 
852   /// Trip count of the original loop.
853   Value *TripCount = nullptr;
854 
855   /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
856   Value *VectorTripCount = nullptr;
857 
858   /// The legality analysis.
859   LoopVectorizationLegality *Legal;
860 
861   /// The profitablity analysis.
862   LoopVectorizationCostModel *Cost;
863 
864   // Record whether runtime checks are added.
865   bool AddedSafetyChecks = false;
866 
867   // Holds the end values for each induction variable. We save the end values
868   // so we can later fix-up the external users of the induction variables.
869   DenseMap<PHINode *, Value *> IVEndValues;
870 
871   // Vector of original scalar PHIs whose corresponding widened PHIs need to be
872   // fixed up at the end of vector code generation.
873   SmallVector<PHINode *, 8> OrigPHIsToFix;
874 
875   /// BFI and PSI are used to check for profile guided size optimizations.
876   BlockFrequencyInfo *BFI;
877   ProfileSummaryInfo *PSI;
878 
879   // Whether this loop should be optimized for size based on profile guided size
880   // optimizatios.
881   bool OptForSizeBasedOnProfile;
882 
883   /// Structure to hold information about generated runtime checks, responsible
884   /// for cleaning the checks, if vectorization turns out unprofitable.
885   GeneratedRTChecks &RTChecks;
886 };
887 
888 class InnerLoopUnroller : public InnerLoopVectorizer {
889 public:
890   InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
891                     LoopInfo *LI, DominatorTree *DT,
892                     const TargetLibraryInfo *TLI,
893                     const TargetTransformInfo *TTI, AssumptionCache *AC,
894                     OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
895                     LoopVectorizationLegality *LVL,
896                     LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
897                     ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
898       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
899                             ElementCount::getFixed(1), UnrollFactor, LVL, CM,
900                             BFI, PSI, Check) {}
901 
902 private:
903   Value *getBroadcastInstrs(Value *V) override;
904   Value *getStepVector(
905       Value *Val, Value *StartIdx, Value *Step,
906       Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd) override;
907   Value *reverseVector(Value *Vec) override;
908 };
909 
910 /// Encapsulate information regarding vectorization of a loop and its epilogue.
911 /// This information is meant to be updated and used across two stages of
912 /// epilogue vectorization.
913 struct EpilogueLoopVectorizationInfo {
914   ElementCount MainLoopVF = ElementCount::getFixed(0);
915   unsigned MainLoopUF = 0;
916   ElementCount EpilogueVF = ElementCount::getFixed(0);
917   unsigned EpilogueUF = 0;
918   BasicBlock *MainLoopIterationCountCheck = nullptr;
919   BasicBlock *EpilogueIterationCountCheck = nullptr;
920   BasicBlock *SCEVSafetyCheck = nullptr;
921   BasicBlock *MemSafetyCheck = nullptr;
922   Value *TripCount = nullptr;
923   Value *VectorTripCount = nullptr;
924 
925   EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
926                                 ElementCount EVF, unsigned EUF)
927       : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
928     assert(EUF == 1 &&
929            "A high UF for the epilogue loop is likely not beneficial.");
930   }
931 };
932 
933 /// An extension of the inner loop vectorizer that creates a skeleton for a
934 /// vectorized loop that has its epilogue (residual) also vectorized.
935 /// The idea is to run the vplan on a given loop twice, firstly to setup the
936 /// skeleton and vectorize the main loop, and secondly to complete the skeleton
937 /// from the first step and vectorize the epilogue.  This is achieved by
938 /// deriving two concrete strategy classes from this base class and invoking
939 /// them in succession from the loop vectorizer planner.
940 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
941 public:
942   InnerLoopAndEpilogueVectorizer(
943       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
944       DominatorTree *DT, const TargetLibraryInfo *TLI,
945       const TargetTransformInfo *TTI, AssumptionCache *AC,
946       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
947       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
948       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
949       GeneratedRTChecks &Checks)
950       : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
951                             EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
952                             Checks),
953         EPI(EPI) {}
954 
955   // Override this function to handle the more complex control flow around the
956   // three loops.
957   BasicBlock *createVectorizedLoopSkeleton() final override {
958     return createEpilogueVectorizedLoopSkeleton();
959   }
960 
961   /// The interface for creating a vectorized skeleton using one of two
962   /// different strategies, each corresponding to one execution of the vplan
963   /// as described above.
964   virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
965 
966   /// Holds and updates state information required to vectorize the main loop
967   /// and its epilogue in two separate passes. This setup helps us avoid
968   /// regenerating and recomputing runtime safety checks. It also helps us to
969   /// shorten the iteration-count-check path length for the cases where the
970   /// iteration count of the loop is so small that the main vector loop is
971   /// completely skipped.
972   EpilogueLoopVectorizationInfo &EPI;
973 };
974 
975 /// A specialized derived class of inner loop vectorizer that performs
976 /// vectorization of *main* loops in the process of vectorizing loops and their
977 /// epilogues.
978 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
979 public:
980   EpilogueVectorizerMainLoop(
981       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
982       DominatorTree *DT, const TargetLibraryInfo *TLI,
983       const TargetTransformInfo *TTI, AssumptionCache *AC,
984       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
985       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
986       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
987       GeneratedRTChecks &Check)
988       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
989                                        EPI, LVL, CM, BFI, PSI, Check) {}
990   /// Implements the interface for creating a vectorized skeleton using the
991   /// *main loop* strategy (ie the first pass of vplan execution).
992   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
993 
994 protected:
995   /// Emits an iteration count bypass check once for the main loop (when \p
996   /// ForEpilogue is false) and once for the epilogue loop (when \p
997   /// ForEpilogue is true).
998   BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
999                                              bool ForEpilogue);
1000   void printDebugTracesAtStart() override;
1001   void printDebugTracesAtEnd() override;
1002 };
1003 
1004 // A specialized derived class of inner loop vectorizer that performs
1005 // vectorization of *epilogue* loops in the process of vectorizing loops and
1006 // their epilogues.
1007 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
1008 public:
1009   EpilogueVectorizerEpilogueLoop(
1010       Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
1011       DominatorTree *DT, const TargetLibraryInfo *TLI,
1012       const TargetTransformInfo *TTI, AssumptionCache *AC,
1013       OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
1014       LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
1015       BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
1016       GeneratedRTChecks &Checks)
1017       : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
1018                                        EPI, LVL, CM, BFI, PSI, Checks) {}
1019   /// Implements the interface for creating a vectorized skeleton using the
1020   /// *epilogue loop* strategy (ie the second pass of vplan execution).
1021   BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
1022 
1023 protected:
1024   /// Emits an iteration count bypass check after the main vector loop has
1025   /// finished to see if there are any iterations left to execute by either
1026   /// the vector epilogue or the scalar epilogue.
1027   BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
1028                                                       BasicBlock *Bypass,
1029                                                       BasicBlock *Insert);
1030   void printDebugTracesAtStart() override;
1031   void printDebugTracesAtEnd() override;
1032 };
1033 } // end namespace llvm
1034 
1035 /// Look for a meaningful debug location on the instruction or it's
1036 /// operands.
1037 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
1038   if (!I)
1039     return I;
1040 
1041   DebugLoc Empty;
1042   if (I->getDebugLoc() != Empty)
1043     return I;
1044 
1045   for (Use &Op : I->operands()) {
1046     if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1047       if (OpInst->getDebugLoc() != Empty)
1048         return OpInst;
1049   }
1050 
1051   return I;
1052 }
1053 
1054 void InnerLoopVectorizer::setDebugLocFromInst(
1055     const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
1056   IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
1057   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
1058     const DILocation *DIL = Inst->getDebugLoc();
1059 
1060     // When a FSDiscriminator is enabled, we don't need to add the multiply
1061     // factors to the discriminators.
1062     if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
1063         !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
1064       // FIXME: For scalable vectors, assume vscale=1.
1065       auto NewDIL =
1066           DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
1067       if (NewDIL)
1068         B->SetCurrentDebugLocation(NewDIL.getValue());
1069       else
1070         LLVM_DEBUG(dbgs()
1071                    << "Failed to create new discriminator: "
1072                    << DIL->getFilename() << " Line: " << DIL->getLine());
1073     } else
1074       B->SetCurrentDebugLocation(DIL);
1075   } else
1076     B->SetCurrentDebugLocation(DebugLoc());
1077 }
1078 
1079 /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
1080 /// is passed, the message relates to that particular instruction.
1081 #ifndef NDEBUG
1082 static void debugVectorizationMessage(const StringRef Prefix,
1083                                       const StringRef DebugMsg,
1084                                       Instruction *I) {
1085   dbgs() << "LV: " << Prefix << DebugMsg;
1086   if (I != nullptr)
1087     dbgs() << " " << *I;
1088   else
1089     dbgs() << '.';
1090   dbgs() << '\n';
1091 }
1092 #endif
1093 
1094 /// Create an analysis remark that explains why vectorization failed
1095 ///
1096 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint).  \p
1097 /// RemarkName is the identifier for the remark.  If \p I is passed it is an
1098 /// instruction that prevents vectorization.  Otherwise \p TheLoop is used for
1099 /// the location of the remark.  \return the remark object that can be
1100 /// streamed to.
1101 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
1102     StringRef RemarkName, Loop *TheLoop, Instruction *I) {
1103   Value *CodeRegion = TheLoop->getHeader();
1104   DebugLoc DL = TheLoop->getStartLoc();
1105 
1106   if (I) {
1107     CodeRegion = I->getParent();
1108     // If there is no debug location attached to the instruction, revert back to
1109     // using the loop's.
1110     if (I->getDebugLoc())
1111       DL = I->getDebugLoc();
1112   }
1113 
1114   return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
1115 }
1116 
1117 /// Return a value for Step multiplied by VF.
1118 static Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF,
1119                               int64_t Step) {
1120   assert(Ty->isIntegerTy() && "Expected an integer step");
1121   Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
1122   return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
1123 }
1124 
1125 namespace llvm {
1126 
1127 /// Return the runtime value for VF.
1128 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
1129   Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
1130   return VF.isScalable() ? B.CreateVScale(EC) : EC;
1131 }
1132 
1133 static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) {
1134   assert(FTy->isFloatingPointTy() && "Expected floating point type!");
1135   Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
1136   Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
1137   return B.CreateUIToFP(RuntimeVF, FTy);
1138 }
1139 
1140 void reportVectorizationFailure(const StringRef DebugMsg,
1141                                 const StringRef OREMsg, const StringRef ORETag,
1142                                 OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1143                                 Instruction *I) {
1144   LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
1145   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1146   ORE->emit(
1147       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1148       << "loop not vectorized: " << OREMsg);
1149 }
1150 
1151 void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
1152                              OptimizationRemarkEmitter *ORE, Loop *TheLoop,
1153                              Instruction *I) {
1154   LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
1155   LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
1156   ORE->emit(
1157       createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
1158       << Msg);
1159 }
1160 
1161 } // end namespace llvm
1162 
1163 #ifndef NDEBUG
1164 /// \return string containing a file name and a line # for the given loop.
1165 static std::string getDebugLocString(const Loop *L) {
1166   std::string Result;
1167   if (L) {
1168     raw_string_ostream OS(Result);
1169     if (const DebugLoc LoopDbgLoc = L->getStartLoc())
1170       LoopDbgLoc.print(OS);
1171     else
1172       // Just print the module name.
1173       OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
1174     OS.flush();
1175   }
1176   return Result;
1177 }
1178 #endif
1179 
1180 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
1181                                          const Instruction *Orig) {
1182   // If the loop was versioned with memchecks, add the corresponding no-alias
1183   // metadata.
1184   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
1185     LVer->annotateInstWithNoAlias(To, Orig);
1186 }
1187 
1188 void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
1189     VPTransformState &State) {
1190 
1191   // Collect recipes in the backward slice of `Root` that may generate a poison
1192   // value that is used after vectorization.
1193   SmallPtrSet<VPRecipeBase *, 16> Visited;
1194   auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
1195     SmallVector<VPRecipeBase *, 16> Worklist;
1196     Worklist.push_back(Root);
1197 
1198     // Traverse the backward slice of Root through its use-def chain.
1199     while (!Worklist.empty()) {
1200       VPRecipeBase *CurRec = Worklist.back();
1201       Worklist.pop_back();
1202 
1203       if (!Visited.insert(CurRec).second)
1204         continue;
1205 
1206       // Prune search if we find another recipe generating a widen memory
1207       // instruction. Widen memory instructions involved in address computation
1208       // will lead to gather/scatter instructions, which don't need to be
1209       // handled.
1210       if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
1211           isa<VPInterleaveRecipe>(CurRec))
1212         continue;
1213 
1214       // This recipe contributes to the address computation of a widen
1215       // load/store. Collect recipe if its underlying instruction has
1216       // poison-generating flags.
1217       Instruction *Instr = CurRec->getUnderlyingInstr();
1218       if (Instr && cast<Operator>(Instr)->hasPoisonGeneratingFlags())
1219         State.MayGeneratePoisonRecipes.insert(CurRec);
1220 
1221       // Add new definitions to the worklist.
1222       for (VPValue *operand : CurRec->operands())
1223         if (VPDef *OpDef = operand->getDef())
1224           Worklist.push_back(cast<VPRecipeBase>(OpDef));
1225     }
1226   });
1227 
1228   // Traverse all the recipes in the VPlan and collect the poison-generating
1229   // recipes in the backward slice starting at the address of a VPWidenRecipe or
1230   // VPInterleaveRecipe.
1231   auto Iter = depth_first(
1232       VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
1233   for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
1234     for (VPRecipeBase &Recipe : *VPBB) {
1235       if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
1236         Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
1237         VPDef *AddrDef = WidenRec->getAddr()->getDef();
1238         if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
1239             Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
1240           collectPoisonGeneratingInstrsInBackwardSlice(
1241               cast<VPRecipeBase>(AddrDef));
1242       } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
1243         VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
1244         if (AddrDef) {
1245           // Check if any member of the interleave group needs predication.
1246           const InterleaveGroup<Instruction> *InterGroup =
1247               InterleaveRec->getInterleaveGroup();
1248           bool NeedPredication = false;
1249           for (int I = 0, NumMembers = InterGroup->getNumMembers();
1250                I < NumMembers; ++I) {
1251             Instruction *Member = InterGroup->getMember(I);
1252             if (Member)
1253               NeedPredication |=
1254                   Legal->blockNeedsPredication(Member->getParent());
1255           }
1256 
1257           if (NeedPredication)
1258             collectPoisonGeneratingInstrsInBackwardSlice(
1259                 cast<VPRecipeBase>(AddrDef));
1260         }
1261       }
1262     }
1263   }
1264 }
1265 
1266 void InnerLoopVectorizer::addMetadata(Instruction *To,
1267                                       Instruction *From) {
1268   propagateMetadata(To, From);
1269   addNewMetadata(To, From);
1270 }
1271 
1272 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
1273                                       Instruction *From) {
1274   for (Value *V : To) {
1275     if (Instruction *I = dyn_cast<Instruction>(V))
1276       addMetadata(I, From);
1277   }
1278 }
1279 
1280 namespace llvm {
1281 
1282 // Loop vectorization cost-model hints how the scalar epilogue loop should be
1283 // lowered.
1284 enum ScalarEpilogueLowering {
1285 
1286   // The default: allowing scalar epilogues.
1287   CM_ScalarEpilogueAllowed,
1288 
1289   // Vectorization with OptForSize: don't allow epilogues.
1290   CM_ScalarEpilogueNotAllowedOptSize,
1291 
1292   // A special case of vectorisation with OptForSize: loops with a very small
1293   // trip count are considered for vectorization under OptForSize, thereby
1294   // making sure the cost of their loop body is dominant, free of runtime
1295   // guards and scalar iteration overheads.
1296   CM_ScalarEpilogueNotAllowedLowTripLoop,
1297 
1298   // Loop hint predicate indicating an epilogue is undesired.
1299   CM_ScalarEpilogueNotNeededUsePredicate,
1300 
1301   // Directive indicating we must either tail fold or not vectorize
1302   CM_ScalarEpilogueNotAllowedUsePredicate
1303 };
1304 
1305 /// ElementCountComparator creates a total ordering for ElementCount
1306 /// for the purposes of using it in a set structure.
1307 struct ElementCountComparator {
1308   bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
1309     return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
1310            std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
1311   }
1312 };
1313 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
1314 
1315 /// LoopVectorizationCostModel - estimates the expected speedups due to
1316 /// vectorization.
1317 /// In many cases vectorization is not profitable. This can happen because of
1318 /// a number of reasons. In this class we mainly attempt to predict the
1319 /// expected speedup/slowdowns due to the supported instruction set. We use the
1320 /// TargetTransformInfo to query the different backends for the cost of
1321 /// different operations.
1322 class LoopVectorizationCostModel {
1323 public:
1324   LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
1325                              PredicatedScalarEvolution &PSE, LoopInfo *LI,
1326                              LoopVectorizationLegality *Legal,
1327                              const TargetTransformInfo &TTI,
1328                              const TargetLibraryInfo *TLI, DemandedBits *DB,
1329                              AssumptionCache *AC,
1330                              OptimizationRemarkEmitter *ORE, const Function *F,
1331                              const LoopVectorizeHints *Hints,
1332                              InterleavedAccessInfo &IAI)
1333       : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
1334         TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
1335         Hints(Hints), InterleaveInfo(IAI) {}
1336 
1337   /// \return An upper bound for the vectorization factors (both fixed and
1338   /// scalable). If the factors are 0, vectorization and interleaving should be
1339   /// avoided up front.
1340   FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
1341 
1342   /// \return True if runtime checks are required for vectorization, and false
1343   /// otherwise.
1344   bool runtimeChecksRequired();
1345 
1346   /// \return The most profitable vectorization factor and the cost of that VF.
1347   /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
1348   /// then this vectorization factor will be selected if vectorization is
1349   /// possible.
1350   VectorizationFactor
1351   selectVectorizationFactor(const ElementCountSet &CandidateVFs);
1352 
1353   VectorizationFactor
1354   selectEpilogueVectorizationFactor(const ElementCount MaxVF,
1355                                     const LoopVectorizationPlanner &LVP);
1356 
1357   /// Setup cost-based decisions for user vectorization factor.
1358   /// \return true if the UserVF is a feasible VF to be chosen.
1359   bool selectUserVectorizationFactor(ElementCount UserVF) {
1360     collectUniformsAndScalars(UserVF);
1361     collectInstsToScalarize(UserVF);
1362     return expectedCost(UserVF).first.isValid();
1363   }
1364 
1365   /// \return The size (in bits) of the smallest and widest types in the code
1366   /// that needs to be vectorized. We ignore values that remain scalar such as
1367   /// 64 bit loop indices.
1368   std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1369 
1370   /// \return The desired interleave count.
1371   /// If interleave count has been specified by metadata it will be returned.
1372   /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1373   /// are the selected vectorization factor and the cost of the selected VF.
1374   unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
1375 
1376   /// Memory access instruction may be vectorized in more than one way.
1377   /// Form of instruction after vectorization depends on cost.
1378   /// This function takes cost-based decisions for Load/Store instructions
1379   /// and collects them in a map. This decisions map is used for building
1380   /// the lists of loop-uniform and loop-scalar instructions.
1381   /// The calculated cost is saved with widening decision in order to
1382   /// avoid redundant calculations.
1383   void setCostBasedWideningDecision(ElementCount VF);
1384 
1385   /// A struct that represents some properties of the register usage
1386   /// of a loop.
1387   struct RegisterUsage {
1388     /// Holds the number of loop invariant values that are used in the loop.
1389     /// The key is ClassID of target-provided register class.
1390     SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
1391     /// Holds the maximum number of concurrent live intervals in the loop.
1392     /// The key is ClassID of target-provided register class.
1393     SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
1394   };
1395 
1396   /// \return Returns information about the register usages of the loop for the
1397   /// given vectorization factors.
1398   SmallVector<RegisterUsage, 8>
1399   calculateRegisterUsage(ArrayRef<ElementCount> VFs);
1400 
1401   /// Collect values we want to ignore in the cost model.
1402   void collectValuesToIgnore();
1403 
1404   /// Collect all element types in the loop for which widening is needed.
1405   void collectElementTypesForWidening();
1406 
1407   /// Split reductions into those that happen in the loop, and those that happen
1408   /// outside. In loop reductions are collected into InLoopReductionChains.
1409   void collectInLoopReductions();
1410 
1411   /// Returns true if we should use strict in-order reductions for the given
1412   /// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
1413   /// the IsOrdered flag of RdxDesc is set and we do not allow reordering
1414   /// of FP operations.
1415   bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
1416     return !Hints->allowReordering() && RdxDesc.isOrdered();
1417   }
1418 
1419   /// \returns The smallest bitwidth each instruction can be represented with.
1420   /// The vector equivalents of these instructions should be truncated to this
1421   /// type.
1422   const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1423     return MinBWs;
1424   }
1425 
1426   /// \returns True if it is more profitable to scalarize instruction \p I for
1427   /// vectorization factor \p VF.
1428   bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
1429     assert(VF.isVector() &&
1430            "Profitable to scalarize relevant only for VF > 1.");
1431 
1432     // Cost model is not run in the VPlan-native path - return conservative
1433     // result until this changes.
1434     if (EnableVPlanNativePath)
1435       return false;
1436 
1437     auto Scalars = InstsToScalarize.find(VF);
1438     assert(Scalars != InstsToScalarize.end() &&
1439            "VF not yet analyzed for scalarization profitability");
1440     return Scalars->second.find(I) != Scalars->second.end();
1441   }
1442 
1443   /// Returns true if \p I is known to be uniform after vectorization.
1444   bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
1445     if (VF.isScalar())
1446       return true;
1447 
1448     // Cost model is not run in the VPlan-native path - return conservative
1449     // result until this changes.
1450     if (EnableVPlanNativePath)
1451       return false;
1452 
1453     auto UniformsPerVF = Uniforms.find(VF);
1454     assert(UniformsPerVF != Uniforms.end() &&
1455            "VF not yet analyzed for uniformity");
1456     return UniformsPerVF->second.count(I);
1457   }
1458 
1459   /// Returns true if \p I is known to be scalar after vectorization.
1460   bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
1461     if (VF.isScalar())
1462       return true;
1463 
1464     // Cost model is not run in the VPlan-native path - return conservative
1465     // result until this changes.
1466     if (EnableVPlanNativePath)
1467       return false;
1468 
1469     auto ScalarsPerVF = Scalars.find(VF);
1470     assert(ScalarsPerVF != Scalars.end() &&
1471            "Scalar values are not calculated for VF");
1472     return ScalarsPerVF->second.count(I);
1473   }
1474 
1475   /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1476   /// for vectorization factor \p VF.
1477   bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
1478     return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
1479            !isProfitableToScalarize(I, VF) &&
1480            !isScalarAfterVectorization(I, VF);
1481   }
1482 
1483   /// Decision that was taken during cost calculation for memory instruction.
1484   enum InstWidening {
1485     CM_Unknown,
1486     CM_Widen,         // For consecutive accesses with stride +1.
1487     CM_Widen_Reverse, // For consecutive accesses with stride -1.
1488     CM_Interleave,
1489     CM_GatherScatter,
1490     CM_Scalarize
1491   };
1492 
1493   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1494   /// instruction \p I and vector width \p VF.
1495   void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
1496                            InstructionCost Cost) {
1497     assert(VF.isVector() && "Expected VF >=2");
1498     WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1499   }
1500 
1501   /// Save vectorization decision \p W and \p Cost taken by the cost model for
1502   /// interleaving group \p Grp and vector width \p VF.
1503   void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
1504                            ElementCount VF, InstWidening W,
1505                            InstructionCost Cost) {
1506     assert(VF.isVector() && "Expected VF >=2");
1507     /// Broadcast this decicion to all instructions inside the group.
1508     /// But the cost will be assigned to one instruction only.
1509     for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1510       if (auto *I = Grp->getMember(i)) {
1511         if (Grp->getInsertPos() == I)
1512           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1513         else
1514           WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1515       }
1516     }
1517   }
1518 
1519   /// Return the cost model decision for the given instruction \p I and vector
1520   /// width \p VF. Return CM_Unknown if this instruction did not pass
1521   /// through the cost modeling.
1522   InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
1523     assert(VF.isVector() && "Expected VF to be a vector VF");
1524     // Cost model is not run in the VPlan-native path - return conservative
1525     // result until this changes.
1526     if (EnableVPlanNativePath)
1527       return CM_GatherScatter;
1528 
1529     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1530     auto Itr = WideningDecisions.find(InstOnVF);
1531     if (Itr == WideningDecisions.end())
1532       return CM_Unknown;
1533     return Itr->second.first;
1534   }
1535 
1536   /// Return the vectorization cost for the given instruction \p I and vector
1537   /// width \p VF.
1538   InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
1539     assert(VF.isVector() && "Expected VF >=2");
1540     std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
1541     assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
1542            "The cost is not calculated");
1543     return WideningDecisions[InstOnVF].second;
1544   }
1545 
1546   /// Return True if instruction \p I is an optimizable truncate whose operand
1547   /// is an induction variable. Such a truncate will be removed by adding a new
1548   /// induction variable with the destination type.
1549   bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
1550     // If the instruction is not a truncate, return false.
1551     auto *Trunc = dyn_cast<TruncInst>(I);
1552     if (!Trunc)
1553       return false;
1554 
1555     // Get the source and destination types of the truncate.
1556     Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1557     Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1558 
1559     // If the truncate is free for the given types, return false. Replacing a
1560     // free truncate with an induction variable would add an induction variable
1561     // update instruction to each iteration of the loop. We exclude from this
1562     // check the primary induction variable since it will need an update
1563     // instruction regardless.
1564     Value *Op = Trunc->getOperand(0);
1565     if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1566       return false;
1567 
1568     // If the truncated value is not an induction variable, return false.
1569     return Legal->isInductionPhi(Op);
1570   }
1571 
1572   /// Collects the instructions to scalarize for each predicated instruction in
1573   /// the loop.
1574   void collectInstsToScalarize(ElementCount VF);
1575 
1576   /// Collect Uniform and Scalar values for the given \p VF.
1577   /// The sets depend on CM decision for Load/Store instructions
1578   /// that may be vectorized as interleave, gather-scatter or scalarized.
1579   void collectUniformsAndScalars(ElementCount VF) {
1580     // Do the analysis once.
1581     if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
1582       return;
1583     setCostBasedWideningDecision(VF);
1584     collectLoopUniforms(VF);
1585     collectLoopScalars(VF);
1586   }
1587 
1588   /// Returns true if the target machine supports masked store operation
1589   /// for the given \p DataType and kind of access to \p Ptr.
1590   bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
1591     return Legal->isConsecutivePtr(DataType, Ptr) &&
1592            TTI.isLegalMaskedStore(DataType, Alignment);
1593   }
1594 
1595   /// Returns true if the target machine supports masked load operation
1596   /// for the given \p DataType and kind of access to \p Ptr.
1597   bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
1598     return Legal->isConsecutivePtr(DataType, Ptr) &&
1599            TTI.isLegalMaskedLoad(DataType, Alignment);
1600   }
1601 
1602   /// Returns true if the target machine can represent \p V as a masked gather
1603   /// or scatter operation.
1604   bool isLegalGatherOrScatter(Value *V) {
1605     bool LI = isa<LoadInst>(V);
1606     bool SI = isa<StoreInst>(V);
1607     if (!LI && !SI)
1608       return false;
1609     auto *Ty = getLoadStoreType(V);
1610     Align Align = getLoadStoreAlignment(V);
1611     return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
1612            (SI && TTI.isLegalMaskedScatter(Ty, Align));
1613   }
1614 
1615   /// Returns true if the target machine supports all of the reduction
1616   /// variables found for the given VF.
1617   bool canVectorizeReductions(ElementCount VF) const {
1618     return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
1619       const RecurrenceDescriptor &RdxDesc = Reduction.second;
1620       return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
1621     }));
1622   }
1623 
1624   /// Returns true if \p I is an instruction that will be scalarized with
1625   /// predication. Such instructions include conditional stores and
1626   /// instructions that may divide by zero.
1627   /// If a non-zero VF has been calculated, we check if I will be scalarized
1628   /// predication for that VF.
1629   bool isScalarWithPredication(Instruction *I) const;
1630 
1631   // Returns true if \p I is an instruction that will be predicated either
1632   // through scalar predication or masked load/store or masked gather/scatter.
1633   // Superset of instructions that return true for isScalarWithPredication.
1634   bool isPredicatedInst(Instruction *I) {
1635     if (!blockNeedsPredicationForAnyReason(I->getParent()))
1636       return false;
1637     // Loads and stores that need some form of masked operation are predicated
1638     // instructions.
1639     if (isa<LoadInst>(I) || isa<StoreInst>(I))
1640       return Legal->isMaskRequired(I);
1641     return isScalarWithPredication(I);
1642   }
1643 
1644   /// Returns true if \p I is a memory instruction with consecutive memory
1645   /// access that can be widened.
1646   bool
1647   memoryInstructionCanBeWidened(Instruction *I,
1648                                 ElementCount VF = ElementCount::getFixed(1));
1649 
1650   /// Returns true if \p I is a memory instruction in an interleaved-group
1651   /// of memory accesses that can be vectorized with wide vector loads/stores
1652   /// and shuffles.
1653   bool
1654   interleavedAccessCanBeWidened(Instruction *I,
1655                                 ElementCount VF = ElementCount::getFixed(1));
1656 
1657   /// Check if \p Instr belongs to any interleaved access group.
1658   bool isAccessInterleaved(Instruction *Instr) {
1659     return InterleaveInfo.isInterleaved(Instr);
1660   }
1661 
1662   /// Get the interleaved access group that \p Instr belongs to.
1663   const InterleaveGroup<Instruction> *
1664   getInterleavedAccessGroup(Instruction *Instr) {
1665     return InterleaveInfo.getInterleaveGroup(Instr);
1666   }
1667 
1668   /// Returns true if we're required to use a scalar epilogue for at least
1669   /// the final iteration of the original loop.
1670   bool requiresScalarEpilogue(ElementCount VF) const {
1671     if (!isScalarEpilogueAllowed())
1672       return false;
1673     // If we might exit from anywhere but the latch, must run the exiting
1674     // iteration in scalar form.
1675     if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
1676       return true;
1677     return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
1678   }
1679 
1680   /// Returns true if a scalar epilogue is not allowed due to optsize or a
1681   /// loop hint annotation.
1682   bool isScalarEpilogueAllowed() const {
1683     return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
1684   }
1685 
1686   /// Returns true if all loop blocks should be masked to fold tail loop.
1687   bool foldTailByMasking() const { return FoldTailByMasking; }
1688 
1689   /// Returns true if the instructions in this block requires predication
1690   /// for any reason, e.g. because tail folding now requires a predicate
1691   /// or because the block in the original loop was predicated.
1692   bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
1693     return foldTailByMasking() || Legal->blockNeedsPredication(BB);
1694   }
1695 
1696   /// A SmallMapVector to store the InLoop reduction op chains, mapping phi
1697   /// nodes to the chain of instructions representing the reductions. Uses a
1698   /// MapVector to ensure deterministic iteration order.
1699   using ReductionChainMap =
1700       SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
1701 
1702   /// Return the chain of instructions representing an inloop reduction.
1703   const ReductionChainMap &getInLoopReductionChains() const {
1704     return InLoopReductionChains;
1705   }
1706 
1707   /// Returns true if the Phi is part of an inloop reduction.
1708   bool isInLoopReduction(PHINode *Phi) const {
1709     return InLoopReductionChains.count(Phi);
1710   }
1711 
1712   /// Estimate cost of an intrinsic call instruction CI if it were vectorized
1713   /// with factor VF.  Return the cost of the instruction, including
1714   /// scalarization overhead if it's needed.
1715   InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
1716 
1717   /// Estimate cost of a call instruction CI if it were vectorized with factor
1718   /// VF. Return the cost of the instruction, including scalarization overhead
1719   /// if it's needed. The flag NeedToScalarize shows if the call needs to be
1720   /// scalarized -
1721   /// i.e. either vector version isn't available, or is too expensive.
1722   InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
1723                                     bool &NeedToScalarize) const;
1724 
1725   /// Returns true if the per-lane cost of VectorizationFactor A is lower than
1726   /// that of B.
1727   bool isMoreProfitable(const VectorizationFactor &A,
1728                         const VectorizationFactor &B) const;
1729 
1730   /// Invalidates decisions already taken by the cost model.
1731   void invalidateCostModelingDecisions() {
1732     WideningDecisions.clear();
1733     Uniforms.clear();
1734     Scalars.clear();
1735   }
1736 
1737 private:
1738   unsigned NumPredStores = 0;
1739 
1740   /// \return An upper bound for the vectorization factors for both
1741   /// fixed and scalable vectorization, where the minimum-known number of
1742   /// elements is a power-of-2 larger than zero. If scalable vectorization is
1743   /// disabled or unsupported, then the scalable part will be equal to
1744   /// ElementCount::getScalable(0).
1745   FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
1746                                            ElementCount UserVF);
1747 
1748   /// \return the maximized element count based on the targets vector
1749   /// registers and the loop trip-count, but limited to a maximum safe VF.
1750   /// This is a helper function of computeFeasibleMaxVF.
1751   /// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
1752   /// issue that occurred on one of the buildbots which cannot be reproduced
1753   /// without having access to the properietary compiler (see comments on
1754   /// D98509). The issue is currently under investigation and this workaround
1755   /// will be removed as soon as possible.
1756   ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
1757                                        unsigned SmallestType,
1758                                        unsigned WidestType,
1759                                        const ElementCount &MaxSafeVF);
1760 
1761   /// \return the maximum legal scalable VF, based on the safe max number
1762   /// of elements.
1763   ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
1764 
1765   /// The vectorization cost is a combination of the cost itself and a boolean
1766   /// indicating whether any of the contributing operations will actually
1767   /// operate on vector values after type legalization in the backend. If this
1768   /// latter value is false, then all operations will be scalarized (i.e. no
1769   /// vectorization has actually taken place).
1770   using VectorizationCostTy = std::pair<InstructionCost, bool>;
1771 
1772   /// Returns the expected execution cost. The unit of the cost does
1773   /// not matter because we use the 'cost' units to compare different
1774   /// vector widths. The cost that is returned is *not* normalized by
1775   /// the factor width. If \p Invalid is not nullptr, this function
1776   /// will add a pair(Instruction*, ElementCount) to \p Invalid for
1777   /// each instruction that has an Invalid cost for the given VF.
1778   using InstructionVFPair = std::pair<Instruction *, ElementCount>;
1779   VectorizationCostTy
1780   expectedCost(ElementCount VF,
1781                SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
1782 
1783   /// Returns the execution time cost of an instruction for a given vector
1784   /// width. Vector width of one means scalar.
1785   VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
1786 
1787   /// The cost-computation logic from getInstructionCost which provides
1788   /// the vector type as an output parameter.
1789   InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
1790                                      Type *&VectorTy);
1791 
1792   /// Return the cost of instructions in an inloop reduction pattern, if I is
1793   /// part of that pattern.
1794   Optional<InstructionCost>
1795   getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
1796                           TTI::TargetCostKind CostKind);
1797 
1798   /// Calculate vectorization cost of memory instruction \p I.
1799   InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
1800 
1801   /// The cost computation for scalarized memory instruction.
1802   InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
1803 
1804   /// The cost computation for interleaving group of memory instructions.
1805   InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
1806 
1807   /// The cost computation for Gather/Scatter instruction.
1808   InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
1809 
1810   /// The cost computation for widening instruction \p I with consecutive
1811   /// memory access.
1812   InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
1813 
1814   /// The cost calculation for Load/Store instruction \p I with uniform pointer -
1815   /// Load: scalar load + broadcast.
1816   /// Store: scalar store + (loop invariant value stored? 0 : extract of last
1817   /// element)
1818   InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
1819 
1820   /// Estimate the overhead of scalarizing an instruction. This is a
1821   /// convenience wrapper for the type-based getScalarizationOverhead API.
1822   InstructionCost getScalarizationOverhead(Instruction *I,
1823                                            ElementCount VF) const;
1824 
1825   /// Returns whether the instruction is a load or store and will be a emitted
1826   /// as a vector operation.
1827   bool isConsecutiveLoadOrStore(Instruction *I);
1828 
1829   /// Returns true if an artificially high cost for emulated masked memrefs
1830   /// should be used.
1831   bool useEmulatedMaskMemRefHack(Instruction *I);
1832 
1833   /// Map of scalar integer values to the smallest bitwidth they can be legally
1834   /// represented as. The vector equivalents of these values should be truncated
1835   /// to this type.
1836   MapVector<Instruction *, uint64_t> MinBWs;
1837 
1838   /// A type representing the costs for instructions if they were to be
1839   /// scalarized rather than vectorized. The entries are Instruction-Cost
1840   /// pairs.
1841   using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
1842 
1843   /// A set containing all BasicBlocks that are known to present after
1844   /// vectorization as a predicated block.
1845   SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1846 
1847   /// Records whether it is allowed to have the original scalar loop execute at
1848   /// least once. This may be needed as a fallback loop in case runtime
1849   /// aliasing/dependence checks fail, or to handle the tail/remainder
1850   /// iterations when the trip count is unknown or doesn't divide by the VF,
1851   /// or as a peel-loop to handle gaps in interleave-groups.
1852   /// Under optsize and when the trip count is very small we don't allow any
1853   /// iterations to execute in the scalar loop.
1854   ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
1855 
1856   /// All blocks of loop are to be masked to fold tail of scalar iterations.
1857   bool FoldTailByMasking = false;
1858 
1859   /// A map holding scalar costs for different vectorization factors. The
1860   /// presence of a cost for an instruction in the mapping indicates that the
1861   /// instruction will be scalarized when vectorizing with the associated
1862   /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1863   DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
1864 
1865   /// Holds the instructions known to be uniform after vectorization.
1866   /// The data is collected per VF.
1867   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
1868 
1869   /// Holds the instructions known to be scalar after vectorization.
1870   /// The data is collected per VF.
1871   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
1872 
1873   /// Holds the instructions (address computations) that are forced to be
1874   /// scalarized.
1875   DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1876 
1877   /// PHINodes of the reductions that should be expanded in-loop along with
1878   /// their associated chains of reduction operations, in program order from top
1879   /// (PHI) to bottom
1880   ReductionChainMap InLoopReductionChains;
1881 
1882   /// A Map of inloop reduction operations and their immediate chain operand.
1883   /// FIXME: This can be removed once reductions can be costed correctly in
1884   /// vplan. This was added to allow quick lookup to the inloop operations,
1885   /// without having to loop through InLoopReductionChains.
1886   DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
1887 
1888   /// Returns the expected difference in cost from scalarizing the expression
1889   /// feeding a predicated instruction \p PredInst. The instructions to
1890   /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1891   /// non-negative return value implies the expression will be scalarized.
1892   /// Currently, only single-use chains are considered for scalarization.
1893   int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1894                               ElementCount VF);
1895 
1896   /// Collect the instructions that are uniform after vectorization. An
1897   /// instruction is uniform if we represent it with a single scalar value in
1898   /// the vectorized loop corresponding to each vector iteration. Examples of
1899   /// uniform instructions include pointer operands of consecutive or
1900   /// interleaved memory accesses. Note that although uniformity implies an
1901   /// instruction will be scalar, the reverse is not true. In general, a
1902   /// scalarized instruction will be represented by VF scalar values in the
1903   /// vectorized loop, each corresponding to an iteration of the original
1904   /// scalar loop.
1905   void collectLoopUniforms(ElementCount VF);
1906 
1907   /// Collect the instructions that are scalar after vectorization. An
1908   /// instruction is scalar if it is known to be uniform or will be scalarized
1909   /// during vectorization. Non-uniform scalarized instructions will be
1910   /// represented by VF values in the vectorized loop, each corresponding to an
1911   /// iteration of the original scalar loop.
1912   void collectLoopScalars(ElementCount VF);
1913 
1914   /// Keeps cost model vectorization decision and cost for instructions.
1915   /// Right now it is used for memory instructions only.
1916   using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
1917                                 std::pair<InstWidening, InstructionCost>>;
1918 
1919   DecisionList WideningDecisions;
1920 
1921   /// Returns true if \p V is expected to be vectorized and it needs to be
1922   /// extracted.
1923   bool needsExtract(Value *V, ElementCount VF) const {
1924     Instruction *I = dyn_cast<Instruction>(V);
1925     if (VF.isScalar() || !I || !TheLoop->contains(I) ||
1926         TheLoop->isLoopInvariant(I))
1927       return false;
1928 
1929     // Assume we can vectorize V (and hence we need extraction) if the
1930     // scalars are not computed yet. This can happen, because it is called
1931     // via getScalarizationOverhead from setCostBasedWideningDecision, before
1932     // the scalars are collected. That should be a safe assumption in most
1933     // cases, because we check if the operands have vectorizable types
1934     // beforehand in LoopVectorizationLegality.
1935     return Scalars.find(VF) == Scalars.end() ||
1936            !isScalarAfterVectorization(I, VF);
1937   };
1938 
1939   /// Returns a range containing only operands needing to be extracted.
1940   SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
1941                                                    ElementCount VF) const {
1942     return SmallVector<Value *, 4>(make_filter_range(
1943         Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
1944   }
1945 
1946   /// Determines if we have the infrastructure to vectorize loop \p L and its
1947   /// epilogue, assuming the main loop is vectorized by \p VF.
1948   bool isCandidateForEpilogueVectorization(const Loop &L,
1949                                            const ElementCount VF) const;
1950 
1951   /// Returns true if epilogue vectorization is considered profitable, and
1952   /// false otherwise.
1953   /// \p VF is the vectorization factor chosen for the original loop.
1954   bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
1955 
1956 public:
1957   /// The loop that we evaluate.
1958   Loop *TheLoop;
1959 
1960   /// Predicated scalar evolution analysis.
1961   PredicatedScalarEvolution &PSE;
1962 
1963   /// Loop Info analysis.
1964   LoopInfo *LI;
1965 
1966   /// Vectorization legality.
1967   LoopVectorizationLegality *Legal;
1968 
1969   /// Vector target information.
1970   const TargetTransformInfo &TTI;
1971 
1972   /// Target Library Info.
1973   const TargetLibraryInfo *TLI;
1974 
1975   /// Demanded bits analysis.
1976   DemandedBits *DB;
1977 
1978   /// Assumption cache.
1979   AssumptionCache *AC;
1980 
1981   /// Interface to emit optimization remarks.
1982   OptimizationRemarkEmitter *ORE;
1983 
1984   const Function *TheFunction;
1985 
1986   /// Loop Vectorize Hint.
1987   const LoopVectorizeHints *Hints;
1988 
1989   /// The interleave access information contains groups of interleaved accesses
1990   /// with the same stride and close to each other.
1991   InterleavedAccessInfo &InterleaveInfo;
1992 
1993   /// Values to ignore in the cost model.
1994   SmallPtrSet<const Value *, 16> ValuesToIgnore;
1995 
1996   /// Values to ignore in the cost model when VF > 1.
1997   SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1998 
1999   /// All element types found in the loop.
2000   SmallPtrSet<Type *, 16> ElementTypesInLoop;
2001 
2002   /// Profitable vector factors.
2003   SmallVector<VectorizationFactor, 8> ProfitableVFs;
2004 };
2005 } // end namespace llvm
2006 
2007 /// Helper struct to manage generating runtime checks for vectorization.
2008 ///
2009 /// The runtime checks are created up-front in temporary blocks to allow better
2010 /// estimating the cost and un-linked from the existing IR. After deciding to
2011 /// vectorize, the checks are moved back. If deciding not to vectorize, the
2012 /// temporary blocks are completely removed.
2013 class GeneratedRTChecks {
2014   /// Basic block which contains the generated SCEV checks, if any.
2015   BasicBlock *SCEVCheckBlock = nullptr;
2016 
2017   /// The value representing the result of the generated SCEV checks. If it is
2018   /// nullptr, either no SCEV checks have been generated or they have been used.
2019   Value *SCEVCheckCond = nullptr;
2020 
2021   /// Basic block which contains the generated memory runtime checks, if any.
2022   BasicBlock *MemCheckBlock = nullptr;
2023 
2024   /// The value representing the result of the generated memory runtime checks.
2025   /// If it is nullptr, either no memory runtime checks have been generated or
2026   /// they have been used.
2027   Value *MemRuntimeCheckCond = nullptr;
2028 
2029   DominatorTree *DT;
2030   LoopInfo *LI;
2031 
2032   SCEVExpander SCEVExp;
2033   SCEVExpander MemCheckExp;
2034 
2035 public:
2036   GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
2037                     const DataLayout &DL)
2038       : DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
2039         MemCheckExp(SE, DL, "scev.check") {}
2040 
2041   /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
2042   /// accurately estimate the cost of the runtime checks. The blocks are
2043   /// un-linked from the IR and is added back during vector code generation. If
2044   /// there is no vector code generation, the check blocks are removed
2045   /// completely.
2046   void Create(Loop *L, const LoopAccessInfo &LAI,
2047               const SCEVUnionPredicate &UnionPred) {
2048 
2049     BasicBlock *LoopHeader = L->getHeader();
2050     BasicBlock *Preheader = L->getLoopPreheader();
2051 
2052     // Use SplitBlock to create blocks for SCEV & memory runtime checks to
2053     // ensure the blocks are properly added to LoopInfo & DominatorTree. Those
2054     // may be used by SCEVExpander. The blocks will be un-linked from their
2055     // predecessors and removed from LI & DT at the end of the function.
2056     if (!UnionPred.isAlwaysTrue()) {
2057       SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
2058                                   nullptr, "vector.scevcheck");
2059 
2060       SCEVCheckCond = SCEVExp.expandCodeForPredicate(
2061           &UnionPred, SCEVCheckBlock->getTerminator());
2062     }
2063 
2064     const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
2065     if (RtPtrChecking.Need) {
2066       auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
2067       MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
2068                                  "vector.memcheck");
2069 
2070       MemRuntimeCheckCond =
2071           addRuntimeChecks(MemCheckBlock->getTerminator(), L,
2072                            RtPtrChecking.getChecks(), MemCheckExp);
2073       assert(MemRuntimeCheckCond &&
2074              "no RT checks generated although RtPtrChecking "
2075              "claimed checks are required");
2076     }
2077 
2078     if (!MemCheckBlock && !SCEVCheckBlock)
2079       return;
2080 
2081     // Unhook the temporary block with the checks, update various places
2082     // accordingly.
2083     if (SCEVCheckBlock)
2084       SCEVCheckBlock->replaceAllUsesWith(Preheader);
2085     if (MemCheckBlock)
2086       MemCheckBlock->replaceAllUsesWith(Preheader);
2087 
2088     if (SCEVCheckBlock) {
2089       SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2090       new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
2091       Preheader->getTerminator()->eraseFromParent();
2092     }
2093     if (MemCheckBlock) {
2094       MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
2095       new UnreachableInst(Preheader->getContext(), MemCheckBlock);
2096       Preheader->getTerminator()->eraseFromParent();
2097     }
2098 
2099     DT->changeImmediateDominator(LoopHeader, Preheader);
2100     if (MemCheckBlock) {
2101       DT->eraseNode(MemCheckBlock);
2102       LI->removeBlock(MemCheckBlock);
2103     }
2104     if (SCEVCheckBlock) {
2105       DT->eraseNode(SCEVCheckBlock);
2106       LI->removeBlock(SCEVCheckBlock);
2107     }
2108   }
2109 
2110   /// Remove the created SCEV & memory runtime check blocks & instructions, if
2111   /// unused.
2112   ~GeneratedRTChecks() {
2113     SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
2114     SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
2115     if (!SCEVCheckCond)
2116       SCEVCleaner.markResultUsed();
2117 
2118     if (!MemRuntimeCheckCond)
2119       MemCheckCleaner.markResultUsed();
2120 
2121     if (MemRuntimeCheckCond) {
2122       auto &SE = *MemCheckExp.getSE();
2123       // Memory runtime check generation creates compares that use expanded
2124       // values. Remove them before running the SCEVExpanderCleaners.
2125       for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
2126         if (MemCheckExp.isInsertedInstruction(&I))
2127           continue;
2128         SE.forgetValue(&I);
2129         I.eraseFromParent();
2130       }
2131     }
2132     MemCheckCleaner.cleanup();
2133     SCEVCleaner.cleanup();
2134 
2135     if (SCEVCheckCond)
2136       SCEVCheckBlock->eraseFromParent();
2137     if (MemRuntimeCheckCond)
2138       MemCheckBlock->eraseFromParent();
2139   }
2140 
2141   /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
2142   /// adjusts the branches to branch to the vector preheader or \p Bypass,
2143   /// depending on the generated condition.
2144   BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
2145                              BasicBlock *LoopVectorPreHeader,
2146                              BasicBlock *LoopExitBlock) {
2147     if (!SCEVCheckCond)
2148       return nullptr;
2149     if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
2150       if (C->isZero())
2151         return nullptr;
2152 
2153     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2154 
2155     BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
2156     // Create new preheader for vector loop.
2157     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2158       PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
2159 
2160     SCEVCheckBlock->getTerminator()->eraseFromParent();
2161     SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
2162     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2163                                                 SCEVCheckBlock);
2164 
2165     DT->addNewBlock(SCEVCheckBlock, Pred);
2166     DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
2167 
2168     ReplaceInstWithInst(
2169         SCEVCheckBlock->getTerminator(),
2170         BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
2171     // Mark the check as used, to prevent it from being removed during cleanup.
2172     SCEVCheckCond = nullptr;
2173     return SCEVCheckBlock;
2174   }
2175 
2176   /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
2177   /// the branches to branch to the vector preheader or \p Bypass, depending on
2178   /// the generated condition.
2179   BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
2180                                    BasicBlock *LoopVectorPreHeader) {
2181     // Check if we generated code that checks in runtime if arrays overlap.
2182     if (!MemRuntimeCheckCond)
2183       return nullptr;
2184 
2185     auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
2186     Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
2187                                                 MemCheckBlock);
2188 
2189     DT->addNewBlock(MemCheckBlock, Pred);
2190     DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
2191     MemCheckBlock->moveBefore(LoopVectorPreHeader);
2192 
2193     if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
2194       PL->addBasicBlockToLoop(MemCheckBlock, *LI);
2195 
2196     ReplaceInstWithInst(
2197         MemCheckBlock->getTerminator(),
2198         BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
2199     MemCheckBlock->getTerminator()->setDebugLoc(
2200         Pred->getTerminator()->getDebugLoc());
2201 
2202     // Mark the check as used, to prevent it from being removed during cleanup.
2203     MemRuntimeCheckCond = nullptr;
2204     return MemCheckBlock;
2205   }
2206 };
2207 
2208 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
2209 // vectorization. The loop needs to be annotated with #pragma omp simd
2210 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
2211 // vector length information is not provided, vectorization is not considered
2212 // explicit. Interleave hints are not allowed either. These limitations will be
2213 // relaxed in the future.
2214 // Please, note that we are currently forced to abuse the pragma 'clang
2215 // vectorize' semantics. This pragma provides *auto-vectorization hints*
2216 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
2217 // provides *explicit vectorization hints* (LV can bypass legal checks and
2218 // assume that vectorization is legal). However, both hints are implemented
2219 // using the same metadata (llvm.loop.vectorize, processed by
2220 // LoopVectorizeHints). This will be fixed in the future when the native IR
2221 // representation for pragma 'omp simd' is introduced.
2222 static bool isExplicitVecOuterLoop(Loop *OuterLp,
2223                                    OptimizationRemarkEmitter *ORE) {
2224   assert(!OuterLp->isInnermost() && "This is not an outer loop");
2225   LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
2226 
2227   // Only outer loops with an explicit vectorization hint are supported.
2228   // Unannotated outer loops are ignored.
2229   if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
2230     return false;
2231 
2232   Function *Fn = OuterLp->getHeader()->getParent();
2233   if (!Hints.allowVectorization(Fn, OuterLp,
2234                                 true /*VectorizeOnlyWhenForced*/)) {
2235     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
2236     return false;
2237   }
2238 
2239   if (Hints.getInterleave() > 1) {
2240     // TODO: Interleave support is future work.
2241     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
2242                          "outer loops.\n");
2243     Hints.emitRemarkWithHints();
2244     return false;
2245   }
2246 
2247   return true;
2248 }
2249 
2250 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
2251                                   OptimizationRemarkEmitter *ORE,
2252                                   SmallVectorImpl<Loop *> &V) {
2253   // Collect inner loops and outer loops without irreducible control flow. For
2254   // now, only collect outer loops that have explicit vectorization hints. If we
2255   // are stress testing the VPlan H-CFG construction, we collect the outermost
2256   // loop of every loop nest.
2257   if (L.isInnermost() || VPlanBuildStressTest ||
2258       (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
2259     LoopBlocksRPO RPOT(&L);
2260     RPOT.perform(LI);
2261     if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
2262       V.push_back(&L);
2263       // TODO: Collect inner loops inside marked outer loops in case
2264       // vectorization fails for the outer loop. Do not invoke
2265       // 'containsIrreducibleCFG' again for inner loops when the outer loop is
2266       // already known to be reducible. We can use an inherited attribute for
2267       // that.
2268       return;
2269     }
2270   }
2271   for (Loop *InnerL : L)
2272     collectSupportedLoops(*InnerL, LI, ORE, V);
2273 }
2274 
2275 namespace {
2276 
2277 /// The LoopVectorize Pass.
2278 struct LoopVectorize : public FunctionPass {
2279   /// Pass identification, replacement for typeid
2280   static char ID;
2281 
2282   LoopVectorizePass Impl;
2283 
2284   explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
2285                          bool VectorizeOnlyWhenForced = false)
2286       : FunctionPass(ID),
2287         Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
2288     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2289   }
2290 
2291   bool runOnFunction(Function &F) override {
2292     if (skipFunction(F))
2293       return false;
2294 
2295     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2296     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2297     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2298     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2299     auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2300     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2301     auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
2302     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2303     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2304     auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2305     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2306     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2307     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2308 
2309     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2310         [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2311 
2312     return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2313                         GetLAA, *ORE, PSI).MadeAnyChange;
2314   }
2315 
2316   void getAnalysisUsage(AnalysisUsage &AU) const override {
2317     AU.addRequired<AssumptionCacheTracker>();
2318     AU.addRequired<BlockFrequencyInfoWrapperPass>();
2319     AU.addRequired<DominatorTreeWrapperPass>();
2320     AU.addRequired<LoopInfoWrapperPass>();
2321     AU.addRequired<ScalarEvolutionWrapperPass>();
2322     AU.addRequired<TargetTransformInfoWrapperPass>();
2323     AU.addRequired<AAResultsWrapperPass>();
2324     AU.addRequired<LoopAccessLegacyAnalysis>();
2325     AU.addRequired<DemandedBitsWrapperPass>();
2326     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2327     AU.addRequired<InjectTLIMappingsLegacy>();
2328 
2329     // We currently do not preserve loopinfo/dominator analyses with outer loop
2330     // vectorization. Until this is addressed, mark these analyses as preserved
2331     // only for non-VPlan-native path.
2332     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
2333     if (!EnableVPlanNativePath) {
2334       AU.addPreserved<LoopInfoWrapperPass>();
2335       AU.addPreserved<DominatorTreeWrapperPass>();
2336     }
2337 
2338     AU.addPreserved<BasicAAWrapperPass>();
2339     AU.addPreserved<GlobalsAAWrapperPass>();
2340     AU.addRequired<ProfileSummaryInfoWrapperPass>();
2341   }
2342 };
2343 
2344 } // end anonymous namespace
2345 
2346 //===----------------------------------------------------------------------===//
2347 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2348 // LoopVectorizationCostModel and LoopVectorizationPlanner.
2349 //===----------------------------------------------------------------------===//
2350 
2351 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2352   // We need to place the broadcast of invariant variables outside the loop,
2353   // but only if it's proven safe to do so. Else, broadcast will be inside
2354   // vector loop body.
2355   Instruction *Instr = dyn_cast<Instruction>(V);
2356   bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
2357                      (!Instr ||
2358                       DT->dominates(Instr->getParent(), LoopVectorPreHeader));
2359   // Place the code for broadcasting invariant variables in the new preheader.
2360   IRBuilder<>::InsertPointGuard Guard(Builder);
2361   if (SafeToHoist)
2362     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2363 
2364   // Broadcast the scalar into all locations in the vector.
2365   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2366 
2367   return Shuf;
2368 }
2369 
2370 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2371     const InductionDescriptor &II, Value *Step, Value *Start,
2372     Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
2373     VPTransformState &State) {
2374   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2375          "Expected either an induction phi-node or a truncate of it!");
2376 
2377   // Construct the initial value of the vector IV in the vector loop preheader
2378   auto CurrIP = Builder.saveIP();
2379   Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2380   if (isa<TruncInst>(EntryVal)) {
2381     assert(Start->getType()->isIntegerTy() &&
2382            "Truncation requires an integer type");
2383     auto *TruncType = cast<IntegerType>(EntryVal->getType());
2384     Step = Builder.CreateTrunc(Step, TruncType);
2385     Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2386   }
2387 
2388   Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
2389   Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2390   Value *SteppedStart =
2391       getStepVector(SplatStart, Zero, Step, II.getInductionOpcode());
2392 
2393   // We create vector phi nodes for both integer and floating-point induction
2394   // variables. Here, we determine the kind of arithmetic we will perform.
2395   Instruction::BinaryOps AddOp;
2396   Instruction::BinaryOps MulOp;
2397   if (Step->getType()->isIntegerTy()) {
2398     AddOp = Instruction::Add;
2399     MulOp = Instruction::Mul;
2400   } else {
2401     AddOp = II.getInductionOpcode();
2402     MulOp = Instruction::FMul;
2403   }
2404 
2405   // Multiply the vectorization factor by the step using integer or
2406   // floating-point arithmetic as appropriate.
2407   Type *StepType = Step->getType();
2408   Value *RuntimeVF;
2409   if (Step->getType()->isFloatingPointTy())
2410     RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, VF);
2411   else
2412     RuntimeVF = getRuntimeVF(Builder, StepType, VF);
2413   Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
2414 
2415   // Create a vector splat to use in the induction update.
2416   //
2417   // FIXME: If the step is non-constant, we create the vector splat with
2418   //        IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2419   //        handle a constant vector splat.
2420   Value *SplatVF = isa<Constant>(Mul)
2421                        ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2422                        : Builder.CreateVectorSplat(VF, Mul);
2423   Builder.restoreIP(CurrIP);
2424 
2425   // We may need to add the step a number of times, depending on the unroll
2426   // factor. The last of those goes into the PHI.
2427   PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2428                                     &*LoopVectorBody->getFirstInsertionPt());
2429   VecInd->setDebugLoc(EntryVal->getDebugLoc());
2430   Instruction *LastInduction = VecInd;
2431   for (unsigned Part = 0; Part < UF; ++Part) {
2432     State.set(Def, LastInduction, Part);
2433 
2434     if (isa<TruncInst>(EntryVal))
2435       addMetadata(LastInduction, EntryVal);
2436     recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
2437                                           State, Part);
2438 
2439     LastInduction = cast<Instruction>(
2440         Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
2441     LastInduction->setDebugLoc(EntryVal->getDebugLoc());
2442   }
2443 
2444   // Move the last step to the end of the latch block. This ensures consistent
2445   // placement of all induction updates.
2446   auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2447   auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2448   auto *ICmp = cast<Instruction>(Br->getCondition());
2449   LastInduction->moveBefore(ICmp);
2450   LastInduction->setName("vec.ind.next");
2451 
2452   VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2453   VecInd->addIncoming(LastInduction, LoopVectorLatch);
2454 }
2455 
2456 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2457   return Cost->isScalarAfterVectorization(I, VF) ||
2458          Cost->isProfitableToScalarize(I, VF);
2459 }
2460 
2461 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2462   if (shouldScalarizeInstruction(IV))
2463     return true;
2464   auto isScalarInst = [&](User *U) -> bool {
2465     auto *I = cast<Instruction>(U);
2466     return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2467   };
2468   return llvm::any_of(IV->users(), isScalarInst);
2469 }
2470 
2471 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2472     const InductionDescriptor &ID, const Instruction *EntryVal,
2473     Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
2474     unsigned Part, unsigned Lane) {
2475   assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
2476          "Expected either an induction phi-node or a truncate of it!");
2477 
2478   // This induction variable is not the phi from the original loop but the
2479   // newly-created IV based on the proof that casted Phi is equal to the
2480   // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2481   // re-uses the same InductionDescriptor that original IV uses but we don't
2482   // have to do any recording in this case - that is done when original IV is
2483   // processed.
2484   if (isa<TruncInst>(EntryVal))
2485     return;
2486 
2487   if (!CastDef) {
2488     assert(ID.getCastInsts().empty() &&
2489            "there are casts for ID, but no CastDef");
2490     return;
2491   }
2492   assert(!ID.getCastInsts().empty() &&
2493          "there is a CastDef, but no casts for ID");
2494   // Only the first Cast instruction in the Casts vector is of interest.
2495   // The rest of the Casts (if exist) have no uses outside the
2496   // induction update chain itself.
2497   if (Lane < UINT_MAX)
2498     State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
2499   else
2500     State.set(CastDef, VectorLoopVal, Part);
2501 }
2502 
2503 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
2504                                                 TruncInst *Trunc, VPValue *Def,
2505                                                 VPValue *CastDef,
2506                                                 VPTransformState &State) {
2507   assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
2508          "Primary induction variable must have an integer type");
2509 
2510   auto II = Legal->getInductionVars().find(IV);
2511   assert(II != Legal->getInductionVars().end() && "IV is not an induction");
2512 
2513   auto ID = II->second;
2514   assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
2515 
2516   // The value from the original loop to which we are mapping the new induction
2517   // variable.
2518   Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2519 
2520   auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2521 
2522   // Generate code for the induction step. Note that induction steps are
2523   // required to be loop-invariant
2524   auto CreateStepValue = [&](const SCEV *Step) -> Value * {
2525     assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
2526            "Induction step should be loop invariant");
2527     if (PSE.getSE()->isSCEVable(IV->getType())) {
2528       SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2529       return Exp.expandCodeFor(Step, Step->getType(),
2530                                LoopVectorPreHeader->getTerminator());
2531     }
2532     return cast<SCEVUnknown>(Step)->getValue();
2533   };
2534 
2535   // The scalar value to broadcast. This is derived from the canonical
2536   // induction variable. If a truncation type is given, truncate the canonical
2537   // induction variable and step. Otherwise, derive these values from the
2538   // induction descriptor.
2539   auto CreateScalarIV = [&](Value *&Step) -> Value * {
2540     Value *ScalarIV = Induction;
2541     if (IV != OldInduction) {
2542       ScalarIV = IV->getType()->isIntegerTy()
2543                      ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2544                      : Builder.CreateCast(Instruction::SIToFP, Induction,
2545                                           IV->getType());
2546       ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
2547       ScalarIV->setName("offset.idx");
2548     }
2549     if (Trunc) {
2550       auto *TruncType = cast<IntegerType>(Trunc->getType());
2551       assert(Step->getType()->isIntegerTy() &&
2552              "Truncation requires an integer step");
2553       ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2554       Step = Builder.CreateTrunc(Step, TruncType);
2555     }
2556     return ScalarIV;
2557   };
2558 
2559   // Create the vector values from the scalar IV, in the absence of creating a
2560   // vector IV.
2561   auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
2562     Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2563     for (unsigned Part = 0; Part < UF; ++Part) {
2564       assert(!VF.isScalable() && "scalable vectors not yet supported.");
2565       Value *StartIdx;
2566       if (Step->getType()->isFloatingPointTy())
2567         StartIdx = getRuntimeVFAsFloat(Builder, Step->getType(), VF * Part);
2568       else
2569         StartIdx = getRuntimeVF(Builder, Step->getType(), VF * Part);
2570 
2571       Value *EntryPart =
2572           getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode());
2573       State.set(Def, EntryPart, Part);
2574       if (Trunc)
2575         addMetadata(EntryPart, Trunc);
2576       recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
2577                                             State, Part);
2578     }
2579   };
2580 
2581   // Fast-math-flags propagate from the original induction instruction.
2582   IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2583   if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
2584     Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
2585 
2586   // Now do the actual transformations, and start with creating the step value.
2587   Value *Step = CreateStepValue(ID.getStep());
2588   if (VF.isZero() || VF.isScalar()) {
2589     Value *ScalarIV = CreateScalarIV(Step);
2590     CreateSplatIV(ScalarIV, Step);
2591     return;
2592   }
2593 
2594   // Determine if we want a scalar version of the induction variable. This is
2595   // true if the induction variable itself is not widened, or if it has at
2596   // least one user in the loop that is not widened.
2597   auto NeedsScalarIV = needsScalarInduction(EntryVal);
2598   if (!NeedsScalarIV) {
2599     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2600                                     State);
2601     return;
2602   }
2603 
2604   // Try to create a new independent vector induction variable. If we can't
2605   // create the phi node, we will splat the scalar induction variable in each
2606   // loop iteration.
2607   if (!shouldScalarizeInstruction(EntryVal)) {
2608     createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
2609                                     State);
2610     Value *ScalarIV = CreateScalarIV(Step);
2611     // Create scalar steps that can be used by instructions we will later
2612     // scalarize. Note that the addition of the scalar steps will not increase
2613     // the number of instructions in the loop in the common case prior to
2614     // InstCombine. We will be trading one vector extract for each scalar step.
2615     buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2616     return;
2617   }
2618 
2619   // All IV users are scalar instructions, so only emit a scalar IV, not a
2620   // vectorised IV. Except when we tail-fold, then the splat IV feeds the
2621   // predicate used by the masked loads/stores.
2622   Value *ScalarIV = CreateScalarIV(Step);
2623   if (!Cost->isScalarEpilogueAllowed())
2624     CreateSplatIV(ScalarIV, Step);
2625   buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
2626 }
2627 
2628 Value *InnerLoopVectorizer::getStepVector(Value *Val, Value *StartIdx,
2629                                           Value *Step,
2630                                           Instruction::BinaryOps BinOp) {
2631   // Create and check the types.
2632   auto *ValVTy = cast<VectorType>(Val->getType());
2633   ElementCount VLen = ValVTy->getElementCount();
2634 
2635   Type *STy = Val->getType()->getScalarType();
2636   assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
2637          "Induction Step must be an integer or FP");
2638   assert(Step->getType() == STy && "Step has wrong type");
2639 
2640   SmallVector<Constant *, 8> Indices;
2641 
2642   // Create a vector of consecutive numbers from zero to VF.
2643   VectorType *InitVecValVTy = ValVTy;
2644   Type *InitVecValSTy = STy;
2645   if (STy->isFloatingPointTy()) {
2646     InitVecValSTy =
2647         IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
2648     InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
2649   }
2650   Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
2651 
2652   // Splat the StartIdx
2653   Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
2654 
2655   if (STy->isIntegerTy()) {
2656     InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
2657     Step = Builder.CreateVectorSplat(VLen, Step);
2658     assert(Step->getType() == Val->getType() && "Invalid step vec");
2659     // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2660     // which can be found from the original scalar operations.
2661     Step = Builder.CreateMul(InitVec, Step);
2662     return Builder.CreateAdd(Val, Step, "induction");
2663   }
2664 
2665   // Floating point induction.
2666   assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2667          "Binary Opcode should be specified for FP induction");
2668   InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
2669   InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
2670 
2671   Step = Builder.CreateVectorSplat(VLen, Step);
2672   Value *MulOp = Builder.CreateFMul(InitVec, Step);
2673   return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2674 }
2675 
2676 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2677                                            Instruction *EntryVal,
2678                                            const InductionDescriptor &ID,
2679                                            VPValue *Def, VPValue *CastDef,
2680                                            VPTransformState &State) {
2681   // We shouldn't have to build scalar steps if we aren't vectorizing.
2682   assert(VF.isVector() && "VF should be greater than one");
2683   // Get the value type and ensure it and the step have the same integer type.
2684   Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2685   assert(ScalarIVTy == Step->getType() &&
2686          "Val and Step should have the same type");
2687 
2688   // We build scalar steps for both integer and floating-point induction
2689   // variables. Here, we determine the kind of arithmetic we will perform.
2690   Instruction::BinaryOps AddOp;
2691   Instruction::BinaryOps MulOp;
2692   if (ScalarIVTy->isIntegerTy()) {
2693     AddOp = Instruction::Add;
2694     MulOp = Instruction::Mul;
2695   } else {
2696     AddOp = ID.getInductionOpcode();
2697     MulOp = Instruction::FMul;
2698   }
2699 
2700   // Determine the number of scalars we need to generate for each unroll
2701   // iteration. If EntryVal is uniform, we only need to generate the first
2702   // lane. Otherwise, we generate all VF values.
2703   bool IsUniform =
2704       Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
2705   unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
2706   // Compute the scalar steps and save the results in State.
2707   Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
2708                                      ScalarIVTy->getScalarSizeInBits());
2709   Type *VecIVTy = nullptr;
2710   Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
2711   if (!IsUniform && VF.isScalable()) {
2712     VecIVTy = VectorType::get(ScalarIVTy, VF);
2713     UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
2714     SplatStep = Builder.CreateVectorSplat(VF, Step);
2715     SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
2716   }
2717 
2718   for (unsigned Part = 0; Part < UF; ++Part) {
2719     Value *StartIdx0 = createStepForVF(Builder, IntStepTy, VF, Part);
2720 
2721     if (!IsUniform && VF.isScalable()) {
2722       auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
2723       auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
2724       if (ScalarIVTy->isFloatingPointTy())
2725         InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
2726       auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
2727       auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
2728       State.set(Def, Add, Part);
2729       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2730                                             Part);
2731       // It's useful to record the lane values too for the known minimum number
2732       // of elements so we do those below. This improves the code quality when
2733       // trying to extract the first element, for example.
2734     }
2735 
2736     if (ScalarIVTy->isFloatingPointTy())
2737       StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
2738 
2739     for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2740       Value *StartIdx = Builder.CreateBinOp(
2741           AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
2742       // The step returned by `createStepForVF` is a runtime-evaluated value
2743       // when VF is scalable. Otherwise, it should be folded into a Constant.
2744       assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
2745              "Expected StartIdx to be folded to a constant when VF is not "
2746              "scalable");
2747       auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
2748       auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
2749       State.set(Def, Add, VPIteration(Part, Lane));
2750       recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
2751                                             Part, Lane);
2752     }
2753   }
2754 }
2755 
2756 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
2757                                                     const VPIteration &Instance,
2758                                                     VPTransformState &State) {
2759   Value *ScalarInst = State.get(Def, Instance);
2760   Value *VectorValue = State.get(Def, Instance.Part);
2761   VectorValue = Builder.CreateInsertElement(
2762       VectorValue, ScalarInst,
2763       Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
2764   State.set(Def, VectorValue, Instance.Part);
2765 }
2766 
2767 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2768   assert(Vec->getType()->isVectorTy() && "Invalid type");
2769   return Builder.CreateVectorReverse(Vec, "reverse");
2770 }
2771 
2772 // Return whether we allow using masked interleave-groups (for dealing with
2773 // strided loads/stores that reside in predicated blocks, or for dealing
2774 // with gaps).
2775 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
2776   // If an override option has been passed in for interleaved accesses, use it.
2777   if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
2778     return EnableMaskedInterleavedMemAccesses;
2779 
2780   return TTI.enableMaskedInterleavedAccessVectorization();
2781 }
2782 
2783 // Try to vectorize the interleave group that \p Instr belongs to.
2784 //
2785 // E.g. Translate following interleaved load group (factor = 3):
2786 //   for (i = 0; i < N; i+=3) {
2787 //     R = Pic[i];             // Member of index 0
2788 //     G = Pic[i+1];           // Member of index 1
2789 //     B = Pic[i+2];           // Member of index 2
2790 //     ... // do something to R, G, B
2791 //   }
2792 // To:
2793 //   %wide.vec = load <12 x i32>                       ; Read 4 tuples of R,G,B
2794 //   %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9>   ; R elements
2795 //   %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10>  ; G elements
2796 //   %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11>  ; B elements
2797 //
2798 // Or translate following interleaved store group (factor = 3):
2799 //   for (i = 0; i < N; i+=3) {
2800 //     ... do something to R, G, B
2801 //     Pic[i]   = R;           // Member of index 0
2802 //     Pic[i+1] = G;           // Member of index 1
2803 //     Pic[i+2] = B;           // Member of index 2
2804 //   }
2805 // To:
2806 //   %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2807 //   %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
2808 //   %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2809 //        <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>    ; Interleave R,G,B elements
2810 //   store <12 x i32> %interleaved.vec              ; Write 4 tuples of R,G,B
2811 void InnerLoopVectorizer::vectorizeInterleaveGroup(
2812     const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
2813     VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
2814     VPValue *BlockInMask) {
2815   Instruction *Instr = Group->getInsertPos();
2816   const DataLayout &DL = Instr->getModule()->getDataLayout();
2817 
2818   // Prepare for the vector type of the interleaved load/store.
2819   Type *ScalarTy = getLoadStoreType(Instr);
2820   unsigned InterleaveFactor = Group->getFactor();
2821   assert(!VF.isScalable() && "scalable vectors not yet supported.");
2822   auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
2823 
2824   // Prepare for the new pointers.
2825   SmallVector<Value *, 2> AddrParts;
2826   unsigned Index = Group->getIndex(Instr);
2827 
2828   // TODO: extend the masked interleaved-group support to reversed access.
2829   assert((!BlockInMask || !Group->isReverse()) &&
2830          "Reversed masked interleave-group not supported.");
2831 
2832   // If the group is reverse, adjust the index to refer to the last vector lane
2833   // instead of the first. We adjust the index from the first vector lane,
2834   // rather than directly getting the pointer for lane VF - 1, because the
2835   // pointer operand of the interleaved access is supposed to be uniform. For
2836   // uniform instructions, we're only required to generate a value for the
2837   // first vector lane in each unroll iteration.
2838   if (Group->isReverse())
2839     Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
2840 
2841   for (unsigned Part = 0; Part < UF; Part++) {
2842     Value *AddrPart = State.get(Addr, VPIteration(Part, 0));
2843     setDebugLocFromInst(AddrPart);
2844 
2845     // Notice current instruction could be any index. Need to adjust the address
2846     // to the member of index 0.
2847     //
2848     // E.g.  a = A[i+1];     // Member of index 1 (Current instruction)
2849     //       b = A[i];       // Member of index 0
2850     // Current pointer is pointed to A[i+1], adjust it to A[i].
2851     //
2852     // E.g.  A[i+1] = a;     // Member of index 1
2853     //       A[i]   = b;     // Member of index 0
2854     //       A[i+2] = c;     // Member of index 2 (Current instruction)
2855     // Current pointer is pointed to A[i+2], adjust it to A[i].
2856 
2857     bool InBounds = false;
2858     if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts()))
2859       InBounds = gep->isInBounds();
2860     AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index));
2861     cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds);
2862 
2863     // Cast to the vector pointer type.
2864     unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace();
2865     Type *PtrTy = VecTy->getPointerTo(AddressSpace);
2866     AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy));
2867   }
2868 
2869   setDebugLocFromInst(Instr);
2870   Value *PoisonVec = PoisonValue::get(VecTy);
2871 
2872   Value *MaskForGaps = nullptr;
2873   if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) {
2874     MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2875     assert(MaskForGaps && "Mask for Gaps is required but it is null");
2876   }
2877 
2878   // Vectorize the interleaved load group.
2879   if (isa<LoadInst>(Instr)) {
2880     // For each unroll part, create a wide load for the group.
2881     SmallVector<Value *, 2> NewLoads;
2882     for (unsigned Part = 0; Part < UF; Part++) {
2883       Instruction *NewLoad;
2884       if (BlockInMask || MaskForGaps) {
2885         assert(useMaskedInterleavedAccesses(*TTI) &&
2886                "masked interleaved groups are not allowed.");
2887         Value *GroupMask = MaskForGaps;
2888         if (BlockInMask) {
2889           Value *BlockInMaskPart = State.get(BlockInMask, Part);
2890           Value *ShuffledMask = Builder.CreateShuffleVector(
2891               BlockInMaskPart,
2892               createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2893               "interleaved.mask");
2894           GroupMask = MaskForGaps
2895                           ? Builder.CreateBinOp(Instruction::And, ShuffledMask,
2896                                                 MaskForGaps)
2897                           : ShuffledMask;
2898         }
2899         NewLoad =
2900             Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(),
2901                                      GroupMask, PoisonVec, "wide.masked.vec");
2902       }
2903       else
2904         NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part],
2905                                             Group->getAlign(), "wide.vec");
2906       Group->addMetadata(NewLoad);
2907       NewLoads.push_back(NewLoad);
2908     }
2909 
2910     // For each member in the group, shuffle out the appropriate data from the
2911     // wide loads.
2912     unsigned J = 0;
2913     for (unsigned I = 0; I < InterleaveFactor; ++I) {
2914       Instruction *Member = Group->getMember(I);
2915 
2916       // Skip the gaps in the group.
2917       if (!Member)
2918         continue;
2919 
2920       auto StrideMask =
2921           createStrideMask(I, InterleaveFactor, VF.getKnownMinValue());
2922       for (unsigned Part = 0; Part < UF; Part++) {
2923         Value *StridedVec = Builder.CreateShuffleVector(
2924             NewLoads[Part], StrideMask, "strided.vec");
2925 
2926         // If this member has different type, cast the result type.
2927         if (Member->getType() != ScalarTy) {
2928           assert(!VF.isScalable() && "VF is assumed to be non scalable.");
2929           VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2930           StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2931         }
2932 
2933         if (Group->isReverse())
2934           StridedVec = reverseVector(StridedVec);
2935 
2936         State.set(VPDefs[J], StridedVec, Part);
2937       }
2938       ++J;
2939     }
2940     return;
2941   }
2942 
2943   // The sub vector type for current instruction.
2944   auto *SubVT = VectorType::get(ScalarTy, VF);
2945 
2946   // Vectorize the interleaved store group.
2947   MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group);
2948   assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&
2949          "masked interleaved groups are not allowed.");
2950   assert((!MaskForGaps || !VF.isScalable()) &&
2951          "masking gaps for scalable vectors is not yet supported.");
2952   for (unsigned Part = 0; Part < UF; Part++) {
2953     // Collect the stored vector from each member.
2954     SmallVector<Value *, 4> StoredVecs;
2955     for (unsigned i = 0; i < InterleaveFactor; i++) {
2956       assert((Group->getMember(i) || MaskForGaps) &&
2957              "Fail to get a member from an interleaved store group");
2958       Instruction *Member = Group->getMember(i);
2959 
2960       // Skip the gaps in the group.
2961       if (!Member) {
2962         Value *Undef = PoisonValue::get(SubVT);
2963         StoredVecs.push_back(Undef);
2964         continue;
2965       }
2966 
2967       Value *StoredVec = State.get(StoredValues[i], Part);
2968 
2969       if (Group->isReverse())
2970         StoredVec = reverseVector(StoredVec);
2971 
2972       // If this member has different type, cast it to a unified type.
2973 
2974       if (StoredVec->getType() != SubVT)
2975         StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2976 
2977       StoredVecs.push_back(StoredVec);
2978     }
2979 
2980     // Concatenate all vectors into a wide vector.
2981     Value *WideVec = concatenateVectors(Builder, StoredVecs);
2982 
2983     // Interleave the elements in the wide vector.
2984     Value *IVec = Builder.CreateShuffleVector(
2985         WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor),
2986         "interleaved.vec");
2987 
2988     Instruction *NewStoreInstr;
2989     if (BlockInMask || MaskForGaps) {
2990       Value *GroupMask = MaskForGaps;
2991       if (BlockInMask) {
2992         Value *BlockInMaskPart = State.get(BlockInMask, Part);
2993         Value *ShuffledMask = Builder.CreateShuffleVector(
2994             BlockInMaskPart,
2995             createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()),
2996             "interleaved.mask");
2997         GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And,
2998                                                       ShuffledMask, MaskForGaps)
2999                                 : ShuffledMask;
3000       }
3001       NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part],
3002                                                 Group->getAlign(), GroupMask);
3003     } else
3004       NewStoreInstr =
3005           Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign());
3006 
3007     Group->addMetadata(NewStoreInstr);
3008   }
3009 }
3010 
3011 void InnerLoopVectorizer::vectorizeMemoryInstruction(
3012     Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr,
3013     VPValue *StoredValue, VPValue *BlockInMask, bool ConsecutiveStride,
3014     bool Reverse) {
3015   // Attempt to issue a wide load.
3016   LoadInst *LI = dyn_cast<LoadInst>(Instr);
3017   StoreInst *SI = dyn_cast<StoreInst>(Instr);
3018 
3019   assert((LI || SI) && "Invalid Load/Store instruction");
3020   assert((!SI || StoredValue) && "No stored value provided for widened store");
3021   assert((!LI || !StoredValue) && "Stored value provided for widened load");
3022 
3023   Type *ScalarDataTy = getLoadStoreType(Instr);
3024 
3025   auto *DataTy = VectorType::get(ScalarDataTy, VF);
3026   const Align Alignment = getLoadStoreAlignment(Instr);
3027   bool CreateGatherScatter = !ConsecutiveStride;
3028 
3029   VectorParts BlockInMaskParts(UF);
3030   bool isMaskRequired = BlockInMask;
3031   if (isMaskRequired)
3032     for (unsigned Part = 0; Part < UF; ++Part)
3033       BlockInMaskParts[Part] = State.get(BlockInMask, Part);
3034 
3035   const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
3036     // Calculate the pointer for the specific unroll-part.
3037     GetElementPtrInst *PartPtr = nullptr;
3038 
3039     bool InBounds = false;
3040     if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
3041       InBounds = gep->isInBounds();
3042     if (Reverse) {
3043       // If the address is consecutive but reversed, then the
3044       // wide store needs to start at the last vector element.
3045       // RunTimeVF =  VScale * VF.getKnownMinValue()
3046       // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue()
3047       Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), VF);
3048       // NumElt = -Part * RunTimeVF
3049       Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF);
3050       // LastLane = 1 - RunTimeVF
3051       Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF);
3052       PartPtr =
3053           cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt));
3054       PartPtr->setIsInBounds(InBounds);
3055       PartPtr = cast<GetElementPtrInst>(
3056           Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane));
3057       PartPtr->setIsInBounds(InBounds);
3058       if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
3059         BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]);
3060     } else {
3061       Value *Increment =
3062           createStepForVF(Builder, Builder.getInt32Ty(), VF, Part);
3063       PartPtr = cast<GetElementPtrInst>(
3064           Builder.CreateGEP(ScalarDataTy, Ptr, Increment));
3065       PartPtr->setIsInBounds(InBounds);
3066     }
3067 
3068     unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
3069     return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
3070   };
3071 
3072   // Handle Stores:
3073   if (SI) {
3074     setDebugLocFromInst(SI);
3075 
3076     for (unsigned Part = 0; Part < UF; ++Part) {
3077       Instruction *NewSI = nullptr;
3078       Value *StoredVal = State.get(StoredValue, Part);
3079       if (CreateGatherScatter) {
3080         Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3081         Value *VectorGep = State.get(Addr, Part);
3082         NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
3083                                             MaskPart);
3084       } else {
3085         if (Reverse) {
3086           // If we store to reverse consecutive memory locations, then we need
3087           // to reverse the order of elements in the stored value.
3088           StoredVal = reverseVector(StoredVal);
3089           // We don't want to update the value in the map as it might be used in
3090           // another expression. So don't call resetVectorValue(StoredVal).
3091         }
3092         auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3093         if (isMaskRequired)
3094           NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3095                                             BlockInMaskParts[Part]);
3096         else
3097           NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3098       }
3099       addMetadata(NewSI, SI);
3100     }
3101     return;
3102   }
3103 
3104   // Handle loads.
3105   assert(LI && "Must have a load instruction");
3106   setDebugLocFromInst(LI);
3107   for (unsigned Part = 0; Part < UF; ++Part) {
3108     Value *NewLI;
3109     if (CreateGatherScatter) {
3110       Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr;
3111       Value *VectorGep = State.get(Addr, Part);
3112       NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart,
3113                                          nullptr, "wide.masked.gather");
3114       addMetadata(NewLI, LI);
3115     } else {
3116       auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0)));
3117       if (isMaskRequired)
3118         NewLI = Builder.CreateMaskedLoad(
3119             DataTy, VecPtr, Alignment, BlockInMaskParts[Part],
3120             PoisonValue::get(DataTy), "wide.masked.load");
3121       else
3122         NewLI =
3123             Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load");
3124 
3125       // Add metadata to the load, but setVectorValue to the reverse shuffle.
3126       addMetadata(NewLI, LI);
3127       if (Reverse)
3128         NewLI = reverseVector(NewLI);
3129     }
3130 
3131     State.set(Def, NewLI, Part);
3132   }
3133 }
3134 
3135 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
3136                                                VPReplicateRecipe *RepRecipe,
3137                                                const VPIteration &Instance,
3138                                                bool IfPredicateInstr,
3139                                                VPTransformState &State) {
3140   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
3141 
3142   // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for
3143   // the first lane and part.
3144   if (isa<NoAliasScopeDeclInst>(Instr))
3145     if (!Instance.isFirstIteration())
3146       return;
3147 
3148   setDebugLocFromInst(Instr);
3149 
3150   // Does this instruction return a value ?
3151   bool IsVoidRetTy = Instr->getType()->isVoidTy();
3152 
3153   Instruction *Cloned = Instr->clone();
3154   if (!IsVoidRetTy)
3155     Cloned->setName(Instr->getName() + ".cloned");
3156 
3157   // If the scalarized instruction contributes to the address computation of a
3158   // widen masked load/store which was in a basic block that needed predication
3159   // and is not predicated after vectorization, we can't propagate
3160   // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized
3161   // instruction could feed a poison value to the base address of the widen
3162   // load/store.
3163   if (State.MayGeneratePoisonRecipes.count(RepRecipe) > 0)
3164     Cloned->dropPoisonGeneratingFlags();
3165 
3166   State.Builder.SetInsertPoint(Builder.GetInsertBlock(),
3167                                Builder.GetInsertPoint());
3168   // Replace the operands of the cloned instructions with their scalar
3169   // equivalents in the new loop.
3170   for (unsigned op = 0, e = RepRecipe->getNumOperands(); op != e; ++op) {
3171     auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op));
3172     auto InputInstance = Instance;
3173     if (!Operand || !OrigLoop->contains(Operand) ||
3174         (Cost->isUniformAfterVectorization(Operand, State.VF)))
3175       InputInstance.Lane = VPLane::getFirstLane();
3176     auto *NewOp = State.get(RepRecipe->getOperand(op), InputInstance);
3177     Cloned->setOperand(op, NewOp);
3178   }
3179   addNewMetadata(Cloned, Instr);
3180 
3181   // Place the cloned scalar in the new loop.
3182   Builder.Insert(Cloned);
3183 
3184   State.set(RepRecipe, Cloned, Instance);
3185 
3186   // If we just cloned a new assumption, add it the assumption cache.
3187   if (auto *II = dyn_cast<AssumeInst>(Cloned))
3188     AC->registerAssumption(II);
3189 
3190   // End if-block.
3191   if (IfPredicateInstr)
3192     PredicatedInstructions.push_back(Cloned);
3193 }
3194 
3195 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3196                                                       Value *End, Value *Step,
3197                                                       Instruction *DL) {
3198   BasicBlock *Header = L->getHeader();
3199   BasicBlock *Latch = L->getLoopLatch();
3200   // As we're just creating this loop, it's possible no latch exists
3201   // yet. If so, use the header as this will be a single block loop.
3202   if (!Latch)
3203     Latch = Header;
3204 
3205   IRBuilder<> B(&*Header->getFirstInsertionPt());
3206   Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3207   setDebugLocFromInst(OldInst, &B);
3208   auto *Induction = B.CreatePHI(Start->getType(), 2, "index");
3209 
3210   B.SetInsertPoint(Latch->getTerminator());
3211   setDebugLocFromInst(OldInst, &B);
3212 
3213   // Create i+1 and fill the PHINode.
3214   //
3215   // If the tail is not folded, we know that End - Start >= Step (either
3216   // statically or through the minimum iteration checks). We also know that both
3217   // Start % Step == 0 and End % Step == 0. We exit the vector loop if %IV +
3218   // %Step == %End. Hence we must exit the loop before %IV + %Step unsigned
3219   // overflows and we can mark the induction increment as NUW.
3220   Value *Next = B.CreateAdd(Induction, Step, "index.next",
3221                             /*NUW=*/!Cost->foldTailByMasking(), /*NSW=*/false);
3222   Induction->addIncoming(Start, L->getLoopPreheader());
3223   Induction->addIncoming(Next, Latch);
3224   // Create the compare.
3225   Value *ICmp = B.CreateICmpEQ(Next, End);
3226   B.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header);
3227 
3228   // Now we have two terminators. Remove the old one from the block.
3229   Latch->getTerminator()->eraseFromParent();
3230 
3231   return Induction;
3232 }
3233 
3234 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3235   if (TripCount)
3236     return TripCount;
3237 
3238   assert(L && "Create Trip Count for null loop.");
3239   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3240   // Find the loop boundaries.
3241   ScalarEvolution *SE = PSE.getSE();
3242   const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3243   assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
3244          "Invalid loop count");
3245 
3246   Type *IdxTy = Legal->getWidestInductionType();
3247   assert(IdxTy && "No type for induction");
3248 
3249   // The exit count might have the type of i64 while the phi is i32. This can
3250   // happen if we have an induction variable that is sign extended before the
3251   // compare. The only way that we get a backedge taken count is that the
3252   // induction variable was signed and as such will not overflow. In such a case
3253   // truncation is legal.
3254   if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) >
3255       IdxTy->getPrimitiveSizeInBits())
3256     BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3257   BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3258 
3259   // Get the total trip count from the count by adding 1.
3260   const SCEV *ExitCount = SE->getAddExpr(
3261       BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3262 
3263   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3264 
3265   // Expand the trip count and place the new instructions in the preheader.
3266   // Notice that the pre-header does not change, only the loop body.
3267   SCEVExpander Exp(*SE, DL, "induction");
3268 
3269   // Count holds the overall loop count (N).
3270   TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3271                                 L->getLoopPreheader()->getTerminator());
3272 
3273   if (TripCount->getType()->isPointerTy())
3274     TripCount =
3275         CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3276                                     L->getLoopPreheader()->getTerminator());
3277 
3278   return TripCount;
3279 }
3280 
3281 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3282   if (VectorTripCount)
3283     return VectorTripCount;
3284 
3285   Value *TC = getOrCreateTripCount(L);
3286   IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3287 
3288   Type *Ty = TC->getType();
3289   // This is where we can make the step a runtime constant.
3290   Value *Step = createStepForVF(Builder, Ty, VF, UF);
3291 
3292   // If the tail is to be folded by masking, round the number of iterations N
3293   // up to a multiple of Step instead of rounding down. This is done by first
3294   // adding Step-1 and then rounding down. Note that it's ok if this addition
3295   // overflows: the vector induction variable will eventually wrap to zero given
3296   // that it starts at zero and its Step is a power of two; the loop will then
3297   // exit, with the last early-exit vector comparison also producing all-true.
3298   if (Cost->foldTailByMasking()) {
3299     assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&
3300            "VF*UF must be a power of 2 when folding tail by masking");
3301     assert(!VF.isScalable() &&
3302            "Tail folding not yet supported for scalable vectors");
3303     TC = Builder.CreateAdd(
3304         TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up");
3305   }
3306 
3307   // Now we need to generate the expression for the part of the loop that the
3308   // vectorized body will execute. This is equal to N - (N % Step) if scalar
3309   // iterations are not required for correctness, or N - Step, otherwise. Step
3310   // is equal to the vectorization factor (number of SIMD elements) times the
3311   // unroll factor (number of SIMD instructions).
3312   Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3313 
3314   // There are cases where we *must* run at least one iteration in the remainder
3315   // loop.  See the cost model for when this can happen.  If the step evenly
3316   // divides the trip count, we set the remainder to be equal to the step. If
3317   // the step does not evenly divide the trip count, no adjustment is necessary
3318   // since there will already be scalar iterations. Note that the minimum
3319   // iterations check ensures that N >= Step.
3320   if (Cost->requiresScalarEpilogue(VF)) {
3321     auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3322     R = Builder.CreateSelect(IsZero, Step, R);
3323   }
3324 
3325   VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3326 
3327   return VectorTripCount;
3328 }
3329 
3330 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3331                                                    const DataLayout &DL) {
3332   // Verify that V is a vector type with same number of elements as DstVTy.
3333   auto *DstFVTy = cast<FixedVectorType>(DstVTy);
3334   unsigned VF = DstFVTy->getNumElements();
3335   auto *SrcVecTy = cast<FixedVectorType>(V->getType());
3336   assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
3337   Type *SrcElemTy = SrcVecTy->getElementType();
3338   Type *DstElemTy = DstFVTy->getElementType();
3339   assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
3340          "Vector elements must have same size");
3341 
3342   // Do a direct cast if element types are castable.
3343   if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3344     return Builder.CreateBitOrPointerCast(V, DstFVTy);
3345   }
3346   // V cannot be directly casted to desired vector type.
3347   // May happen when V is a floating point vector but DstVTy is a vector of
3348   // pointers or vice-versa. Handle this using a two-step bitcast using an
3349   // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3350   assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
3351          "Only one type should be a pointer type");
3352   assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
3353          "Only one type should be a floating point type");
3354   Type *IntTy =
3355       IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3356   auto *VecIntTy = FixedVectorType::get(IntTy, VF);
3357   Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3358   return Builder.CreateBitOrPointerCast(CastVal, DstFVTy);
3359 }
3360 
3361 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3362                                                          BasicBlock *Bypass) {
3363   Value *Count = getOrCreateTripCount(L);
3364   // Reuse existing vector loop preheader for TC checks.
3365   // Note that new preheader block is generated for vector loop.
3366   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
3367   IRBuilder<> Builder(TCCheckBlock->getTerminator());
3368 
3369   // Generate code to check if the loop's trip count is less than VF * UF, or
3370   // equal to it in case a scalar epilogue is required; this implies that the
3371   // vector trip count is zero. This check also covers the case where adding one
3372   // to the backedge-taken count overflowed leading to an incorrect trip count
3373   // of zero. In this case we will also jump to the scalar loop.
3374   auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE
3375                                             : ICmpInst::ICMP_ULT;
3376 
3377   // If tail is to be folded, vector loop takes care of all iterations.
3378   Value *CheckMinIters = Builder.getFalse();
3379   if (!Cost->foldTailByMasking()) {
3380     Value *Step = createStepForVF(Builder, Count->getType(), VF, UF);
3381     CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check");
3382   }
3383   // Create new preheader for vector loop.
3384   LoopVectorPreHeader =
3385       SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr,
3386                  "vector.ph");
3387 
3388   assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
3389                                DT->getNode(Bypass)->getIDom()) &&
3390          "TC check is expected to dominate Bypass");
3391 
3392   // Update dominator for Bypass & LoopExit (if needed).
3393   DT->changeImmediateDominator(Bypass, TCCheckBlock);
3394   if (!Cost->requiresScalarEpilogue(VF))
3395     // If there is an epilogue which must run, there's no edge from the
3396     // middle block to exit blocks  and thus no need to update the immediate
3397     // dominator of the exit blocks.
3398     DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
3399 
3400   ReplaceInstWithInst(
3401       TCCheckBlock->getTerminator(),
3402       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
3403   LoopBypassBlocks.push_back(TCCheckBlock);
3404 }
3405 
3406 BasicBlock *InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3407 
3408   BasicBlock *const SCEVCheckBlock =
3409       RTChecks.emitSCEVChecks(L, Bypass, LoopVectorPreHeader, LoopExitBlock);
3410   if (!SCEVCheckBlock)
3411     return nullptr;
3412 
3413   assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||
3414            (OptForSizeBasedOnProfile &&
3415             Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&
3416          "Cannot SCEV check stride or overflow when optimizing for size");
3417 
3418 
3419   // Update dominator only if this is first RT check.
3420   if (LoopBypassBlocks.empty()) {
3421     DT->changeImmediateDominator(Bypass, SCEVCheckBlock);
3422     if (!Cost->requiresScalarEpilogue(VF))
3423       // If there is an epilogue which must run, there's no edge from the
3424       // middle block to exit blocks  and thus no need to update the immediate
3425       // dominator of the exit blocks.
3426       DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock);
3427   }
3428 
3429   LoopBypassBlocks.push_back(SCEVCheckBlock);
3430   AddedSafetyChecks = true;
3431   return SCEVCheckBlock;
3432 }
3433 
3434 BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L,
3435                                                       BasicBlock *Bypass) {
3436   // VPlan-native path does not do any analysis for runtime checks currently.
3437   if (EnableVPlanNativePath)
3438     return nullptr;
3439 
3440   BasicBlock *const MemCheckBlock =
3441       RTChecks.emitMemRuntimeChecks(L, Bypass, LoopVectorPreHeader);
3442 
3443   // Check if we generated code that checks in runtime if arrays overlap. We put
3444   // the checks into a separate block to make the more common case of few
3445   // elements faster.
3446   if (!MemCheckBlock)
3447     return nullptr;
3448 
3449   if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) {
3450     assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&
3451            "Cannot emit memory checks when optimizing for size, unless forced "
3452            "to vectorize.");
3453     ORE->emit([&]() {
3454       return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize",
3455                                         L->getStartLoc(), L->getHeader())
3456              << "Code-size may be reduced by not forcing "
3457                 "vectorization, or by source-code modifications "
3458                 "eliminating the need for runtime checks "
3459                 "(e.g., adding 'restrict').";
3460     });
3461   }
3462 
3463   LoopBypassBlocks.push_back(MemCheckBlock);
3464 
3465   AddedSafetyChecks = true;
3466 
3467   // We currently don't use LoopVersioning for the actual loop cloning but we
3468   // still use it to add the noalias metadata.
3469   LVer = std::make_unique<LoopVersioning>(
3470       *Legal->getLAI(),
3471       Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI,
3472       DT, PSE.getSE());
3473   LVer->prepareNoAliasMetadata();
3474   return MemCheckBlock;
3475 }
3476 
3477 Value *InnerLoopVectorizer::emitTransformedIndex(
3478     IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL,
3479     const InductionDescriptor &ID) const {
3480 
3481   SCEVExpander Exp(*SE, DL, "induction");
3482   auto Step = ID.getStep();
3483   auto StartValue = ID.getStartValue();
3484   assert(Index->getType()->getScalarType() == Step->getType() &&
3485          "Index scalar type does not match StepValue type");
3486 
3487   // Note: the IR at this point is broken. We cannot use SE to create any new
3488   // SCEV and then expand it, hoping that SCEV's simplification will give us
3489   // a more optimal code. Unfortunately, attempt of doing so on invalid IR may
3490   // lead to various SCEV crashes. So all we can do is to use builder and rely
3491   // on InstCombine for future simplifications. Here we handle some trivial
3492   // cases only.
3493   auto CreateAdd = [&B](Value *X, Value *Y) {
3494     assert(X->getType() == Y->getType() && "Types don't match!");
3495     if (auto *CX = dyn_cast<ConstantInt>(X))
3496       if (CX->isZero())
3497         return Y;
3498     if (auto *CY = dyn_cast<ConstantInt>(Y))
3499       if (CY->isZero())
3500         return X;
3501     return B.CreateAdd(X, Y);
3502   };
3503 
3504   // We allow X to be a vector type, in which case Y will potentially be
3505   // splatted into a vector with the same element count.
3506   auto CreateMul = [&B](Value *X, Value *Y) {
3507     assert(X->getType()->getScalarType() == Y->getType() &&
3508            "Types don't match!");
3509     if (auto *CX = dyn_cast<ConstantInt>(X))
3510       if (CX->isOne())
3511         return Y;
3512     if (auto *CY = dyn_cast<ConstantInt>(Y))
3513       if (CY->isOne())
3514         return X;
3515     VectorType *XVTy = dyn_cast<VectorType>(X->getType());
3516     if (XVTy && !isa<VectorType>(Y->getType()))
3517       Y = B.CreateVectorSplat(XVTy->getElementCount(), Y);
3518     return B.CreateMul(X, Y);
3519   };
3520 
3521   // Get a suitable insert point for SCEV expansion. For blocks in the vector
3522   // loop, choose the end of the vector loop header (=LoopVectorBody), because
3523   // the DomTree is not kept up-to-date for additional blocks generated in the
3524   // vector loop. By using the header as insertion point, we guarantee that the
3525   // expanded instructions dominate all their uses.
3526   auto GetInsertPoint = [this, &B]() {
3527     BasicBlock *InsertBB = B.GetInsertPoint()->getParent();
3528     if (InsertBB != LoopVectorBody &&
3529         LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB))
3530       return LoopVectorBody->getTerminator();
3531     return &*B.GetInsertPoint();
3532   };
3533 
3534   switch (ID.getKind()) {
3535   case InductionDescriptor::IK_IntInduction: {
3536     assert(!isa<VectorType>(Index->getType()) &&
3537            "Vector indices not supported for integer inductions yet");
3538     assert(Index->getType() == StartValue->getType() &&
3539            "Index type does not match StartValue type");
3540     if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne())
3541       return B.CreateSub(StartValue, Index);
3542     auto *Offset = CreateMul(
3543         Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()));
3544     return CreateAdd(StartValue, Offset);
3545   }
3546   case InductionDescriptor::IK_PtrInduction: {
3547     assert(isa<SCEVConstant>(Step) &&
3548            "Expected constant step for pointer induction");
3549     return B.CreateGEP(
3550         ID.getElementType(), StartValue,
3551         CreateMul(Index,
3552                   Exp.expandCodeFor(Step, Index->getType()->getScalarType(),
3553                                     GetInsertPoint())));
3554   }
3555   case InductionDescriptor::IK_FpInduction: {
3556     assert(!isa<VectorType>(Index->getType()) &&
3557            "Vector indices not supported for FP inductions yet");
3558     assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
3559     auto InductionBinOp = ID.getInductionBinOp();
3560     assert(InductionBinOp &&
3561            (InductionBinOp->getOpcode() == Instruction::FAdd ||
3562             InductionBinOp->getOpcode() == Instruction::FSub) &&
3563            "Original bin op should be defined for FP induction");
3564 
3565     Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
3566     Value *MulExp = B.CreateFMul(StepValue, Index);
3567     return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp,
3568                          "induction");
3569   }
3570   case InductionDescriptor::IK_NoInduction:
3571     return nullptr;
3572   }
3573   llvm_unreachable("invalid enum");
3574 }
3575 
3576 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) {
3577   LoopScalarBody = OrigLoop->getHeader();
3578   LoopVectorPreHeader = OrigLoop->getLoopPreheader();
3579   assert(LoopVectorPreHeader && "Invalid loop structure");
3580   LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr
3581   assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&
3582          "multiple exit loop without required epilogue?");
3583 
3584   LoopMiddleBlock =
3585       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3586                  LI, nullptr, Twine(Prefix) + "middle.block");
3587   LoopScalarPreHeader =
3588       SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI,
3589                  nullptr, Twine(Prefix) + "scalar.ph");
3590 
3591   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3592 
3593   // Set up the middle block terminator.  Two cases:
3594   // 1) If we know that we must execute the scalar epilogue, emit an
3595   //    unconditional branch.
3596   // 2) Otherwise, we must have a single unique exit block (due to how we
3597   //    implement the multiple exit case).  In this case, set up a conditonal
3598   //    branch from the middle block to the loop scalar preheader, and the
3599   //    exit block.  completeLoopSkeleton will update the condition to use an
3600   //    iteration check, if required to decide whether to execute the remainder.
3601   BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ?
3602     BranchInst::Create(LoopScalarPreHeader) :
3603     BranchInst::Create(LoopExitBlock, LoopScalarPreHeader,
3604                        Builder.getTrue());
3605   BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3606   ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst);
3607 
3608   // We intentionally don't let SplitBlock to update LoopInfo since
3609   // LoopVectorBody should belong to another loop than LoopVectorPreHeader.
3610   // LoopVectorBody is explicitly added to the correct place few lines later.
3611   LoopVectorBody =
3612       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
3613                  nullptr, nullptr, Twine(Prefix) + "vector.body");
3614 
3615   // Update dominator for loop exit.
3616   if (!Cost->requiresScalarEpilogue(VF))
3617     // If there is an epilogue which must run, there's no edge from the
3618     // middle block to exit blocks  and thus no need to update the immediate
3619     // dominator of the exit blocks.
3620     DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
3621 
3622   // Create and register the new vector loop.
3623   Loop *Lp = LI->AllocateLoop();
3624   Loop *ParentLoop = OrigLoop->getParentLoop();
3625 
3626   // Insert the new loop into the loop nest and register the new basic blocks
3627   // before calling any utilities such as SCEV that require valid LoopInfo.
3628   if (ParentLoop) {
3629     ParentLoop->addChildLoop(Lp);
3630   } else {
3631     LI->addTopLevelLoop(Lp);
3632   }
3633   Lp->addBasicBlockToLoop(LoopVectorBody, *LI);
3634   return Lp;
3635 }
3636 
3637 void InnerLoopVectorizer::createInductionResumeValues(
3638     Loop *L, Value *VectorTripCount,
3639     std::pair<BasicBlock *, Value *> AdditionalBypass) {
3640   assert(VectorTripCount && L && "Expected valid arguments");
3641   assert(((AdditionalBypass.first && AdditionalBypass.second) ||
3642           (!AdditionalBypass.first && !AdditionalBypass.second)) &&
3643          "Inconsistent information about additional bypass.");
3644   // We are going to resume the execution of the scalar loop.
3645   // Go over all of the induction variables that we found and fix the
3646   // PHIs that are left in the scalar version of the loop.
3647   // The starting values of PHI nodes depend on the counter of the last
3648   // iteration in the vectorized loop.
3649   // If we come from a bypass edge then we need to start from the original
3650   // start value.
3651   for (auto &InductionEntry : Legal->getInductionVars()) {
3652     PHINode *OrigPhi = InductionEntry.first;
3653     InductionDescriptor II = InductionEntry.second;
3654 
3655     // Create phi nodes to merge from the  backedge-taken check block.
3656     PHINode *BCResumeVal =
3657         PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val",
3658                         LoopScalarPreHeader->getTerminator());
3659     // Copy original phi DL over to the new one.
3660     BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
3661     Value *&EndValue = IVEndValues[OrigPhi];
3662     Value *EndValueFromAdditionalBypass = AdditionalBypass.second;
3663     if (OrigPhi == OldInduction) {
3664       // We know what the end value is.
3665       EndValue = VectorTripCount;
3666     } else {
3667       IRBuilder<> B(L->getLoopPreheader()->getTerminator());
3668 
3669       // Fast-math-flags propagate from the original induction instruction.
3670       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3671         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3672 
3673       Type *StepType = II.getStep()->getType();
3674       Instruction::CastOps CastOp =
3675           CastInst::getCastOpcode(VectorTripCount, true, StepType, true);
3676       Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd");
3677       const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout();
3678       EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3679       EndValue->setName("ind.end");
3680 
3681       // Compute the end value for the additional bypass (if applicable).
3682       if (AdditionalBypass.first) {
3683         B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt()));
3684         CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true,
3685                                          StepType, true);
3686         CRD =
3687             B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd");
3688         EndValueFromAdditionalBypass =
3689             emitTransformedIndex(B, CRD, PSE.getSE(), DL, II);
3690         EndValueFromAdditionalBypass->setName("ind.end");
3691       }
3692     }
3693     // The new PHI merges the original incoming value, in case of a bypass,
3694     // or the value at the end of the vectorized loop.
3695     BCResumeVal->addIncoming(EndValue, LoopMiddleBlock);
3696 
3697     // Fix the scalar body counter (PHI node).
3698     // The old induction's phi node in the scalar body needs the truncated
3699     // value.
3700     for (BasicBlock *BB : LoopBypassBlocks)
3701       BCResumeVal->addIncoming(II.getStartValue(), BB);
3702 
3703     if (AdditionalBypass.first)
3704       BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first,
3705                                             EndValueFromAdditionalBypass);
3706 
3707     OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal);
3708   }
3709 }
3710 
3711 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L,
3712                                                       MDNode *OrigLoopID) {
3713   assert(L && "Expected valid loop.");
3714 
3715   // The trip counts should be cached by now.
3716   Value *Count = getOrCreateTripCount(L);
3717   Value *VectorTripCount = getOrCreateVectorTripCount(L);
3718 
3719   auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator();
3720 
3721   // Add a check in the middle block to see if we have completed
3722   // all of the iterations in the first vector loop.  Three cases:
3723   // 1) If we require a scalar epilogue, there is no conditional branch as
3724   //    we unconditionally branch to the scalar preheader.  Do nothing.
3725   // 2) If (N - N%VF) == N, then we *don't* need to run the remainder.
3726   //    Thus if tail is to be folded, we know we don't need to run the
3727   //    remainder and we can use the previous value for the condition (true).
3728   // 3) Otherwise, construct a runtime check.
3729   if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) {
3730     Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
3731                                         Count, VectorTripCount, "cmp.n",
3732                                         LoopMiddleBlock->getTerminator());
3733 
3734     // Here we use the same DebugLoc as the scalar loop latch terminator instead
3735     // of the corresponding compare because they may have ended up with
3736     // different line numbers and we want to avoid awkward line stepping while
3737     // debugging. Eg. if the compare has got a line number inside the loop.
3738     CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc());
3739     cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN);
3740   }
3741 
3742   // Get ready to start creating new instructions into the vectorized body.
3743   assert(LoopVectorPreHeader == L->getLoopPreheader() &&
3744          "Inconsistent vector loop preheader");
3745   Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3746 
3747   Optional<MDNode *> VectorizedLoopID =
3748       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
3749                                       LLVMLoopVectorizeFollowupVectorized});
3750   if (VectorizedLoopID.hasValue()) {
3751     L->setLoopID(VectorizedLoopID.getValue());
3752 
3753     // Do not setAlreadyVectorized if loop attributes have been defined
3754     // explicitly.
3755     return LoopVectorPreHeader;
3756   }
3757 
3758   // Keep all loop hints from the original loop on the vector loop (we'll
3759   // replace the vectorizer-specific hints below).
3760   if (MDNode *LID = OrigLoop->getLoopID())
3761     L->setLoopID(LID);
3762 
3763   LoopVectorizeHints Hints(L, true, *ORE);
3764   Hints.setAlreadyVectorized();
3765 
3766 #ifdef EXPENSIVE_CHECKS
3767   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
3768   LI->verify(*DT);
3769 #endif
3770 
3771   return LoopVectorPreHeader;
3772 }
3773 
3774 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3775   /*
3776    In this function we generate a new loop. The new loop will contain
3777    the vectorized instructions while the old loop will continue to run the
3778    scalar remainder.
3779 
3780        [ ] <-- loop iteration number check.
3781     /   |
3782    /    v
3783   |    [ ] <-- vector loop bypass (may consist of multiple blocks).
3784   |  /  |
3785   | /   v
3786   ||   [ ]     <-- vector pre header.
3787   |/    |
3788   |     v
3789   |    [  ] \
3790   |    [  ]_|   <-- vector loop.
3791   |     |
3792   |     v
3793   \   -[ ]   <--- middle-block.
3794    \/   |
3795    /\   v
3796    | ->[ ]     <--- new preheader.
3797    |    |
3798  (opt)  v      <-- edge from middle to exit iff epilogue is not required.
3799    |   [ ] \
3800    |   [ ]_|   <-- old scalar loop to handle remainder (scalar epilogue).
3801     \   |
3802      \  v
3803       >[ ]     <-- exit block(s).
3804    ...
3805    */
3806 
3807   // Get the metadata of the original loop before it gets modified.
3808   MDNode *OrigLoopID = OrigLoop->getLoopID();
3809 
3810   // Workaround!  Compute the trip count of the original loop and cache it
3811   // before we start modifying the CFG.  This code has a systemic problem
3812   // wherein it tries to run analysis over partially constructed IR; this is
3813   // wrong, and not simply for SCEV.  The trip count of the original loop
3814   // simply happens to be prone to hitting this in practice.  In theory, we
3815   // can hit the same issue for any SCEV, or ValueTracking query done during
3816   // mutation.  See PR49900.
3817   getOrCreateTripCount(OrigLoop);
3818 
3819   // Create an empty vector loop, and prepare basic blocks for the runtime
3820   // checks.
3821   Loop *Lp = createVectorLoopSkeleton("");
3822 
3823   // Now, compare the new count to zero. If it is zero skip the vector loop and
3824   // jump to the scalar loop. This check also covers the case where the
3825   // backedge-taken count is uint##_max: adding one to it will overflow leading
3826   // to an incorrect trip count of zero. In this (rare) case we will also jump
3827   // to the scalar loop.
3828   emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader);
3829 
3830   // Generate the code to check any assumptions that we've made for SCEV
3831   // expressions.
3832   emitSCEVChecks(Lp, LoopScalarPreHeader);
3833 
3834   // Generate the code that checks in runtime if arrays overlap. We put the
3835   // checks into a separate block to make the more common case of few elements
3836   // faster.
3837   emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
3838 
3839   // Some loops have a single integer induction variable, while other loops
3840   // don't. One example is c++ iterators that often have multiple pointer
3841   // induction variables. In the code below we also support a case where we
3842   // don't have a single induction variable.
3843   //
3844   // We try to obtain an induction variable from the original loop as hard
3845   // as possible. However if we don't find one that:
3846   //   - is an integer
3847   //   - counts from zero, stepping by one
3848   //   - is the size of the widest induction variable type
3849   // then we create a new one.
3850   OldInduction = Legal->getPrimaryInduction();
3851   Type *IdxTy = Legal->getWidestInductionType();
3852   Value *StartIdx = ConstantInt::get(IdxTy, 0);
3853   // The loop step is equal to the vectorization factor (num of SIMD elements)
3854   // times the unroll factor (num of SIMD instructions).
3855   Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt());
3856   Value *Step = createStepForVF(Builder, IdxTy, VF, UF);
3857   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3858   Induction =
3859       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3860                               getDebugLocFromInstOrOperands(OldInduction));
3861 
3862   // Emit phis for the new starting index of the scalar loop.
3863   createInductionResumeValues(Lp, CountRoundDown);
3864 
3865   return completeLoopSkeleton(Lp, OrigLoopID);
3866 }
3867 
3868 // Fix up external users of the induction variable. At this point, we are
3869 // in LCSSA form, with all external PHIs that use the IV having one input value,
3870 // coming from the remainder loop. We need those PHIs to also have a correct
3871 // value for the IV when arriving directly from the middle block.
3872 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3873                                        const InductionDescriptor &II,
3874                                        Value *CountRoundDown, Value *EndValue,
3875                                        BasicBlock *MiddleBlock) {
3876   // There are two kinds of external IV usages - those that use the value
3877   // computed in the last iteration (the PHI) and those that use the penultimate
3878   // value (the value that feeds into the phi from the loop latch).
3879   // We allow both, but they, obviously, have different values.
3880 
3881   assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block");
3882 
3883   DenseMap<Value *, Value *> MissingVals;
3884 
3885   // An external user of the last iteration's value should see the value that
3886   // the remainder loop uses to initialize its own IV.
3887   Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3888   for (User *U : PostInc->users()) {
3889     Instruction *UI = cast<Instruction>(U);
3890     if (!OrigLoop->contains(UI)) {
3891       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3892       MissingVals[UI] = EndValue;
3893     }
3894   }
3895 
3896   // An external user of the penultimate value need to see EndValue - Step.
3897   // The simplest way to get this is to recompute it from the constituent SCEVs,
3898   // that is Start + (Step * (CRD - 1)).
3899   for (User *U : OrigPhi->users()) {
3900     auto *UI = cast<Instruction>(U);
3901     if (!OrigLoop->contains(UI)) {
3902       const DataLayout &DL =
3903           OrigLoop->getHeader()->getModule()->getDataLayout();
3904       assert(isa<PHINode>(UI) && "Expected LCSSA form");
3905 
3906       IRBuilder<> B(MiddleBlock->getTerminator());
3907 
3908       // Fast-math-flags propagate from the original induction instruction.
3909       if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp()))
3910         B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags());
3911 
3912       Value *CountMinusOne = B.CreateSub(
3913           CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3914       Value *CMO =
3915           !II.getStep()->getType()->isIntegerTy()
3916               ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3917                              II.getStep()->getType())
3918               : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3919       CMO->setName("cast.cmo");
3920       Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II);
3921       Escape->setName("ind.escape");
3922       MissingVals[UI] = Escape;
3923     }
3924   }
3925 
3926   for (auto &I : MissingVals) {
3927     PHINode *PHI = cast<PHINode>(I.first);
3928     // One corner case we have to handle is two IVs "chasing" each-other,
3929     // that is %IV2 = phi [...], [ %IV1, %latch ]
3930     // In this case, if IV1 has an external use, we need to avoid adding both
3931     // "last value of IV1" and "penultimate value of IV2". So, verify that we
3932     // don't already have an incoming value for the middle block.
3933     if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3934       PHI->addIncoming(I.second, MiddleBlock);
3935   }
3936 }
3937 
3938 namespace {
3939 
3940 struct CSEDenseMapInfo {
3941   static bool canHandle(const Instruction *I) {
3942     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3943            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3944   }
3945 
3946   static inline Instruction *getEmptyKey() {
3947     return DenseMapInfo<Instruction *>::getEmptyKey();
3948   }
3949 
3950   static inline Instruction *getTombstoneKey() {
3951     return DenseMapInfo<Instruction *>::getTombstoneKey();
3952   }
3953 
3954   static unsigned getHashValue(const Instruction *I) {
3955     assert(canHandle(I) && "Unknown instruction!");
3956     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3957                                                            I->value_op_end()));
3958   }
3959 
3960   static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3961     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3962         LHS == getTombstoneKey() || RHS == getTombstoneKey())
3963       return LHS == RHS;
3964     return LHS->isIdenticalTo(RHS);
3965   }
3966 };
3967 
3968 } // end anonymous namespace
3969 
3970 ///Perform cse of induction variable instructions.
3971 static void cse(BasicBlock *BB) {
3972   // Perform simple cse.
3973   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3974   for (Instruction &In : llvm::make_early_inc_range(*BB)) {
3975     if (!CSEDenseMapInfo::canHandle(&In))
3976       continue;
3977 
3978     // Check if we can replace this instruction with any of the
3979     // visited instructions.
3980     if (Instruction *V = CSEMap.lookup(&In)) {
3981       In.replaceAllUsesWith(V);
3982       In.eraseFromParent();
3983       continue;
3984     }
3985 
3986     CSEMap[&In] = &In;
3987   }
3988 }
3989 
3990 InstructionCost
3991 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF,
3992                                               bool &NeedToScalarize) const {
3993   Function *F = CI->getCalledFunction();
3994   Type *ScalarRetTy = CI->getType();
3995   SmallVector<Type *, 4> Tys, ScalarTys;
3996   for (auto &ArgOp : CI->args())
3997     ScalarTys.push_back(ArgOp->getType());
3998 
3999   // Estimate cost of scalarized vector call. The source operands are assumed
4000   // to be vectors, so we need to extract individual elements from there,
4001   // execute VF scalar calls, and then gather the result into the vector return
4002   // value.
4003   InstructionCost ScalarCallCost =
4004       TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput);
4005   if (VF.isScalar())
4006     return ScalarCallCost;
4007 
4008   // Compute corresponding vector type for return value and arguments.
4009   Type *RetTy = ToVectorTy(ScalarRetTy, VF);
4010   for (Type *ScalarTy : ScalarTys)
4011     Tys.push_back(ToVectorTy(ScalarTy, VF));
4012 
4013   // Compute costs of unpacking argument values for the scalar calls and
4014   // packing the return values to a vector.
4015   InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF);
4016 
4017   InstructionCost Cost =
4018       ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost;
4019 
4020   // If we can't emit a vector call for this function, then the currently found
4021   // cost is the cost we need to return.
4022   NeedToScalarize = true;
4023   VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
4024   Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape);
4025 
4026   if (!TLI || CI->isNoBuiltin() || !VecFunc)
4027     return Cost;
4028 
4029   // If the corresponding vector cost is cheaper, return its cost.
4030   InstructionCost VectorCallCost =
4031       TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput);
4032   if (VectorCallCost < Cost) {
4033     NeedToScalarize = false;
4034     Cost = VectorCallCost;
4035   }
4036   return Cost;
4037 }
4038 
4039 static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) {
4040   if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy()))
4041     return Elt;
4042   return VectorType::get(Elt, VF);
4043 }
4044 
4045 InstructionCost
4046 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI,
4047                                                    ElementCount VF) const {
4048   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4049   assert(ID && "Expected intrinsic call!");
4050   Type *RetTy = MaybeVectorizeType(CI->getType(), VF);
4051   FastMathFlags FMF;
4052   if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
4053     FMF = FPMO->getFastMathFlags();
4054 
4055   SmallVector<const Value *> Arguments(CI->args());
4056   FunctionType *FTy = CI->getCalledFunction()->getFunctionType();
4057   SmallVector<Type *> ParamTys;
4058   std::transform(FTy->param_begin(), FTy->param_end(),
4059                  std::back_inserter(ParamTys),
4060                  [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); });
4061 
4062   IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF,
4063                                     dyn_cast<IntrinsicInst>(CI));
4064   return TTI.getIntrinsicInstrCost(CostAttrs,
4065                                    TargetTransformInfo::TCK_RecipThroughput);
4066 }
4067 
4068 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
4069   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
4070   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
4071   return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
4072 }
4073 
4074 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
4075   auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType());
4076   auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType());
4077   return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
4078 }
4079 
4080 void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) {
4081   // For every instruction `I` in MinBWs, truncate the operands, create a
4082   // truncated version of `I` and reextend its result. InstCombine runs
4083   // later and will remove any ext/trunc pairs.
4084   SmallPtrSet<Value *, 4> Erased;
4085   for (const auto &KV : Cost->getMinimalBitwidths()) {
4086     // If the value wasn't vectorized, we must maintain the original scalar
4087     // type. The absence of the value from State indicates that it
4088     // wasn't vectorized.
4089     // FIXME: Should not rely on getVPValue at this point.
4090     VPValue *Def = State.Plan->getVPValue(KV.first, true);
4091     if (!State.hasAnyVectorValue(Def))
4092       continue;
4093     for (unsigned Part = 0; Part < UF; ++Part) {
4094       Value *I = State.get(Def, Part);
4095       if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
4096         continue;
4097       Type *OriginalTy = I->getType();
4098       Type *ScalarTruncatedTy =
4099           IntegerType::get(OriginalTy->getContext(), KV.second);
4100       auto *TruncatedTy = VectorType::get(
4101           ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount());
4102       if (TruncatedTy == OriginalTy)
4103         continue;
4104 
4105       IRBuilder<> B(cast<Instruction>(I));
4106       auto ShrinkOperand = [&](Value *V) -> Value * {
4107         if (auto *ZI = dyn_cast<ZExtInst>(V))
4108           if (ZI->getSrcTy() == TruncatedTy)
4109             return ZI->getOperand(0);
4110         return B.CreateZExtOrTrunc(V, TruncatedTy);
4111       };
4112 
4113       // The actual instruction modification depends on the instruction type,
4114       // unfortunately.
4115       Value *NewI = nullptr;
4116       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4117         NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
4118                              ShrinkOperand(BO->getOperand(1)));
4119 
4120         // Any wrapping introduced by shrinking this operation shouldn't be
4121         // considered undefined behavior. So, we can't unconditionally copy
4122         // arithmetic wrapping flags to NewI.
4123         cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
4124       } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
4125         NewI =
4126             B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
4127                          ShrinkOperand(CI->getOperand(1)));
4128       } else if (auto *SI = dyn_cast<SelectInst>(I)) {
4129         NewI = B.CreateSelect(SI->getCondition(),
4130                               ShrinkOperand(SI->getTrueValue()),
4131                               ShrinkOperand(SI->getFalseValue()));
4132       } else if (auto *CI = dyn_cast<CastInst>(I)) {
4133         switch (CI->getOpcode()) {
4134         default:
4135           llvm_unreachable("Unhandled cast!");
4136         case Instruction::Trunc:
4137           NewI = ShrinkOperand(CI->getOperand(0));
4138           break;
4139         case Instruction::SExt:
4140           NewI = B.CreateSExtOrTrunc(
4141               CI->getOperand(0),
4142               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4143           break;
4144         case Instruction::ZExt:
4145           NewI = B.CreateZExtOrTrunc(
4146               CI->getOperand(0),
4147               smallestIntegerVectorType(OriginalTy, TruncatedTy));
4148           break;
4149         }
4150       } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
4151         auto Elements0 =
4152             cast<VectorType>(SI->getOperand(0)->getType())->getElementCount();
4153         auto *O0 = B.CreateZExtOrTrunc(
4154             SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
4155         auto Elements1 =
4156             cast<VectorType>(SI->getOperand(1)->getType())->getElementCount();
4157         auto *O1 = B.CreateZExtOrTrunc(
4158             SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
4159 
4160         NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask());
4161       } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
4162         // Don't do anything with the operands, just extend the result.
4163         continue;
4164       } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
4165         auto Elements =
4166             cast<VectorType>(IE->getOperand(0)->getType())->getElementCount();
4167         auto *O0 = B.CreateZExtOrTrunc(
4168             IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4169         auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
4170         NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
4171       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
4172         auto Elements =
4173             cast<VectorType>(EE->getOperand(0)->getType())->getElementCount();
4174         auto *O0 = B.CreateZExtOrTrunc(
4175             EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
4176         NewI = B.CreateExtractElement(O0, EE->getOperand(2));
4177       } else {
4178         // If we don't know what to do, be conservative and don't do anything.
4179         continue;
4180       }
4181 
4182       // Lastly, extend the result.
4183       NewI->takeName(cast<Instruction>(I));
4184       Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
4185       I->replaceAllUsesWith(Res);
4186       cast<Instruction>(I)->eraseFromParent();
4187       Erased.insert(I);
4188       State.reset(Def, Res, Part);
4189     }
4190   }
4191 
4192   // We'll have created a bunch of ZExts that are now parentless. Clean up.
4193   for (const auto &KV : Cost->getMinimalBitwidths()) {
4194     // If the value wasn't vectorized, we must maintain the original scalar
4195     // type. The absence of the value from State indicates that it
4196     // wasn't vectorized.
4197     // FIXME: Should not rely on getVPValue at this point.
4198     VPValue *Def = State.Plan->getVPValue(KV.first, true);
4199     if (!State.hasAnyVectorValue(Def))
4200       continue;
4201     for (unsigned Part = 0; Part < UF; ++Part) {
4202       Value *I = State.get(Def, Part);
4203       ZExtInst *Inst = dyn_cast<ZExtInst>(I);
4204       if (Inst && Inst->use_empty()) {
4205         Value *NewI = Inst->getOperand(0);
4206         Inst->eraseFromParent();
4207         State.reset(Def, NewI, Part);
4208       }
4209     }
4210   }
4211 }
4212 
4213 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) {
4214   // Insert truncates and extends for any truncated instructions as hints to
4215   // InstCombine.
4216   if (VF.isVector())
4217     truncateToMinimalBitwidths(State);
4218 
4219   // Fix widened non-induction PHIs by setting up the PHI operands.
4220   if (OrigPHIsToFix.size()) {
4221     assert(EnableVPlanNativePath &&
4222            "Unexpected non-induction PHIs for fixup in non VPlan-native path");
4223     fixNonInductionPHIs(State);
4224   }
4225 
4226   // At this point every instruction in the original loop is widened to a
4227   // vector form. Now we need to fix the recurrences in the loop. These PHI
4228   // nodes are currently empty because we did not want to introduce cycles.
4229   // This is the second stage of vectorizing recurrences.
4230   fixCrossIterationPHIs(State);
4231 
4232   // Forget the original basic block.
4233   PSE.getSE()->forgetLoop(OrigLoop);
4234 
4235   // If we inserted an edge from the middle block to the unique exit block,
4236   // update uses outside the loop (phis) to account for the newly inserted
4237   // edge.
4238   if (!Cost->requiresScalarEpilogue(VF)) {
4239     // Fix-up external users of the induction variables.
4240     for (auto &Entry : Legal->getInductionVars())
4241       fixupIVUsers(Entry.first, Entry.second,
4242                    getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
4243                    IVEndValues[Entry.first], LoopMiddleBlock);
4244 
4245     fixLCSSAPHIs(State);
4246   }
4247 
4248   for (Instruction *PI : PredicatedInstructions)
4249     sinkScalarOperands(&*PI);
4250 
4251   // Remove redundant induction instructions.
4252   cse(LoopVectorBody);
4253 
4254   // Set/update profile weights for the vector and remainder loops as original
4255   // loop iterations are now distributed among them. Note that original loop
4256   // represented by LoopScalarBody becomes remainder loop after vectorization.
4257   //
4258   // For cases like foldTailByMasking() and requiresScalarEpiloque() we may
4259   // end up getting slightly roughened result but that should be OK since
4260   // profile is not inherently precise anyway. Note also possible bypass of
4261   // vector code caused by legality checks is ignored, assigning all the weight
4262   // to the vector loop, optimistically.
4263   //
4264   // For scalable vectorization we can't know at compile time how many iterations
4265   // of the loop are handled in one vector iteration, so instead assume a pessimistic
4266   // vscale of '1'.
4267   setProfileInfoAfterUnrolling(
4268       LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody),
4269       LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF);
4270 }
4271 
4272 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) {
4273   // In order to support recurrences we need to be able to vectorize Phi nodes.
4274   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4275   // stage #2: We now need to fix the recurrences by adding incoming edges to
4276   // the currently empty PHI nodes. At this point every instruction in the
4277   // original loop is widened to a vector form so we can use them to construct
4278   // the incoming edges.
4279   VPBasicBlock *Header = State.Plan->getEntry()->getEntryBasicBlock();
4280   for (VPRecipeBase &R : Header->phis()) {
4281     if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R))
4282       fixReduction(ReductionPhi, State);
4283     else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R))
4284       fixFirstOrderRecurrence(FOR, State);
4285   }
4286 }
4287 
4288 void InnerLoopVectorizer::fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR,
4289                                                   VPTransformState &State) {
4290   // This is the second phase of vectorizing first-order recurrences. An
4291   // overview of the transformation is described below. Suppose we have the
4292   // following loop.
4293   //
4294   //   for (int i = 0; i < n; ++i)
4295   //     b[i] = a[i] - a[i - 1];
4296   //
4297   // There is a first-order recurrence on "a". For this loop, the shorthand
4298   // scalar IR looks like:
4299   //
4300   //   scalar.ph:
4301   //     s_init = a[-1]
4302   //     br scalar.body
4303   //
4304   //   scalar.body:
4305   //     i = phi [0, scalar.ph], [i+1, scalar.body]
4306   //     s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4307   //     s2 = a[i]
4308   //     b[i] = s2 - s1
4309   //     br cond, scalar.body, ...
4310   //
4311   // In this example, s1 is a recurrence because it's value depends on the
4312   // previous iteration. In the first phase of vectorization, we created a
4313   // vector phi v1 for s1. We now complete the vectorization and produce the
4314   // shorthand vector IR shown below (for VF = 4, UF = 1).
4315   //
4316   //   vector.ph:
4317   //     v_init = vector(..., ..., ..., a[-1])
4318   //     br vector.body
4319   //
4320   //   vector.body
4321   //     i = phi [0, vector.ph], [i+4, vector.body]
4322   //     v1 = phi [v_init, vector.ph], [v2, vector.body]
4323   //     v2 = a[i, i+1, i+2, i+3];
4324   //     v3 = vector(v1(3), v2(0, 1, 2))
4325   //     b[i, i+1, i+2, i+3] = v2 - v3
4326   //     br cond, vector.body, middle.block
4327   //
4328   //   middle.block:
4329   //     x = v2(3)
4330   //     br scalar.ph
4331   //
4332   //   scalar.ph:
4333   //     s_init = phi [x, middle.block], [a[-1], otherwise]
4334   //     br scalar.body
4335   //
4336   // After execution completes the vector loop, we extract the next value of
4337   // the recurrence (x) to use as the initial value in the scalar loop.
4338 
4339   // Extract the last vector element in the middle block. This will be the
4340   // initial value for the recurrence when jumping to the scalar loop.
4341   VPValue *PreviousDef = PhiR->getBackedgeValue();
4342   Value *Incoming = State.get(PreviousDef, UF - 1);
4343   auto *ExtractForScalar = Incoming;
4344   auto *IdxTy = Builder.getInt32Ty();
4345   if (VF.isVector()) {
4346     auto *One = ConstantInt::get(IdxTy, 1);
4347     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4348     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4349     auto *LastIdx = Builder.CreateSub(RuntimeVF, One);
4350     ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx,
4351                                                     "vector.recur.extract");
4352   }
4353   // Extract the second last element in the middle block if the
4354   // Phi is used outside the loop. We need to extract the phi itself
4355   // and not the last element (the phi update in the current iteration). This
4356   // will be the value when jumping to the exit block from the LoopMiddleBlock,
4357   // when the scalar loop is not run at all.
4358   Value *ExtractForPhiUsedOutsideLoop = nullptr;
4359   if (VF.isVector()) {
4360     auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF);
4361     auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2));
4362     ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4363         Incoming, Idx, "vector.recur.extract.for.phi");
4364   } else if (UF > 1)
4365     // When loop is unrolled without vectorizing, initialize
4366     // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value
4367     // of `Incoming`. This is analogous to the vectorized case above: extracting
4368     // the second last element when VF > 1.
4369     ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2);
4370 
4371   // Fix the initial value of the original recurrence in the scalar loop.
4372   Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4373   PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue());
4374   auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4375   auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue();
4376   for (auto *BB : predecessors(LoopScalarPreHeader)) {
4377     auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4378     Start->addIncoming(Incoming, BB);
4379   }
4380 
4381   Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start);
4382   Phi->setName("scalar.recur");
4383 
4384   // Finally, fix users of the recurrence outside the loop. The users will need
4385   // either the last value of the scalar recurrence or the last value of the
4386   // vector recurrence we extracted in the middle block. Since the loop is in
4387   // LCSSA form, we just need to find all the phi nodes for the original scalar
4388   // recurrence in the exit block, and then add an edge for the middle block.
4389   // Note that LCSSA does not imply single entry when the original scalar loop
4390   // had multiple exiting edges (as we always run the last iteration in the
4391   // scalar epilogue); in that case, there is no edge from middle to exit and
4392   // and thus no phis which needed updated.
4393   if (!Cost->requiresScalarEpilogue(VF))
4394     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4395       if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi))
4396         LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4397 }
4398 
4399 void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
4400                                        VPTransformState &State) {
4401   PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
4402   // Get it's reduction variable descriptor.
4403   assert(Legal->isReductionVariable(OrigPhi) &&
4404          "Unable to find the reduction variable");
4405   const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
4406 
4407   RecurKind RK = RdxDesc.getRecurrenceKind();
4408   TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4409   Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4410   setDebugLocFromInst(ReductionStartValue);
4411 
4412   VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
4413   // This is the vector-clone of the value that leaves the loop.
4414   Type *VecTy = State.get(LoopExitInstDef, 0)->getType();
4415 
4416   // Wrap flags are in general invalid after vectorization, clear them.
4417   clearReductionWrapFlags(RdxDesc, State);
4418 
4419   // Before each round, move the insertion point right between
4420   // the PHIs and the values we are going to write.
4421   // This allows us to write both PHINodes and the extractelement
4422   // instructions.
4423   Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4424 
4425   setDebugLocFromInst(LoopExitInst);
4426 
4427   Type *PhiTy = OrigPhi->getType();
4428   // If tail is folded by masking, the vector value to leave the loop should be
4429   // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
4430   // instead of the former. For an inloop reduction the reduction will already
4431   // be predicated, and does not need to be handled here.
4432   if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
4433     for (unsigned Part = 0; Part < UF; ++Part) {
4434       Value *VecLoopExitInst = State.get(LoopExitInstDef, Part);
4435       Value *Sel = nullptr;
4436       for (User *U : VecLoopExitInst->users()) {
4437         if (isa<SelectInst>(U)) {
4438           assert(!Sel && "Reduction exit feeding two selects");
4439           Sel = U;
4440         } else
4441           assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select");
4442       }
4443       assert(Sel && "Reduction exit feeds no select");
4444       State.reset(LoopExitInstDef, Sel, Part);
4445 
4446       // If the target can create a predicated operator for the reduction at no
4447       // extra cost in the loop (for example a predicated vadd), it can be
4448       // cheaper for the select to remain in the loop than be sunk out of it,
4449       // and so use the select value for the phi instead of the old
4450       // LoopExitValue.
4451       if (PreferPredicatedReductionSelect ||
4452           TTI->preferPredicatedReductionSelect(
4453               RdxDesc.getOpcode(), PhiTy,
4454               TargetTransformInfo::ReductionFlags())) {
4455         auto *VecRdxPhi =
4456             cast<PHINode>(State.get(PhiR, Part));
4457         VecRdxPhi->setIncomingValueForBlock(
4458             LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel);
4459       }
4460     }
4461   }
4462 
4463   // If the vector reduction can be performed in a smaller type, we truncate
4464   // then extend the loop exit value to enable InstCombine to evaluate the
4465   // entire expression in the smaller type.
4466   if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
4467     assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!");
4468     Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4469     Builder.SetInsertPoint(
4470         LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4471     VectorParts RdxParts(UF);
4472     for (unsigned Part = 0; Part < UF; ++Part) {
4473       RdxParts[Part] = State.get(LoopExitInstDef, Part);
4474       Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4475       Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4476                                         : Builder.CreateZExt(Trunc, VecTy);
4477       for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users()))
4478         if (U != Trunc) {
4479           U->replaceUsesOfWith(RdxParts[Part], Extnd);
4480           RdxParts[Part] = Extnd;
4481         }
4482     }
4483     Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4484     for (unsigned Part = 0; Part < UF; ++Part) {
4485       RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4486       State.reset(LoopExitInstDef, RdxParts[Part], Part);
4487     }
4488   }
4489 
4490   // Reduce all of the unrolled parts into a single vector.
4491   Value *ReducedPartRdx = State.get(LoopExitInstDef, 0);
4492   unsigned Op = RecurrenceDescriptor::getOpcode(RK);
4493 
4494   // The middle block terminator has already been assigned a DebugLoc here (the
4495   // OrigLoop's single latch terminator). We want the whole middle block to
4496   // appear to execute on this line because: (a) it is all compiler generated,
4497   // (b) these instructions are always executed after evaluating the latch
4498   // conditional branch, and (c) other passes may add new predecessors which
4499   // terminate on this line. This is the easiest way to ensure we don't
4500   // accidentally cause an extra step back into the loop while debugging.
4501   setDebugLocFromInst(LoopMiddleBlock->getTerminator());
4502   if (PhiR->isOrdered())
4503     ReducedPartRdx = State.get(LoopExitInstDef, UF - 1);
4504   else {
4505     // Floating-point operations should have some FMF to enable the reduction.
4506     IRBuilderBase::FastMathFlagGuard FMFG(Builder);
4507     Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
4508     for (unsigned Part = 1; Part < UF; ++Part) {
4509       Value *RdxPart = State.get(LoopExitInstDef, Part);
4510       if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
4511         ReducedPartRdx = Builder.CreateBinOp(
4512             (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
4513       } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK))
4514         ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK,
4515                                            ReducedPartRdx, RdxPart);
4516       else
4517         ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
4518     }
4519   }
4520 
4521   // Create the reduction after the loop. Note that inloop reductions create the
4522   // target reduction in the loop using a Reduction recipe.
4523   if (VF.isVector() && !PhiR->isInLoop()) {
4524     ReducedPartRdx =
4525         createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi);
4526     // If the reduction can be performed in a smaller type, we need to extend
4527     // the reduction to the wider type before we branch to the original loop.
4528     if (PhiTy != RdxDesc.getRecurrenceType())
4529       ReducedPartRdx = RdxDesc.isSigned()
4530                            ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
4531                            : Builder.CreateZExt(ReducedPartRdx, PhiTy);
4532   }
4533 
4534   // Create a phi node that merges control-flow from the backedge-taken check
4535   // block and the middle block.
4536   PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
4537                                         LoopScalarPreHeader->getTerminator());
4538   for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4539     BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4540   BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4541 
4542   // Now, we need to fix the users of the reduction variable
4543   // inside and outside of the scalar remainder loop.
4544 
4545   // We know that the loop is in LCSSA form. We need to update the PHI nodes
4546   // in the exit blocks.  See comment on analogous loop in
4547   // fixFirstOrderRecurrence for a more complete explaination of the logic.
4548   if (!Cost->requiresScalarEpilogue(VF))
4549     for (PHINode &LCSSAPhi : LoopExitBlock->phis())
4550       if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst))
4551         LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4552 
4553   // Fix the scalar loop reduction variable with the incoming reduction sum
4554   // from the vector body and from the backedge value.
4555   int IncomingEdgeBlockIdx =
4556       OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4557   assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
4558   // Pick the other block.
4559   int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4560   OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4561   OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4562 }
4563 
4564 void InnerLoopVectorizer::clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
4565                                                   VPTransformState &State) {
4566   RecurKind RK = RdxDesc.getRecurrenceKind();
4567   if (RK != RecurKind::Add && RK != RecurKind::Mul)
4568     return;
4569 
4570   Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr();
4571   assert(LoopExitInstr && "null loop exit instruction");
4572   SmallVector<Instruction *, 8> Worklist;
4573   SmallPtrSet<Instruction *, 8> Visited;
4574   Worklist.push_back(LoopExitInstr);
4575   Visited.insert(LoopExitInstr);
4576 
4577   while (!Worklist.empty()) {
4578     Instruction *Cur = Worklist.pop_back_val();
4579     if (isa<OverflowingBinaryOperator>(Cur))
4580       for (unsigned Part = 0; Part < UF; ++Part) {
4581         // FIXME: Should not rely on getVPValue at this point.
4582         Value *V = State.get(State.Plan->getVPValue(Cur, true), Part);
4583         cast<Instruction>(V)->dropPoisonGeneratingFlags();
4584       }
4585 
4586     for (User *U : Cur->users()) {
4587       Instruction *UI = cast<Instruction>(U);
4588       if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) &&
4589           Visited.insert(UI).second)
4590         Worklist.push_back(UI);
4591     }
4592   }
4593 }
4594 
4595 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) {
4596   for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4597     if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1)
4598       // Some phis were already hand updated by the reduction and recurrence
4599       // code above, leave them alone.
4600       continue;
4601 
4602     auto *IncomingValue = LCSSAPhi.getIncomingValue(0);
4603     // Non-instruction incoming values will have only one value.
4604 
4605     VPLane Lane = VPLane::getFirstLane();
4606     if (isa<Instruction>(IncomingValue) &&
4607         !Cost->isUniformAfterVectorization(cast<Instruction>(IncomingValue),
4608                                            VF))
4609       Lane = VPLane::getLastLaneForVF(VF);
4610 
4611     // Can be a loop invariant incoming value or the last scalar value to be
4612     // extracted from the vectorized loop.
4613     // FIXME: Should not rely on getVPValue at this point.
4614     Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4615     Value *lastIncomingValue =
4616         OrigLoop->isLoopInvariant(IncomingValue)
4617             ? IncomingValue
4618             : State.get(State.Plan->getVPValue(IncomingValue, true),
4619                         VPIteration(UF - 1, Lane));
4620     LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock);
4621   }
4622 }
4623 
4624 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4625   // The basic block and loop containing the predicated instruction.
4626   auto *PredBB = PredInst->getParent();
4627   auto *VectorLoop = LI->getLoopFor(PredBB);
4628 
4629   // Initialize a worklist with the operands of the predicated instruction.
4630   SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4631 
4632   // Holds instructions that we need to analyze again. An instruction may be
4633   // reanalyzed if we don't yet know if we can sink it or not.
4634   SmallVector<Instruction *, 8> InstsToReanalyze;
4635 
4636   // Returns true if a given use occurs in the predicated block. Phi nodes use
4637   // their operands in their corresponding predecessor blocks.
4638   auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4639     auto *I = cast<Instruction>(U.getUser());
4640     BasicBlock *BB = I->getParent();
4641     if (auto *Phi = dyn_cast<PHINode>(I))
4642       BB = Phi->getIncomingBlock(
4643           PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4644     return BB == PredBB;
4645   };
4646 
4647   // Iteratively sink the scalarized operands of the predicated instruction
4648   // into the block we created for it. When an instruction is sunk, it's
4649   // operands are then added to the worklist. The algorithm ends after one pass
4650   // through the worklist doesn't sink a single instruction.
4651   bool Changed;
4652   do {
4653     // Add the instructions that need to be reanalyzed to the worklist, and
4654     // reset the changed indicator.
4655     Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4656     InstsToReanalyze.clear();
4657     Changed = false;
4658 
4659     while (!Worklist.empty()) {
4660       auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4661 
4662       // We can't sink an instruction if it is a phi node, is not in the loop,
4663       // or may have side effects.
4664       if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) ||
4665           I->mayHaveSideEffects())
4666         continue;
4667 
4668       // If the instruction is already in PredBB, check if we can sink its
4669       // operands. In that case, VPlan's sinkScalarOperands() succeeded in
4670       // sinking the scalar instruction I, hence it appears in PredBB; but it
4671       // may have failed to sink I's operands (recursively), which we try
4672       // (again) here.
4673       if (I->getParent() == PredBB) {
4674         Worklist.insert(I->op_begin(), I->op_end());
4675         continue;
4676       }
4677 
4678       // It's legal to sink the instruction if all its uses occur in the
4679       // predicated block. Otherwise, there's nothing to do yet, and we may
4680       // need to reanalyze the instruction.
4681       if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4682         InstsToReanalyze.push_back(I);
4683         continue;
4684       }
4685 
4686       // Move the instruction to the beginning of the predicated block, and add
4687       // it's operands to the worklist.
4688       I->moveBefore(&*PredBB->getFirstInsertionPt());
4689       Worklist.insert(I->op_begin(), I->op_end());
4690 
4691       // The sinking may have enabled other instructions to be sunk, so we will
4692       // need to iterate.
4693       Changed = true;
4694     }
4695   } while (Changed);
4696 }
4697 
4698 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) {
4699   for (PHINode *OrigPhi : OrigPHIsToFix) {
4700     VPWidenPHIRecipe *VPPhi =
4701         cast<VPWidenPHIRecipe>(State.Plan->getVPValue(OrigPhi));
4702     PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0));
4703     // Make sure the builder has a valid insert point.
4704     Builder.SetInsertPoint(NewPhi);
4705     for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) {
4706       VPValue *Inc = VPPhi->getIncomingValue(i);
4707       VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i);
4708       NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]);
4709     }
4710   }
4711 }
4712 
4713 bool InnerLoopVectorizer::useOrderedReductions(RecurrenceDescriptor &RdxDesc) {
4714   return Cost->useOrderedReductions(RdxDesc);
4715 }
4716 
4717 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP,
4718                                    VPWidenGEPRecipe *WidenGEPRec,
4719                                    VPUser &Operands, unsigned UF,
4720                                    ElementCount VF, bool IsPtrLoopInvariant,
4721                                    SmallBitVector &IsIndexLoopInvariant,
4722                                    VPTransformState &State) {
4723   // Construct a vector GEP by widening the operands of the scalar GEP as
4724   // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4725   // results in a vector of pointers when at least one operand of the GEP
4726   // is vector-typed. Thus, to keep the representation compact, we only use
4727   // vector-typed operands for loop-varying values.
4728 
4729   if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) {
4730     // If we are vectorizing, but the GEP has only loop-invariant operands,
4731     // the GEP we build (by only using vector-typed operands for
4732     // loop-varying values) would be a scalar pointer. Thus, to ensure we
4733     // produce a vector of pointers, we need to either arbitrarily pick an
4734     // operand to broadcast, or broadcast a clone of the original GEP.
4735     // Here, we broadcast a clone of the original.
4736     //
4737     // TODO: If at some point we decide to scalarize instructions having
4738     //       loop-invariant operands, this special case will no longer be
4739     //       required. We would add the scalarization decision to
4740     //       collectLoopScalars() and teach getVectorValue() to broadcast
4741     //       the lane-zero scalar value.
4742     auto *Clone = Builder.Insert(GEP->clone());
4743     for (unsigned Part = 0; Part < UF; ++Part) {
4744       Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4745       State.set(WidenGEPRec, EntryPart, Part);
4746       addMetadata(EntryPart, GEP);
4747     }
4748   } else {
4749     // If the GEP has at least one loop-varying operand, we are sure to
4750     // produce a vector of pointers. But if we are only unrolling, we want
4751     // to produce a scalar GEP for each unroll part. Thus, the GEP we
4752     // produce with the code below will be scalar (if VF == 1) or vector
4753     // (otherwise). Note that for the unroll-only case, we still maintain
4754     // values in the vector mapping with initVector, as we do for other
4755     // instructions.
4756     for (unsigned Part = 0; Part < UF; ++Part) {
4757       // The pointer operand of the new GEP. If it's loop-invariant, we
4758       // won't broadcast it.
4759       auto *Ptr = IsPtrLoopInvariant
4760                       ? State.get(Operands.getOperand(0), VPIteration(0, 0))
4761                       : State.get(Operands.getOperand(0), Part);
4762 
4763       // Collect all the indices for the new GEP. If any index is
4764       // loop-invariant, we won't broadcast it.
4765       SmallVector<Value *, 4> Indices;
4766       for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) {
4767         VPValue *Operand = Operands.getOperand(I);
4768         if (IsIndexLoopInvariant[I - 1])
4769           Indices.push_back(State.get(Operand, VPIteration(0, 0)));
4770         else
4771           Indices.push_back(State.get(Operand, Part));
4772       }
4773 
4774       // If the GEP instruction is vectorized and was in a basic block that
4775       // needed predication, we can't propagate the poison-generating 'inbounds'
4776       // flag. The control flow has been linearized and the GEP is no longer
4777       // guarded by the predicate, which could make the 'inbounds' properties to
4778       // no longer hold.
4779       bool IsInBounds = GEP->isInBounds() &&
4780                         State.MayGeneratePoisonRecipes.count(WidenGEPRec) == 0;
4781 
4782       // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4783       // but it should be a vector, otherwise.
4784       auto *NewGEP =
4785           IsInBounds
4786               ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr,
4787                                           Indices)
4788               : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices);
4789       assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) &&
4790              "NewGEP is not a pointer vector");
4791       State.set(WidenGEPRec, NewGEP, Part);
4792       addMetadata(NewGEP, GEP);
4793     }
4794   }
4795 }
4796 
4797 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
4798                                               VPWidenPHIRecipe *PhiR,
4799                                               VPTransformState &State) {
4800   PHINode *P = cast<PHINode>(PN);
4801   if (EnableVPlanNativePath) {
4802     // Currently we enter here in the VPlan-native path for non-induction
4803     // PHIs where all control flow is uniform. We simply widen these PHIs.
4804     // Create a vector phi with no operands - the vector phi operands will be
4805     // set at the end of vector code generation.
4806     Type *VecTy = (State.VF.isScalar())
4807                       ? PN->getType()
4808                       : VectorType::get(PN->getType(), State.VF);
4809     Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi");
4810     State.set(PhiR, VecPhi, 0);
4811     OrigPHIsToFix.push_back(P);
4812 
4813     return;
4814   }
4815 
4816   assert(PN->getParent() == OrigLoop->getHeader() &&
4817          "Non-header phis should have been handled elsewhere");
4818 
4819   // In order to support recurrences we need to be able to vectorize Phi nodes.
4820   // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4821   // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4822   // this value when we vectorize all of the instructions that use the PHI.
4823 
4824   assert(!Legal->isReductionVariable(P) &&
4825          "reductions should be handled elsewhere");
4826 
4827   setDebugLocFromInst(P);
4828 
4829   // This PHINode must be an induction variable.
4830   // Make sure that we know about it.
4831   assert(Legal->getInductionVars().count(P) && "Not an induction variable");
4832 
4833   InductionDescriptor II = Legal->getInductionVars().lookup(P);
4834   const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4835 
4836   // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4837   // which can be found from the original scalar operations.
4838   switch (II.getKind()) {
4839   case InductionDescriptor::IK_NoInduction:
4840     llvm_unreachable("Unknown induction");
4841   case InductionDescriptor::IK_IntInduction:
4842   case InductionDescriptor::IK_FpInduction:
4843     llvm_unreachable("Integer/fp induction is handled elsewhere.");
4844   case InductionDescriptor::IK_PtrInduction: {
4845     // Handle the pointer induction variable case.
4846     assert(P->getType()->isPointerTy() && "Unexpected type.");
4847 
4848     if (Cost->isScalarAfterVectorization(P, State.VF)) {
4849       // This is the normalized GEP that starts counting at zero.
4850       Value *PtrInd =
4851           Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType());
4852       // Determine the number of scalars we need to generate for each unroll
4853       // iteration. If the instruction is uniform, we only need to generate the
4854       // first lane. Otherwise, we generate all VF values.
4855       bool IsUniform = Cost->isUniformAfterVectorization(P, State.VF);
4856       unsigned Lanes = IsUniform ? 1 : State.VF.getKnownMinValue();
4857 
4858       bool NeedsVectorIndex = !IsUniform && VF.isScalable();
4859       Value *UnitStepVec = nullptr, *PtrIndSplat = nullptr;
4860       if (NeedsVectorIndex) {
4861         Type *VecIVTy = VectorType::get(PtrInd->getType(), VF);
4862         UnitStepVec = Builder.CreateStepVector(VecIVTy);
4863         PtrIndSplat = Builder.CreateVectorSplat(VF, PtrInd);
4864       }
4865 
4866       for (unsigned Part = 0; Part < UF; ++Part) {
4867         Value *PartStart =
4868             createStepForVF(Builder, PtrInd->getType(), VF, Part);
4869 
4870         if (NeedsVectorIndex) {
4871           // Here we cache the whole vector, which means we can support the
4872           // extraction of any lane. However, in some cases the extractelement
4873           // instruction that is generated for scalar uses of this vector (e.g.
4874           // a load instruction) is not folded away. Therefore we still
4875           // calculate values for the first n lanes to avoid redundant moves
4876           // (when extracting the 0th element) and to produce scalar code (i.e.
4877           // additional add/gep instructions instead of expensive extractelement
4878           // instructions) when extracting higher-order elements.
4879           Value *PartStartSplat = Builder.CreateVectorSplat(VF, PartStart);
4880           Value *Indices = Builder.CreateAdd(PartStartSplat, UnitStepVec);
4881           Value *GlobalIndices = Builder.CreateAdd(PtrIndSplat, Indices);
4882           Value *SclrGep =
4883               emitTransformedIndex(Builder, GlobalIndices, PSE.getSE(), DL, II);
4884           SclrGep->setName("next.gep");
4885           State.set(PhiR, SclrGep, Part);
4886         }
4887 
4888         for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4889           Value *Idx = Builder.CreateAdd(
4890               PartStart, ConstantInt::get(PtrInd->getType(), Lane));
4891           Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4892           Value *SclrGep =
4893               emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II);
4894           SclrGep->setName("next.gep");
4895           State.set(PhiR, SclrGep, VPIteration(Part, Lane));
4896         }
4897       }
4898       return;
4899     }
4900     assert(isa<SCEVConstant>(II.getStep()) &&
4901            "Induction step not a SCEV constant!");
4902     Type *PhiType = II.getStep()->getType();
4903 
4904     // Build a pointer phi
4905     Value *ScalarStartValue = II.getStartValue();
4906     Type *ScStValueType = ScalarStartValue->getType();
4907     PHINode *NewPointerPhi =
4908         PHINode::Create(ScStValueType, 2, "pointer.phi", Induction);
4909     NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader);
4910 
4911     // A pointer induction, performed by using a gep
4912     BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
4913     Instruction *InductionLoc = LoopLatch->getTerminator();
4914     const SCEV *ScalarStep = II.getStep();
4915     SCEVExpander Exp(*PSE.getSE(), DL, "induction");
4916     Value *ScalarStepValue =
4917         Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc);
4918     Value *RuntimeVF = getRuntimeVF(Builder, PhiType, VF);
4919     Value *NumUnrolledElems =
4920         Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF));
4921     Value *InductionGEP = GetElementPtrInst::Create(
4922         II.getElementType(), NewPointerPhi,
4923         Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind",
4924         InductionLoc);
4925     NewPointerPhi->addIncoming(InductionGEP, LoopLatch);
4926 
4927     // Create UF many actual address geps that use the pointer
4928     // phi as base and a vectorized version of the step value
4929     // (<step*0, ..., step*N>) as offset.
4930     for (unsigned Part = 0; Part < State.UF; ++Part) {
4931       Type *VecPhiType = VectorType::get(PhiType, State.VF);
4932       Value *StartOffsetScalar =
4933           Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part));
4934       Value *StartOffset =
4935           Builder.CreateVectorSplat(State.VF, StartOffsetScalar);
4936       // Create a vector of consecutive numbers from zero to VF.
4937       StartOffset =
4938           Builder.CreateAdd(StartOffset, Builder.CreateStepVector(VecPhiType));
4939 
4940       Value *GEP = Builder.CreateGEP(
4941           II.getElementType(), NewPointerPhi,
4942           Builder.CreateMul(
4943               StartOffset, Builder.CreateVectorSplat(State.VF, ScalarStepValue),
4944               "vector.gep"));
4945       State.set(PhiR, GEP, Part);
4946     }
4947   }
4948   }
4949 }
4950 
4951 /// A helper function for checking whether an integer division-related
4952 /// instruction may divide by zero (in which case it must be predicated if
4953 /// executed conditionally in the scalar code).
4954 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4955 /// Non-zero divisors that are non compile-time constants will not be
4956 /// converted into multiplication, so we will still end up scalarizing
4957 /// the division, but can do so w/o predication.
4958 static bool mayDivideByZero(Instruction &I) {
4959   assert((I.getOpcode() == Instruction::UDiv ||
4960           I.getOpcode() == Instruction::SDiv ||
4961           I.getOpcode() == Instruction::URem ||
4962           I.getOpcode() == Instruction::SRem) &&
4963          "Unexpected instruction");
4964   Value *Divisor = I.getOperand(1);
4965   auto *CInt = dyn_cast<ConstantInt>(Divisor);
4966   return !CInt || CInt->isZero();
4967 }
4968 
4969 void InnerLoopVectorizer::widenInstruction(Instruction &I,
4970                                            VPWidenRecipe *WidenRec,
4971                                            VPTransformState &State) {
4972   switch (I.getOpcode()) {
4973   case Instruction::Call:
4974   case Instruction::Br:
4975   case Instruction::PHI:
4976   case Instruction::GetElementPtr:
4977   case Instruction::Select:
4978     llvm_unreachable("This instruction is handled by a different recipe.");
4979   case Instruction::UDiv:
4980   case Instruction::SDiv:
4981   case Instruction::SRem:
4982   case Instruction::URem:
4983   case Instruction::Add:
4984   case Instruction::FAdd:
4985   case Instruction::Sub:
4986   case Instruction::FSub:
4987   case Instruction::FNeg:
4988   case Instruction::Mul:
4989   case Instruction::FMul:
4990   case Instruction::FDiv:
4991   case Instruction::FRem:
4992   case Instruction::Shl:
4993   case Instruction::LShr:
4994   case Instruction::AShr:
4995   case Instruction::And:
4996   case Instruction::Or:
4997   case Instruction::Xor: {
4998     // Just widen unops and binops.
4999     setDebugLocFromInst(&I);
5000 
5001     for (unsigned Part = 0; Part < UF; ++Part) {
5002       SmallVector<Value *, 2> Ops;
5003       for (VPValue *VPOp : WidenRec->operands())
5004         Ops.push_back(State.get(VPOp, Part));
5005 
5006       Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops);
5007 
5008       if (auto *VecOp = dyn_cast<Instruction>(V)) {
5009         VecOp->copyIRFlags(&I);
5010 
5011         // If the instruction is vectorized and was in a basic block that needed
5012         // predication, we can't propagate poison-generating flags (nuw/nsw,
5013         // exact, etc.). The control flow has been linearized and the
5014         // instruction is no longer guarded by the predicate, which could make
5015         // the flag properties to no longer hold.
5016         if (State.MayGeneratePoisonRecipes.count(WidenRec) > 0)
5017           VecOp->dropPoisonGeneratingFlags();
5018       }
5019 
5020       // Use this vector value for all users of the original instruction.
5021       State.set(WidenRec, V, Part);
5022       addMetadata(V, &I);
5023     }
5024 
5025     break;
5026   }
5027   case Instruction::ICmp:
5028   case Instruction::FCmp: {
5029     // Widen compares. Generate vector compares.
5030     bool FCmp = (I.getOpcode() == Instruction::FCmp);
5031     auto *Cmp = cast<CmpInst>(&I);
5032     setDebugLocFromInst(Cmp);
5033     for (unsigned Part = 0; Part < UF; ++Part) {
5034       Value *A = State.get(WidenRec->getOperand(0), Part);
5035       Value *B = State.get(WidenRec->getOperand(1), Part);
5036       Value *C = nullptr;
5037       if (FCmp) {
5038         // Propagate fast math flags.
5039         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
5040         Builder.setFastMathFlags(Cmp->getFastMathFlags());
5041         C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
5042       } else {
5043         C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
5044       }
5045       State.set(WidenRec, C, Part);
5046       addMetadata(C, &I);
5047     }
5048 
5049     break;
5050   }
5051 
5052   case Instruction::ZExt:
5053   case Instruction::SExt:
5054   case Instruction::FPToUI:
5055   case Instruction::FPToSI:
5056   case Instruction::FPExt:
5057   case Instruction::PtrToInt:
5058   case Instruction::IntToPtr:
5059   case Instruction::SIToFP:
5060   case Instruction::UIToFP:
5061   case Instruction::Trunc:
5062   case Instruction::FPTrunc:
5063   case Instruction::BitCast: {
5064     auto *CI = cast<CastInst>(&I);
5065     setDebugLocFromInst(CI);
5066 
5067     /// Vectorize casts.
5068     Type *DestTy =
5069         (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF);
5070 
5071     for (unsigned Part = 0; Part < UF; ++Part) {
5072       Value *A = State.get(WidenRec->getOperand(0), Part);
5073       Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
5074       State.set(WidenRec, Cast, Part);
5075       addMetadata(Cast, &I);
5076     }
5077     break;
5078   }
5079   default:
5080     // This instruction is not vectorized by simple widening.
5081     LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
5082     llvm_unreachable("Unhandled instruction!");
5083   } // end of switch.
5084 }
5085 
5086 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def,
5087                                                VPUser &ArgOperands,
5088                                                VPTransformState &State) {
5089   assert(!isa<DbgInfoIntrinsic>(I) &&
5090          "DbgInfoIntrinsic should have been dropped during VPlan construction");
5091   setDebugLocFromInst(&I);
5092 
5093   Module *M = I.getParent()->getParent()->getParent();
5094   auto *CI = cast<CallInst>(&I);
5095 
5096   SmallVector<Type *, 4> Tys;
5097   for (Value *ArgOperand : CI->args())
5098     Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue()));
5099 
5100   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
5101 
5102   // The flag shows whether we use Intrinsic or a usual Call for vectorized
5103   // version of the instruction.
5104   // Is it beneficial to perform intrinsic call compared to lib call?
5105   bool NeedToScalarize = false;
5106   InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize);
5107   InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0;
5108   bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
5109   assert((UseVectorIntrinsic || !NeedToScalarize) &&
5110          "Instruction should be scalarized elsewhere.");
5111   assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
5112          "Either the intrinsic cost or vector call cost must be valid");
5113 
5114   for (unsigned Part = 0; Part < UF; ++Part) {
5115     SmallVector<Type *, 2> TysForDecl = {CI->getType()};
5116     SmallVector<Value *, 4> Args;
5117     for (auto &I : enumerate(ArgOperands.operands())) {
5118       // Some intrinsics have a scalar argument - don't replace it with a
5119       // vector.
5120       Value *Arg;
5121       if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index()))
5122         Arg = State.get(I.value(), Part);
5123       else {
5124         Arg = State.get(I.value(), VPIteration(0, 0));
5125         if (hasVectorInstrinsicOverloadedScalarOpd(ID, I.index()))
5126           TysForDecl.push_back(Arg->getType());
5127       }
5128       Args.push_back(Arg);
5129     }
5130 
5131     Function *VectorF;
5132     if (UseVectorIntrinsic) {
5133       // Use vector version of the intrinsic.
5134       if (VF.isVector())
5135         TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
5136       VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
5137       assert(VectorF && "Can't retrieve vector intrinsic.");
5138     } else {
5139       // Use vector version of the function call.
5140       const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/);
5141 #ifndef NDEBUG
5142       assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr &&
5143              "Can't create vector function.");
5144 #endif
5145         VectorF = VFDatabase(*CI).getVectorizedFunction(Shape);
5146     }
5147       SmallVector<OperandBundleDef, 1> OpBundles;
5148       CI->getOperandBundlesAsDefs(OpBundles);
5149       CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
5150 
5151       if (isa<FPMathOperator>(V))
5152         V->copyFastMathFlags(CI);
5153 
5154       State.set(Def, V, Part);
5155       addMetadata(V, &I);
5156   }
5157 }
5158 
5159 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef,
5160                                                  VPUser &Operands,
5161                                                  bool InvariantCond,
5162                                                  VPTransformState &State) {
5163   setDebugLocFromInst(&I);
5164 
5165   // The condition can be loop invariant  but still defined inside the
5166   // loop. This means that we can't just use the original 'cond' value.
5167   // We have to take the 'vectorized' value and pick the first lane.
5168   // Instcombine will make this a no-op.
5169   auto *InvarCond = InvariantCond
5170                         ? State.get(Operands.getOperand(0), VPIteration(0, 0))
5171                         : nullptr;
5172 
5173   for (unsigned Part = 0; Part < UF; ++Part) {
5174     Value *Cond =
5175         InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part);
5176     Value *Op0 = State.get(Operands.getOperand(1), Part);
5177     Value *Op1 = State.get(Operands.getOperand(2), Part);
5178     Value *Sel = Builder.CreateSelect(Cond, Op0, Op1);
5179     State.set(VPDef, Sel, Part);
5180     addMetadata(Sel, &I);
5181   }
5182 }
5183 
5184 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) {
5185   // We should not collect Scalars more than once per VF. Right now, this
5186   // function is called from collectUniformsAndScalars(), which already does
5187   // this check. Collecting Scalars for VF=1 does not make any sense.
5188   assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&
5189          "This function should not be visited twice for the same VF");
5190 
5191   SmallSetVector<Instruction *, 8> Worklist;
5192 
5193   // These sets are used to seed the analysis with pointers used by memory
5194   // accesses that will remain scalar.
5195   SmallSetVector<Instruction *, 8> ScalarPtrs;
5196   SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5197   auto *Latch = TheLoop->getLoopLatch();
5198 
5199   // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5200   // The pointer operands of loads and stores will be scalar as long as the
5201   // memory access is not a gather or scatter operation. The value operand of a
5202   // store will remain scalar if the store is scalarized.
5203   auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5204     InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5205     assert(WideningDecision != CM_Unknown &&
5206            "Widening decision should be ready at this moment");
5207     if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5208       if (Ptr == Store->getValueOperand())
5209         return WideningDecision == CM_Scalarize;
5210     assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
5211            "Ptr is neither a value or pointer operand");
5212     return WideningDecision != CM_GatherScatter;
5213   };
5214 
5215   // A helper that returns true if the given value is a bitcast or
5216   // getelementptr instruction contained in the loop.
5217   auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5218     return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5219             isa<GetElementPtrInst>(V)) &&
5220            !TheLoop->isLoopInvariant(V);
5221   };
5222 
5223   auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) {
5224     if (!isa<PHINode>(Ptr) ||
5225         !Legal->getInductionVars().count(cast<PHINode>(Ptr)))
5226       return false;
5227     auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)];
5228     if (Induction.getKind() != InductionDescriptor::IK_PtrInduction)
5229       return false;
5230     return isScalarUse(MemAccess, Ptr);
5231   };
5232 
5233   // A helper that evaluates a memory access's use of a pointer. If the
5234   // pointer is actually the pointer induction of a loop, it is being
5235   // inserted into Worklist. If the use will be a scalar use, and the
5236   // pointer is only used by memory accesses, we place the pointer in
5237   // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs.
5238   auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5239     if (isScalarPtrInduction(MemAccess, Ptr)) {
5240       Worklist.insert(cast<Instruction>(Ptr));
5241       LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr
5242                         << "\n");
5243 
5244       Instruction *Update = cast<Instruction>(
5245           cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch));
5246 
5247       // If there is more than one user of Update (Ptr), we shouldn't assume it
5248       // will be scalar after vectorisation as other users of the instruction
5249       // may require widening. Otherwise, add it to ScalarPtrs.
5250       if (Update->hasOneUse() && cast<Value>(*Update->user_begin()) == Ptr) {
5251         ScalarPtrs.insert(Update);
5252         return;
5253       }
5254     }
5255     // We only care about bitcast and getelementptr instructions contained in
5256     // the loop.
5257     if (!isLoopVaryingBitCastOrGEP(Ptr))
5258       return;
5259 
5260     // If the pointer has already been identified as scalar (e.g., if it was
5261     // also identified as uniform), there's nothing to do.
5262     auto *I = cast<Instruction>(Ptr);
5263     if (Worklist.count(I))
5264       return;
5265 
5266     // If the use of the pointer will be a scalar use, and all users of the
5267     // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5268     // place the pointer in PossibleNonScalarPtrs.
5269     if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5270           return isa<LoadInst>(U) || isa<StoreInst>(U);
5271         }))
5272       ScalarPtrs.insert(I);
5273     else
5274       PossibleNonScalarPtrs.insert(I);
5275   };
5276 
5277   // We seed the scalars analysis with three classes of instructions: (1)
5278   // instructions marked uniform-after-vectorization and (2) bitcast,
5279   // getelementptr and (pointer) phi instructions used by memory accesses
5280   // requiring a scalar use.
5281   //
5282   // (1) Add to the worklist all instructions that have been identified as
5283   // uniform-after-vectorization.
5284   Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5285 
5286   // (2) Add to the worklist all bitcast and getelementptr instructions used by
5287   // memory accesses requiring a scalar use. The pointer operands of loads and
5288   // stores will be scalar as long as the memory accesses is not a gather or
5289   // scatter operation. The value operand of a store will remain scalar if the
5290   // store is scalarized.
5291   for (auto *BB : TheLoop->blocks())
5292     for (auto &I : *BB) {
5293       if (auto *Load = dyn_cast<LoadInst>(&I)) {
5294         evaluatePtrUse(Load, Load->getPointerOperand());
5295       } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5296         evaluatePtrUse(Store, Store->getPointerOperand());
5297         evaluatePtrUse(Store, Store->getValueOperand());
5298       }
5299     }
5300   for (auto *I : ScalarPtrs)
5301     if (!PossibleNonScalarPtrs.count(I)) {
5302       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
5303       Worklist.insert(I);
5304     }
5305 
5306   // Insert the forced scalars.
5307   // FIXME: Currently widenPHIInstruction() often creates a dead vector
5308   // induction variable when the PHI user is scalarized.
5309   auto ForcedScalar = ForcedScalars.find(VF);
5310   if (ForcedScalar != ForcedScalars.end())
5311     for (auto *I : ForcedScalar->second)
5312       Worklist.insert(I);
5313 
5314   // Expand the worklist by looking through any bitcasts and getelementptr
5315   // instructions we've already identified as scalar. This is similar to the
5316   // expansion step in collectLoopUniforms(); however, here we're only
5317   // expanding to include additional bitcasts and getelementptr instructions.
5318   unsigned Idx = 0;
5319   while (Idx != Worklist.size()) {
5320     Instruction *Dst = Worklist[Idx++];
5321     if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5322       continue;
5323     auto *Src = cast<Instruction>(Dst->getOperand(0));
5324     if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5325           auto *J = cast<Instruction>(U);
5326           return !TheLoop->contains(J) || Worklist.count(J) ||
5327                  ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5328                   isScalarUse(J, Src));
5329         })) {
5330       Worklist.insert(Src);
5331       LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
5332     }
5333   }
5334 
5335   // An induction variable will remain scalar if all users of the induction
5336   // variable and induction variable update remain scalar.
5337   for (auto &Induction : Legal->getInductionVars()) {
5338     auto *Ind = Induction.first;
5339     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5340 
5341     // If tail-folding is applied, the primary induction variable will be used
5342     // to feed a vector compare.
5343     if (Ind == Legal->getPrimaryInduction() && foldTailByMasking())
5344       continue;
5345 
5346     // Determine if all users of the induction variable are scalar after
5347     // vectorization.
5348     auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5349       auto *I = cast<Instruction>(U);
5350       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5351     });
5352     if (!ScalarInd)
5353       continue;
5354 
5355     // Determine if all users of the induction variable update instruction are
5356     // scalar after vectorization.
5357     auto ScalarIndUpdate =
5358         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5359           auto *I = cast<Instruction>(U);
5360           return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5361         });
5362     if (!ScalarIndUpdate)
5363       continue;
5364 
5365     // The induction variable and its update instruction will remain scalar.
5366     Worklist.insert(Ind);
5367     Worklist.insert(IndUpdate);
5368     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
5369     LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
5370                       << "\n");
5371   }
5372 
5373   Scalars[VF].insert(Worklist.begin(), Worklist.end());
5374 }
5375 
5376 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) const {
5377   if (!blockNeedsPredicationForAnyReason(I->getParent()))
5378     return false;
5379   switch(I->getOpcode()) {
5380   default:
5381     break;
5382   case Instruction::Load:
5383   case Instruction::Store: {
5384     if (!Legal->isMaskRequired(I))
5385       return false;
5386     auto *Ptr = getLoadStorePointerOperand(I);
5387     auto *Ty = getLoadStoreType(I);
5388     const Align Alignment = getLoadStoreAlignment(I);
5389     return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) ||
5390                                 TTI.isLegalMaskedGather(Ty, Alignment))
5391                             : !(isLegalMaskedStore(Ty, Ptr, Alignment) ||
5392                                 TTI.isLegalMaskedScatter(Ty, Alignment));
5393   }
5394   case Instruction::UDiv:
5395   case Instruction::SDiv:
5396   case Instruction::SRem:
5397   case Instruction::URem:
5398     return mayDivideByZero(*I);
5399   }
5400   return false;
5401 }
5402 
5403 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened(
5404     Instruction *I, ElementCount VF) {
5405   assert(isAccessInterleaved(I) && "Expecting interleaved access.");
5406   assert(getWideningDecision(I, VF) == CM_Unknown &&
5407          "Decision should not be set yet.");
5408   auto *Group = getInterleavedAccessGroup(I);
5409   assert(Group && "Must have a group.");
5410 
5411   // If the instruction's allocated size doesn't equal it's type size, it
5412   // requires padding and will be scalarized.
5413   auto &DL = I->getModule()->getDataLayout();
5414   auto *ScalarTy = getLoadStoreType(I);
5415   if (hasIrregularType(ScalarTy, DL))
5416     return false;
5417 
5418   // Check if masking is required.
5419   // A Group may need masking for one of two reasons: it resides in a block that
5420   // needs predication, or it was decided to use masking to deal with gaps
5421   // (either a gap at the end of a load-access that may result in a speculative
5422   // load, or any gaps in a store-access).
5423   bool PredicatedAccessRequiresMasking =
5424       blockNeedsPredicationForAnyReason(I->getParent()) &&
5425       Legal->isMaskRequired(I);
5426   bool LoadAccessWithGapsRequiresEpilogMasking =
5427       isa<LoadInst>(I) && Group->requiresScalarEpilogue() &&
5428       !isScalarEpilogueAllowed();
5429   bool StoreAccessWithGapsRequiresMasking =
5430       isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor());
5431   if (!PredicatedAccessRequiresMasking &&
5432       !LoadAccessWithGapsRequiresEpilogMasking &&
5433       !StoreAccessWithGapsRequiresMasking)
5434     return true;
5435 
5436   // If masked interleaving is required, we expect that the user/target had
5437   // enabled it, because otherwise it either wouldn't have been created or
5438   // it should have been invalidated by the CostModel.
5439   assert(useMaskedInterleavedAccesses(TTI) &&
5440          "Masked interleave-groups for predicated accesses are not enabled.");
5441 
5442   if (Group->isReverse())
5443     return false;
5444 
5445   auto *Ty = getLoadStoreType(I);
5446   const Align Alignment = getLoadStoreAlignment(I);
5447   return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment)
5448                           : TTI.isLegalMaskedStore(Ty, Alignment);
5449 }
5450 
5451 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(
5452     Instruction *I, ElementCount VF) {
5453   // Get and ensure we have a valid memory instruction.
5454   assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction");
5455 
5456   auto *Ptr = getLoadStorePointerOperand(I);
5457   auto *ScalarTy = getLoadStoreType(I);
5458 
5459   // In order to be widened, the pointer should be consecutive, first of all.
5460   if (!Legal->isConsecutivePtr(ScalarTy, Ptr))
5461     return false;
5462 
5463   // If the instruction is a store located in a predicated block, it will be
5464   // scalarized.
5465   if (isScalarWithPredication(I))
5466     return false;
5467 
5468   // If the instruction's allocated size doesn't equal it's type size, it
5469   // requires padding and will be scalarized.
5470   auto &DL = I->getModule()->getDataLayout();
5471   if (hasIrregularType(ScalarTy, DL))
5472     return false;
5473 
5474   return true;
5475 }
5476 
5477 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) {
5478   // We should not collect Uniforms more than once per VF. Right now,
5479   // this function is called from collectUniformsAndScalars(), which
5480   // already does this check. Collecting Uniforms for VF=1 does not make any
5481   // sense.
5482 
5483   assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&
5484          "This function should not be visited twice for the same VF");
5485 
5486   // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5487   // not analyze again.  Uniforms.count(VF) will return 1.
5488   Uniforms[VF].clear();
5489 
5490   // We now know that the loop is vectorizable!
5491   // Collect instructions inside the loop that will remain uniform after
5492   // vectorization.
5493 
5494   // Global values, params and instructions outside of current loop are out of
5495   // scope.
5496   auto isOutOfScope = [&](Value *V) -> bool {
5497     Instruction *I = dyn_cast<Instruction>(V);
5498     return (!I || !TheLoop->contains(I));
5499   };
5500 
5501   // Worklist containing uniform instructions demanding lane 0.
5502   SetVector<Instruction *> Worklist;
5503   BasicBlock *Latch = TheLoop->getLoopLatch();
5504 
5505   // Add uniform instructions demanding lane 0 to the worklist. Instructions
5506   // that are scalar with predication must not be considered uniform after
5507   // vectorization, because that would create an erroneous replicating region
5508   // where only a single instance out of VF should be formed.
5509   // TODO: optimize such seldom cases if found important, see PR40816.
5510   auto addToWorklistIfAllowed = [&](Instruction *I) -> void {
5511     if (isOutOfScope(I)) {
5512       LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "
5513                         << *I << "\n");
5514       return;
5515     }
5516     if (isScalarWithPredication(I)) {
5517       LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "
5518                         << *I << "\n");
5519       return;
5520     }
5521     LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n");
5522     Worklist.insert(I);
5523   };
5524 
5525   // Start with the conditional branch. If the branch condition is an
5526   // instruction contained in the loop that is only used by the branch, it is
5527   // uniform.
5528   auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5529   if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse())
5530     addToWorklistIfAllowed(Cmp);
5531 
5532   auto isUniformDecision = [&](Instruction *I, ElementCount VF) {
5533     InstWidening WideningDecision = getWideningDecision(I, VF);
5534     assert(WideningDecision != CM_Unknown &&
5535            "Widening decision should be ready at this moment");
5536 
5537     // A uniform memory op is itself uniform.  We exclude uniform stores
5538     // here as they demand the last lane, not the first one.
5539     if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) {
5540       assert(WideningDecision == CM_Scalarize);
5541       return true;
5542     }
5543 
5544     return (WideningDecision == CM_Widen ||
5545             WideningDecision == CM_Widen_Reverse ||
5546             WideningDecision == CM_Interleave);
5547   };
5548 
5549 
5550   // Returns true if Ptr is the pointer operand of a memory access instruction
5551   // I, and I is known to not require scalarization.
5552   auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5553     return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5554   };
5555 
5556   // Holds a list of values which are known to have at least one uniform use.
5557   // Note that there may be other uses which aren't uniform.  A "uniform use"
5558   // here is something which only demands lane 0 of the unrolled iterations;
5559   // it does not imply that all lanes produce the same value (e.g. this is not
5560   // the usual meaning of uniform)
5561   SetVector<Value *> HasUniformUse;
5562 
5563   // Scan the loop for instructions which are either a) known to have only
5564   // lane 0 demanded or b) are uses which demand only lane 0 of their operand.
5565   for (auto *BB : TheLoop->blocks())
5566     for (auto &I : *BB) {
5567       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
5568         switch (II->getIntrinsicID()) {
5569         case Intrinsic::sideeffect:
5570         case Intrinsic::experimental_noalias_scope_decl:
5571         case Intrinsic::assume:
5572         case Intrinsic::lifetime_start:
5573         case Intrinsic::lifetime_end:
5574           if (TheLoop->hasLoopInvariantOperands(&I))
5575             addToWorklistIfAllowed(&I);
5576           break;
5577         default:
5578           break;
5579         }
5580       }
5581 
5582       // ExtractValue instructions must be uniform, because the operands are
5583       // known to be loop-invariant.
5584       if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) {
5585         assert(isOutOfScope(EVI->getAggregateOperand()) &&
5586                "Expected aggregate value to be loop invariant");
5587         addToWorklistIfAllowed(EVI);
5588         continue;
5589       }
5590 
5591       // If there's no pointer operand, there's nothing to do.
5592       auto *Ptr = getLoadStorePointerOperand(&I);
5593       if (!Ptr)
5594         continue;
5595 
5596       // A uniform memory op is itself uniform.  We exclude uniform stores
5597       // here as they demand the last lane, not the first one.
5598       if (isa<LoadInst>(I) && Legal->isUniformMemOp(I))
5599         addToWorklistIfAllowed(&I);
5600 
5601       if (isUniformDecision(&I, VF)) {
5602         assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check");
5603         HasUniformUse.insert(Ptr);
5604       }
5605     }
5606 
5607   // Add to the worklist any operands which have *only* uniform (e.g. lane 0
5608   // demanding) users.  Since loops are assumed to be in LCSSA form, this
5609   // disallows uses outside the loop as well.
5610   for (auto *V : HasUniformUse) {
5611     if (isOutOfScope(V))
5612       continue;
5613     auto *I = cast<Instruction>(V);
5614     auto UsersAreMemAccesses =
5615       llvm::all_of(I->users(), [&](User *U) -> bool {
5616         return isVectorizedMemAccessUse(cast<Instruction>(U), V);
5617       });
5618     if (UsersAreMemAccesses)
5619       addToWorklistIfAllowed(I);
5620   }
5621 
5622   // Expand Worklist in topological order: whenever a new instruction
5623   // is added , its users should be already inside Worklist.  It ensures
5624   // a uniform instruction will only be used by uniform instructions.
5625   unsigned idx = 0;
5626   while (idx != Worklist.size()) {
5627     Instruction *I = Worklist[idx++];
5628 
5629     for (auto OV : I->operand_values()) {
5630       // isOutOfScope operands cannot be uniform instructions.
5631       if (isOutOfScope(OV))
5632         continue;
5633       // First order recurrence Phi's should typically be considered
5634       // non-uniform.
5635       auto *OP = dyn_cast<PHINode>(OV);
5636       if (OP && Legal->isFirstOrderRecurrence(OP))
5637         continue;
5638       // If all the users of the operand are uniform, then add the
5639       // operand into the uniform worklist.
5640       auto *OI = cast<Instruction>(OV);
5641       if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5642             auto *J = cast<Instruction>(U);
5643             return Worklist.count(J) || isVectorizedMemAccessUse(J, OI);
5644           }))
5645         addToWorklistIfAllowed(OI);
5646     }
5647   }
5648 
5649   // For an instruction to be added into Worklist above, all its users inside
5650   // the loop should also be in Worklist. However, this condition cannot be
5651   // true for phi nodes that form a cyclic dependence. We must process phi
5652   // nodes separately. An induction variable will remain uniform if all users
5653   // of the induction variable and induction variable update remain uniform.
5654   // The code below handles both pointer and non-pointer induction variables.
5655   for (auto &Induction : Legal->getInductionVars()) {
5656     auto *Ind = Induction.first;
5657     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5658 
5659     // Determine if all users of the induction variable are uniform after
5660     // vectorization.
5661     auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5662       auto *I = cast<Instruction>(U);
5663       return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5664              isVectorizedMemAccessUse(I, Ind);
5665     });
5666     if (!UniformInd)
5667       continue;
5668 
5669     // Determine if all users of the induction variable update instruction are
5670     // uniform after vectorization.
5671     auto UniformIndUpdate =
5672         llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5673           auto *I = cast<Instruction>(U);
5674           return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5675                  isVectorizedMemAccessUse(I, IndUpdate);
5676         });
5677     if (!UniformIndUpdate)
5678       continue;
5679 
5680     // The induction variable and its update instruction will remain uniform.
5681     addToWorklistIfAllowed(Ind);
5682     addToWorklistIfAllowed(IndUpdate);
5683   }
5684 
5685   Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5686 }
5687 
5688 bool LoopVectorizationCostModel::runtimeChecksRequired() {
5689   LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n");
5690 
5691   if (Legal->getRuntimePointerChecking()->Need) {
5692     reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz",
5693         "runtime pointer checks needed. Enable vectorization of this "
5694         "loop with '#pragma clang loop vectorize(enable)' when "
5695         "compiling with -Os/-Oz",
5696         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5697     return true;
5698   }
5699 
5700   if (!PSE.getUnionPredicate().getPredicates().empty()) {
5701     reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz",
5702         "runtime SCEV checks needed. Enable vectorization of this "
5703         "loop with '#pragma clang loop vectorize(enable)' when "
5704         "compiling with -Os/-Oz",
5705         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5706     return true;
5707   }
5708 
5709   // FIXME: Avoid specializing for stride==1 instead of bailing out.
5710   if (!Legal->getLAI()->getSymbolicStrides().empty()) {
5711     reportVectorizationFailure("Runtime stride check for small trip count",
5712         "runtime stride == 1 checks needed. Enable vectorization of "
5713         "this loop without such check by compiling with -Os/-Oz",
5714         "CantVersionLoopWithOptForSize", ORE, TheLoop);
5715     return true;
5716   }
5717 
5718   return false;
5719 }
5720 
5721 ElementCount
5722 LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) {
5723   if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors)
5724     return ElementCount::getScalable(0);
5725 
5726   if (Hints->isScalableVectorizationDisabled()) {
5727     reportVectorizationInfo("Scalable vectorization is explicitly disabled",
5728                             "ScalableVectorizationDisabled", ORE, TheLoop);
5729     return ElementCount::getScalable(0);
5730   }
5731 
5732   LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n");
5733 
5734   auto MaxScalableVF = ElementCount::getScalable(
5735       std::numeric_limits<ElementCount::ScalarTy>::max());
5736 
5737   // Test that the loop-vectorizer can legalize all operations for this MaxVF.
5738   // FIXME: While for scalable vectors this is currently sufficient, this should
5739   // be replaced by a more detailed mechanism that filters out specific VFs,
5740   // instead of invalidating vectorization for a whole set of VFs based on the
5741   // MaxVF.
5742 
5743   // Disable scalable vectorization if the loop contains unsupported reductions.
5744   if (!canVectorizeReductions(MaxScalableVF)) {
5745     reportVectorizationInfo(
5746         "Scalable vectorization not supported for the reduction "
5747         "operations found in this loop.",
5748         "ScalableVFUnfeasible", ORE, TheLoop);
5749     return ElementCount::getScalable(0);
5750   }
5751 
5752   // Disable scalable vectorization if the loop contains any instructions
5753   // with element types not supported for scalable vectors.
5754   if (any_of(ElementTypesInLoop, [&](Type *Ty) {
5755         return !Ty->isVoidTy() &&
5756                !this->TTI.isElementTypeLegalForScalableVector(Ty);
5757       })) {
5758     reportVectorizationInfo("Scalable vectorization is not supported "
5759                             "for all element types found in this loop.",
5760                             "ScalableVFUnfeasible", ORE, TheLoop);
5761     return ElementCount::getScalable(0);
5762   }
5763 
5764   if (Legal->isSafeForAnyVectorWidth())
5765     return MaxScalableVF;
5766 
5767   // Limit MaxScalableVF by the maximum safe dependence distance.
5768   Optional<unsigned> MaxVScale = TTI.getMaxVScale();
5769   if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) {
5770     unsigned VScaleMax = TheFunction->getFnAttribute(Attribute::VScaleRange)
5771                              .getVScaleRangeArgs()
5772                              .second;
5773     if (VScaleMax > 0)
5774       MaxVScale = VScaleMax;
5775   }
5776   MaxScalableVF = ElementCount::getScalable(
5777       MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0);
5778   if (!MaxScalableVF)
5779     reportVectorizationInfo(
5780         "Max legal vector width too small, scalable vectorization "
5781         "unfeasible.",
5782         "ScalableVFUnfeasible", ORE, TheLoop);
5783 
5784   return MaxScalableVF;
5785 }
5786 
5787 FixedScalableVFPair
5788 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
5789                                                  ElementCount UserVF) {
5790   MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
5791   unsigned SmallestType, WidestType;
5792   std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
5793 
5794   // Get the maximum safe dependence distance in bits computed by LAA.
5795   // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
5796   // the memory accesses that is most restrictive (involved in the smallest
5797   // dependence distance).
5798   unsigned MaxSafeElements =
5799       PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType);
5800 
5801   auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements);
5802   auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements);
5803 
5804   LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF
5805                     << ".\n");
5806   LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF
5807                     << ".\n");
5808 
5809   // First analyze the UserVF, fall back if the UserVF should be ignored.
5810   if (UserVF) {
5811     auto MaxSafeUserVF =
5812         UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
5813 
5814     if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
5815       // If `VF=vscale x N` is safe, then so is `VF=N`
5816       if (UserVF.isScalable())
5817         return FixedScalableVFPair(
5818             ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
5819       else
5820         return UserVF;
5821     }
5822 
5823     assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
5824 
5825     // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it
5826     // is better to ignore the hint and let the compiler choose a suitable VF.
5827     if (!UserVF.isScalable()) {
5828       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5829                         << " is unsafe, clamping to max safe VF="
5830                         << MaxSafeFixedVF << ".\n");
5831       ORE->emit([&]() {
5832         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5833                                           TheLoop->getStartLoc(),
5834                                           TheLoop->getHeader())
5835                << "User-specified vectorization factor "
5836                << ore::NV("UserVectorizationFactor", UserVF)
5837                << " is unsafe, clamping to maximum safe vectorization factor "
5838                << ore::NV("VectorizationFactor", MaxSafeFixedVF);
5839       });
5840       return MaxSafeFixedVF;
5841     }
5842 
5843     if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) {
5844       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5845                         << " is ignored because scalable vectors are not "
5846                            "available.\n");
5847       ORE->emit([&]() {
5848         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5849                                           TheLoop->getStartLoc(),
5850                                           TheLoop->getHeader())
5851                << "User-specified vectorization factor "
5852                << ore::NV("UserVectorizationFactor", UserVF)
5853                << " is ignored because the target does not support scalable "
5854                   "vectors. The compiler will pick a more suitable value.";
5855       });
5856     } else {
5857       LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF
5858                         << " is unsafe. Ignoring scalable UserVF.\n");
5859       ORE->emit([&]() {
5860         return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor",
5861                                           TheLoop->getStartLoc(),
5862                                           TheLoop->getHeader())
5863                << "User-specified vectorization factor "
5864                << ore::NV("UserVectorizationFactor", UserVF)
5865                << " is unsafe. Ignoring the hint to let the compiler pick a "
5866                   "more suitable value.";
5867       });
5868     }
5869   }
5870 
5871   LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
5872                     << " / " << WidestType << " bits.\n");
5873 
5874   FixedScalableVFPair Result(ElementCount::getFixed(1),
5875                              ElementCount::getScalable(0));
5876   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5877                                            WidestType, MaxSafeFixedVF))
5878     Result.FixedVF = MaxVF;
5879 
5880   if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType,
5881                                            WidestType, MaxSafeScalableVF))
5882     if (MaxVF.isScalable()) {
5883       Result.ScalableVF = MaxVF;
5884       LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF
5885                         << "\n");
5886     }
5887 
5888   return Result;
5889 }
5890 
5891 FixedScalableVFPair
5892 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) {
5893   if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
5894     // TODO: It may by useful to do since it's still likely to be dynamically
5895     // uniform if the target can skip.
5896     reportVectorizationFailure(
5897         "Not inserting runtime ptr check for divergent target",
5898         "runtime pointer checks needed. Not enabled for divergent target",
5899         "CantVersionLoopWithDivergentTarget", ORE, TheLoop);
5900     return FixedScalableVFPair::getNone();
5901   }
5902 
5903   unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5904   LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
5905   if (TC == 1) {
5906     reportVectorizationFailure("Single iteration (non) loop",
5907         "loop trip count is one, irrelevant for vectorization",
5908         "SingleIterationLoop", ORE, TheLoop);
5909     return FixedScalableVFPair::getNone();
5910   }
5911 
5912   switch (ScalarEpilogueStatus) {
5913   case CM_ScalarEpilogueAllowed:
5914     return computeFeasibleMaxVF(TC, UserVF);
5915   case CM_ScalarEpilogueNotAllowedUsePredicate:
5916     LLVM_FALLTHROUGH;
5917   case CM_ScalarEpilogueNotNeededUsePredicate:
5918     LLVM_DEBUG(
5919         dbgs() << "LV: vector predicate hint/switch found.\n"
5920                << "LV: Not allowing scalar epilogue, creating predicated "
5921                << "vector loop.\n");
5922     break;
5923   case CM_ScalarEpilogueNotAllowedLowTripLoop:
5924     // fallthrough as a special case of OptForSize
5925   case CM_ScalarEpilogueNotAllowedOptSize:
5926     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize)
5927       LLVM_DEBUG(
5928           dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n");
5929     else
5930       LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "
5931                         << "count.\n");
5932 
5933     // Bail if runtime checks are required, which are not good when optimising
5934     // for size.
5935     if (runtimeChecksRequired())
5936       return FixedScalableVFPair::getNone();
5937 
5938     break;
5939   }
5940 
5941   // The only loops we can vectorize without a scalar epilogue, are loops with
5942   // a bottom-test and a single exiting block. We'd have to handle the fact
5943   // that not every instruction executes on the last iteration.  This will
5944   // require a lane mask which varies through the vector loop body.  (TODO)
5945   if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
5946     // If there was a tail-folding hint/switch, but we can't fold the tail by
5947     // masking, fallback to a vectorization with a scalar epilogue.
5948     if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
5949       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
5950                            "scalar epilogue instead.\n");
5951       ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
5952       return computeFeasibleMaxVF(TC, UserVF);
5953     }
5954     return FixedScalableVFPair::getNone();
5955   }
5956 
5957   // Now try the tail folding
5958 
5959   // Invalidate interleave groups that require an epilogue if we can't mask
5960   // the interleave-group.
5961   if (!useMaskedInterleavedAccesses(TTI)) {
5962     assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&
5963            "No decisions should have been taken at this point");
5964     // Note: There is no need to invalidate any cost modeling decisions here, as
5965     // non where taken so far.
5966     InterleaveInfo.invalidateGroupsRequiringScalarEpilogue();
5967   }
5968 
5969   FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF);
5970   // Avoid tail folding if the trip count is known to be a multiple of any VF
5971   // we chose.
5972   // FIXME: The condition below pessimises the case for fixed-width vectors,
5973   // when scalable VFs are also candidates for vectorization.
5974   if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) {
5975     ElementCount MaxFixedVF = MaxFactors.FixedVF;
5976     assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&
5977            "MaxFixedVF must be a power of 2");
5978     unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC
5979                                    : MaxFixedVF.getFixedValue();
5980     ScalarEvolution *SE = PSE.getSE();
5981     const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
5982     const SCEV *ExitCount = SE->getAddExpr(
5983         BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
5984     const SCEV *Rem = SE->getURemExpr(
5985         SE->applyLoopGuards(ExitCount, TheLoop),
5986         SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC));
5987     if (Rem->isZero()) {
5988       // Accept MaxFixedVF if we do not have a tail.
5989       LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n");
5990       return MaxFactors;
5991     }
5992   }
5993 
5994   // For scalable vectors, don't use tail folding as this is currently not yet
5995   // supported. The code is likely to have ended up here if the tripcount is
5996   // low, in which case it makes sense not to use scalable vectors.
5997   if (MaxFactors.ScalableVF.isVector())
5998     MaxFactors.ScalableVF = ElementCount::getScalable(0);
5999 
6000   // If we don't know the precise trip count, or if the trip count that we
6001   // found modulo the vectorization factor is not zero, try to fold the tail
6002   // by masking.
6003   // FIXME: look for a smaller MaxVF that does divide TC rather than masking.
6004   if (Legal->prepareToFoldTailByMasking()) {
6005     FoldTailByMasking = true;
6006     return MaxFactors;
6007   }
6008 
6009   // If there was a tail-folding hint/switch, but we can't fold the tail by
6010   // masking, fallback to a vectorization with a scalar epilogue.
6011   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) {
6012     LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "
6013                          "scalar epilogue instead.\n");
6014     ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
6015     return MaxFactors;
6016   }
6017 
6018   if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) {
6019     LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n");
6020     return FixedScalableVFPair::getNone();
6021   }
6022 
6023   if (TC == 0) {
6024     reportVectorizationFailure(
6025         "Unable to calculate the loop count due to complex control flow",
6026         "unable to calculate the loop count due to complex control flow",
6027         "UnknownLoopCountComplexCFG", ORE, TheLoop);
6028     return FixedScalableVFPair::getNone();
6029   }
6030 
6031   reportVectorizationFailure(
6032       "Cannot optimize for size and vectorize at the same time.",
6033       "cannot optimize for size and vectorize at the same time. "
6034       "Enable vectorization of this loop with '#pragma clang loop "
6035       "vectorize(enable)' when compiling with -Os/-Oz",
6036       "NoTailLoopWithOptForSize", ORE, TheLoop);
6037   return FixedScalableVFPair::getNone();
6038 }
6039 
6040 ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget(
6041     unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType,
6042     const ElementCount &MaxSafeVF) {
6043   bool ComputeScalableMaxVF = MaxSafeVF.isScalable();
6044   TypeSize WidestRegister = TTI.getRegisterBitWidth(
6045       ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector
6046                            : TargetTransformInfo::RGK_FixedWidthVector);
6047 
6048   // Convenience function to return the minimum of two ElementCounts.
6049   auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) {
6050     assert((LHS.isScalable() == RHS.isScalable()) &&
6051            "Scalable flags must match");
6052     return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS;
6053   };
6054 
6055   // Ensure MaxVF is a power of 2; the dependence distance bound may not be.
6056   // Note that both WidestRegister and WidestType may not be a powers of 2.
6057   auto MaxVectorElementCount = ElementCount::get(
6058       PowerOf2Floor(WidestRegister.getKnownMinSize() / WidestType),
6059       ComputeScalableMaxVF);
6060   MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF);
6061   LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
6062                     << (MaxVectorElementCount * WidestType) << " bits.\n");
6063 
6064   if (!MaxVectorElementCount) {
6065     LLVM_DEBUG(dbgs() << "LV: The target has no "
6066                       << (ComputeScalableMaxVF ? "scalable" : "fixed")
6067                       << " vector registers.\n");
6068     return ElementCount::getFixed(1);
6069   }
6070 
6071   const auto TripCountEC = ElementCount::getFixed(ConstTripCount);
6072   if (ConstTripCount &&
6073       ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) &&
6074       isPowerOf2_32(ConstTripCount)) {
6075     // We need to clamp the VF to be the ConstTripCount. There is no point in
6076     // choosing a higher viable VF as done in the loop below. If
6077     // MaxVectorElementCount is scalable, we only fall back on a fixed VF when
6078     // the TC is less than or equal to the known number of lanes.
6079     LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
6080                       << ConstTripCount << "\n");
6081     return TripCountEC;
6082   }
6083 
6084   ElementCount MaxVF = MaxVectorElementCount;
6085   if (TTI.shouldMaximizeVectorBandwidth() ||
6086       (MaximizeBandwidth && isScalarEpilogueAllowed())) {
6087     auto MaxVectorElementCountMaxBW = ElementCount::get(
6088         PowerOf2Floor(WidestRegister.getKnownMinSize() / SmallestType),
6089         ComputeScalableMaxVF);
6090     MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF);
6091 
6092     // Collect all viable vectorization factors larger than the default MaxVF
6093     // (i.e. MaxVectorElementCount).
6094     SmallVector<ElementCount, 8> VFs;
6095     for (ElementCount VS = MaxVectorElementCount * 2;
6096          ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2)
6097       VFs.push_back(VS);
6098 
6099     // For each VF calculate its register usage.
6100     auto RUs = calculateRegisterUsage(VFs);
6101 
6102     // Select the largest VF which doesn't require more registers than existing
6103     // ones.
6104     for (int i = RUs.size() - 1; i >= 0; --i) {
6105       bool Selected = true;
6106       for (auto &pair : RUs[i].MaxLocalUsers) {
6107         unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6108         if (pair.second > TargetNumRegisters)
6109           Selected = false;
6110       }
6111       if (Selected) {
6112         MaxVF = VFs[i];
6113         break;
6114       }
6115     }
6116     if (ElementCount MinVF =
6117             TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) {
6118       if (ElementCount::isKnownLT(MaxVF, MinVF)) {
6119         LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
6120                           << ") with target's minimum: " << MinVF << '\n');
6121         MaxVF = MinVF;
6122       }
6123     }
6124   }
6125   return MaxVF;
6126 }
6127 
6128 bool LoopVectorizationCostModel::isMoreProfitable(
6129     const VectorizationFactor &A, const VectorizationFactor &B) const {
6130   InstructionCost CostA = A.Cost;
6131   InstructionCost CostB = B.Cost;
6132 
6133   unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop);
6134 
6135   if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking &&
6136       MaxTripCount) {
6137     // If we are folding the tail and the trip count is a known (possibly small)
6138     // constant, the trip count will be rounded up to an integer number of
6139     // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF),
6140     // which we compare directly. When not folding the tail, the total cost will
6141     // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is
6142     // approximated with the per-lane cost below instead of using the tripcount
6143     // as here.
6144     auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue());
6145     auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue());
6146     return RTCostA < RTCostB;
6147   }
6148 
6149   // Improve estimate for the vector width if it is scalable.
6150   unsigned EstimatedWidthA = A.Width.getKnownMinValue();
6151   unsigned EstimatedWidthB = B.Width.getKnownMinValue();
6152   if (Optional<unsigned> VScale = TTI.getVScaleForTuning()) {
6153     if (A.Width.isScalable())
6154       EstimatedWidthA *= VScale.getValue();
6155     if (B.Width.isScalable())
6156       EstimatedWidthB *= VScale.getValue();
6157   }
6158 
6159   // When set to preferred, for now assume vscale may be larger than 1 (or the
6160   // one being tuned for), so that scalable vectorization is slightly favorable
6161   // over fixed-width vectorization.
6162   if (Hints->isScalableVectorizationPreferred())
6163     if (A.Width.isScalable() && !B.Width.isScalable())
6164       return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA);
6165 
6166   // To avoid the need for FP division:
6167   //      (CostA / A.Width) < (CostB / B.Width)
6168   // <=>  (CostA * B.Width) < (CostB * A.Width)
6169   return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA);
6170 }
6171 
6172 VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
6173     const ElementCountSet &VFCandidates) {
6174   InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first;
6175   LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n");
6176   assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop");
6177   assert(VFCandidates.count(ElementCount::getFixed(1)) &&
6178          "Expected Scalar VF to be a candidate");
6179 
6180   const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost);
6181   VectorizationFactor ChosenFactor = ScalarCost;
6182 
6183   bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6184   if (ForceVectorization && VFCandidates.size() > 1) {
6185     // Ignore scalar width, because the user explicitly wants vectorization.
6186     // Initialize cost to max so that VF = 2 is, at least, chosen during cost
6187     // evaluation.
6188     ChosenFactor.Cost = InstructionCost::getMax();
6189   }
6190 
6191   SmallVector<InstructionVFPair> InvalidCosts;
6192   for (const auto &i : VFCandidates) {
6193     // The cost for scalar VF=1 is already calculated, so ignore it.
6194     if (i.isScalar())
6195       continue;
6196 
6197     VectorizationCostTy C = expectedCost(i, &InvalidCosts);
6198     VectorizationFactor Candidate(i, C.first);
6199 
6200 #ifndef NDEBUG
6201     unsigned AssumedMinimumVscale = 1;
6202     if (Optional<unsigned> VScale = TTI.getVScaleForTuning())
6203       AssumedMinimumVscale = VScale.getValue();
6204     unsigned Width =
6205         Candidate.Width.isScalable()
6206             ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale
6207             : Candidate.Width.getFixedValue();
6208     LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
6209                       << " costs: " << (Candidate.Cost / Width));
6210     if (i.isScalable())
6211       LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "
6212                         << AssumedMinimumVscale << ")");
6213     LLVM_DEBUG(dbgs() << ".\n");
6214 #endif
6215 
6216     if (!C.second && !ForceVectorization) {
6217       LLVM_DEBUG(
6218           dbgs() << "LV: Not considering vector loop of width " << i
6219                  << " because it will not generate any vector instructions.\n");
6220       continue;
6221     }
6222 
6223     // If profitable add it to ProfitableVF list.
6224     if (isMoreProfitable(Candidate, ScalarCost))
6225       ProfitableVFs.push_back(Candidate);
6226 
6227     if (isMoreProfitable(Candidate, ChosenFactor))
6228       ChosenFactor = Candidate;
6229   }
6230 
6231   // Emit a report of VFs with invalid costs in the loop.
6232   if (!InvalidCosts.empty()) {
6233     // Group the remarks per instruction, keeping the instruction order from
6234     // InvalidCosts.
6235     std::map<Instruction *, unsigned> Numbering;
6236     unsigned I = 0;
6237     for (auto &Pair : InvalidCosts)
6238       if (!Numbering.count(Pair.first))
6239         Numbering[Pair.first] = I++;
6240 
6241     // Sort the list, first on instruction(number) then on VF.
6242     llvm::sort(InvalidCosts,
6243                [&Numbering](InstructionVFPair &A, InstructionVFPair &B) {
6244                  if (Numbering[A.first] != Numbering[B.first])
6245                    return Numbering[A.first] < Numbering[B.first];
6246                  ElementCountComparator ECC;
6247                  return ECC(A.second, B.second);
6248                });
6249 
6250     // For a list of ordered instruction-vf pairs:
6251     //   [(load, vf1), (load, vf2), (store, vf1)]
6252     // Group the instructions together to emit separate remarks for:
6253     //   load  (vf1, vf2)
6254     //   store (vf1)
6255     auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts);
6256     auto Subset = ArrayRef<InstructionVFPair>();
6257     do {
6258       if (Subset.empty())
6259         Subset = Tail.take_front(1);
6260 
6261       Instruction *I = Subset.front().first;
6262 
6263       // If the next instruction is different, or if there are no other pairs,
6264       // emit a remark for the collated subset. e.g.
6265       //   [(load, vf1), (load, vf2))]
6266       // to emit:
6267       //  remark: invalid costs for 'load' at VF=(vf, vf2)
6268       if (Subset == Tail || Tail[Subset.size()].first != I) {
6269         std::string OutString;
6270         raw_string_ostream OS(OutString);
6271         assert(!Subset.empty() && "Unexpected empty range");
6272         OS << "Instruction with invalid costs prevented vectorization at VF=(";
6273         for (auto &Pair : Subset)
6274           OS << (Pair.second == Subset.front().second ? "" : ", ")
6275              << Pair.second;
6276         OS << "):";
6277         if (auto *CI = dyn_cast<CallInst>(I))
6278           OS << " call to " << CI->getCalledFunction()->getName();
6279         else
6280           OS << " " << I->getOpcodeName();
6281         OS.flush();
6282         reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I);
6283         Tail = Tail.drop_front(Subset.size());
6284         Subset = {};
6285       } else
6286         // Grow the subset by one element
6287         Subset = Tail.take_front(Subset.size() + 1);
6288     } while (!Tail.empty());
6289   }
6290 
6291   if (!EnableCondStoresVectorization && NumPredStores) {
6292     reportVectorizationFailure("There are conditional stores.",
6293         "store that is conditionally executed prevents vectorization",
6294         "ConditionalStore", ORE, TheLoop);
6295     ChosenFactor = ScalarCost;
6296   }
6297 
6298   LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
6299                  ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
6300              << "LV: Vectorization seems to be not beneficial, "
6301              << "but was forced by a user.\n");
6302   LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
6303   return ChosenFactor;
6304 }
6305 
6306 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization(
6307     const Loop &L, ElementCount VF) const {
6308   // Cross iteration phis such as reductions need special handling and are
6309   // currently unsupported.
6310   if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) {
6311         return Legal->isFirstOrderRecurrence(&Phi) ||
6312                Legal->isReductionVariable(&Phi);
6313       }))
6314     return false;
6315 
6316   // Phis with uses outside of the loop require special handling and are
6317   // currently unsupported.
6318   for (auto &Entry : Legal->getInductionVars()) {
6319     // Look for uses of the value of the induction at the last iteration.
6320     Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch());
6321     for (User *U : PostInc->users())
6322       if (!L.contains(cast<Instruction>(U)))
6323         return false;
6324     // Look for uses of penultimate value of the induction.
6325     for (User *U : Entry.first->users())
6326       if (!L.contains(cast<Instruction>(U)))
6327         return false;
6328   }
6329 
6330   // Induction variables that are widened require special handling that is
6331   // currently not supported.
6332   if (any_of(Legal->getInductionVars(), [&](auto &Entry) {
6333         return !(this->isScalarAfterVectorization(Entry.first, VF) ||
6334                  this->isProfitableToScalarize(Entry.first, VF));
6335       }))
6336     return false;
6337 
6338   // Epilogue vectorization code has not been auditted to ensure it handles
6339   // non-latch exits properly.  It may be fine, but it needs auditted and
6340   // tested.
6341   if (L.getExitingBlock() != L.getLoopLatch())
6342     return false;
6343 
6344   return true;
6345 }
6346 
6347 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable(
6348     const ElementCount VF) const {
6349   // FIXME: We need a much better cost-model to take different parameters such
6350   // as register pressure, code size increase and cost of extra branches into
6351   // account. For now we apply a very crude heuristic and only consider loops
6352   // with vectorization factors larger than a certain value.
6353   // We also consider epilogue vectorization unprofitable for targets that don't
6354   // consider interleaving beneficial (eg. MVE).
6355   if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1)
6356     return false;
6357   if (VF.getFixedValue() >= EpilogueVectorizationMinVF)
6358     return true;
6359   return false;
6360 }
6361 
6362 VectorizationFactor
6363 LoopVectorizationCostModel::selectEpilogueVectorizationFactor(
6364     const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) {
6365   VectorizationFactor Result = VectorizationFactor::Disabled();
6366   if (!EnableEpilogueVectorization) {
6367     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";);
6368     return Result;
6369   }
6370 
6371   if (!isScalarEpilogueAllowed()) {
6372     LLVM_DEBUG(
6373         dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "
6374                   "allowed.\n";);
6375     return Result;
6376   }
6377 
6378   // Not really a cost consideration, but check for unsupported cases here to
6379   // simplify the logic.
6380   if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) {
6381     LLVM_DEBUG(
6382         dbgs() << "LEV: Unable to vectorize epilogue because the loop is "
6383                   "not a supported candidate.\n";);
6384     return Result;
6385   }
6386 
6387   if (EpilogueVectorizationForceVF > 1) {
6388     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";);
6389     ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF);
6390     if (LVP.hasPlanWithVF(ForcedEC))
6391       return {ForcedEC, 0};
6392     else {
6393       LLVM_DEBUG(
6394           dbgs()
6395               << "LEV: Epilogue vectorization forced factor is not viable.\n";);
6396       return Result;
6397     }
6398   }
6399 
6400   if (TheLoop->getHeader()->getParent()->hasOptSize() ||
6401       TheLoop->getHeader()->getParent()->hasMinSize()) {
6402     LLVM_DEBUG(
6403         dbgs()
6404             << "LEV: Epilogue vectorization skipped due to opt for size.\n";);
6405     return Result;
6406   }
6407 
6408   auto FixedMainLoopVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue());
6409   if (MainLoopVF.isScalable())
6410     LLVM_DEBUG(
6411         dbgs() << "LEV: Epilogue vectorization using scalable vectors not "
6412                   "yet supported. Converting to fixed-width (VF="
6413                << FixedMainLoopVF << ") instead\n");
6414 
6415   if (!isEpilogueVectorizationProfitable(FixedMainLoopVF)) {
6416     LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "
6417                          "this loop\n");
6418     return Result;
6419   }
6420 
6421   for (auto &NextVF : ProfitableVFs)
6422     if (ElementCount::isKnownLT(NextVF.Width, FixedMainLoopVF) &&
6423         (Result.Width.getFixedValue() == 1 ||
6424          isMoreProfitable(NextVF, Result)) &&
6425         LVP.hasPlanWithVF(NextVF.Width))
6426       Result = NextVF;
6427 
6428   if (Result != VectorizationFactor::Disabled())
6429     LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "
6430                       << Result.Width.getFixedValue() << "\n";);
6431   return Result;
6432 }
6433 
6434 std::pair<unsigned, unsigned>
6435 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6436   unsigned MinWidth = -1U;
6437   unsigned MaxWidth = 8;
6438   const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6439   for (Type *T : ElementTypesInLoop) {
6440     MinWidth = std::min<unsigned>(
6441         MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6442     MaxWidth = std::max<unsigned>(
6443         MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedSize());
6444   }
6445   return {MinWidth, MaxWidth};
6446 }
6447 
6448 void LoopVectorizationCostModel::collectElementTypesForWidening() {
6449   ElementTypesInLoop.clear();
6450   // For each block.
6451   for (BasicBlock *BB : TheLoop->blocks()) {
6452     // For each instruction in the loop.
6453     for (Instruction &I : BB->instructionsWithoutDebug()) {
6454       Type *T = I.getType();
6455 
6456       // Skip ignored values.
6457       if (ValuesToIgnore.count(&I))
6458         continue;
6459 
6460       // Only examine Loads, Stores and PHINodes.
6461       if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6462         continue;
6463 
6464       // Examine PHI nodes that are reduction variables. Update the type to
6465       // account for the recurrence type.
6466       if (auto *PN = dyn_cast<PHINode>(&I)) {
6467         if (!Legal->isReductionVariable(PN))
6468           continue;
6469         const RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[PN];
6470         if (PreferInLoopReductions || useOrderedReductions(RdxDesc) ||
6471             TTI.preferInLoopReduction(RdxDesc.getOpcode(),
6472                                       RdxDesc.getRecurrenceType(),
6473                                       TargetTransformInfo::ReductionFlags()))
6474           continue;
6475         T = RdxDesc.getRecurrenceType();
6476       }
6477 
6478       // Examine the stored values.
6479       if (auto *ST = dyn_cast<StoreInst>(&I))
6480         T = ST->getValueOperand()->getType();
6481 
6482       // Ignore loaded pointer types and stored pointer types that are not
6483       // vectorizable.
6484       //
6485       // FIXME: The check here attempts to predict whether a load or store will
6486       //        be vectorized. We only know this for certain after a VF has
6487       //        been selected. Here, we assume that if an access can be
6488       //        vectorized, it will be. We should also look at extending this
6489       //        optimization to non-pointer types.
6490       //
6491       if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6492           !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6493         continue;
6494 
6495       ElementTypesInLoop.insert(T);
6496     }
6497   }
6498 }
6499 
6500 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
6501                                                            unsigned LoopCost) {
6502   // -- The interleave heuristics --
6503   // We interleave the loop in order to expose ILP and reduce the loop overhead.
6504   // There are many micro-architectural considerations that we can't predict
6505   // at this level. For example, frontend pressure (on decode or fetch) due to
6506   // code size, or the number and capabilities of the execution ports.
6507   //
6508   // We use the following heuristics to select the interleave count:
6509   // 1. If the code has reductions, then we interleave to break the cross
6510   // iteration dependency.
6511   // 2. If the loop is really small, then we interleave to reduce the loop
6512   // overhead.
6513   // 3. We don't interleave if we think that we will spill registers to memory
6514   // due to the increased register pressure.
6515 
6516   if (!isScalarEpilogueAllowed())
6517     return 1;
6518 
6519   // We used the distance for the interleave count.
6520   if (Legal->getMaxSafeDepDistBytes() != -1U)
6521     return 1;
6522 
6523   auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop);
6524   const bool HasReductions = !Legal->getReductionVars().empty();
6525   // Do not interleave loops with a relatively small known or estimated trip
6526   // count. But we will interleave when InterleaveSmallLoopScalarReduction is
6527   // enabled, and the code has scalar reductions(HasReductions && VF = 1),
6528   // because with the above conditions interleaving can expose ILP and break
6529   // cross iteration dependences for reductions.
6530   if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) &&
6531       !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar()))
6532     return 1;
6533 
6534   RegisterUsage R = calculateRegisterUsage({VF})[0];
6535   // We divide by these constants so assume that we have at least one
6536   // instruction that uses at least one register.
6537   for (auto& pair : R.MaxLocalUsers) {
6538     pair.second = std::max(pair.second, 1U);
6539   }
6540 
6541   // We calculate the interleave count using the following formula.
6542   // Subtract the number of loop invariants from the number of available
6543   // registers. These registers are used by all of the interleaved instances.
6544   // Next, divide the remaining registers by the number of registers that is
6545   // required by the loop, in order to estimate how many parallel instances
6546   // fit without causing spills. All of this is rounded down if necessary to be
6547   // a power of two. We want power of two interleave count to simplify any
6548   // addressing operations or alignment considerations.
6549   // We also want power of two interleave counts to ensure that the induction
6550   // variable of the vector loop wraps to zero, when tail is folded by masking;
6551   // this currently happens when OptForSize, in which case IC is set to 1 above.
6552   unsigned IC = UINT_MAX;
6553 
6554   for (auto& pair : R.MaxLocalUsers) {
6555     unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first);
6556     LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
6557                       << " registers of "
6558                       << TTI.getRegisterClassName(pair.first) << " register class\n");
6559     if (VF.isScalar()) {
6560       if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6561         TargetNumRegisters = ForceTargetNumScalarRegs;
6562     } else {
6563       if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6564         TargetNumRegisters = ForceTargetNumVectorRegs;
6565     }
6566     unsigned MaxLocalUsers = pair.second;
6567     unsigned LoopInvariantRegs = 0;
6568     if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end())
6569       LoopInvariantRegs = R.LoopInvariantRegs[pair.first];
6570 
6571     unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers);
6572     // Don't count the induction variable as interleaved.
6573     if (EnableIndVarRegisterHeur) {
6574       TmpIC =
6575           PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) /
6576                         std::max(1U, (MaxLocalUsers - 1)));
6577     }
6578 
6579     IC = std::min(IC, TmpIC);
6580   }
6581 
6582   // Clamp the interleave ranges to reasonable counts.
6583   unsigned MaxInterleaveCount =
6584       TTI.getMaxInterleaveFactor(VF.getKnownMinValue());
6585 
6586   // Check if the user has overridden the max.
6587   if (VF.isScalar()) {
6588     if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6589       MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6590   } else {
6591     if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6592       MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6593   }
6594 
6595   // If trip count is known or estimated compile time constant, limit the
6596   // interleave count to be less than the trip count divided by VF, provided it
6597   // is at least 1.
6598   //
6599   // For scalable vectors we can't know if interleaving is beneficial. It may
6600   // not be beneficial for small loops if none of the lanes in the second vector
6601   // iterations is enabled. However, for larger loops, there is likely to be a
6602   // similar benefit as for fixed-width vectors. For now, we choose to leave
6603   // the InterleaveCount as if vscale is '1', although if some information about
6604   // the vector is known (e.g. min vector size), we can make a better decision.
6605   if (BestKnownTC) {
6606     MaxInterleaveCount =
6607         std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount);
6608     // Make sure MaxInterleaveCount is greater than 0.
6609     MaxInterleaveCount = std::max(1u, MaxInterleaveCount);
6610   }
6611 
6612   assert(MaxInterleaveCount > 0 &&
6613          "Maximum interleave count must be greater than 0");
6614 
6615   // Clamp the calculated IC to be between the 1 and the max interleave count
6616   // that the target and trip count allows.
6617   if (IC > MaxInterleaveCount)
6618     IC = MaxInterleaveCount;
6619   else
6620     // Make sure IC is greater than 0.
6621     IC = std::max(1u, IC);
6622 
6623   assert(IC > 0 && "Interleave count must be greater than 0.");
6624 
6625   // If we did not calculate the cost for VF (because the user selected the VF)
6626   // then we calculate the cost of VF here.
6627   if (LoopCost == 0) {
6628     InstructionCost C = expectedCost(VF).first;
6629     assert(C.isValid() && "Expected to have chosen a VF with valid cost");
6630     LoopCost = *C.getValue();
6631   }
6632 
6633   assert(LoopCost && "Non-zero loop cost expected");
6634 
6635   // Interleave if we vectorized this loop and there is a reduction that could
6636   // benefit from interleaving.
6637   if (VF.isVector() && HasReductions) {
6638     LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
6639     return IC;
6640   }
6641 
6642   // Note that if we've already vectorized the loop we will have done the
6643   // runtime check and so interleaving won't require further checks.
6644   bool InterleavingRequiresRuntimePointerCheck =
6645       (VF.isScalar() && Legal->getRuntimePointerChecking()->Need);
6646 
6647   // We want to interleave small loops in order to reduce the loop overhead and
6648   // potentially expose ILP opportunities.
6649   LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'
6650                     << "LV: IC is " << IC << '\n'
6651                     << "LV: VF is " << VF << '\n');
6652   const bool AggressivelyInterleaveReductions =
6653       TTI.enableAggressiveInterleaving(HasReductions);
6654   if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6655     // We assume that the cost overhead is 1 and we use the cost model
6656     // to estimate the cost of the loop and interleave until the cost of the
6657     // loop overhead is about 5% of the cost of the loop.
6658     unsigned SmallIC =
6659         std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6660 
6661     // Interleave until store/load ports (estimated by max interleave count) are
6662     // saturated.
6663     unsigned NumStores = Legal->getNumStores();
6664     unsigned NumLoads = Legal->getNumLoads();
6665     unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6666     unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6667 
6668     // There is little point in interleaving for reductions containing selects
6669     // and compares when VF=1 since it may just create more overhead than it's
6670     // worth for loops with small trip counts. This is because we still have to
6671     // do the final reduction after the loop.
6672     bool HasSelectCmpReductions =
6673         HasReductions &&
6674         any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6675           const RecurrenceDescriptor &RdxDesc = Reduction.second;
6676           return RecurrenceDescriptor::isSelectCmpRecurrenceKind(
6677               RdxDesc.getRecurrenceKind());
6678         });
6679     if (HasSelectCmpReductions) {
6680       LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n");
6681       return 1;
6682     }
6683 
6684     // If we have a scalar reduction (vector reductions are already dealt with
6685     // by this point), we can increase the critical path length if the loop
6686     // we're interleaving is inside another loop. For tree-wise reductions
6687     // set the limit to 2, and for ordered reductions it's best to disable
6688     // interleaving entirely.
6689     if (HasReductions && TheLoop->getLoopDepth() > 1) {
6690       bool HasOrderedReductions =
6691           any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
6692             const RecurrenceDescriptor &RdxDesc = Reduction.second;
6693             return RdxDesc.isOrdered();
6694           });
6695       if (HasOrderedReductions) {
6696         LLVM_DEBUG(
6697             dbgs() << "LV: Not interleaving scalar ordered reductions.\n");
6698         return 1;
6699       }
6700 
6701       unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6702       SmallIC = std::min(SmallIC, F);
6703       StoresIC = std::min(StoresIC, F);
6704       LoadsIC = std::min(LoadsIC, F);
6705     }
6706 
6707     if (EnableLoadStoreRuntimeInterleave &&
6708         std::max(StoresIC, LoadsIC) > SmallIC) {
6709       LLVM_DEBUG(
6710           dbgs() << "LV: Interleaving to saturate store or load ports.\n");
6711       return std::max(StoresIC, LoadsIC);
6712     }
6713 
6714     // If there are scalar reductions and TTI has enabled aggressive
6715     // interleaving for reductions, we will interleave to expose ILP.
6716     if (InterleaveSmallLoopScalarReduction && VF.isScalar() &&
6717         AggressivelyInterleaveReductions) {
6718       LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6719       // Interleave no less than SmallIC but not as aggressive as the normal IC
6720       // to satisfy the rare situation when resources are too limited.
6721       return std::max(IC / 2, SmallIC);
6722     } else {
6723       LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
6724       return SmallIC;
6725     }
6726   }
6727 
6728   // Interleave if this is a large loop (small loops are already dealt with by
6729   // this point) that could benefit from interleaving.
6730   if (AggressivelyInterleaveReductions) {
6731     LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
6732     return IC;
6733   }
6734 
6735   LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
6736   return 1;
6737 }
6738 
6739 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6740 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) {
6741   // This function calculates the register usage by measuring the highest number
6742   // of values that are alive at a single location. Obviously, this is a very
6743   // rough estimation. We scan the loop in a topological order in order and
6744   // assign a number to each instruction. We use RPO to ensure that defs are
6745   // met before their users. We assume that each instruction that has in-loop
6746   // users starts an interval. We record every time that an in-loop value is
6747   // used, so we have a list of the first and last occurrences of each
6748   // instruction. Next, we transpose this data structure into a multi map that
6749   // holds the list of intervals that *end* at a specific location. This multi
6750   // map allows us to perform a linear search. We scan the instructions linearly
6751   // and record each time that a new interval starts, by placing it in a set.
6752   // If we find this value in the multi-map then we remove it from the set.
6753   // The max register usage is the maximum size of the set.
6754   // We also search for instructions that are defined outside the loop, but are
6755   // used inside the loop. We need this number separately from the max-interval
6756   // usage number because when we unroll, loop-invariant values do not take
6757   // more register.
6758   LoopBlocksDFS DFS(TheLoop);
6759   DFS.perform(LI);
6760 
6761   RegisterUsage RU;
6762 
6763   // Each 'key' in the map opens a new interval. The values
6764   // of the map are the index of the 'last seen' usage of the
6765   // instruction that is the key.
6766   using IntervalMap = DenseMap<Instruction *, unsigned>;
6767 
6768   // Maps instruction to its index.
6769   SmallVector<Instruction *, 64> IdxToInstr;
6770   // Marks the end of each interval.
6771   IntervalMap EndPoint;
6772   // Saves the list of instruction indices that are used in the loop.
6773   SmallPtrSet<Instruction *, 8> Ends;
6774   // Saves the list of values that are used in the loop but are
6775   // defined outside the loop, such as arguments and constants.
6776   SmallPtrSet<Value *, 8> LoopInvariants;
6777 
6778   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6779     for (Instruction &I : BB->instructionsWithoutDebug()) {
6780       IdxToInstr.push_back(&I);
6781 
6782       // Save the end location of each USE.
6783       for (Value *U : I.operands()) {
6784         auto *Instr = dyn_cast<Instruction>(U);
6785 
6786         // Ignore non-instruction values such as arguments, constants, etc.
6787         if (!Instr)
6788           continue;
6789 
6790         // If this instruction is outside the loop then record it and continue.
6791         if (!TheLoop->contains(Instr)) {
6792           LoopInvariants.insert(Instr);
6793           continue;
6794         }
6795 
6796         // Overwrite previous end points.
6797         EndPoint[Instr] = IdxToInstr.size();
6798         Ends.insert(Instr);
6799       }
6800     }
6801   }
6802 
6803   // Saves the list of intervals that end with the index in 'key'.
6804   using InstrList = SmallVector<Instruction *, 2>;
6805   DenseMap<unsigned, InstrList> TransposeEnds;
6806 
6807   // Transpose the EndPoints to a list of values that end at each index.
6808   for (auto &Interval : EndPoint)
6809     TransposeEnds[Interval.second].push_back(Interval.first);
6810 
6811   SmallPtrSet<Instruction *, 8> OpenIntervals;
6812   SmallVector<RegisterUsage, 8> RUs(VFs.size());
6813   SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size());
6814 
6815   LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
6816 
6817   // A lambda that gets the register usage for the given type and VF.
6818   const auto &TTICapture = TTI;
6819   auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned {
6820     if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty))
6821       return 0;
6822     InstructionCost::CostType RegUsage =
6823         *TTICapture.getRegUsageForType(VectorType::get(Ty, VF)).getValue();
6824     assert(RegUsage >= 0 && RegUsage <= std::numeric_limits<unsigned>::max() &&
6825            "Nonsensical values for register usage.");
6826     return RegUsage;
6827   };
6828 
6829   for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) {
6830     Instruction *I = IdxToInstr[i];
6831 
6832     // Remove all of the instructions that end at this location.
6833     InstrList &List = TransposeEnds[i];
6834     for (Instruction *ToRemove : List)
6835       OpenIntervals.erase(ToRemove);
6836 
6837     // Ignore instructions that are never used within the loop.
6838     if (!Ends.count(I))
6839       continue;
6840 
6841     // Skip ignored values.
6842     if (ValuesToIgnore.count(I))
6843       continue;
6844 
6845     // For each VF find the maximum usage of registers.
6846     for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6847       // Count the number of live intervals.
6848       SmallMapVector<unsigned, unsigned, 4> RegUsage;
6849 
6850       if (VFs[j].isScalar()) {
6851         for (auto Inst : OpenIntervals) {
6852           unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6853           if (RegUsage.find(ClassID) == RegUsage.end())
6854             RegUsage[ClassID] = 1;
6855           else
6856             RegUsage[ClassID] += 1;
6857         }
6858       } else {
6859         collectUniformsAndScalars(VFs[j]);
6860         for (auto Inst : OpenIntervals) {
6861           // Skip ignored values for VF > 1.
6862           if (VecValuesToIgnore.count(Inst))
6863             continue;
6864           if (isScalarAfterVectorization(Inst, VFs[j])) {
6865             unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType());
6866             if (RegUsage.find(ClassID) == RegUsage.end())
6867               RegUsage[ClassID] = 1;
6868             else
6869               RegUsage[ClassID] += 1;
6870           } else {
6871             unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType());
6872             if (RegUsage.find(ClassID) == RegUsage.end())
6873               RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]);
6874             else
6875               RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]);
6876           }
6877         }
6878       }
6879 
6880       for (auto& pair : RegUsage) {
6881         if (MaxUsages[j].find(pair.first) != MaxUsages[j].end())
6882           MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second);
6883         else
6884           MaxUsages[j][pair.first] = pair.second;
6885       }
6886     }
6887 
6888     LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
6889                       << OpenIntervals.size() << '\n');
6890 
6891     // Add the current instruction to the list of open intervals.
6892     OpenIntervals.insert(I);
6893   }
6894 
6895   for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6896     SmallMapVector<unsigned, unsigned, 4> Invariant;
6897 
6898     for (auto Inst : LoopInvariants) {
6899       unsigned Usage =
6900           VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]);
6901       unsigned ClassID =
6902           TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType());
6903       if (Invariant.find(ClassID) == Invariant.end())
6904         Invariant[ClassID] = Usage;
6905       else
6906         Invariant[ClassID] += Usage;
6907     }
6908 
6909     LLVM_DEBUG({
6910       dbgs() << "LV(REG): VF = " << VFs[i] << '\n';
6911       dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()
6912              << " item\n";
6913       for (const auto &pair : MaxUsages[i]) {
6914         dbgs() << "LV(REG): RegisterClass: "
6915                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6916                << " registers\n";
6917       }
6918       dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()
6919              << " item\n";
6920       for (const auto &pair : Invariant) {
6921         dbgs() << "LV(REG): RegisterClass: "
6922                << TTI.getRegisterClassName(pair.first) << ", " << pair.second
6923                << " registers\n";
6924       }
6925     });
6926 
6927     RU.LoopInvariantRegs = Invariant;
6928     RU.MaxLocalUsers = MaxUsages[i];
6929     RUs[i] = RU;
6930   }
6931 
6932   return RUs;
6933 }
6934 
6935 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6936   // TODO: Cost model for emulated masked load/store is completely
6937   // broken. This hack guides the cost model to use an artificially
6938   // high enough value to practically disable vectorization with such
6939   // operations, except where previously deployed legality hack allowed
6940   // using very low cost values. This is to avoid regressions coming simply
6941   // from moving "masked load/store" check from legality to cost model.
6942   // Masked Load/Gather emulation was previously never allowed.
6943   // Limited number of Masked Store/Scatter emulation was allowed.
6944   assert(isPredicatedInst(I) &&
6945          "Expecting a scalar emulated instruction");
6946   return isa<LoadInst>(I) ||
6947          (isa<StoreInst>(I) &&
6948           NumPredStores > NumberOfStoresToPredicate);
6949 }
6950 
6951 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) {
6952   // If we aren't vectorizing the loop, or if we've already collected the
6953   // instructions to scalarize, there's nothing to do. Collection may already
6954   // have occurred if we have a user-selected VF and are now computing the
6955   // expected cost for interleaving.
6956   if (VF.isScalar() || VF.isZero() ||
6957       InstsToScalarize.find(VF) != InstsToScalarize.end())
6958     return;
6959 
6960   // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6961   // not profitable to scalarize any instructions, the presence of VF in the
6962   // map will indicate that we've analyzed it already.
6963   ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6964 
6965   // Find all the instructions that are scalar with predication in the loop and
6966   // determine if it would be better to not if-convert the blocks they are in.
6967   // If so, we also record the instructions to scalarize.
6968   for (BasicBlock *BB : TheLoop->blocks()) {
6969     if (!blockNeedsPredicationForAnyReason(BB))
6970       continue;
6971     for (Instruction &I : *BB)
6972       if (isScalarWithPredication(&I)) {
6973         ScalarCostsTy ScalarCosts;
6974         // Do not apply discount if scalable, because that would lead to
6975         // invalid scalarization costs.
6976         // Do not apply discount logic if hacked cost is needed
6977         // for emulated masked memrefs.
6978         if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I) &&
6979             computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6980           ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6981         // Remember that BB will remain after vectorization.
6982         PredicatedBBsAfterVectorization.insert(BB);
6983       }
6984   }
6985 }
6986 
6987 int LoopVectorizationCostModel::computePredInstDiscount(
6988     Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) {
6989   assert(!isUniformAfterVectorization(PredInst, VF) &&
6990          "Instruction marked uniform-after-vectorization will be predicated");
6991 
6992   // Initialize the discount to zero, meaning that the scalar version and the
6993   // vector version cost the same.
6994   InstructionCost Discount = 0;
6995 
6996   // Holds instructions to analyze. The instructions we visit are mapped in
6997   // ScalarCosts. Those instructions are the ones that would be scalarized if
6998   // we find that the scalar version costs less.
6999   SmallVector<Instruction *, 8> Worklist;
7000 
7001   // Returns true if the given instruction can be scalarized.
7002   auto canBeScalarized = [&](Instruction *I) -> bool {
7003     // We only attempt to scalarize instructions forming a single-use chain
7004     // from the original predicated block that would otherwise be vectorized.
7005     // Although not strictly necessary, we give up on instructions we know will
7006     // already be scalar to avoid traversing chains that are unlikely to be
7007     // beneficial.
7008     if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
7009         isScalarAfterVectorization(I, VF))
7010       return false;
7011 
7012     // If the instruction is scalar with predication, it will be analyzed
7013     // separately. We ignore it within the context of PredInst.
7014     if (isScalarWithPredication(I))
7015       return false;
7016 
7017     // If any of the instruction's operands are uniform after vectorization,
7018     // the instruction cannot be scalarized. This prevents, for example, a
7019     // masked load from being scalarized.
7020     //
7021     // We assume we will only emit a value for lane zero of an instruction
7022     // marked uniform after vectorization, rather than VF identical values.
7023     // Thus, if we scalarize an instruction that uses a uniform, we would
7024     // create uses of values corresponding to the lanes we aren't emitting code
7025     // for. This behavior can be changed by allowing getScalarValue to clone
7026     // the lane zero values for uniforms rather than asserting.
7027     for (Use &U : I->operands())
7028       if (auto *J = dyn_cast<Instruction>(U.get()))
7029         if (isUniformAfterVectorization(J, VF))
7030           return false;
7031 
7032     // Otherwise, we can scalarize the instruction.
7033     return true;
7034   };
7035 
7036   // Compute the expected cost discount from scalarizing the entire expression
7037   // feeding the predicated instruction. We currently only consider expressions
7038   // that are single-use instruction chains.
7039   Worklist.push_back(PredInst);
7040   while (!Worklist.empty()) {
7041     Instruction *I = Worklist.pop_back_val();
7042 
7043     // If we've already analyzed the instruction, there's nothing to do.
7044     if (ScalarCosts.find(I) != ScalarCosts.end())
7045       continue;
7046 
7047     // Compute the cost of the vector instruction. Note that this cost already
7048     // includes the scalarization overhead of the predicated instruction.
7049     InstructionCost VectorCost = getInstructionCost(I, VF).first;
7050 
7051     // Compute the cost of the scalarized instruction. This cost is the cost of
7052     // the instruction as if it wasn't if-converted and instead remained in the
7053     // predicated block. We will scale this cost by block probability after
7054     // computing the scalarization overhead.
7055     InstructionCost ScalarCost =
7056         VF.getFixedValue() *
7057         getInstructionCost(I, ElementCount::getFixed(1)).first;
7058 
7059     // Compute the scalarization overhead of needed insertelement instructions
7060     // and phi nodes.
7061     if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
7062       ScalarCost += TTI.getScalarizationOverhead(
7063           cast<VectorType>(ToVectorTy(I->getType(), VF)),
7064           APInt::getAllOnes(VF.getFixedValue()), true, false);
7065       ScalarCost +=
7066           VF.getFixedValue() *
7067           TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput);
7068     }
7069 
7070     // Compute the scalarization overhead of needed extractelement
7071     // instructions. For each of the instruction's operands, if the operand can
7072     // be scalarized, add it to the worklist; otherwise, account for the
7073     // overhead.
7074     for (Use &U : I->operands())
7075       if (auto *J = dyn_cast<Instruction>(U.get())) {
7076         assert(VectorType::isValidElementType(J->getType()) &&
7077                "Instruction has non-scalar type");
7078         if (canBeScalarized(J))
7079           Worklist.push_back(J);
7080         else if (needsExtract(J, VF)) {
7081           ScalarCost += TTI.getScalarizationOverhead(
7082               cast<VectorType>(ToVectorTy(J->getType(), VF)),
7083               APInt::getAllOnes(VF.getFixedValue()), false, true);
7084         }
7085       }
7086 
7087     // Scale the total scalar cost by block probability.
7088     ScalarCost /= getReciprocalPredBlockProb();
7089 
7090     // Compute the discount. A non-negative discount means the vector version
7091     // of the instruction costs more, and scalarizing would be beneficial.
7092     Discount += VectorCost - ScalarCost;
7093     ScalarCosts[I] = ScalarCost;
7094   }
7095 
7096   return *Discount.getValue();
7097 }
7098 
7099 LoopVectorizationCostModel::VectorizationCostTy
7100 LoopVectorizationCostModel::expectedCost(
7101     ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) {
7102   VectorizationCostTy Cost;
7103 
7104   // For each block.
7105   for (BasicBlock *BB : TheLoop->blocks()) {
7106     VectorizationCostTy BlockCost;
7107 
7108     // For each instruction in the old loop.
7109     for (Instruction &I : BB->instructionsWithoutDebug()) {
7110       // Skip ignored values.
7111       if (ValuesToIgnore.count(&I) ||
7112           (VF.isVector() && VecValuesToIgnore.count(&I)))
7113         continue;
7114 
7115       VectorizationCostTy C = getInstructionCost(&I, VF);
7116 
7117       // Check if we should override the cost.
7118       if (C.first.isValid() &&
7119           ForceTargetInstructionCost.getNumOccurrences() > 0)
7120         C.first = InstructionCost(ForceTargetInstructionCost);
7121 
7122       // Keep a list of instructions with invalid costs.
7123       if (Invalid && !C.first.isValid())
7124         Invalid->emplace_back(&I, VF);
7125 
7126       BlockCost.first += C.first;
7127       BlockCost.second |= C.second;
7128       LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
7129                         << " for VF " << VF << " For instruction: " << I
7130                         << '\n');
7131     }
7132 
7133     // If we are vectorizing a predicated block, it will have been
7134     // if-converted. This means that the block's instructions (aside from
7135     // stores and instructions that may divide by zero) will now be
7136     // unconditionally executed. For the scalar case, we may not always execute
7137     // the predicated block, if it is an if-else block. Thus, scale the block's
7138     // cost by the probability of executing it. blockNeedsPredication from
7139     // Legal is used so as to not include all blocks in tail folded loops.
7140     if (VF.isScalar() && Legal->blockNeedsPredication(BB))
7141       BlockCost.first /= getReciprocalPredBlockProb();
7142 
7143     Cost.first += BlockCost.first;
7144     Cost.second |= BlockCost.second;
7145   }
7146 
7147   return Cost;
7148 }
7149 
7150 /// Gets Address Access SCEV after verifying that the access pattern
7151 /// is loop invariant except the induction variable dependence.
7152 ///
7153 /// This SCEV can be sent to the Target in order to estimate the address
7154 /// calculation cost.
7155 static const SCEV *getAddressAccessSCEV(
7156               Value *Ptr,
7157               LoopVectorizationLegality *Legal,
7158               PredicatedScalarEvolution &PSE,
7159               const Loop *TheLoop) {
7160 
7161   auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
7162   if (!Gep)
7163     return nullptr;
7164 
7165   // We are looking for a gep with all loop invariant indices except for one
7166   // which should be an induction variable.
7167   auto SE = PSE.getSE();
7168   unsigned NumOperands = Gep->getNumOperands();
7169   for (unsigned i = 1; i < NumOperands; ++i) {
7170     Value *Opd = Gep->getOperand(i);
7171     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
7172         !Legal->isInductionVariable(Opd))
7173       return nullptr;
7174   }
7175 
7176   // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
7177   return PSE.getSCEV(Ptr);
7178 }
7179 
7180 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
7181   return Legal->hasStride(I->getOperand(0)) ||
7182          Legal->hasStride(I->getOperand(1));
7183 }
7184 
7185 InstructionCost
7186 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
7187                                                         ElementCount VF) {
7188   assert(VF.isVector() &&
7189          "Scalarization cost of instruction implies vectorization.");
7190   if (VF.isScalable())
7191     return InstructionCost::getInvalid();
7192 
7193   Type *ValTy = getLoadStoreType(I);
7194   auto SE = PSE.getSE();
7195 
7196   unsigned AS = getLoadStoreAddressSpace(I);
7197   Value *Ptr = getLoadStorePointerOperand(I);
7198   Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
7199 
7200   // Figure out whether the access is strided and get the stride value
7201   // if it's known in compile time
7202   const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
7203 
7204   // Get the cost of the scalar memory instruction and address computation.
7205   InstructionCost Cost =
7206       VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
7207 
7208   // Don't pass *I here, since it is scalar but will actually be part of a
7209   // vectorized loop where the user of it is a vectorized instruction.
7210   const Align Alignment = getLoadStoreAlignment(I);
7211   Cost += VF.getKnownMinValue() *
7212           TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
7213                               AS, TTI::TCK_RecipThroughput);
7214 
7215   // Get the overhead of the extractelement and insertelement instructions
7216   // we might create due to scalarization.
7217   Cost += getScalarizationOverhead(I, VF);
7218 
7219   // If we have a predicated load/store, it will need extra i1 extracts and
7220   // conditional branches, but may not be executed for each vector lane. Scale
7221   // the cost by the probability of executing the predicated block.
7222   if (isPredicatedInst(I)) {
7223     Cost /= getReciprocalPredBlockProb();
7224 
7225     // Add the cost of an i1 extract and a branch
7226     auto *Vec_i1Ty =
7227         VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF);
7228     Cost += TTI.getScalarizationOverhead(
7229         Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()),
7230         /*Insert=*/false, /*Extract=*/true);
7231     Cost += TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
7232 
7233     if (useEmulatedMaskMemRefHack(I))
7234       // Artificially setting to a high enough value to practically disable
7235       // vectorization with such operations.
7236       Cost = 3000000;
7237   }
7238 
7239   return Cost;
7240 }
7241 
7242 InstructionCost
7243 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
7244                                                     ElementCount VF) {
7245   Type *ValTy = getLoadStoreType(I);
7246   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7247   Value *Ptr = getLoadStorePointerOperand(I);
7248   unsigned AS = getLoadStoreAddressSpace(I);
7249   int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr);
7250   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7251 
7252   assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7253          "Stride should be 1 or -1 for consecutive memory access");
7254   const Align Alignment = getLoadStoreAlignment(I);
7255   InstructionCost Cost = 0;
7256   if (Legal->isMaskRequired(I))
7257     Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7258                                       CostKind);
7259   else
7260     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS,
7261                                 CostKind, I);
7262 
7263   bool Reverse = ConsecutiveStride < 0;
7264   if (Reverse)
7265     Cost +=
7266         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7267   return Cost;
7268 }
7269 
7270 InstructionCost
7271 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
7272                                                 ElementCount VF) {
7273   assert(Legal->isUniformMemOp(*I));
7274 
7275   Type *ValTy = getLoadStoreType(I);
7276   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7277   const Align Alignment = getLoadStoreAlignment(I);
7278   unsigned AS = getLoadStoreAddressSpace(I);
7279   enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7280   if (isa<LoadInst>(I)) {
7281     return TTI.getAddressComputationCost(ValTy) +
7282            TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS,
7283                                CostKind) +
7284            TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
7285   }
7286   StoreInst *SI = cast<StoreInst>(I);
7287 
7288   bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand());
7289   return TTI.getAddressComputationCost(ValTy) +
7290          TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS,
7291                              CostKind) +
7292          (isLoopInvariantStoreValue
7293               ? 0
7294               : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
7295                                        VF.getKnownMinValue() - 1));
7296 }
7297 
7298 InstructionCost
7299 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
7300                                                  ElementCount VF) {
7301   Type *ValTy = getLoadStoreType(I);
7302   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7303   const Align Alignment = getLoadStoreAlignment(I);
7304   const Value *Ptr = getLoadStorePointerOperand(I);
7305 
7306   return TTI.getAddressComputationCost(VectorTy) +
7307          TTI.getGatherScatterOpCost(
7308              I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment,
7309              TargetTransformInfo::TCK_RecipThroughput, I);
7310 }
7311 
7312 InstructionCost
7313 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
7314                                                    ElementCount VF) {
7315   // TODO: Once we have support for interleaving with scalable vectors
7316   // we can calculate the cost properly here.
7317   if (VF.isScalable())
7318     return InstructionCost::getInvalid();
7319 
7320   Type *ValTy = getLoadStoreType(I);
7321   auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF));
7322   unsigned AS = getLoadStoreAddressSpace(I);
7323 
7324   auto Group = getInterleavedAccessGroup(I);
7325   assert(Group && "Fail to get an interleaved access group.");
7326 
7327   unsigned InterleaveFactor = Group->getFactor();
7328   auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
7329 
7330   // Holds the indices of existing members in the interleaved group.
7331   SmallVector<unsigned, 4> Indices;
7332   for (unsigned IF = 0; IF < InterleaveFactor; IF++)
7333     if (Group->getMember(IF))
7334       Indices.push_back(IF);
7335 
7336   // Calculate the cost of the whole interleaved group.
7337   bool UseMaskForGaps =
7338       (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) ||
7339       (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()));
7340   InstructionCost Cost = TTI.getInterleavedMemoryOpCost(
7341       I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(),
7342       AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps);
7343 
7344   if (Group->isReverse()) {
7345     // TODO: Add support for reversed masked interleaved access.
7346     assert(!Legal->isMaskRequired(I) &&
7347            "Reverse masked interleaved access not supported.");
7348     Cost +=
7349         Group->getNumMembers() *
7350         TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, None, 0);
7351   }
7352   return Cost;
7353 }
7354 
7355 Optional<InstructionCost> LoopVectorizationCostModel::getReductionPatternCost(
7356     Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) {
7357   using namespace llvm::PatternMatch;
7358   // Early exit for no inloop reductions
7359   if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty))
7360     return None;
7361   auto *VectorTy = cast<VectorType>(Ty);
7362 
7363   // We are looking for a pattern of, and finding the minimal acceptable cost:
7364   //  reduce(mul(ext(A), ext(B))) or
7365   //  reduce(mul(A, B)) or
7366   //  reduce(ext(A)) or
7367   //  reduce(A).
7368   // The basic idea is that we walk down the tree to do that, finding the root
7369   // reduction instruction in InLoopReductionImmediateChains. From there we find
7370   // the pattern of mul/ext and test the cost of the entire pattern vs the cost
7371   // of the components. If the reduction cost is lower then we return it for the
7372   // reduction instruction and 0 for the other instructions in the pattern. If
7373   // it is not we return an invalid cost specifying the orignal cost method
7374   // should be used.
7375   Instruction *RetI = I;
7376   if (match(RetI, m_ZExtOrSExt(m_Value()))) {
7377     if (!RetI->hasOneUser())
7378       return None;
7379     RetI = RetI->user_back();
7380   }
7381   if (match(RetI, m_Mul(m_Value(), m_Value())) &&
7382       RetI->user_back()->getOpcode() == Instruction::Add) {
7383     if (!RetI->hasOneUser())
7384       return None;
7385     RetI = RetI->user_back();
7386   }
7387 
7388   // Test if the found instruction is a reduction, and if not return an invalid
7389   // cost specifying the parent to use the original cost modelling.
7390   if (!InLoopReductionImmediateChains.count(RetI))
7391     return None;
7392 
7393   // Find the reduction this chain is a part of and calculate the basic cost of
7394   // the reduction on its own.
7395   Instruction *LastChain = InLoopReductionImmediateChains[RetI];
7396   Instruction *ReductionPhi = LastChain;
7397   while (!isa<PHINode>(ReductionPhi))
7398     ReductionPhi = InLoopReductionImmediateChains[ReductionPhi];
7399 
7400   const RecurrenceDescriptor &RdxDesc =
7401       Legal->getReductionVars()[cast<PHINode>(ReductionPhi)];
7402 
7403   InstructionCost BaseCost = TTI.getArithmeticReductionCost(
7404       RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind);
7405 
7406   // For a call to the llvm.fmuladd intrinsic we need to add the cost of a
7407   // normal fmul instruction to the cost of the fadd reduction.
7408   if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd)
7409     BaseCost +=
7410         TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind);
7411 
7412   // If we're using ordered reductions then we can just return the base cost
7413   // here, since getArithmeticReductionCost calculates the full ordered
7414   // reduction cost when FP reassociation is not allowed.
7415   if (useOrderedReductions(RdxDesc))
7416     return BaseCost;
7417 
7418   // Get the operand that was not the reduction chain and match it to one of the
7419   // patterns, returning the better cost if it is found.
7420   Instruction *RedOp = RetI->getOperand(1) == LastChain
7421                            ? dyn_cast<Instruction>(RetI->getOperand(0))
7422                            : dyn_cast<Instruction>(RetI->getOperand(1));
7423 
7424   VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy);
7425 
7426   Instruction *Op0, *Op1;
7427   if (RedOp &&
7428       match(RedOp,
7429             m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) &&
7430       match(Op0, m_ZExtOrSExt(m_Value())) &&
7431       Op0->getOpcode() == Op1->getOpcode() &&
7432       Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7433       !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) &&
7434       (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) {
7435 
7436     // Matched reduce(ext(mul(ext(A), ext(B)))
7437     // Note that the extend opcodes need to all match, or if A==B they will have
7438     // been converted to zext(mul(sext(A), sext(A))) as it is known positive,
7439     // which is equally fine.
7440     bool IsUnsigned = isa<ZExtInst>(Op0);
7441     auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7442     auto *MulType = VectorType::get(Op0->getType(), VectorTy);
7443 
7444     InstructionCost ExtCost =
7445         TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType,
7446                              TTI::CastContextHint::None, CostKind, Op0);
7447     InstructionCost MulCost =
7448         TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind);
7449     InstructionCost Ext2Cost =
7450         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType,
7451                              TTI::CastContextHint::None, CostKind, RedOp);
7452 
7453     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7454         /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7455         CostKind);
7456 
7457     if (RedCost.isValid() &&
7458         RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost)
7459       return I == RetI ? RedCost : 0;
7460   } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) &&
7461              !TheLoop->isLoopInvariant(RedOp)) {
7462     // Matched reduce(ext(A))
7463     bool IsUnsigned = isa<ZExtInst>(RedOp);
7464     auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy);
7465     InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7466         /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7467         CostKind);
7468 
7469     InstructionCost ExtCost =
7470         TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType,
7471                              TTI::CastContextHint::None, CostKind, RedOp);
7472     if (RedCost.isValid() && RedCost < BaseCost + ExtCost)
7473       return I == RetI ? RedCost : 0;
7474   } else if (RedOp &&
7475              match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) {
7476     if (match(Op0, m_ZExtOrSExt(m_Value())) &&
7477         Op0->getOpcode() == Op1->getOpcode() &&
7478         Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() &&
7479         !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) {
7480       bool IsUnsigned = isa<ZExtInst>(Op0);
7481       auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy);
7482       // Matched reduce(mul(ext, ext))
7483       InstructionCost ExtCost =
7484           TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType,
7485                                TTI::CastContextHint::None, CostKind, Op0);
7486       InstructionCost MulCost =
7487           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7488 
7489       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7490           /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType,
7491           CostKind);
7492 
7493       if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost)
7494         return I == RetI ? RedCost : 0;
7495     } else if (!match(I, m_ZExtOrSExt(m_Value()))) {
7496       // Matched reduce(mul())
7497       InstructionCost MulCost =
7498           TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
7499 
7500       InstructionCost RedCost = TTI.getExtendedAddReductionCost(
7501           /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy,
7502           CostKind);
7503 
7504       if (RedCost.isValid() && RedCost < MulCost + BaseCost)
7505         return I == RetI ? RedCost : 0;
7506     }
7507   }
7508 
7509   return I == RetI ? Optional<InstructionCost>(BaseCost) : None;
7510 }
7511 
7512 InstructionCost
7513 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
7514                                                      ElementCount VF) {
7515   // Calculate scalar cost only. Vectorization cost should be ready at this
7516   // moment.
7517   if (VF.isScalar()) {
7518     Type *ValTy = getLoadStoreType(I);
7519     const Align Alignment = getLoadStoreAlignment(I);
7520     unsigned AS = getLoadStoreAddressSpace(I);
7521 
7522     return TTI.getAddressComputationCost(ValTy) +
7523            TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS,
7524                                TTI::TCK_RecipThroughput, I);
7525   }
7526   return getWideningCost(I, VF);
7527 }
7528 
7529 LoopVectorizationCostModel::VectorizationCostTy
7530 LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7531                                                ElementCount VF) {
7532   // If we know that this instruction will remain uniform, check the cost of
7533   // the scalar version.
7534   if (isUniformAfterVectorization(I, VF))
7535     VF = ElementCount::getFixed(1);
7536 
7537   if (VF.isVector() && isProfitableToScalarize(I, VF))
7538     return VectorizationCostTy(InstsToScalarize[VF][I], false);
7539 
7540   // Forced scalars do not have any scalarization overhead.
7541   auto ForcedScalar = ForcedScalars.find(VF);
7542   if (VF.isVector() && ForcedScalar != ForcedScalars.end()) {
7543     auto InstSet = ForcedScalar->second;
7544     if (InstSet.count(I))
7545       return VectorizationCostTy(
7546           (getInstructionCost(I, ElementCount::getFixed(1)).first *
7547            VF.getKnownMinValue()),
7548           false);
7549   }
7550 
7551   Type *VectorTy;
7552   InstructionCost C = getInstructionCost(I, VF, VectorTy);
7553 
7554   bool TypeNotScalarized = false;
7555   if (VF.isVector() && VectorTy->isVectorTy()) {
7556     unsigned NumParts = TTI.getNumberOfParts(VectorTy);
7557     if (NumParts)
7558       TypeNotScalarized = NumParts < VF.getKnownMinValue();
7559     else
7560       C = InstructionCost::getInvalid();
7561   }
7562   return VectorizationCostTy(C, TypeNotScalarized);
7563 }
7564 
7565 InstructionCost
7566 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
7567                                                      ElementCount VF) const {
7568 
7569   // There is no mechanism yet to create a scalable scalarization loop,
7570   // so this is currently Invalid.
7571   if (VF.isScalable())
7572     return InstructionCost::getInvalid();
7573 
7574   if (VF.isScalar())
7575     return 0;
7576 
7577   InstructionCost Cost = 0;
7578   Type *RetTy = ToVectorTy(I->getType(), VF);
7579   if (!RetTy->isVoidTy() &&
7580       (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore()))
7581     Cost += TTI.getScalarizationOverhead(
7582         cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), true,
7583         false);
7584 
7585   // Some targets keep addresses scalar.
7586   if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing())
7587     return Cost;
7588 
7589   // Some targets support efficient element stores.
7590   if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore())
7591     return Cost;
7592 
7593   // Collect operands to consider.
7594   CallInst *CI = dyn_cast<CallInst>(I);
7595   Instruction::op_range Ops = CI ? CI->args() : I->operands();
7596 
7597   // Skip operands that do not require extraction/scalarization and do not incur
7598   // any overhead.
7599   SmallVector<Type *> Tys;
7600   for (auto *V : filterExtractingOperands(Ops, VF))
7601     Tys.push_back(MaybeVectorizeType(V->getType(), VF));
7602   return Cost + TTI.getOperandsScalarizationOverhead(
7603                     filterExtractingOperands(Ops, VF), Tys);
7604 }
7605 
7606 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) {
7607   if (VF.isScalar())
7608     return;
7609   NumPredStores = 0;
7610   for (BasicBlock *BB : TheLoop->blocks()) {
7611     // For each instruction in the old loop.
7612     for (Instruction &I : *BB) {
7613       Value *Ptr =  getLoadStorePointerOperand(&I);
7614       if (!Ptr)
7615         continue;
7616 
7617       // TODO: We should generate better code and update the cost model for
7618       // predicated uniform stores. Today they are treated as any other
7619       // predicated store (see added test cases in
7620       // invariant-store-vectorization.ll).
7621       if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
7622         NumPredStores++;
7623 
7624       if (Legal->isUniformMemOp(I)) {
7625         // TODO: Avoid replicating loads and stores instead of
7626         // relying on instcombine to remove them.
7627         // Load: Scalar load + broadcast
7628         // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract
7629         InstructionCost Cost;
7630         if (isa<StoreInst>(&I) && VF.isScalable() &&
7631             isLegalGatherOrScatter(&I)) {
7632           Cost = getGatherScatterCost(&I, VF);
7633           setWideningDecision(&I, VF, CM_GatherScatter, Cost);
7634         } else {
7635           assert((isa<LoadInst>(&I) || !VF.isScalable()) &&
7636                  "Cannot yet scalarize uniform stores");
7637           Cost = getUniformMemOpCost(&I, VF);
7638           setWideningDecision(&I, VF, CM_Scalarize, Cost);
7639         }
7640         continue;
7641       }
7642 
7643       // We assume that widening is the best solution when possible.
7644       if (memoryInstructionCanBeWidened(&I, VF)) {
7645         InstructionCost Cost = getConsecutiveMemOpCost(&I, VF);
7646         int ConsecutiveStride = Legal->isConsecutivePtr(
7647             getLoadStoreType(&I), getLoadStorePointerOperand(&I));
7648         assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
7649                "Expected consecutive stride.");
7650         InstWidening Decision =
7651             ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
7652         setWideningDecision(&I, VF, Decision, Cost);
7653         continue;
7654       }
7655 
7656       // Choose between Interleaving, Gather/Scatter or Scalarization.
7657       InstructionCost InterleaveCost = InstructionCost::getInvalid();
7658       unsigned NumAccesses = 1;
7659       if (isAccessInterleaved(&I)) {
7660         auto Group = getInterleavedAccessGroup(&I);
7661         assert(Group && "Fail to get an interleaved access group.");
7662 
7663         // Make one decision for the whole group.
7664         if (getWideningDecision(&I, VF) != CM_Unknown)
7665           continue;
7666 
7667         NumAccesses = Group->getNumMembers();
7668         if (interleavedAccessCanBeWidened(&I, VF))
7669           InterleaveCost = getInterleaveGroupCost(&I, VF);
7670       }
7671 
7672       InstructionCost GatherScatterCost =
7673           isLegalGatherOrScatter(&I)
7674               ? getGatherScatterCost(&I, VF) * NumAccesses
7675               : InstructionCost::getInvalid();
7676 
7677       InstructionCost ScalarizationCost =
7678           getMemInstScalarizationCost(&I, VF) * NumAccesses;
7679 
7680       // Choose better solution for the current VF,
7681       // write down this decision and use it during vectorization.
7682       InstructionCost Cost;
7683       InstWidening Decision;
7684       if (InterleaveCost <= GatherScatterCost &&
7685           InterleaveCost < ScalarizationCost) {
7686         Decision = CM_Interleave;
7687         Cost = InterleaveCost;
7688       } else if (GatherScatterCost < ScalarizationCost) {
7689         Decision = CM_GatherScatter;
7690         Cost = GatherScatterCost;
7691       } else {
7692         Decision = CM_Scalarize;
7693         Cost = ScalarizationCost;
7694       }
7695       // If the instructions belongs to an interleave group, the whole group
7696       // receives the same decision. The whole group receives the cost, but
7697       // the cost will actually be assigned to one instruction.
7698       if (auto Group = getInterleavedAccessGroup(&I))
7699         setWideningDecision(Group, VF, Decision, Cost);
7700       else
7701         setWideningDecision(&I, VF, Decision, Cost);
7702     }
7703   }
7704 
7705   // Make sure that any load of address and any other address computation
7706   // remains scalar unless there is gather/scatter support. This avoids
7707   // inevitable extracts into address registers, and also has the benefit of
7708   // activating LSR more, since that pass can't optimize vectorized
7709   // addresses.
7710   if (TTI.prefersVectorizedAddressing())
7711     return;
7712 
7713   // Start with all scalar pointer uses.
7714   SmallPtrSet<Instruction *, 8> AddrDefs;
7715   for (BasicBlock *BB : TheLoop->blocks())
7716     for (Instruction &I : *BB) {
7717       Instruction *PtrDef =
7718         dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7719       if (PtrDef && TheLoop->contains(PtrDef) &&
7720           getWideningDecision(&I, VF) != CM_GatherScatter)
7721         AddrDefs.insert(PtrDef);
7722     }
7723 
7724   // Add all instructions used to generate the addresses.
7725   SmallVector<Instruction *, 4> Worklist;
7726   append_range(Worklist, AddrDefs);
7727   while (!Worklist.empty()) {
7728     Instruction *I = Worklist.pop_back_val();
7729     for (auto &Op : I->operands())
7730       if (auto *InstOp = dyn_cast<Instruction>(Op))
7731         if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7732             AddrDefs.insert(InstOp).second)
7733           Worklist.push_back(InstOp);
7734   }
7735 
7736   for (auto *I : AddrDefs) {
7737     if (isa<LoadInst>(I)) {
7738       // Setting the desired widening decision should ideally be handled in
7739       // by cost functions, but since this involves the task of finding out
7740       // if the loaded register is involved in an address computation, it is
7741       // instead changed here when we know this is the case.
7742       InstWidening Decision = getWideningDecision(I, VF);
7743       if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7744         // Scalarize a widened load of address.
7745         setWideningDecision(
7746             I, VF, CM_Scalarize,
7747             (VF.getKnownMinValue() *
7748              getMemoryInstructionCost(I, ElementCount::getFixed(1))));
7749       else if (auto Group = getInterleavedAccessGroup(I)) {
7750         // Scalarize an interleave group of address loads.
7751         for (unsigned I = 0; I < Group->getFactor(); ++I) {
7752           if (Instruction *Member = Group->getMember(I))
7753             setWideningDecision(
7754                 Member, VF, CM_Scalarize,
7755                 (VF.getKnownMinValue() *
7756                  getMemoryInstructionCost(Member, ElementCount::getFixed(1))));
7757         }
7758       }
7759     } else
7760       // Make sure I gets scalarized and a cost estimate without
7761       // scalarization overhead.
7762       ForcedScalars[VF].insert(I);
7763   }
7764 }
7765 
7766 InstructionCost
7767 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF,
7768                                                Type *&VectorTy) {
7769   Type *RetTy = I->getType();
7770   if (canTruncateToMinimalBitwidth(I, VF))
7771     RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7772   auto SE = PSE.getSE();
7773   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
7774 
7775   auto hasSingleCopyAfterVectorization = [this](Instruction *I,
7776                                                 ElementCount VF) -> bool {
7777     if (VF.isScalar())
7778       return true;
7779 
7780     auto Scalarized = InstsToScalarize.find(VF);
7781     assert(Scalarized != InstsToScalarize.end() &&
7782            "VF not yet analyzed for scalarization profitability");
7783     return !Scalarized->second.count(I) &&
7784            llvm::all_of(I->users(), [&](User *U) {
7785              auto *UI = cast<Instruction>(U);
7786              return !Scalarized->second.count(UI);
7787            });
7788   };
7789   (void) hasSingleCopyAfterVectorization;
7790 
7791   if (isScalarAfterVectorization(I, VF)) {
7792     // With the exception of GEPs and PHIs, after scalarization there should
7793     // only be one copy of the instruction generated in the loop. This is
7794     // because the VF is either 1, or any instructions that need scalarizing
7795     // have already been dealt with by the the time we get here. As a result,
7796     // it means we don't have to multiply the instruction cost by VF.
7797     assert(I->getOpcode() == Instruction::GetElementPtr ||
7798            I->getOpcode() == Instruction::PHI ||
7799            (I->getOpcode() == Instruction::BitCast &&
7800             I->getType()->isPointerTy()) ||
7801            hasSingleCopyAfterVectorization(I, VF));
7802     VectorTy = RetTy;
7803   } else
7804     VectorTy = ToVectorTy(RetTy, VF);
7805 
7806   // TODO: We need to estimate the cost of intrinsic calls.
7807   switch (I->getOpcode()) {
7808   case Instruction::GetElementPtr:
7809     // We mark this instruction as zero-cost because the cost of GEPs in
7810     // vectorized code depends on whether the corresponding memory instruction
7811     // is scalarized or not. Therefore, we handle GEPs with the memory
7812     // instruction cost.
7813     return 0;
7814   case Instruction::Br: {
7815     // In cases of scalarized and predicated instructions, there will be VF
7816     // predicated blocks in the vectorized loop. Each branch around these
7817     // blocks requires also an extract of its vector compare i1 element.
7818     bool ScalarPredicatedBB = false;
7819     BranchInst *BI = cast<BranchInst>(I);
7820     if (VF.isVector() && BI->isConditional() &&
7821         (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7822          PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7823       ScalarPredicatedBB = true;
7824 
7825     if (ScalarPredicatedBB) {
7826       // Not possible to scalarize scalable vector with predicated instructions.
7827       if (VF.isScalable())
7828         return InstructionCost::getInvalid();
7829       // Return cost for branches around scalarized and predicated blocks.
7830       auto *Vec_i1Ty =
7831           VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7832       return (
7833           TTI.getScalarizationOverhead(
7834               Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), false, true) +
7835           (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue()));
7836     } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar())
7837       // The back-edge branch will remain, as will all scalar branches.
7838       return TTI.getCFInstrCost(Instruction::Br, CostKind);
7839     else
7840       // This branch will be eliminated by if-conversion.
7841       return 0;
7842     // Note: We currently assume zero cost for an unconditional branch inside
7843     // a predicated block since it will become a fall-through, although we
7844     // may decide in the future to call TTI for all branches.
7845   }
7846   case Instruction::PHI: {
7847     auto *Phi = cast<PHINode>(I);
7848 
7849     // First-order recurrences are replaced by vector shuffles inside the loop.
7850     // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type.
7851     if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi))
7852       return TTI.getShuffleCost(
7853           TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy),
7854           None, VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1));
7855 
7856     // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7857     // converted into select instructions. We require N - 1 selects per phi
7858     // node, where N is the number of incoming values.
7859     if (VF.isVector() && Phi->getParent() != TheLoop->getHeader())
7860       return (Phi->getNumIncomingValues() - 1) *
7861              TTI.getCmpSelInstrCost(
7862                  Instruction::Select, ToVectorTy(Phi->getType(), VF),
7863                  ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF),
7864                  CmpInst::BAD_ICMP_PREDICATE, CostKind);
7865 
7866     return TTI.getCFInstrCost(Instruction::PHI, CostKind);
7867   }
7868   case Instruction::UDiv:
7869   case Instruction::SDiv:
7870   case Instruction::URem:
7871   case Instruction::SRem:
7872     // If we have a predicated instruction, it may not be executed for each
7873     // vector lane. Get the scalarization cost and scale this amount by the
7874     // probability of executing the predicated block. If the instruction is not
7875     // predicated, we fall through to the next case.
7876     if (VF.isVector() && isScalarWithPredication(I)) {
7877       InstructionCost Cost = 0;
7878 
7879       // These instructions have a non-void type, so account for the phi nodes
7880       // that we will create. This cost is likely to be zero. The phi node
7881       // cost, if any, should be scaled by the block probability because it
7882       // models a copy at the end of each predicated block.
7883       Cost += VF.getKnownMinValue() *
7884               TTI.getCFInstrCost(Instruction::PHI, CostKind);
7885 
7886       // The cost of the non-predicated instruction.
7887       Cost += VF.getKnownMinValue() *
7888               TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind);
7889 
7890       // The cost of insertelement and extractelement instructions needed for
7891       // scalarization.
7892       Cost += getScalarizationOverhead(I, VF);
7893 
7894       // Scale the cost by the probability of executing the predicated blocks.
7895       // This assumes the predicated block for each vector lane is equally
7896       // likely.
7897       return Cost / getReciprocalPredBlockProb();
7898     }
7899     LLVM_FALLTHROUGH;
7900   case Instruction::Add:
7901   case Instruction::FAdd:
7902   case Instruction::Sub:
7903   case Instruction::FSub:
7904   case Instruction::Mul:
7905   case Instruction::FMul:
7906   case Instruction::FDiv:
7907   case Instruction::FRem:
7908   case Instruction::Shl:
7909   case Instruction::LShr:
7910   case Instruction::AShr:
7911   case Instruction::And:
7912   case Instruction::Or:
7913   case Instruction::Xor: {
7914     // Since we will replace the stride by 1 the multiplication should go away.
7915     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7916       return 0;
7917 
7918     // Detect reduction patterns
7919     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
7920       return *RedCost;
7921 
7922     // Certain instructions can be cheaper to vectorize if they have a constant
7923     // second vector operand. One example of this are shifts on x86.
7924     Value *Op2 = I->getOperand(1);
7925     TargetTransformInfo::OperandValueProperties Op2VP;
7926     TargetTransformInfo::OperandValueKind Op2VK =
7927         TTI.getOperandInfo(Op2, Op2VP);
7928     if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2))
7929       Op2VK = TargetTransformInfo::OK_UniformValue;
7930 
7931     SmallVector<const Value *, 4> Operands(I->operand_values());
7932     return TTI.getArithmeticInstrCost(
7933         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7934         Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I);
7935   }
7936   case Instruction::FNeg: {
7937     return TTI.getArithmeticInstrCost(
7938         I->getOpcode(), VectorTy, CostKind, TargetTransformInfo::OK_AnyValue,
7939         TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None,
7940         TargetTransformInfo::OP_None, I->getOperand(0), I);
7941   }
7942   case Instruction::Select: {
7943     SelectInst *SI = cast<SelectInst>(I);
7944     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7945     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7946 
7947     const Value *Op0, *Op1;
7948     using namespace llvm::PatternMatch;
7949     if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) ||
7950                         match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) {
7951       // select x, y, false --> x & y
7952       // select x, true, y --> x | y
7953       TTI::OperandValueProperties Op1VP = TTI::OP_None;
7954       TTI::OperandValueProperties Op2VP = TTI::OP_None;
7955       TTI::OperandValueKind Op1VK = TTI::getOperandInfo(Op0, Op1VP);
7956       TTI::OperandValueKind Op2VK = TTI::getOperandInfo(Op1, Op2VP);
7957       assert(Op0->getType()->getScalarSizeInBits() == 1 &&
7958               Op1->getType()->getScalarSizeInBits() == 1);
7959 
7960       SmallVector<const Value *, 2> Operands{Op0, Op1};
7961       return TTI.getArithmeticInstrCost(
7962           match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy,
7963           CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I);
7964     }
7965 
7966     Type *CondTy = SI->getCondition()->getType();
7967     if (!ScalarCond)
7968       CondTy = VectorType::get(CondTy, VF);
7969     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy,
7970                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7971   }
7972   case Instruction::ICmp:
7973   case Instruction::FCmp: {
7974     Type *ValTy = I->getOperand(0)->getType();
7975     Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7976     if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7977       ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7978     VectorTy = ToVectorTy(ValTy, VF);
7979     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr,
7980                                   CmpInst::BAD_ICMP_PREDICATE, CostKind, I);
7981   }
7982   case Instruction::Store:
7983   case Instruction::Load: {
7984     ElementCount Width = VF;
7985     if (Width.isVector()) {
7986       InstWidening Decision = getWideningDecision(I, Width);
7987       assert(Decision != CM_Unknown &&
7988              "CM decision should be taken at this point");
7989       if (Decision == CM_Scalarize)
7990         Width = ElementCount::getFixed(1);
7991     }
7992     VectorTy = ToVectorTy(getLoadStoreType(I), Width);
7993     return getMemoryInstructionCost(I, VF);
7994   }
7995   case Instruction::BitCast:
7996     if (I->getType()->isPointerTy())
7997       return 0;
7998     LLVM_FALLTHROUGH;
7999   case Instruction::ZExt:
8000   case Instruction::SExt:
8001   case Instruction::FPToUI:
8002   case Instruction::FPToSI:
8003   case Instruction::FPExt:
8004   case Instruction::PtrToInt:
8005   case Instruction::IntToPtr:
8006   case Instruction::SIToFP:
8007   case Instruction::UIToFP:
8008   case Instruction::Trunc:
8009   case Instruction::FPTrunc: {
8010     // Computes the CastContextHint from a Load/Store instruction.
8011     auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint {
8012       assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8013              "Expected a load or a store!");
8014 
8015       if (VF.isScalar() || !TheLoop->contains(I))
8016         return TTI::CastContextHint::Normal;
8017 
8018       switch (getWideningDecision(I, VF)) {
8019       case LoopVectorizationCostModel::CM_GatherScatter:
8020         return TTI::CastContextHint::GatherScatter;
8021       case LoopVectorizationCostModel::CM_Interleave:
8022         return TTI::CastContextHint::Interleave;
8023       case LoopVectorizationCostModel::CM_Scalarize:
8024       case LoopVectorizationCostModel::CM_Widen:
8025         return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked
8026                                         : TTI::CastContextHint::Normal;
8027       case LoopVectorizationCostModel::CM_Widen_Reverse:
8028         return TTI::CastContextHint::Reversed;
8029       case LoopVectorizationCostModel::CM_Unknown:
8030         llvm_unreachable("Instr did not go through cost modelling?");
8031       }
8032 
8033       llvm_unreachable("Unhandled case!");
8034     };
8035 
8036     unsigned Opcode = I->getOpcode();
8037     TTI::CastContextHint CCH = TTI::CastContextHint::None;
8038     // For Trunc, the context is the only user, which must be a StoreInst.
8039     if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) {
8040       if (I->hasOneUse())
8041         if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin()))
8042           CCH = ComputeCCH(Store);
8043     }
8044     // For Z/Sext, the context is the operand, which must be a LoadInst.
8045     else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt ||
8046              Opcode == Instruction::FPExt) {
8047       if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0)))
8048         CCH = ComputeCCH(Load);
8049     }
8050 
8051     // We optimize the truncation of induction variables having constant
8052     // integer steps. The cost of these truncations is the same as the scalar
8053     // operation.
8054     if (isOptimizableIVTruncate(I, VF)) {
8055       auto *Trunc = cast<TruncInst>(I);
8056       return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
8057                                   Trunc->getSrcTy(), CCH, CostKind, Trunc);
8058     }
8059 
8060     // Detect reduction patterns
8061     if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
8062       return *RedCost;
8063 
8064     Type *SrcScalarTy = I->getOperand(0)->getType();
8065     Type *SrcVecTy =
8066         VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
8067     if (canTruncateToMinimalBitwidth(I, VF)) {
8068       // This cast is going to be shrunk. This may remove the cast or it might
8069       // turn it into slightly different cast. For example, if MinBW == 16,
8070       // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
8071       //
8072       // Calculate the modified src and dest types.
8073       Type *MinVecTy = VectorTy;
8074       if (Opcode == Instruction::Trunc) {
8075         SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
8076         VectorTy =
8077             largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
8078       } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
8079         SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
8080         VectorTy =
8081             smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
8082       }
8083     }
8084 
8085     return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I);
8086   }
8087   case Instruction::Call: {
8088     if (RecurrenceDescriptor::isFMulAddIntrinsic(I))
8089       if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind))
8090         return *RedCost;
8091     bool NeedToScalarize;
8092     CallInst *CI = cast<CallInst>(I);
8093     InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize);
8094     if (getVectorIntrinsicIDForCall(CI, TLI)) {
8095       InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF);
8096       return std::min(CallCost, IntrinsicCost);
8097     }
8098     return CallCost;
8099   }
8100   case Instruction::ExtractValue:
8101     return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput);
8102   case Instruction::Alloca:
8103     // We cannot easily widen alloca to a scalable alloca, as
8104     // the result would need to be a vector of pointers.
8105     if (VF.isScalable())
8106       return InstructionCost::getInvalid();
8107     LLVM_FALLTHROUGH;
8108   default:
8109     // This opcode is unknown. Assume that it is the same as 'mul'.
8110     return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind);
8111   } // end of switch.
8112 }
8113 
8114 char LoopVectorize::ID = 0;
8115 
8116 static const char lv_name[] = "Loop Vectorization";
8117 
8118 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
8119 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
8120 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
8121 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
8122 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
8123 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
8124 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
8125 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
8126 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
8127 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
8128 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
8129 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
8130 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
8131 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
8132 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)
8133 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
8134 
8135 namespace llvm {
8136 
8137 Pass *createLoopVectorizePass() { return new LoopVectorize(); }
8138 
8139 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced,
8140                               bool VectorizeOnlyWhenForced) {
8141   return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced);
8142 }
8143 
8144 } // end namespace llvm
8145 
8146 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
8147   // Check if the pointer operand of a load or store instruction is
8148   // consecutive.
8149   if (auto *Ptr = getLoadStorePointerOperand(Inst))
8150     return Legal->isConsecutivePtr(getLoadStoreType(Inst), Ptr);
8151   return false;
8152 }
8153 
8154 void LoopVectorizationCostModel::collectValuesToIgnore() {
8155   // Ignore ephemeral values.
8156   CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
8157 
8158   // Ignore type-promoting instructions we identified during reduction
8159   // detection.
8160   for (auto &Reduction : Legal->getReductionVars()) {
8161     RecurrenceDescriptor &RedDes = Reduction.second;
8162     const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
8163     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8164   }
8165   // Ignore type-casting instructions we identified during induction
8166   // detection.
8167   for (auto &Induction : Legal->getInductionVars()) {
8168     InductionDescriptor &IndDes = Induction.second;
8169     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8170     VecValuesToIgnore.insert(Casts.begin(), Casts.end());
8171   }
8172 }
8173 
8174 void LoopVectorizationCostModel::collectInLoopReductions() {
8175   for (auto &Reduction : Legal->getReductionVars()) {
8176     PHINode *Phi = Reduction.first;
8177     RecurrenceDescriptor &RdxDesc = Reduction.second;
8178 
8179     // We don't collect reductions that are type promoted (yet).
8180     if (RdxDesc.getRecurrenceType() != Phi->getType())
8181       continue;
8182 
8183     // If the target would prefer this reduction to happen "in-loop", then we
8184     // want to record it as such.
8185     unsigned Opcode = RdxDesc.getOpcode();
8186     if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) &&
8187         !TTI.preferInLoopReduction(Opcode, Phi->getType(),
8188                                    TargetTransformInfo::ReductionFlags()))
8189       continue;
8190 
8191     // Check that we can correctly put the reductions into the loop, by
8192     // finding the chain of operations that leads from the phi to the loop
8193     // exit value.
8194     SmallVector<Instruction *, 4> ReductionOperations =
8195         RdxDesc.getReductionOpChain(Phi, TheLoop);
8196     bool InLoop = !ReductionOperations.empty();
8197     if (InLoop) {
8198       InLoopReductionChains[Phi] = ReductionOperations;
8199       // Add the elements to InLoopReductionImmediateChains for cost modelling.
8200       Instruction *LastChain = Phi;
8201       for (auto *I : ReductionOperations) {
8202         InLoopReductionImmediateChains[I] = LastChain;
8203         LastChain = I;
8204       }
8205     }
8206     LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")
8207                       << " reduction for phi: " << *Phi << "\n");
8208   }
8209 }
8210 
8211 // TODO: we could return a pair of values that specify the max VF and
8212 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of
8213 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment
8214 // doesn't have a cost model that can choose which plan to execute if
8215 // more than one is generated.
8216 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits,
8217                                  LoopVectorizationCostModel &CM) {
8218   unsigned WidestType;
8219   std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes();
8220   return WidestVectorRegBits / WidestType;
8221 }
8222 
8223 VectorizationFactor
8224 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) {
8225   assert(!UserVF.isScalable() && "scalable vectors not yet supported");
8226   ElementCount VF = UserVF;
8227   // Outer loop handling: They may require CFG and instruction level
8228   // transformations before even evaluating whether vectorization is profitable.
8229   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
8230   // the vectorization pipeline.
8231   if (!OrigLoop->isInnermost()) {
8232     // If the user doesn't provide a vectorization factor, determine a
8233     // reasonable one.
8234     if (UserVF.isZero()) {
8235       VF = ElementCount::getFixed(determineVPlanVF(
8236           TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
8237               .getFixedSize(),
8238           CM));
8239       LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n");
8240 
8241       // Make sure we have a VF > 1 for stress testing.
8242       if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) {
8243         LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "
8244                           << "overriding computed VF.\n");
8245         VF = ElementCount::getFixed(4);
8246       }
8247     }
8248     assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
8249     assert(isPowerOf2_32(VF.getKnownMinValue()) &&
8250            "VF needs to be a power of two");
8251     LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")
8252                       << "VF " << VF << " to build VPlans.\n");
8253     buildVPlans(VF, VF);
8254 
8255     // For VPlan build stress testing, we bail out after VPlan construction.
8256     if (VPlanBuildStressTest)
8257       return VectorizationFactor::Disabled();
8258 
8259     return {VF, 0 /*Cost*/};
8260   }
8261 
8262   LLVM_DEBUG(
8263       dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
8264                 "VPlan-native path.\n");
8265   return VectorizationFactor::Disabled();
8266 }
8267 
8268 Optional<VectorizationFactor>
8269 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
8270   assert(OrigLoop->isInnermost() && "Inner loop expected.");
8271   FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC);
8272   if (!MaxFactors) // Cases that should not to be vectorized nor interleaved.
8273     return None;
8274 
8275   // Invalidate interleave groups if all blocks of loop will be predicated.
8276   if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) &&
8277       !useMaskedInterleavedAccesses(*TTI)) {
8278     LLVM_DEBUG(
8279         dbgs()
8280         << "LV: Invalidate all interleaved groups due to fold-tail by masking "
8281            "which requires masked-interleaved support.\n");
8282     if (CM.InterleaveInfo.invalidateGroups())
8283       // Invalidating interleave groups also requires invalidating all decisions
8284       // based on them, which includes widening decisions and uniform and scalar
8285       // values.
8286       CM.invalidateCostModelingDecisions();
8287   }
8288 
8289   ElementCount MaxUserVF =
8290       UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
8291   bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
8292   if (!UserVF.isZero() && UserVFIsLegal) {
8293     assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
8294            "VF needs to be a power of two");
8295     // Collect the instructions (and their associated costs) that will be more
8296     // profitable to scalarize.
8297     if (CM.selectUserVectorizationFactor(UserVF)) {
8298       LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
8299       CM.collectInLoopReductions();
8300       buildVPlansWithVPRecipes(UserVF, UserVF);
8301       LLVM_DEBUG(printPlans(dbgs()));
8302       return {{UserVF, 0}};
8303     } else
8304       reportVectorizationInfo("UserVF ignored because of invalid costs.",
8305                               "InvalidCost", ORE, OrigLoop);
8306   }
8307 
8308   // Populate the set of Vectorization Factor Candidates.
8309   ElementCountSet VFCandidates;
8310   for (auto VF = ElementCount::getFixed(1);
8311        ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2)
8312     VFCandidates.insert(VF);
8313   for (auto VF = ElementCount::getScalable(1);
8314        ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2)
8315     VFCandidates.insert(VF);
8316 
8317   for (const auto &VF : VFCandidates) {
8318     // Collect Uniform and Scalar instructions after vectorization with VF.
8319     CM.collectUniformsAndScalars(VF);
8320 
8321     // Collect the instructions (and their associated costs) that will be more
8322     // profitable to scalarize.
8323     if (VF.isVector())
8324       CM.collectInstsToScalarize(VF);
8325   }
8326 
8327   CM.collectInLoopReductions();
8328   buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF);
8329   buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF);
8330 
8331   LLVM_DEBUG(printPlans(dbgs()));
8332   if (!MaxFactors.hasVector())
8333     return VectorizationFactor::Disabled();
8334 
8335   // Select the optimal vectorization factor.
8336   auto SelectedVF = CM.selectVectorizationFactor(VFCandidates);
8337 
8338   // Check if it is profitable to vectorize with runtime checks.
8339   unsigned NumRuntimePointerChecks = Requirements.getNumRuntimePointerChecks();
8340   if (SelectedVF.Width.getKnownMinValue() > 1 && NumRuntimePointerChecks) {
8341     bool PragmaThresholdReached =
8342         NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
8343     bool ThresholdReached =
8344         NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
8345     if ((ThresholdReached && !Hints.allowReordering()) ||
8346         PragmaThresholdReached) {
8347       ORE->emit([&]() {
8348         return OptimizationRemarkAnalysisAliasing(
8349                    DEBUG_TYPE, "CantReorderMemOps", OrigLoop->getStartLoc(),
8350                    OrigLoop->getHeader())
8351                << "loop not vectorized: cannot prove it is safe to reorder "
8352                   "memory operations";
8353       });
8354       LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
8355       Hints.emitRemarkWithHints();
8356       return VectorizationFactor::Disabled();
8357     }
8358   }
8359   return SelectedVF;
8360 }
8361 
8362 VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const {
8363   assert(count_if(VPlans,
8364                   [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==
8365              1 &&
8366          "Best VF has not a single VPlan.");
8367 
8368   for (const VPlanPtr &Plan : VPlans) {
8369     if (Plan->hasVF(VF))
8370       return *Plan.get();
8371   }
8372   llvm_unreachable("No plan found!");
8373 }
8374 
8375 void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF,
8376                                            VPlan &BestVPlan,
8377                                            InnerLoopVectorizer &ILV,
8378                                            DominatorTree *DT) {
8379   LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF
8380                     << '\n');
8381 
8382   // Perform the actual loop transformation.
8383 
8384   // 1. Create a new empty loop. Unlink the old loop and connect the new one.
8385   VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan};
8386   State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
8387   State.TripCount = ILV.getOrCreateTripCount(nullptr);
8388   State.CanonicalIV = ILV.Induction;
8389   ILV.collectPoisonGeneratingRecipes(State);
8390 
8391   ILV.printDebugTracesAtStart();
8392 
8393   //===------------------------------------------------===//
8394   //
8395   // Notice: any optimization or new instruction that go
8396   // into the code below should also be implemented in
8397   // the cost-model.
8398   //
8399   //===------------------------------------------------===//
8400 
8401   // 2. Copy and widen instructions from the old loop into the new loop.
8402   BestVPlan.execute(&State);
8403 
8404   // 3. Fix the vectorized code: take care of header phi's, live-outs,
8405   //    predication, updating analyses.
8406   ILV.fixVectorizedLoop(State);
8407 
8408   ILV.printDebugTracesAtEnd();
8409 }
8410 
8411 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
8412 void LoopVectorizationPlanner::printPlans(raw_ostream &O) {
8413   for (const auto &Plan : VPlans)
8414     if (PrintVPlansInDotFormat)
8415       Plan->printDOT(O);
8416     else
8417       Plan->print(O);
8418 }
8419 #endif
8420 
8421 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
8422     SmallPtrSetImpl<Instruction *> &DeadInstructions) {
8423 
8424   // We create new control-flow for the vectorized loop, so the original exit
8425   // conditions will be dead after vectorization if it's only used by the
8426   // terminator
8427   SmallVector<BasicBlock*> ExitingBlocks;
8428   OrigLoop->getExitingBlocks(ExitingBlocks);
8429   for (auto *BB : ExitingBlocks) {
8430     auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0));
8431     if (!Cmp || !Cmp->hasOneUse())
8432       continue;
8433 
8434     // TODO: we should introduce a getUniqueExitingBlocks on Loop
8435     if (!DeadInstructions.insert(Cmp).second)
8436       continue;
8437 
8438     // The operands of the icmp is often a dead trunc, used by IndUpdate.
8439     // TODO: can recurse through operands in general
8440     for (Value *Op : Cmp->operands()) {
8441       if (isa<TruncInst>(Op) && Op->hasOneUse())
8442           DeadInstructions.insert(cast<Instruction>(Op));
8443     }
8444   }
8445 
8446   // We create new "steps" for induction variable updates to which the original
8447   // induction variables map. An original update instruction will be dead if
8448   // all its users except the induction variable are dead.
8449   auto *Latch = OrigLoop->getLoopLatch();
8450   for (auto &Induction : Legal->getInductionVars()) {
8451     PHINode *Ind = Induction.first;
8452     auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
8453 
8454     // If the tail is to be folded by masking, the primary induction variable,
8455     // if exists, isn't dead: it will be used for masking. Don't kill it.
8456     if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction())
8457       continue;
8458 
8459     if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
8460           return U == Ind || DeadInstructions.count(cast<Instruction>(U));
8461         }))
8462       DeadInstructions.insert(IndUpdate);
8463 
8464     // We record as "Dead" also the type-casting instructions we had identified
8465     // during induction analysis. We don't need any handling for them in the
8466     // vectorized loop because we have proven that, under a proper runtime
8467     // test guarding the vectorized loop, the value of the phi, and the casted
8468     // value of the phi, are the same. The last instruction in this casting chain
8469     // will get its scalar/vector/widened def from the scalar/vector/widened def
8470     // of the respective phi node. Any other casts in the induction def-use chain
8471     // have no other uses outside the phi update chain, and will be ignored.
8472     InductionDescriptor &IndDes = Induction.second;
8473     const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
8474     DeadInstructions.insert(Casts.begin(), Casts.end());
8475   }
8476 }
8477 
8478 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
8479 
8480 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
8481 
8482 Value *InnerLoopUnroller::getStepVector(Value *Val, Value *StartIdx,
8483                                         Value *Step,
8484                                         Instruction::BinaryOps BinOp) {
8485   // When unrolling and the VF is 1, we only need to add a simple scalar.
8486   Type *Ty = Val->getType();
8487   assert(!Ty->isVectorTy() && "Val must be a scalar");
8488 
8489   if (Ty->isFloatingPointTy()) {
8490     // Floating-point operations inherit FMF via the builder's flags.
8491     Value *MulOp = Builder.CreateFMul(StartIdx, Step);
8492     return Builder.CreateBinOp(BinOp, Val, MulOp);
8493   }
8494   return Builder.CreateAdd(Val, Builder.CreateMul(StartIdx, Step), "induction");
8495 }
8496 
8497 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
8498   SmallVector<Metadata *, 4> MDs;
8499   // Reserve first location for self reference to the LoopID metadata node.
8500   MDs.push_back(nullptr);
8501   bool IsUnrollMetadata = false;
8502   MDNode *LoopID = L->getLoopID();
8503   if (LoopID) {
8504     // First find existing loop unrolling disable metadata.
8505     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
8506       auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
8507       if (MD) {
8508         const auto *S = dyn_cast<MDString>(MD->getOperand(0));
8509         IsUnrollMetadata =
8510             S && S->getString().startswith("llvm.loop.unroll.disable");
8511       }
8512       MDs.push_back(LoopID->getOperand(i));
8513     }
8514   }
8515 
8516   if (!IsUnrollMetadata) {
8517     // Add runtime unroll disable metadata.
8518     LLVMContext &Context = L->getHeader()->getContext();
8519     SmallVector<Metadata *, 1> DisableOperands;
8520     DisableOperands.push_back(
8521         MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
8522     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
8523     MDs.push_back(DisableNode);
8524     MDNode *NewLoopID = MDNode::get(Context, MDs);
8525     // Set operand 0 to refer to the loop id itself.
8526     NewLoopID->replaceOperandWith(0, NewLoopID);
8527     L->setLoopID(NewLoopID);
8528   }
8529 }
8530 
8531 //===--------------------------------------------------------------------===//
8532 // EpilogueVectorizerMainLoop
8533 //===--------------------------------------------------------------------===//
8534 
8535 /// This function is partially responsible for generating the control flow
8536 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8537 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() {
8538   MDNode *OrigLoopID = OrigLoop->getLoopID();
8539   Loop *Lp = createVectorLoopSkeleton("");
8540 
8541   // Generate the code to check the minimum iteration count of the vector
8542   // epilogue (see below).
8543   EPI.EpilogueIterationCountCheck =
8544       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true);
8545   EPI.EpilogueIterationCountCheck->setName("iter.check");
8546 
8547   // Generate the code to check any assumptions that we've made for SCEV
8548   // expressions.
8549   EPI.SCEVSafetyCheck = emitSCEVChecks(Lp, LoopScalarPreHeader);
8550 
8551   // Generate the code that checks at runtime if arrays overlap. We put the
8552   // checks into a separate block to make the more common case of few elements
8553   // faster.
8554   EPI.MemSafetyCheck = emitMemRuntimeChecks(Lp, LoopScalarPreHeader);
8555 
8556   // Generate the iteration count check for the main loop, *after* the check
8557   // for the epilogue loop, so that the path-length is shorter for the case
8558   // that goes directly through the vector epilogue. The longer-path length for
8559   // the main loop is compensated for, by the gain from vectorizing the larger
8560   // trip count. Note: the branch will get updated later on when we vectorize
8561   // the epilogue.
8562   EPI.MainLoopIterationCountCheck =
8563       emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false);
8564 
8565   // Generate the induction variable.
8566   OldInduction = Legal->getPrimaryInduction();
8567   Type *IdxTy = Legal->getWidestInductionType();
8568   Value *StartIdx = ConstantInt::get(IdxTy, 0);
8569 
8570   IRBuilder<> B(&*Lp->getLoopPreheader()->getFirstInsertionPt());
8571   Value *Step = getRuntimeVF(B, IdxTy, VF * UF);
8572   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8573   EPI.VectorTripCount = CountRoundDown;
8574   Induction =
8575       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8576                               getDebugLocFromInstOrOperands(OldInduction));
8577 
8578   // Skip induction resume value creation here because they will be created in
8579   // the second pass. If we created them here, they wouldn't be used anyway,
8580   // because the vplan in the second pass still contains the inductions from the
8581   // original loop.
8582 
8583   return completeLoopSkeleton(Lp, OrigLoopID);
8584 }
8585 
8586 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() {
8587   LLVM_DEBUG({
8588     dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"
8589            << "Main Loop VF:" << EPI.MainLoopVF
8590            << ", Main Loop UF:" << EPI.MainLoopUF
8591            << ", Epilogue Loop VF:" << EPI.EpilogueVF
8592            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8593   });
8594 }
8595 
8596 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() {
8597   DEBUG_WITH_TYPE(VerboseDebug, {
8598     dbgs() << "intermediate fn:\n"
8599            << *OrigLoop->getHeader()->getParent() << "\n";
8600   });
8601 }
8602 
8603 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck(
8604     Loop *L, BasicBlock *Bypass, bool ForEpilogue) {
8605   assert(L && "Expected valid Loop.");
8606   assert(Bypass && "Expected valid bypass basic block.");
8607   ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF;
8608   unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF;
8609   Value *Count = getOrCreateTripCount(L);
8610   // Reuse existing vector loop preheader for TC checks.
8611   // Note that new preheader block is generated for vector loop.
8612   BasicBlock *const TCCheckBlock = LoopVectorPreHeader;
8613   IRBuilder<> Builder(TCCheckBlock->getTerminator());
8614 
8615   // Generate code to check if the loop's trip count is less than VF * UF of the
8616   // main vector loop.
8617   auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ?
8618       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8619 
8620   Value *CheckMinIters = Builder.CreateICmp(
8621       P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor),
8622       "min.iters.check");
8623 
8624   if (!ForEpilogue)
8625     TCCheckBlock->setName("vector.main.loop.iter.check");
8626 
8627   // Create new preheader for vector loop.
8628   LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(),
8629                                    DT, LI, nullptr, "vector.ph");
8630 
8631   if (ForEpilogue) {
8632     assert(DT->properlyDominates(DT->getNode(TCCheckBlock),
8633                                  DT->getNode(Bypass)->getIDom()) &&
8634            "TC check is expected to dominate Bypass");
8635 
8636     // Update dominator for Bypass & LoopExit.
8637     DT->changeImmediateDominator(Bypass, TCCheckBlock);
8638     if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8639       // For loops with multiple exits, there's no edge from the middle block
8640       // to exit blocks (as the epilogue must run) and thus no need to update
8641       // the immediate dominator of the exit blocks.
8642       DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock);
8643 
8644     LoopBypassBlocks.push_back(TCCheckBlock);
8645 
8646     // Save the trip count so we don't have to regenerate it in the
8647     // vec.epilog.iter.check. This is safe to do because the trip count
8648     // generated here dominates the vector epilog iter check.
8649     EPI.TripCount = Count;
8650   }
8651 
8652   ReplaceInstWithInst(
8653       TCCheckBlock->getTerminator(),
8654       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8655 
8656   return TCCheckBlock;
8657 }
8658 
8659 //===--------------------------------------------------------------------===//
8660 // EpilogueVectorizerEpilogueLoop
8661 //===--------------------------------------------------------------------===//
8662 
8663 /// This function is partially responsible for generating the control flow
8664 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization.
8665 BasicBlock *
8666 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() {
8667   MDNode *OrigLoopID = OrigLoop->getLoopID();
8668   Loop *Lp = createVectorLoopSkeleton("vec.epilog.");
8669 
8670   // Now, compare the remaining count and if there aren't enough iterations to
8671   // execute the vectorized epilogue skip to the scalar part.
8672   BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader;
8673   VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check");
8674   LoopVectorPreHeader =
8675       SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT,
8676                  LI, nullptr, "vec.epilog.ph");
8677   emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader,
8678                                           VecEpilogueIterationCountCheck);
8679 
8680   // Adjust the control flow taking the state info from the main loop
8681   // vectorization into account.
8682   assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&
8683          "expected this to be saved from the previous pass.");
8684   EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith(
8685       VecEpilogueIterationCountCheck, LoopVectorPreHeader);
8686 
8687   DT->changeImmediateDominator(LoopVectorPreHeader,
8688                                EPI.MainLoopIterationCountCheck);
8689 
8690   EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith(
8691       VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8692 
8693   if (EPI.SCEVSafetyCheck)
8694     EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith(
8695         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8696   if (EPI.MemSafetyCheck)
8697     EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith(
8698         VecEpilogueIterationCountCheck, LoopScalarPreHeader);
8699 
8700   DT->changeImmediateDominator(
8701       VecEpilogueIterationCountCheck,
8702       VecEpilogueIterationCountCheck->getSinglePredecessor());
8703 
8704   DT->changeImmediateDominator(LoopScalarPreHeader,
8705                                EPI.EpilogueIterationCountCheck);
8706   if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF))
8707     // If there is an epilogue which must run, there's no edge from the
8708     // middle block to exit blocks  and thus no need to update the immediate
8709     // dominator of the exit blocks.
8710     DT->changeImmediateDominator(LoopExitBlock,
8711                                  EPI.EpilogueIterationCountCheck);
8712 
8713   // Keep track of bypass blocks, as they feed start values to the induction
8714   // phis in the scalar loop preheader.
8715   if (EPI.SCEVSafetyCheck)
8716     LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck);
8717   if (EPI.MemSafetyCheck)
8718     LoopBypassBlocks.push_back(EPI.MemSafetyCheck);
8719   LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck);
8720 
8721   // Generate a resume induction for the vector epilogue and put it in the
8722   // vector epilogue preheader
8723   Type *IdxTy = Legal->getWidestInductionType();
8724   PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val",
8725                                          LoopVectorPreHeader->getFirstNonPHI());
8726   EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck);
8727   EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0),
8728                            EPI.MainLoopIterationCountCheck);
8729 
8730   // Generate the induction variable.
8731   OldInduction = Legal->getPrimaryInduction();
8732   Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
8733   Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF);
8734   Value *StartIdx = EPResumeVal;
8735   Induction =
8736       createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
8737                               getDebugLocFromInstOrOperands(OldInduction));
8738 
8739   // Generate induction resume values. These variables save the new starting
8740   // indexes for the scalar loop. They are used to test if there are any tail
8741   // iterations left once the vector loop has completed.
8742   // Note that when the vectorized epilogue is skipped due to iteration count
8743   // check, then the resume value for the induction variable comes from
8744   // the trip count of the main vector loop, hence passing the AdditionalBypass
8745   // argument.
8746   createInductionResumeValues(Lp, CountRoundDown,
8747                               {VecEpilogueIterationCountCheck,
8748                                EPI.VectorTripCount} /* AdditionalBypass */);
8749 
8750   AddRuntimeUnrollDisableMetaData(Lp);
8751   return completeLoopSkeleton(Lp, OrigLoopID);
8752 }
8753 
8754 BasicBlock *
8755 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck(
8756     Loop *L, BasicBlock *Bypass, BasicBlock *Insert) {
8757 
8758   assert(EPI.TripCount &&
8759          "Expected trip count to have been safed in the first pass.");
8760   assert(
8761       (!isa<Instruction>(EPI.TripCount) ||
8762        DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&
8763       "saved trip count does not dominate insertion point.");
8764   Value *TC = EPI.TripCount;
8765   IRBuilder<> Builder(Insert->getTerminator());
8766   Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining");
8767 
8768   // Generate code to check if the loop's trip count is less than VF * UF of the
8769   // vector epilogue loop.
8770   auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ?
8771       ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
8772 
8773   Value *CheckMinIters =
8774       Builder.CreateICmp(P, Count,
8775                          createStepForVF(Builder, Count->getType(),
8776                                          EPI.EpilogueVF, EPI.EpilogueUF),
8777                          "min.epilog.iters.check");
8778 
8779   ReplaceInstWithInst(
8780       Insert->getTerminator(),
8781       BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters));
8782 
8783   LoopBypassBlocks.push_back(Insert);
8784   return Insert;
8785 }
8786 
8787 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() {
8788   LLVM_DEBUG({
8789     dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"
8790            << "Epilogue Loop VF:" << EPI.EpilogueVF
8791            << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";
8792   });
8793 }
8794 
8795 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() {
8796   DEBUG_WITH_TYPE(VerboseDebug, {
8797     dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";
8798   });
8799 }
8800 
8801 bool LoopVectorizationPlanner::getDecisionAndClampRange(
8802     const std::function<bool(ElementCount)> &Predicate, VFRange &Range) {
8803   assert(!Range.isEmpty() && "Trying to test an empty VF range.");
8804   bool PredicateAtRangeStart = Predicate(Range.Start);
8805 
8806   for (ElementCount TmpVF = Range.Start * 2;
8807        ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2)
8808     if (Predicate(TmpVF) != PredicateAtRangeStart) {
8809       Range.End = TmpVF;
8810       break;
8811     }
8812 
8813   return PredicateAtRangeStart;
8814 }
8815 
8816 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
8817 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
8818 /// of VF's starting at a given VF and extending it as much as possible. Each
8819 /// vectorization decision can potentially shorten this sub-range during
8820 /// buildVPlan().
8821 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF,
8822                                            ElementCount MaxVF) {
8823   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
8824   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
8825     VFRange SubRange = {VF, MaxVFPlusOne};
8826     VPlans.push_back(buildVPlan(SubRange));
8827     VF = SubRange.End;
8828   }
8829 }
8830 
8831 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
8832                                          VPlanPtr &Plan) {
8833   assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
8834 
8835   // Look for cached value.
8836   std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
8837   EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
8838   if (ECEntryIt != EdgeMaskCache.end())
8839     return ECEntryIt->second;
8840 
8841   VPValue *SrcMask = createBlockInMask(Src, Plan);
8842 
8843   // The terminator has to be a branch inst!
8844   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
8845   assert(BI && "Unexpected terminator found");
8846 
8847   if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1))
8848     return EdgeMaskCache[Edge] = SrcMask;
8849 
8850   // If source is an exiting block, we know the exit edge is dynamically dead
8851   // in the vector loop, and thus we don't need to restrict the mask.  Avoid
8852   // adding uses of an otherwise potentially dead instruction.
8853   if (OrigLoop->isLoopExiting(Src))
8854     return EdgeMaskCache[Edge] = SrcMask;
8855 
8856   VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition());
8857   assert(EdgeMask && "No Edge Mask found for condition");
8858 
8859   if (BI->getSuccessor(0) != Dst)
8860     EdgeMask = Builder.createNot(EdgeMask);
8861 
8862   if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND.
8863     // The condition is 'SrcMask && EdgeMask', which is equivalent to
8864     // 'select i1 SrcMask, i1 EdgeMask, i1 false'.
8865     // The select version does not introduce new UB if SrcMask is false and
8866     // EdgeMask is poison. Using 'and' here introduces undefined behavior.
8867     VPValue *False = Plan->getOrAddVPValue(
8868         ConstantInt::getFalse(BI->getCondition()->getType()));
8869     EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False);
8870   }
8871 
8872   return EdgeMaskCache[Edge] = EdgeMask;
8873 }
8874 
8875 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
8876   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
8877 
8878   // Look for cached value.
8879   BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
8880   if (BCEntryIt != BlockMaskCache.end())
8881     return BCEntryIt->second;
8882 
8883   // All-one mask is modelled as no-mask following the convention for masked
8884   // load/store/gather/scatter. Initialize BlockMask to no-mask.
8885   VPValue *BlockMask = nullptr;
8886 
8887   if (OrigLoop->getHeader() == BB) {
8888     if (!CM.blockNeedsPredicationForAnyReason(BB))
8889       return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one.
8890 
8891     // Create the block in mask as the first non-phi instruction in the block.
8892     VPBuilder::InsertPointGuard Guard(Builder);
8893     auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi();
8894     Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint);
8895 
8896     // Introduce the early-exit compare IV <= BTC to form header block mask.
8897     // This is used instead of IV < TC because TC may wrap, unlike BTC.
8898     // Start by constructing the desired canonical IV.
8899     VPValue *IV = nullptr;
8900     if (Legal->getPrimaryInduction())
8901       IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction());
8902     else {
8903       auto *IVRecipe = new VPWidenCanonicalIVRecipe();
8904       Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint);
8905       IV = IVRecipe;
8906     }
8907     VPValue *BTC = Plan->getOrCreateBackedgeTakenCount();
8908     bool TailFolded = !CM.isScalarEpilogueAllowed();
8909 
8910     if (TailFolded && CM.TTI.emitGetActiveLaneMask()) {
8911       // While ActiveLaneMask is a binary op that consumes the loop tripcount
8912       // as a second argument, we only pass the IV here and extract the
8913       // tripcount from the transform state where codegen of the VP instructions
8914       // happen.
8915       BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV});
8916     } else {
8917       BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC});
8918     }
8919     return BlockMaskCache[BB] = BlockMask;
8920   }
8921 
8922   // This is the block mask. We OR all incoming edges.
8923   for (auto *Predecessor : predecessors(BB)) {
8924     VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
8925     if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
8926       return BlockMaskCache[BB] = EdgeMask;
8927 
8928     if (!BlockMask) { // BlockMask has its initialized nullptr value.
8929       BlockMask = EdgeMask;
8930       continue;
8931     }
8932 
8933     BlockMask = Builder.createOr(BlockMask, EdgeMask);
8934   }
8935 
8936   return BlockMaskCache[BB] = BlockMask;
8937 }
8938 
8939 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I,
8940                                                 ArrayRef<VPValue *> Operands,
8941                                                 VFRange &Range,
8942                                                 VPlanPtr &Plan) {
8943   assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
8944          "Must be called with either a load or store");
8945 
8946   auto willWiden = [&](ElementCount VF) -> bool {
8947     if (VF.isScalar())
8948       return false;
8949     LoopVectorizationCostModel::InstWidening Decision =
8950         CM.getWideningDecision(I, VF);
8951     assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
8952            "CM decision should be taken at this point.");
8953     if (Decision == LoopVectorizationCostModel::CM_Interleave)
8954       return true;
8955     if (CM.isScalarAfterVectorization(I, VF) ||
8956         CM.isProfitableToScalarize(I, VF))
8957       return false;
8958     return Decision != LoopVectorizationCostModel::CM_Scalarize;
8959   };
8960 
8961   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
8962     return nullptr;
8963 
8964   VPValue *Mask = nullptr;
8965   if (Legal->isMaskRequired(I))
8966     Mask = createBlockInMask(I->getParent(), Plan);
8967 
8968   // Determine if the pointer operand of the access is either consecutive or
8969   // reverse consecutive.
8970   LoopVectorizationCostModel::InstWidening Decision =
8971       CM.getWideningDecision(I, Range.Start);
8972   bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse;
8973   bool Consecutive =
8974       Reverse || Decision == LoopVectorizationCostModel::CM_Widen;
8975 
8976   if (LoadInst *Load = dyn_cast<LoadInst>(I))
8977     return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask,
8978                                               Consecutive, Reverse);
8979 
8980   StoreInst *Store = cast<StoreInst>(I);
8981   return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0],
8982                                             Mask, Consecutive, Reverse);
8983 }
8984 
8985 VPWidenIntOrFpInductionRecipe *
8986 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi,
8987                                            ArrayRef<VPValue *> Operands) const {
8988   // Check if this is an integer or fp induction. If so, build the recipe that
8989   // produces its scalar and vector values.
8990   InductionDescriptor II = Legal->getInductionVars().lookup(Phi);
8991   if (II.getKind() == InductionDescriptor::IK_IntInduction ||
8992       II.getKind() == InductionDescriptor::IK_FpInduction) {
8993     assert(II.getStartValue() ==
8994            Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
8995     const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts();
8996     return new VPWidenIntOrFpInductionRecipe(
8997         Phi, Operands[0], Casts.empty() ? nullptr : Casts.front());
8998   }
8999 
9000   return nullptr;
9001 }
9002 
9003 VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate(
9004     TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range,
9005     VPlan &Plan) const {
9006   // Optimize the special case where the source is a constant integer
9007   // induction variable. Notice that we can only optimize the 'trunc' case
9008   // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
9009   // (c) other casts depend on pointer size.
9010 
9011   // Determine whether \p K is a truncation based on an induction variable that
9012   // can be optimized.
9013   auto isOptimizableIVTruncate =
9014       [&](Instruction *K) -> std::function<bool(ElementCount)> {
9015     return [=](ElementCount VF) -> bool {
9016       return CM.isOptimizableIVTruncate(K, VF);
9017     };
9018   };
9019 
9020   if (LoopVectorizationPlanner::getDecisionAndClampRange(
9021           isOptimizableIVTruncate(I), Range)) {
9022 
9023     InductionDescriptor II =
9024         Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0)));
9025     VPValue *Start = Plan.getOrAddVPValue(II.getStartValue());
9026     return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
9027                                              Start, nullptr, I);
9028   }
9029   return nullptr;
9030 }
9031 
9032 VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi,
9033                                                 ArrayRef<VPValue *> Operands,
9034                                                 VPlanPtr &Plan) {
9035   // If all incoming values are equal, the incoming VPValue can be used directly
9036   // instead of creating a new VPBlendRecipe.
9037   VPValue *FirstIncoming = Operands[0];
9038   if (all_of(Operands, [FirstIncoming](const VPValue *Inc) {
9039         return FirstIncoming == Inc;
9040       })) {
9041     return Operands[0];
9042   }
9043 
9044   // We know that all PHIs in non-header blocks are converted into selects, so
9045   // we don't have to worry about the insertion order and we can just use the
9046   // builder. At this point we generate the predication tree. There may be
9047   // duplications since this is a simple recursive scan, but future
9048   // optimizations will clean it up.
9049   SmallVector<VPValue *, 2> OperandsWithMask;
9050   unsigned NumIncoming = Phi->getNumIncomingValues();
9051 
9052   for (unsigned In = 0; In < NumIncoming; In++) {
9053     VPValue *EdgeMask =
9054       createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
9055     assert((EdgeMask || NumIncoming == 1) &&
9056            "Multiple predecessors with one having a full mask");
9057     OperandsWithMask.push_back(Operands[In]);
9058     if (EdgeMask)
9059       OperandsWithMask.push_back(EdgeMask);
9060   }
9061   return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask));
9062 }
9063 
9064 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
9065                                                    ArrayRef<VPValue *> Operands,
9066                                                    VFRange &Range) const {
9067 
9068   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
9069       [this, CI](ElementCount VF) { return CM.isScalarWithPredication(CI); },
9070       Range);
9071 
9072   if (IsPredicated)
9073     return nullptr;
9074 
9075   Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
9076   if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
9077              ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect ||
9078              ID == Intrinsic::pseudoprobe ||
9079              ID == Intrinsic::experimental_noalias_scope_decl))
9080     return nullptr;
9081 
9082   auto willWiden = [&](ElementCount VF) -> bool {
9083     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
9084     // The following case may be scalarized depending on the VF.
9085     // The flag shows whether we use Intrinsic or a usual Call for vectorized
9086     // version of the instruction.
9087     // Is it beneficial to perform intrinsic call compared to lib call?
9088     bool NeedToScalarize = false;
9089     InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
9090     InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
9091     bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
9092     return UseVectorIntrinsic || !NeedToScalarize;
9093   };
9094 
9095   if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
9096     return nullptr;
9097 
9098   ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size());
9099   return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()));
9100 }
9101 
9102 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const {
9103   assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&
9104          !isa<StoreInst>(I) && "Instruction should have been handled earlier");
9105   // Instruction should be widened, unless it is scalar after vectorization,
9106   // scalarization is profitable or it is predicated.
9107   auto WillScalarize = [this, I](ElementCount VF) -> bool {
9108     return CM.isScalarAfterVectorization(I, VF) ||
9109            CM.isProfitableToScalarize(I, VF) || CM.isScalarWithPredication(I);
9110   };
9111   return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize,
9112                                                              Range);
9113 }
9114 
9115 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
9116                                            ArrayRef<VPValue *> Operands) const {
9117   auto IsVectorizableOpcode = [](unsigned Opcode) {
9118     switch (Opcode) {
9119     case Instruction::Add:
9120     case Instruction::And:
9121     case Instruction::AShr:
9122     case Instruction::BitCast:
9123     case Instruction::FAdd:
9124     case Instruction::FCmp:
9125     case Instruction::FDiv:
9126     case Instruction::FMul:
9127     case Instruction::FNeg:
9128     case Instruction::FPExt:
9129     case Instruction::FPToSI:
9130     case Instruction::FPToUI:
9131     case Instruction::FPTrunc:
9132     case Instruction::FRem:
9133     case Instruction::FSub:
9134     case Instruction::ICmp:
9135     case Instruction::IntToPtr:
9136     case Instruction::LShr:
9137     case Instruction::Mul:
9138     case Instruction::Or:
9139     case Instruction::PtrToInt:
9140     case Instruction::SDiv:
9141     case Instruction::Select:
9142     case Instruction::SExt:
9143     case Instruction::Shl:
9144     case Instruction::SIToFP:
9145     case Instruction::SRem:
9146     case Instruction::Sub:
9147     case Instruction::Trunc:
9148     case Instruction::UDiv:
9149     case Instruction::UIToFP:
9150     case Instruction::URem:
9151     case Instruction::Xor:
9152     case Instruction::ZExt:
9153       return true;
9154     }
9155     return false;
9156   };
9157 
9158   if (!IsVectorizableOpcode(I->getOpcode()))
9159     return nullptr;
9160 
9161   // Success: widen this instruction.
9162   return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end()));
9163 }
9164 
9165 void VPRecipeBuilder::fixHeaderPhis() {
9166   BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
9167   for (VPWidenPHIRecipe *R : PhisToFix) {
9168     auto *PN = cast<PHINode>(R->getUnderlyingValue());
9169     VPRecipeBase *IncR =
9170         getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch)));
9171     R->addOperand(IncR->getVPSingleValue());
9172   }
9173 }
9174 
9175 VPBasicBlock *VPRecipeBuilder::handleReplication(
9176     Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
9177     VPlanPtr &Plan) {
9178   bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
9179       [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); },
9180       Range);
9181 
9182   bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange(
9183       [&](ElementCount VF) { return CM.isPredicatedInst(I); }, Range);
9184 
9185   // Even if the instruction is not marked as uniform, there are certain
9186   // intrinsic calls that can be effectively treated as such, so we check for
9187   // them here. Conservatively, we only do this for scalable vectors, since
9188   // for fixed-width VFs we can always fall back on full scalarization.
9189   if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) {
9190     switch (cast<IntrinsicInst>(I)->getIntrinsicID()) {
9191     case Intrinsic::assume:
9192     case Intrinsic::lifetime_start:
9193     case Intrinsic::lifetime_end:
9194       // For scalable vectors if one of the operands is variant then we still
9195       // want to mark as uniform, which will generate one instruction for just
9196       // the first lane of the vector. We can't scalarize the call in the same
9197       // way as for fixed-width vectors because we don't know how many lanes
9198       // there are.
9199       //
9200       // The reasons for doing it this way for scalable vectors are:
9201       //   1. For the assume intrinsic generating the instruction for the first
9202       //      lane is still be better than not generating any at all. For
9203       //      example, the input may be a splat across all lanes.
9204       //   2. For the lifetime start/end intrinsics the pointer operand only
9205       //      does anything useful when the input comes from a stack object,
9206       //      which suggests it should always be uniform. For non-stack objects
9207       //      the effect is to poison the object, which still allows us to
9208       //      remove the call.
9209       IsUniform = true;
9210       break;
9211     default:
9212       break;
9213     }
9214   }
9215 
9216   auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()),
9217                                        IsUniform, IsPredicated);
9218   setRecipe(I, Recipe);
9219   Plan->addVPValue(I, Recipe);
9220 
9221   // Find if I uses a predicated instruction. If so, it will use its scalar
9222   // value. Avoid hoisting the insert-element which packs the scalar value into
9223   // a vector value, as that happens iff all users use the vector value.
9224   for (VPValue *Op : Recipe->operands()) {
9225     auto *PredR = dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDef());
9226     if (!PredR)
9227       continue;
9228     auto *RepR =
9229         cast_or_null<VPReplicateRecipe>(PredR->getOperand(0)->getDef());
9230     assert(RepR->isPredicated() &&
9231            "expected Replicate recipe to be predicated");
9232     RepR->setAlsoPack(false);
9233   }
9234 
9235   // Finalize the recipe for Instr, first if it is not predicated.
9236   if (!IsPredicated) {
9237     LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
9238     VPBB->appendRecipe(Recipe);
9239     return VPBB;
9240   }
9241   LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
9242   assert(VPBB->getSuccessors().empty() &&
9243          "VPBB has successors when handling predicated replication.");
9244   // Record predicated instructions for above packing optimizations.
9245   VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
9246   VPBlockUtils::insertBlockAfter(Region, VPBB);
9247   auto *RegSucc = new VPBasicBlock();
9248   VPBlockUtils::insertBlockAfter(RegSucc, Region);
9249   return RegSucc;
9250 }
9251 
9252 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
9253                                                       VPRecipeBase *PredRecipe,
9254                                                       VPlanPtr &Plan) {
9255   // Instructions marked for predication are replicated and placed under an
9256   // if-then construct to prevent side-effects.
9257 
9258   // Generate recipes to compute the block mask for this region.
9259   VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
9260 
9261   // Build the triangular if-then region.
9262   std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
9263   assert(Instr->getParent() && "Predicated instruction not in any basic block");
9264   auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
9265   auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
9266   auto *PHIRecipe = Instr->getType()->isVoidTy()
9267                         ? nullptr
9268                         : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr));
9269   if (PHIRecipe) {
9270     Plan->removeVPValueFor(Instr);
9271     Plan->addVPValue(Instr, PHIRecipe);
9272   }
9273   auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
9274   auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
9275   VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
9276 
9277   // Note: first set Entry as region entry and then connect successors starting
9278   // from it in order, to propagate the "parent" of each VPBasicBlock.
9279   VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
9280   VPBlockUtils::connectBlocks(Pred, Exit);
9281 
9282   return Region;
9283 }
9284 
9285 VPRecipeOrVPValueTy
9286 VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
9287                                         ArrayRef<VPValue *> Operands,
9288                                         VFRange &Range, VPlanPtr &Plan) {
9289   // First, check for specific widening recipes that deal with calls, memory
9290   // operations, inductions and Phi nodes.
9291   if (auto *CI = dyn_cast<CallInst>(Instr))
9292     return toVPRecipeResult(tryToWidenCall(CI, Operands, Range));
9293 
9294   if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
9295     return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan));
9296 
9297   VPRecipeBase *Recipe;
9298   if (auto Phi = dyn_cast<PHINode>(Instr)) {
9299     if (Phi->getParent() != OrigLoop->getHeader())
9300       return tryToBlend(Phi, Operands, Plan);
9301     if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands)))
9302       return toVPRecipeResult(Recipe);
9303 
9304     VPWidenPHIRecipe *PhiRecipe = nullptr;
9305     if (Legal->isReductionVariable(Phi) || Legal->isFirstOrderRecurrence(Phi)) {
9306       VPValue *StartV = Operands[0];
9307       if (Legal->isReductionVariable(Phi)) {
9308         RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9309         assert(RdxDesc.getRecurrenceStartValue() ==
9310                Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()));
9311         PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV,
9312                                              CM.isInLoopReduction(Phi),
9313                                              CM.useOrderedReductions(RdxDesc));
9314       } else {
9315         PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV);
9316       }
9317 
9318       // Record the incoming value from the backedge, so we can add the incoming
9319       // value from the backedge after all recipes have been created.
9320       recordRecipeOf(cast<Instruction>(
9321           Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())));
9322       PhisToFix.push_back(PhiRecipe);
9323     } else {
9324       // TODO: record start and backedge value for remaining pointer induction
9325       // phis.
9326       assert(Phi->getType()->isPointerTy() &&
9327              "only pointer phis should be handled here");
9328       PhiRecipe = new VPWidenPHIRecipe(Phi);
9329     }
9330 
9331     return toVPRecipeResult(PhiRecipe);
9332   }
9333 
9334   if (isa<TruncInst>(Instr) &&
9335       (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands,
9336                                                Range, *Plan)))
9337     return toVPRecipeResult(Recipe);
9338 
9339   if (!shouldWiden(Instr, Range))
9340     return nullptr;
9341 
9342   if (auto GEP = dyn_cast<GetElementPtrInst>(Instr))
9343     return toVPRecipeResult(new VPWidenGEPRecipe(
9344         GEP, make_range(Operands.begin(), Operands.end()), OrigLoop));
9345 
9346   if (auto *SI = dyn_cast<SelectInst>(Instr)) {
9347     bool InvariantCond =
9348         PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop);
9349     return toVPRecipeResult(new VPWidenSelectRecipe(
9350         *SI, make_range(Operands.begin(), Operands.end()), InvariantCond));
9351   }
9352 
9353   return toVPRecipeResult(tryToWiden(Instr, Operands));
9354 }
9355 
9356 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF,
9357                                                         ElementCount MaxVF) {
9358   assert(OrigLoop->isInnermost() && "Inner loop expected.");
9359 
9360   // Collect instructions from the original loop that will become trivially dead
9361   // in the vectorized loop. We don't need to vectorize these instructions. For
9362   // example, original induction update instructions can become dead because we
9363   // separately emit induction "steps" when generating code for the new loop.
9364   // Similarly, we create a new latch condition when setting up the structure
9365   // of the new loop, so the old one can become dead.
9366   SmallPtrSet<Instruction *, 4> DeadInstructions;
9367   collectTriviallyDeadInstructions(DeadInstructions);
9368 
9369   // Add assume instructions we need to drop to DeadInstructions, to prevent
9370   // them from being added to the VPlan.
9371   // TODO: We only need to drop assumes in blocks that get flattend. If the
9372   // control flow is preserved, we should keep them.
9373   auto &ConditionalAssumes = Legal->getConditionalAssumes();
9374   DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end());
9375 
9376   MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
9377   // Dead instructions do not need sinking. Remove them from SinkAfter.
9378   for (Instruction *I : DeadInstructions)
9379     SinkAfter.erase(I);
9380 
9381   // Cannot sink instructions after dead instructions (there won't be any
9382   // recipes for them). Instead, find the first non-dead previous instruction.
9383   for (auto &P : Legal->getSinkAfter()) {
9384     Instruction *SinkTarget = P.second;
9385     Instruction *FirstInst = &*SinkTarget->getParent()->begin();
9386     (void)FirstInst;
9387     while (DeadInstructions.contains(SinkTarget)) {
9388       assert(
9389           SinkTarget != FirstInst &&
9390           "Must find a live instruction (at least the one feeding the "
9391           "first-order recurrence PHI) before reaching beginning of the block");
9392       SinkTarget = SinkTarget->getPrevNode();
9393       assert(SinkTarget != P.first &&
9394              "sink source equals target, no sinking required");
9395     }
9396     P.second = SinkTarget;
9397   }
9398 
9399   auto MaxVFPlusOne = MaxVF.getWithIncrement(1);
9400   for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) {
9401     VFRange SubRange = {VF, MaxVFPlusOne};
9402     VPlans.push_back(
9403         buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter));
9404     VF = SubRange.End;
9405   }
9406 }
9407 
9408 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes(
9409     VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
9410     const MapVector<Instruction *, Instruction *> &SinkAfter) {
9411 
9412   SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups;
9413 
9414   VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder);
9415 
9416   // ---------------------------------------------------------------------------
9417   // Pre-construction: record ingredients whose recipes we'll need to further
9418   // process after constructing the initial VPlan.
9419   // ---------------------------------------------------------------------------
9420 
9421   // Mark instructions we'll need to sink later and their targets as
9422   // ingredients whose recipe we'll need to record.
9423   for (auto &Entry : SinkAfter) {
9424     RecipeBuilder.recordRecipeOf(Entry.first);
9425     RecipeBuilder.recordRecipeOf(Entry.second);
9426   }
9427   for (auto &Reduction : CM.getInLoopReductionChains()) {
9428     PHINode *Phi = Reduction.first;
9429     RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind();
9430     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9431 
9432     RecipeBuilder.recordRecipeOf(Phi);
9433     for (auto &R : ReductionOperations) {
9434       RecipeBuilder.recordRecipeOf(R);
9435       // For min/max reducitons, where we have a pair of icmp/select, we also
9436       // need to record the ICmp recipe, so it can be removed later.
9437       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9438              "Only min/max recurrences allowed for inloop reductions");
9439       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind))
9440         RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0)));
9441     }
9442   }
9443 
9444   // For each interleave group which is relevant for this (possibly trimmed)
9445   // Range, add it to the set of groups to be later applied to the VPlan and add
9446   // placeholders for its members' Recipes which we'll be replacing with a
9447   // single VPInterleaveRecipe.
9448   for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) {
9449     auto applyIG = [IG, this](ElementCount VF) -> bool {
9450       return (VF.isVector() && // Query is illegal for VF == 1
9451               CM.getWideningDecision(IG->getInsertPos(), VF) ==
9452                   LoopVectorizationCostModel::CM_Interleave);
9453     };
9454     if (!getDecisionAndClampRange(applyIG, Range))
9455       continue;
9456     InterleaveGroups.insert(IG);
9457     for (unsigned i = 0; i < IG->getFactor(); i++)
9458       if (Instruction *Member = IG->getMember(i))
9459         RecipeBuilder.recordRecipeOf(Member);
9460   };
9461 
9462   // ---------------------------------------------------------------------------
9463   // Build initial VPlan: Scan the body of the loop in a topological order to
9464   // visit each basic block after having visited its predecessor basic blocks.
9465   // ---------------------------------------------------------------------------
9466 
9467   auto Plan = std::make_unique<VPlan>();
9468 
9469   // Scan the body of the loop in a topological order to visit each basic block
9470   // after having visited its predecessor basic blocks.
9471   LoopBlocksDFS DFS(OrigLoop);
9472   DFS.perform(LI);
9473 
9474   VPBasicBlock *VPBB = nullptr;
9475   VPBasicBlock *HeaderVPBB = nullptr;
9476   SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove;
9477   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
9478     // Relevant instructions from basic block BB will be grouped into VPRecipe
9479     // ingredients and fill a new VPBasicBlock.
9480     unsigned VPBBsForBB = 0;
9481     auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
9482     if (VPBB)
9483       VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
9484     else {
9485       auto *TopRegion = new VPRegionBlock("vector loop");
9486       TopRegion->setEntry(FirstVPBBForBB);
9487       Plan->setEntry(TopRegion);
9488       HeaderVPBB = FirstVPBBForBB;
9489     }
9490     VPBB = FirstVPBBForBB;
9491     Builder.setInsertPoint(VPBB);
9492 
9493     // Introduce each ingredient into VPlan.
9494     // TODO: Model and preserve debug instrinsics in VPlan.
9495     for (Instruction &I : BB->instructionsWithoutDebug()) {
9496       Instruction *Instr = &I;
9497 
9498       // First filter out irrelevant instructions, to ensure no recipes are
9499       // built for them.
9500       if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
9501         continue;
9502 
9503       SmallVector<VPValue *, 4> Operands;
9504       auto *Phi = dyn_cast<PHINode>(Instr);
9505       if (Phi && Phi->getParent() == OrigLoop->getHeader()) {
9506         Operands.push_back(Plan->getOrAddVPValue(
9507             Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())));
9508       } else {
9509         auto OpRange = Plan->mapToVPValues(Instr->operands());
9510         Operands = {OpRange.begin(), OpRange.end()};
9511       }
9512       if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe(
9513               Instr, Operands, Range, Plan)) {
9514         // If Instr can be simplified to an existing VPValue, use it.
9515         if (RecipeOrValue.is<VPValue *>()) {
9516           auto *VPV = RecipeOrValue.get<VPValue *>();
9517           Plan->addVPValue(Instr, VPV);
9518           // If the re-used value is a recipe, register the recipe for the
9519           // instruction, in case the recipe for Instr needs to be recorded.
9520           if (auto *R = dyn_cast_or_null<VPRecipeBase>(VPV->getDef()))
9521             RecipeBuilder.setRecipe(Instr, R);
9522           continue;
9523         }
9524         // Otherwise, add the new recipe.
9525         VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>();
9526         for (auto *Def : Recipe->definedValues()) {
9527           auto *UV = Def->getUnderlyingValue();
9528           Plan->addVPValue(UV, Def);
9529         }
9530 
9531         if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) &&
9532             HeaderVPBB->getFirstNonPhi() != VPBB->end()) {
9533           // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section
9534           // of the header block. That can happen for truncates of induction
9535           // variables. Those recipes are moved to the phi section of the header
9536           // block after applying SinkAfter, which relies on the original
9537           // position of the trunc.
9538           assert(isa<TruncInst>(Instr));
9539           InductionsToMove.push_back(
9540               cast<VPWidenIntOrFpInductionRecipe>(Recipe));
9541         }
9542         RecipeBuilder.setRecipe(Instr, Recipe);
9543         VPBB->appendRecipe(Recipe);
9544         continue;
9545       }
9546 
9547       // Otherwise, if all widening options failed, Instruction is to be
9548       // replicated. This may create a successor for VPBB.
9549       VPBasicBlock *NextVPBB =
9550           RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan);
9551       if (NextVPBB != VPBB) {
9552         VPBB = NextVPBB;
9553         VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
9554                                     : "");
9555       }
9556     }
9557   }
9558 
9559   assert(isa<VPRegionBlock>(Plan->getEntry()) &&
9560          !Plan->getEntry()->getEntryBasicBlock()->empty() &&
9561          "entry block must be set to a VPRegionBlock having a non-empty entry "
9562          "VPBasicBlock");
9563   cast<VPRegionBlock>(Plan->getEntry())->setExit(VPBB);
9564   RecipeBuilder.fixHeaderPhis();
9565 
9566   // ---------------------------------------------------------------------------
9567   // Transform initial VPlan: Apply previously taken decisions, in order, to
9568   // bring the VPlan to its final state.
9569   // ---------------------------------------------------------------------------
9570 
9571   // Apply Sink-After legal constraints.
9572   auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * {
9573     auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent());
9574     if (Region && Region->isReplicator()) {
9575       assert(Region->getNumSuccessors() == 1 &&
9576              Region->getNumPredecessors() == 1 && "Expected SESE region!");
9577       assert(R->getParent()->size() == 1 &&
9578              "A recipe in an original replicator region must be the only "
9579              "recipe in its block");
9580       return Region;
9581     }
9582     return nullptr;
9583   };
9584   for (auto &Entry : SinkAfter) {
9585     VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first);
9586     VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second);
9587 
9588     auto *TargetRegion = GetReplicateRegion(Target);
9589     auto *SinkRegion = GetReplicateRegion(Sink);
9590     if (!SinkRegion) {
9591       // If the sink source is not a replicate region, sink the recipe directly.
9592       if (TargetRegion) {
9593         // The target is in a replication region, make sure to move Sink to
9594         // the block after it, not into the replication region itself.
9595         VPBasicBlock *NextBlock =
9596             cast<VPBasicBlock>(TargetRegion->getSuccessors().front());
9597         Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi());
9598       } else
9599         Sink->moveAfter(Target);
9600       continue;
9601     }
9602 
9603     // The sink source is in a replicate region. Unhook the region from the CFG.
9604     auto *SinkPred = SinkRegion->getSinglePredecessor();
9605     auto *SinkSucc = SinkRegion->getSingleSuccessor();
9606     VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion);
9607     VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc);
9608     VPBlockUtils::connectBlocks(SinkPred, SinkSucc);
9609 
9610     if (TargetRegion) {
9611       // The target recipe is also in a replicate region, move the sink region
9612       // after the target region.
9613       auto *TargetSucc = TargetRegion->getSingleSuccessor();
9614       VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc);
9615       VPBlockUtils::connectBlocks(TargetRegion, SinkRegion);
9616       VPBlockUtils::connectBlocks(SinkRegion, TargetSucc);
9617     } else {
9618       // The sink source is in a replicate region, we need to move the whole
9619       // replicate region, which should only contain a single recipe in the
9620       // main block.
9621       auto *SplitBlock =
9622           Target->getParent()->splitAt(std::next(Target->getIterator()));
9623 
9624       auto *SplitPred = SplitBlock->getSinglePredecessor();
9625 
9626       VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock);
9627       VPBlockUtils::connectBlocks(SplitPred, SinkRegion);
9628       VPBlockUtils::connectBlocks(SinkRegion, SplitBlock);
9629       if (VPBB == SplitPred)
9630         VPBB = SplitBlock;
9631     }
9632   }
9633 
9634   // Now that sink-after is done, move induction recipes for optimized truncates
9635   // to the phi section of the header block.
9636   for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove)
9637     Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi());
9638 
9639   // Adjust the recipes for any inloop reductions.
9640   adjustRecipesForReductions(VPBB, Plan, RecipeBuilder, Range.Start);
9641 
9642   // Introduce a recipe to combine the incoming and previous values of a
9643   // first-order recurrence.
9644   for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9645     auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R);
9646     if (!RecurPhi)
9647       continue;
9648 
9649     VPRecipeBase *PrevRecipe = RecurPhi->getBackedgeRecipe();
9650     VPBasicBlock *InsertBlock = PrevRecipe->getParent();
9651     auto *Region = GetReplicateRegion(PrevRecipe);
9652     if (Region)
9653       InsertBlock = cast<VPBasicBlock>(Region->getSingleSuccessor());
9654     if (Region || PrevRecipe->isPhi())
9655       Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi());
9656     else
9657       Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator()));
9658 
9659     auto *RecurSplice = cast<VPInstruction>(
9660         Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice,
9661                              {RecurPhi, RecurPhi->getBackedgeValue()}));
9662 
9663     RecurPhi->replaceAllUsesWith(RecurSplice);
9664     // Set the first operand of RecurSplice to RecurPhi again, after replacing
9665     // all users.
9666     RecurSplice->setOperand(0, RecurPhi);
9667   }
9668 
9669   // Interleave memory: for each Interleave Group we marked earlier as relevant
9670   // for this VPlan, replace the Recipes widening its memory instructions with a
9671   // single VPInterleaveRecipe at its insertion point.
9672   for (auto IG : InterleaveGroups) {
9673     auto *Recipe = cast<VPWidenMemoryInstructionRecipe>(
9674         RecipeBuilder.getRecipe(IG->getInsertPos()));
9675     SmallVector<VPValue *, 4> StoredValues;
9676     for (unsigned i = 0; i < IG->getFactor(); ++i)
9677       if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) {
9678         auto *StoreR =
9679             cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI));
9680         StoredValues.push_back(StoreR->getStoredValue());
9681       }
9682 
9683     auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues,
9684                                         Recipe->getMask());
9685     VPIG->insertBefore(Recipe);
9686     unsigned J = 0;
9687     for (unsigned i = 0; i < IG->getFactor(); ++i)
9688       if (Instruction *Member = IG->getMember(i)) {
9689         if (!Member->getType()->isVoidTy()) {
9690           VPValue *OriginalV = Plan->getVPValue(Member);
9691           Plan->removeVPValueFor(Member);
9692           Plan->addVPValue(Member, VPIG->getVPValue(J));
9693           OriginalV->replaceAllUsesWith(VPIG->getVPValue(J));
9694           J++;
9695         }
9696         RecipeBuilder.getRecipe(Member)->eraseFromParent();
9697       }
9698   }
9699 
9700   // From this point onwards, VPlan-to-VPlan transformations may change the plan
9701   // in ways that accessing values using original IR values is incorrect.
9702   Plan->disableValue2VPValue();
9703 
9704   VPlanTransforms::sinkScalarOperands(*Plan);
9705   VPlanTransforms::mergeReplicateRegions(*Plan);
9706 
9707   std::string PlanName;
9708   raw_string_ostream RSO(PlanName);
9709   ElementCount VF = Range.Start;
9710   Plan->addVF(VF);
9711   RSO << "Initial VPlan for VF={" << VF;
9712   for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) {
9713     Plan->addVF(VF);
9714     RSO << "," << VF;
9715   }
9716   RSO << "},UF>=1";
9717   RSO.flush();
9718   Plan->setName(PlanName);
9719 
9720   assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid");
9721   return Plan;
9722 }
9723 
9724 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
9725   // Outer loop handling: They may require CFG and instruction level
9726   // transformations before even evaluating whether vectorization is profitable.
9727   // Since we cannot modify the incoming IR, we need to build VPlan upfront in
9728   // the vectorization pipeline.
9729   assert(!OrigLoop->isInnermost());
9730   assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
9731 
9732   // Create new empty VPlan
9733   auto Plan = std::make_unique<VPlan>();
9734 
9735   // Build hierarchical CFG
9736   VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
9737   HCFGBuilder.buildHierarchicalCFG();
9738 
9739   for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End);
9740        VF *= 2)
9741     Plan->addVF(VF);
9742 
9743   if (EnableVPlanPredication) {
9744     VPlanPredicator VPP(*Plan);
9745     VPP.predicate();
9746 
9747     // Avoid running transformation to recipes until masked code generation in
9748     // VPlan-native path is in place.
9749     return Plan;
9750   }
9751 
9752   SmallPtrSet<Instruction *, 1> DeadInstructions;
9753   VPlanTransforms::VPInstructionsToVPRecipes(OrigLoop, Plan,
9754                                              Legal->getInductionVars(),
9755                                              DeadInstructions, *PSE.getSE());
9756   return Plan;
9757 }
9758 
9759 // Adjust the recipes for reductions. For in-loop reductions the chain of
9760 // instructions leading from the loop exit instr to the phi need to be converted
9761 // to reductions, with one operand being vector and the other being the scalar
9762 // reduction chain. For other reductions, a select is introduced between the phi
9763 // and live-out recipes when folding the tail.
9764 void LoopVectorizationPlanner::adjustRecipesForReductions(
9765     VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder,
9766     ElementCount MinVF) {
9767   for (auto &Reduction : CM.getInLoopReductionChains()) {
9768     PHINode *Phi = Reduction.first;
9769     RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi];
9770     const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second;
9771 
9772     if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc))
9773       continue;
9774 
9775     // ReductionOperations are orders top-down from the phi's use to the
9776     // LoopExitValue. We keep a track of the previous item (the Chain) to tell
9777     // which of the two operands will remain scalar and which will be reduced.
9778     // For minmax the chain will be the select instructions.
9779     Instruction *Chain = Phi;
9780     for (Instruction *R : ReductionOperations) {
9781       VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R);
9782       RecurKind Kind = RdxDesc.getRecurrenceKind();
9783 
9784       VPValue *ChainOp = Plan->getVPValue(Chain);
9785       unsigned FirstOpId;
9786       assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&
9787              "Only min/max recurrences allowed for inloop reductions");
9788       // Recognize a call to the llvm.fmuladd intrinsic.
9789       bool IsFMulAdd = (Kind == RecurKind::FMulAdd);
9790       assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&
9791              "Expected instruction to be a call to the llvm.fmuladd intrinsic");
9792       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9793         assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&
9794                "Expected to replace a VPWidenSelectSC");
9795         FirstOpId = 1;
9796       } else {
9797         assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||
9798                 (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&
9799                "Expected to replace a VPWidenSC");
9800         FirstOpId = 0;
9801       }
9802       unsigned VecOpId =
9803           R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId;
9804       VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId));
9805 
9806       auto *CondOp = CM.foldTailByMasking()
9807                          ? RecipeBuilder.createBlockInMask(R->getParent(), Plan)
9808                          : nullptr;
9809 
9810       if (IsFMulAdd) {
9811         // If the instruction is a call to the llvm.fmuladd intrinsic then we
9812         // need to create an fmul recipe to use as the vector operand for the
9813         // fadd reduction.
9814         VPInstruction *FMulRecipe = new VPInstruction(
9815             Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))});
9816         FMulRecipe->setFastMathFlags(R->getFastMathFlags());
9817         WidenRecipe->getParent()->insert(FMulRecipe,
9818                                          WidenRecipe->getIterator());
9819         VecOp = FMulRecipe;
9820       }
9821       VPReductionRecipe *RedRecipe =
9822           new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI);
9823       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9824       Plan->removeVPValueFor(R);
9825       Plan->addVPValue(R, RedRecipe);
9826       WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator());
9827       WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe);
9828       WidenRecipe->eraseFromParent();
9829 
9830       if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
9831         VPRecipeBase *CompareRecipe =
9832             RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0)));
9833         assert(isa<VPWidenRecipe>(CompareRecipe) &&
9834                "Expected to replace a VPWidenSC");
9835         assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&
9836                "Expected no remaining users");
9837         CompareRecipe->eraseFromParent();
9838       }
9839       Chain = R;
9840     }
9841   }
9842 
9843   // If tail is folded by masking, introduce selects between the phi
9844   // and the live-out instruction of each reduction, at the end of the latch.
9845   if (CM.foldTailByMasking()) {
9846     for (VPRecipeBase &R : Plan->getEntry()->getEntryBasicBlock()->phis()) {
9847       VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R);
9848       if (!PhiR || PhiR->isInLoop())
9849         continue;
9850       Builder.setInsertPoint(LatchVPBB);
9851       VPValue *Cond =
9852           RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan);
9853       VPValue *Red = PhiR->getBackedgeValue();
9854       Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR});
9855     }
9856   }
9857 }
9858 
9859 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
9860 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent,
9861                                VPSlotTracker &SlotTracker) const {
9862   O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
9863   IG->getInsertPos()->printAsOperand(O, false);
9864   O << ", ";
9865   getAddr()->printAsOperand(O, SlotTracker);
9866   VPValue *Mask = getMask();
9867   if (Mask) {
9868     O << ", ";
9869     Mask->printAsOperand(O, SlotTracker);
9870   }
9871 
9872   unsigned OpIdx = 0;
9873   for (unsigned i = 0; i < IG->getFactor(); ++i) {
9874     if (!IG->getMember(i))
9875       continue;
9876     if (getNumStoreOperands() > 0) {
9877       O << "\n" << Indent << "  store ";
9878       getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker);
9879       O << " to index " << i;
9880     } else {
9881       O << "\n" << Indent << "  ";
9882       getVPValue(OpIdx)->printAsOperand(O, SlotTracker);
9883       O << " = load from index " << i;
9884     }
9885     ++OpIdx;
9886   }
9887 }
9888 #endif
9889 
9890 void VPWidenCallRecipe::execute(VPTransformState &State) {
9891   State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this,
9892                                   *this, State);
9893 }
9894 
9895 void VPWidenSelectRecipe::execute(VPTransformState &State) {
9896   State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()),
9897                                     this, *this, InvariantCond, State);
9898 }
9899 
9900 void VPWidenRecipe::execute(VPTransformState &State) {
9901   State.ILV->widenInstruction(*getUnderlyingInstr(), this, State);
9902 }
9903 
9904 void VPWidenGEPRecipe::execute(VPTransformState &State) {
9905   State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this,
9906                       *this, State.UF, State.VF, IsPtrLoopInvariant,
9907                       IsIndexLoopInvariant, State);
9908 }
9909 
9910 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
9911   assert(!State.Instance && "Int or FP induction being replicated.");
9912   State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(),
9913                                    getTruncInst(), getVPValue(0),
9914                                    getCastValue(), State);
9915 }
9916 
9917 void VPWidenPHIRecipe::execute(VPTransformState &State) {
9918   State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), this,
9919                                  State);
9920 }
9921 
9922 void VPBlendRecipe::execute(VPTransformState &State) {
9923   State.ILV->setDebugLocFromInst(Phi, &State.Builder);
9924   // We know that all PHIs in non-header blocks are converted into
9925   // selects, so we don't have to worry about the insertion order and we
9926   // can just use the builder.
9927   // At this point we generate the predication tree. There may be
9928   // duplications since this is a simple recursive scan, but future
9929   // optimizations will clean it up.
9930 
9931   unsigned NumIncoming = getNumIncomingValues();
9932 
9933   // Generate a sequence of selects of the form:
9934   // SELECT(Mask3, In3,
9935   //        SELECT(Mask2, In2,
9936   //               SELECT(Mask1, In1,
9937   //                      In0)))
9938   // Note that Mask0 is never used: lanes for which no path reaches this phi and
9939   // are essentially undef are taken from In0.
9940   InnerLoopVectorizer::VectorParts Entry(State.UF);
9941   for (unsigned In = 0; In < NumIncoming; ++In) {
9942     for (unsigned Part = 0; Part < State.UF; ++Part) {
9943       // We might have single edge PHIs (blocks) - use an identity
9944       // 'select' for the first PHI operand.
9945       Value *In0 = State.get(getIncomingValue(In), Part);
9946       if (In == 0)
9947         Entry[Part] = In0; // Initialize with the first incoming value.
9948       else {
9949         // Select between the current value and the previous incoming edge
9950         // based on the incoming mask.
9951         Value *Cond = State.get(getMask(In), Part);
9952         Entry[Part] =
9953             State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
9954       }
9955     }
9956   }
9957   for (unsigned Part = 0; Part < State.UF; ++Part)
9958     State.set(this, Entry[Part], Part);
9959 }
9960 
9961 void VPInterleaveRecipe::execute(VPTransformState &State) {
9962   assert(!State.Instance && "Interleave group being replicated.");
9963   State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(),
9964                                       getStoredValues(), getMask());
9965 }
9966 
9967 void VPReductionRecipe::execute(VPTransformState &State) {
9968   assert(!State.Instance && "Reduction being replicated.");
9969   Value *PrevInChain = State.get(getChainOp(), 0);
9970   RecurKind Kind = RdxDesc->getRecurrenceKind();
9971   bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc);
9972   // Propagate the fast-math flags carried by the underlying instruction.
9973   IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder);
9974   State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags());
9975   for (unsigned Part = 0; Part < State.UF; ++Part) {
9976     Value *NewVecOp = State.get(getVecOp(), Part);
9977     if (VPValue *Cond = getCondOp()) {
9978       Value *NewCond = State.get(Cond, Part);
9979       VectorType *VecTy = cast<VectorType>(NewVecOp->getType());
9980       Value *Iden = RdxDesc->getRecurrenceIdentity(
9981           Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags());
9982       Value *IdenVec =
9983           State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden);
9984       Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec);
9985       NewVecOp = Select;
9986     }
9987     Value *NewRed;
9988     Value *NextInChain;
9989     if (IsOrdered) {
9990       if (State.VF.isVector())
9991         NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp,
9992                                         PrevInChain);
9993       else
9994         NewRed = State.Builder.CreateBinOp(
9995             (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain,
9996             NewVecOp);
9997       PrevInChain = NewRed;
9998     } else {
9999       PrevInChain = State.get(getChainOp(), Part);
10000       NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp);
10001     }
10002     if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) {
10003       NextInChain =
10004           createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(),
10005                          NewRed, PrevInChain);
10006     } else if (IsOrdered)
10007       NextInChain = NewRed;
10008     else
10009       NextInChain = State.Builder.CreateBinOp(
10010           (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed,
10011           PrevInChain);
10012     State.set(this, NextInChain, Part);
10013   }
10014 }
10015 
10016 void VPReplicateRecipe::execute(VPTransformState &State) {
10017   if (State.Instance) { // Generate a single instance.
10018     assert(!State.VF.isScalable() && "Can't scalarize a scalable vector");
10019     State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *State.Instance,
10020                                     IsPredicated, State);
10021     // Insert scalar instance packing it into a vector.
10022     if (AlsoPack && State.VF.isVector()) {
10023       // If we're constructing lane 0, initialize to start from poison.
10024       if (State.Instance->Lane.isFirstLane()) {
10025         assert(!State.VF.isScalable() && "VF is assumed to be non scalable.");
10026         Value *Poison = PoisonValue::get(
10027             VectorType::get(getUnderlyingValue()->getType(), State.VF));
10028         State.set(this, Poison, State.Instance->Part);
10029       }
10030       State.ILV->packScalarIntoVectorValue(this, *State.Instance, State);
10031     }
10032     return;
10033   }
10034 
10035   // Generate scalar instances for all VF lanes of all UF parts, unless the
10036   // instruction is uniform inwhich case generate only the first lane for each
10037   // of the UF parts.
10038   unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue();
10039   assert((!State.VF.isScalable() || IsUniform) &&
10040          "Can't scalarize a scalable vector");
10041   for (unsigned Part = 0; Part < State.UF; ++Part)
10042     for (unsigned Lane = 0; Lane < EndLane; ++Lane)
10043       State.ILV->scalarizeInstruction(getUnderlyingInstr(), this,
10044                                       VPIteration(Part, Lane), IsPredicated,
10045                                       State);
10046 }
10047 
10048 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
10049   assert(State.Instance && "Branch on Mask works only on single instance.");
10050 
10051   unsigned Part = State.Instance->Part;
10052   unsigned Lane = State.Instance->Lane.getKnownLane();
10053 
10054   Value *ConditionBit = nullptr;
10055   VPValue *BlockInMask = getMask();
10056   if (BlockInMask) {
10057     ConditionBit = State.get(BlockInMask, Part);
10058     if (ConditionBit->getType()->isVectorTy())
10059       ConditionBit = State.Builder.CreateExtractElement(
10060           ConditionBit, State.Builder.getInt32(Lane));
10061   } else // Block in mask is all-one.
10062     ConditionBit = State.Builder.getTrue();
10063 
10064   // Replace the temporary unreachable terminator with a new conditional branch,
10065   // whose two destinations will be set later when they are created.
10066   auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
10067   assert(isa<UnreachableInst>(CurrentTerminator) &&
10068          "Expected to replace unreachable terminator with conditional branch.");
10069   auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
10070   CondBr->setSuccessor(0, nullptr);
10071   ReplaceInstWithInst(CurrentTerminator, CondBr);
10072 }
10073 
10074 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
10075   assert(State.Instance && "Predicated instruction PHI works per instance.");
10076   Instruction *ScalarPredInst =
10077       cast<Instruction>(State.get(getOperand(0), *State.Instance));
10078   BasicBlock *PredicatedBB = ScalarPredInst->getParent();
10079   BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
10080   assert(PredicatingBB && "Predicated block has no single predecessor.");
10081   assert(isa<VPReplicateRecipe>(getOperand(0)) &&
10082          "operand must be VPReplicateRecipe");
10083 
10084   // By current pack/unpack logic we need to generate only a single phi node: if
10085   // a vector value for the predicated instruction exists at this point it means
10086   // the instruction has vector users only, and a phi for the vector value is
10087   // needed. In this case the recipe of the predicated instruction is marked to
10088   // also do that packing, thereby "hoisting" the insert-element sequence.
10089   // Otherwise, a phi node for the scalar value is needed.
10090   unsigned Part = State.Instance->Part;
10091   if (State.hasVectorValue(getOperand(0), Part)) {
10092     Value *VectorValue = State.get(getOperand(0), Part);
10093     InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
10094     PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
10095     VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
10096     VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
10097     if (State.hasVectorValue(this, Part))
10098       State.reset(this, VPhi, Part);
10099     else
10100       State.set(this, VPhi, Part);
10101     // NOTE: Currently we need to update the value of the operand, so the next
10102     // predicated iteration inserts its generated value in the correct vector.
10103     State.reset(getOperand(0), VPhi, Part);
10104   } else {
10105     Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType();
10106     PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
10107     Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()),
10108                      PredicatingBB);
10109     Phi->addIncoming(ScalarPredInst, PredicatedBB);
10110     if (State.hasScalarValue(this, *State.Instance))
10111       State.reset(this, Phi, *State.Instance);
10112     else
10113       State.set(this, Phi, *State.Instance);
10114     // NOTE: Currently we need to update the value of the operand, so the next
10115     // predicated iteration inserts its generated value in the correct vector.
10116     State.reset(getOperand(0), Phi, *State.Instance);
10117   }
10118 }
10119 
10120 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
10121   VPValue *StoredValue = isStore() ? getStoredValue() : nullptr;
10122   State.ILV->vectorizeMemoryInstruction(
10123       &Ingredient, State, StoredValue ? nullptr : getVPSingleValue(), getAddr(),
10124       StoredValue, getMask(), Consecutive, Reverse);
10125 }
10126 
10127 // Determine how to lower the scalar epilogue, which depends on 1) optimising
10128 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing
10129 // predication, and 4) a TTI hook that analyses whether the loop is suitable
10130 // for predication.
10131 static ScalarEpilogueLowering getScalarEpilogueLowering(
10132     Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI,
10133     BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI,
10134     AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
10135     LoopVectorizationLegality &LVL) {
10136   // 1) OptSize takes precedence over all other options, i.e. if this is set,
10137   // don't look at hints or options, and don't request a scalar epilogue.
10138   // (For PGSO, as shouldOptimizeForSize isn't currently accessible from
10139   // LoopAccessInfo (due to code dependency and not being able to reliably get
10140   // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection
10141   // of strides in LoopAccessInfo::analyzeLoop() and vectorize without
10142   // versioning when the vectorization is forced, unlike hasOptSize. So revert
10143   // back to the old way and vectorize with versioning when forced. See D81345.)
10144   if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI,
10145                                                       PGSOQueryType::IRPass) &&
10146                           Hints.getForce() != LoopVectorizeHints::FK_Enabled))
10147     return CM_ScalarEpilogueNotAllowedOptSize;
10148 
10149   // 2) If set, obey the directives
10150   if (PreferPredicateOverEpilogue.getNumOccurrences()) {
10151     switch (PreferPredicateOverEpilogue) {
10152     case PreferPredicateTy::ScalarEpilogue:
10153       return CM_ScalarEpilogueAllowed;
10154     case PreferPredicateTy::PredicateElseScalarEpilogue:
10155       return CM_ScalarEpilogueNotNeededUsePredicate;
10156     case PreferPredicateTy::PredicateOrDontVectorize:
10157       return CM_ScalarEpilogueNotAllowedUsePredicate;
10158     };
10159   }
10160 
10161   // 3) If set, obey the hints
10162   switch (Hints.getPredicate()) {
10163   case LoopVectorizeHints::FK_Enabled:
10164     return CM_ScalarEpilogueNotNeededUsePredicate;
10165   case LoopVectorizeHints::FK_Disabled:
10166     return CM_ScalarEpilogueAllowed;
10167   };
10168 
10169   // 4) if the TTI hook indicates this is profitable, request predication.
10170   if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT,
10171                                        LVL.getLAI()))
10172     return CM_ScalarEpilogueNotNeededUsePredicate;
10173 
10174   return CM_ScalarEpilogueAllowed;
10175 }
10176 
10177 Value *VPTransformState::get(VPValue *Def, unsigned Part) {
10178   // If Values have been set for this Def return the one relevant for \p Part.
10179   if (hasVectorValue(Def, Part))
10180     return Data.PerPartOutput[Def][Part];
10181 
10182   if (!hasScalarValue(Def, {Part, 0})) {
10183     Value *IRV = Def->getLiveInIRValue();
10184     Value *B = ILV->getBroadcastInstrs(IRV);
10185     set(Def, B, Part);
10186     return B;
10187   }
10188 
10189   Value *ScalarValue = get(Def, {Part, 0});
10190   // If we aren't vectorizing, we can just copy the scalar map values over
10191   // to the vector map.
10192   if (VF.isScalar()) {
10193     set(Def, ScalarValue, Part);
10194     return ScalarValue;
10195   }
10196 
10197   auto *RepR = dyn_cast<VPReplicateRecipe>(Def);
10198   bool IsUniform = RepR && RepR->isUniform();
10199 
10200   unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
10201   // Check if there is a scalar value for the selected lane.
10202   if (!hasScalarValue(Def, {Part, LastLane})) {
10203     // At the moment, VPWidenIntOrFpInductionRecipes can also be uniform.
10204     assert(isa<VPWidenIntOrFpInductionRecipe>(Def->getDef()) &&
10205            "unexpected recipe found to be invariant");
10206     IsUniform = true;
10207     LastLane = 0;
10208   }
10209 
10210   auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
10211   // Set the insert point after the last scalarized instruction or after the
10212   // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
10213   // will directly follow the scalar definitions.
10214   auto OldIP = Builder.saveIP();
10215   auto NewIP =
10216       isa<PHINode>(LastInst)
10217           ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
10218           : std::next(BasicBlock::iterator(LastInst));
10219   Builder.SetInsertPoint(&*NewIP);
10220 
10221   // However, if we are vectorizing, we need to construct the vector values.
10222   // If the value is known to be uniform after vectorization, we can just
10223   // broadcast the scalar value corresponding to lane zero for each unroll
10224   // iteration. Otherwise, we construct the vector values using
10225   // insertelement instructions. Since the resulting vectors are stored in
10226   // State, we will only generate the insertelements once.
10227   Value *VectorValue = nullptr;
10228   if (IsUniform) {
10229     VectorValue = ILV->getBroadcastInstrs(ScalarValue);
10230     set(Def, VectorValue, Part);
10231   } else {
10232     // Initialize packing with insertelements to start from undef.
10233     assert(!VF.isScalable() && "VF is assumed to be non scalable.");
10234     Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
10235     set(Def, Undef, Part);
10236     for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
10237       ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this);
10238     VectorValue = get(Def, Part);
10239   }
10240   Builder.restoreIP(OldIP);
10241   return VectorValue;
10242 }
10243 
10244 // Process the loop in the VPlan-native vectorization path. This path builds
10245 // VPlan upfront in the vectorization pipeline, which allows to apply
10246 // VPlan-to-VPlan transformations from the very beginning without modifying the
10247 // input LLVM IR.
10248 static bool processLoopInVPlanNativePath(
10249     Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
10250     LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
10251     TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
10252     OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI,
10253     ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints,
10254     LoopVectorizationRequirements &Requirements) {
10255 
10256   if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) {
10257     LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n");
10258     return false;
10259   }
10260   assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
10261   Function *F = L->getHeader()->getParent();
10262   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
10263 
10264   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10265       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL);
10266 
10267   LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
10268                                 &Hints, IAI);
10269   // Use the planner for outer loop vectorization.
10270   // TODO: CM is not used at this point inside the planner. Turn CM into an
10271   // optional argument if we don't need it in the future.
10272   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints,
10273                                Requirements, ORE);
10274 
10275   // Get user vectorization factor.
10276   ElementCount UserVF = Hints.getWidth();
10277 
10278   CM.collectElementTypesForWidening();
10279 
10280   // Plan how to best vectorize, return the best VF and its cost.
10281   const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF);
10282 
10283   // If we are stress testing VPlan builds, do not attempt to generate vector
10284   // code. Masked vector code generation support will follow soon.
10285   // Also, do not attempt to vectorize if no vector code will be produced.
10286   if (VPlanBuildStressTest || EnableVPlanPredication ||
10287       VectorizationFactor::Disabled() == VF)
10288     return false;
10289 
10290   VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10291 
10292   {
10293     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10294                              F->getParent()->getDataLayout());
10295     InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL,
10296                            &CM, BFI, PSI, Checks);
10297     LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""
10298                       << L->getHeader()->getParent()->getName() << "\"\n");
10299     LVP.executePlan(VF.Width, 1, BestPlan, LB, DT);
10300   }
10301 
10302   // Mark the loop as already vectorized to avoid vectorizing again.
10303   Hints.setAlreadyVectorized();
10304   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10305   return true;
10306 }
10307 
10308 // Emit a remark if there are stores to floats that required a floating point
10309 // extension. If the vectorized loop was generated with floating point there
10310 // will be a performance penalty from the conversion overhead and the change in
10311 // the vector width.
10312 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) {
10313   SmallVector<Instruction *, 4> Worklist;
10314   for (BasicBlock *BB : L->getBlocks()) {
10315     for (Instruction &Inst : *BB) {
10316       if (auto *S = dyn_cast<StoreInst>(&Inst)) {
10317         if (S->getValueOperand()->getType()->isFloatTy())
10318           Worklist.push_back(S);
10319       }
10320     }
10321   }
10322 
10323   // Traverse the floating point stores upwards searching, for floating point
10324   // conversions.
10325   SmallPtrSet<const Instruction *, 4> Visited;
10326   SmallPtrSet<const Instruction *, 4> EmittedRemark;
10327   while (!Worklist.empty()) {
10328     auto *I = Worklist.pop_back_val();
10329     if (!L->contains(I))
10330       continue;
10331     if (!Visited.insert(I).second)
10332       continue;
10333 
10334     // Emit a remark if the floating point store required a floating
10335     // point conversion.
10336     // TODO: More work could be done to identify the root cause such as a
10337     // constant or a function return type and point the user to it.
10338     if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second)
10339       ORE->emit([&]() {
10340         return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision",
10341                                           I->getDebugLoc(), L->getHeader())
10342                << "floating point conversion changes vector width. "
10343                << "Mixed floating point precision requires an up/down "
10344                << "cast that will negatively impact performance.";
10345       });
10346 
10347     for (Use &Op : I->operands())
10348       if (auto *OpI = dyn_cast<Instruction>(Op))
10349         Worklist.push_back(OpI);
10350   }
10351 }
10352 
10353 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts)
10354     : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced ||
10355                                !EnableLoopInterleaving),
10356       VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced ||
10357                               !EnableLoopVectorization) {}
10358 
10359 bool LoopVectorizePass::processLoop(Loop *L) {
10360   assert((EnableVPlanNativePath || L->isInnermost()) &&
10361          "VPlan-native path is not enabled. Only process inner loops.");
10362 
10363 #ifndef NDEBUG
10364   const std::string DebugLocStr = getDebugLocString(L);
10365 #endif /* NDEBUG */
10366 
10367   LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
10368                     << L->getHeader()->getParent()->getName() << "\" from "
10369                     << DebugLocStr << "\n");
10370 
10371   LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE);
10372 
10373   LLVM_DEBUG(
10374       dbgs() << "LV: Loop hints:"
10375              << " force="
10376              << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
10377                      ? "disabled"
10378                      : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
10379                             ? "enabled"
10380                             : "?"))
10381              << " width=" << Hints.getWidth()
10382              << " interleave=" << Hints.getInterleave() << "\n");
10383 
10384   // Function containing loop
10385   Function *F = L->getHeader()->getParent();
10386 
10387   // Looking at the diagnostic output is the only way to determine if a loop
10388   // was vectorized (other than looking at the IR or machine code), so it
10389   // is important to generate an optimization remark for each loop. Most of
10390   // these messages are generated as OptimizationRemarkAnalysis. Remarks
10391   // generated as OptimizationRemark and OptimizationRemarkMissed are
10392   // less verbose reporting vectorized loops and unvectorized loops that may
10393   // benefit from vectorization, respectively.
10394 
10395   if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) {
10396     LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
10397     return false;
10398   }
10399 
10400   PredicatedScalarEvolution PSE(*SE, *L);
10401 
10402   // Check if it is legal to vectorize the loop.
10403   LoopVectorizationRequirements Requirements;
10404   LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE,
10405                                 &Requirements, &Hints, DB, AC, BFI, PSI);
10406   if (!LVL.canVectorize(EnableVPlanNativePath)) {
10407     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
10408     Hints.emitRemarkWithHints();
10409     return false;
10410   }
10411 
10412   // Check the function attributes and profiles to find out if this function
10413   // should be optimized for size.
10414   ScalarEpilogueLowering SEL = getScalarEpilogueLowering(
10415       F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL);
10416 
10417   // Entrance to the VPlan-native vectorization path. Outer loops are processed
10418   // here. They may require CFG and instruction level transformations before
10419   // even evaluating whether vectorization is profitable. Since we cannot modify
10420   // the incoming IR, we need to build VPlan upfront in the vectorization
10421   // pipeline.
10422   if (!L->isInnermost())
10423     return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
10424                                         ORE, BFI, PSI, Hints, Requirements);
10425 
10426   assert(L->isInnermost() && "Inner loop expected.");
10427 
10428   // Check the loop for a trip count threshold: vectorize loops with a tiny trip
10429   // count by optimizing for size, to minimize overheads.
10430   auto ExpectedTC = getSmallBestKnownTC(*SE, L);
10431   if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) {
10432     LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
10433                       << "This loop is worth vectorizing only if no scalar "
10434                       << "iteration overheads are incurred.");
10435     if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
10436       LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
10437     else {
10438       LLVM_DEBUG(dbgs() << "\n");
10439       SEL = CM_ScalarEpilogueNotAllowedLowTripLoop;
10440     }
10441   }
10442 
10443   // Check the function attributes to see if implicit floats are allowed.
10444   // FIXME: This check doesn't seem possibly correct -- what if the loop is
10445   // an integer loop and the vector instructions selected are purely integer
10446   // vector instructions?
10447   if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
10448     reportVectorizationFailure(
10449         "Can't vectorize when the NoImplicitFloat attribute is used",
10450         "loop not vectorized due to NoImplicitFloat attribute",
10451         "NoImplicitFloat", ORE, L);
10452     Hints.emitRemarkWithHints();
10453     return false;
10454   }
10455 
10456   // Check if the target supports potentially unsafe FP vectorization.
10457   // FIXME: Add a check for the type of safety issue (denormal, signaling)
10458   // for the target we're vectorizing for, to make sure none of the
10459   // additional fp-math flags can help.
10460   if (Hints.isPotentiallyUnsafe() &&
10461       TTI->isFPVectorizationPotentiallyUnsafe()) {
10462     reportVectorizationFailure(
10463         "Potentially unsafe FP op prevents vectorization",
10464         "loop not vectorized due to unsafe FP support.",
10465         "UnsafeFP", ORE, L);
10466     Hints.emitRemarkWithHints();
10467     return false;
10468   }
10469 
10470   bool AllowOrderedReductions;
10471   // If the flag is set, use that instead and override the TTI behaviour.
10472   if (ForceOrderedReductions.getNumOccurrences() > 0)
10473     AllowOrderedReductions = ForceOrderedReductions;
10474   else
10475     AllowOrderedReductions = TTI->enableOrderedReductions();
10476   if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) {
10477     ORE->emit([&]() {
10478       auto *ExactFPMathInst = Requirements.getExactFPInst();
10479       return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE, "CantReorderFPOps",
10480                                                  ExactFPMathInst->getDebugLoc(),
10481                                                  ExactFPMathInst->getParent())
10482              << "loop not vectorized: cannot prove it is safe to reorder "
10483                 "floating-point operations";
10484     });
10485     LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "
10486                          "reorder floating-point operations\n");
10487     Hints.emitRemarkWithHints();
10488     return false;
10489   }
10490 
10491   bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
10492   InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
10493 
10494   // If an override option has been passed in for interleaved accesses, use it.
10495   if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
10496     UseInterleaved = EnableInterleavedMemAccesses;
10497 
10498   // Analyze interleaved memory accesses.
10499   if (UseInterleaved) {
10500     IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI));
10501   }
10502 
10503   // Use the cost model.
10504   LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE,
10505                                 F, &Hints, IAI);
10506   CM.collectValuesToIgnore();
10507   CM.collectElementTypesForWidening();
10508 
10509   // Use the planner for vectorization.
10510   LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints,
10511                                Requirements, ORE);
10512 
10513   // Get user vectorization factor and interleave count.
10514   ElementCount UserVF = Hints.getWidth();
10515   unsigned UserIC = Hints.getInterleave();
10516 
10517   // Plan how to best vectorize, return the best VF and its cost.
10518   Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC);
10519 
10520   VectorizationFactor VF = VectorizationFactor::Disabled();
10521   unsigned IC = 1;
10522 
10523   if (MaybeVF) {
10524     VF = *MaybeVF;
10525     // Select the interleave count.
10526     IC = CM.selectInterleaveCount(VF.Width, *VF.Cost.getValue());
10527   }
10528 
10529   // Identify the diagnostic messages that should be produced.
10530   std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
10531   bool VectorizeLoop = true, InterleaveLoop = true;
10532   if (VF.Width.isScalar()) {
10533     LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
10534     VecDiagMsg = std::make_pair(
10535         "VectorizationNotBeneficial",
10536         "the cost-model indicates that vectorization is not beneficial");
10537     VectorizeLoop = false;
10538   }
10539 
10540   if (!MaybeVF && UserIC > 1) {
10541     // Tell the user interleaving was avoided up-front, despite being explicitly
10542     // requested.
10543     LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "
10544                          "interleaving should be avoided up front\n");
10545     IntDiagMsg = std::make_pair(
10546         "InterleavingAvoided",
10547         "Ignoring UserIC, because interleaving was avoided up front");
10548     InterleaveLoop = false;
10549   } else if (IC == 1 && UserIC <= 1) {
10550     // Tell the user interleaving is not beneficial.
10551     LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
10552     IntDiagMsg = std::make_pair(
10553         "InterleavingNotBeneficial",
10554         "the cost-model indicates that interleaving is not beneficial");
10555     InterleaveLoop = false;
10556     if (UserIC == 1) {
10557       IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
10558       IntDiagMsg.second +=
10559           " and is explicitly disabled or interleave count is set to 1";
10560     }
10561   } else if (IC > 1 && UserIC == 1) {
10562     // Tell the user interleaving is beneficial, but it explicitly disabled.
10563     LLVM_DEBUG(
10564         dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
10565     IntDiagMsg = std::make_pair(
10566         "InterleavingBeneficialButDisabled",
10567         "the cost-model indicates that interleaving is beneficial "
10568         "but is explicitly disabled or interleave count is set to 1");
10569     InterleaveLoop = false;
10570   }
10571 
10572   // Override IC if user provided an interleave count.
10573   IC = UserIC > 0 ? UserIC : IC;
10574 
10575   // Emit diagnostic messages, if any.
10576   const char *VAPassName = Hints.vectorizeAnalysisPassName();
10577   if (!VectorizeLoop && !InterleaveLoop) {
10578     // Do not vectorize or interleaving the loop.
10579     ORE->emit([&]() {
10580       return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
10581                                       L->getStartLoc(), L->getHeader())
10582              << VecDiagMsg.second;
10583     });
10584     ORE->emit([&]() {
10585       return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
10586                                       L->getStartLoc(), L->getHeader())
10587              << IntDiagMsg.second;
10588     });
10589     return false;
10590   } else if (!VectorizeLoop && InterleaveLoop) {
10591     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10592     ORE->emit([&]() {
10593       return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
10594                                         L->getStartLoc(), L->getHeader())
10595              << VecDiagMsg.second;
10596     });
10597   } else if (VectorizeLoop && !InterleaveLoop) {
10598     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10599                       << ") in " << DebugLocStr << '\n');
10600     ORE->emit([&]() {
10601       return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
10602                                         L->getStartLoc(), L->getHeader())
10603              << IntDiagMsg.second;
10604     });
10605   } else if (VectorizeLoop && InterleaveLoop) {
10606     LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
10607                       << ") in " << DebugLocStr << '\n');
10608     LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
10609   }
10610 
10611   bool DisableRuntimeUnroll = false;
10612   MDNode *OrigLoopID = L->getLoopID();
10613   {
10614     // Optimistically generate runtime checks. Drop them if they turn out to not
10615     // be profitable. Limit the scope of Checks, so the cleanup happens
10616     // immediately after vector codegeneration is done.
10617     GeneratedRTChecks Checks(*PSE.getSE(), DT, LI,
10618                              F->getParent()->getDataLayout());
10619     if (!VF.Width.isScalar() || IC > 1)
10620       Checks.Create(L, *LVL.getLAI(), PSE.getUnionPredicate());
10621 
10622     using namespace ore;
10623     if (!VectorizeLoop) {
10624       assert(IC > 1 && "interleave count should not be 1 or 0");
10625       // If we decided that it is not legal to vectorize the loop, then
10626       // interleave it.
10627       InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
10628                                  &CM, BFI, PSI, Checks);
10629 
10630       VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10631       LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT);
10632 
10633       ORE->emit([&]() {
10634         return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
10635                                   L->getHeader())
10636                << "interleaved loop (interleaved count: "
10637                << NV("InterleaveCount", IC) << ")";
10638       });
10639     } else {
10640       // If we decided that it is *legal* to vectorize the loop, then do it.
10641 
10642       // Consider vectorizing the epilogue too if it's profitable.
10643       VectorizationFactor EpilogueVF =
10644           CM.selectEpilogueVectorizationFactor(VF.Width, LVP);
10645       if (EpilogueVF.Width.isVector()) {
10646 
10647         // The first pass vectorizes the main loop and creates a scalar epilogue
10648         // to be vectorized by executing the plan (potentially with a different
10649         // factor) again shortly afterwards.
10650         EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1);
10651         EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE,
10652                                            EPI, &LVL, &CM, BFI, PSI, Checks);
10653 
10654         VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF);
10655         LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV,
10656                         DT);
10657         ++LoopsVectorized;
10658 
10659         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10660         formLCSSARecursively(*L, *DT, LI, SE);
10661 
10662         // Second pass vectorizes the epilogue and adjusts the control flow
10663         // edges from the first pass.
10664         EPI.MainLoopVF = EPI.EpilogueVF;
10665         EPI.MainLoopUF = EPI.EpilogueUF;
10666         EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC,
10667                                                  ORE, EPI, &LVL, &CM, BFI, PSI,
10668                                                  Checks);
10669 
10670         VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF);
10671         LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV,
10672                         DT);
10673         ++LoopsEpilogueVectorized;
10674 
10675         if (!MainILV.areSafetyChecksAdded())
10676           DisableRuntimeUnroll = true;
10677       } else {
10678         InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
10679                                &LVL, &CM, BFI, PSI, Checks);
10680 
10681         VPlan &BestPlan = LVP.getBestPlanFor(VF.Width);
10682         LVP.executePlan(VF.Width, IC, BestPlan, LB, DT);
10683         ++LoopsVectorized;
10684 
10685         // Add metadata to disable runtime unrolling a scalar loop when there
10686         // are no runtime checks about strides and memory. A scalar loop that is
10687         // rarely used is not worth unrolling.
10688         if (!LB.areSafetyChecksAdded())
10689           DisableRuntimeUnroll = true;
10690       }
10691       // Report the vectorization decision.
10692       ORE->emit([&]() {
10693         return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
10694                                   L->getHeader())
10695                << "vectorized loop (vectorization width: "
10696                << NV("VectorizationFactor", VF.Width)
10697                << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
10698       });
10699     }
10700 
10701     if (ORE->allowExtraAnalysis(LV_NAME))
10702       checkMixedPrecision(L, ORE);
10703   }
10704 
10705   Optional<MDNode *> RemainderLoopID =
10706       makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll,
10707                                       LLVMLoopVectorizeFollowupEpilogue});
10708   if (RemainderLoopID.hasValue()) {
10709     L->setLoopID(RemainderLoopID.getValue());
10710   } else {
10711     if (DisableRuntimeUnroll)
10712       AddRuntimeUnrollDisableMetaData(L);
10713 
10714     // Mark the loop as already vectorized to avoid vectorizing again.
10715     Hints.setAlreadyVectorized();
10716   }
10717 
10718   assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()));
10719   return true;
10720 }
10721 
10722 LoopVectorizeResult LoopVectorizePass::runImpl(
10723     Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
10724     DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
10725     DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_,
10726     std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
10727     OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) {
10728   SE = &SE_;
10729   LI = &LI_;
10730   TTI = &TTI_;
10731   DT = &DT_;
10732   BFI = &BFI_;
10733   TLI = TLI_;
10734   AA = &AA_;
10735   AC = &AC_;
10736   GetLAA = &GetLAA_;
10737   DB = &DB_;
10738   ORE = &ORE_;
10739   PSI = PSI_;
10740 
10741   // Don't attempt if
10742   // 1. the target claims to have no vector registers, and
10743   // 2. interleaving won't help ILP.
10744   //
10745   // The second condition is necessary because, even if the target has no
10746   // vector registers, loop vectorization may still enable scalar
10747   // interleaving.
10748   if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) &&
10749       TTI->getMaxInterleaveFactor(1) < 2)
10750     return LoopVectorizeResult(false, false);
10751 
10752   bool Changed = false, CFGChanged = false;
10753 
10754   // The vectorizer requires loops to be in simplified form.
10755   // Since simplification may add new inner loops, it has to run before the
10756   // legality and profitability checks. This means running the loop vectorizer
10757   // will simplify all loops, regardless of whether anything end up being
10758   // vectorized.
10759   for (auto &L : *LI)
10760     Changed |= CFGChanged |=
10761         simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */);
10762 
10763   // Build up a worklist of inner-loops to vectorize. This is necessary as
10764   // the act of vectorizing or partially unrolling a loop creates new loops
10765   // and can invalidate iterators across the loops.
10766   SmallVector<Loop *, 8> Worklist;
10767 
10768   for (Loop *L : *LI)
10769     collectSupportedLoops(*L, LI, ORE, Worklist);
10770 
10771   LoopsAnalyzed += Worklist.size();
10772 
10773   // Now walk the identified inner loops.
10774   while (!Worklist.empty()) {
10775     Loop *L = Worklist.pop_back_val();
10776 
10777     // For the inner loops we actually process, form LCSSA to simplify the
10778     // transform.
10779     Changed |= formLCSSARecursively(*L, *DT, LI, SE);
10780 
10781     Changed |= CFGChanged |= processLoop(L);
10782   }
10783 
10784   // Process each loop nest in the function.
10785   return LoopVectorizeResult(Changed, CFGChanged);
10786 }
10787 
10788 PreservedAnalyses LoopVectorizePass::run(Function &F,
10789                                          FunctionAnalysisManager &AM) {
10790     auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
10791     auto &LI = AM.getResult<LoopAnalysis>(F);
10792     auto &TTI = AM.getResult<TargetIRAnalysis>(F);
10793     auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
10794     auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
10795     auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
10796     auto &AA = AM.getResult<AAManager>(F);
10797     auto &AC = AM.getResult<AssumptionAnalysis>(F);
10798     auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
10799     auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
10800 
10801     auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
10802     std::function<const LoopAccessInfo &(Loop &)> GetLAA =
10803         [&](Loop &L) -> const LoopAccessInfo & {
10804       LoopStandardAnalysisResults AR = {AA,  AC,  DT,      LI,      SE,
10805                                         TLI, TTI, nullptr, nullptr, nullptr};
10806       return LAM.getResult<LoopAccessAnalysis>(L, AR);
10807     };
10808     auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
10809     ProfileSummaryInfo *PSI =
10810         MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
10811     LoopVectorizeResult Result =
10812         runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI);
10813     if (!Result.MadeAnyChange)
10814       return PreservedAnalyses::all();
10815     PreservedAnalyses PA;
10816 
10817     // We currently do not preserve loopinfo/dominator analyses with outer loop
10818     // vectorization. Until this is addressed, mark these analyses as preserved
10819     // only for non-VPlan-native path.
10820     // TODO: Preserve Loop and Dominator analyses for VPlan-native path.
10821     if (!EnableVPlanNativePath) {
10822       PA.preserve<LoopAnalysis>();
10823       PA.preserve<DominatorTreeAnalysis>();
10824     }
10825     if (!Result.MadeCFGChange)
10826       PA.preserveSet<CFGAnalyses>();
10827     return PA;
10828 }
10829 
10830 void LoopVectorizePass::printPipeline(
10831     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
10832   static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline(
10833       OS, MapClassName2PassName);
10834 
10835   OS << "<";
10836   OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;";
10837   OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;";
10838   OS << ">";
10839 }
10840